WO2001036755A1 - Control apparatus and control method for construction machine - Google Patents

Control apparatus and control method for construction machine Download PDF

Info

Publication number
WO2001036755A1
WO2001036755A1 PCT/JP2000/007124 JP0007124W WO0136755A1 WO 2001036755 A1 WO2001036755 A1 WO 2001036755A1 JP 0007124 W JP0007124 W JP 0007124W WO 0136755 A1 WO0136755 A1 WO 0136755A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
hydraulic
control signal
pump
flow rate
Prior art date
Application number
PCT/JP2000/007124
Other languages
French (fr)
Japanese (ja)
Inventor
Kimimasa Onda
Original Assignee
Shin Caterpillar Mitsubishi Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Caterpillar Mitsubishi Ltd. filed Critical Shin Caterpillar Mitsubishi Ltd.
Publication of WO2001036755A1 publication Critical patent/WO2001036755A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/082Servomotor systems incorporating electrically operated control means with different modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • F15B2211/20584Combinations of pumps with high and low capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/26Power control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3144Directional control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31552Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line
    • F15B2211/31564Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line having multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31576Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/321Directional control characterised by the type of actuation mechanically
    • F15B2211/324Directional control characterised by the type of actuation mechanically manually, e.g. by using a lever or pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41554Flow control characterised by the connections of the flow control means in the circuit being connected to a return line and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41572Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/575Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/67Methods for controlling pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors

Definitions

  • the present invention relates to a control device for a construction machine, which controls a discharge flow rate of hydraulic oil from a hydraulic pump to operate a working machine of a construction machine such as a hydraulic shovel, and a control method thereof.
  • a construction machine such as a hydraulic excavator includes an upper revolving unit 102, a lower traveling unit 100, and a work machine 118 as shown in FIG.
  • the undercarriage 100 has a right track 100R and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has a lower track 100 On the other hand, it is provided so as to be pivotable in a horizontal plane. For this reason, a traveling hydraulic motor (travel hydraulic actuator) as an independent power source is attached to each of the left track 100 L and the right track 100 R of the lower traveling body 100.
  • the upper revolving unit 102 is provided with a hydraulic pressure motor for turning (a hydraulic hydraulic actuator for turning).
  • the working machine 118 mainly comprises a boom 103, a stick 104, a bucket 108, and the like, and the boom 103 rotates with respect to the upper rotating body 102. It is pivotally connected.
  • a stick 104 is connected to the end of the boom 103 so as to be rotatable in the vertical plane.
  • a boom driving hydraulic cylinder (boom cylinder, boom driving hydraulic actuator) 105 for driving the boom 103 is provided between the upper swing body 102 and the boom 103.
  • a stick drive hydraulic cylinder (stick cylinder, stick drive hydraulic actuator) 106 for driving the stick 104 is provided between the stick 3 and the stick 104.
  • a bucket driving hydraulic cylinder (bucket cylinder, baguette driving hydraulic actuator) 107 for driving the bucket 108 is provided.
  • the boom 103 is in the direction of arrow a and arrow b in FIG. 9
  • the stick 104 is in the direction of arrow c and arrow d in FIG. 9
  • the bucket 108 is in the direction of arrow e and arrow in FIG. It is configured to be rotatable in the f direction.
  • the rotation of the boom 103 in the direction of arrow a in FIG. 9 is referred to as boom up.
  • the rotation of the boom 103 in the direction of arrow b in FIG. 9 is referred to as boom down.
  • the rotation of the stake 104 in the direction of arrow c in FIG. 9 is called stick-out, and the rotation of the stake 104 in the direction of arrow d in FIG. 9 is called stick-in.
  • the rotation of the bucket 108 in the direction of arrow e in FIG. 9 is called bucket open, and the rotation of the bucket 108 in the direction of arrow f in FIG. 9 is called bucket-in.
  • a hydraulic pump driven by an engine mainly a diesel engine
  • a control valve for a boom a control valve for a stick
  • a hydraulic circuit with multiple control valves such as a bucket control valve and a swirl control valve
  • the operation room 101 of the upper revolving superstructure 102 has a left lever to control the operation of the excavator (running, turning, boom turning, stick turning, and baguette turning).
  • a plurality of operating members such as a right lever, left pedal and right pedal are provided. Then, the moving amounts of the plurality of control valves are controlled in accordance with the operation of the operation member by the operator, whereby the cylinders 105 to 107 and the hydraulic motor are driven.
  • FIG. 10 is a diagram schematically showing a main part of a hydraulic circuit provided in a conventional hydraulic shovel.
  • each of the hydraulic cylinders 105 to 107 and the hydraulic motors 109L, 109R, 110 includes a plurality of engines (mainly, a diesel engine) 500 (Here, two) Hydraulic pumps 510 and 520, and a hydraulic circuit 530 equipped with a plurality of control valves (supply and discharge control valves) 570 to 600 and 620 to 650 are connected.
  • engines mainly, a diesel engine 500 (Here, two) Hydraulic pumps 510 and 520
  • a hydraulic circuit 530 equipped with a plurality of control valves (supply and discharge control valves) 570 to 600 and 620 to 650 are connected.
  • the plurality of operating members 540 include a boom operating member 540a that operates when rotating the boom 103 and a stick operating member 540a that operates when rotating the stick 104. b, a bucket operating member 540 c that is operated when rotating the bucket 108, and a swing operating member 540 d that is operated when rotating the upper revolving unit 102. And a traveling operation member 540e.
  • the hydraulic pumps 510 and 520 discharge the hydraulic oil in the reservoir tank 700 as a predetermined oil pressure.
  • a swash plate rotary piston pump (piston type variable displacement pump, variable discharge amount type piston) is used. Pump) and It is configured.
  • These hydraulic pumps 510 and 520 can adjust the pump discharge flow rate by changing the stroke amount of a piston (not shown) provided in the hydraulic pump. That is, in these hydraulic pumps 5110, 520, one end of the piston is configured to abut against a swash plate (creep plate: not shown), and is discharged from the hydraulic pumps 5110,520.
  • the pump discharge flow rate can be adjusted by changing the stroke of the piston.
  • the hydraulic circuit 530 includes a first circuit unit 550 and a second circuit unit 560.
  • the first circuit section 550 includes an oil passage 610 connected to the first hydraulic pump 510, and a right traveling motor interposed in the oil passage 610 for controlling supply and discharge of hydraulic oil. And a supply / discharge control valve such as a control valve 570, a packet control valve 580, a first boom control valve 590, and a second stick control valve 600.
  • a supply / discharge control valve such as a control valve 570, a packet control valve 580, a first boom control valve 590, and a second stick control valve 600.
  • the hydraulic oil from the first hydraulic pump 5110 is supplied to the right running motor 1109R via the oil passage 6110, the right running motor control valve 570, and the right running motor It is designed to drive 109 R.
  • Hydraulic oil from the first hydraulic pump 5110 is supplied to the bucket driving hydraulic cylinder 107 through the oil passage 610 and the baguette control valve 580, and the oil passage 610, This is supplied to the boom drive hydraulic cylinder 105 via the 1 boom control valve 590, and further supplied to the stick drive hydraulic cylinder 106 via the oil passage 610 and the second stick control valve 600.
  • the cylinders 105, 106, and 107 are driven.
  • a throttle 8110 is provided downstream of the oil passage 6110b of the first circuit section 550.
  • the bypass flow rate returns the hydraulic oil from the first hydraulic pump 510 to the reservoir tank 750 through this throttle 810. It is like that.
  • the hydraulic oil upstream (control valve side) of the throttle 810 is guided to the hydraulic pump 510, and the pressure of the hydraulic oil causes the tilt angle of the hydraulic pump 510 to decrease. It is controlled.
  • the second circuit unit 560 includes an oil passage 660 connected to the second hydraulic pump 520, and a left running motor interposed in the oil passage 660 for controlling supply and discharge of hydraulic oil. It is provided with a supply / discharge control valve such as a control valve 62, a turning motor control valve 63 0, a first stick control valve 64 0, and a second boom control valve 65 0. Then, the hydraulic oil from the second hydraulic pump 520 is supplied to the left traveling motor 109 L via the oil passage 660 and the left traveling motor control valve 620, whereby the left traveling motor One night, 109 L is driven.
  • a supply / discharge control valve such as a control valve 62, a turning motor control valve 63 0, a first stick control valve 64 0, and a second boom control valve 65 0.
  • the hydraulic oil from the second hydraulic pump 520 is supplied to the slewing motor 110 via the oil passage 660 and the slewing motor control valve 630, whereby the slewing motor 1 10 is driven. Further, the hydraulic oil from the second hydraulic pump 520 is supplied to the stick driving hydraulic cylinder 106 via the oil passage 660 and the first stick control valve 640, and the oil passage 6 60, and is supplied to a boom drive hydraulic cylinder 105 via a second boom control valve 650, whereby the respective cylinders 105, 106 are driven.
  • a throttle 8200 is provided downstream of the oil passage 660c of the second circuit section 560, and the bypass flow rate at the neutral or intermediate movement position of the control valves 62 to 65 is The hydraulic oil from the second hydraulic pump 520 is returned to the reservoir tank 700 through the throttle 8200. Further, the hydraulic oil on the upstream side (control valve side) of the throttle 8200 is guided to the hydraulic pump 5200. The tilt angle of the hydraulic pump 520 is controlled by the pressure of the hydraulic oil.
  • the second hydraulic pressure of the second circuit section 560 is set so that sufficient hydraulic oil can be supplied to the stick 104 important for construction machine operation even when operating simultaneously with another work machine 118.
  • the hydraulic oil from the first hydraulic pump 510 in the first circuit section 550 is also supplied to the stick driving hydraulic cylinder 106. .
  • the first stick control valve 640 is interposed in the oil passage 660 of the second circuit unit 560, and the control for the second stick is provided in the oil passage 610 of the first circuit unit 550.
  • Valve 600 is interposed.
  • the moving amount of the first stick control valve 640 is controlled according to the operating amount of the stick operating member 540b, and the moving amount of the second stick control valve 600 is controlled by the stick operating member.
  • the first hydraulic pump 5110 of the first circuit section 550 is operated so that sufficient hydraulic oil is supplied to the boom 103.
  • hydraulic oil from the second hydraulic pump 520 of the second circuit section 560 is also supplied to the boom driving hydraulic cylinder 105.
  • a pilot pump and a proportional pressure reducing valve are used to control the moving amounts of the control valves 570 to 600 and 620 to 650 in accordance with the operating amounts of the operating members 540.
  • a pilot hydraulic circuit equipped with a pilot pressure circuit is also provided, and the pilot oil pressure from the pilot pump is applied to each control valve 570 to 600, 620 to 650 as a predetermined pressure by a proportional pressure reducing valve. It is like that.
  • each of the control valves 570 to 600 and 620 to 600 is configured as a spool valve, and each of them is configured with a plurality (here, five) of throttles.
  • the swing motor control valve 63 0 is provided with an oil passage (operating oil supply passage, P—C) that communicates the second hydraulic pump 52 0 and the swing motor 110.
  • An oil passage (operating oil discharge passage) that connects the PC throttle 40, which is interposed in the 660, 660a, and 970, with the rotation motor 110 and the reservoir tank 700 , C—T passage)
  • a bypass oil passage (bypass passage) that communicates the C—T throttle 41 interposed in the 960, 660 b with the second hydraulic pump 520 and the reservoir tank 700 ) 660, 660c, and a bypass passage restrictor 42 interposed therebetween.
  • the hydraulic oil supply passage and the hydraulic oil discharge passage constitute a hydraulic oil supply and discharge passage.
  • the opening area of the oil passages 660, 660a, 970 that communicates the second hydraulic pump 520 and the rotating motor 110 by the PC throttle 40 is provided. And the PC opening area (PC)] are adjusted.
  • the opening area of the oil passages 960, 660b communicating the turning motor 110 and the reservoir tank 700 by the C-T throttle 41 [the opening area of the hydraulic oil discharge passage, C-T opening area (CT)] is adjusted.
  • the opening area of the oil passages 660 and 660 c that communicates the second hydraulic pump 520 and the reservoir tank 700 by the bypass passage restrictor 42 [the opening area of the bypass passage, the opening area of the bypass passage] (C)] is adjusted.
  • the turning motor control valve 630 is located at the left turning side position, but the turning motor control valve 630 is operated by the operating amount of the turning motor operating member 540d. In accordance with the [operating member operation amount (A)], it is moved upward in Fig. 11 to turn the bypass passage throttle 42 of the turning motor control valve 63 0 into the bypass passage 66 0, 66 0
  • the control valve 630 for the swing motor can be set to the neutral position by adjusting the control valve travel amount (B). it can.
  • the turning motor control valve 630 is moved to the uppermost position in FIG. 11 according to the operation amount of the turning motor operation member 5400d [operation member operation amount (A)].
  • the P_C throttle 40 of the swing motor control valve 63 0 is interposed in the P-C passages 66 0, 66 0 a, 97 0 and the swing motor control valve 63 0 C —
  • the turning mode control valve 63 0 can be set to the right turning side position.
  • hydraulic actuators 105 to 107, 10 0 such as a hydraulic cylinder for driving a stick, are used.
  • the hydraulic circuit for driving 9 R and 109 L is configured similarly.
  • a hydraulic circuit for driving each hydraulic actuator 105-: L07, 109R, 109L, 110 is constructed.
  • the pump flow control (pump tilt angle control) is performed as follows in order to operate the turning motor 110 included in.
  • the operating member 540 d for the turning motor is operated by the operator and the operation amount (A) is AO, the operating member operation as shown in Fig. 12 (a) is performed.
  • the movement amount (B) of the turning motor control valve 630 as the supply / discharge control valve is set to B0.
  • the relationship between the control valve movement amount (B) and the bypass passage opening area (C) as shown in FIG.
  • the bypass passage opening area (C) of the swing motor control valve 630 becomes CO.
  • the C-T opening area (CT) of the turning motor control valve 630 is CT0
  • the PC opening area (PC) is PC0.
  • each of the control valves 5 70 to 600 and 620 to 650 that operate according to the operation amount of each of the operation members 540 is bypassed.
  • a bypass passage between the control valves 600, 650 and the tank 700 which is arranged in series with the oil passages 6 10, 6 10 b, 660, 660 c constituting the passage, and which is arranged at the most downstream side thereof.
  • the oil passages 6 10 b and 660 c (the oil passages upstream of the throttles 8 10 and 820) and the hydraulic pumps 5 10 and 5 20 are connected.
  • the pump tilt angle (pump flow rate) of the hydraulic pumps 510, 520 is controlled based on the pressure of the hydraulic oil guided from the oil passages 610b, 660c constituting the bypass passage. (This type of control is called negative flow control).
  • each hydraulic actuator 105-5, 107, 109 R, 109 L, 110 is operated simultaneously, the downstream of each supply / discharge control valve Hydraulic oil flowing through the bypass passages 660 and 660c on the side is guided to the hydraulic pumps 5110 and 520, so that the pump discharge flow rate of the hydraulic pumps 510 and 520 supplies hydraulic oil through each supply / discharge control valve.
  • the hydraulic pumps 510, 520 so that the sum of the required flow rates of 105 to 107, 109R, 109L, 110 is obtained. (Pump flow rate) is controlled.
  • the operation amount (A) of the turning motor evening operation member 540 d is constant at the intermediate operation amount
  • the corresponding moving amount (B) of the turning motor evening control valve 63 0 also becomes It becomes constant at the intermediate position
  • the PC opening area (PC) throttled by the PC throttle 40 which is interposed in the oil passage connecting the hydraulic pump 520 and the swing motor 110
  • the bypass opening area (C) narrowed by the bypass passage throttle 42 interposed in the oil passage communicating the hydraulic pump 520 and the tank 700 is also constant.
  • the P_C throttle 40 and the bypass passage throttle 42 have a constant opening degree [that is, the P-C opening area (PC) and the bypass opening area (C) are constant.
  • the hydraulic pump 520 is discharged because the hydraulic pump 520 and the swing motor 110 are connected to each other, and the hydraulic pump 520 and the tank 700 are connected to each other. Hydraulic oil is diverted to the rotating motor 110 side and the tank 700 side.
  • the turning motor 110 is operated.
  • the operating pressure of the oil pump fluctuates, and an oil passage (PC passage) that connects the hydraulic pump 520 and the swing motor 110 and an oil passage that connects the hydraulic pump 520 and the tank 700 ( Since the pressure balance with the bypass passage fluctuates, the bypass flow rate (D) also fluctuates.
  • the pressure (E) of the hydraulic oil guided to the hydraulic pump 520 also fluctuates, and the pump flow rate (pump tilt angle) (F) controlled by the pressure (E) of the hydraulic oil also fluctuates.
  • the operating speed of the swing motor 110 may suddenly change. For example, when the load W suddenly decreases, the operating pressure of the swing motor 110 as a hydraulic actuator decreases, and the flow rate to the swing motor 110 increases, so that the bypass flow rate (D ) Decreases from D 0 to D 1.
  • the turning motor 110 has been described as an example, but the same applies to other hydraulic actuators 105-107, 109R, 109L.
  • the decrease in load W acts to increase the pump flow rate, and the hydraulic actuators 105-107, 109R, 109L It is not preferable to increase the operating speed of 110, contrary to the intention of the operator.
  • the speed of pumping (pump flow rate) F0 is the expected speed according to the amount of operation of the operating member 54, and the initial balance point is set at the expected speed of pumping. This is the balance between the actuyue and the load when moving.
  • the operator reduces the operation amount of the operation member 540 in order to set the operation speed of the work machine (hydraulic actuator) to a low speed or an intermediate speed.
  • the intermediate operation amount is fixed at AO, the operating speed of the work equipment 1 18 suddenly increases, so the operator's intended operation cannot be performed, which is preferable in terms of operability.
  • a sudden change in the operating speed of the work equipment is extremely inconvenient in terms of safety.
  • such a decrease in the load W causes, for example, a sudden increase in the turning speed (swing jumping) in a turning operation and a hunting phenomenon of the turning speed resulting therefrom, thereby deteriorating the turning operation.
  • the boom-up fine operation and the stick-out fine operation are performed simultaneously to lift the suspended load suspended at the tip of the stick 104, the stick 104 rotates in the direction d in FIG.
  • the load action point approaches the center of rotation, so that the load acting on the boom cylinder 105 and the stick cylinder 106 decreases.
  • the reduction in the load on the boom cylinder 105 and the stick cylinder 106 acts to increase the pump flow rate. This will increase the working speed rapidly, which may result in reduced hunting.
  • the bypass flow rate (D) increases from D 0 to D 2 accordingly.
  • the pressure (E) of the hydraulic oil guided to the hydraulic pump 520 changes from E0 to E2 as shown in FIG. 13 (a).
  • the pump flow rate (pump tilt angle) (F) is controlled in the decreasing direction, and FIG. As shown in b), the pump flow rate (F) decreases from F0 to F2.
  • Such a decrease in the pump flow rate (F) further reduces the flow rate of the hydraulic oil supplied to the turning motor 110, and as a result, the operating speed of the turning motor 110 may be reduced.
  • the turning mode 110 has been described as an example, but the same applies to other hydraulic factories.
  • the increase in the load W acts to decrease the pump flow rate and decrease the operating speed of the hydraulic actuator.
  • the operating speed is reduced in the operation area where the operation amount of the operation member 540 is relatively large in the hydraulic actuator that drives the work machine 118 used for excavation work such as stick-in packet-in.
  • the properties are favorable.
  • the disadvantage is that the work speed is reduced in hanging work performed at a low speed.
  • the fine operation of the boom up and the fine operation of the stick When the operation of lifting the suspended load is performed, the load application point moves away as the stick 104 rotates in the direction C in Fig. 9, so that the load acts on the boom cylinder 105 and the stick cylinder 106. This increases the load on the system.
  • Such an increase in the load on the boom cylinder 105 and the stick cylinder 106 acts to reduce the pump flow rate as described above, so that the work of the boom cylinder 105 and the stick cylinder 105 is performed.
  • the speed will be reduced, and the operation of the boom 103 as a working machine will stop depending on the working conditions (ie, the amount of operation and the amount of load) during the lifting operation. There is a risk that it will.
  • the pump flow rate decreases in the operation range where the operation amount of the operation member is relatively small. Is not good and needs improvement.
  • the present invention has been made in view of the above-described problems, and has an advantage in that a pump flow rate can be controlled in accordance with an operator's preference to improve a driving feeling.
  • a pump flow rate can be controlled in accordance with an operator's preference to improve a driving feeling.
  • the operating speed of the hydraulic actuator due to the load fluctuation in the fine operation range while ensuring the load-responsive feeling accompanying the increased load. It is an object of the present invention to provide a control device for a construction machine and a control method for the same, which can suppress the change of the construction and improve the operability thereof. Disclosure of the invention
  • a control device for a construction machine includes: an operating member that is operated by an operator to output an electric signal; a hydraulic pump that discharges hydraulic oil in a tank; A hydraulic actuator driven by hydraulic oil discharged by a hydraulic pump, a hydraulic oil supply passage for supplying hydraulic oil to the hydraulic actuator, and a hydraulic oil supply passage interposed between the hydraulic oil supply passage and operation to the hydraulic actuator An operation from a hydraulic pump in a control device for a construction machine having a control valve for controlling oil supply and a bypass passage for returning hydraulic oil not supplied to the hydraulic actuator to the tank via the control valve.
  • Pump flow control means for controlling a discharge flow rate of the oil, the pump flow control means including a first control signal and a first control signal for controlling the pump flow rate based on a characteristic substantially inversely proportional to the flow rate of the hydraulic oil in the bypass passage. And selecting one of the second control signals for controlling the pump flow rate based on a characteristic that is substantially directly proportional to the operation amount of the operating member and the hydraulic oil from the hydraulic pump. It is characterized by being configured to control the output flow rate.
  • the pump flow rate control means controls the pump flow rate based on a characteristic substantially inversely proportional to the flow rate of the hydraulic oil downstream of the supply / discharge control valve of the hydraulic oil supply / discharge passage, and the first control signal and the operation signal.
  • a configuration in which one of the second control signals for controlling the pump flow rate is controlled based on a characteristic that is substantially directly proportional to the operation amount of the member, and the discharge flow rate of the hydraulic oil from the hydraulic pump is controlled. Therefore, the positive flow control and the negative flow control can be selectively used according to the operator's preference, and there is an advantage that the driving feeling can be improved.
  • the operating speed of the hydraulic actuator increases rapidly due to a decrease in the load applied to the hydraulic actuator, While it is possible to suppress the occurrence of the hunting phenomenon caused by this, it is possible to reduce the operating speed of the hydraulic actuator, for example, in excavation work with an increase in the load applied to the hydraulic actuator. Load sensitive There is an advantage that ealing can be secured.
  • the pump flow rate control means is configured to control a discharge flow rate of the hydraulic oil from the hydraulic pump by selecting a control signal for decreasing the pump flow rate from the first control signal and the second control signal.
  • the pump flow control means selects a control signal for decreasing the pump flow rate from the first control signal and the second control signal to control the discharge flow rate of the hydraulic oil from the hydraulic pump.
  • the load applied to the hydraulic actuator fluctuates depending on the work such as lifting and lifting work.
  • the pump flow control based on the first control signal and the pump flow control based on the second control signal vary depending on the load fluctuation. There is an advantage that can be automatically switched.
  • control switching can be performed with a simple configuration. There are advantages too.
  • the pump flow control means is configured to select the second control signal when the second control signal is smaller than a predetermined value and control the discharge flow rate of the hydraulic oil from the hydraulic pump.
  • the pump flow rate control means selects the second control signal to control the discharge flow rate of the hydraulic oil from the hydraulic pump.
  • the pump flow control means selects a control signal for reducing the pump flow rate from the first control signal and the second control signal, When the control signal is equal to or less than a predetermined value, it is preferable to select the second control signal and control the discharge flow rate of the hydraulic oil from the hydraulic pump.
  • the pump flow rate control means selects the control signal for decreasing the pump flow rate from the first control signal and the second control signal, When the control signal is less than a predetermined value, the second control signal is selected. If the operator is not in the fine operation range where the operation member is finely operated, the load applied to the hydraulic actuator may be reduced.
  • the construction machine control method of the present invention includes an operation member that is operated by an operator to output an electric signal, a hydraulic pump that discharges hydraulic oil in a tank, and a hydraulic pump that is driven by hydraulic oil discharged by a hydraulic pump.
  • a hydraulic oil supply a hydraulic oil supply passage for supplying hydraulic oil to the hydraulic oil supply, a control valve interposed in the hydraulic oil supply passage, and controlling the supply of hydraulic oil to the hydraulic oil supply.
  • a control method for a construction machine comprising: a bypass passage for returning hydraulic oil, which is not supplied to the hydraulic actuator through a control valve, to the tank, wherein a flow rate of the hydraulic oil in the bypass passage is detected.
  • a first control signal setting step for setting a first control signal for controlling the pump flow rate based on a characteristic substantially inversely proportional to the flow rate of the operation section; detecting an electric signal from the operation member;
  • a second control signal setting step for setting a second control signal for controlling the pump flow rate based on a characteristic that is substantially directly proportional to the manipulated variable of the first control signal, and a first control set in the first control signal setting step Signal and the second control signal set in the second control signal setting step.
  • a pump flow control step of selecting a control signal to control a discharge flow rate of hydraulic oil from the hydraulic pump.
  • the first control signal for controlling the pump flow rate and the operation amount of the operation member for controlling the pump flow rate based on the characteristic substantially inversely proportional to the flow rate of the hydraulic oil downstream of the supply / discharge control valve of the hydraulic oil supply / discharge passage are provided. Since either one of the second control signals for controlling the pump flow rate is controlled based on the approximately proportional characteristic and the discharge flow rate of the hydraulic oil from the hydraulic pump is controlled, Accordingly, positive flow control and negative flow control can be used properly, and there is an advantage that driving feeling can be improved.
  • the operating speed of the hydraulic actuator increases rapidly due to the decrease in the load applied to the hydraulic actuator.
  • a control signal for reducing the pump flow rate is selected from the first control signal and the second control signal.
  • the first control signal and the second control signal Of these, the control signal to reduce the pump flow rate is selected to control the discharge flow rate of hydraulic oil from the hydraulic pump, so that the load applied to the hydraulic Although it fluctuates, there is an advantage that the pump flow control by the first control signal and the pump flow control by the second control signal can be automatically switched according to the fluctuation of the load.
  • the first control signal is compared with the second control signal, and the pump flow of the first control signal is compared with the first control signal.
  • control switching can be performed with a simple configuration because a control signal that reduces the amount is selected.
  • the second control signal is selected when the second control signal is smaller than a predetermined value.
  • the second control signal when the second control signal is smaller than the predetermined value, the second control signal is selected to control the discharge flow rate of the hydraulic oil from the hydraulic pump, so that the operator operates
  • the second control signal is selected to control the discharge flow rate of the hydraulic oil from the hydraulic pump, so that the operator operates
  • a control signal for reducing the pump flow rate is selected from the first control signal and the second control signal, while the second control signal is selected.
  • the control signal is equal to or less than a predetermined value, it is preferable that the second control signal is selected.
  • the control signal for decreasing the pump flow rate is selected from the first control signal and the second control signal, while the second control signal is selected. If the control signal is smaller than the predetermined value, the second control signal is selected to control the discharge flow rate of the hydraulic oil from the hydraulic pump.
  • the load on the hydraulic actuator decreases, it is possible to prevent the operating speed of the hydraulic actuator from increasing rapidly in the evening, and to suppress the occurrence of a hunting phenomenon due to this, and to reduce the load on the hydraulic actuator.
  • the operating speed of the hydraulic actuator can be reduced to ensure a load-responsive feeling, while the operator makes fine adjustments to the operating members. There is an advantage that a change in the operating speed of the hydraulic actuator due to a load change in a fine operation range can be suppressed.
  • FIG. 1 is a control block diagram for explaining pump tilt angle control in a control device and a control method for a construction machine according to an embodiment of the present invention.
  • FIG. 2 is an overall configuration diagram of a control device for a construction machine according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining a control valve of the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 4 is a block diagram for explaining setting of a pump tilt angle corresponding to a bypass pressure in the control device and the control method for a construction machine according to one embodiment of the present invention.
  • FIG. 5 is a block diagram for explaining the setting of the pump tilt angle corresponding to the operation member in the control device and the control method for the construction machine according to one embodiment of the present invention.
  • FIG. 6 is a block diagram for explaining setting of a pump tilt angle corresponding to speed control in the control device and the control method for a construction machine according to one embodiment of the present invention.
  • FIGS. 7 (a) to 7 (d) show the load W and the working machine speed (pump) when the pump tilt angle corresponding to the speed control is set in the control device and the control method of the construction machine according to the embodiment of the present invention.
  • Fig. 7 (a) is a diagram showing the relationship with the tilt angle.
  • Fig. 7 (a) shows the case where the pump tilt angle is controlled based on the characteristic inversely proportional to the bypass flow rate.
  • Fig. 7 (c) shows the pump tilt angle selectively using the characteristic inversely proportional to the bypass flow rate and the characteristic proportional to the operation member operation amount.
  • Fig. 7 (d) shows the case where the pump tilt angle control is performed based on the required tilt angle that is smaller than the predetermined value. I have.
  • FIG. 8 is a block diagram for explaining the setting of the pump tilt angle corresponding to the allowable horsepower in the control device and the control method for the construction machine according to the embodiment of the present invention.
  • FIG. 9 is a schematic perspective view showing a general construction machine.
  • FIG. 10 shows an overall configuration diagram of a conventional control device for construction machines.
  • FIG. 11 is a schematic diagram for explaining pump tilt angle control in a conventional construction machine control device.
  • Figs. 12 (a) to 12 (e) are diagrams for explaining pump tilt angle control in a conventional control device for construction machinery
  • Fig. 12 (a) is a diagram illustrating operation member operation amount and control valve movement
  • Fig. 12 (b) shows the relationship between the control valve travel and the control valve opening area
  • Fig. 12 (c) shows the relationship between the bypass oil passage opening area and the bypass flow rate
  • Fig. 12 (d) shows the relationship between the bypass flow rate and the output signal of the bypass pressure detecting means.
  • Fig. 12 (e) shows the output signal of the bypass pressure detecting means and the pump flow rate (pump tilt). The figure shows the relationship with the angle of rotation.
  • Figs. 13 (a) to 13 (c) are diagrams for explaining the problem of pump tilt angle control in a conventional control device for construction machinery.
  • Fig. 13 (a) shows bypass flow rate and bypass pressure.
  • Figure 13 (b) shows the relationship between the output signal of the detection means and the output signal of the bypass pressure detection means and the pump flow rate (pump tilt angle).
  • Figure 13 (c) shows the load. The figure which shows the relationship between W and the speed (pump flow rate) of akuchiyue is shown respectively.
  • This construction machine is a construction machine (working machine) such as a hydraulic shovel, as described in the prior art (see Fig. 9), and works with the upper revolving unit 102 and the lower traveling unit 100.
  • the undercarriage 100 has a right track 10OR and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has It is provided so that it can turn in a horizontal plane.
  • the work machine 118 mainly includes a boom 103, a stick 104, a bucket 108, and the like, and the boom 103 rotates with respect to the upper rotating body 102. It is pivotally connected.
  • a stick 104 is connected to the end of the boom 103 so as to be rotatable in the vertical plane.
  • a boom drive hydraulic cylinder (boom cylinder, boom drive hydraulic actuator) 105 for driving the boom 103 is provided between the upper swing body 102 and the boom 103.
  • a stick driving hydraulic cylinder (stick cylinder, stick driving hydraulic actuator) 106 for driving the stick 104 is provided between the boom 103 and the stick 104.
  • a bucket driving hydraulic cylinder (a bucket cylinder, a packet driving hydraulic actuator) for driving the bucket 108. 7 are provided.
  • the boom 103 is in the directions a and b in the figure
  • the stick 104 is in the directions c and d in the figure
  • the knocket 108 is the direction e and f in the figure. It is configured to be rotatable.
  • FIG. 2 is a diagram schematically showing a main part of a hydraulic circuit of such a hydraulic shovel.
  • the left track 100 L and the right track 100 are identical as shown in FIG. 2, the left track 100 L and the right track 100
  • R is a running motor as an independent power source.
  • R is provided, and the upper swing body 102 is provided with a swing motor 110 for swingably driving the upper swing body 102 with respect to the lower traveling body 100.
  • traveling motors 110 L and 109 R and turning motors 110 are configured as hydraulic motors that are operated by hydraulic pressure. As described later, engines (mainly diesel engines) are used. Hydraulic oil from a plurality (here, two) of hydraulic pumps 51, 52 driven by 50 is supplied at a predetermined pressure via a hydraulic circuit 53, and the operation supplied in this manner is performed. Each hydraulic motor 109 L, 109 R, 110 is driven according to the hydraulic pressure.
  • the hydraulic pumps 51 and 52 discharge the hydraulic oil in the reservoir tank 70 as a predetermined oil pressure.
  • a swash plate rotary piston pump (piston type variable displacement pump, variable discharge amount type piston) is used. Pump).
  • These hydraulic pumps 51 and 52 can adjust the pump discharge flow rate by changing the stroke amount of a piston (not shown) provided in the hydraulic pump.
  • one end of the piston is configured to contact a swash plate (creep plate: not shown), and the inclination (tilt angle) of the swash plate will be described later.
  • the pump discharge flow rate can be adjusted by changing the piston stroke by changing it based on the operation signal from the controller 1.
  • the inclination of the swash plate can be changed based on the operation signal from the controller 1.
  • each operation member 5 by the operator is changed. Since the amount of operation in 4 can be taken into account, it is possible to improve the driving feeling during operation compared to the conventional method in which the pressure of the hydraulic oil in the oil passage is guided to change the inclination of the swash plate. Can be done.
  • the engine 50 is designed so that the operator can set the engine speed by switching the engine speed setting dial.
  • the maximum engine speed for example, about 200 rpm
  • the minimum engine speed are set.
  • the number for example, about 100 rpm
  • the engine speed is not limited to such a stepwise switching, but may be a type that can be changed smoothly.
  • the total horsepower of the engine 50 is consumed for driving these hydraulic pumps 51 and 52 and a pilot pump 83 described later.
  • the operation room 101 also has a left lever, a right lever, a left pedal, and a right pedal for controlling the operation of the hydraulic excavator (running, turning, boom turning, stick turning, and bucket turning).
  • a plurality of operation members 54 such as pedals are provided. These operation members 54 are configured as electric operation members (for example, electric operation levers), and output an electric signal corresponding to the operation amount to a controller (control means) 1 described later.
  • a plurality of work mode switches are also provided in the operator's cab 101, and the operator can set various modes such as a boom priority mode, a swing priority mode, a leveling mode, and a tamping mode. The most suitable one can be selected appropriately according to the work. In the normal case where such a selection is not made, the operation of the stick 104 is important in the operation of the construction machine, and it is necessary to give priority to this operation. ing. For example, when the operator operates these operating members 54, the control valves 57 to 60 and 62 to 65 interposed in the hydraulic circuit 53 are controlled, and each cylinder is controlled. 105 to 107 and hydraulic motors 109 L, 109 R, 110 are driven. As a result, the upper swing body 102 can be swung, the boom 103, the stick 104, the bucket 108, and the like can be swung, and the hydraulic excavator can run.
  • the member operated when rotating the boom 103 is the boom operating member 54a
  • the member operated when rotating the stick 104 is the stick operating member 54b, the bucket 10b.
  • An object to be operated when rotating 8 is a baguette operating member 54c
  • an object to be operated when rotating the upper revolving structure 102 is a swiveling operating member 54d, which is operated when traveling. Is referred to as a traveling operation member 54 e.
  • the hydraulic circuit 53 includes a first circuit section 55 and a second circuit section.
  • the first circuit section 55 includes an oil passage 61 connected to the first hydraulic pump 51, a right traveling motor control valve 57 interposed in the oil passage 61, and a baguette control valve. 58, a control valve for the first boom 59, a control valve for the second stick 60, and the like.
  • the hydraulic oil from the first hydraulic pump 51 is supplied to the right traveling motor 109 R via the oil passage 61 and the right traveling motor evening control valve 57, and the right traveling motor 110 R is driven.
  • the hydraulic oil from the first hydraulic pump 51 is supplied to the bucket driving hydraulic cylinder 107 via the oil passage 61 and the packet control valve 58, and the hydraulic oil is supplied to the oil passage 61 It is supplied to the boom drive hydraulic cylinder 105 via the boom control valve 59, and Is supplied to the stick driving hydraulic cylinder 106 via the oil passage 61 and the second stick control valve 60, thereby driving each cylinder 105, 106, 107 It has become.
  • the hydraulic passage 61 of the first circuit section 55 is provided with hydraulic oil that is not supplied to the hydraulic actuators 105 to 107 and 109R via the control valves 57 to 60, respectively.
  • Oil passage 61b as a bypass passage for returning the oil to the tank 70. Then, as described later, the flow rate of the hydraulic oil flowing through the oil passage 61b is detected, and the discharge flow rate from the hydraulic pump 51 is controlled based on the detected flow rate of the hydraulic oil. .
  • a throttle 81 is provided as a component of the bypass pressure detecting means in the oil passage 61b downstream of each of the control valves 57 to 60, and each of the control valves 57 to 60 is neutral.
  • the hydraulic oil from the first hydraulic pump 51 is returned to the reservoir tank 70 through the throttle 81 in the position or the intermediate movement position (the position between the both-end movement position and the neutral position). Since the pressure in the bypass passage 6 1b on the upstream side of the throttle 81 changes according to the flow rate of the hydraulic oil flowing in the bypass passage 6 1b by the throttle 81, the bypass passage 6 By detecting the pressure in 1b by the pressure sensor 74 as a component of the bypass pressure detecting means, the flow rate of the hydraulic oil flowing in the bypass passage 61b is detected.
  • the flow rate of the hydraulic oil flowing in the bypass passage 61b is detected by detecting the pressure in the bypass passage 61b by the pressure sensor 74, but is not limited thereto. Instead, for example, the flow rate of the hydraulic oil flowing in the bypass passage 61b may be detected by a flow rate sensor.
  • the second circuit portion 56 includes an oil passage 66 connected to the second hydraulic pump 52, a left traveling motor control valve 62 interposed in the oil passage 66, and a swing motor control valve 6. 3, a control valve such as a first stick control valve 64, a second boom control valve 65, etc., and a throttle 82.
  • the hydraulic oil from the second hydraulic pump 52 is supplied to the left traveling motor 109 L via the oil passage 66 and the left traveling motor control valve 62, whereby the left traveling motor is driven. Evening 109 L is to be driven. Hydraulic oil from the second hydraulic pump 52 is supplied to the swing motor 110 via the oil passage 66 and the swing motor control valve 63, thereby driving the swing motor 110. It has become to be. Further, the hydraulic oil from the second hydraulic pump 52 is supplied to the stick driving hydraulic cylinder 106 through the oil passage 66 and the first stick control valve 64, and the oil passage 66, It is supplied to the boom drive hydraulic cylinder 105 via the boom control valve 65, whereby the respective cylinders 105, 106 are driven.
  • the oil passage 66 of the second circuit section 56 is supplied to each hydraulic actuator 105, 106, 110, 109L via each control valve 62 to 65. It is provided with an oil passage 66 c serving as a bypass passage for returning the used hydraulic oil to the tank 70. Then, as described later, the flow rate of the hydraulic oil flowing through the oil passage 66c is detected, and the discharge flow rate from the hydraulic pump 52 is controlled based on the detected flow rate of the hydraulic oil.
  • a throttle 82 is provided as a component of a bypass pressure detecting means in the bypass passage 66 c downstream of each of the control valves 62 to 65, and each of the control valves 62 to 65 is provided.
  • Hydraulic oil from the second hydraulic pump 52 is returned to the reservoir tank 70 through the throttle 82 in the neutral position or the intermediate movement position (position between the both-end movement position and the neutral position). .
  • the pressure in the bypass passage 66 c on the upstream side of the throttle 82 changes in accordance with the flow rate of the hydraulic oil in the bypass passage 66 c due to the restriction 82, so that this bypass passage 6
  • the pressure in 6c is used as a component of the bypass pressure detection means.
  • the flow rate of the hydraulic oil flowing in the bypass passage 66 c is detected by the detection by all the pressure sensors 75.
  • the flow rate of the hydraulic oil flowing in the bypass passage 66c is detected by detecting the pressure in the bypass passage 66c by the pressure sensor 74, but is not limited thereto. Instead, for example, the flow rate of the hydraulic oil flowing in the bypass passage 66c may be detected by a flow rate sensor.
  • control valves 57 to 60 and 62 to 65 are housed in a control unit (not shown).
  • the second stick is set so that a sufficient hydraulic oil is supplied to the important stick 104 in the operation of the construction machine even at the same time when the other work machine 118 is operated simultaneously.
  • the hydraulic oil from the first hydraulic pump 51 in the first circuit section 55 is also supplied to the stick driving hydraulic cylinder 106. It has become.
  • the first stick control valve 64 is interposed in the oil passage 66 of the second circuit portion 56, and the second stick control valve 60 is interposed in the oil passage 61 of the first circuit portion 55.
  • the first stick control valve 64 is controlled by the proportional control valves 64a and 64b, and the second stick control valve 60 is controlled by the proportional control valves 60a and 60b.
  • sufficient operation of the boom 103 can be performed simultaneously with other work equipment 118.
  • the hydraulic oil from the second hydraulic pump 52 of the second circuit section 56 is also used for boom drive.
  • the control valve 59 for the first boom is interposed in the oil passage 61 of the first circuit section 55, and the oil in the second circuit section 56 is supplied to the hydraulic cylinder 105.
  • the second boom control valve 65 is interposed in the road 66 Have been.
  • the first boom control valve 59 is controlled by the proportional control valves 59a and 59b, and the second boom control valve 65 is controlled by the proportional control valves 65a and 65b. Hydraulic oil can be supplied to and discharged from the boom drive hydraulic cylinder 105.
  • a stick regeneration valve 76 is interposed in the oil passages 67 and 68 for supplying and discharging the hydraulic oil to and from the hydraulic cylinder 106 for driving the stick.
  • a predetermined amount of hydraulic oil can be regenerated from the side oil passage to the hydraulic oil supply-side oil passage.
  • boom regeneration valves 77 are also interposed in the oil passages 78, 799 that supply and discharge hydraulic oil to the boom drive hydraulic cylinder 105, and operate from the hydraulic oil discharge side oil passage. A predetermined amount of hydraulic oil can be regenerated to the oil supply side oil passage.
  • each of the control valves 57 to 60 and 62 to 65 is configured as a spool valve as shown in Fig. 3, and each is configured with a plurality of (here, five) throttles. .
  • the control valves 57 to 60 and 62 to 65 are connected to the first hydraulic pump 51, the second hydraulic pump 52 and the stick driving hydraulic cylinder 106, respectively.
  • the stick control valves 60 and 64 are in the stick lowered position, but the stick control valves 60 and 64 are moved upward in FIG.
  • the stick control valves 60 and 64 can be set to the neutral position by moving the stick control valves 60 and 64 so that the bypass passage throttles 42 of the stick control valves 60 and 64 are interposed in the bypass passages 6 lb and 66 c.
  • the stick control valves 60 and 64 are moved to the uppermost position in Fig. 3, and the P-C throttle 40 of the stick control valves 60 and 64 is interposed in the P-C passages 61a and 66a.
  • the C—T throttle 41 of the stick control valves 60 and 64 is interposed in the C-T passages 66 b and 69 to bring the stick control valves 60 and 64 to the stick raising position. Can be.
  • the opening area of P_C is adjusted.
  • the opening area of the oil passages 66 b, 69 (opening area of the hydraulic oil discharge passage, opening area of the C-T opening) that adjusts the communication between the stick driving hydraulic cylinder 106 and the reservoir tank 70 is adjusted by the C-T throttle 41.
  • the opening area (opening area of the bypass passage) of the oil passages 6 1 b and 66 c communicating the first hydraulic pump 51 and the second hydraulic pump 52 and the reservoir tank 70 is adjusted by the bypass passage throttle 42. You.
  • each of the control valves 57 to 60 and 62 to 65 is in the neutral position when none of the operating members 54 is operated, and the hydraulic oil from the hydraulic pumps 51 and 52 is provided. Is returned to sunset 70 through bypass passages 61b and 66c.
  • any one of the operation members 54 is operated by the operator, and the control valves 57 to 60 and 62 to 65 are moved to the intermediate movement position (between the both-end movement position and the neutral position) according to the operation amount.
  • Position, the opening area of the bypass passage 6 lb, 66 c is narrowed by the bypass passage restrictor 42, and the flow rate of the hydraulic oil returned to the tank 70 through the bypass passages 61 b, 66 c is reduced.
  • the opening area of the hydraulic oil supply passage narrowed by the P-C throttle 40 becomes large, and the hydraulic oil supply passages 105 to 107, 1091, 109R, 110 through the hydraulic oil supply passage
  • the opening area of the hydraulic oil discharge passage narrowed by the C_T throttle 41 increases, and the hydraulic oil is discharged to the tank 70 through the hydraulic oil discharge passage.
  • the hydraulic oil is supplied to each hydraulic actuator 105 to 107, 109, 109 R, 110 so that each hydraulic actuator 105 to: L07, 109 1, 1 0 9 R, 1 1 0 are activated.
  • the flow rate of the hydraulic oil supplied to each hydraulic actuator 105-: 107, 109, 109 R, 110 is controlled according to the amount of operation of each operating member 54 by the operator. Control valves 57 to 60 and 62 to 65.
  • each of the control valves 57 to 60 and 62 to 65 is set to the maximum movement position according to the amount of operation of each of the operation members 54 by the operator, the opening areas of the bypass passages 6 1 b and 66 c are closed, and the hydraulic pressure is reduced. Hydraulic oil from the pumps 51 and 52 is no longer returned to the tank 70 through the bypass passages 61 and 66c.
  • the opening area of the hydraulic oil supply passage narrowed by the PC throttle 40 is maximized, and the hydraulic oil supply The flow rate of hydraulic oil supplied to each hydraulic actuator through the passageway from 105 to 107, 109, 109R, 110 is maximized, and is reduced by the CT throttle 41.
  • each hydraulic factor 105-107, 1091, 109R, 110 operates at the highest operating speed.
  • each hydraulic actuator 105-: L07, 1091, 109R, 110 which is as follows.
  • the control valves 57 to 60 and 62 to 65 disposed in the hydraulic oil supply passage move accordingly, and the hydraulic actuator 105 to 1: 1. 07, 109 1, 109 R, 110 Hydraulic oil is supplied to R, 110, while hydraulic oil is supplied via control valves 57 to 60, 62 to 65, 105 to 107, 110, 109
  • the hydraulic oil not supplied to 1, 109R, 110 is returned to the tank 70 through the bypass passages 61b, 66c.
  • the pilot pump 83 and the proportional pressure reducing valves 57 a to 60 a, 57 b To 60b, 62a to 65a, and 62b to 65b are shown in Fig. 2, only the pilot pump 83 and the proportional pressure reducing valves 57a to 60a, 57b to 60b, 62a to 65a, and 62b to 65b provided in the pilot hydraulic circuit are shown.
  • the pilot oil pressure is indicated by P, omitting the pilot oil passage.
  • the proportional pressure reducing valves 57a to 60a, 57b to 60b, 62a to 65a, 62b to 65b are solenoid valves, and are operated by an operation signal from the controller 1 described later. Activated.
  • the pilot oil pressure from the pilot pump 83 is applied to each of the control valves 57 to 60 and 62 to 65 as a predetermined pressure based on the operation signal from the controller 1.
  • the hydraulic pressure P is applied to the swing motor control valve 63 through a pilot oil passage (not shown) to move the swing motor control valve 63 to a required position.
  • a pilot oil passage (not shown) to move the swing motor control valve 63 to a required position.
  • the swing motor 110 may be turned clockwise.
  • the pilot hydraulic pressure is applied to the turning motor control valve 63 through the pilot oil passage.
  • the rotary motor control valve 63 is set to the right turning position, and the hydraulic oil from the second hydraulic pump 52 of the second circuit portion 56 passes through the oil passages 66 a and 96, Hydraulic oil in the left oil chamber of the slewing motor 110 is supplied to the reservoir tank 70 via the oil passages 97, 66b while being supplied to the right oil chamber of the slewing motor 110.
  • the turning motor 110 is turned clockwise, and the upper turning body 102 turns right.
  • the swing motor 110 may be turned counterclockwise.
  • the pilot hydraulic pressure is applied to the turning motor control valve 63 through the pilot oil passage.
  • the turning motor control valve 63 becomes the left turning position, and the hydraulic oil from the second hydraulic pump 52 of the second circuit section 56 passes through the oil passages 66 a and 97 to turn the turning motor.
  • the hydraulic oil in the right oil chamber of turning motor 110 is discharged to reservoir tank 70 via oil passages 966 and 66b.
  • the swing motor 110 is turned counterclockwise, and the upper swing body 102 is turned left.
  • the pilot hydraulic pressure is applied to the swing motor control valve 63 as appropriate to control the swing motor control valve 63
  • the position of the spool may be set to the neutral position (the hydraulic supply / discharge path shutoff position). As a result, the supply and discharge of the hydraulic oil in each oil chamber of the turning motor 110 is stopped, and the upper turning body 102 is held at the current position.
  • various sensors are attached to the construction machine configured as described above, and a detection signal from each sensor is sent to a controller 1 described later.
  • an engine 50 for driving the hydraulic pumps 51 and 52 is provided with an engine speed sensor 71, and a detection signal from the engine speed sensor 71 is sent to a controller 1 described later. And so on.
  • the controller 1 performs feedback control so that the actual engine speed becomes the target engine speed set by the operator with the engine speed setting dial.
  • the discharge side of the first hydraulic pump 51 of the first circuit unit 55 and the second hydraulic pump 52 of the second circuit unit 56 are provided with pressure sensors (PZS-P 1) 72, and a pressure sensor (PZS-P2) 73 are provided, and detection signals from these pressure sensors 72, 73 are sent to a controller 1 described later.
  • PZS-P 1 pressure sensors
  • PZS-P2 pressure sensor
  • each control valve 57-60 of the oil passage 61 as one bypass passage from the hydraulic pump 51 of the first circuit portion 55 to the tank 70 and the second circuit portion 56 Downstream of each of the control valves 62 to 65 of the oil passage 66 as one bypass passage from the hydraulic pump 51 to the tank 70, a pressure sensor (PZS- N 1) 74 and a pressure sensor (PZS-N 2) 75 are provided. Detection signals from these pressure sensors 74 and 75 are sent to the controller 1 described later. I have.
  • a pressure sensor (PZS-BMd) 80 is provided on the road, and the pressure sensor 80 can detect the rod-side pressure (load pressure) of the hydraulic cylinder 105 for driving the boom.
  • the detection signal from the pressure sensor 80 is sent to the controller 1 described later.
  • a controller 1 is provided to control the construction machine configured as described above.
  • the controller 1 controls the first hydraulic pump 51, the second hydraulic pump 52, the regeneration valves 76, based on the detection signals from the sensors 71 to 75, 80 and the electric signals from the operating member 54. 7 7, By outputting operation signals to the control valves 57 to 60 and 62 to 65, the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 are controlled, and the control valves 57 to 60 are controlled. , 62 to 65, and the position control of each regeneration valve 76, 77.
  • the controller 1 has a function as a function of processing an electric signal from each operation member 54 in order to control the tilt angle of the first and second hydraulic pumps 51, 52.
  • Operation member signal processing means 2 first hydraulic pump tilt angle control means 3 as a function of controlling the tilt angle of first hydraulic pump 51, and function of controlling the tilt angle of second hydraulic pump 52 And the second hydraulic pump tilt angle control means 4. Since the first hydraulic pump tilt angle control means 3 and the second hydraulic pump tilt angle control means 4 both control the discharge flow rate from the hydraulic pump, they are also referred to as pump flow rate control means.
  • the operating member signal processing means 2 is configured to operate each of the operating members 54 & 54 d, 54 e-R, 54 e-L when each of the operating members 54 & 54 e is operated.
  • To 54 (1, 54 e-R, 54 e-L) Set the travel of each control valve 57 to 60 and 62 to 65 based on the electric signal corresponding to the manipulated variable of It outputs a control signal to the control valves 57 to 60, 62 to 65 and the tilt angle setting means 6, 11 corresponding to the operation member described later.
  • the operating member signal processing means 2 is used to simultaneously operate a plurality of hydraulic factories 105 to 107, 109R, 109L, 110 when operating a plurality of hydraulic factories simultaneously. Functions as a setting for speed balance (flow distribution).
  • the flow rate distribution is determined according to the operation pattern of the plurality of operation members 54a to 54d, 54e-R, and 54e-L and the operation amount thereof.
  • the priority can be set arbitrarily. For example, if all operating members that simultaneously operate the boom 103, the stick 104, and the bucket 108 are fully operated, the pump discharge flow rate is the maximum flow rate, and the flow balance is 50% for the boom. You can set it like stick 30%, bucket 20%.
  • the first hydraulic pump tilt angle control means 3 includes a bypass pressure tilt angle setting means 5, an operating member tilt angle setting means 6, and a speed corresponding pump tilt angle setting.
  • Means 7, a permissible horsepower displacement angle setting means 8, and a minimum value selection means 9 are provided to output a pump displacement angle control signal Fp1 to the first hydraulic pump 51.
  • the bypass pressure corresponding tilt angle setting means 5 sets the pump tilt angle based on the bypass pressure detection signal.
  • the tilt angle setting means 5 corresponding to the bypass pressure includes, as shown in FIG. 4, hydraulic fluid in the bypass passage 6 1 b of each of the control valves 57 to 60 which operates according to the operation amount of each operation member 54.
  • the output signal (E) is input from the pressure sensor 74 as the bypass pressure detecting means 81, 74 for detecting the pressure, and the pump is tilted based on the characteristic inversely proportional to the output signal (E).
  • Turning angle A first control signal F-1 is set as a pump tilt angle control signal for controlling the pump flow rate, and is output to the speed control corresponding tilt angle setting means 7.
  • the pump tilt angle control (pump flow control) performed based on the characteristic that is substantially inversely proportional to the flow rate of the hydraulic oil in the bypass passage 61b is referred to as negative flow control.
  • the substantially inversely proportional characteristic includes not only a curved characteristic as a general inversely proportional characteristic but also, for example, a characteristic that changes linearly, and this characteristic includes the hydraulic oil in the bypass passage 6 lb. It is only necessary that the characteristics be such that the pump tilt angle decreases as the pressure increases.
  • the bypass pressure detecting means 81, 74 is composed of a restrictor 81 and a pressure sensor 74 located upstream of the restrictor 81, and as shown in FIG. It detects the output signal (E) of the pressure sensor 74 which changes in proportion to the sum of the bypass flow rates) (D).
  • the aperture area of the diaphragm 81 is set in advance as a fixed value.
  • the restriction 81 and the pressure sensor 74 constitute the bypass pressure detecting means because, as described above, the bypass path restriction 42 of each of the control valves 57 to 60 is formed by the oil path 61b.
  • the bypass flow rate is the sum (D) of the throttles sequentially obtained by the control valves 57 to 60 and the bypass flow rate Because it flows into the throttle 81 located downstream of the passage 6 1 b, the upstream flow rate of the throttle 81 increases as the flow rate through the throttle 81 (the sum of bypass flow rates) increases.
  • the control member corresponding tilt angle setting means 6 receives the control signals of the respective control valves 57 to 60 (the operation amounts of the respective operation members 54) from the operation member signal processing means 2, as shown in FIG. These control signals are used to input the control signals to the control valves 57 to 60 based on the characteristics directly proportional to the control signals (the operation amounts of the operation members 54) of the control valves 57 to 60.
  • the required flow rate (required pump tilt angle) to be supplied to each actuator 105 to 107, 109 R through 60 is determined, and this is used as a pump tilt angle control signal based on the operation amount of the operating member. This is set as the second control signal F2-1 and output to the speed control corresponding tilt angle setting means 7.
  • the pump tilt angle control (pump flow rate control) performed based on the characteristic that is substantially directly proportional to the operation amount of the operation member 54 as described above is referred to as positive flow control.
  • the substantially directly proportional characteristic includes not only a linear characteristic as a general directly proportional characteristic but also, for example, a characteristic that changes in a curved shape, and this characteristic increases as the operation amount of the operation member 54 increases. Any characteristics may be used as long as the pump tilt angle becomes large.
  • control signals (operation amounts of the respective operation members 54) of the respective control valves 57 to 60 from the operation member signal processing means 2 are, for example, a plurality of hydraulic actuators 105 to 107, 10.
  • the optimal flow distribution is performed by the operation member signal processing means 2 as described above, so that a control signal corresponding to this flow distribution is transmitted to the operating member corresponding tilt. This is input to the turning angle setting means 6.
  • the required flow rate characteristic which is directly proportional to the control signal of each control valve 57 to 60 (the operation amount of each operation member 54), is set for each control valve 57 to 60 as shown in FIG. Have been. Then, when a plurality of operating members 54 are operated to set control signals to the control valves 57 to 60, the control signals are supplied to the control valves 57 to 60 based on the characteristics directly proportional to the control signals. Required flow rate and sum them Then, the pump flow rate to be discharged by the hydraulic pump 51 (pump tilt angle) F 2—1 is calculated. "
  • the speed-dependent pump tilt angle setting means 7 is used to control the pump tilt angle of the first hydraulic pump 51 for speed control of each actuator 105 to 107, 109R.
  • a speed-dependent control signal F11eVer is set as the pump tilt angle control signal.
  • the speed corresponding control signal F11eVer controls the speed of each hydraulic actuator 105 to 107,109R under a load condition (pump operation condition) below the allowable horsepower.
  • the speed-dependent pump tilt angle setting means 7 includes a minimum signal selecting means 20, a required tilt angle comparing means 21, a minimum signal output means 22, and a predetermined value. It is provided with setting means 23 and required tilt angle output means 24, and sets the speed corresponding control signal F11 eVer as the pump tilt angle control signal for speed control of the actuator. And outputs it to the minimum value selecting means 9.
  • the minimum signal selecting means 20 includes a first control signal F-1 as a bypass flow rate based pump tilt angle control signal from the bypass pressure corresponding tilt angle setting means 5 and a tilt corresponding to the operation member.
  • One control signal is selected from the two control signals F2-1 and the second control signal F2-1 as the pump displacement angle control signal based on the operation member operation amount from the angle setting means 6.
  • the first control signal F-1 is used to control the pump tilt angle based on a characteristic inversely proportional to the pressure of the hydraulic oil in the bypass passage 6 1 b (negative flow control).
  • Angle control signal, and the second control signal F2-1 is based on a characteristic that is directly proportional to the operation amount of the operation member 54.
  • a pump displacement angle control signal for controlling the displacement angle (positive flow control), and the minimum signal selecting means 20 selects one of the negative flow control and the positive flow control. Therefore, it is also called negative control and positive control selection means.
  • the minimum signal selection means 20 includes a first control signal F1-1 from the bypass pressure corresponding tilt angle setting means 5 and a second control signal F2 from the operation member corresponding tilt angle setting means 6. Compared with —1, the smaller control signal is output to the minimum signal output means 21 as the minimum control signal F min. In other words, the minimum signal selecting means 20 determines that the second control signal F21 based on the operation member operation amount is smaller than the first control signal F1-1 based on the bypass flow rate (F 11 ⁇ F ®— 1) outputs the second control signal F2-1 based on the operation member operation amount to the minimum signal output means 21 as a minimum control signal Fmin, and outputs the second control signal F2-1 based on the operation member operation amount. If the bypass flow-based first control signal F1—1 is greater than (F2—1> F ® _ 1), the bypass flow-based first control signal F1—1 is the minimum control signal F min and the minimum signal Output to the output means 21.
  • the minimum signal selecting means 20 is based on a characteristic diagram showing the relationship between the load pressure of the working machine (hydraulic factory) and the working machine speed (working speed) as shown in FIG. 7 (c).
  • Control signal to reduce the pump tilt angle of the first control signal F1-1 and the second control signal F2-1 (the control signal to reduce the pump flow rate). ) Is used to control the pump tilt angle (pump flow rate).
  • the first control signal F1_1 changes in the direction to increase the pump tilt angle
  • the second control signal F2-1 changes. Since it is constant regardless of load pressure fluctuation, The signal that makes the pump tilt angle small (that is, the second control signal F2-1) is selectively used. Therefore, when the load pressure decreases, the maximum work machine speed (pump flow rate) does not fluctuate even if the load pressure fluctuates, because it is controlled by the second control signal F2-1.
  • the first control signal F1-1 changes in a direction to decrease the pump tilt angle
  • the second control signal F2-1 Since the first control signal F1-1 is smaller than the second control signal F ⁇ -1 and is constant irrespective of the change in load pressure, a signal in which the pump tilt angle becomes smaller [ie, the first Control signal F1-1] is selected and used. Therefore, as the load pressure increases, the speed of the work equipment decreases, and there is an advantage that the magnitude of the load can be sensed throughout the operation (load-sensitive feeling).
  • the pump tilt angle control is performed based on the characteristic shown in FIG. 7 (c) for the following reason.
  • Fig. 7 (a) shows the first control signal F that is inversely proportional to the bypass flow rate.
  • Fig. 6 is a diagram showing the relationship between the load (load pressure applied to the work implement) W and the work implement speed (pump displacement angle, pump flow rate) when performing the pump tilt angle control using 1-1.
  • the broken line indicates the expected speed of the working machine according to the operation amount of the operation member 54.
  • the bypass flow rate varies under the influence of the load pressure, so that the pump flow rate (pump tilt angle) controlled based on the first control signal F1-1 based on the bypass flow rate also varies. Will be. Therefore, the relationship between the load pressure and the work implement speed is as shown in Fig. 7 (a), and the work implement speed (pump tilt angle, pump flow rate) constantly fluctuates as the load pressure fluctuates. Become.
  • Fig. 7 (b) shows the relationship between the work pressure and the load pressure when using 1--1.
  • the pump flow rate (pump tilt angle) is controlled based on the signal from each operating member 54 and is independent of the load pressure fluctuation. ), It is constant within the allowable horsepower range.
  • the pump in order to be able to enjoy both the advantages of the positive flow control and the advantages of the negative flow control, the pump is tilted based on the characteristic shown in FIG. 7 (C). Angle control was performed.
  • This type of control ensures that the operator achieves medium machine speed.
  • it is suitable for pump tilt angle control under the condition that each operating member 54 is fixed at a fixed value near the middle position of the operating range.
  • the required tilt angle comparing means 21 includes a second control signal F2-1 based on the operation member operation amount from the operating member corresponding tilt angle setting means 6 and a predetermined value set by the predetermined value setting means 23. F 1 a 1 1 ow and outputs the comparison result to the minimum signal output means 22 and the required tilt angle output means 24. Is determined, and either the control signal Fmin selected by the minimum signal selecting means 20 or the second control signal F2 set by the operating member corresponding tilt angle setting means 6 is selected. The control signal will be used as the pump tilt angle control signal.
  • the second control signal F2_1 based on the operation member operation amount is equivalent to the pump tilt angle corresponding to the operation amount of the operation member 54 by the operator, the required tilt angle requested by the operator is used. Becomes the pump tilt angle control signal corresponding to.
  • the required tilt angle comparing means 21 is configured to output the second control signal F2-1 from the operating member corresponding tilt angle setting means 6 to a predetermined value F 1 a 1 l set by the predetermined value setting means 23. If it is determined that the value is greater than ow (F2-l> F ll ow), the result of the determination is output to the minimum signal output means 22 while the predetermined value F 1 a 1 1 set by the predetermined value setting means 23 If it is determined that ow is larger than the second control signal F2-1 from the operation member corresponding tilt angle setting means 6 (F 2—l ⁇ F lall ow), the determination result is output to the required tilt angle output means. Output to 24.
  • the second control signal F2_1 corresponding to the tilt angle required by the operator is a predetermined value?
  • the second control signal F2-1 is selected regardless of the first control signal F11 1
  • the second control signal F2-1 is a speed control signal Fl 1 as a pump tilt angle control signal for the speed control of the hydraulic actuators 105 to 107, 109 R.
  • the second control signal F2-1 based on the operation member operation amount is independent of the change in the load pressure of the work machine (the hydraulic actuator), and if the operation member operation amount is constant, the load W changes. Therefore, by performing the pump tilt angle control using the second control signal F2-1 as shown in FIG. 7 (d), even if the load W fluctuates, the working machine speed ( Pump flow rate and pump tilt angle) can be kept constant, and changes in work equipment speed (work speed) caused by pump tilt angle control due to load fluctuations in the fine operation range can be suppressed. It is. Note that, in FIG. 7D, the broken line indicates the work implement speed with respect to the load W when the pump tilt angle control is performed using the predetermined value F1a11ow as the pump tilt angle control signal.
  • the predetermined value setting means 23 determines the allowable horsepower characteristic (horsepower limit allowable value) of the pump tilt angle (pump flow rate) as shown in FIG. 6 at the allowable maximum pressure point Pmax of the pump discharge pressure at W1.
  • the predetermined value F1a11ow is set as a value corresponding to an arbitrary pump tilt angle (predetermined tilt angle) equal to or less than the pump allowable tilt angle (pump allowable flow rate) Flw.
  • the predetermined value F1a11ow is set in advance.
  • the pump allowable tilt angle (pump allowable flow rate) F lw is obtained by the following equation.
  • F lw Wl ⁇ Pma x
  • the predetermined value F lal 1 ow is set as a value corresponding to an arbitrary pump tilt angle equal to or smaller than the pump allowable tilt angle F 1 w, because the pump control accompanying the load fluctuation in the fine operation range is performed. This is to suppress the change in work machine speed caused by the
  • the setting of the predetermined value F1a11ow is not limited to this, and may be set arbitrarily according to the characteristics of various working machines (tools).
  • the minimum signal output means 22 outputs the minimum control signal Fmin from the minimum signal selection means 20 to the minimum value selection means 9 according to the determination result by the required tilt angle comparison means 21.
  • the minimum signal output means 22 permits the output of the minimum control signal Fmin from the minimum signal selection means 20 to the minimum value selection means 9 according to the determination result by the required tilt angle comparison means 21. .
  • the minimum signal output means 22 supplies the second control signal F-1 based on the operation member operation amount by the required tilt angle comparison means 21 to be larger than the predetermined value F1a110w ( F2—1> F 1 a 1 1 ow), the judgment result is input, and when this signal is input, the minimum control from the minimum signal selecting means 20 is performed.
  • the signal Fmin is output to the minimum value selection means 9 as a speed-related control signal F11eVer for speed control in the evening.
  • the required displacement angle output means 24 outputs a predetermined value F lail ow larger than the second control signal F2-1 based on the operation member operation amount by the required displacement angle comparison means 21 (F2-l ⁇ F lall ow). Is determined, the result of the determination is input, and in response to this, the second control signal F ⁇ -1 based on the operation member operation amount is changed to a speed-related control signal F for speed control of the actuator. It is output to the minimum value selection means 9 as 11 e Ver.
  • the allowable horsepower corresponding tilt angle setting means 8 sets an allowable horsepower corresponding control signal F 1 power based on the allowable horsepower limit as a pump tilt angle control signal for controlling the tilt angle of the first hydraulic pump 51.
  • the allowable horsepower corresponding control signal F 1 power based on the allowable horsepower limit is an upper limit pump tilt angle control signal that is limited according to the allowable horsepower of the engine 50 that drives the first hydraulic pump 51. . That is, the control signal F 1 power corresponding to the allowable horsepower based on the allowable horsepower limit is set to the first hydraulic pump 5 according to the speed corresponding control signal F 11 eV er selected by the speed corresponding pump tilt angle setting means 7.
  • the pump tilt angle (1) is controlled, the pump tilt angle (pump flow rate) is adjusted so that the load W applied to the engine 50 that drives the first hydraulic pump 51 does not exceed the allowable horsepower of the engine 50. This is a pump tilt angle control signal for controlling.
  • the allowable horsepower corresponding tilt angle setting means 8 stores the allowable horsepower preset based on the engine horsepower of the engine 50 that drives the first hydraulic pump 51.
  • the horsepower storage unit 8A and the permissible horsepower tilt angle calculation unit 8B are provided.
  • the permissible horsepower tilt angle calculation unit 8B has a pump discharge pressure signal detected by the pressure sensor 72. Is input.
  • the allowable horsepower corresponding tilt angle calculation unit 8B is provided with a pump allowable horsepower storage unit 8
  • the permissible horsepower control signal based on the permissible horsepower limit (permissible flow rate control signal) F1power is expressed by the following equation. Is calculated by the following formula.
  • the allowable horsepower limitation-based control signal Flpower calculated in this manner is based on the allowable horsepower limitation-based allowable horsepower as shown in Fig. 8. This is represented as a characteristic diagram in which the corresponding control signal F 1 power is associated with the pump discharge pressure P 1. Note that, in the characteristic diagram shown in FIG. 8, the straight line indicated by the symbol A indicates the maximum tilt angle (maximum discharge flow rate) of the pump.
  • the minimum value selecting means 9 includes a speed corresponding control signal F11 eVer set by the speed corresponding pump tilt angle setting means 7 and an allowable horsepower corresponding control set by the allowable horsepower corresponding tilt angle setting means 8. Compare the signal F 1 power and select a control signal that reduces the pump tilt angle (a control signal that reduces the pump flow rate) and set this as the final pump tilt angle control signal F p 1 Then, the output is output to the first hydraulic pump 51.
  • the second hydraulic pump tilt angle control means 4 is configured similarly to the first hydraulic pump tilt angle control means 3 described above.
  • the second hydraulic pump tilt angle control means 4 includes a bypass pressure setting tilt angle setting means 10, an operation member corresponding tilt angle setting means 11, and a speed corresponding pump tilt angle. It comprises a turning angle setting means 12, an allowable horsepower tilt angle setting means 13, and a minimum value selecting means 14, and sends a pump tilt angle control signal F p 2 to the second hydraulic pump 52. Output.
  • the bypass pressure-dependent tilt angle setting means 10 sets the pump tilt angle based on the bypass pressure detection signal
  • the bypass pressure-dependent tilt angle setting means 5 includes, as shown in FIG.
  • An output signal (E) is input from the sensor 75, and the pump tilt angle (pump flow rate) is controlled based on characteristics inversely proportional to the output signal (E).
  • the first control signal F1-2 as a control signal is set and output to the speed control-compatible tilt angle setting means 12.
  • the flow rate is approximately inversely proportional to the flow rate of hydraulic oil in the bypass passage 66c.
  • the pump tilt angle control (pump flow rate control) performed based on these characteristics is called negative flow control.
  • the substantially inversely proportional characteristic includes not only a curved characteristic as a general inverse proportional characteristic but also, for example, a characteristic that changes linearly, and this characteristic is determined by the operation in the bypass passage 66c. The characteristic should be such that the pump tilt angle decreases as the oil pressure increases.
  • the bypass pressure detecting means 82, 75 is composed of a restrictor 82 and a pressure sensor 75 located upstream of the restrictor 82, and as shown in FIG. It detects the output signal (E) of the pressure sensor 75 that changes in proportion to the sum of the bypass flow rates) (D).
  • the aperture area of the stop 82 is set in advance as a fixed value.
  • the restrictor 82 and the pressure sensor 75 constitute the bypass pressure detecting means because, as described above, the bypass restrictors 42 of the control valves 62 to 65 are connected to the oil passages 66c. Are connected in series, and the bypass flow rate when a plurality of operating members 54 are operated at the same time is the sum (D) of the throttled values by each of the control valves 62 to 65. Because it flows into the restriction 82 located downstream of the passage 66 c, if the flow rate through the restriction 82 (the sum of the bypass flow rates) D increases, the upstream pressure of the restriction 82 increases.
  • the tilt angle setting means 11 corresponding to the operating member receives control signals (operating amounts of the operating members 54) of the control valves 62 to 65 from the operating member signal processing means 2 as shown in FIG. These control signals are used in direct proportion to the control signals of the control valves 62 to 65 (the operation amounts of the operation members 54).
  • the necessary flow rate (required pump tilt angle) to be supplied to each actuator 106, 109L, 110 through each control valve 62 to 65 is determined based on the characteristics This is set as a second control signal F-2 as a pump displacement angle control signal based on the manipulated variable, and is output to the speed control-compatible displacement angle setting means 12.
  • the pump tilt angle control (pump flow rate control) performed based on the characteristic that is substantially directly proportional to the operation amount of the operation member 54 as described above is referred to as positive flow control.
  • the substantially directly proportional characteristic includes not only a linear characteristic as a general directly proportional characteristic but also, for example, a characteristic that changes in a curved shape, and this characteristic increases as the operation amount of the operation member 54 increases. Any characteristics may be used as long as the pump tilt angle becomes large.
  • control signals of the respective control valves 62 to 65 (the operation amounts of the respective operation members 54) from the operation member signal processing means 2 may be, for example, a plurality of hydraulic actuators 106, 109L, 1L.
  • the optimal flow distribution is performed by the operating member signal processing means 2 as described above, and thus a control signal corresponding to this flow distribution is transmitted to the operating member corresponding tilt. This is input to the turning angle setting means 11.
  • the required flow rate characteristics that are directly proportional to the control signals of the control valves 62 to 65 are set for each of the control valves 62 to 65 as shown in FIG. Have been. Then, when a plurality of operating members 54 are operated to set control signals to the control valves 62 to 65, the control signals are supplied to the control valves 62 to 65 based on the characteristic directly proportional to the control signals. The required flow rates to be obtained are obtained, and these are summed up to calculate the pump flow rate (pump tilt angle) F2—2 to be discharged by the hydraulic pump 52.
  • a speed-related control signal F21eVer is set as the pump tilt angle control signal.
  • the speed-related control signal F21eVer is set to a speed of 106, 109L, 110 of each hydraulic actuator under a load condition (pump operating condition) below the allowable horsepower.
  • This is a pump tilt angle control signal for controlling the pump tilt angle (pump flow rate) in accordance with the operation amount of each operation member 54 in order to control the pump tilt angle.
  • the speed-dependent pump tilt angle setting means 12 includes a minimum signal selecting means 20, a required tilt angle comparing means 21, a minimum signal output means 22, and a predetermined value. It is provided with a setting means 23 and a required displacement angle output means 24 and is provided with a speed corresponding control signal F 21 eV er as a pump displacement angle control signal for speed control of the actuator. Set and output to the minimum value selection means 14.
  • the minimum signal selecting means 20 includes a first control signal F ⁇ 2 as a bypass flow rate based pump tilt angle control signal from the bypass pressure corresponding tilt angle setting means 10 and a tilt corresponding to the operation member.
  • Operation section from shift angle setting means 1 A second control signal as a pump tilt angle control signal based on the operation amount of material, and selects one control signal from the two control signals F-2. It is.
  • the first control signal F1-2 is a pump tilt angle for controlling the pump tilt angle (negative flow control) based on a characteristic that is inversely proportional to the flow rate of the hydraulic oil in the bypass passage 66 c.
  • the second control signal F ⁇ 2 is a pump tilt angle control signal for controlling the pump tilt angle (positive flow control) based on characteristics directly proportional to the operation amount of the operation member 54.
  • the minimum signal selection means 20 selects either negative flow control or positive flow control. It is also called negative control Z positive control selection means.
  • the minimum signal selecting means 20 includes a first control signal F ⁇ 2 from the bypass pressure corresponding tilt angle setting means 10 and a second control signal from the operating member corresponding tilt angle setting means 11. Compared with the signal F ⁇ -2, the smaller control signal is output to the minimum signal output means 21 as the minimum control signal Fmin. In other words, the minimum signal selecting means 20 determines that the second control signal F2 ⁇ 2 based on the operation member operation amount is smaller than the first control signal F1 ⁇ 2 based on the bypass flow rate (F ⁇ 2 ⁇ F (D ⁇ 2) outputs the second control signal F2—2 based on the operation member operation amount to the minimum signal output means 21 as the minimum control signal F min, and outputs the second control signal F2—2 based on the operation member operation amount.
  • the first control signal based on the bypass flow rate is larger than F1-2 (F2-2> F ® _ 2), the first control signal F-2 based on the bypass flow rate is minimized as the minimum control signal F min The signal is output to the signal output means 21.
  • the minimum signal selecting means 20 is based on a characteristic diagram showing the relationship between the load pressure of the working machine (hydraulic factory) and the working machine speed (working speed) as shown in FIG. 7 (c).
  • Control signal to reduce the pump tilt angle of the first control signal F1-2 and the second control signal F2-2 (the control signal to reduce the pump flow rate). ) Is used to control the pump tilt angle (pump flow rate).
  • the first control signal F1-2 changes in a direction to decrease the pump tilt angle
  • the second control signal F2-2 Since the first control signal F1-2 is constant irrespective of the fluctuation of the load pressure, the first control signal F1-2 becomes smaller than the second control signal F 2-2, and the signal in which the pump tilt angle becomes small [ie, the first Control signal F-2] is selected and used. Therefore, there is an advantage that the work machine speed decreases as the load pressure increases, and the operator can sense the magnitude of the load (load-sensitive feeling).
  • the pump tilt angle control is performed based on the characteristic shown in FIG. 7 (c) for the following reason.
  • Fig. 7 (a) shows the first control signal F that is inversely proportional to the bypass flow rate.
  • Fig. 6 is a diagram showing the relationship between the load (load pressure applied to the working machine) W and the working machine speed (pump tilt angle, pump flow rate) when performing the pump tilt angle control using (1) -2. .
  • the broken line indicates the expected speed of the working machine according to the operation amount of the operation member 54.
  • the excavation is mainly performed by a viscous load whose load pressure changes relatively stably.
  • the load W increases, the work machine speed decreases, and the operator can sense the magnitude of the load (load-sensitive feeling).
  • the relationship between the load pressure and the working machine speed when the second control signal F2—2, which is directly proportional to the operation amount of each operation member 54, is as shown in FIG. 7 (b).
  • the pump flow rate (pump tilt angle) is controlled based on the signal from each operating member 54 and is independent of the load pressure fluctuation. ), It is constant within the allowable horsepower range.
  • the pump in order to be able to enjoy both the advantages of the positive flow control and the advantages of the negative flow control, the pump is tilted based on the characteristics as shown in FIG. 7 (c). Angle control was performed.
  • the required tilt angle comparing means 21 is provided from the operating member corresponding tilt angle setting means 11.
  • the second control signal F ⁇ 2 based on the operation member operation amount is compared with the predetermined value F 2 a 1 ow set by the predetermined value setting unit 23, and the comparison result is compared with the minimum signal output unit 22 and the request. This is output to the tilt angle output means 24.
  • the control signal Fmin selected by the minimum signal selecting means 20 and the tilting angle setting means 11 corresponding to the operating member are used.
  • One of the set second control signals F2 ⁇ 2 is used as the pump tilt angle control signal.
  • the second control signal F2 ⁇ 2 based on the operation member operation amount is equivalent to the pump tilt angle corresponding to the operation amount of the operation member 54 by the operator, and therefore, the required tilt angle requested by the operator is used. Becomes the pump tilt angle control signal corresponding to.
  • the required tilt angle comparing means 21 is configured such that the second control signal F2_ 2 from the operating member corresponding tilt angle setting means 11 is a predetermined value F 2 a set by the predetermined value setting means 23. If it is determined that the value is larger than 1 low (F2—2> F 2 all ow), the result of the determination is output to the minimum signal output means 22 while the predetermined value set by the predetermined value setting means 23 If it is determined that F 2 a 1 l ow is larger than the second control signal F2—2 from the tilting angle setting means 11 corresponding to the operation member 1 (F2—2 ⁇ F 2 all ow), the determination result Is output to the required tilt angle output means 24.
  • the second control signal F2 — 2 corresponding to the operator's required tilt angle is equal to or less than the predetermined value F 2 al 1 ow
  • the second control signal F 2 — 2 regardless of the first control signal F1 — 2
  • the second control signal F2-2 is selected so that the second control signal F ⁇ -2 is switched to the pump tilt for the speed control of the hydraulic actuator 106, 109 L, 110.
  • Speed control signal as angle control signal Pump tilt angle (pump flow rate) control as F 2 1 e Ver
  • the second control signal F2_2 based on the operation member operation amount is independent of the fluctuation of the load pressure of the work machine (hydraulic factory), and if the operation member operation amount is constant, the load W fluctuates. Since the pump tilt angle control is performed using the second control signal F2 ⁇ 2 as shown in FIG. 7 (d), the work implement speed (pump The flow rate and pump tilt angle) can be kept constant, and changes in the working machine speed (work speed) caused by pump tilt angle control due to load fluctuations in the fine operation range can be suppressed. Note that, in FIG. 7 (d), the broken line indicates the work machine speed with respect to the load W when the pump tilt angle control is performed using the predetermined value F 2 a 11 ow as the pump tilt angle control signal.
  • the predetermined value setting means 23 calculates the allowable maximum horsepower characteristic (horsepower limit allowable value) W2 of the pump displacement angle (pump flow rate) as shown in FIG.
  • the set value F2a11ow is set as a value corresponding to an arbitrary pump tilt angle (predetermined tilt angle) equal to or less than the pump allowable tilt angle (pump allowable flow rate) F2w.
  • the predetermined value F2a11ow is set in advance.
  • the pump allowable tilt angle (pump allowable flow rate) F 2 w is obtained by the following equation.
  • the predetermined value F 2 a 1 1 ow is set as a value corresponding to an arbitrary pump tilt angle equal to or smaller than the allowable pump tilt angle F 2 w in the fine operation range. This is to suppress the change in work implement speed due to the pump control due to the load fluctuation.
  • the setting of the predetermined value F2a11ow is not limited to this, and can be arbitrarily set according to the characteristics of various working machines (tools).
  • the minimum signal output means 22 is the minimum control signal from the minimum signal selection means 20.
  • the minimum signal output means 22 allows the output of the minimum control signal Fmin from the minimum signal selection means 20 to the minimum value selection means 14 according to the determination result by the required tilt angle comparison means 21. is there.
  • the minimum signal output means 22 supplies the second control signal F2_ 2 based on the operation member operation amount by the required tilt angle comparison means 21 to be larger than the predetermined value F 2 a 11 ow (F2 — 2> F 2 all ow), the judgment result is input.
  • the minimum control signal Fm from the minimum signal selection means 20 is input. in is output to the minimum value selection means 14 as a speed-related control signal F 21 ever for speed control in the evening.
  • the required displacement angle output means 24 determines that the predetermined value F 2 a 1 ow by the required displacement angle comparison means 21 is larger than the second control signal F ⁇ 2 based on the operation member operation amount (F ⁇ 2 ⁇ F 2 all ow), the judgment result is input, and the second control signal F-2 based on the operation member operation amount is responded to the speed control for the speed control of the actuator.
  • the control signal is output to the minimum value selecting means 14 as a control signal F21 eVer.
  • the allowable horsepower corresponding tilt angle setting means 13 is used as a pump tilt angle control signal for controlling the tilt angle of the second hydraulic pump 52, as an allowable horsepower corresponding control signal F2po based on the allowable horsepower limit.
  • the signal F 2 power is output to the minimum value selecting means 14 described later.
  • the allowable horsepower limit-based control signal F 2 power is an upper limit pump tilt angle control signal that is limited according to the allowable horsepower of the engine 50 that drives the second hydraulic pump 52.
  • the allowable horsepower corresponding control signal F2power based on the allowable horsepower limit is set to the second corresponding to the speed corresponding control signal F2 1 eVer selected by the speed corresponding pump tilt angle setting means 12.
  • the pump tilt angle (pump flow rate) is controlled so that the load W applied to the engine 50 that drives the second hydraulic pump 52 does not exceed the allowable horsepower of the engine 50. This is a pump tilt angle control signal for the purpose.
  • the allowable horsepower corresponding tilt angle setting means 13 stores an allowable horsepower preset based on the engine horsepower of the engine 50 that drives the second hydraulic pump 52.
  • the vehicle includes a horsepower storage unit 8A and an allowable horsepower tilt angle calculation unit 8B.
  • the allowable horsepower tilt angle calculation unit 8B includes a pump discharge pressure signal detected by the pressure sensor 73. Is entered.
  • the horsepower control signal (allowable flow control signal) F2power is calculated by the following equation.
  • the allowable horsepower limit-based control signal F2power calculated in this way is based on the allowable horsepower limit-based control signal F2power and the pump discharge pressure as shown in Fig. 8. It is represented as a characteristic diagram that associates P2 with P2. Note that, in the characteristic diagram shown in FIG. 8, the straight line indicated by the symbol A indicates the maximum tilt angle (maximum discharge flow rate) of the pump.
  • the minimum value selecting means 14 is set by the speed corresponding control signal F 2 1 e Ver set by the speed corresponding pump tilt angle setting means 12 and the allowable horsepower corresponding tilt angle setting means 13.
  • a control signal that reduces the pump tilt angle (a control signal that reduces the pump flow rate) is selected, and this is selected as the final pump tilt angle control signal F. This is set as p 2 and output to the second hydraulic pump 52.
  • the conversion of the pump flow rate and the pump tilt angle is detected by the engine speed sensor (engine speed detecting means) 71. This is performed by the controller 1 based on the engine speed to be performed.
  • control device of the construction machine is configured as described above, the control method of the pump tilt angle (pump flow rate) by this control device is performed as follows.
  • the tilt angle setting means 5 corresponding to the bypass pressure of the first hydraulic pump tilt angle control means 3 is connected to the oil passages (hydraulic oil supply / discharge passage, hydraulic oil supply passage) 6 1 of the first circuit unit 55.
  • a detection signal of the operating oil pressure detected by the pressure sensor 74 as bypass pressure detecting means disposed downstream of the control valves 57 to 60 is read.
  • the tilt angle setting means 10 corresponding to the bypass pressure of the second hydraulic pump tilt angle control means 4 is connected to the oil passage (hydraulic oil supply / discharge passage, hydraulic oil supply passage) of the second circuit portion 56.
  • the control signal of the hydraulic oil detected by the pressure sensor 75 as the bypass pressure detecting means disposed downstream of each of the control valves 62 to 65 is read.
  • the tilt angle setting means 5 corresponding to the bypass pressure of the first hydraulic pump tilt angle control means 3 adjusts the pump flow rate (pump tilt angle) based on the characteristic substantially inversely proportional to the flow rate of the hydraulic oil.
  • the second hydraulic pump tilt angle control means The fourth tilt angle setting means 10 corresponding to the bypass pressure is provided with a first control signal (pump tilt angle) for controlling the pump flow rate (pump tilt angle) based on a characteristic inversely proportional to the hydraulic oil flow rate.
  • the operation member signal processing means 2 reads an electric signal corresponding to the operation amount of each operation member 54, and the operation member signal processing means 2 controls each control valve 5 based on the electric signal from each operation member 54. Set the travel distance of 7 to 60 and 62 to 65.
  • the operation member corresponding tilt angle setting means 6 of the first hydraulic pump tilt angle control means 3 corresponds to the movement amount of each of the control valves 57 to 60 set by the operation member signal processing means 2.
  • the tilt angle setting means 11 corresponding to the operation member of the second hydraulic pump tilt angle control means 4 corresponds to the movement amount of each control valve 62 to 65 set by the operation member signal processing means 2.
  • a second control signal (pump tilt angle control signal) F2-2 for controlling the pump flow rate based on a characteristic that is substantially directly proportional to the operation amount of the operation member based on the control signal to be performed. These steps are called a second control signal setting step.
  • the tilt control angle setting means 7 corresponding to the speed control of the first hydraulic pump tilt angle control means 3 outputs the first control signal F-1 and the second control signal set in the first control signal setting step.
  • One of the second control signals F2-1 set in the setting step is selected, and within the allowable horsepower range, the hydraulic pump 51 is tilted based on the selected control signal. Controls the angle (pump flow).
  • the speed control-compatible tilt angle setting means 12 of the second hydraulic pump tilt angle control means 4 controls the first control signal F ⁇ 2 and the second control signal F ⁇ 2 set in the first control signal setting step.
  • the selected second control signal F2-2 is selected, and within the allowable horsepower range, the pump tilt angle (pump flow rate) of the hydraulic pump 52 based on the selected control signal is selected. Control.
  • the pressure of the hydraulic oil downstream of the control valves 57 to 60 and 62 to 65 of the hydraulic oil supply / discharge passages 61 b and 61 c Is detected by the pressure sensor 74, and the pump tilt angles (pump flow rate) of the hydraulic pumps 51 and 52 are determined based on a characteristic substantially inversely proportional to the bypass flow rate corresponding to the pressure detected by the pressure sensor 74. ) Of the hydraulic pumps 51 and 52 based on the first control signals F1-1, F1_2 and the characteristics that are substantially directly proportional to the operation amounts of the operation members 54.
  • the second control signal is used to control the discharge flow rate of hydraulic oil from the hydraulic pumps 51 and 52 by selecting one of the control signals F2-1 and F2-2.
  • Positive flow control and negative flow control according to the operator's preference. Can be divided have used the Control is advantageous cormorants have to be able to improve the driving feeling.
  • the intended operation of the operator can be performed, which is preferable in terms of operability. Also, it is possible to suppress a sudden change in the operating speed of the working machine, which is also preferable in terms of safety.
  • a control signal for decreasing the pump flow rate is selected from the first control signal F1-1 and F1-2 and the second control signal F2-1 and F2-2, and the control signal from the hydraulic pumps 51 and 52 is selected.
  • the hydraulic oil discharge flow it takes about 105 to 107, 109R, 109L, 110H for the hydraulic actuators depending on the work such as excavation work and lifting work.
  • the load fluctuates, there is an advantage that the positive flow control and the negative flow control can be automatically switched according to the fluctuation of the load.
  • first control signals F1 ⁇ 1, F1_2 and the second control signals F2_1, F2_2 are compared with each other, and the first control signals F1 ⁇ 1, F2 ⁇ 2 and the second control signal F1 ⁇ 1, F2_2 are compared with each other. Since the control signal that reduces the pump flow rate is selected from the signal F 2-1 and F-2, there is also an advantage that switching between positive flow control and negative flow control can be performed with a simple configuration.
  • first control signal F1_1, F12 and the second control signal F2-1, F21-2 are selectively used by the software of the controller 1, Another advantage is that it can easily respond to special requirements such as operating preferences and operation of special tools (e.g., hammer, grapple, etc.) without changing hardware such as control valves and pumps.
  • special tools e.g., hammer, grapple, etc.
  • the first control signal (negative flow control) inversely proportional to the bypass flow rate and the operation member operation amount are directly proportional to the first control signal (negative flow control) by the minimum signal selection means 20 of the speed control corresponding tilt angle setting means 7.
  • the control signal selection method is not limited to this, and the operator's preference and special tool ( In order to respond to the operation of the hammer, the grapple, etc., for example, a selection switch that can be operated by the operator is provided. By operating this selection switch, only the first control signal inversely proportional to the bypass flow rate is provided.
  • the pump tilt angle control only for negative flow control
  • the second control signal that is directly proportional to the operation amount of the operating member May be to use a configuration can be selected and a pump tilting angle control (positive flow control only).
  • the tilt angle setting means 7 corresponding to the speed control sets the pump tilt angle control signal F mi set using the minimum signal selecting means 20. n and the pump tilt angle control signal F2 _ 1 (F22) set using the tilt angle setting means 6 corresponding to the operation member. The selection is made based on the determination result by the comparing means 21, but is not limited to this, and the pump tilt angle control signal F min set by using the minimum signal selecting means 20 and the operation The operator selects whether to use any one of the pump tilt angle control signals F 2-1 (F 2-2) set using the member corresponding tilt angle setting means 6. It is also possible to perform each required operation.
  • the pump tilt angle (required tilt angle) set based on the operation amount of the operation member by the operator is smaller than a predetermined value F1a1low (F2a1low). Therefore, instead of the required tilt angle comparing means 21 which determines the operation requested by the operator, the operator makes a request based on an electric signal from each operation member according to the operation of each operation member by the operator.
  • a selection may be made as to which of the pump tilt angle control signals set using the setting means 6 is to be used.
  • the required work determination means determines that the work is excavation work, and the minimum signal selection means 20 is used based on the determination result.
  • the required work determination means Is determined to be a lifting operation, etc., and based on the result of this determination, setting of the pump tilt angle using the required tilt angle comparing means 21 (the pump tilt angle based on the characteristics shown in FIG. Settings].
  • the required work determination means is based on signals from a plurality of work mode switches such as a truck loading mode (boom priority mode), a trenching mode (swing priority mode), a leveling mode, and a tamping mode.
  • a truck loading mode boost priority mode
  • a trenching mode tilt priority mode
  • a leveling mode leveling mode
  • a tamping mode Operet — It may be configured to determine the work that Evening is requesting.
  • control device and the control method for a construction machine of the present invention are useful for a construction machine (for example, a hydraulic shovel) that supplies hydraulic oil from a hydraulic pump to a hydraulic machine for driving a work machine.
  • a construction machine for example, a hydraulic shovel
  • the operating speed of the hydraulic actuator is rapidly increased, and this is suitable for a construction machine in which a hunting phenomenon occurs due to this. I have.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

A control apparatus of a construction machine which gives the operator an improved operating feel by enabling the operator to control the flow rate of a pump in accordance with the operator's preference and a load sense feel while suppressing a sharp increase of the operating speed of a hydraulic actuator and the hunting phenomenon induced thereby, a pump flow rate control means (3, 4) which controls the discharge of the hydraulic fluid from hydraulic pumps (51, 52) selects either a first control signal (F1-1(F1-2)) for controlling the discharge of the pump according to the characteristic that the discharge is in inverse proportion to the pressure of the hydraulic fluid in bypass passages (61b, 66c) on the downstream side of supply and exhaust control valves (57-60, 62-65) or a second control signal (F2-1(F2-2)) for controlling the discharge rate of the pump according to the characteristic that the discharge is in proportion to the manipulated varible of an operating member (54).

Description

明 細 書 建設機械の制御装置及び制御方法 技術分野  Description Control device and control method for construction machinery
本発明は、 油圧ショベル等の建設機械の作業機を作動させるために油 圧ポンプからの作動油の吐出流量を制御する、 建設機械の制御装置及び その制御方法に関する。 背景技術  The present invention relates to a control device for a construction machine, which controls a discharge flow rate of hydraulic oil from a hydraulic pump to operate a working machine of a construction machine such as a hydraulic shovel, and a control method thereof. Background art
一般に、 油圧ショベル等の建設機械は、 図 9に示すように、 上部旋回 体 1 0 2と下部走行体 1 0 0と作業機 1 1 8とからなっている。  In general, a construction machine such as a hydraulic excavator includes an upper revolving unit 102, a lower traveling unit 100, and a work machine 118 as shown in FIG.
下部走行体 1 0 0は、 互いに独立して駆動しうる右トラック 1 0 0 R 及び左トラック 1 0 0 Lをそなえており、 一方、 上部旋回体 1 0 2は、 下部走行体 1 0 0に対して水平面内で旋回可能に設けられている。 この ため、 下部走行体 1 0 0の左トラック 1 0 0 L及び右トラック 1 0 0 R には、 それぞれ独立した動力源としての走行油圧モータ (走行用油圧ァ クチユエ一夕) が取り付けられており、 上部旋回体 1 0 2には旋回用油 圧モー夕 (旋回用油圧ァクチユエ一夕) が取り付けられている。  The undercarriage 100 has a right track 100R and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has a lower track 100 On the other hand, it is provided so as to be pivotable in a horizontal plane. For this reason, a traveling hydraulic motor (travel hydraulic actuator) as an independent power source is attached to each of the left track 100 L and the right track 100 R of the lower traveling body 100. The upper revolving unit 102 is provided with a hydraulic pressure motor for turning (a hydraulic hydraulic actuator for turning).
また、 作業機 1 1 8は、 主にブーム 1 0 3 , スティック 1 0 4 , バケ ット 1 0 8等からなっており、 ブーム 1 0 3は、 上部旋回体 1 0 2に対 して回動可能に枢着されている。 また、 ブーム 1 0 3の先端には、 同じ く鉛直面内に回動可能にスティック 1 0 4が接続されている。  The working machine 118 mainly comprises a boom 103, a stick 104, a bucket 108, and the like, and the boom 103 rotates with respect to the upper rotating body 102. It is pivotally connected. A stick 104 is connected to the end of the boom 103 so as to be rotatable in the vertical plane.
そして、 上部旋回体 1 0 2とブーム 1 0 3との間には、 ブーム 1 0 3 を駆動するためのブーム駆動用油圧シリンダ (ブームシリンダ, ブーム 駆動用油圧ァクチユエ一夕) 1 0 5が設けられるとともに、 ブーム 1 0 3とスティック 1 0 4との間には、 スティック 1 0 4を駆動するための スティック駆動用油圧シリンダ (スティックシリンダ, スティック駆動 用油圧ァクチユエ一夕) 1 0 6が設けられている。 また、 スティック 1 0 4とバケツト 1 0 8との間には、 バケツト 1 0 8を駆動するためのバ ケット駆動用油圧シリンダ (バケツトシリンダ, バゲット駆動用油圧ァ クチユエ一夕) 1 0 7が設けられている。 これにより、 ブーム 1 0 3は 図 9中矢印 a方向及び矢印 b方向に、 スティック 1 0 4は図 9中矢印 c 方向及び矢印 d方向に、 バケツト 1 0 8は図 9中矢印 e方向及び矢印 f 方向に回動可能に構成されている。 A boom driving hydraulic cylinder (boom cylinder, boom driving hydraulic actuator) 105 for driving the boom 103 is provided between the upper swing body 102 and the boom 103. Along with the boom 1 0 A stick drive hydraulic cylinder (stick cylinder, stick drive hydraulic actuator) 106 for driving the stick 104 is provided between the stick 3 and the stick 104. Also, between the stick 104 and the bucket 108, a bucket driving hydraulic cylinder (bucket cylinder, baguette driving hydraulic actuator) 107 for driving the bucket 108 is provided. Is provided. Accordingly, the boom 103 is in the direction of arrow a and arrow b in FIG. 9, the stick 104 is in the direction of arrow c and arrow d in FIG. 9, and the bucket 108 is in the direction of arrow e and arrow in FIG. It is configured to be rotatable in the f direction.
なお、 ブーム 1 0 3の図 9中矢印 a方向への回動をブームアップとい レ 図 9中矢印 b方向への回動をブームダウンという。 また、 ステイツ ク 1 0 4の図 9中矢印 c方向への回動をスティックアウトといい、 図 9 中矢印 d方向への回動をスティックインという。 また、 バケツト 1 0 8 の図 9中矢印 e方向への回動をバケツ卜オープンといい、 図 9中矢印 f 方向への回動をバケツトインという。  The rotation of the boom 103 in the direction of arrow a in FIG. 9 is referred to as boom up. The rotation of the boom 103 in the direction of arrow b in FIG. 9 is referred to as boom down. The rotation of the stake 104 in the direction of arrow c in FIG. 9 is called stick-out, and the rotation of the stake 104 in the direction of arrow d in FIG. 9 is called stick-in. The rotation of the bucket 108 in the direction of arrow e in FIG. 9 is called bucket open, and the rotation of the bucket 108 in the direction of arrow f in FIG. 9 is called bucket-in.
また、 上述の各シリンダ 1 0 5〜 1 0 7や油圧モー夕には、 後述する ように、 エンジン (主に、 ディーゼルエンジン) により駆動される油圧 ポンプ、 ブーム用制御弁, スティック用制御弁, バケツト用制御弁, 旋 回用制御弁等の複数の制御弁を備える油圧回路が接続されている。 さら に、上部旋回体 1 0 2の運転操作室 1 0 1には、油圧ショベルの作動(走 行, 旋回, ブーム回動, スティック回動及びバゲット回動) を制御する ために左レバ一, 右レバー, 左ペダル及び右ペダル等の複数の操作部材 が備えられている。 そして、 オペレータによる操作部材の操作に応じて 複数の制御弁の移動量が制御され、 これにより各シリンダ 1 0 5〜 1 0 7や油圧モータが駆動されるようになっている。  As described later, in each of the cylinders 105 to 107 and the hydraulic motor, a hydraulic pump driven by an engine (mainly a diesel engine), a control valve for a boom, a control valve for a stick, A hydraulic circuit with multiple control valves such as a bucket control valve and a swirl control valve is connected. In addition, the operation room 101 of the upper revolving superstructure 102 has a left lever to control the operation of the excavator (running, turning, boom turning, stick turning, and baguette turning). A plurality of operating members such as a right lever, left pedal and right pedal are provided. Then, the moving amounts of the plurality of control valves are controlled in accordance with the operation of the operation member by the operator, whereby the cylinders 105 to 107 and the hydraulic motor are driven.
このようにして、 各シリンダ 1 0 5〜 1 0 7を伸縮駆動させ、 ブーム 1 0 3, スティック 1 04, バケツト 1 08等の作業機 1 1 8を駆動さ せたり、旋回モー夕を駆動させて上部旋回体 1 02を旋回させることで、 掘削作業等の各種作業を行なうようになっている。 In this way, the cylinders 105 to 107 are driven to expand and contract, Various work such as excavation work is performed by driving the work machine 110, such as 103, stick 104, bucket 108, etc., or turning the upper swing body 102 by driving the swing motor. It has become.
ここで、 図 1 0は従来の油圧ショベルに備えられる油圧回路の要部を 模式的に示す図である。  Here, FIG. 10 is a diagram schematically showing a main part of a hydraulic circuit provided in a conventional hydraulic shovel.
図 1 0に示すように、 各油圧シリンダ 1 0 5〜 1 0 7や油圧モー夕 1 09 L, 1 09 R, 1 1 0には、 エンジン (主に、 ディーゼルエンジン) 500により駆動される複数 (ここでは 2つ) 油圧ポンプ 5 1 0, 52 0、 複数の制御弁 (給排制御弁) 570〜 600, 620〜 6 50を備 える油圧回路 5 30が接続されている。  As shown in FIG. 10, each of the hydraulic cylinders 105 to 107 and the hydraulic motors 109L, 109R, 110 includes a plurality of engines (mainly, a diesel engine) 500 (Here, two) Hydraulic pumps 510 and 520, and a hydraulic circuit 530 equipped with a plurality of control valves (supply and discharge control valves) 570 to 600 and 620 to 650 are connected.
そして、 オペレータが複数の操作部材 540を操作すると、 油圧回路 5 30に介装される各制御弁 5 70〜 600, 620〜 6 50の移動量 が制御され、 これにより各油圧ポンプ 5 1 0, 520からの作動油が油 圧回路 530を介して所定圧力とされて供給され、 供給された作動油圧 に応じて各油圧シリンダ 1 0 5〜: L 0 7や油圧モー夕 1 0 9 L, 1 09 R, 1 1 0が駆動されるようになっている。  When the operator operates the plurality of operation members 540, the movement amounts of the control valves 570 to 600 and 620 to 650 interposed in the hydraulic circuit 530 are controlled. Hydraulic oil from 520 is supplied at a predetermined pressure through a hydraulic circuit 530, and each hydraulic cylinder 105-: L07 or hydraulic motor 109L, 1 according to the supplied hydraulic pressure. 09 R, 110 are driven.
なお、 複数の操作部材 540は、 ブーム 1 03を回動させる場合に操 作するものをブーム用操作部材 540 aと、 スティック 1 04を回動さ せる場合に操作するものをスティック用操作部材 540 bと、 バケツト 1 08を回動させる場合に操作するものをバケツト用操作部材 540 c と、 上部旋回体 1 02を旋回させる場合に操作するものを旋回用操作部 材 540 dと、 走行させる場合に操作するものを走行用操作部材 540 eとを備えて構成される。  The plurality of operating members 540 include a boom operating member 540a that operates when rotating the boom 103 and a stick operating member 540a that operates when rotating the stick 104. b, a bucket operating member 540 c that is operated when rotating the bucket 108, and a swing operating member 540 d that is operated when rotating the upper revolving unit 102. And a traveling operation member 540e.
ここで、 油圧ポンプ 5 1 0, 520は、 リザーバタンク 700内の作 動油を所定油圧として吐出するもので、 ここでは、 斜板回転式ピストン ポンプ (ピストン型可変容量ポンプ, 可変吐出量形ピストンポンプ) と して構成されている。 これらの油圧ポンプ 5 1 0 , 520は、 油圧ボン プ内に設けられたピストン (図示略) のストローク量を変更することで ポンプ吐出流量を調整しうるようになっている。 つまり、 これらの油圧 ポンプ 5 1 0, 520では、 上記ピストンの一端が斜板 (クリーププレ ート : 図示略) に当接するように構成されており、 油圧ポンプ 5 1 0, 520から吐出される作動油や各制御弁 5 7 0〜 600, 620〜 6 5 0の下流側の作動油を導いて油圧ポンプ 5 1 0, 5 20の斜板の傾き(傾 転角) を変更することで、 ピストンのストローク量を変更してポンプ吐 出流量を調整しうるようになっている。 Here, the hydraulic pumps 510 and 520 discharge the hydraulic oil in the reservoir tank 700 as a predetermined oil pressure. Here, a swash plate rotary piston pump (piston type variable displacement pump, variable discharge amount type piston) is used. Pump) and It is configured. These hydraulic pumps 510 and 520 can adjust the pump discharge flow rate by changing the stroke amount of a piston (not shown) provided in the hydraulic pump. That is, in these hydraulic pumps 5110, 520, one end of the piston is configured to abut against a swash plate (creep plate: not shown), and is discharged from the hydraulic pumps 5110,520. By guiding the hydraulic oil and hydraulic oil downstream of each control valve 570-600, 620-650, and changing the inclination (tilt angle) of the swash plate of the hydraulic pumps 510, 520, The pump discharge flow rate can be adjusted by changing the stroke of the piston.
油圧回路 5 30は、 図 1 0に示すように、 第 1回路部 5 50と、 第 2 回路部 5 60とを備えて構成される。  As shown in FIG. 10, the hydraulic circuit 530 includes a first circuit unit 550 and a second circuit unit 560.
このうち、 第 1回路部 5 50は、 第 1油圧ポンプ 5 1 0に接続される 油路 6 1 0と、 油路 6 1 0に介装されて作動油の給排を制御する右走行 モータ用制御弁 5 70, パケッ ト用制御弁 580, 第 1ブーム用制御弁 590, 第 2スティック用制御弁 600等の給排制御弁とを備えて構成 される。  The first circuit section 550 includes an oil passage 610 connected to the first hydraulic pump 510, and a right traveling motor interposed in the oil passage 610 for controlling supply and discharge of hydraulic oil. And a supply / discharge control valve such as a control valve 570, a packet control valve 580, a first boom control valve 590, and a second stick control valve 600.
そして、 第 1油圧ポンプ 5 1 0からの作動油が、 油路 6 1 0, 右走行 モー夕用制御弁 5 70を介して右走行モー夕 1 0 9 Rへ供給され、 右走 行モー夕 1 0 9 Rを駆動するようになっている。 また、 第 1油圧ポンプ 5 1 0からの作動油は、 油路 6 1 0, バゲッ ト用制御弁 580を介して バケツト駆動用油圧シリンダ 1 07へ供給されるとともに、油路 6 1 0, 第 1ブーム用制御弁 590を介してブーム駆動用油圧シリンダ 1 0 5へ 供給され、 さらに油路 6 1 0, 第 2スティック用制御弁 600を介して スティック駆動用油圧シリンダ 1 06へ供給され、 これにより、 各シリ ンダ 1 0 5, 1 06, 1 0 7が駆動されるようになっている。  Then, the hydraulic oil from the first hydraulic pump 5110 is supplied to the right running motor 1109R via the oil passage 6110, the right running motor control valve 570, and the right running motor It is designed to drive 109 R. Hydraulic oil from the first hydraulic pump 5110 is supplied to the bucket driving hydraulic cylinder 107 through the oil passage 610 and the baguette control valve 580, and the oil passage 610, This is supplied to the boom drive hydraulic cylinder 105 via the 1 boom control valve 590, and further supplied to the stick drive hydraulic cylinder 106 via the oil passage 610 and the second stick control valve 600. Thus, the cylinders 105, 106, and 107 are driven.
また、 第 1回路部 5 50の油路 6 1 0 bの下流側には絞り 8 1 0が備 えられており、 制御弁 5 7 0〜6 0 0が中立又は中間移動位置における バイパス流量はこの絞り 8 1 0を通じて第 1油圧ポンプ 5 1 0からの作 動油をリザーバタンク 7 0 0へ戻すようになつている。 さらに、 この絞 り 8 1 0の上流側 (制御弁側) の作動油が油圧ポンプ 5 1 0へ導かれる ようになつており、 この作動油の圧力によって油圧ポンプ 5 1 0の傾転 角が制御されるようになっている。 Also, a throttle 8110 is provided downstream of the oil passage 6110b of the first circuit section 550. When the control valve 570 to 600 is in the neutral or intermediate movement position, the bypass flow rate returns the hydraulic oil from the first hydraulic pump 510 to the reservoir tank 750 through this throttle 810. It is like that. Further, the hydraulic oil upstream (control valve side) of the throttle 810 is guided to the hydraulic pump 510, and the pressure of the hydraulic oil causes the tilt angle of the hydraulic pump 510 to decrease. It is controlled.
第 2回路部 5 6 0は、 第 2油圧ポンプ 5 2 0に接続される油路 6 6 0 と、 油路 6 6 0に介装されて作動油の給排を制御する左走行モー夕用制 御弁 6 2 0, 旋回モー夕用制御弁 6 3 0, 第 1スティック用制御弁 6 4 0 , 第 2ブーム用制御弁 6 5 0等の給排制御弁とを備えて構成される。 そして、 第 2油圧ポンプ 5 2 0からの作動油が、 油路 6 6 0 , 左走行 モータ用制御弁 6 2 0を介して左走行モータ 1 0 9 Lへ供給され、 これ により、 左走行モ一夕 1 0 9 Lが駆動されるようになっている。 また、 第 2油圧ポンプ 5 2 0からの作動油は、 油路 6 6 0, 旋回モー夕用制御 弁 6 3 0を介して旋回モー夕 1 1 0へ供給され、 これにより、 旋回モー 夕 1 1 0が駆動されるようになっている。 さらに、 第 2油圧ポンプ 5 2 0からの作動油は、 油路 6 6 0 , 第 1スティック用制御弁 6 4 0を介し てスティック駆動用油圧シリンダ 1 0 6へ供給されるとともに、 油路 6 6 0, 第 2ブーム用制御弁 6 5 0を介してブーム駆動用油圧シリンダ 1 0 5へ供給され、 これにより、 各シリンダ 1 0 5 , 1 0 6が駆動される ようになつている。  The second circuit unit 560 includes an oil passage 660 connected to the second hydraulic pump 520, and a left running motor interposed in the oil passage 660 for controlling supply and discharge of hydraulic oil. It is provided with a supply / discharge control valve such as a control valve 62, a turning motor control valve 63 0, a first stick control valve 64 0, and a second boom control valve 65 0. Then, the hydraulic oil from the second hydraulic pump 520 is supplied to the left traveling motor 109 L via the oil passage 660 and the left traveling motor control valve 620, whereby the left traveling motor One night, 109 L is driven. The hydraulic oil from the second hydraulic pump 520 is supplied to the slewing motor 110 via the oil passage 660 and the slewing motor control valve 630, whereby the slewing motor 1 10 is driven. Further, the hydraulic oil from the second hydraulic pump 520 is supplied to the stick driving hydraulic cylinder 106 via the oil passage 660 and the first stick control valve 640, and the oil passage 6 60, and is supplied to a boom drive hydraulic cylinder 105 via a second boom control valve 650, whereby the respective cylinders 105, 106 are driven.
また、 第 2回路部 5 6 0の油路 6 6 0 cの下流側に絞り 8 2 0が備え られており、 制御弁 6 2 0〜6 5 0が中立又は中間移動位置におけるバ ィパス流量はこの絞り 8 2 0を通じて第 2油圧ポンプ 5 2 0からの作動 油をリザーバタンク 7 0 0へ戻すようになつている。 さらに、 この絞り 8 2 0の上流側 (制御弁側) の作動油が油圧ポンプ 5 2 0へ導かれるよ うになつており、 この作動油の圧力によって油圧ポンプ 5 2 0の傾転角 が制御されるようになっている。 In addition, a throttle 8200 is provided downstream of the oil passage 660c of the second circuit section 560, and the bypass flow rate at the neutral or intermediate movement position of the control valves 62 to 65 is The hydraulic oil from the second hydraulic pump 520 is returned to the reservoir tank 700 through the throttle 8200. Further, the hydraulic oil on the upstream side (control valve side) of the throttle 8200 is guided to the hydraulic pump 5200. The tilt angle of the hydraulic pump 520 is controlled by the pressure of the hydraulic oil.
さらに、 建設機械の作業において重要なスティック 1 0 4に他の作業 機 1 1 8との同時操作時においても十分な作動油が供給されるように、 第 2回路部 5 6 0の第 2油圧ポンプ 5 2 0からの作動油に加え、 第 1回 路部 5 5 0の第 1油圧ポンプ 5 1 0からの作動油もスティック駆動用油 圧シリンダ 1 0 6へ供給されるようになっている。  In addition, the second hydraulic pressure of the second circuit section 560 is set so that sufficient hydraulic oil can be supplied to the stick 104 important for construction machine operation even when operating simultaneously with another work machine 118. In addition to the hydraulic oil from the pump 520, the hydraulic oil from the first hydraulic pump 510 in the first circuit section 550 is also supplied to the stick driving hydraulic cylinder 106. .
このため、 第 2回路部 5 6 0の油路 6 6 0に第 1スティック用制御弁 6 4 0が介装され、 第 1回路部 5 5 0の油路 6 1 0に第 2スティック用 制御弁 6 0 0が介装されている。 そして、 第 1スティック用制御弁 6 4 0の移動量をスティック用操作部材 5 4 0 bの操作量に応じて制御する とともに、 第 2スティック用制御弁 6 0 0の移動量をスティック用操作 部材 5 4 0 bの操作量に応じて制御することにより、 スティック駆動用 油圧シリンダ 1 0 6への作動油の給排を行なえるようになつている。 同様に、 他の作業機 1 1 8との同時操作時においてもブーム 1 0 3に 十分な作動油が供給されるように、 第 1回路部 5 5 0の第 1油圧ポンプ 5 1 0からの作動油に加え、 第 2回路部 5 6 0の第 2油圧ポンプ 5 2 0 からの作動油もブーム駆動用油圧シリンダ 1 0 5へ供給されるようにな つている。  Therefore, the first stick control valve 640 is interposed in the oil passage 660 of the second circuit unit 560, and the control for the second stick is provided in the oil passage 610 of the first circuit unit 550. Valve 600 is interposed. The moving amount of the first stick control valve 640 is controlled according to the operating amount of the stick operating member 540b, and the moving amount of the second stick control valve 600 is controlled by the stick operating member. By controlling in accordance with the operation amount of 540b, supply and discharge of hydraulic oil to and from the hydraulic cylinder 106 for driving the stick can be performed. Similarly, during the simultaneous operation with the other work implements 118, the first hydraulic pump 5110 of the first circuit section 550 is operated so that sufficient hydraulic oil is supplied to the boom 103. In addition to the hydraulic oil, hydraulic oil from the second hydraulic pump 520 of the second circuit section 560 is also supplied to the boom driving hydraulic cylinder 105.
このため、 第 1回路部 5 5 0の油路 6 1 0に第 1ブーム用制御弁 5 9 For this reason, the first boom control valve 5 9
0が介装され、 第 2回路部 5 6 0の油路 6 6 0に第 2ブーム用制御弁 6 5 0が介装されている。 そして、 第 1ブーム用制御弁 5 9 0の移動量を ブーム用操作部材 5 4 0 aの操作量に応じて制御するとともに、 第 2ブ ーム用制御弁 6 5 0の移動量をブーム用操作部材 5 4 0 aの操作量に応 じて制御することにより、 ブーム駆動用油圧シリンダ 1 0 5への作動油 の給排を行なえるようになつている。 . なお、 各操作部材 5 4 0の操作量に応じて各制御弁 5 7 0〜 6 0 0, 6 2 0〜 6 5 0の移動量を制御するために、 図示しないパイロッ トポン プ, 比例減圧弁を備えるパイロット油圧回路も設けられており、 パイ口 ッ トポンプからのパイロッ ト油圧を比例減圧弁により所定圧として各制 御弁 5 7 0〜6 0 0, 6 2 0〜6 5 0へ作用させるようになつている。 0 is interposed, and a second boom control valve 65 is interposed in an oil passage 660 of the second circuit portion 560. The amount of movement of the first boom control valve 590 is controlled in accordance with the amount of operation of the boom operating member 540a, and the amount of movement of the second boom control valve 650 is controlled for the boom. By controlling the operation member 540a in accordance with the operation amount, the supply and discharge of the hydraulic oil to and from the boom drive hydraulic cylinder 105 can be performed. . A pilot pump and a proportional pressure reducing valve (not shown) are used to control the moving amounts of the control valves 570 to 600 and 620 to 650 in accordance with the operating amounts of the operating members 540. A pilot hydraulic circuit equipped with a pilot pressure circuit is also provided, and the pilot oil pressure from the pilot pump is applied to each control valve 570 to 600, 620 to 650 as a predetermined pressure by a proportional pressure reducing valve. It is like that.
ところで、 各制御弁 5 7 0〜6 0 0, 6 2 0〜6 5 0は、 スプール弁 として構成され、 いずれも複数 (ここでは 5つ) の絞りを備えて構成さ れる。  By the way, each of the control valves 570 to 600 and 620 to 600 is configured as a spool valve, and each of them is configured with a plurality (here, five) of throttles.
例えば、 旋回モータ用制御弁 6 3 0は、 図 1 1に示すように、 第 2油 圧ポンプ 5 2 0と旋回モー夕 1 1 0とを連通する油路(作動油供給通路, P— C通路) 6 6 0 , 6 6 0 a , 9 7 0に介装される P— C絞り 4 0と、 旋回モータ 1 1 0とリザーバタンク 7 0 0とを連通する油路 (作動油排 出通路, C— T通路) 9 6 0, 6 6 0 bに介装される C— T絞り 4 1と、 第 2油圧ポンプ 5 2 0とリザーバタンク 7 0 0とを連通するバイパス油 路 (バイパス通路) 6 6 0 , 6 6 0 cに介装されるバイパス通路絞り 4 2とを備えて構成される。 なお、 作動油供給通路と作動油排出通路とか ら作動油給排通路が構成される。  For example, as shown in FIG. 11, the swing motor control valve 63 0 is provided with an oil passage (operating oil supply passage, P—C) that communicates the second hydraulic pump 52 0 and the swing motor 110. Passage) An oil passage (operating oil discharge passage) that connects the PC throttle 40, which is interposed in the 660, 660a, and 970, with the rotation motor 110 and the reservoir tank 700 , C—T passage) A bypass oil passage (bypass passage) that communicates the C—T throttle 41 interposed in the 960, 660 b with the second hydraulic pump 520 and the reservoir tank 700 ) 660, 660c, and a bypass passage restrictor 42 interposed therebetween. The hydraulic oil supply passage and the hydraulic oil discharge passage constitute a hydraulic oil supply and discharge passage.
そして、 P— C絞り 4 0によって、 第 2油圧ポンプ 5 2 0と旋回モー 夕 1 1 0とを連通する油路 6 6 0, 6 6 0 a , 9 7 0の開口面積 〔作動 油供給通路の開口面積, P _ C開口面積 (P C )〕 が調整される。 また、 C— T絞り 4 1によって、 旋回モー夕 1 1 0とリザ一バタンク 7 0 0と を連通する油路 9 6 0, 6 6 0 bの開口面積 〔作動油排出通路の開口面 積, C一 T開口面積 (C T )〕 が調整される。 さらに、 バイパス通路絞り 4 2によって、 第 2油圧ポンプ 5 2 0とリザーバタンク 7 0 0とを連通 する油路 6 6 0, 6 6 0 cの開口面積 〔バイパス通路の開口面積, バイ パス開口面積 (C )〕 が調整される。 なお、 図 1 1では、 旋回モー夕用制御弁 6 3 0は左旋回側位置になつ ているが、 旋回モータ用制御弁 6 3 0を、 旋回モー夕用操作部材 5 4 0 dの操作量 〔操作部材操作量 (A)〕 に応じて、 図 1 1中、 上方向へ移動 させて旋回モー夕用制御弁 6 3 0のバイパス通路絞り 4 2をバイパス通 路 6 6 0, 6 6 0 cに介装させることで旋回モー夕用制御弁 6 3 0の移 動量 〔制御弁移動量 (B )〕 を調整することによって、 旋回モー夕用制御 弁 6 3 0を中立位置とすることができる。 また、 旋回モー夕用制御弁 6 3 0を、旋回モータ用操作部材 5 4 0 dの操作量〔操作部材操作量(A )〕 に応じて、 図 1 1中、 最も上方向へ移動させて旋回モータ用制御弁 6 3 0の P _ C絞り 4 0を P— C通路 6 6 0 , 6 6 0 a , 9 7 0に介装させ るとともに、 旋回モー夕用制御弁 6 3 0の C— T絞り 4 1を C— T通路 9 6 0 , 6 6 0 bに介装させることで旋回モータ用制御弁 6 3 0の移動 量 〔制御弁移動量 (B )〕 を調整することによって、 旋回モー夕用制御弁 6 3 0を右旋回側位置にすることができる。 なお、 旋回モー夕用制御弁 6 3 0が、 左旋回側位置と中立位置との間や中立位置と右旋回側位置と の間の中間に位置する場合には中間移動位置にあるという。 The opening area of the oil passages 660, 660a, 970 that communicates the second hydraulic pump 520 and the rotating motor 110 by the PC throttle 40 is provided. And the PC opening area (PC)] are adjusted. In addition, the opening area of the oil passages 960, 660b communicating the turning motor 110 and the reservoir tank 700 by the C-T throttle 41 [the opening area of the hydraulic oil discharge passage, C-T opening area (CT)] is adjusted. Further, the opening area of the oil passages 660 and 660 c that communicates the second hydraulic pump 520 and the reservoir tank 700 by the bypass passage restrictor 42 [the opening area of the bypass passage, the opening area of the bypass passage] (C)] is adjusted. In FIG. 11, the turning motor control valve 630 is located at the left turning side position, but the turning motor control valve 630 is operated by the operating amount of the turning motor operating member 540d. In accordance with the [operating member operation amount (A)], it is moved upward in Fig. 11 to turn the bypass passage throttle 42 of the turning motor control valve 63 0 into the bypass passage 66 0, 66 0 By adjusting the amount of movement of the control valve 630 for the swing motor by interposing c, the control valve 630 for the swing motor can be set to the neutral position by adjusting the control valve travel amount (B). it can. In addition, the turning motor control valve 630 is moved to the uppermost position in FIG. 11 according to the operation amount of the turning motor operation member 5400d [operation member operation amount (A)]. The P_C throttle 40 of the swing motor control valve 63 0 is interposed in the P-C passages 66 0, 66 0 a, 97 0 and the swing motor control valve 63 0 C — By interposing the T throttle 41 in the C — T passages 960, 660b, by adjusting the amount of movement of the swing motor control valve 630 (the amount of control valve movement (B)), The turning mode control valve 63 0 can be set to the right turning side position. When the turning motor control valve 630 is located between the left turning position and the neutral position or between the neutral position and the right turning position, it is said to be at the intermediate moving position.
また、 ここでは、 旋回モー夕 1 1 0を駆動するための油圧回路を例に して説明したが、 スティック駆動用油圧シリンダ等の他の油圧ァクチュ エー夕 1 0 5〜 1 0 7, 1 0 9 R , 1 0 9 Lを駆動するための油圧回路 も同様に構成される。  Although the hydraulic circuit for driving the swing motor 110 has been described here as an example, other hydraulic actuators 105 to 107, 10 0, such as a hydraulic cylinder for driving a stick, are used. The hydraulic circuit for driving 9 R and 109 L is configured similarly.
このように各油圧ァクチユエ一夕 1 0 5〜: L 0 7, 1 0 9 R , 1 0 9 L , 1 1 0を駆動するための油圧回路が構成されるが、 例えばこれらの 油圧ァクチユエ一夕に含まれる旋回モー夕 1 1 0を作動させるには、 以 下のようにしてポンプ流量制御 (ポンプ傾転角制御) が行なわれる。 オペレータにより旋回モー夕用操作部材 5 4 0 dが操作され、 その操 作量 (A ) が A Oとされると、 図 1 2 ( a ) に示すような操作部材操作 量 (A) と制御弁移動量 (B) との関係を示す特性に基づいて、 給排制 御弁としての旋回モー夕用制御弁 6 30の移動量(B)は B 0とされる。 次に、 この旋回モータ用制御弁 630の移動量 B 0に応じて、 図 1 2 (b) に示すような制御弁移動量 (B) とバイパス通路開口面積 (C) 等との関係を示す特性に基づいて、 旋回モータ用制御弁 6 30のバイパ ス通路開口面積 (C) は C Oとなる。 なお、 この場合、 旋回モー夕用制 御弁 630の C一 T開口面積 (CT) は CT 0となり、 P— C開口面積 (PC) は P C 0となる。 In this way, a hydraulic circuit for driving each hydraulic actuator 105-: L07, 109R, 109L, 110 is constructed. The pump flow control (pump tilt angle control) is performed as follows in order to operate the turning motor 110 included in. When the operating member 540 d for the turning motor is operated by the operator and the operation amount (A) is AO, the operating member operation as shown in Fig. 12 (a) is performed. Based on the characteristic indicating the relationship between the amount (A) and the control valve movement amount (B), the movement amount (B) of the turning motor control valve 630 as the supply / discharge control valve is set to B0. Next, the relationship between the control valve movement amount (B) and the bypass passage opening area (C) as shown in FIG. 12B is shown according to the movement amount B 0 of the swing motor control valve 630. Based on the characteristics, the bypass passage opening area (C) of the swing motor control valve 630 becomes CO. In this case, the C-T opening area (CT) of the turning motor control valve 630 is CT0, and the PC opening area (PC) is PC0.
そして、 負荷圧力が一定の場合には、 図 1 2 (c) に示すようなバイ パス通路開口面積 (C) とバイパス流量 (D) との関係を示す特性に基 づいて、 旋回モー夕用制御弁 630のバイパス通路開口面積 C 0に応じ て旋回モー夕用制御弁 630のバイパス通路を流れる作動油の流量 (バ ィパス流量) (D) が D Oとなる。  Then, when the load pressure is constant, based on the characteristic indicating the relationship between the bypass passage opening area (C) and the bypass flow rate (D) as shown in Fig. 12 (c), According to the bypass passage opening area C 0 of the control valve 630, the flow rate (bypass flow rate) (D) of the hydraulic oil flowing through the bypass passage of the swing motor control valve 630 becomes DO.
これにより、 図 1 2 (d) に示すようなバイパス流量 (D) と油圧ポ ンプ 52 0へ導かれる作動油の圧力 (E) との関係を示す特性に基づい て、 バイパス流量 D 0に応じて油圧ポンプ 520へ導かれる作動油の圧 力 (E) が E 0となり、 図 1 2 ( e ) に示すような油圧ポンプ 520へ 導かれる作動油の圧力 (E) とポンプ流量 (ポンプ傾転角) (F) との関 係を示す特性に基づいて、 油圧ポンプ 520へ導かれる作動油の圧力 E 0に応じて油圧ポンプ 520のポンプ傾転角 (ポンプ流量) (F)が F 0 とされる。  As a result, based on the characteristic indicating the relationship between the bypass flow rate (D) and the hydraulic oil pressure (E) guided to the hydraulic pump 520 as shown in FIG. The pressure (E) of the hydraulic oil guided to the hydraulic pump 520 becomes E0, and the pressure (E) of the hydraulic oil guided to the hydraulic pump 520 and the pump flow (pump tilt) as shown in Fig. 12 (e) Angle) (F), the pump tilt angle (pump flow rate) of the hydraulic pump 520 (F) becomes F 0 according to the pressure E 0 of the hydraulic oil guided to the hydraulic pump 520, Is done.
なお、 ここでは、 旋回モータ 1 1 0のみを作動させる場合について説 明しているが、 他の油圧ァクチユエ一夕 1 0 5〜 1 0 7, 1 09 R, 1 09 Lも同時に作動させる場合には、 油圧ポンプ 5 1 0, 520のボン プ傾転角を制御するために各給排制御弁の下流側のバイパス通路 (絞り 8 1 0, 820の上流側) の作動油を導くようになつているため、 バイ パス流量を求めるのに、 各油圧ァクチユエ一夕 1 0 5〜 1 07, 1 0 9 R, 1 0 9 L, 1 1 0への作動油の給排を制御するそれぞれの給排制御 弁のバイパス通路開口面積のうち最も小さい開口面積が用いられる。 Here, the case where only the swing motor 110 is operated is described. However, when the other hydraulic actuators 105 to 107, 109R, and 109L are also operated at the same time. In order to control the pump tilt angle of the hydraulic pumps 510, 520, the hydraulic oil is guided to the bypass passage downstream of each supply / discharge control valve (upstream of the throttles 810, 820). Because To determine the path flow rate, bypass each supply / discharge control valve that controls the supply / discharge of hydraulic oil to / from each hydraulic function 105-107, 109R, 109L, 110 The smallest opening area of the passage opening area is used.
ところで、 上述のように構成される油圧回路 530では、 図 1 0に示 すように、 各操作部材 540の操作量に応じて作動する各制御弁 5 70 〜600, 620〜 6 50は、 バイパス通路を構成する油路 6 1 0, 6 1 0 b, 660, 660 cに直列に配設され、 その最下流側に配設され た制御弁 600, 650とタンク 7 00との間のバイパス通路を構成す る油路 6 1 0 b, 660 c (絞り 8 1 0, 820の上流側の油路) と油 圧ポンプ 5 1 0, 52 0とが接続されている。 そして、 バイパス通路を 構成する油路 6 1 0 b, 6 60 cから導かれた作動油の圧力に基づいて 油圧ポンプ 5 1 0, 520のポンプ傾転角 (ポンプ流量) が制御される ようになつている (このような制御をネガティブフローコントロールと いう)。  By the way, in the hydraulic circuit 530 configured as described above, as shown in FIG. 10, each of the control valves 5 70 to 600 and 620 to 650 that operate according to the operation amount of each of the operation members 540 is bypassed. A bypass passage between the control valves 600, 650 and the tank 700, which is arranged in series with the oil passages 6 10, 6 10 b, 660, 660 c constituting the passage, and which is arranged at the most downstream side thereof. The oil passages 6 10 b and 660 c (the oil passages upstream of the throttles 8 10 and 820) and the hydraulic pumps 5 10 and 5 20 are connected. Then, the pump tilt angle (pump flow rate) of the hydraulic pumps 510, 520 is controlled based on the pressure of the hydraulic oil guided from the oil passages 610b, 660c constituting the bypass passage. (This type of control is called negative flow control).
例えば、 複数の操作部材 540が同時に操作され、 各油圧ァクチユエ 一夕 1 0 5〜1 0 7, 1 0 9 R, 1 09 L, 1 1 0を同時に作動させる 場合、 各給排制御弁の下流側のバイパス通路 660, 66 0 cを流れる 作動油が油圧ポンプ 5 1 0, 520へ導かれるため、油圧ポンプ 5 1 0, 520のポンプ吐出流量が各給排制御弁を介して作動油を供給される各 油圧ァクチユエ一タ 1 05〜 1 07, 1 0 9 R, 1 0 9 L, 1 1 0の要 求流量の合算値となるように、 油圧ポンプ 5 1 0, 520のポンプ傾転 角 (ポンプ流量) が制御される。  For example, when a plurality of operating members 540 are operated simultaneously, and each hydraulic actuator 105-5, 107, 109 R, 109 L, 110 is operated simultaneously, the downstream of each supply / discharge control valve Hydraulic oil flowing through the bypass passages 660 and 660c on the side is guided to the hydraulic pumps 5110 and 520, so that the pump discharge flow rate of the hydraulic pumps 510 and 520 supplies hydraulic oil through each supply / discharge control valve. Of the hydraulic pumps 510, 520 so that the sum of the required flow rates of 105 to 107, 109R, 109L, 110 is obtained. (Pump flow rate) is controlled.
しかしながら、 このような従来の建設機械の制御装置においては油圧 ァクチユエ一夕 1 05〜: 1 0 7, 1 09 R, 1 09 L, 1 1 0に作用す る負荷変動の影響がバイパス流量の変動として現れ、 このようにして負 荷変動により変動したバイパス流量に基づいて油圧ポンプ 5 1 0, 6 1 0のポンプ傾転角制御が行なわれるため、 これがポンプ吐出流量の変動 に繋がって油圧ァクチユエ一夕の作動スピードが急変してしまうおそれ がある。 However, in such a conventional control device for construction machinery, the influence of the load fluctuation acting on the hydraulic actuators 105-107, 109R, 109L, 110 is affected by the fluctuation of the bypass flow rate. And the hydraulic pumps 5 10 and 6 1 based on the bypass flow rate fluctuated by the load fluctuation in this way. Since the pump tilt angle control of 0 is performed, this may lead to a change in the pump discharge flow rate, which may cause a sudden change in the operating speed of the hydraulic actuator.
ここで、 旋回モー夕用操作部材 5 4 0 dの操作量 (A) が中間操作量 で一定とされると、 これに対応する旋回モー夕用制御弁 6 3 0の移動量 ( B ) も中間位置で一定となり、 油圧ポンプ 5 2 0と旋回モータ 1 1 0 とを連通する油路に介装される P— C絞り 4 0により絞られる P— C開 口面積 (P C ) も一定となり、 油圧ポンプ 5 2 0とタンク 7 0 0とを連 通する油路に介装されるバイパス通路絞り 4 2により絞られるバイパス 開口面積 (C ) も一定となる。 なお、 このような油圧回路状態では、 P _ C絞り 4 0及びバイパス通路絞り 4 2が一定の開度とされ 〔即ち、 P 一 C開口面積 (P C ) 及びバイパス開口面積 (C ) が一定の面積とされ〕, 油圧ポンプ 5 2 0と旋回モータ 1 1 0とが連通されるとともに、 油圧ポ ンプ 5 2 0とタンク 7 0 0とが連通されているため、 油圧ポンプ 5 2 0 が吐出される作動油は旋回モー夕 1 1 0側及びタンク 7 0 0側へ分流さ れることになる。  Here, assuming that the operation amount (A) of the turning motor evening operation member 540 d is constant at the intermediate operation amount, the corresponding moving amount (B) of the turning motor evening control valve 63 0 also becomes It becomes constant at the intermediate position, and the PC opening area (PC) throttled by the PC throttle 40, which is interposed in the oil passage connecting the hydraulic pump 520 and the swing motor 110, also becomes constant. The bypass opening area (C) narrowed by the bypass passage throttle 42 interposed in the oil passage communicating the hydraulic pump 520 and the tank 700 is also constant. In such a hydraulic circuit state, the P_C throttle 40 and the bypass passage throttle 42 have a constant opening degree [that is, the P-C opening area (PC) and the bypass opening area (C) are constant. The hydraulic pump 520 is discharged because the hydraulic pump 520 and the swing motor 110 are connected to each other, and the hydraulic pump 520 and the tank 700 are connected to each other. Hydraulic oil is diverted to the rotating motor 110 side and the tank 700 side.
このような油圧回路状態において、 例えば旋回中に作業機 1 1 8が伸 縮したりして旋回モー夕 1 1 0に作用する負荷 Wが変動すると、 旋回モ 一夕 1 1 0を作動させるための作動圧力が変動し、 油圧ポンプ 5 2 0と 旋回モー夕 1 1 0とを連通する油路 (P— C通路) と、 油圧ポンプ 5 2 0とタンク 7 0 0とを連通する油路 (バイパス通路) との間の圧力バラ ンスが変動するため、 バイパス流量 (D ) も変動してしまう。 これによ り、 油圧ポンプ 5 2 0へ導かれる作動油の圧力 (E ) も変動し、 この作 動油の圧力 (E ) によって制御されるポンプ流量 (ポンプ傾転角) (F ) も変動してしまうことになるため、 結果的に旋回モータ 1 1 0の作動ス ピードが急変してしまうおそれがある。 例えば、 負荷 Wが急激に小さくなると、 油圧ァクチユエ一夕としての 旋回モー夕 1 1 0の作動圧力が低くなり、 旋回モー夕 1 1 0への流量が 増加するから、 その分、 バイパス流量 (D) は D 0から D 1に減少する。 In such a hydraulic circuit state, for example, when the work machine 118 expands and contracts during turning and the load W acting on the turning motor 110 fluctuates, the turning motor 110 is operated. The operating pressure of the oil pump fluctuates, and an oil passage (PC passage) that connects the hydraulic pump 520 and the swing motor 110 and an oil passage that connects the hydraulic pump 520 and the tank 700 ( Since the pressure balance with the bypass passage fluctuates, the bypass flow rate (D) also fluctuates. As a result, the pressure (E) of the hydraulic oil guided to the hydraulic pump 520 also fluctuates, and the pump flow rate (pump tilt angle) (F) controlled by the pressure (E) of the hydraulic oil also fluctuates. As a result, the operating speed of the swing motor 110 may suddenly change. For example, when the load W suddenly decreases, the operating pressure of the swing motor 110 as a hydraulic actuator decreases, and the flow rate to the swing motor 110 increases, so that the bypass flow rate (D ) Decreases from D 0 to D 1.
このようにバイパス流量 (D) が D 0から D 1に減少すると、 図 1 3 (a) のバイパス流量と油圧ポンプへ導かれる作動油の圧力との関係を 示す図に示すように、 油圧ポンプ 520へ導かれる作動油の圧力 (E) が E 0から E 1に減少する。  When the bypass flow rate (D) decreases from D 0 to D 1 in this manner, as shown in FIG. 13 (a), which shows the relationship between the bypass flow rate and the pressure of the hydraulic oil guided to the hydraulic pump, the hydraulic pump Hydraulic oil pressure (E) directed to 520 decreases from E 0 to E 1.
そして、 油圧ポンプ 520へ導かれる作動油の圧力 (E) が E 0から E 1に減少するとポンプ流量(ポンプ傾転角)が増加方向に制御されて、 図 1 3 (b) の油圧ポンプへ導かれる作動油の圧力とポンプ流量との関 係を示す図に示すように、 ポンプ流量(F) は F 0から F 1に増加する。  Then, when the pressure (E) of the hydraulic oil guided to the hydraulic pump 520 decreases from E0 to E1, the pump flow rate (pump tilt angle) is controlled to increase, and the hydraulic pump shown in FIG. The pump flow rate (F) increases from F 0 to F 1 as shown in the diagram showing the relationship between the guided hydraulic oil pressure and the pump flow rate.
このようにしてポンプ流量が増加すると、 旋回モータ 1 1 0への作動 油の供給流量を更に増加させることとなり、 結果として旋回モ一夕 1 1 0の作動スピードが急激に増加することになるおそれがある。  When the pump flow rate increases in this way, the supply flow rate of hydraulic oil to the swing motor 110 further increases, and as a result, the operating speed of the swing motor 110 may increase sharply. There is.
なお、 ここでは、 旋回モー夕 1 1 0を例にして説明したが、 他の油圧 ァクチユエ一夕 1 05〜 1 07, 1 09 R, 1 0 9 L, についても同様 である。  Here, the turning motor 110 has been described as an example, but the same applies to other hydraulic actuators 105-107, 109R, 109L.
このように負荷 Wの減少は、 図 1 3 (c) に示すように、 ポンプ流量 を増加させるように作用し、 油圧ァクチユエ一夕 1 0 5〜 1 0 7, 1 0 9 R, 1 09 L, 1 1 0の作動スピードを急増させることは、 オペレー 夕の意図に反し、 好ましくない。 なお、 図 1 3 (c) 中、 ァクチユエ一 夕のスピード (ポンプ流量) F 0は操作部材 54の操作量に応じた期待 スピードであり、 初期バランス点はァクチユエ一夕が期待スピ一ドで作 動している場合のァクチユエ一夕と負荷とのバランス点である。  Thus, as shown in Fig. 13 (c), the decrease in load W acts to increase the pump flow rate, and the hydraulic actuators 105-107, 109R, 109L It is not preferable to increase the operating speed of 110, contrary to the intention of the operator. In Fig. 13 (c), the speed of pumping (pump flow rate) F0 is the expected speed according to the amount of operation of the operating member 54, and the initial balance point is set at the expected speed of pumping. This is the balance between the actuyue and the load when moving.
例えば、 オペレータが、 作業機 (油圧ァクチユエ一夕) の作動スピー ドを微速又は中間速にすることを意図して、 操作部材 540の操作量を 中間操作量 A Oで一定にしているにもかかわらず、 作業機 1 1 8の作動 スピードが急増してしまうことになるから、 オペレータの意図した操作 を行なうことができず、 操作性の面で好ましくなく、 また作業機の作動 スピ一ドが急激に変化してしまうのは安全性の面でも極めて不具合であ る。 For example, the operator reduces the operation amount of the operation member 540 in order to set the operation speed of the work machine (hydraulic actuator) to a low speed or an intermediate speed. Even though the intermediate operation amount is fixed at AO, the operating speed of the work equipment 1 18 suddenly increases, so the operator's intended operation cannot be performed, which is preferable in terms of operability. In addition, a sudden change in the operating speed of the work equipment is extremely inconvenient in terms of safety.
特に、 このような負荷 Wの減少は、 例えば旋回操作において旋回スピ ードの急増 (スイングジヤンビング) やこれに起因する旋回スピードの ハンチング現象を誘発してしまい、旋回操作性を悪化させることになる。 例えば、 ブームアツプ微操作とスティックアウト微操作とを同時に行な つてスティック 1 0 4の先端に吊り下げた吊り荷を吊り上げる操作をし た場合、 スティック 1 0 4が図 9中、 d方向へ回動するにしたがって荷 重作用点が旋回中心に近づくため、 ブームシリンダ 1 0 5及びスティッ クシリンダ 1 0 6へ作用する負荷が減少することになる。 このようなブ —ムシリンダ 1 0 5及びスティックシリンダ 1 0 6への負荷の減少は、 上述のように、 ポンプ流量を増加させるように作用するため、 ブームシ リンダ 1 0 5及びスティックシリンダ 1 0 5の作業スピードを急増させ ることになり、 これに起因してハンチング減少が生じてしまう場合もあ る。  In particular, such a decrease in the load W causes, for example, a sudden increase in the turning speed (swing jumping) in a turning operation and a hunting phenomenon of the turning speed resulting therefrom, thereby deteriorating the turning operation. Become. For example, when the boom-up fine operation and the stick-out fine operation are performed simultaneously to lift the suspended load suspended at the tip of the stick 104, the stick 104 rotates in the direction d in FIG. As the load is applied, the load action point approaches the center of rotation, so that the load acting on the boom cylinder 105 and the stick cylinder 106 decreases. As described above, the reduction in the load on the boom cylinder 105 and the stick cylinder 106 acts to increase the pump flow rate. This will increase the working speed rapidly, which may result in reduced hunting.
一方、負荷 Wが増加すると、旋回モー夕 1 1 0の作動圧力が高くなり、 旋回モータ 1 1 0への流量が減少するため、 その分、 バイパス流量 (D ) は D 0から D 2に増加する。 このようにバイパス流量 (D ) が D Oから D 2に増加すると、 図 1 3 ( a ) に示すように、 油圧ポンプ 5 2 0へ導 かれる作動油の圧力 (E ) が E 0から E 2に増加する。 そして、 油圧ポ ンプ 5 2 0へ導かれる作動油の圧力 (E ) が E 0から E 2に増加すると ポンプ流量(ポンプ傾転角) (F )が減少方向に制御されて、 図 1 3 ( b ) に示すように、 ポンプ流量 (F ) は F 0から F 2に減少する。 このようなポンプ流量 (F ) の減少は、 旋回モー夕 1 1 0への作動油 の供給流量を更に減少させることとなり、 結果として旋回モー夕 1 1 0 の作動スピードを減少させるおそれがある。 On the other hand, when the load W increases, the operating pressure of the swing motor 110 increases, and the flow rate to the swing motor 110 decreases, so the bypass flow rate (D) increases from D 0 to D 2 accordingly. I do. When the bypass flow rate (D) increases from DO to D2, the pressure (E) of the hydraulic oil guided to the hydraulic pump 520 changes from E0 to E2 as shown in FIG. 13 (a). To increase. Then, when the pressure (E) of the hydraulic oil guided to the hydraulic pump 520 increases from E0 to E2, the pump flow rate (pump tilt angle) (F) is controlled in the decreasing direction, and FIG. As shown in b), the pump flow rate (F) decreases from F0 to F2. Such a decrease in the pump flow rate (F) further reduces the flow rate of the hydraulic oil supplied to the turning motor 110, and as a result, the operating speed of the turning motor 110 may be reduced.
なお、 ここでは、 旋回モー夕 1 1 0を例にして説明したが、 他の油圧 ァクチユエ一夕についても同様である。  Here, the turning mode 110 has been described as an example, but the same applies to other hydraulic factories.
このように負荷 Wの増加は、 図 1 3 ( c ) に示すように、 ポンプ流量 を減少させ、 油圧ァクチユエ一夕の作動スピードを減少させるように作 用する。  As shown in Fig. 13 (c), the increase in the load W acts to decrease the pump flow rate and decrease the operating speed of the hydraulic actuator.
このような油圧ァクチユエ一夕の作動スピードの減少は、 作業機 1 1 8の操作性において有利な面と不利な面とがある。  Such a decrease in the operating speed of the hydraulic actuator has advantages and disadvantages in the operability of the work machine 118.
有利な面としては、 例えば掘削作業における負荷 Wの大きさをォペレ Advantageously, for example, the magnitude of the load W
—夕が感知できる (負荷感応フィーリング) 点である。 つまり、 例えば 操作部材 5 4 0を中間操作量 A 0としてスティックイン操作を行なって 掘削作業を行なっている場合に、 地中の埋設物 (例えばパイプ等) に接 触して抵抗が大きくなると、 上述のようにポンプ流量を減少させるよう に作用するため、 これによりスティックインスピードが減少することに なる。 これにより、 オペレータはこのスティックインスピードの変化を 感知してスティックイン操作の中断又は修正を行なうことが可能となる という有利な面がある。 —This is the point where the evening can be sensed (load-sensitive feeling). That is, for example, when excavation work is performed by performing a stick-in operation with the operation member 540 as the intermediate operation amount A0, if the resistance increases due to contact with an underground object (for example, a pipe or the like), As described above, this acts to reduce the pump flow rate, thereby reducing stick-in speed. Thus, there is an advantageous aspect that the operator can interrupt or correct the stick-in operation by sensing the change in the stick-in speed.
従って、 スティックイン パケットイン等の掘削作業に使用する作業 機 1 1 8を駆動する油圧ァクチユエ一夕で、 操作部材 5 4 0の操作量が 比較的大きな操作域においては、 作動スピードが減少するという特性は 好ましい。  Therefore, the operating speed is reduced in the operation area where the operation amount of the operation member 540 is relatively large in the hydraulic actuator that drives the work machine 118 used for excavation work such as stick-in packet-in. The properties are favorable.
一方、 不利な面としては、 微速操作で行なわれる吊り作業等において 作業スピードが減少してしまう点である。 例えば、 ブームアップ微操作 とスティックァゥト微操作とを同時に行なってスティック 1 0 4の先端 に吊り下げた吊り荷を吊り上げる操作をした場合、 スティック 1 0 4が 図 9中、 C方向へ回動するにしたがって荷重作用点が遠ざかるため、 ブ ムシリンダ 1 0 5及びスティックシリンダ 1 0 6へ作用する負荷が増 大することになる。 On the other hand, the disadvantage is that the work speed is reduced in hanging work performed at a low speed. For example, the fine operation of the boom up and the fine operation of the stick When the operation of lifting the suspended load is performed, the load application point moves away as the stick 104 rotates in the direction C in Fig. 9, so that the load acts on the boom cylinder 105 and the stick cylinder 106. This increases the load on the system.
このようなブームシリンダ 1 0 5及びスティックシリンダ 1 0 6への 負荷の増加は、 上述のように、 ポンプ流量を減少させるように作用する ため、 ブームシリンダ 1 0 5及びスティックシリンダ 1 0 5の作業スピ ードを低下させることになり、 吊り作業時の作業条件 (即ち、 操作部材 操作量や荷重の大きさ) によっては作業機としてのブーム 1 0 3ゃステ イツク 1 0 4の作動がストップしてしまうおそれがある。  Such an increase in the load on the boom cylinder 105 and the stick cylinder 106 acts to reduce the pump flow rate as described above, so that the work of the boom cylinder 105 and the stick cylinder 105 is performed. The speed will be reduced, and the operation of the boom 103 as a working machine will stop depending on the working conditions (ie, the amount of operation and the amount of load) during the lifting operation. There is a risk that it will.
このため、 ブームアップ スティックァゥト等の吊り作業に使用する 作業機 1 1 8を駆動する油圧ァクチユエ一夕で、 操作部材の操作量が比 較的小さな操作域においては、 ポンプ流量が減少するという特性は好ま しくなく、 改善の必要がある。  For this reason, in the hydraulic actuator that drives the work equipment 118 used for hanging work such as boom-up sticks, etc., the pump flow rate decreases in the operation range where the operation amount of the operation member is relatively small. Is not good and needs improvement.
本発明は、 このような課題に鑑み創案されたもので、 オペレータの好 みに応じてポンプ流量制御を行なえるようにして運転フィーリングを向 上させ、 また負荷の減少に伴う油圧ァクチユエ一夕の作動スピードの急 増やこれに誘発されるハンチング現象を抑制するとともに、 負荷の増加 に伴う負荷感応フィーリングを確保しつつ、 微操作域での負荷変動に伴 う油圧ァクチユエ一夕の作動スピードの変化を抑制して、 その操作性を 向上させることができるようにした、 建設機械の制御装置及びその制御 方法を提供することを目的とする。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has an advantage in that a pump flow rate can be controlled in accordance with an operator's preference to improve a driving feeling. In addition to suppressing the sudden increase in the operating speed of the hydraulic pump and the hunting phenomenon induced by this, the operating speed of the hydraulic actuator due to the load fluctuation in the fine operation range while ensuring the load-responsive feeling accompanying the increased load It is an object of the present invention to provide a control device for a construction machine and a control method for the same, which can suppress the change of the construction and improve the operability thereof. Disclosure of the invention
本発明の建設機械の制御装置は、 オペレータにより操作されて電気信 号を出力する操作部材と、 タンク内の作動油を吐出する油圧ポンプと、 油圧ポンプにより吐出される作動油により駆動される油圧ァクチユエ一 夕と、 油圧ァクチユエ一夕へ作動油を供給する作動油供給通路と、 作動 油供給通路に介装され、 油圧ァクチユエ一夕への作動油の供給を制御す る制御弁と、 制御弁を介して油圧ァクチユエ一夕へ供給されなかった作 動油をタンクへ戻すバイパス通路とを備える建設機械の制御装置におい て、 油圧ポンプからの作動油の吐出流量を制御するポンプ流量制御手段 を備え、 ポンプ流量制御手段が、 バイパス通路内の作動油の流量に略逆 比例する特性に基づいてポンプ流量を制御するための第 1の制御信号及 び操作部材の操作量に略正比例する特性に基づいてポンプ流量を制御す るための第 2の制御信号のいずれか一方の制御信号を選択して油圧ボン プからの作動油の吐出流量を制御するように構成されることを特徴とし ている。 A control device for a construction machine according to the present invention includes: an operating member that is operated by an operator to output an electric signal; a hydraulic pump that discharges hydraulic oil in a tank; A hydraulic actuator driven by hydraulic oil discharged by a hydraulic pump, a hydraulic oil supply passage for supplying hydraulic oil to the hydraulic actuator, and a hydraulic oil supply passage interposed between the hydraulic oil supply passage and operation to the hydraulic actuator An operation from a hydraulic pump in a control device for a construction machine having a control valve for controlling oil supply and a bypass passage for returning hydraulic oil not supplied to the hydraulic actuator to the tank via the control valve. Pump flow control means for controlling a discharge flow rate of the oil, the pump flow control means including a first control signal and a first control signal for controlling the pump flow rate based on a characteristic substantially inversely proportional to the flow rate of the hydraulic oil in the bypass passage. And selecting one of the second control signals for controlling the pump flow rate based on a characteristic that is substantially directly proportional to the operation amount of the operating member and the hydraulic oil from the hydraulic pump. It is characterized by being configured to control the output flow rate.
これにより、 ポンプ流量制御手段が、 作動油給排通路の給排制御弁の 下流側の作動油の流量に略逆比例する特性に基づいてポンプ流量を制御 するための第 1の制御信号及び操作部材の操作量に略正比例する特性に 基づいてポンプ流量を制御するための第 2の制御信号のいずれか一方の 制御信号を選択して油圧ポンプからの作動油の吐出流量を制御するよう に構成されているため、 オペレータの好みに応じてポジティブフローコ ントロールとネガティブフローコントロールとを使い分けることができ, 運転フィーリングを向上させることができるという利点がある。 また、 例えばオペレータが一定の作業機スピ一ドで作業を行なおうとしている 場合や吊り作業等において油圧ァクチユエ一夕にかかる負荷の減少に伴 つて油圧ァクチユエ一夕の作動スピードが急増したり、 これに誘発され てハンチング現象が生じたりするのを抑制することができる一方、 例え ば掘削作業等において油圧ァクチユエ一夕にかかる負荷の増加に伴って 油圧ァクチユエ一夕の作動スピードを減少させることによる負荷感応フ イーリングを確保することができるという利点がある。 Accordingly, the pump flow rate control means controls the pump flow rate based on a characteristic substantially inversely proportional to the flow rate of the hydraulic oil downstream of the supply / discharge control valve of the hydraulic oil supply / discharge passage, and the first control signal and the operation signal. A configuration in which one of the second control signals for controlling the pump flow rate is controlled based on a characteristic that is substantially directly proportional to the operation amount of the member, and the discharge flow rate of the hydraulic oil from the hydraulic pump is controlled. Therefore, the positive flow control and the negative flow control can be selectively used according to the operator's preference, and there is an advantage that the driving feeling can be improved. In addition, for example, when the operator intends to perform work at a certain work machine speed, or in a lifting operation, the operating speed of the hydraulic actuator increases rapidly due to a decrease in the load applied to the hydraulic actuator, While it is possible to suppress the occurrence of the hunting phenomenon caused by this, it is possible to reduce the operating speed of the hydraulic actuator, for example, in excavation work with an increase in the load applied to the hydraulic actuator. Load sensitive There is an advantage that ealing can be secured.
好ましくは、 ポンプ流量制御手段を、 第 1の制御信号及び第 2の制御 信号のうちポンプ流量を少なくする制御信号を選択して油圧ポンプから の作動油の吐出流量を制御するように構成する。  Preferably, the pump flow rate control means is configured to control a discharge flow rate of the hydraulic oil from the hydraulic pump by selecting a control signal for decreasing the pump flow rate from the first control signal and the second control signal.
これにより、 ポンプ流量制御手段が、 第 1の制御信号及び第 2の制御 信号のうちポンプ流量を少なくする制御信号を選択して油圧ポンプから の作動油の吐出流量を制御するため、 例えば掘削作業や吊り作業等の作 業に応じて油圧ァクチユエ一夕にかかる負荷が変動するが、 この負荷の 変動に応じて第 1の制御信号によるポンプ流量制御と第 2の制御信号に よるボンプ流量制御とを自動的に切り替えることができるという利点が ある。 また、 第 1の制御信号と第 2の制御信号とを比較して、 第 1の制 御信号のうちポンプ流量を少なくする制御信号を選択するため、 制御の 切り替えを簡素な構成で行なえるという利点もある。  Accordingly, the pump flow control means selects a control signal for decreasing the pump flow rate from the first control signal and the second control signal to control the discharge flow rate of the hydraulic oil from the hydraulic pump. The load applied to the hydraulic actuator fluctuates depending on the work such as lifting and lifting work.The pump flow control based on the first control signal and the pump flow control based on the second control signal vary depending on the load fluctuation. There is an advantage that can be automatically switched. In addition, since the first control signal is compared with the second control signal and a control signal that reduces the pump flow rate is selected from the first control signals, control switching can be performed with a simple configuration. There are advantages too.
また、 ポンプ流量制御手段を、 第 2の制御信号が所定値よりも小さい 場合は第 2の制御信号を選択して油圧ポンプからの作動油の吐出流量を 制御するように構成するのが好ましい。  Further, it is preferable that the pump flow control means is configured to select the second control signal when the second control signal is smaller than a predetermined value and control the discharge flow rate of the hydraulic oil from the hydraulic pump.
これにより、 ポンプ流量制御手段が、 第 2の制御信号が所定値よりも 小さい場合は第 2の制御信号を選択して油圧ポンプからの作動油の吐出 流量を制御するため、 オペレータが操作部材を微操作する微操作域での 負荷変動に伴う油圧ァクチユエ一夕の作動スピードの変化を抑制するこ とができるという利点がある。  Accordingly, when the second control signal is smaller than the predetermined value, the pump flow rate control means selects the second control signal to control the discharge flow rate of the hydraulic oil from the hydraulic pump. There is an advantage in that a change in the operating speed of the hydraulic actuator due to a load change in a fine operation range where a fine operation is performed can be suppressed.
さらに、 ポンプ流量制御手段を、 第 2の制御信号が所定値よりも大き い場合は第 1の制御信号及び第 2の制御信号のうちポンプ流量を少なく する制御信号を選択する一方、 第 2の制御信号が所定値以下の場合は第 2の制御信号を選択して油圧ポンプからの作動油の吐出流量を制御する ように構成するのが好ましい。 これにより、 ポンプ流量制御手段が、 第 2の制御信号が所定値よりも 大きい場合は第 1の制御信号及び第 2の制御信号のうちポンプ流量を少 なくする制御信号を選択する一方、 第 2の制御信号が所定値以下の場合 は第 2の制御信号を選択するように構成されるため、 オペレータが操作 部材を微操作する微操作域でない場合は、 油圧ァクチユエ一夕にかかる 負荷の減少に伴って油圧ァクチユエ一夕の作動スピードが急増したり、 これに誘発されてハンチング現象が生じたりするのを抑制することがで きるとともに、 油圧ァクチユエ一夕にかかる負荷の増加に伴って油圧ァ クチユエ一夕の作動スピードを減少させて負荷感応フィーリングを確保 することができる一方、 オペレータが操作部材を微操作する微操作域で の負荷変動に伴う油圧ァクチユエ一夕の作動スピードの変化を抑制する ことができるという利点がある。 Further, when the second control signal is larger than a predetermined value, the pump flow control means selects a control signal for reducing the pump flow rate from the first control signal and the second control signal, When the control signal is equal to or less than a predetermined value, it is preferable to select the second control signal and control the discharge flow rate of the hydraulic oil from the hydraulic pump. Thus, when the second control signal is larger than the predetermined value, the pump flow rate control means selects the control signal for decreasing the pump flow rate from the first control signal and the second control signal, When the control signal is less than a predetermined value, the second control signal is selected.If the operator is not in the fine operation range where the operation member is finely operated, the load applied to the hydraulic actuator may be reduced. As a result, it is possible to suppress a sudden increase in the operating speed of the hydraulic actuator and to prevent the hunting phenomenon from being caused by this, and to suppress an increase in the load applied to the hydraulic actuator and the hydraulic actuator. While the load-responsive feeling can be ensured by reducing the operating speed of the night, the hydraulic pressure due to load fluctuations in the fine operation area where the operator finely operates the operating members There is an advantage that a change in the operating speed of Kuchiyue Isseki can suppress.
また、 本発明の建設機械の制御方法は、 オペレータにより操作されて 電気信号を出力する操作部材と、 タンク内の作動油を吐出する油圧ボン プと、 油圧ポンプにより吐出される作動油により駆動される油圧ァクチ ユエ一夕と、油圧ァクチユエ一夕へ作動油を供給する作動油供給通路と、 作動油供給通路に介装され、 油圧ァクチユエ一夕への作動油の供給を制 御する制御弁と、 制御弁を介して油圧ァクチユエ一夕へ供給されなかつ た作動油を該タンクへ戻すバイパス通路とを備える建設機械の制御方法 であって、 バイパス通路内の作動油の流量を検出し、 作動油の流量に略 逆比例する特性に基づいてポンプ流量を制御するための第 1の制御信号 を設定する第 1の制御信号設定ステップと、 操作部材からの電気信号を 検出し、 操作部材の操作量に略正比例する特性に基づいてポンプ流量を 制御するための第 2の制御信号を設定する第 2の制御信号設定ステップ と、 第 1の制御信号設定ステップで設定された第 1の制御信号及び第 2 の制御信号設定ステップで設定された第 2の制御信号のいずれか一方の 制御信号を選択して該油圧ポンプからの作動油の吐出流量を制御するポ ンプ流量制御ステップとを備えることを特徴としている。 Also, the construction machine control method of the present invention includes an operation member that is operated by an operator to output an electric signal, a hydraulic pump that discharges hydraulic oil in a tank, and a hydraulic pump that is driven by hydraulic oil discharged by a hydraulic pump. A hydraulic oil supply, a hydraulic oil supply passage for supplying hydraulic oil to the hydraulic oil supply, a control valve interposed in the hydraulic oil supply passage, and controlling the supply of hydraulic oil to the hydraulic oil supply. A control method for a construction machine, comprising: a bypass passage for returning hydraulic oil, which is not supplied to the hydraulic actuator through a control valve, to the tank, wherein a flow rate of the hydraulic oil in the bypass passage is detected. A first control signal setting step for setting a first control signal for controlling the pump flow rate based on a characteristic substantially inversely proportional to the flow rate of the operation section; detecting an electric signal from the operation member; A second control signal setting step for setting a second control signal for controlling the pump flow rate based on a characteristic that is substantially directly proportional to the manipulated variable of the first control signal, and a first control set in the first control signal setting step Signal and the second control signal set in the second control signal setting step. A pump flow control step of selecting a control signal to control a discharge flow rate of hydraulic oil from the hydraulic pump.
これにより、 作動油給排通路の給排制御弁の下流側の作動油の流量に 略逆比例する特性に基づいてポンプ流量を制御するための第 1の制御信 号及び操作部材の操作量に略正比例する特性に基づいてポンプ流量を制 御するための第 2の制御信号のいずれか一方の制御信号を選択して油圧 ポンプからの作動油の吐出流量が制御されるため、 オペレータの好みに 応じてポジティブフローコントロールとネガティブフローコントロール とを使い分けることができ、 運転フィ一リングを向上させることができ るという利点がある。 また、 例えばオペレータが一定の作業機スピード で作業を行なおうとしている場合や吊り作業等において油圧ァクチユエ 一夕にかかる負荷の減少に伴って油圧ァクチユエ一夕の作動スピードが 急増したり、 これに誘発されてハンチング現象が生じたりするのを抑制 することができる一方、 例えば掘削作業等において油圧ァクチユエ一夕 にかかる負荷の増加に伴って油圧ァクチユエ一夕の作動スピードを減少 させることによる負荷感応フィーリングを確保することができるという 利点がある。  As a result, the first control signal for controlling the pump flow rate and the operation amount of the operation member for controlling the pump flow rate based on the characteristic substantially inversely proportional to the flow rate of the hydraulic oil downstream of the supply / discharge control valve of the hydraulic oil supply / discharge passage are provided. Since either one of the second control signals for controlling the pump flow rate is controlled based on the approximately proportional characteristic and the discharge flow rate of the hydraulic oil from the hydraulic pump is controlled, Accordingly, positive flow control and negative flow control can be used properly, and there is an advantage that driving feeling can be improved. In addition, for example, when the operator attempts to work at a certain speed of the work equipment, or in the case of lifting work, the operating speed of the hydraulic actuator increases rapidly due to the decrease in the load applied to the hydraulic actuator. While it is possible to suppress the occurrence of the hunting phenomenon due to the induction, it is possible to suppress the load-responsive feeling by reducing the operating speed of the hydraulic actuator along with the increase in the load applied to the hydraulic actuator during excavation work, for example. There is an advantage that a ring can be secured.
好ましくは、 ポンプ流量制御ステップで、 第 1の制御信号及び第 2の 制御信号のうちポンプ流量を少なくする制御信号を選択するようにする < これにより、 第 1の制御信号及び第 2の制御信号のうちポンプ流量を 少なくする制御信号を選択して油圧ポンプからの作動油の吐出流量が制 御されるため、 例えば掘削作業や吊り作業等の作業に応じて油圧ァクチ ユエ一夕にかかる負荷が変動するが、 この負荷の変動に応じて第 1の制 御信号によるボンプ流量制御と第 2の制御信号によるボンプ流量制御と を自動的に切り替えることができるという利点がある。 また、 第 1の制 御信号と第 2の制御信号とを比較して、 第 1の制御信号のうちポンプ流 量を少なくする制御信号を選択するため、 制御の切り替えを簡素な構成 で行なえるという利点もある。 Preferably, in the pump flow rate control step, a control signal for reducing the pump flow rate is selected from the first control signal and the second control signal. Thereby, the first control signal and the second control signal Of these, the control signal to reduce the pump flow rate is selected to control the discharge flow rate of hydraulic oil from the hydraulic pump, so that the load applied to the hydraulic Although it fluctuates, there is an advantage that the pump flow control by the first control signal and the pump flow control by the second control signal can be automatically switched according to the fluctuation of the load. In addition, the first control signal is compared with the second control signal, and the pump flow of the first control signal is compared with the first control signal. There is also an advantage that control switching can be performed with a simple configuration because a control signal that reduces the amount is selected.
また、 ポンプ流量制御ステップで、 第 2の制御信号が所定値よりも小 さい場合は第 2の制御信号を選択するようにするのも好ましい。  Further, in the pump flow rate control step, it is preferable that the second control signal is selected when the second control signal is smaller than a predetermined value.
これにより、 ポンプ流量制御ステップで、 第 2の制御信号が所定値よ りも小さい場合は第 2の制御信号を選択して油圧ポンプからの作動油の 吐出流量が制御されるため、 オペレータが操作部材を微操作する微操作 域での負荷変動に伴う油圧ァクチユエ一夕の作動スピードの変化を抑制 することができるという利点がある。  With this, in the pump flow rate control step, when the second control signal is smaller than the predetermined value, the second control signal is selected to control the discharge flow rate of the hydraulic oil from the hydraulic pump, so that the operator operates There is an advantage that it is possible to suppress a change in the operating speed of the hydraulic actuator due to a load change in a fine operation range in which a member is finely operated.
さらに、 ポンプ流量制御ステップで、 第 2の制御信号が所定値よりも 大きい場合は第 1の制御信号及び第 2の制御信号のうちポンプ流量を少 なくする制御信号を選択する一方、 第 2の制御信号が所定値以下の場合 は第 2の制御信号を選択するようにするのも好ましい。  Further, in the pump flow rate control step, when the second control signal is larger than a predetermined value, a control signal for reducing the pump flow rate is selected from the first control signal and the second control signal, while the second control signal is selected. When the control signal is equal to or less than a predetermined value, it is preferable that the second control signal is selected.
これにより、 ポンプ流量制御ステップで、 第 2の制御信号が所定値よ りも大きい場合は第 1の制御信号及び第 2の制御信号のうちポンプ流量 を少なくする制御信号を選択する一方、 第 2の制御信号が所定値以下の 場合は第 2の制御信号を選択して油圧ポンプからの作動油の吐出流量が 制御されるため、 オペレータが操作部材を微操作する微操作域でない場 合は、 油圧ァクチユエ一夕にかかる負荷の減少に伴って油圧ァクチユエ —夕の作動スピードが急増したり、 これに誘発されてハンチング現象が 生じたりするのを抑制することができるとともに、 油圧ァクチユエ一夕 にかかる負荷の増加に伴って油圧ァクチユエ一夕の作動スピードを減少 させて負荷感応フィーリングを確保することができる一方、 オペレータ が操作部材を微操作する微操作域での負荷変動に伴う油圧ァクチユエ一 夕の作動スピードの変化を抑制することができるという利点がある。 図面の簡単な説明 With this, in the pump flow rate control step, when the second control signal is larger than the predetermined value, the control signal for decreasing the pump flow rate is selected from the first control signal and the second control signal, while the second control signal is selected. If the control signal is smaller than the predetermined value, the second control signal is selected to control the discharge flow rate of the hydraulic oil from the hydraulic pump. As the load on the hydraulic actuator decreases, it is possible to prevent the operating speed of the hydraulic actuator from increasing rapidly in the evening, and to suppress the occurrence of a hunting phenomenon due to this, and to reduce the load on the hydraulic actuator. As the load increases, the operating speed of the hydraulic actuator can be reduced to ensure a load-responsive feeling, while the operator makes fine adjustments to the operating members. There is an advantage that a change in the operating speed of the hydraulic actuator due to a load change in a fine operation range can be suppressed. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態にかかる建設機械の制御装置及びその制 御方法におけるポンプ傾転角制御を説明するための制御プロック図であ る。  FIG. 1 is a control block diagram for explaining pump tilt angle control in a control device and a control method for a construction machine according to an embodiment of the present invention.
図 2は、 本発明の一実施形態にかかる建設機 の制御装置の全体構成 図である。  FIG. 2 is an overall configuration diagram of a control device for a construction machine according to an embodiment of the present invention.
図 3は、 本発明の一実施形態にかかる建設機械の制御装置の制御弁を 説明するための模式図である。  FIG. 3 is a schematic diagram for explaining a control valve of the control device for a construction machine according to one embodiment of the present invention.
図 4は、 本発明の一実施形態にかかる建設機械の制御装置及びその制 御方法におけるバイパス圧力対応のポンプ傾転角の設定を説明するため のブロック図である。  FIG. 4 is a block diagram for explaining setting of a pump tilt angle corresponding to a bypass pressure in the control device and the control method for a construction machine according to one embodiment of the present invention.
図 5は、 本発明の一実施形態にかかる建設機械の制御装置及びその制 御方法における操作部材対応のポンプ傾転角の設定を説明するためのブ ロック図である。  FIG. 5 is a block diagram for explaining the setting of the pump tilt angle corresponding to the operation member in the control device and the control method for the construction machine according to one embodiment of the present invention.
図 6は、 本発明の一実施形態にかかる建設機械の制御装置及びその制 御方法におけるスピード制御対応のポンプ傾転角の設定を説明するため のブロック図である。  FIG. 6 is a block diagram for explaining setting of a pump tilt angle corresponding to speed control in the control device and the control method for a construction machine according to one embodiment of the present invention.
図 7 ( a ) 〜 (d ) は、 本発明の一実施形態にかかる建設機械の制御 装置及びその制御方法におけるスピード制御対応のポンプ傾転角を設定 する場合の負荷 Wと作業機スピード (ポンプ傾転角) との関係を示す図 であって、 図 7 ( a ) はバイパス流量に逆比例する特性に基づいてボン プ傾転角制御を行なう場合、 図 7 ( b ) は操作部材操作量に比例する特 性に基づいてポンプ傾転角制御を行なう場合、 図 7 ( c ) はバイパス流 量に逆比例する特性と操作部材操作量に比例する特性とを選択的に使用 してポンプ傾転角制御を行なう場合、 図 7 ( d ) は所定値よりも小さい 要求傾転角に基づいてポンプ傾転角制御を行なう場合をそれぞれ示して いる。 FIGS. 7 (a) to 7 (d) show the load W and the working machine speed (pump) when the pump tilt angle corresponding to the speed control is set in the control device and the control method of the construction machine according to the embodiment of the present invention. Fig. 7 (a) is a diagram showing the relationship with the tilt angle. Fig. 7 (a) shows the case where the pump tilt angle is controlled based on the characteristic inversely proportional to the bypass flow rate. When the pump tilt angle control is performed based on the characteristic proportional to the pump flow, Fig. 7 (c) shows the pump tilt angle selectively using the characteristic inversely proportional to the bypass flow rate and the characteristic proportional to the operation member operation amount. Fig. 7 (d) shows the case where the pump tilt angle control is performed based on the required tilt angle that is smaller than the predetermined value. I have.
図 8は、 本発明の一実施形態にかかる建設機械の制御装置及びその制 御方法における許容馬力対応のポンプ傾転角の設定を説明するためのブ ロック図である。  FIG. 8 is a block diagram for explaining the setting of the pump tilt angle corresponding to the allowable horsepower in the control device and the control method for the construction machine according to the embodiment of the present invention.
図 9は、 一般的な建設機械を示す模式的斜視図である。  FIG. 9 is a schematic perspective view showing a general construction machine.
図 1 0は、 従来の建設機械の制御装置の全体構成図を示す。  FIG. 10 shows an overall configuration diagram of a conventional control device for construction machines.
図 1 1は、 従来の建設機械の制御装置におけるポンプ傾転角制御を説 明するための模式図である。  FIG. 11 is a schematic diagram for explaining pump tilt angle control in a conventional construction machine control device.
図 1 2 (a) 〜 (e) は、 従来の建設機械の制御装置におけるポンプ 傾転角制御を説明するための図であって、 図 1 2 (a) は操作部材操作 量と制御弁移動量との関係を示す図、 図 1 2 (b) は制御弁移動量と制 御弁開口面積との関係を示す図、 図 1 2 (c) はバイパス油路開口面積 とバイパス流量との関係を示す図、 図 1 2 (d) はバイパス流量とバイ パス圧力検知手段の出力信号との関係を示す図、 図 1 2 (e) はバイパ ス圧力検知手段の出力信号とポンプ流量 (ポンプ傾転角) との関係を示 す図をそれぞれ示している。  Figs. 12 (a) to 12 (e) are diagrams for explaining pump tilt angle control in a conventional control device for construction machinery, and Fig. 12 (a) is a diagram illustrating operation member operation amount and control valve movement. Fig. 12 (b) shows the relationship between the control valve travel and the control valve opening area, and Fig. 12 (c) shows the relationship between the bypass oil passage opening area and the bypass flow rate. Fig. 12 (d) shows the relationship between the bypass flow rate and the output signal of the bypass pressure detecting means. Fig. 12 (e) shows the output signal of the bypass pressure detecting means and the pump flow rate (pump tilt). The figure shows the relationship with the angle of rotation.
図 1 3 (a) 〜 (c) は、 従来の建設機械の制御装置におけるポンプ 傾転角制御の課題を説明するための図であって、 図 1 3 (a) はバイパ ス流量とバイパス圧力検知手段の出力信号との関係を示す図、 図 1 3 (b) はバイパス圧力検知手段の出力信号とポンプ流量(ポンプ傾転角) との関係を示す図、 図 1 3 ( c ) は負荷 Wとァクチユエ一夕のスピード (ポンプ流量) との関係を示す図をそれぞれ示している。 発明を実施するための最良の形態  Figs. 13 (a) to 13 (c) are diagrams for explaining the problem of pump tilt angle control in a conventional control device for construction machinery. Fig. 13 (a) shows bypass flow rate and bypass pressure. Figure 13 (b) shows the relationship between the output signal of the detection means and the output signal of the bypass pressure detection means and the pump flow rate (pump tilt angle). Figure 13 (c) shows the load. The figure which shows the relationship between W and the speed (pump flow rate) of akuchiyue is shown respectively. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面により、 本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
まず、 本実施形態にかかる建設機械について説明する。 本建設機械は、 従来技術 (図 9参照) で既に説明したように、 油圧シ ョベル等の建設機械 (作業機械) であって、 上部旋回体 1 0 2と下部走 行体 1 0 0と作業機 1 1 8とからなっている。 First, a construction machine according to the present embodiment will be described. This construction machine is a construction machine (working machine) such as a hydraulic shovel, as described in the prior art (see Fig. 9), and works with the upper revolving unit 102 and the lower traveling unit 100. Machine 1 1 8
下部走行体 1 0 0は、 互いに独立して駆動しうる右トラック 1 0 O R 及び左トラック 1 0 0 Lをそなえており、 一方、 上部旋回体 1 0 2は、 下部走行体 1 0 0に対して水平面内で旋回可能に設けられている。 また、 作業機 1 1 8は、 主にブーム 1 0 3, スティック 1 0 4 , バケ ット 1 0 8等からなっており、 ブーム 1 0 3は、 上部旋回体 1 0 2に対 して回動可能に枢着されている。 また、 ブーム 1 0 3の先端には、 同じ く鉛直面内に回動可能にスティック 1 0 4が接続されている。  The undercarriage 100 has a right track 10OR and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has It is provided so that it can turn in a horizontal plane. The work machine 118 mainly includes a boom 103, a stick 104, a bucket 108, and the like, and the boom 103 rotates with respect to the upper rotating body 102. It is pivotally connected. A stick 104 is connected to the end of the boom 103 so as to be rotatable in the vertical plane.
また、 上部旋回体 1 0 2とブーム 1 0 3との間には、 ブーム 1 0 3を 駆動するためのブーム駆動用油圧シリンダ (ブームシリンダ, ブーム駆 動用油圧ァクチユエ一夕) 1 0 5が設けられるとともに、 ブーム 1 0 3 とスティック 1 0 4との間には、 スティック 1 0 4を駆動するためのス ティック駆動用油圧シリンダ (スティックシリンダ, スティック駆動用 油圧ァクチユエ一夕) 1 0 6が設けられている。 また、 スティック 1 0 4とバケツト 1 0 8との間には、 バケツト 1 0 8を駆動するためのバケ ット駆動用油圧シリンダ (バケツトシリンダ, パケット駆動用油圧ァク チユエ一夕) 1 0 7が設けられている。  A boom drive hydraulic cylinder (boom cylinder, boom drive hydraulic actuator) 105 for driving the boom 103 is provided between the upper swing body 102 and the boom 103. In addition, between the boom 103 and the stick 104, a stick driving hydraulic cylinder (stick cylinder, stick driving hydraulic actuator) 106 for driving the stick 104 is provided. Have been. Further, between the stick 104 and the bucket 108, there is a bucket driving hydraulic cylinder (a bucket cylinder, a packet driving hydraulic actuator) for driving the bucket 108. 7 are provided.
そして、 このような構成により、 ブーム 1 0 3は図中 a方向及び b方 向に、 スティック 1 0 4は図中 c方向及び d方向に、 ノ ケット 1 0 8は 図中 e方向及び f 方向に回動可能に構成されている。  With such a configuration, the boom 103 is in the directions a and b in the figure, the stick 104 is in the directions c and d in the figure, and the knocket 108 is the direction e and f in the figure. It is configured to be rotatable.
ここで、 図 2はこのような油圧ショベルの油圧回路の要部を模式的に 示す図である。  Here, FIG. 2 is a diagram schematically showing a main part of a hydraulic circuit of such a hydraulic shovel.
図 2に示すように、 上述の左トラック 1 0 0 L及び右トラック 1 0 0 As shown in FIG. 2, the left track 100 L and the right track 100
Rには、 それぞれ独立した動力源としての走行モー夕 1 0 9 L, 1 0 9 Rが設けられ、 また、 上部旋回体 1 0 2には、 下部走行体 1 0 0に対し て上部旋回体 1 0 2を旋回駆動させるための旋回モー夕 1 1 0が設けら れている。 R is a running motor as an independent power source. R is provided, and the upper swing body 102 is provided with a swing motor 110 for swingably driving the upper swing body 102 with respect to the lower traveling body 100.
これらの走行モー夕 1 0 9 L, 1 0 9 Rや旋回モー夕 1 1 0は、 油圧 により作動する油圧モー夕として構成されており、 後述するようにェン ジン (主に、 ディーゼルエンジン) 5 0により駆動される複数 (ここで は 2つ) の油圧ポンプ 5 1 , 5 2からの作動油が油圧回路 5 3を介して 所定圧力とされて供給され、 このようにして供給される作動油圧に応じ て各油圧モー夕 1 0 9 L , 1 0 9 R , 1 1 0が駆動されるようになって いる。  These traveling motors 110 L and 109 R and turning motors 110 are configured as hydraulic motors that are operated by hydraulic pressure. As described later, engines (mainly diesel engines) are used. Hydraulic oil from a plurality (here, two) of hydraulic pumps 51, 52 driven by 50 is supplied at a predetermined pressure via a hydraulic circuit 53, and the operation supplied in this manner is performed. Each hydraulic motor 109 L, 109 R, 110 is driven according to the hydraulic pressure.
ここで、 油圧ポンプ 5 1 , 5 2は、 リザーバタンク 7 0内の作動油を 所定油圧として吐出するもので、 ここでは、 斜板回転式ピストンポンプ (ピストン型可変容量ポンプ, 可変吐出量形ピストンポンプ) として構 成されている。 これらの油圧ポンプ 5 1 , 5 2は、 油圧ポンプ内に設け られたピストン (図示略) のストローク量を変更することでポンプ吐出 流量を調整しうるようになっている。  Here, the hydraulic pumps 51 and 52 discharge the hydraulic oil in the reservoir tank 70 as a predetermined oil pressure. Here, a swash plate rotary piston pump (piston type variable displacement pump, variable discharge amount type piston) is used. Pump). These hydraulic pumps 51 and 52 can adjust the pump discharge flow rate by changing the stroke amount of a piston (not shown) provided in the hydraulic pump.
つまり、 これらの油圧ポンプ 5 1, 5 2では、 上記ピストンの一端が 斜板 (クリーププレート : 図示略) に当接するように構成されており、 この斜板の傾き (傾転角) を後述するコントローラ 1からの作動信号に 基づいて変更することでビストンのストローク量を変更してポンプ吐出 流量を調整しうるようになっている。  That is, in these hydraulic pumps 51 and 52, one end of the piston is configured to contact a swash plate (creep plate: not shown), and the inclination (tilt angle) of the swash plate will be described later. The pump discharge flow rate can be adjusted by changing the piston stroke by changing it based on the operation signal from the controller 1.
このようにコントローラ 1からの作動信号に基づいて斜板の傾きを変 更しうるようになつており、 油圧回路を構成する油路内の作動油の圧力 のほかに、 オペレータによる各操作部材 5 4の操作量をも加味すること ができるため、 従来のように油路内の作動油の圧力を導いて斜板の傾き を変更するものに比べ、 オペレー夕の運転フィ一リングを向上させるこ とができることになる。 As described above, the inclination of the swash plate can be changed based on the operation signal from the controller 1. In addition to the pressure of the hydraulic oil in the oil passages constituting the hydraulic circuit, each operation member 5 by the operator is changed. Since the amount of operation in 4 can be taken into account, it is possible to improve the driving feeling during operation compared to the conventional method in which the pressure of the hydraulic oil in the oil passage is guided to change the inclination of the swash plate. Can be done.
また、 エンジン 5 0は、 オペレータがエンジン回転数設定ダイヤルを 切り替えることでエンジン回転数を設定できるようになっており、 ここ では、 最大エンジン回転数 (例えば約 2 0 0 0 r p m) と最小エンジン 回転数 (例えば約 1 0 0 0 r p m) との間で複数段階に切り換えられる ようになつている。 なお、 エンジン回転数はこのように段階的に切り換 えるものに限られず、 滑らかに変更しうるものであっても良い。 また、 エンジン 5 0の全馬力はこれらの油圧ポンプ 5 1 , 5 2及び後述するパ ィロットポンプ 8 3を駆動するために消費される。  The engine 50 is designed so that the operator can set the engine speed by switching the engine speed setting dial. Here, the maximum engine speed (for example, about 200 rpm) and the minimum engine speed are set. The number (for example, about 100 rpm) can be switched in multiple stages. Note that the engine speed is not limited to such a stepwise switching, but may be a type that can be changed smoothly. Further, the total horsepower of the engine 50 is consumed for driving these hydraulic pumps 51 and 52 and a pilot pump 83 described later.
また、 各シリンダ 1 0 5〜 1 0 7についても、 これらの走行モー夕 1 In addition, for each cylinder 105 to 107,
0 9 L , 1 0 9 Rや旋回モー夕 1 1 0と同様に、 エンジン 5 0により駆 動される複数 (ここでは 2つ) の油圧ポンプ 5 1, 5 2から供給される 作動油の油圧により駆動されるようになっている。 As with 09 L, 109 R and turning motor 110, the hydraulic pressure of hydraulic oil supplied from multiple (here, two) hydraulic pumps 51, 52 driven by engine 50 Driven by the
また、 運転操作室 1 0 1には、 油圧ショベルの作動 (走行, 旋回, ブ ーム回動, スティック回動及びバケツト回動) を制御するために左レバ 一, 右レバー, 左ペダル及び右ペダル等の複数の操作部材 5 4が備えら れている。 これらの操作部材 5 4は電気式操作部材 (例えば電気式操作 レバー) として構成され、 その操作量に応じた電気信号を後述するコン トローラ (制御手段) 1へ出力するようになっている。  The operation room 101 also has a left lever, a right lever, a left pedal, and a right pedal for controlling the operation of the hydraulic excavator (running, turning, boom turning, stick turning, and bucket turning). A plurality of operation members 54 such as pedals are provided. These operation members 54 are configured as electric operation members (for example, electric operation levers), and output an electric signal corresponding to the operation amount to a controller (control means) 1 described later.
さらに、 運転操作室 1 0 1内には、 複数のワークモードスィッチも設 けられており、 ブーム優先モード, スウィング優先モード, レべリング モード, タンピンダモード等の各種のモードを運転操作者が作業に応じ て最適なものを適宜選択しうるようになっている。 なお、 このような選 択が行われない通常の場合は、 建設機械の作業においてはスティック 1 0 4の動作が重要であり、 これを最も優先される必要があるため、 ステ ィック優先モードとなっている。 そして、 例えばオペレー夕がこれらの操作部材 5 4を操作することに より、 油圧回路 5 3に介装される各制御弁 5 7〜 6 0 , 6 2〜 6 5が制 御されて、各シリンダ 1 0 5〜 1 0 7や油圧モー夕 1 0 9 L , 1 0 9 R , 1 1 0が駆動される。 これにより、 上部旋回体 1 0 2を旋回させたり、 ブーム 1 0 3 ,スティック 1 0 4及びバケツト 1 0 8等を回動させたり、 油圧ショベルを走行させることができるのである。 Further, a plurality of work mode switches are also provided in the operator's cab 101, and the operator can set various modes such as a boom priority mode, a swing priority mode, a leveling mode, and a tamping mode. The most suitable one can be selected appropriately according to the work. In the normal case where such a selection is not made, the operation of the stick 104 is important in the operation of the construction machine, and it is necessary to give priority to this operation. ing. For example, when the operator operates these operating members 54, the control valves 57 to 60 and 62 to 65 interposed in the hydraulic circuit 53 are controlled, and each cylinder is controlled. 105 to 107 and hydraulic motors 109 L, 109 R, 110 are driven. As a result, the upper swing body 102 can be swung, the boom 103, the stick 104, the bucket 108, and the like can be swung, and the hydraulic excavator can run.
なお、 ブーム 1 0 3を回動させる場合に操作するものをブーム用操作 部材 5 4 a、 スティック 1 0 4を回動させる場合に操作するものをステ ィック用操作部材 5 4 b、 バケツト 1 0 8を回動させる場合に操作する ものをバゲット用操作部材 5 4 c、 上部旋回体 1 0 2を旋回させる場合 に操作するものを旋回用操作部材 5 4 d、 走行させる場合に操作するも のを走行用操作部材 5 4 eという。  The member operated when rotating the boom 103 is the boom operating member 54a, and the member operated when rotating the stick 104 is the stick operating member 54b, the bucket 10b. An object to be operated when rotating 8 is a baguette operating member 54c, an object to be operated when rotating the upper revolving structure 102 is a swiveling operating member 54d, which is operated when traveling. Is referred to as a traveling operation member 54 e.
次に、 これらの各シリンダ等を制御するための油圧回路 5 3について 説明する。  Next, a hydraulic circuit 53 for controlling these cylinders and the like will be described.
油圧回路 5 3は、 図 2に示すように、 第 1回路部 5 5と、 第 2回路部 As shown in FIG. 2, the hydraulic circuit 53 includes a first circuit section 55 and a second circuit section.
5 6とを備える。 5 and 6.
このうち、 第 1回路部 5 5は、 第 1油圧ポンプ 5 1に接続される油路 6 1と、 油路 6 1に介装される右走行モー夕用制御弁 5 7 , バゲット用 制御弁 5 8, 第 1ブーム用制御弁 5 9, 第 2スティック用制御弁 6 0等 の制御弁とを備えて構成される。  The first circuit section 55 includes an oil passage 61 connected to the first hydraulic pump 51, a right traveling motor control valve 57 interposed in the oil passage 61, and a baguette control valve. 58, a control valve for the first boom 59, a control valve for the second stick 60, and the like.
そして、 第 1油圧ポンプ 5 1からの作動油が、 油路 6 1, 右走行モー 夕用制御弁 5 7を介して右走行モー夕 1 0 9 Rへ供給され、 右走行モー 夕 1 0 9 Rを駆動するようになっている。 また、 第 1油圧ポンプ 5 1か らの作動油は、 油路 6 1, パケット用制御弁 5 8を介してバケツ卜駆動 用油圧シリンダ 1 0 7へ供給されるとともに、 油路 6 1, 第 1ブーム用 制御弁 5 9を介してブーム駆動用油圧シリンダ 1 0 5へ供給され、 さら に油路 6 1, 第 2スティック用制御弁 6 0を介してスティック駆動用油 圧シリンダ 1 0 6へ供給され、 これにより、 各シリンダ 1 0 5 , 1 0 6 , 1 0 7が駆動されるようになっている。 Then, the hydraulic oil from the first hydraulic pump 51 is supplied to the right traveling motor 109 R via the oil passage 61 and the right traveling motor evening control valve 57, and the right traveling motor 110 R is driven. The hydraulic oil from the first hydraulic pump 51 is supplied to the bucket driving hydraulic cylinder 107 via the oil passage 61 and the packet control valve 58, and the hydraulic oil is supplied to the oil passage 61 It is supplied to the boom drive hydraulic cylinder 105 via the boom control valve 59, and Is supplied to the stick driving hydraulic cylinder 106 via the oil passage 61 and the second stick control valve 60, thereby driving each cylinder 105, 106, 107 It has become.
また、 第 1回路部 5 5の油路 6 1は、 各制御弁 5 7〜6 0を介して各 油圧ァクチユエ一夕 1 0 5〜 1 0 7, 1 0 9 Rへ供給されなかった作動 油をタンク 7 0へ戻すバイパス通路としての油路 6 1 bを備えて構成さ れる。 そして、 後述するように、 この油路 6 1 bを流れる作動油の流量 を検出し、 検出された作動油の流量に基づいて油圧ポンプ 5 1からの吐 出流量を制御するようになっている。  In addition, the hydraulic passage 61 of the first circuit section 55 is provided with hydraulic oil that is not supplied to the hydraulic actuators 105 to 107 and 109R via the control valves 57 to 60, respectively. Oil passage 61b as a bypass passage for returning the oil to the tank 70. Then, as described later, the flow rate of the hydraulic oil flowing through the oil passage 61b is detected, and the discharge flow rate from the hydraulic pump 51 is controlled based on the detected flow rate of the hydraulic oil. .
ここでは、 各制御弁 5 7〜6 0の下流側の油路 6 1 bにはバイパス圧 カ検知手段の構成要素として絞り 8 1が備えられており、 各制御弁 5 7 〜6 0が中立位置又は中間移動位置 (両端側移動位置と中立位置との間 の位置) の場合に絞り 8 1を通じて第 1油圧ポンプ 5 1からの作動油を リザーバタンク 7 0へ戻すようになつている。 そして、 この絞り 8 1に よって絞り 8 1の上流側のバイパス通路 6 1 b内の圧力がバイパス通路 6 1 b内を流れる作動油の流量に応じて変化することになるため、 この バイパス通路 6 1 b内の圧力をバイパス圧力検知手段の構成要素として の圧力センサ 7 4により検出することで、 バイパス通路 6 1 b内を流れ る作動油の流量を検出するようになっている。  Here, a throttle 81 is provided as a component of the bypass pressure detecting means in the oil passage 61b downstream of each of the control valves 57 to 60, and each of the control valves 57 to 60 is neutral. The hydraulic oil from the first hydraulic pump 51 is returned to the reservoir tank 70 through the throttle 81 in the position or the intermediate movement position (the position between the both-end movement position and the neutral position). Since the pressure in the bypass passage 6 1b on the upstream side of the throttle 81 changes according to the flow rate of the hydraulic oil flowing in the bypass passage 6 1b by the throttle 81, the bypass passage 6 By detecting the pressure in 1b by the pressure sensor 74 as a component of the bypass pressure detecting means, the flow rate of the hydraulic oil flowing in the bypass passage 61b is detected.
なお、 ここでは、 圧力センサ 7 4によりバイパス通路 6 1 b内の圧力 を検出することで、 バイパス通路 6 1 b内を流れる作動油の流量を検出 するようにしているが、 これに限られるものではなく、 例えば流量セン サによりバイパス通路 6 1 b内を流れる作動油の流量を検出するように しても良い。  In this case, the flow rate of the hydraulic oil flowing in the bypass passage 61b is detected by detecting the pressure in the bypass passage 61b by the pressure sensor 74, but is not limited thereto. Instead, for example, the flow rate of the hydraulic oil flowing in the bypass passage 61b may be detected by a flow rate sensor.
第 2回路部 5 6は、 第 2油圧ポンプ 5 2に接続される油路 6 6と、 油 路 6 6に介装される左走行モー夕用制御弁 6 2 , 旋回モータ用制御弁 6 3, 第 1スティック用制御弁 6 4, 第 2ブーム用制御弁 6 5等の制御弁 と、 絞り 8 2とを備えて構成される。 The second circuit portion 56 includes an oil passage 66 connected to the second hydraulic pump 52, a left traveling motor control valve 62 interposed in the oil passage 66, and a swing motor control valve 6. 3, a control valve such as a first stick control valve 64, a second boom control valve 65, etc., and a throttle 82.
そして、 第 2油圧ポンプ 5 2からの作動油が、 油路 6 6 , 左走行モー 夕用制御弁 6 2を介して左走行モー夕 1 0 9 Lへ供給され、これにより、 左走行モ一夕 1 0 9 Lが駆動されるようになっている。 また、 第 2油圧 ポンプ 5 2からの作動油は、 油路 6 6 , 旋回モー夕用制御弁 6 3を介し て旋回モータ 1 1 0へ供給され、 これにより、 旋回モー夕 1 1 0が駆動 されるようになつている。 さらに、第 2油圧ポンプ 5 2からの作動油は、 油路 6 6 , 第 1スティック用制御弁 6 4を介してスティック駆動用油圧 シリンダ 1 0 6へ供給されるとともに、 油路 6 6, 第 2ブーム用制御弁 6 5を介してブーム駆動用油圧シリンダ 1 0 5へ供給され、これにより、 各シリンダ 1 0 5, 1 0 6が駆動されるようになっている。  Then, the hydraulic oil from the second hydraulic pump 52 is supplied to the left traveling motor 109 L via the oil passage 66 and the left traveling motor control valve 62, whereby the left traveling motor is driven. Evening 109 L is to be driven. Hydraulic oil from the second hydraulic pump 52 is supplied to the swing motor 110 via the oil passage 66 and the swing motor control valve 63, thereby driving the swing motor 110. It has become to be. Further, the hydraulic oil from the second hydraulic pump 52 is supplied to the stick driving hydraulic cylinder 106 through the oil passage 66 and the first stick control valve 64, and the oil passage 66, It is supplied to the boom drive hydraulic cylinder 105 via the boom control valve 65, whereby the respective cylinders 105, 106 are driven.
また、 第 2回路部 5 6の油路 6 6は、 各制御弁 6 2〜6 5を介して各 油圧ァクチユエ一夕 1 0 5, 1 0 6 , 1 1 0 , 1 0 9 Lへ供給されなか つた作動油をタンク 7 0へ戻すバイパス通路としての油路 6 6 cを備え て構成される。 そして、 後述するように、 この油路 6 6 cを流れる作動 油の流量を検出し、 検出された作動油の流量に基づいて油圧ポンプ 5 2 からの吐出流量を制御するようになっている。  In addition, the oil passage 66 of the second circuit section 56 is supplied to each hydraulic actuator 105, 106, 110, 109L via each control valve 62 to 65. It is provided with an oil passage 66 c serving as a bypass passage for returning the used hydraulic oil to the tank 70. Then, as described later, the flow rate of the hydraulic oil flowing through the oil passage 66c is detected, and the discharge flow rate from the hydraulic pump 52 is controlled based on the detected flow rate of the hydraulic oil.
ここでは、 各制御弁 6 2〜6 5の下流側のバイパス通路 6 6 cにはバ ィパス圧力検知手段の構成要素として絞り 8 2が備えられており、 各制 御弁 6 2〜6 5が中立位置又は中間移動位置 (両端側移動位置と中立位 置との間の位置) の場合に絞り 8 2を通じて第 2油圧ポンプ 5 2からの 作動油をリザーバタンク 7 0へ戻すようになつている。 そして、 この絞 り 8 2によって絞り 8 2の上流側のバイパス通路 6 6 c内の圧力がバイ パス通路 6 6 c内の作動油の流量に応じて変化することになるため、 こ のバイパス通路 6 6 c内の圧力をバイパス圧力検知手段の構成要素とし ての圧力センサ 7 5により検出することで、 バイパス通路 6 6 c内を流 れる作動油の流量を検出するようになっている。 Here, a throttle 82 is provided as a component of a bypass pressure detecting means in the bypass passage 66 c downstream of each of the control valves 62 to 65, and each of the control valves 62 to 65 is provided. Hydraulic oil from the second hydraulic pump 52 is returned to the reservoir tank 70 through the throttle 82 in the neutral position or the intermediate movement position (position between the both-end movement position and the neutral position). . Then, the pressure in the bypass passage 66 c on the upstream side of the throttle 82 changes in accordance with the flow rate of the hydraulic oil in the bypass passage 66 c due to the restriction 82, so that this bypass passage 6 The pressure in 6c is used as a component of the bypass pressure detection means. The flow rate of the hydraulic oil flowing in the bypass passage 66 c is detected by the detection by all the pressure sensors 75.
なお、 ここでは、 圧力センサ 7 4によりバイパス通路 6 6 c内の圧力 を検出することで、 バイパス通路 6 6 c内を流れる作動油の流量を検出 するようにしているが、 これに限られるものではなく、 例えば流量セン サによりバイパス通路 6 6 c内を流れる作動油の流量を検出するように しても良い。  Here, the flow rate of the hydraulic oil flowing in the bypass passage 66c is detected by detecting the pressure in the bypass passage 66c by the pressure sensor 74, but is not limited thereto. Instead, for example, the flow rate of the hydraulic oil flowing in the bypass passage 66c may be detected by a flow rate sensor.
なお、 各制御弁 5 7〜6 0, 6 2〜6 5は、 図示しないコントロール ュニット内に収納されている。  The control valves 57 to 60 and 62 to 65 are housed in a control unit (not shown).
このように、 本実施形態では、 建設機械の作業において重要なスティ ック 1 0 4に他の作業機 1 1 8との同時操作時においても十分な作動油 が供給されるように、 第 2回路部 5 6の第 2油圧ポンプ 5 2からの作動 油に加え、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作動油もスティ ック駆動用油圧シリンダ 1 0 6へ供給されるようになっている。  As described above, in the present embodiment, the second stick is set so that a sufficient hydraulic oil is supplied to the important stick 104 in the operation of the construction machine even at the same time when the other work machine 118 is operated simultaneously. In addition to the hydraulic oil from the second hydraulic pump 52 in the circuit section 56, the hydraulic oil from the first hydraulic pump 51 in the first circuit section 55 is also supplied to the stick driving hydraulic cylinder 106. It has become.
このため、 第 2回路部 5 6の油路 6 6に第 1スティック用制御弁 6 4 が介装され、 第 1回路部 5 5の油路 6 1に第 2スティック用制御弁 6 0 が介装されている。 そして、 第 1スティック用制御弁 6 4を比例制御弁 6 4 a , 6 4 bにより制御するとともに、 第 2スティック用制御弁 6 0 を比例制御弁 6 0 a, 6 0 bにより制御することにより、 スティック駆 動用油圧シリンダ 1 0 6への作動油の給排を行なえるようになつている, 同様に、 他の作業機 1 1 8との同時操作時においてもブーム 1 0 3に 十分な作動油が供給されるように、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作動油に加え、 第 2回路部 5 6の第 2油圧ポンプ 5 2からの作 動油もブーム駆動用油圧シリンダ 1 0 5へ供給されるようになっている このため、 第 1回路部 5 5の油路 6 1に第 1ブーム用制御弁 5 9が介 装され、 第 2回路部 5 6の油路 6 6に第 2ブーム用制御弁 6 5が介装さ れている。 そして、 第 1ブーム用制御弁 5 9を比例制御弁 5 9 a, 5 9 bにより制御するとともに、 第 2ブーム用制御弁 6 5を比例制御弁 6 5 a , 6 5 bにより制御することにより、 ブーム駆動用油圧シリンダ 1 0 5への作動油の給排を行なえるようになっている。 For this reason, the first stick control valve 64 is interposed in the oil passage 66 of the second circuit portion 56, and the second stick control valve 60 is interposed in the oil passage 61 of the first circuit portion 55. Is equipped. The first stick control valve 64 is controlled by the proportional control valves 64a and 64b, and the second stick control valve 60 is controlled by the proportional control valves 60a and 60b. , So that hydraulic oil can be supplied to and discharged from the hydraulic cylinder 106 for driving the stick. Similarly, sufficient operation of the boom 103 can be performed simultaneously with other work equipment 118. In order to supply oil, in addition to the hydraulic oil from the first hydraulic pump 51 of the first circuit section 55, the hydraulic oil from the second hydraulic pump 52 of the second circuit section 56 is also used for boom drive. As a result, the control valve 59 for the first boom is interposed in the oil passage 61 of the first circuit section 55, and the oil in the second circuit section 56 is supplied to the hydraulic cylinder 105. The second boom control valve 65 is interposed in the road 66 Have been. The first boom control valve 59 is controlled by the proportional control valves 59a and 59b, and the second boom control valve 65 is controlled by the proportional control valves 65a and 65b. Hydraulic oil can be supplied to and discharged from the boom drive hydraulic cylinder 105.
また、 本実施形態では、 スティック駆動用油圧シリンダ 1 0 6への作 動油の給排を行なう油路 6 7 , 6 8にはスティック用再生弁 7 6が介装 されており、 作動油排出側油路から作動油供給側油路へ所定量の作動油 を再生できるようになつている。  In the present embodiment, a stick regeneration valve 76 is interposed in the oil passages 67 and 68 for supplying and discharging the hydraulic oil to and from the hydraulic cylinder 106 for driving the stick. A predetermined amount of hydraulic oil can be regenerated from the side oil passage to the hydraulic oil supply-side oil passage.
同様に、 ブーム駆動用油圧シリンダ 1 0 5への作動油の給排を行なう 油路 7 8, 7 9にもブーム用再生弁 7 7が介装されており、 作動油排出 側油路から作動油供給側油路へ所定量の作動油を再生できるようになつ ている。  Similarly, boom regeneration valves 77 are also interposed in the oil passages 78, 799 that supply and discharge hydraulic oil to the boom drive hydraulic cylinder 105, and operate from the hydraulic oil discharge side oil passage. A predetermined amount of hydraulic oil can be regenerated to the oil supply side oil passage.
ここで、 各制御弁 5 7〜6 0, 6 2〜6 5は、 図 3に示すように、 ス プール弁として構成され、 いずれも複数 (ここでは 5つ) の絞りを備え て構成される。  Here, each of the control valves 57 to 60 and 62 to 65 is configured as a spool valve as shown in Fig. 3, and each is configured with a plurality of (here, five) throttles. .
つまり、 各制御弁 5 7〜6 0, 6 2〜6 5は、 図 3に示すように、 第 1油圧ポンプ 5 1, 第 2油圧ポンプ 5 2とスティック駆動用油圧シリン ダ 1 0 6とを連通する油路 (作動油供給通路, P— C通路) 6 1 a, 6 6 aに介装される P— C絞り 4 0と、 スティック駆動用油圧シリンダ 1 0 6とリザ一バタンク 7 0とを連通する油路 (作動油排出通路, C一 T 通路) 6 6 b , 6 9に介装される C一 T絞り 4 1と、 第 1油圧ポンプ 5 1, 第 2油圧ポンプ 5 2とリザーバタンク 7 0とを連通する油路 (バイ パス通路) 6 1 b, 6 6 cに介装されるバイパス通路絞り 4 2とを備え て構成される。  That is, as shown in FIG. 3, the control valves 57 to 60 and 62 to 65 are connected to the first hydraulic pump 51, the second hydraulic pump 52 and the stick driving hydraulic cylinder 106, respectively. Communicating oil passages (hydraulic oil supply passages, P-C passages) P-C throttles 40 interposed between 61a and 66a, stick drive hydraulic cylinders 106 and reservoir tanks 70 (Hydraulic oil discharge passage, C-T passage) 66 C, T throttle 41 interposed in 69, 69, first hydraulic pump 51, second hydraulic pump 52, and reservoir It is provided with a bypass passage restrictor 42 interposed in oil passages (bypass passages) 61b and 66c communicating with the tank 70.
なお、 図 3ではスティック用制御弁 6 0 , 6 4はスティック下げ位置 になっているが、 スティック用制御弁 6 0, 6 4を、 図 3中、 上方向へ 移動させて、 スティック用制御弁 6 0, 64のバイパス通路絞り 42を バイパス通路 6 l b, 66 cに介装させることで、 スティック用制御弁 60, 64を中立位置とすることができ、 また、 スティック用制御弁 6 0, 64を、 図 3中、 最も上方向へ移動させて、 スティック用制御弁 6 0, 64の P— C絞り 40を P— C通路 6 1 a, 66 aに介装させると ともに、 スティック用制御弁 60, 64の C— T絞り 4 1を C一 T通路 66 b, 6 9に介装させることで、 スティック用制御弁 60, 64をス ティック上げ位置にすることができる。 In FIG. 3, the stick control valves 60 and 64 are in the stick lowered position, but the stick control valves 60 and 64 are moved upward in FIG. The stick control valves 60 and 64 can be set to the neutral position by moving the stick control valves 60 and 64 so that the bypass passage throttles 42 of the stick control valves 60 and 64 are interposed in the bypass passages 6 lb and 66 c. The stick control valves 60 and 64 are moved to the uppermost position in Fig. 3, and the P-C throttle 40 of the stick control valves 60 and 64 is interposed in the P-C passages 61a and 66a. At the same time, the C—T throttle 41 of the stick control valves 60 and 64 is interposed in the C-T passages 66 b and 69 to bring the stick control valves 60 and 64 to the stick raising position. Can be.
なお、 絞り 40, 4 1 , 42の径の設定においては、 ブーム 1 0 3や スティック 1 04等の作業機 1 1 8の連動性を確保すべく、 各操作部材 54がフル操作されている場合に全ての作業機 1 1 8が動くように考慮 される。  When setting the diameters of the apertures 40, 41, and 42, when the operation members 54 are fully operated in order to ensure the interlocking of the working machines 118 such as the boom 103 and the stick 104, It is taken into account that all implements 1 18 move.
そして、 P— C絞り 40によって、 第 1油圧ポンプ 5 1, 第 2油圧ポ ンプ 52とスティック駆動用油圧シリンダ 1 06とを連通する油路 6 1 a, 66 aの開口面積 (作動油供給通路の開口面積, P_C開口面積) が調整される。  The opening area of the oil passages 61 a and 66 a for connecting the first hydraulic pump 51 and the second hydraulic pump 52 to the stick driving hydraulic cylinder 106 by the P-C throttle 40 (the hydraulic oil supply passage). The opening area of P_C is adjusted.
C一 T絞り 41によって、 スティック駆動用油圧シリンダ 1 06とリ ザーバタンク 70とを連通する油路 66 b, 69の開口面積 (作動油排 出通路の開口面積, C一 T開口面積) が調整される。  The opening area of the oil passages 66 b, 69 (opening area of the hydraulic oil discharge passage, opening area of the C-T opening) that adjusts the communication between the stick driving hydraulic cylinder 106 and the reservoir tank 70 is adjusted by the C-T throttle 41. You.
バイパス通路絞り 42によって、 第 1油圧ポンプ 5 1, 第 2油圧ボン プ 52とリザーバタンク 70とを連通する油路 6 1 b, 6 6 cの開口面 積 (バイパス通路の開口面積) が調整される。  The opening area (opening area of the bypass passage) of the oil passages 6 1 b and 66 c communicating the first hydraulic pump 51 and the second hydraulic pump 52 and the reservoir tank 70 is adjusted by the bypass passage throttle 42. You.
本実施形態では、 各制御弁 57〜60, 6 2〜65は、 各操作部材 5 4のいずれも操作されていない状態では中立位置とされており、 油圧ポ ンプ 5 1 , 52からの作動油はバイパス通路 6 1 b, 66 cを通じて夕 ンク 70へ戻されるようになつている。 一方、オペレータにより各操作部材 54のうちのいずれかが操作され、 この操作量に応じて各制御弁 57〜60, 62〜6 5が例えば中間移動 位置 (両端側移動位置と中立位置との間の位置) とされた場合、 バイパ ス通路 6 l b, 66 cの開口面積がバイパス通路絞り 42によって絞ら れて、 バイパス通路 6 1 b, 66 cを通じてタンク 7 0へ戻される作動 油の流量が減少する一方、 P— C絞り 40によって絞られる作動油供給 通路の開口面積が大きくなり、 作動油供給通路を通じて各油圧ァクチュ エー夕 1 05〜 1 07, 1 09 1 , 1 09 R, 1 1 0へ作動油が供給さ れるとともに、 C_T絞り 4 1によって絞られる作動油排出通路の開口 面積も大きくなり、 作動油排出通路を通じてタンク 7 0へ作動油が排出 されることになる。 これにより、 各油圧ァクチユエ一夕 1 0 5〜 1 0 7 , 1 09 1 , 1 0 9 R, 1 1 0へ作動油が供給されて各油圧ァクチユエ一 夕 1 05〜: L 0 7, 1 09 1 , 1 0 9 R, 1 1 0が作動される。 なお、 各油圧ァクチユエ一夕 1 0 5〜: 1 0 7, 1 09 1, 1 09 R, 1 1 0へ 供給される作動油の流量は、 オペレータによる各操作部材 54の操作量 に応じて制御される各制御弁 5 7〜60, 62〜65の移動量によって 制御される。 In the present embodiment, each of the control valves 57 to 60 and 62 to 65 is in the neutral position when none of the operating members 54 is operated, and the hydraulic oil from the hydraulic pumps 51 and 52 is provided. Is returned to sunset 70 through bypass passages 61b and 66c. On the other hand, any one of the operation members 54 is operated by the operator, and the control valves 57 to 60 and 62 to 65 are moved to the intermediate movement position (between the both-end movement position and the neutral position) according to the operation amount. Position, the opening area of the bypass passage 6 lb, 66 c is narrowed by the bypass passage restrictor 42, and the flow rate of the hydraulic oil returned to the tank 70 through the bypass passages 61 b, 66 c is reduced. On the other hand, the opening area of the hydraulic oil supply passage narrowed by the P-C throttle 40 becomes large, and the hydraulic oil supply passages 105 to 107, 1091, 109R, 110 through the hydraulic oil supply passage As the hydraulic oil is supplied, the opening area of the hydraulic oil discharge passage narrowed by the C_T throttle 41 increases, and the hydraulic oil is discharged to the tank 70 through the hydraulic oil discharge passage. As a result, the hydraulic oil is supplied to each hydraulic actuator 105 to 107, 109, 109 R, 110 so that each hydraulic actuator 105 to: L07, 109 1, 1 0 9 R, 1 1 0 are activated. The flow rate of the hydraulic oil supplied to each hydraulic actuator 105-: 107, 109, 109 R, 110 is controlled according to the amount of operation of each operating member 54 by the operator. Control valves 57 to 60 and 62 to 65.
さらに、 オペレータによる各操作部材 54の操作量に応じて各制御弁 57〜60, 62〜6 5が最大移動位置とされた場合、 バイパス通路 6 1 b, 66 cの開口面積は閉じられ、 油圧ポンプ 5 1, 5 2からの作動 油はバイパス通路 6 1 , 66 cを通じてタンク 70へ戻されなくなる 一方、 P— C絞り 40によって絞られる作動油供給通路の開口面積は最 大となり、 作動油供給通路を通じて各油圧ァクチユエ一夕 1 0 5〜 1 0 7 , 1 0 9 1 , 1 09 R, 1 1 0へ供給される作動油の流量が最大とな るとともに、 C— T絞り 4 1によって絞られる作動油排出通路の開口面 積も最大となり、 作動油排出通路を通じてタンク 70へ排出される作動 油の流量も最大となる。 これにより、 各油圧ァクチユエ一夕 1 0 5〜 1 0 7, 1 09 1 , 1 09 R, 1 1 0は最も速い作動スピードで作動する ことになる。 Further, when each of the control valves 57 to 60 and 62 to 65 is set to the maximum movement position according to the amount of operation of each of the operation members 54 by the operator, the opening areas of the bypass passages 6 1 b and 66 c are closed, and the hydraulic pressure is reduced. Hydraulic oil from the pumps 51 and 52 is no longer returned to the tank 70 through the bypass passages 61 and 66c. On the other hand, the opening area of the hydraulic oil supply passage narrowed by the PC throttle 40 is maximized, and the hydraulic oil supply The flow rate of hydraulic oil supplied to each hydraulic actuator through the passageway from 105 to 107, 109, 109R, 110 is maximized, and is reduced by the CT throttle 41. The opening area of the hydraulic oil discharge passage is also maximized, and the operation is discharged to the tank 70 through the hydraulic oil discharge passage. The oil flow is also maximum. As a result, each hydraulic factor 105-107, 1091, 109R, 110 operates at the highest operating speed.
このようにして油圧ポンプ 5 1 , 52からの作動油が各油圧ァクチュ エー夕 1 05〜: L 0 7, 1 09 1 , 1 09 R, 1 1 0へ供給されるが、 これは以下のように考えることもできる。 つまり、 オペレータが操作部 材 54を操作すると、 これに応じて作動油供給通路に介装された制御弁 5 7〜60, 62〜6 5が移動し、油圧ァクチユエ一夕 1 0 5〜: 1 07, 1 09 1 , 1 0 9 R, 1 1 0へ作動油が供給される一方、 制御弁 57〜 60, 62〜 6 5を介して油圧ァクチユエ一夕 1 0 5〜 1 07 , 1 0 9 1 , 1 09 R, 1 1 0へ供給されなかった作動油がバイパス通路 6 1 b, 66 cを通じてタンク 70へ戻されると考えることもできる。  In this way, the hydraulic oil from the hydraulic pumps 51 and 52 is supplied to each hydraulic actuator 105-: L07, 1091, 109R, 110, which is as follows. Can also be considered. In other words, when the operator operates the operating member 54, the control valves 57 to 60 and 62 to 65 disposed in the hydraulic oil supply passage move accordingly, and the hydraulic actuator 105 to 1: 1. 07, 109 1, 109 R, 110 Hydraulic oil is supplied to R, 110, while hydraulic oil is supplied via control valves 57 to 60, 62 to 65, 105 to 107, 110, 109 It can also be considered that the hydraulic oil not supplied to 1, 109R, 110 is returned to the tank 70 through the bypass passages 61b, 66c.
ところで、 本実施形態では、 各制御弁 5 7〜 60, 62〜65を制御 するために、 図 2に示すように、 パイロットポンプ 8 3と、 比例減圧弁 5 7 a〜 60 a, 5 7 b〜 60 b, 62 a〜 6 5 a, 62 b〜 6 5 bと を備えるパイロット油圧回路が設けられている。 なお、 図 2では、 パイ ロット油圧回路に備えられるパイロットポンプ 8 3及び比例減圧弁 5 7 a〜60 a, 5 7 b〜60 b, 62 a〜6 5 a, 62 b〜65 bのみを 図示し、 パイロット油路を省略してパイロット油圧を符号 Pで示してい る。  By the way, in this embodiment, in order to control the control valves 57 to 60 and 62 to 65, as shown in FIG. 2, the pilot pump 83 and the proportional pressure reducing valves 57 a to 60 a, 57 b To 60b, 62a to 65a, and 62b to 65b. In Fig. 2, only the pilot pump 83 and the proportional pressure reducing valves 57a to 60a, 57b to 60b, 62a to 65a, and 62b to 65b provided in the pilot hydraulic circuit are shown. The pilot oil pressure is indicated by P, omitting the pilot oil passage.
ここで、 比例減圧弁 5 7 a〜 60 a, 5 7 b〜60 b, 62 a〜6 5 a, 62 b〜6 5 bは、 電磁弁であって、 後述するコントローラ 1から の作動信号により作動されるようになっている。 これにより、 パイロッ トポンプ 83からのパイロット油圧をコントローラ 1からの作動信号に 基づいて所定圧として各制御弁 57〜 60 , 62〜6 5に作用させるよ うになっている。 このような構成により、 例えば上部旋回体 1 0 2を旋回させるには、 運転操作室 1 0 1内の旋回用操作部材 5 4 dを操作して、 パイロットポ ンプ 8 3からのパイ口ット油圧 Pを図示しないパイ口ット油路を通じて、 旋回モータ用制御弁 6 3に作用させて、 旋回モータ用制御弁 6 3を所要 の位置に移動させる。 これにより、 旋回モー夕 1 1 0への作動油が給排 調整され、 これにより、 旋回モー夕 1 1 0が作動される。 Here, the proportional pressure reducing valves 57a to 60a, 57b to 60b, 62a to 65a, 62b to 65b are solenoid valves, and are operated by an operation signal from the controller 1 described later. Activated. Thus, the pilot oil pressure from the pilot pump 83 is applied to each of the control valves 57 to 60 and 62 to 65 as a predetermined pressure based on the operation signal from the controller 1. With such a configuration, for example, in order to turn the upper swing body 102, the turning operation member 54 d in the driver's operation room 101 is operated, and the pipe port from the pilot pump 83 is operated. The hydraulic pressure P is applied to the swing motor control valve 63 through a pilot oil passage (not shown) to move the swing motor control valve 63 to a required position. As a result, the supply and discharge of the hydraulic oil to and from the turning motor 110 are adjusted, whereby the turning motor 110 is operated.
例えば、 上部旋回体 1 0 2を右旋回させるには、 旋回モー夕 1 1 0を 右回りに回動させれば良い。 この場合には、 パイロット油路を通じてパ ィロット油圧を旋回モー夕用制御弁 6 3に作用させる。 これにより、 旋 回モータ用制御弁 6 3が右旋回位置となって、 第 2回路部 5 6の第 2油 圧ポンプ 5 2からの作動油が油路 6 6 a , 9 6を経て、 旋回モー夕 1 1 0の右側油室へ供給される一方、 旋回モ一夕 1 1 0の左側油室内の作動 油が、 油路 9 7, 6 6 bを経てリザーバタンク 7 0へ排出される。 これ により、 旋回モー夕 1 1 0が右回りに回動され、 上部旋回体 1 0 2が右 旋回する。  For example, in order to turn the upper swing body 102 rightward, the swing motor 110 may be turned clockwise. In this case, the pilot hydraulic pressure is applied to the turning motor control valve 63 through the pilot oil passage. As a result, the rotary motor control valve 63 is set to the right turning position, and the hydraulic oil from the second hydraulic pump 52 of the second circuit portion 56 passes through the oil passages 66 a and 96, Hydraulic oil in the left oil chamber of the slewing motor 110 is supplied to the reservoir tank 70 via the oil passages 97, 66b while being supplied to the right oil chamber of the slewing motor 110. . As a result, the turning motor 110 is turned clockwise, and the upper turning body 102 turns right.
逆に、 上部旋回体 1 0 2を左旋回させるには、 旋回モー夕 1 1 0を左 回りに回動させれば良い。 この場合には、 パイロット油路を通じてパイ ロット油圧を旋回モー夕用制御弁 6 3に作用させる。 これにより、 旋回 モータ用制御弁 6 3が左旋回位置となって、 第 2回路部 5 6の第 2油圧 ポンプ 5 2からの作動油が油路 6 6 a, 9 7を経て、 旋回モ一夕 1 1 0 の左側油室へ供給される一方、 旋回モー夕 1 1 0の右側油室内の作動油 が、 油路 9 6 , 6 6 bを経てリザ一バタンク 7 0へ排出される。 これに より、 旋回モータ 1 1 0が左回りに回動され、 上部旋回体 1 0 2が左旋 回する。  Conversely, in order to turn the upper swing body 102 leftward, the swing motor 110 may be turned counterclockwise. In this case, the pilot hydraulic pressure is applied to the turning motor control valve 63 through the pilot oil passage. As a result, the turning motor control valve 63 becomes the left turning position, and the hydraulic oil from the second hydraulic pump 52 of the second circuit section 56 passes through the oil passages 66 a and 97 to turn the turning motor. While the oil is supplied to the left oil chamber of evening 110, the hydraulic oil in the right oil chamber of turning motor 110 is discharged to reservoir tank 70 via oil passages 966 and 66b. As a result, the swing motor 110 is turned counterclockwise, and the upper swing body 102 is turned left.
さらに、 上部旋回体 1 0 2の現状態を保持するには、 パイロット油圧 を旋回モータ用制御弁 6 3に適宜作用させて、 旋回モー夕用制御弁 6 3 のスプールの位置を中立位置 (油圧給排路遮断位置) にすればよい。 こ れにより、旋回モー夕 1 1 0の各油室における作動油の給排が停止され、 上部旋回体 1 0 2が現位置に保持される。 Further, in order to maintain the current state of the upper revolving superstructure 102, the pilot hydraulic pressure is applied to the swing motor control valve 63 as appropriate to control the swing motor control valve 63 The position of the spool may be set to the neutral position (the hydraulic supply / discharge path shutoff position). As a result, the supply and discharge of the hydraulic oil in each oil chamber of the turning motor 110 is stopped, and the upper turning body 102 is held at the current position.
ところで、 このように構成される建設機械には、 種々のセンサが取り 付けられており、 各センサからの検出信号は後述するコントローラ 1へ 送られるようになっている。  By the way, various sensors are attached to the construction machine configured as described above, and a detection signal from each sensor is sent to a controller 1 described later.
例えば、 油圧ポンプ 5 1, 5 2を駆動するエンジン 5 0にはエンジン 回転数センサ 7 1が取り付けられており、 このエンジン回転数センサ 7 1からの検出信号は後述するコン卜ローラ 1へ送られるようになつてい る。 そして、 コントローラ 1は、 実際のエンジン回転数がオペレータに よりエンジン回転数設定ダイヤルで設定された目標エンジン回転数にな るようにフィードバック制御するようになつている。  For example, an engine 50 for driving the hydraulic pumps 51 and 52 is provided with an engine speed sensor 71, and a detection signal from the engine speed sensor 71 is sent to a controller 1 described later. And so on. The controller 1 performs feedback control so that the actual engine speed becomes the target engine speed set by the operator with the engine speed setting dial.
また、 第 1回路部 5 5の第 1油圧ポンプ 5 1及び第 2回路部 5 6の第 2油圧ポンプ 5 2の吐出側には、 ポンプ吐出圧を検出すべくそれぞれ圧 力センサ (P Z S— P 1 ) 7 2 , 圧力センサ (P Z S — P 2 ) 7 3が備 えられており、 これらの圧力センサ 7 2 , 7 3からの検出信号は後述す るコントローラ 1へ送られるようになつている。  The discharge side of the first hydraulic pump 51 of the first circuit unit 55 and the second hydraulic pump 52 of the second circuit unit 56 are provided with pressure sensors (PZS-P 1) 72, and a pressure sensor (PZS-P2) 73 are provided, and detection signals from these pressure sensors 72, 73 are sent to a controller 1 described later.
また、 第 1回路部 5 5の油圧ポンプ 5 1からタンク 7 0へ通じる一つ のバイパス通路としての油路 6 1の各制御弁 5 7〜 6 0の下流側及び第 2回路部 5 6の油圧ポンプ 5 1からタンク 7 0へ通じる一つのバイパス 通路としての油路 6 6の各制御弁 6 2〜6 5の下流側には、 バイパス圧 カ検知手段の構成要素としてそれぞれ圧力センサ(P Z S— N 1 ) 7 4, 圧力センサ (P Z S— N 2 ) 7 5が備えられており、 これらの圧力セン サ 7 4 , 7 5からの検出信号は後述するコントロ一ラ 1へ送られるよう になっている。  In addition, the downstream side of each control valve 57-60 of the oil passage 61 as one bypass passage from the hydraulic pump 51 of the first circuit portion 55 to the tank 70 and the second circuit portion 56 Downstream of each of the control valves 62 to 65 of the oil passage 66 as one bypass passage from the hydraulic pump 51 to the tank 70, a pressure sensor (PZS- N 1) 74 and a pressure sensor (PZS-N 2) 75 are provided. Detection signals from these pressure sensors 74 and 75 are sent to the controller 1 described later. I have.
また、 ブーム駆動用油圧シリンダ 1 0 5への作動油の給排を行なう油 路には圧力センサ (PZS— BMd) 80が設けられており、 この圧力 センサ 8 0によってブーム駆動用油圧シリンダ 1 0 5のロッド側圧力 (負荷圧力) を検出できるようになつている。 そして、 この圧力センサ 80からの検出信号は後述するコントローラ 1へ送られるようになって いる。 In addition, oil for supplying and discharging hydraulic oil to and from the boom drive hydraulic cylinder 105 A pressure sensor (PZS-BMd) 80 is provided on the road, and the pressure sensor 80 can detect the rod-side pressure (load pressure) of the hydraulic cylinder 105 for driving the boom. The detection signal from the pressure sensor 80 is sent to the controller 1 described later.
そして、 本実施形態では、 上述のように構成される建設機械を制御す ベく、 コントローラ 1が備えられている。  In the present embodiment, a controller 1 is provided to control the construction machine configured as described above.
コントローラ 1は、 上述の各センサ 7 1〜 7 5 , 80からの検出信号 や操作部材 54からの電気信号に基づいて、 第 1油圧ポンプ 5 1, 第 2 油圧ポンプ 5 2, 各再生弁 76, 7 7, 各制御弁 5 7〜 60 , 62〜6 5へ作動信号を出力することにより、 第 1油圧ポンプ 5 1 , 第 2油圧ポ ンプ 52の傾転角制御, 各制御弁 5 7〜60, 62〜6 5の位置制御, 各再生弁 76, 7 7の位置制御等を行なうようになっている。  The controller 1 controls the first hydraulic pump 51, the second hydraulic pump 52, the regeneration valves 76, based on the detection signals from the sensors 71 to 75, 80 and the electric signals from the operating member 54. 7 7, By outputting operation signals to the control valves 57 to 60 and 62 to 65, the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 are controlled, and the control valves 57 to 60 are controlled. , 62 to 65, and the position control of each regeneration valve 76, 77.
ここで、 コントローラ 1は、 図 1に示すように、 第 1, 第 2油圧ボン プ 5 1, 52の傾転角制御を行なうために、 各操作部材 54からの電気 信号を処理する機能としての操作部材信号処理手段 2と、 第 1油圧ボン プ 5 1の傾転角を制御する機能としての第 1油圧ポンプ傾転角制御手段 3と、 第 2油圧ポンプ 52の傾転角を制御する機能としての第 2油圧ポ ンプ傾転角制御手段 4とを備えて構成される。 なお、 第 1油圧ポンプ傾 転角制御手段 3及び第 2油圧ポンプ傾転角制御手段 4は、 いずれも油圧 ポンプからの吐出流量を制御するものであるため、 これらをポンプ流量 制御手段ともいう。  Here, as shown in FIG. 1, the controller 1 has a function as a function of processing an electric signal from each operation member 54 in order to control the tilt angle of the first and second hydraulic pumps 51, 52. Operation member signal processing means 2, first hydraulic pump tilt angle control means 3 as a function of controlling the tilt angle of first hydraulic pump 51, and function of controlling the tilt angle of second hydraulic pump 52 And the second hydraulic pump tilt angle control means 4. Since the first hydraulic pump tilt angle control means 3 and the second hydraulic pump tilt angle control means 4 both control the discharge flow rate from the hydraulic pump, they are also referred to as pump flow rate control means.
このうち、 操作部材信号処理手段 2は、 図 1に示すように、 各操作部 材 54 a〜54 d, 54 e - R, 54 e— Lが操作された場合に、 各操 作部材54 &〜54 (1, 54 e -R, 54 e— Lの操作量に応じた電気 信号に基づいて各制御弁 5 7〜 60 , 62〜 6 5の移動量を設定し、 各 制御弁 5 7〜60, 6 2〜 6 5や後述する操作部材対応傾転角設定手段 6, 1 1へ制御信号を出力するものである。 Of these, as shown in FIG. 1, the operating member signal processing means 2 is configured to operate each of the operating members 54 & 54 d, 54 e-R, 54 e-L when each of the operating members 54 & 54 e is operated. To 54 (1, 54 e-R, 54 e-L) Set the travel of each control valve 57 to 60 and 62 to 65 based on the electric signal corresponding to the manipulated variable of It outputs a control signal to the control valves 57 to 60, 62 to 65 and the tilt angle setting means 6, 11 corresponding to the operation member described later.
なお、 操作部材信号処理手段 2は、 複数の油圧ァクチユエ一夕 1 0 5 〜1 07, 1 0 9 R, 1 0 9 L, 1 1 0を同時に作動させる場合には各 油圧ァクチユエ一夕間のスピードバランス (流量配分) を設定するもの として機能する。  The operating member signal processing means 2 is used to simultaneously operate a plurality of hydraulic factories 105 to 107, 109R, 109L, 110 when operating a plurality of hydraulic factories simultaneously. Functions as a setting for speed balance (flow distribution).
ここで、 流量配分は、 複数の操作部材 54 a〜 54 d, 54 e -R, 54 e一 Lの操作パターン及びその操作量に応じて各油圧ァクチユエ一 夕 1 0 5〜 1 07, 1 0 9 R, 1 09 L, 1 1 0のスピードバランス (流 量バランス) を優先度をつけて設定する。 なお、 優先度は任意に設定可 能である。 例えば、 ブーム 1 03, スティック 1 04, バケツト 1 08 を同時に作動させるベく各操作部材が全てフル操作された場合には、 ポ ンプ吐出流量は最大流量とされ、 その流量バランスはブーム 50 %、 ス ティック 30 %、 バケツ ト 20 %のように設定すれば良い。  Here, the flow rate distribution is determined according to the operation pattern of the plurality of operation members 54a to 54d, 54e-R, and 54e-L and the operation amount thereof. Set the speed balance (flow balance) of 9R, 1109L, 110 with priority. The priority can be set arbitrarily. For example, if all operating members that simultaneously operate the boom 103, the stick 104, and the bucket 108 are fully operated, the pump discharge flow rate is the maximum flow rate, and the flow balance is 50% for the boom. You can set it like stick 30%, bucket 20%.
第 1油圧ポンプ傾転角制御手段 3は、 図 1に示すように、 バイパス圧 力対応傾転角設定手段 5と、 操作部材対応傾転角設定手段 6と、 スピー ド対応ポンプ傾転角設定手段 7と、 許容馬力対応傾転角設定手段 8と、 最小値選択手段 9とを備えて構成され、 ポンプ傾転角制御信号 F p 1を 第 1油圧ポンプ 5 1へ出力するものである。  As shown in FIG. 1, the first hydraulic pump tilt angle control means 3 includes a bypass pressure tilt angle setting means 5, an operating member tilt angle setting means 6, and a speed corresponding pump tilt angle setting. Means 7, a permissible horsepower displacement angle setting means 8, and a minimum value selection means 9 are provided to output a pump displacement angle control signal Fp1 to the first hydraulic pump 51.
このうち、 バイパス圧力対応傾転角設定手段 5は、 バイパス圧力検知 信号ベースのポンプ傾転角を設定するものである。  Among them, the bypass pressure corresponding tilt angle setting means 5 sets the pump tilt angle based on the bypass pressure detection signal.
このバイパス圧力対応傾転角設定手段 5には、 図 4に示すように、 各 操作部材 54の操作量に応じて作動する各制御弁 5 7〜60のバイパス 通路 6 1 b内の作動油の圧力を検知するバイパス圧力検知手段 8 1 , 7 4としての圧力センサ 74から出力信号 (E) が入力されるようになつ ており、 この出力信号 (E) に逆比例する特性に基づいてポンプ傾転角 (ポンプ流量) を制御するためポンプ傾転角制御信号としての第 1の制 御信号 F①ー 1を設定し、 スピード制御対応傾転角設定手段 7へ出力す るようになっている。 As shown in FIG. 4, the tilt angle setting means 5 corresponding to the bypass pressure includes, as shown in FIG. 4, hydraulic fluid in the bypass passage 6 1 b of each of the control valves 57 to 60 which operates according to the operation amount of each operation member 54. The output signal (E) is input from the pressure sensor 74 as the bypass pressure detecting means 81, 74 for detecting the pressure, and the pump is tilted based on the characteristic inversely proportional to the output signal (E). Turning angle A first control signal F-1 is set as a pump tilt angle control signal for controlling the pump flow rate, and is output to the speed control corresponding tilt angle setting means 7.
なお、 このようにバイパス通路 6 1 b内の作動油の流量に略逆比例す る特性の基づいて行なわれるポンプ傾転角制御 (ポンプ流量制御) をネ ガティブフローコントロールという。 ここで、 略逆比例する特性には、 一般的な逆比例特性としての曲線状の特性だけでなく、 例えば直線状に 変化する特性も含まれ、 この特性はバイパスの通路 6 l b内の作動油の 圧力が大きくなるにつれてポンプ傾転角が小さくなるような特性であれ ば良い。  The pump tilt angle control (pump flow control) performed based on the characteristic that is substantially inversely proportional to the flow rate of the hydraulic oil in the bypass passage 61b is referred to as negative flow control. Here, the substantially inversely proportional characteristic includes not only a curved characteristic as a general inversely proportional characteristic but also, for example, a characteristic that changes linearly, and this characteristic includes the hydraulic oil in the bypass passage 6 lb. It is only necessary that the characteristics be such that the pump tilt angle decreases as the pressure increases.
ここで、 バイパス圧力検知手段 8 1, 7 4は、 絞り 8 1と絞り 8 1の 上流部に位置する圧力センサ 7 4とによって構成され、 図 4に示すよう に、 絞り 8 1の通過流量 (バイパス流量合算値) (D ) に比例して変化す る圧力センサ 7 4の出力信号 (E ) を検出するものである。 なお、 絞り 8 1の開口面積は固定値として予め設定される。  Here, the bypass pressure detecting means 81, 74 is composed of a restrictor 81 and a pressure sensor 74 located upstream of the restrictor 81, and as shown in FIG. It detects the output signal (E) of the pressure sensor 74 which changes in proportion to the sum of the bypass flow rates) (D). The aperture area of the diaphragm 81 is set in advance as a fixed value.
このように絞り 8 1及び圧力センサ 7 4によりバイパス圧力検知手段 を構成しているのは、 上述のように、 各制御弁 5 7〜 6 0のバイパス通 路絞り 4 2は油路 6 1 bに対して直列に接続されており、 複数の操作部 材 5 4が同時に操作された時のバイパス流量は各制御弁 5 7〜6 0で順 次絞られた合算値 (D ) となってバイパス通路 6 1 bの下流に位置する 絞り 8 1に流入するようになっているため、 絞り 8 1の通過流量 (バイ パス流量合算値) Dが増加すれば絞り 8 1の上流側圧力は増加すること になる一方、 絞り 8 1の通過流量 (バイパス流量合算値) Dが減少すれ ば絞り 8 1の上流側圧力は減少することになり、 このように絞り 8 1の 通過流量に応じて増加したり減少したりする絞り 8 1の上流側圧力を圧 力センサ 7 4により検知するためである。 操作部材対応傾転角設定手段 6には、 図 5に示すように、 操作部材信 号処理手段 2からの各制御弁 5 7〜6 0の制御信号 (各操作部材 5 4の 操作量) が入力されるようになっており、 これらの制御信号を用いて各 制御弁 5 7〜 6 0の制御信号 (各操作部材 5 4の操作量) に正比例する 特性に基づいて各制御弁 5 7〜 6 0を通じて各ァクチユエ一夕 1 0 5〜 1 0 7 , 1 0 9 Rへ供給する必要流量 (必要ポンプ傾転角) を求め、 こ れを操作部材操作量ベースのポンプ傾転角制御信号としての第 2の制御 信号 F②— 1として設定し、 スピ一ド制御対応傾転角設定手段 7へ出力 するものである。 As described above, the restriction 81 and the pressure sensor 74 constitute the bypass pressure detecting means because, as described above, the bypass path restriction 42 of each of the control valves 57 to 60 is formed by the oil path 61b. Are connected in series with each other, and when a plurality of operating members 54 are simultaneously operated, the bypass flow rate is the sum (D) of the throttles sequentially obtained by the control valves 57 to 60 and the bypass flow rate Because it flows into the throttle 81 located downstream of the passage 6 1 b, the upstream flow rate of the throttle 81 increases as the flow rate through the throttle 81 (the sum of bypass flow rates) increases. On the other hand, if the flow rate through the throttle 81 (the sum of the bypass flow rates) D decreases, the pressure upstream of the throttle 81 decreases, and thus increases in accordance with the flow rate through the throttle 81. This is because the pressure sensor 74 detects the pressure on the upstream side of the restrictor 81, which increases or decreases. As shown in FIG. 5, the control member corresponding tilt angle setting means 6 receives the control signals of the respective control valves 57 to 60 (the operation amounts of the respective operation members 54) from the operation member signal processing means 2, as shown in FIG. These control signals are used to input the control signals to the control valves 57 to 60 based on the characteristics directly proportional to the control signals (the operation amounts of the operation members 54) of the control valves 57 to 60. The required flow rate (required pump tilt angle) to be supplied to each actuator 105 to 107, 109 R through 60 is determined, and this is used as a pump tilt angle control signal based on the operation amount of the operating member. This is set as the second control signal F②-1 and output to the speed control corresponding tilt angle setting means 7.
なお、 このように操作部材 5 4の操作量に略正比例する特性に基づい て行なわれるポンプ傾転角制御 (ポンプ流量制御) をポジティブフロー コントロールという。 ここで、 略正比例する特性には、 一般的な正比例 特性としての直線状の特性だけでなく、 例えば曲線状に変化する特性も 含まれ、 この特性は操作部材 5 4の操作量が大きくなるにつれてポンプ 傾転角が大きくなるような特性であれば良い。  The pump tilt angle control (pump flow rate control) performed based on the characteristic that is substantially directly proportional to the operation amount of the operation member 54 as described above is referred to as positive flow control. Here, the substantially directly proportional characteristic includes not only a linear characteristic as a general directly proportional characteristic but also, for example, a characteristic that changes in a curved shape, and this characteristic increases as the operation amount of the operation member 54 increases. Any characteristics may be used as long as the pump tilt angle becomes large.
また、 操作部材信号処理手段 2からの各制御弁 5 7〜6 0の制御信号 (各操作部材 5 4の操作量) は、 例えば複数の油圧ァクチユエ一夕 1 0 5〜 1 0 7, 1 0 9 Rが同時操作された場合には、 上述のように、 操作 部材信号処理手段 2により最適な流量配分がなされるようになつている ため、 この流量配分に応じた制御信号が操作部材対応傾転角設定手段 6 へ入力されることになる。  In addition, the control signals (operation amounts of the respective operation members 54) of the respective control valves 57 to 60 from the operation member signal processing means 2 are, for example, a plurality of hydraulic actuators 105 to 107, 10. When the 9Rs are simultaneously operated, the optimal flow distribution is performed by the operation member signal processing means 2 as described above, so that a control signal corresponding to this flow distribution is transmitted to the operating member corresponding tilt. This is input to the turning angle setting means 6.
ここでは、各制御弁 5 7〜6 0の制御信号(各操作部材 5 4の操作量) に正比例する必要流量特性は、 図 5に示すように、 各制御弁 5 7〜6 0 毎に設定されている。 そして、 複数の操作部材 5 4が操作されて各制御 弁 5 7〜6 0への制御信号が設定されると、 これに正比例する特性に基 づいて各制御弁 5 7〜 6 0へ供給すべき必要流量を求め、 これらを合算 して、 油圧ポンプ 5 1により吐出すべきポンプ流量 (ポンプ傾転角) F ②— 1を算出するようにしている。 " Here, the required flow rate characteristic, which is directly proportional to the control signal of each control valve 57 to 60 (the operation amount of each operation member 54), is set for each control valve 57 to 60 as shown in FIG. Have been. Then, when a plurality of operating members 54 are operated to set control signals to the control valves 57 to 60, the control signals are supplied to the control valves 57 to 60 based on the characteristics directly proportional to the control signals. Required flow rate and sum them Then, the pump flow rate to be discharged by the hydraulic pump 51 (pump tilt angle) F ②—1 is calculated. "
スピード対応ポンプ傾転角設定手段 7は、 各ァクチユエ一夕 1 0 5〜 1 0 7 , 1 0 9 Rのスピ一ド制御のために第 1油圧ポンプ 5 1のポンプ 傾転角を制御すべく、 ポンプ傾転角制御信号としてスピード対応制御信 号 F 1 1 e V e rを設定するものである。  The speed-dependent pump tilt angle setting means 7 is used to control the pump tilt angle of the first hydraulic pump 51 for speed control of each actuator 105 to 107, 109R. A speed-dependent control signal F11eVer is set as the pump tilt angle control signal.
ここで、 スピード対応制御信号 F 1 1 e V e rは、 許容馬力以下の負 荷条件 (ポンプ運転条件) において、 各油圧ァクチユエ一夕 1 0 5〜 1 0 7 , 1 0 9 Rのスピードを制御するために、 各操作部材 5 4の操作量 に応じてポンプ傾転角 (ポンプ流量) を制御するためのポンプ傾転角制 御信号である。  Here, the speed corresponding control signal F11eVer controls the speed of each hydraulic actuator 105 to 107,109R under a load condition (pump operation condition) below the allowable horsepower. This is a pump tilt angle control signal for controlling the pump tilt angle (pump flow rate) according to the operation amount of each operation member 54 in order to perform the operation.
ここでは、 スピード対応ポンプ傾転角設定手段 7は、 図 6に示すよう に、 最小信号選択手段 2 0と、 要求傾転角比較手段 2 1と、 最小信号出 力手段 2 2と、 所定値設定手段 2 3と、 要求傾転角出力手段 2 4とを備 えて構成され、 ァクチユエ一夕のスピード制御のためのポンプ傾転角制 御信号としてスピード対応制御信号 F 1 1 e V e rを設定し、 最小値選 択手段 9へ出力するものである。  Here, as shown in FIG. 6, the speed-dependent pump tilt angle setting means 7 includes a minimum signal selecting means 20, a required tilt angle comparing means 21, a minimum signal output means 22, and a predetermined value. It is provided with setting means 23 and required tilt angle output means 24, and sets the speed corresponding control signal F11 eVer as the pump tilt angle control signal for speed control of the actuator. And outputs it to the minimum value selecting means 9.
このうち、 最小信号選択手段 2 0は、 バイパス圧力対応傾転角設定手 段 5からのバイパス流量ベースのポンプ傾転角制御信号としての第 1の 制御信号 F①ー 1と、 操作部材対応傾転角設定手段 6からの操作部材操 作量ベースのポンプ傾転角制御信号としての第 2の制御信号 F②— 1と の 2つの系統の制御信号の中から 1つの制御信号を選択するものである c なお、 第 1の制御信号 F①ー 1はバイパス通路 6 1 b内の作動油の圧 力に逆比例する特性に基づいてポンプ傾転角を制御する (ネガティブフ ローコントロール) ためのポンプ傾転角制御信号であり、 第 2の制御信 号 F②— 1は操作部材 5 4の操作量に正比例する特性に基- 傾転角を制御する (ポジティブフローコントロール) ためのポンプ傾転 角制御信号であり、 最小信号選択手段 2 0は、 これらのネガティブフロ ーコントロールとポジティブフローコントロールとのいずれか一方を選 択するものであるため、 ネガコン ポジコン選択手段ともいう。 Among these, the minimum signal selecting means 20 includes a first control signal F-1 as a bypass flow rate based pump tilt angle control signal from the bypass pressure corresponding tilt angle setting means 5 and a tilt corresponding to the operation member. One control signal is selected from the two control signals F②-1 and the second control signal F②-1 as the pump displacement angle control signal based on the operation member operation amount from the angle setting means 6. c The first control signal F-1 is used to control the pump tilt angle based on a characteristic inversely proportional to the pressure of the hydraulic oil in the bypass passage 6 1 b (negative flow control). Angle control signal, and the second control signal F②-1 is based on a characteristic that is directly proportional to the operation amount of the operation member 54. A pump displacement angle control signal for controlling the displacement angle (positive flow control), and the minimum signal selecting means 20 selects one of the negative flow control and the positive flow control. Therefore, it is also called negative control and positive control selection means.
ここでは、 最小信号選択手段 2 0は、 バイパス圧力対応傾転角設定手 段 5からの第 1の制御信号 F①— 1と、 操作部材対応傾転角設定手段 6 からの第 2の制御信号 F②— 1とを比較し、 小さい方の制御信号を最小 制御信号 F m i nとして最小信号出力手段 2 1へ出力するようになって いる。 つまり、 最小信号選択手段 2 0は、 操作部材操作量ベースの第 2 の制御信号 F②ー 1がバイパス流量ベースの第 1の制御信号 F①— 1よ りも小さい場合 (F②ー 1 < F ®— 1 ) は、 操作部材操作量ベースの第 2の制御信号 F②— 1を最小制御信号 F m i nとして最小信号出力手段 2 1へ出力し、 操作部材操作量ベースの第 2の制御信号 F②— 1がバイ パス流量ベースの第 1の制御信号 F①— 1よりも大きい場合 (F②— 1 > F ® _ 1 ) は、 バイパス流量ベースの第 1の制御信号 F①— 1を最小 制御信号 F m i nとして最小信号出力手段 2 1へ出力するようになって いる。  Here, the minimum signal selection means 20 includes a first control signal F①-1 from the bypass pressure corresponding tilt angle setting means 5 and a second control signal F② from the operation member corresponding tilt angle setting means 6. Compared with —1, the smaller control signal is output to the minimum signal output means 21 as the minimum control signal F min. In other words, the minimum signal selecting means 20 determines that the second control signal F②1 based on the operation member operation amount is smaller than the first control signal F①-1 based on the bypass flow rate (F 11 <F ®— 1) outputs the second control signal F②-1 based on the operation member operation amount to the minimum signal output means 21 as a minimum control signal Fmin, and outputs the second control signal F②-1 based on the operation member operation amount. If the bypass flow-based first control signal F①—1 is greater than (F②—1> F ® _ 1), the bypass flow-based first control signal F①—1 is the minimum control signal F min and the minimum signal Output to the output means 21.
具体的には、 最小信号選択手段 2 0は、 図 7 ( c ) に示すような作業 機 (油圧ァクチユエ一夕) の負荷圧力と作業機スピード (作業スピード) との関係を示す特性図に基づいてポンプ傾転角制御を行なうことで、 第 1の制御信号 F①— 1と第 2の制御信号 F②— 1とのうちのポンプ傾転 角を小にする制御信号 (ポンプ流量を少なくする制御信号) を使用して ポンプ傾転角 (ポンプ流量) 制御を行なうようになっている。  More specifically, the minimum signal selecting means 20 is based on a characteristic diagram showing the relationship between the load pressure of the working machine (hydraulic factory) and the working machine speed (working speed) as shown in FIG. 7 (c). Control signal to reduce the pump tilt angle of the first control signal F①-1 and the second control signal F②-1 (the control signal to reduce the pump flow rate). ) Is used to control the pump tilt angle (pump flow rate).
これにより、 図 7 ( c ) に示すように、 負荷圧力が減少すると、 第 1 の制御信号 F① _ 1はポンプ傾転角を大きくする方向に変化するが、 第 2の制御信号 F②— 1は負荷圧力の変動に無関係で一定であるから、 ポ ンプ傾転角が小となる信号 〔即ち、 第 2の制御信号 F②— 1〕 が選択使 用される。 したがって、 負荷圧力が減少した場合には、 第 2の制御信号 F②— 1によって制御されるので負荷圧力が変動しても最大作業機スピ ード (ポンプ流量) は変動しない。 As a result, as shown in FIG. 7 (c), when the load pressure decreases, the first control signal F①_1 changes in the direction to increase the pump tilt angle, while the second control signal F②-1 changes. Since it is constant regardless of load pressure fluctuation, The signal that makes the pump tilt angle small (that is, the second control signal F②-1) is selectively used. Therefore, when the load pressure decreases, the maximum work machine speed (pump flow rate) does not fluctuate even if the load pressure fluctuates, because it is controlled by the second control signal F②-1.
一方、 図 7 ( c ) に示すように、 負荷圧力が増加すると、 第 1の制御 信号 F①— 1はポンプ傾転角を小さくする方向に変化するが、 第 2の制 御信号 F②— 1は負荷圧力の変動に無関係で一定であるから、 第 1の制 御信号 F①— 1が第 2の制御信号 F②— 1よりも小さくなり、 ポンプ傾 転角が小となる信号 〔即ち、 第 1の制御信号 F①— 1〕 が選択使用され る。 したがって、 負荷圧力が増加するにしたがって作業機スピードが低 下し、 ォペレ一夕に負荷の大きさを感知させる (負荷感応フィーリング) 利点がある。  On the other hand, as shown in FIG. 7 (c), when the load pressure increases, the first control signal F①-1 changes in a direction to decrease the pump tilt angle, while the second control signal F②-1 Since the first control signal F①-1 is smaller than the second control signal F 負荷 -1 and is constant irrespective of the change in load pressure, a signal in which the pump tilt angle becomes smaller [ie, the first Control signal F①-1] is selected and used. Therefore, as the load pressure increases, the speed of the work equipment decreases, and there is an advantage that the magnitude of the load can be sensed throughout the operation (load-sensitive feeling).
このように、 図 7 ( c ) に示すような特性に基づいてポンプ傾転角制 御が行なうようにしたのは、 以下の理由による。  The pump tilt angle control is performed based on the characteristic shown in FIG. 7 (c) for the following reason.
ここで、 図 7 ( a ) は、 バイパス流量に逆比例する第 1の制御信号 F Here, Fig. 7 (a) shows the first control signal F that is inversely proportional to the bypass flow rate.
①— 1を使用してポンプ傾転角制御を行なう場合の負荷 (作業機にかか る負荷圧力) Wと作業機スピード (ポンプ傾転角, ポンプ流量) との関 係を示す図である。 なお、 図 7 ( a ) 中、 破線は操作部材 5 4の操作量 に応じた作業機の期待スピードを示している。 Fig. 6 is a diagram showing the relationship between the load (load pressure applied to the work implement) W and the work implement speed (pump displacement angle, pump flow rate) when performing the pump tilt angle control using ①-1. . In FIG. 7 (a), the broken line indicates the expected speed of the working machine according to the operation amount of the operation member 54.
上述のように ィパス流量は負荷圧力の影響を受けて変動するため、 バイパス流量ベースの第 1の制御信号 F①— 1に基づいて制御されるポ ンプ流量 (ポンプ傾転角) も変動してしまうことになる。 このため、 負 荷圧力に対する作業機スピードの関係は図 7 ( a ) に示すようになり、 作業機スピード (ポンプ傾転角, ポンプ流量) は負荷圧力の変動に伴つ て常時変動することになる。  As described above, the bypass flow rate varies under the influence of the load pressure, so that the pump flow rate (pump tilt angle) controlled based on the first control signal F①-1 based on the bypass flow rate also varies. Will be. Therefore, the relationship between the load pressure and the work implement speed is as shown in Fig. 7 (a), and the work implement speed (pump tilt angle, pump flow rate) constantly fluctuates as the load pressure fluctuates. Become.
このため、 負荷圧力が容易に変動するような作業機 (例えば、 慣性負 荷が主体の旋回系) においては作業機スピ一ドも変動することとなり、 これに起因してハンチング等の不具合が発生し易い。 つまり、 負荷圧力 によって変動するバイパス流量ベースの信号で制御されるポンプ流量 (ポンプ傾転角) 変動がハンチング現象を助長することになる。 For this reason, work equipment that can easily change the load pressure (eg, inertia load) In the case of a rotating system mainly composed of a load, the speed of the working machine also fluctuates, and as a result, problems such as hunting tend to occur. In other words, fluctuations in the pump flow rate (pump tilt angle) controlled by the bypass flow rate-based signal, which fluctuates with the load pressure, promote the hunting phenomenon.
一方、 上述のようなバイパス流量に逆比例する第 1の制御信号 F①ー On the other hand, the first control signal F−
1を使用してポンプ傾転角制御を行なう場合、 負荷圧力が比較的安定し て推移する粘性負荷が主体となる掘削作業等においては、 負荷 Wが大き くなると作業機スピードが低下して、 オペレー夕に負荷の大きさを感知 させる (負荷感応フィーリング) ことができる利点がある。 When performing pump tilt angle control using (1), in excavation work, etc., where viscous loads in which the load pressure changes relatively stably are mainly used, when the load W increases, the work equipment speed decreases. The advantage is that the magnitude of the load can be sensed during the operation (load-sensitive feeling).
これに対し、 各操作部材 5 4の操作量に正比例する第 2の制御信号 F On the other hand, the second control signal F directly proportional to the operation amount of each operation member 54
②— 1を使用した場合の負荷圧力に対する作業機スピードの関係は図 7 ( b ) に示すようになる。 つまり、 ポンプ流量 (ポンプ傾転角) は各操 作部材 5 4からの信号に基づいて制御され、 負荷圧力の変動には無関係 であるから、 作業機スピード (ポンプ流量) は、 図 7 ( b ) に示すよう に、 許容馬力範囲内において一定となる。 Fig. 7 (b) shows the relationship between the work pressure and the load pressure when using 1--1. In other words, the pump flow rate (pump tilt angle) is controlled based on the signal from each operating member 54 and is independent of the load pressure fluctuation. ), It is constant within the allowable horsepower range.
この場合、 負荷圧力の変動の影響を受けないので、 作業機スピードの 急変やハンチング等の不具合は生じないが、 反面、 オペレー夕に負荷の 大きさを感知させる (負荷感応フィーリング) 等の利点はない。  In this case, there is no problem such as a sudden change in the working machine speed or hunting because there is no effect of fluctuations in the load pressure, but on the other hand, advantages such as sensing the magnitude of the load during the operation (load-sensitive feeling). There is no.
このため、 本実施形態では、 ポジティブフローコントロールによる利 点とネガティブフローコントロールによる利点との双方を享受すること ができるようにすべく、 図 7 ( C ) に示すような特性に基づいてポンプ 傾転角制御を行なうようにしたのである。  For this reason, in the present embodiment, in order to be able to enjoy both the advantages of the positive flow control and the advantages of the negative flow control, the pump is tilted based on the characteristic shown in FIG. 7 (C). Angle control was performed.
これにより、 負荷 Wの減少に伴って作業機スピードの急増やこれに誘 発されるハンチング現象を抑制することができ、 さらに負荷 Wの増加に 伴って負荷感応フィ一リングを確保することができることになる。  As a result, it is possible to suppress a sudden increase in the working machine speed due to a decrease in the load W and a hunting phenomenon caused by the increase, and to ensure a load-sensitive filling with the increase in the load W. become.
このような制御は、 オペレータが中速程度の作業機スピードを得るこ とを目的として、 各操作部材 54を操作範囲の中間位置付近で一定に固 定している条件下でのポンプ傾転角制御に適している。 This type of control ensures that the operator achieves medium machine speed. For this purpose, it is suitable for pump tilt angle control under the condition that each operating member 54 is fixed at a fixed value near the middle position of the operating range.
要求傾転角比較手段 2 1は、 操作部材対応傾転角設定手段 6からの操 作部材操作量ベースの第 2の制御信号 F②— 1と、 所定値設定手段 2 3 により設定された所定値 F 1 a 1 1 owとを比較し、 この比較結果を最 小信号出力手段 22及び要求傾転角出力手段 24へ出力するものである これにより、 オペレータが要求している作業がどのような作業であるか が判定され、 最小信号選択手段 20により選択された制御信号 Fm i n と、 操作部材対応傾転角設定手段 6により設定された第 2の制御信号 F ②— 1とのいずれか一方の制御信号がポンプ傾転角制御信号として用い られることになる。  The required tilt angle comparing means 21 includes a second control signal F②-1 based on the operation member operation amount from the operating member corresponding tilt angle setting means 6 and a predetermined value set by the predetermined value setting means 23. F 1 a 1 1 ow and outputs the comparison result to the minimum signal output means 22 and the required tilt angle output means 24. Is determined, and either the control signal Fmin selected by the minimum signal selecting means 20 or the second control signal F2 set by the operating member corresponding tilt angle setting means 6 is selected. The control signal will be used as the pump tilt angle control signal.
なお、 操作部材操作量ベースの第 2の制御信号 F② _ 1は、 オペレー 夕による操作部材 54の操作量に応じたポンプ傾転角に相当するもので あるため、 オペレータの要求する要求傾転角に相当するポンプ傾転角制 御信号となる。  Since the second control signal F②_1 based on the operation member operation amount is equivalent to the pump tilt angle corresponding to the operation amount of the operation member 54 by the operator, the required tilt angle requested by the operator is used. Becomes the pump tilt angle control signal corresponding to.
ここでは、 要求傾転角比較手段 2 1は、 操作部材対応傾転角設定手段 6からの第 2の制御信号 F②— 1が所定値設定手段 2 3により設定され た所定値 F 1 a 1 l owよりも大きい (F②— l〉F l a l l ow) と 判定した場合は、その判定結果を最小信号出力手段 22へ出力する一方、 所定値設定手段 2 3により設定された所定値 F 1 a 1 1 owが操作部材 対応傾転角設定手段 6からの第 2の制御信号 F②ー 1よりも大きい (F ②— l<F l a l l ow) と判定した場合は、 その判定結果を要求傾転 角出力手段 24へ出力するようになっている。  Here, the required tilt angle comparing means 21 is configured to output the second control signal F②-1 from the operating member corresponding tilt angle setting means 6 to a predetermined value F 1 a 1 l set by the predetermined value setting means 23. If it is determined that the value is greater than ow (F②-l> F ll ow), the result of the determination is output to the minimum signal output means 22 while the predetermined value F 1 a 1 1 set by the predetermined value setting means 23 If it is determined that ow is larger than the second control signal F②-1 from the operation member corresponding tilt angle setting means 6 (F ②—l <F lall ow), the determination result is output to the required tilt angle output means. Output to 24.
このように、 オペレータの要求傾転角に相当する第 2の制御信号 F② _ 1が所定値? 1 & 1 1 ow以下の場合に、 第 1の制御信号 F①一 1の 如何に関わらず、 第 2の制御信号 F②— 1が選択されるようにしている のは、 第 2の制御信号 F②— 1を油圧ァクチユエ一夕 1 0 5〜 1 0 7, 1 0 9 Rのスピード制御のためのポンプ傾転角制御信号としてのスピー ド対応制御信号 F l 1 e v e rとしてポンプ傾転角 (ポンプ流量) 制御 を行なうことで、 微操作域での負荷変動に伴うポンプ制御に起因する作 業機スピード (作業スピード) の変化を抑制することができるようにす るためである。 つまり、 操作部材操作量ベースの第 2の制御信号 F②— 1は、 作業機 (油圧ァクチユエ一夕) の負荷圧力の変動に無関係で、 操 作部材操作量が一定であれば負荷 Wが変動しても一定であるため、 この 第 2の制御信号 F②— 1を用いてポンプ傾転角制御を行なうことで、 図 7 ( d ) に示すように、 負荷 Wが変動しても作業機スピード (ポンプ流 量, ポンプ傾転角) を一定とすることができ、 微操作域での負荷変動に 伴うポンプ傾転角制御に起因する作業機スピード (作業スピード) の変 化を抑制することができるのである。 なお、 図 7 ( d ) 中、 破線は所定 値 F 1 a 1 1 o wをポンプ傾転角制御信号としてポンプ傾転角制御を行 なった場合の負荷 Wに対する作業機スピードを示している。 Thus, the second control signal F②_1 corresponding to the tilt angle required by the operator is a predetermined value? When 1 & 1 1 ow or less, the second control signal F②-1 is selected regardless of the first control signal F①1 1 This is because the second control signal F②-1 is a speed control signal Fl 1 as a pump tilt angle control signal for the speed control of the hydraulic actuators 105 to 107, 109 R. By controlling the pump tilt angle (pump flow rate) as ever, it is possible to suppress changes in work machine speed (work speed) due to pump control due to load fluctuations in the fine operation range. That's why. In other words, the second control signal F②-1 based on the operation member operation amount is independent of the change in the load pressure of the work machine (the hydraulic actuator), and if the operation member operation amount is constant, the load W changes. Therefore, by performing the pump tilt angle control using the second control signal F②-1 as shown in FIG. 7 (d), even if the load W fluctuates, the working machine speed ( Pump flow rate and pump tilt angle) can be kept constant, and changes in work equipment speed (work speed) caused by pump tilt angle control due to load fluctuations in the fine operation range can be suppressed. It is. Note that, in FIG. 7D, the broken line indicates the work implement speed with respect to the load W when the pump tilt angle control is performed using the predetermined value F1a11ow as the pump tilt angle control signal.
これは、 各操作部材 5 4を所定値以下の操作範囲で一定に固定して、 吊り作業等の微速で、 且つ速度が変化しないように作業機 (油圧ァクチ ユエ一夕) を操作する場合に適している。  This is the case when operating the working machine (hydraulic factory) at a very low speed such as a suspending operation and at a constant speed, with each operating member 54 fixed at a fixed value within the operating range below a predetermined value. Are suitable.
ところで、所定値設定手段 2 3は、図 6に示すようなポンプ傾転角(ポ ンプ流量) の許容馬力特性 (馬力制限許容値) W 1におけるポンプ吐出 圧力の許容最高圧力点 P m a xでのポンプ許容傾転角(ポンプ許容流量) F l w以下の任意のポンプ傾転角 (所定傾転角) に相当する値として所 定値 F 1 a 1 1 o wを設定するものである。 なお、 所定値 F 1 a 1 1 o wは予め設定される。  By the way, the predetermined value setting means 23 determines the allowable horsepower characteristic (horsepower limit allowable value) of the pump tilt angle (pump flow rate) as shown in FIG. 6 at the allowable maximum pressure point Pmax of the pump discharge pressure at W1. The predetermined value F1a11ow is set as a value corresponding to an arbitrary pump tilt angle (predetermined tilt angle) equal to or less than the pump allowable tilt angle (pump allowable flow rate) Flw. The predetermined value F1a11ow is set in advance.
ここで、 ポンプ許容傾転角 (ポンプ許容流量) F l wは、 次式により 求められる。 F lw = Wl ÷Pma x Here, the pump allowable tilt angle (pump allowable flow rate) F lw is obtained by the following equation. F lw = Wl ÷ Pma x
このように、 所定値 F l a l 1 o wをポンプ許容傾転角 F 1 w以下の 任意のポンプ傾転角に相当する値として設定しているのは、 微操作域で の負荷変動に伴うポンプ制御に起因する作業機スピードの変化を抑制す るためである。  As described above, the predetermined value F lal 1 ow is set as a value corresponding to an arbitrary pump tilt angle equal to or smaller than the pump allowable tilt angle F 1 w, because the pump control accompanying the load fluctuation in the fine operation range is performed. This is to suppress the change in work machine speed caused by the
なお、所定値 F 1 a 1 1 owの設定は、 これに限られるものではなく、 各種作業機 (ツール) の特性に応じて任意に設定することもできる。 最小信号出力手段 22は、 最小信号選択手段 20からの最小制御信号 Fm i nを要求傾転角比較手段 2 1による判定結果に応じて最小値選択 手段 9へ出力する  The setting of the predetermined value F1a11ow is not limited to this, and may be set arbitrarily according to the characteristics of various working machines (tools). The minimum signal output means 22 outputs the minimum control signal Fmin from the minimum signal selection means 20 to the minimum value selection means 9 according to the determination result by the required tilt angle comparison means 21.
ものである。 つまり、 最小信号出力手段 22は、 最小信号選択手段 20 からの最小制御信号 Fm i nの最小値選択手段 9への出力を要求傾転角 比較手段 2 1による判定結果に応じて許容するものである。 Things. In other words, the minimum signal output means 22 permits the output of the minimum control signal Fmin from the minimum signal selection means 20 to the minimum value selection means 9 according to the determination result by the required tilt angle comparison means 21. .
このため、 最小信号出力手段 22には、 要求傾転角比較手段 2 1によ つて操作部材操作量ベースの第 2の制御信号 F②ー 1が所定値 F 1 a 1 1 0 wよりも大きい(F②— 1 >F 1 a 1 1 o w) と判定された場合に、 その判定結果が入力されるようになっており、 この信号が入力された場 合に、 最小信号選択手段 20からの最小制御信号 Fm i nをァクチユエ —夕のスピード制御のためのスピード対応制御信号 F 1 1 e V e rとし て最小値選択手段 9へ出力するようになっている。  For this reason, the minimum signal output means 22 supplies the second control signal F-1 based on the operation member operation amount by the required tilt angle comparison means 21 to be larger than the predetermined value F1a110w ( F②—1> F 1 a 1 1 ow), the judgment result is input, and when this signal is input, the minimum control from the minimum signal selecting means 20 is performed. The signal Fmin is output to the minimum value selection means 9 as a speed-related control signal F11eVer for speed control in the evening.
要求傾転角出力手段 24は、 要求傾転角比較手段 2 1によって所定値 F l a i l owが操作部材操作量ベースの第 2の制御信号 F②— 1より も大きい (F②— l <F l a l l ow) と判定された場合に、 その判定 結果が入力され、 これに応じて操作部材操作量ベースの第 2の制御信号 F②— 1をァクチユエ一夕のスピ一ド制御のためのスピード対応制御信 号 F 1 1 e V e rとして最小値選択手段 9へ出力するものである。 許容馬力対応傾転角設定手段 8は、 第 1油圧ポンプ 5 1の傾転角を制 御するためのポンプ傾転角制御信号として、 許容馬力制限ベースの許容 馬力対応制御信号 F 1 p o w e rを設定し、 この許容馬力対応制御信号 F 1 p 0 w e rを後述する最小値選択手段 9へ出力するものである。 ここで、 許容馬力制限ベースの許容馬力対応制御信号 F 1 p o w e r は、 第 1油圧ポンプ 5 1を駆動するエンジン 5 0の許容馬力に応じて制 限される上限のポンプ傾転角制御信号である。 つまり、 許容馬力制限べ ースの許容馬力対応制御信号 F 1 p o w e rは、 スピード対応ポンプ傾 転角設定手段 7により選択されるスピード対応制御信号 F 1 1 e V e r に応じて第 1油圧ポンプ 5 1のポンプ傾転角を制御した場合に、 第 1油 圧ポンプ 5 1を駆動するエンジン 5 0にかかる負荷 Wがエンジン 5 0の 許容馬力を越えないようにポンプ傾転角 (ポンプ流量) を制御するため のポンプ傾転角制御信号である。 The required displacement angle output means 24 outputs a predetermined value F lail ow larger than the second control signal F②-1 based on the operation member operation amount by the required displacement angle comparison means 21 (F②-l <F lall ow). Is determined, the result of the determination is input, and in response to this, the second control signal F 操作 -1 based on the operation member operation amount is changed to a speed-related control signal F for speed control of the actuator. It is output to the minimum value selection means 9 as 11 e Ver. The allowable horsepower corresponding tilt angle setting means 8 sets an allowable horsepower corresponding control signal F 1 power based on the allowable horsepower limit as a pump tilt angle control signal for controlling the tilt angle of the first hydraulic pump 51. Then, it outputs the permissible horsepower corresponding control signal F 1 p 0 wer to the minimum value selecting means 9 described later. Here, the allowable horsepower corresponding control signal F 1 power based on the allowable horsepower limit is an upper limit pump tilt angle control signal that is limited according to the allowable horsepower of the engine 50 that drives the first hydraulic pump 51. . That is, the control signal F 1 power corresponding to the allowable horsepower based on the allowable horsepower limit is set to the first hydraulic pump 5 according to the speed corresponding control signal F 11 eV er selected by the speed corresponding pump tilt angle setting means 7. When the pump tilt angle (1) is controlled, the pump tilt angle (pump flow rate) is adjusted so that the load W applied to the engine 50 that drives the first hydraulic pump 51 does not exceed the allowable horsepower of the engine 50. This is a pump tilt angle control signal for controlling.
このため、 許容馬力対応傾転角設定手段 8は、 図 8に示すように、 第 1油圧ポンプ 5 1を駆動するエンジン 5 0のエンジン馬力をベースにし て予め設定される許容馬力を記憶する許容馬力記憶部 8 Aと、 許容馬力 対応傾転角演算部 8 Bとを備えて構成され、 この許容馬力対応傾転角演 算部 8 Bには圧力センサ 7 2により検出されるポンプ吐出圧力信号が入 力されるようになっている。  For this reason, as shown in FIG. 8, the allowable horsepower corresponding tilt angle setting means 8 stores the allowable horsepower preset based on the engine horsepower of the engine 50 that drives the first hydraulic pump 51. The horsepower storage unit 8A and the permissible horsepower tilt angle calculation unit 8B are provided. The permissible horsepower tilt angle calculation unit 8B has a pump discharge pressure signal detected by the pressure sensor 72. Is input.
そして、 許容馬力対応傾転角演算部 8 Bは、 ポンプ許容馬力記憶部 8 The allowable horsepower corresponding tilt angle calculation unit 8B is provided with a pump allowable horsepower storage unit 8
Aからの許容馬力 W 1と、 圧力センサ 7 2からのポンプ吐出圧力 P 1と に基づいて、 許容馬力制限ベースの許容馬力対応制御信号 (許容流量対 応制御信号) F 1 p o w e rを、次式により算出するようになっている。 Based on the permissible horsepower W1 from A and the pump discharge pressure P1 from the pressure sensor 72, the permissible horsepower control signal based on the permissible horsepower limit (permissible flow rate control signal) F1power is expressed by the following equation. Is calculated by the following formula.
F 1 p o w e r = W 1 ÷ P 1  F 1 p o w e r = W 1 ÷ P 1
このようにして算出された許容馬力制限ベースの許容馬力対応制御信 号 F l p o w e rは、 図 8に示すような許容馬力制限ベースの許容馬力 対応制御信号 F 1 p o w e rとポンプ吐出圧力 P 1とを対応づけた特性 図として表される。 なお、 図 8に示した特性図において符号 Aで示す直 線部分はポンプの最大傾転角 (最大吐出流量) を示している。 The allowable horsepower limitation-based control signal Flpower calculated in this manner is based on the allowable horsepower limitation-based allowable horsepower as shown in Fig. 8. This is represented as a characteristic diagram in which the corresponding control signal F 1 power is associated with the pump discharge pressure P 1. Note that, in the characteristic diagram shown in FIG. 8, the straight line indicated by the symbol A indicates the maximum tilt angle (maximum discharge flow rate) of the pump.
最小値選択手段 9は、 スピード対応ポンプ傾転角設定手段 7により設 定されるスピード対応制御信号 F 1 1 e V e rと、 許容馬力対応傾転角 設定手段 8により設定される許容馬力対応制御信号 F 1 p o w e rとを 比較して、 ポンプ傾転角が小となる制御信号 (ポンプ流量が少なくなる 制御信号) を選択し、 これを最終的なポンプ傾転角制御信号 F p 1とし て設定して、 第 1油圧ポンプ 5 1へ出力するものである。  The minimum value selecting means 9 includes a speed corresponding control signal F11 eVer set by the speed corresponding pump tilt angle setting means 7 and an allowable horsepower corresponding control set by the allowable horsepower corresponding tilt angle setting means 8. Compare the signal F 1 power and select a control signal that reduces the pump tilt angle (a control signal that reduces the pump flow rate) and set this as the final pump tilt angle control signal F p 1 Then, the output is output to the first hydraulic pump 51.
第 2油圧ポンプ傾転角制御手段 4は、 上述の第 1油圧ポンプ傾転角制 御手段 3と同様に構成される。  The second hydraulic pump tilt angle control means 4 is configured similarly to the first hydraulic pump tilt angle control means 3 described above.
つまり、 第 2油圧ポンプ傾転角制御手段 4は、 図 1に示すように、 バ ィパス圧力対応傾転角設定手段 1 0と、 操作部材対応傾転角設定手段 1 1と、 スピード対応ポンプ傾転角設定手段 1 2と、 許容馬力対応傾転角 設定手段 1 3と、 最小値選択手段 1 4とを備えて構成され、 ポンプ傾転 角制御信号 F p 2を第 2油圧ポンプ 5 2へ出力するものである。  In other words, as shown in FIG. 1, the second hydraulic pump tilt angle control means 4 includes a bypass pressure setting tilt angle setting means 10, an operation member corresponding tilt angle setting means 11, and a speed corresponding pump tilt angle. It comprises a turning angle setting means 12, an allowable horsepower tilt angle setting means 13, and a minimum value selecting means 14, and sends a pump tilt angle control signal F p 2 to the second hydraulic pump 52. Output.
このうち、 バイパス圧力対応傾転角設定手段 1 0は、 バイパス圧力検 知信号ベースのポンプ傾転角を設定するもので、 このバイパス圧力対応 傾転角設定手段 5には、 図 4に示すように、 各操作部材 5 4の操作量に 応じて作動する各制御弁 6 2〜 6 5のバイパス通路 6 6 c内の作動油の 圧力を検知するバイパス圧力検知手段 8 2, 7 5としての圧力センサ 7 5から出力信号(E )が入力されるようになっており、この出力信号(E ) に逆比例する特性に基づいてポンプ傾転角 (ポンプ流量) を制御するた めポンプ傾転角制御信号としての第 1の制御信号 F①— 2を設定し、 ス ピード制御対応傾転角設定手段 1 2へ出力するようになっている。  Among these, the bypass pressure-dependent tilt angle setting means 10 sets the pump tilt angle based on the bypass pressure detection signal, and the bypass pressure-dependent tilt angle setting means 5 includes, as shown in FIG. In addition, the pressure as the bypass pressure detecting means 82, 75 for detecting the pressure of the hydraulic oil in the bypass passage 66c of each control valve 62 to 65 operated in accordance with the operation amount of each operating member 54 An output signal (E) is input from the sensor 75, and the pump tilt angle (pump flow rate) is controlled based on characteristics inversely proportional to the output signal (E). The first control signal F①-2 as a control signal is set and output to the speed control-compatible tilt angle setting means 12.
なお、 このようにバイパス通路 6 6 c内の作動油の流量に略逆比例す る特性の基づいて行なわれるポンプ傾転角制御 (ポンプ流量制御) をネ ガティブフローコントロールという。 ここで、 略逆比例する特性には、 一般的な逆比例特性としての曲線状の特性だけでなく、 例えば直線状に 変化する特性も含まれ、 この特性はバイパスの通路 6 6 c内の作動油の 圧力が大きくなるにつれてボンプ傾転角が小さくなるような特性であれ ば良い。 In this way, the flow rate is approximately inversely proportional to the flow rate of hydraulic oil in the bypass passage 66c. The pump tilt angle control (pump flow rate control) performed based on these characteristics is called negative flow control. Here, the substantially inversely proportional characteristic includes not only a curved characteristic as a general inverse proportional characteristic but also, for example, a characteristic that changes linearly, and this characteristic is determined by the operation in the bypass passage 66c. The characteristic should be such that the pump tilt angle decreases as the oil pressure increases.
ここで、 バイパス圧力検知手段 8 2 , 7 5は、 絞り 8 2と絞り 8 2の 上流部に位置する圧力センサ 7 5とによって構成され、 図 4に示すよう に、 絞り 8 2の通過流量(バイパス流量合算値) (D ) に比例して変化す る圧力センサ 7 5の出力信号 (E ) を検出するものである。 なお、 絞り 8 2の開口面積は固定値として予め設定される。  Here, the bypass pressure detecting means 82, 75 is composed of a restrictor 82 and a pressure sensor 75 located upstream of the restrictor 82, and as shown in FIG. It detects the output signal (E) of the pressure sensor 75 that changes in proportion to the sum of the bypass flow rates) (D). The aperture area of the stop 82 is set in advance as a fixed value.
このように絞り 8 2及び圧力センサ 7 5によりバイパス圧力検知手段 を構成しているのは、 上述のように、 各制御弁 6 2〜 6 5のバイパス通 路絞り 4 2は油路 6 6 cに対して直列に接続されており、 複数の操作部 材 5 4が同時に操作された時のバイパス流量は各制御弁 6 2〜6 5で順 次絞られた合算値 (D ) となってバイパス通路 6 6 cの下流に位置する 絞り 8 2に流入するようになっているため、 絞り 8 2の通過流量 (バイ パス流量合算値) Dが増加すれば絞り 8 2の上流側圧力は増加すること になる一方、 絞り 8 2の通過流量 (バイパス流量合算値) Dが減少すれ ば絞り 8 2の上流側圧力は減少することになり、 このように絞り 8 2の 通過流量に応じて増加したり減少したりする絞り 8 2の上流側圧力を圧 力センサ 7 5により検知するためである。  As described above, the restrictor 82 and the pressure sensor 75 constitute the bypass pressure detecting means because, as described above, the bypass restrictors 42 of the control valves 62 to 65 are connected to the oil passages 66c. Are connected in series, and the bypass flow rate when a plurality of operating members 54 are operated at the same time is the sum (D) of the throttled values by each of the control valves 62 to 65. Because it flows into the restriction 82 located downstream of the passage 66 c, if the flow rate through the restriction 82 (the sum of the bypass flow rates) D increases, the upstream pressure of the restriction 82 increases. On the other hand, if the flow rate through the throttle 82 (the sum of the bypass flow rates) D decreases, the pressure on the upstream side of the throttle 82 decreases, and thus increases in accordance with the flow rate through the throttle 82. This is because the pressure sensor 75 detects the pressure on the upstream side of the restrictor 82 that decreases or decreases.
操作部材対応傾転角設定手段 1 1には、 図 5に示すように、 操作部材 信号処理手段 2からの各制御弁 6 2〜6 5の制御信号 (各操作部材 5 4 の操作量) が入力されるようになっており、 これらの制御信号を用いて 各制御弁 6 2〜 6 5の制御信号 (各操作部材 5 4の操作量) に正比例す る特性に基づいて各制御弁 6 2〜 6 5を通じて各ァクチユエ一夕 1 0 6 , 1 0 9 L , 1 1 0へ供給する必要流量 (必要ポンプ傾転角) を求め、 こ れを操作部材操作量ベースのポンプ傾転角制御信号としての第 2の制御 信号 F②ー 2として設定し、 スピード制御対応傾転角設定手段 1 2へ出 力するものである。 As shown in FIG. 5, the tilt angle setting means 11 corresponding to the operating member receives control signals (operating amounts of the operating members 54) of the control valves 62 to 65 from the operating member signal processing means 2 as shown in FIG. These control signals are used in direct proportion to the control signals of the control valves 62 to 65 (the operation amounts of the operation members 54). The necessary flow rate (required pump tilt angle) to be supplied to each actuator 106, 109L, 110 through each control valve 62 to 65 is determined based on the characteristics This is set as a second control signal F-2 as a pump displacement angle control signal based on the manipulated variable, and is output to the speed control-compatible displacement angle setting means 12.
なお、 このように操作部材 5 4の操作量に略正比例する特性に基づい て行なわれるポンプ傾転角制御 (ポンプ流量制御) をポジティブフロー コントロールという。 ここで、 略正比例する特性には、 一般的な正比例 特性としての直線状の特性だけでなく、 例えば曲線状に変化する特性も 含まれ、 この特性は操作部材 5 4の操作量が大きくなるにつれてポンプ 傾転角が大きくなるような特性であれば良い。  The pump tilt angle control (pump flow rate control) performed based on the characteristic that is substantially directly proportional to the operation amount of the operation member 54 as described above is referred to as positive flow control. Here, the substantially directly proportional characteristic includes not only a linear characteristic as a general directly proportional characteristic but also, for example, a characteristic that changes in a curved shape, and this characteristic increases as the operation amount of the operation member 54 increases. Any characteristics may be used as long as the pump tilt angle becomes large.
また、 操作部材信号処理手段 2からの各制御弁 6 2〜 6 5の制御信号 (各操作部材 5 4の操作量) は、 例えば複数の油圧ァクチユエ一夕 1 0 6 , 1 0 9 L , 1 1 0が同時操作された場合には、 上述のように、 操作 部材信号処理手段 2により最適な流量配分がなされるようになつている ため、 この流量配分に応じた制御信号が操作部材対応傾転角設定手段 1 1へ入力されることになる。  Also, the control signals of the respective control valves 62 to 65 (the operation amounts of the respective operation members 54) from the operation member signal processing means 2 may be, for example, a plurality of hydraulic actuators 106, 109L, 1L. When 10 is simultaneously operated, the optimal flow distribution is performed by the operating member signal processing means 2 as described above, and thus a control signal corresponding to this flow distribution is transmitted to the operating member corresponding tilt. This is input to the turning angle setting means 11.
ここでは、各制御弁 6 2〜6 5の制御信号(各操作部材 5 4の操作量) に正比例する必要流量特性は、 図 5に示すように、 各制御弁 6 2〜6 5 毎に設定されている。 そして、 複数の操作部材 5 4が操作されて各制御 弁 6 2〜 6 5への制御信号が設定されると、 これに正比例する特性に基 づいて各制御弁 6 2〜6 5へ供給すべき必要流量を求め、 これらを合算 して、 油圧ポンプ 5 2により吐出すべきポンプ流量 (ポンプ傾転角) F ②— 2を算出するようにしている。  Here, the required flow rate characteristics that are directly proportional to the control signals of the control valves 62 to 65 (the operation amounts of the operation members 54) are set for each of the control valves 62 to 65 as shown in FIG. Have been. Then, when a plurality of operating members 54 are operated to set control signals to the control valves 62 to 65, the control signals are supplied to the control valves 62 to 65 based on the characteristic directly proportional to the control signals. The required flow rates to be obtained are obtained, and these are summed up to calculate the pump flow rate (pump tilt angle) F2—2 to be discharged by the hydraulic pump 52.
スピード対応ポンプ傾転角設定手段 1 2は、各ァクチユエ一夕 1 0 6, Speed-dependent pump tilt angle setting means 1 2
1 0 9 L , 1 1 0のスピード制御のために第 2油圧ポンプ 5 2のポンプ 傾転角を制御すべく、 ポンプ傾転角制御信号としてスピード対応制御信 号 F 2 1 e V e rを設定するものである。 1 9 L, 2 1 hydraulic pump for 110 speed control 5 2 pump In order to control the tilt angle, a speed-related control signal F21eVer is set as the pump tilt angle control signal.
ここで、 スピ一ド対応制御信号 F 2 1 e V e rは、 許容馬力以下の負 荷条件 (ポンプ運転条件) において、 各油圧ァクチユエ一夕 1 0 6, 1 0 9 L , 1 1 0のスピードを制御するために、 各操作部材 5 4の操作量 に応じてポンプ傾転角 (ポンプ流量) を制御するためのポンプ傾転角制 御信号である。  Here, the speed-related control signal F21eVer is set to a speed of 106, 109L, 110 of each hydraulic actuator under a load condition (pump operating condition) below the allowable horsepower. This is a pump tilt angle control signal for controlling the pump tilt angle (pump flow rate) in accordance with the operation amount of each operation member 54 in order to control the pump tilt angle.
ここでは、 スピード対応ポンプ傾転角設定手段 1 2は、 図 6に示すよ うに、 最小信号選択手段 2 0と、 要求傾転角比較手段 2 1と、 最小信号 出力手段 2 2と、 所定値設定手段 2 3と、 要求傾転角出力手段 2 4とを 備えて構成され、 ァクチユエ一夕のスピ一ド制御のためのポンプ傾転角 制御信号としてスピード対応制御信号 F 2 1 e V e rを設定し、 最小値 選択手段 1 4へ出力するものである。  Here, as shown in FIG. 6, the speed-dependent pump tilt angle setting means 12 includes a minimum signal selecting means 20, a required tilt angle comparing means 21, a minimum signal output means 22, and a predetermined value. It is provided with a setting means 23 and a required displacement angle output means 24 and is provided with a speed corresponding control signal F 21 eV er as a pump displacement angle control signal for speed control of the actuator. Set and output to the minimum value selection means 14.
このうち、 最小信号選択手段 2 0は、 バイパス圧力対応傾転角設定手 段 1 0からのバイパス流量ベースのポンプ傾転角制御信号としての第 1 の制御信号 F①ー 2と、 操作部材対応傾転角設定手段 1 1からの操作部 材操作量ベースのポンプ傾転角制御信号としての第 2の制御信号 F②ー 2との 2つの系統の制御信号の中から 1つの制御信号を選択するもので ある。  Among these, the minimum signal selecting means 20 includes a first control signal F−2 as a bypass flow rate based pump tilt angle control signal from the bypass pressure corresponding tilt angle setting means 10 and a tilt corresponding to the operation member. Operation section from shift angle setting means 1 A second control signal as a pump tilt angle control signal based on the operation amount of material, and selects one control signal from the two control signals F-2. It is.
なお、 第 1の制御信号 F①— 2はバイパス通路 6 6 c内の作動油の流 量に逆比例する特性に基づいてポンプ傾転角を制御する (ネガティブフ ローコントロール) ためのポンプ傾転角制御信号であり、 第 2の制御信 号 F②ー 2は操作部材 5 4の操作量に正比例する特性に基づいてポンプ 傾転角を制御する (ポジティブフローコントロール) ためのポンプ傾転 角制御信号であり、 最小信号選択手段 2 0は、 これらのネガティブフロ ーコントロールとポジティブフローコントロールとのいずれか一方を選 択するものであるため、 ネガコン Zポジコン選択手段ともいう。 Note that the first control signal F①-2 is a pump tilt angle for controlling the pump tilt angle (negative flow control) based on a characteristic that is inversely proportional to the flow rate of the hydraulic oil in the bypass passage 66 c. The second control signal F−2 is a pump tilt angle control signal for controlling the pump tilt angle (positive flow control) based on characteristics directly proportional to the operation amount of the operation member 54. Yes, the minimum signal selection means 20 selects either negative flow control or positive flow control. It is also called negative control Z positive control selection means.
ここでは、 最小信号選択手段 2 0は、 バイパス圧力対応傾転角設定手 段 1 0からの第 1の制御信号 F①ー 2と、 操作部材対応傾転角設定手段 1 1からの第 2の制御信号 F②— 2とを比較し、 小さい方の制御信号を 最小制御信号 F m i nとして最小信号出力手段 2 1へ出力するようにな つている。 つまり、 最小信号選択手段 2 0は、 操作部材操作量ベースの 第 2の制御信号 F②— 2がバイパス流量ベースの第 1の制御信号 F①— 2よりも小さい場合 (F②ー 2 < F (D— 2 ) は、 操作部材操作量ベース の第 2の制御信号 F②— 2を最小制御信号 F m i nとして最小信号出力 手段 2 1へ出力し、 操作部材操作量ベースの第 2の制御信号 F②— 2が バイパス流量ベースの第 1の制御信号 F①— 2よりも大きい場合 (F② — 2 > F ® _ 2 ) は、 バイパス流量べ一スの第 1の制御信号 F①ー 2を 最小制御信号 F m i nとして最小信号出力手段 2 1へ出力するようにな つている。  Here, the minimum signal selecting means 20 includes a first control signal F−2 from the bypass pressure corresponding tilt angle setting means 10 and a second control signal from the operating member corresponding tilt angle setting means 11. Compared with the signal F 比較 -2, the smaller control signal is output to the minimum signal output means 21 as the minimum control signal Fmin. In other words, the minimum signal selecting means 20 determines that the second control signal F②−2 based on the operation member operation amount is smaller than the first control signal F①−2 based on the bypass flow rate (F−2 <F (D− 2) outputs the second control signal F②—2 based on the operation member operation amount to the minimum signal output means 21 as the minimum control signal F min, and outputs the second control signal F②—2 based on the operation member operation amount. When the first control signal based on the bypass flow rate is larger than F①-2 (F②-2> F ® _ 2), the first control signal F-2 based on the bypass flow rate is minimized as the minimum control signal F min The signal is output to the signal output means 21.
具体的には、 最小信号選択手段 2 0は、 図 7 ( c ) に示すような作業 機 (油圧ァクチユエ一夕) の負荷圧力と作業機スピード (作業スピード) との関係を示す特性図に基づいてポンプ傾転角制御を行なうことで、 第 1の制御信号 F①— 2と第 2の制御信号 F②ー 2とのうちのポンプ傾転 角を小にする制御信号 (ポンプ流量を少なくする制御信号) を使用して ポンプ傾転角 (ポンプ流量) 制御を行なうようになっている。  More specifically, the minimum signal selecting means 20 is based on a characteristic diagram showing the relationship between the load pressure of the working machine (hydraulic factory) and the working machine speed (working speed) as shown in FIG. 7 (c). Control signal to reduce the pump tilt angle of the first control signal F①-2 and the second control signal F②-2 (the control signal to reduce the pump flow rate). ) Is used to control the pump tilt angle (pump flow rate).
これにより、 図 7 ( c ) に示すように、 負荷圧力が減少すると、 第 1 の制御信号 F①— 2はポンプ傾転角を大きくする方向に変化するが、 第 2の制御信号 F②— 2は負荷圧力の変動に無関係で一定であるから、 ポ ンプ傾転角が小となる信号 〔即ち、 第 2の制御信号 F②ー 2〕 が選択使 用される。 したがって、 負荷圧力が減少した場合には、 第 2の制御信号 F②ー 2によって制御されるので負荷圧力が変動しても最大作業機スピ ード (ポンプ流量) は変動しない。 As a result, as shown in FIG. 7 (c), when the load pressure decreases, the first control signal F①-2 changes in a direction to increase the pump tilt angle, while the second control signal F②-2 changes. Since it is constant irrespective of the change in the load pressure, a signal that makes the pump tilt angle small (that is, the second control signal F−2) is selectively used. Therefore, when the load pressure decreases, the maximum work machine speed is controlled even when the load pressure fluctuates because the load pressure is controlled by the second control signal F−2. Mode (pump flow rate) does not fluctuate.
一方、 図 7 ( c ) に示すように、 負荷圧力が増加すると、 第 1の制御 信号 F①— 2はポンプ傾転角を小さくする方向に変化するが、 第 2の制 御信号 F②ー 2は負荷圧力の変動に無関係で一定であるから、 第 1の制 御信号 F①— 2が第 2の制御信号 F②ー 2よりも小さくなり、 ポンプ傾 転角が小となる信号 〔即ち、 第 1の制御信号 F①ー 2〕 が選択使用され る。 したがって、 負荷圧力が増加するにしたがって作業機スピードが低 下し、 オペレータに負荷の大きさを感知させる (負荷感応フィーリング) 利点がある。  On the other hand, as shown in FIG. 7 (c), when the load pressure increases, the first control signal F①-2 changes in a direction to decrease the pump tilt angle, while the second control signal F②-2 Since the first control signal F①-2 is constant irrespective of the fluctuation of the load pressure, the first control signal F①-2 becomes smaller than the second control signal F 2-2, and the signal in which the pump tilt angle becomes small [ie, the first Control signal F-2] is selected and used. Therefore, there is an advantage that the work machine speed decreases as the load pressure increases, and the operator can sense the magnitude of the load (load-sensitive feeling).
このように、 図 7 ( c ) に示すような特性に基づいてポンプ傾転角制 御が行なうようにしたのは、 以下の理由による。  The pump tilt angle control is performed based on the characteristic shown in FIG. 7 (c) for the following reason.
ここで、 図 7 ( a ) は、 バイパス流量に逆比例する第 1の制御信号 F Here, Fig. 7 (a) shows the first control signal F that is inversely proportional to the bypass flow rate.
①— 2を使用してポンプ傾転角制御を行なう場合の負荷 (作業機にかか る負荷圧力) Wと作業機スピード (ポンプ傾転角, ポンプ流量) との関 係を示す図である。 なお、 図 7 ( a ) 中、 破線は操作部材 5 4の操作量 に応じた作業機の期待スピードを示している。 Fig. 6 is a diagram showing the relationship between the load (load pressure applied to the working machine) W and the working machine speed (pump tilt angle, pump flow rate) when performing the pump tilt angle control using (1) -2. . In FIG. 7 (a), the broken line indicates the expected speed of the working machine according to the operation amount of the operation member 54.
上述のように、バイパス流量は負荷圧力の影響を受けて変動するため、 バイパス流量ベースの第 1の制御信号 F①— 2に基づいて制御されるポ ンプ流量 (ポンプ傾転角) も変動してしまうことになる。 このため、 負 荷圧力に対する作業機スピードの関係は図 7 ( a ) に示すようになり、 作業機スピード (ポンプ傾転角, ポンプ流量) は負荷圧力の変動に伴つ て常時変動することになる。  As described above, since the bypass flow rate fluctuates under the influence of the load pressure, the pump flow rate (pump tilt angle) controlled based on the bypass flow rate-based first control signal F①-2 also fluctuates. Will be lost. Therefore, the relationship between the load pressure and the work implement speed is as shown in Fig. 7 (a), and the work implement speed (pump tilt angle, pump flow rate) constantly fluctuates as the load pressure fluctuates. Become.
このため、 負荷圧力が容易に変動するような作業機 (例えば、 慣性負 荷が主体の旋回系) においては作業機スピードも変動することとなり、 これに起因してハンチング等の不具合が発生し易い。 つまり、 負荷圧力 によって変動するバイパス流量ベースの信号で制御されるポンプ流量 (ポンプ傾転角) 変動がハンチング現象を助長することになる。 For this reason, in a working machine in which the load pressure fluctuates easily (for example, a turning system mainly composed of inertial load), the working machine speed also fluctuates, and as a result, problems such as hunting are likely to occur. . In other words, the pump flow rate controlled by the bypass flow rate based signal that varies with the load pressure (Pump tilt angle) The fluctuation promotes the hunting phenomenon.
一方、 上述のようなバイパス流量に逆比例する第 1の制御信号 F①— 2を使用してポンプ傾転角制御を行なう場合、 負荷圧力が比較的安定し て推移する粘性負荷が主体となる掘削作業等においては、 負荷 Wが大き くなると作業機スピードが低下して、 オペレータに負荷の大きさを感知 させる (負荷感応フィーリング) ことができる利点がある。  On the other hand, when the pump tilt angle control is performed using the first control signal F①−2 that is inversely proportional to the bypass flow rate as described above, the excavation is mainly performed by a viscous load whose load pressure changes relatively stably. In work, etc., there is an advantage that when the load W increases, the work machine speed decreases, and the operator can sense the magnitude of the load (load-sensitive feeling).
これに対し、 各操作部材 5 4の操作量に正比例する第 2の制御信号 F ②— 2を使用した場合の負荷圧力に対する作業機スピードの関係は図 7 ( b ) に示すようになる。 つまり、 ポンプ流量 (ポンプ傾転角) は各操 作部材 5 4からの信号に基づいて制御され、 負荷圧力の変動には無関係 であるから、 作業機スピード (ポンプ流量) は、 図 7 ( b ) に示すよう に、 許容馬力範囲内において一定となる。  On the other hand, the relationship between the load pressure and the working machine speed when the second control signal F2—2, which is directly proportional to the operation amount of each operation member 54, is as shown in FIG. 7 (b). In other words, the pump flow rate (pump tilt angle) is controlled based on the signal from each operating member 54 and is independent of the load pressure fluctuation. ), It is constant within the allowable horsepower range.
この場合、 負荷圧力の変動の影響を受けないので、 作業機スピードの 急変やハンチング等の不具合は生じないが、 反面、 オペレータに負荷の 大きさを感知させる (負荷感応フィーリング) 等の利点はない。  In this case, there is no problem such as a sudden change in the working machine speed or hunting because there is no effect of fluctuations in the load pressure. On the other hand, advantages such as allowing the operator to sense the magnitude of the load (load-sensitive feeling) are also obtained. Absent.
このため、 本実施形態では、 ポジティブフローコントロールによる利 点とネガティブフローコントロールによる利点との双方を享受すること ができるようにすべく、 図 7 ( c ) に示すような特性に基づいてポンプ 傾転角制御を行なうようにしたのである。  For this reason, in the present embodiment, in order to be able to enjoy both the advantages of the positive flow control and the advantages of the negative flow control, the pump is tilted based on the characteristics as shown in FIG. 7 (c). Angle control was performed.
これにより、 負荷 Wの減少に伴って作業機スピードの急増やこれに誘 発されるハンチング現象を抑制することができ、 さらに負荷 Wの増加に 伴って負荷感応フィ一リングを確保することができることになる。 このような制御は、 オペレータが中速程度の作業機スピードを得るこ とを目的として、 各操作部材 5 4を操作範囲の中間位置付近で一定に固 定している条件下でのボンプ傾転角制御に適している。  As a result, it is possible to suppress a sudden increase in the working machine speed due to a decrease in the load W and a hunting phenomenon induced by the increase, and also to secure a load-sensitive filling with the increase in the load W. become. Such control is intended to obtain a medium working machine speed by the operator, and the pump tilts under the condition that each operating member 54 is fixed at a fixed position near the middle position of the operating range. Suitable for angle control.
要求傾転角比較手段 2 1は、 操作部材対応傾転角設定手段 1 1からの 操作部材操作量ベースの第 2の制御信号 F②ー 2と、 所定値設定手段 2 3により設定された所定値 F 2 a 1 1 owとを比較し、 この比較結果を 最小信号出力手段 22及び要求傾転角出力手段 24へ出力するものであ る。 これにより、 オペレー夕が要求している作業がどのような作業であ るかが判定され、 最小信号選択手段 20により選択された制御信号 Fm i nと、 操作部材対応傾転角設定手段 1 1により設定された第 2の制御 信号 F②— 2とのいずれか一方の制御信号がポンプ傾転角制御信号とし て用いられることになる。 The required tilt angle comparing means 21 is provided from the operating member corresponding tilt angle setting means 11. The second control signal F−2 based on the operation member operation amount is compared with the predetermined value F 2 a 1 ow set by the predetermined value setting unit 23, and the comparison result is compared with the minimum signal output unit 22 and the request. This is output to the tilt angle output means 24. Thus, it is determined what kind of work the operator is requesting, and the control signal Fmin selected by the minimum signal selecting means 20 and the tilting angle setting means 11 corresponding to the operating member are used. One of the set second control signals F②−2 is used as the pump tilt angle control signal.
なお、 操作部材操作量ベースの第 2の制御信号 F②— 2は、 オペレー 夕による操作部材 54の操作量に応じたポンプ傾転角に相当するもので あるため、 オペレータの要求する要求傾転角に相当するポンプ傾転角制 御信号となる。  The second control signal F②−2 based on the operation member operation amount is equivalent to the pump tilt angle corresponding to the operation amount of the operation member 54 by the operator, and therefore, the required tilt angle requested by the operator is used. Becomes the pump tilt angle control signal corresponding to.
ここでは、 要求傾転角比較手段 2 1は、 操作部材対応傾転角設定手段 1 1からの第 2の制御信号 F② _ 2が所定値設定手段 2 3により設定さ れた所定値 F 2 a 1 l owよりも大きい (F②— 2>F 2 a l l ow) と判定した場合は、 その判定結果を最小信号出力手段 2 2へ出力する一 方、 所定値設定手段 2 3により設定された所定値 F 2 a 1 l owが操作 部材対応傾転角設定手段 1 1からの第 2の制御信号 F②— 2よりも大き レ (F②— 2<F 2 a l l ow) と判定した場合は、 その判定結果を要 求傾転角出力手段 24へ出力するようになっている。  Here, the required tilt angle comparing means 21 is configured such that the second control signal F②_ 2 from the operating member corresponding tilt angle setting means 11 is a predetermined value F 2 a set by the predetermined value setting means 23. If it is determined that the value is larger than 1 low (F②—2> F 2 all ow), the result of the determination is output to the minimum signal output means 22 while the predetermined value set by the predetermined value setting means 23 If it is determined that F 2 a 1 l ow is larger than the second control signal F②—2 from the tilting angle setting means 11 corresponding to the operation member 1 (F②—2 <F 2 all ow), the determination result Is output to the required tilt angle output means 24.
このように、 オペレータの要求傾転角に相当する第 2の制御信号 F② — 2が所定値 F 2 a l 1 ow以下の場合に、 第 1の制御信号 F① _ 2の 如何に関わらず、 第 2の制御信号 F②— 2が選択されるようにしている のは、第 2の制御信号 F②— 2を油圧ァクチユエ一夕 1 0 6, 1 09 L, 1 1 0のスピード制御のためのポンプ傾転角制御信号としてのスピード 対応制御信号 F 2 1 e V e rとしてポンプ傾転角 (ポンプ流量) 制御を 行なうことで、 微操作域での負荷変動に伴うポンプ制御に起因する作業 機スピード (作業スピード) の変化を抑制することができるようにする ためである。 つまり、 操作部材操作量ベースの第 2の制御信号 F② _ 2 は、 作業機 (油圧ァクチユエ一夕) の負荷圧力の変動に無関係で、 操作 部材操作量が一定であれば負荷 Wが変動しても一定であるため、 この第 2の制御信号 F②— 2を用いてポンプ傾転角制御を行なうことで、 図 7 ( d ) に示すように、 負荷 Wが変動しても作業機スピード (ポンプ流量, ポンプ傾転角) を一定とすることができ、 微操作域での負荷変動に伴う ポンプ傾転角制御に起因する作業機スピード (作業スピード) の変化を 抑制することができるのである。 なお、 図 7 ( d ) 中、 破線は所定値 F 2 a 1 1 o wをポンプ傾転角制御信号としてポンプ傾転角制御を行なつ た場合の負荷 Wに対する作業機スピードを示している。 As described above, when the second control signal F② — 2 corresponding to the operator's required tilt angle is equal to or less than the predetermined value F 2 al 1 ow, the second control signal F 2 — 2 regardless of the first control signal F① — 2 The second control signal F②-2 is selected so that the second control signal F を -2 is switched to the pump tilt for the speed control of the hydraulic actuator 106, 109 L, 110. Speed control signal as angle control signal Pump tilt angle (pump flow rate) control as F 2 1 e Ver By doing so, it is possible to suppress a change in the working machine speed (working speed) due to the pump control due to the load fluctuation in the fine operation range. In other words, the second control signal F②_2 based on the operation member operation amount is independent of the fluctuation of the load pressure of the work machine (hydraulic factory), and if the operation member operation amount is constant, the load W fluctuates. Since the pump tilt angle control is performed using the second control signal F②−2 as shown in FIG. 7 (d), the work implement speed (pump The flow rate and pump tilt angle) can be kept constant, and changes in the working machine speed (work speed) caused by pump tilt angle control due to load fluctuations in the fine operation range can be suppressed. Note that, in FIG. 7 (d), the broken line indicates the work machine speed with respect to the load W when the pump tilt angle control is performed using the predetermined value F 2 a 11 ow as the pump tilt angle control signal.
これは、 各操作部材 5 4を所定値以下の操作範囲で一定に固定して、 吊り作業等の微速で、 且つ速度が変化しないように作業機 (油圧ァクチ ユエ一夕) を操作する場合に適している。  This is the case when operating the working machine (hydraulic factory) at a very low speed such as a suspending operation and at a constant speed, with each operating member 54 fixed at a fixed value within the operating range below a predetermined value. Are suitable.
ところで、所定値設定手段 2 3は、図 6に示すようなポンプ傾転角(ポ ンプ流量) の許容馬力特性 (馬力制限許容値) W 2におけるポンプ吐出 圧力の許容最高圧力点 P m a Xでのポンプ許容傾転角(ポンプ許容流量) F 2 w以下の任意のポンプ傾転角 (所定傾転角) に相当する値として所 定値 F 2 a 1 1 o wを設定するものである。 なお、 所定値 F 2 a 1 1 o wは予め設定される。  By the way, the predetermined value setting means 23 calculates the allowable maximum horsepower characteristic (horsepower limit allowable value) W2 of the pump displacement angle (pump flow rate) as shown in FIG. The set value F2a11ow is set as a value corresponding to an arbitrary pump tilt angle (predetermined tilt angle) equal to or less than the pump allowable tilt angle (pump allowable flow rate) F2w. The predetermined value F2a11ow is set in advance.
ここで、 ポンプ許容傾転角 (ポンプ許容流量) F 2 wは、 次式により 求められる。  Here, the pump allowable tilt angle (pump allowable flow rate) F 2 w is obtained by the following equation.
F 2 w = W 2 ÷ P m a X  F 2 w = W 2 ÷ P m a X
このように、 所定値 F 2 a 1 1 o wをポンプ許容傾転角 F 2 w以下の 任意のポンプ傾転角に相当する値として設定しているのは、 微操作域で の負荷変動に伴うポンプ制御に起因する作業機スピードの変化を抑制す るためである。 As described above, the predetermined value F 2 a 1 1 ow is set as a value corresponding to an arbitrary pump tilt angle equal to or smaller than the allowable pump tilt angle F 2 w in the fine operation range. This is to suppress the change in work implement speed due to the pump control due to the load fluctuation.
なお、所定値 F 2 a 1 1 owの設定は、 これに限られるものではなく、 各種作業機 (ツール) の特性に応じて任意に設定することもできる。 最小信号出力手段 2 2は、 最小信号選択手段 20からの最小制御信号 The setting of the predetermined value F2a11ow is not limited to this, and can be arbitrarily set according to the characteristics of various working machines (tools). The minimum signal output means 22 is the minimum control signal from the minimum signal selection means 20.
Fm i nを要求傾転角比較手段 2 1による判定結果に応じて最小値選択 手段 14へ出力するものである。 つまり、 最小信号出力手段 22は、 最 小信号選択手段 20からの最小制御信号 Fm i nの最小値選択手段 14 への出力を要求傾転角比較手段 2 1による判定結果に応じて許容するも のである。 Fmin is output to the minimum value selecting means 14 in accordance with the determination result by the required tilt angle comparing means 21. That is, the minimum signal output means 22 allows the output of the minimum control signal Fmin from the minimum signal selection means 20 to the minimum value selection means 14 according to the determination result by the required tilt angle comparison means 21. is there.
このため、 最小信号出力手段 22には、 要求傾転角比較手段 2 1によ つて操作部材操作量ベースの第 2の制御信号 F② _ 2が所定値 F 2 a 1 1 o wよりも大きい(F②— 2>F 2 a l l ow) と判定された場合に、 その判定結果が入力されるようになっており、 この信号が入力された場 合に、 最小信号選択手段 2 0からの最小制御信号 Fm i nをァクチユエ —夕のスピード制御のためのスピード対応制御信号 F 2 1 e v e rとし て最小値選択手段 14へ出力するようになっている。  For this reason, the minimum signal output means 22 supplies the second control signal F②_ 2 based on the operation member operation amount by the required tilt angle comparison means 21 to be larger than the predetermined value F 2 a 11 ow (F② — 2> F 2 all ow), the judgment result is input. When this signal is input, the minimum control signal Fm from the minimum signal selection means 20 is input. in is output to the minimum value selection means 14 as a speed-related control signal F 21 ever for speed control in the evening.
要求傾転角出力手段 24は、 要求傾転角比較手段 2 1によって所定値 F 2 a 1 1 owが操作部材操作量ベースの第 2の制御信号 F②ー 2より も大きい (F②ー 2<F 2 a l l ow) と判定された場合に、 その判定 結果が入力され、 これに応じて操作部材操作量ベースの第 2の制御信号 F②ー 2をァクチユエ一夕のスピ一ド制御のためのスピード対応制御信 号 F 2 1 e V e rとして最小値選択手段 14へ出力するものである。 許容馬力対応傾転角設定手段 1 3は、 第 2油圧ポンプ 52の傾転角を 制御するためのポンプ傾転角制御信号として、 許容馬力制限べ一スの許 容馬力対応制御信号 F 2 p o we rを設定し、 この許容馬力対応制御信 号 F 2 p owe rを後述する最小値選択手段 14へ出力するものである。 ここで、 許容馬力制限ベースの許容馬力対応制御信号 F 2 p owe r は、 第 2油圧ポンプ 52を駆動するエンジン 50の許容馬力に応じて制 限される上限のポンプ傾転角制御信号である。 つまり、 許容馬力制限べ ースの許容馬力対応制御信号 F 2 p owe rは、 スピード対応ポンプ傾 転角設定手段 1 2により選択されるスピード対応制御信号 F 2 1 e V e rに応じて第 2油圧ポンプ 52のポンプ傾転角を制御した場合に、 第 2 油圧ポンプ 52を駆動するエンジン 50にかかる負荷 Wがエンジン 50 の許容馬力を越えないようにポンプ傾転角 (ポンプ流量) を制御するた めのポンプ傾転角制御信号である。 The required displacement angle output means 24 determines that the predetermined value F 2 a 1 ow by the required displacement angle comparison means 21 is larger than the second control signal F−2 based on the operation member operation amount (F−2 <F 2 all ow), the judgment result is input, and the second control signal F-2 based on the operation member operation amount is responded to the speed control for the speed control of the actuator. The control signal is output to the minimum value selecting means 14 as a control signal F21 eVer. The allowable horsepower corresponding tilt angle setting means 13 is used as a pump tilt angle control signal for controlling the tilt angle of the second hydraulic pump 52, as an allowable horsepower corresponding control signal F2po based on the allowable horsepower limit. Wer and the control signal The signal F 2 power is output to the minimum value selecting means 14 described later. Here, the allowable horsepower limit-based control signal F 2 power is an upper limit pump tilt angle control signal that is limited according to the allowable horsepower of the engine 50 that drives the second hydraulic pump 52. . In other words, the allowable horsepower corresponding control signal F2power based on the allowable horsepower limit is set to the second corresponding to the speed corresponding control signal F2 1 eVer selected by the speed corresponding pump tilt angle setting means 12. When the pump tilt angle of the hydraulic pump 52 is controlled, the pump tilt angle (pump flow rate) is controlled so that the load W applied to the engine 50 that drives the second hydraulic pump 52 does not exceed the allowable horsepower of the engine 50. This is a pump tilt angle control signal for the purpose.
このため、 許容馬力対応傾転角設定手段 1 3は、 図 8に示すように、 第 2油圧ポンプ 52を駆動するエンジン 50のエンジン馬力をベースに して予め設定される許容馬力を記憶する許容馬力記憶部 8 Aと、 許容馬 力対応傾転角演算部 8 Bとを備えて構成され、 この許容馬力対応傾転角 演算部 8 Bには圧力センサ 7 3により検出されるポンプ吐出圧力信号が 入力されるようになっている。  Therefore, as shown in FIG. 8, the allowable horsepower corresponding tilt angle setting means 13 stores an allowable horsepower preset based on the engine horsepower of the engine 50 that drives the second hydraulic pump 52. The vehicle includes a horsepower storage unit 8A and an allowable horsepower tilt angle calculation unit 8B. The allowable horsepower tilt angle calculation unit 8B includes a pump discharge pressure signal detected by the pressure sensor 73. Is entered.
そして、 許容馬力対応傾転角演算部 8 Bは、 ポンプ許容馬力記憶部 8 Aからの許容馬力 W 2と、 圧力センサ 73からのポンプ吐出圧力 P 2と に基づいて、 許容馬力制限ベースの許容馬力対応制御信号 (許容流量対 応制御信号) F 2 p owe rを、次式により算出するようになっている。  Based on the allowable horsepower W2 from the pump allowable horsepower storage unit 8A and the pump discharge pressure P2 from the pressure sensor 73, the allowable horsepower corresponding tilt angle calculation unit 8B The horsepower control signal (allowable flow control signal) F2power is calculated by the following equation.
F 2 p owe r =W2 ÷P 2  F 2 p owe r = W2 ÷ P 2
このようにして算出された許容馬力制限ベースの許容馬力対応制御信 号 F 2 p owe rは、 図 8に示すような許容馬力制限ベースの許容馬力 対応制御信号 F 2 p owe rとポンプ吐出圧力 P 2とを対応づけた特性 図として表される。 なお、 図 8に示した特性図において符号 Aで示す直 線部分はポンプの最大傾転角 (最大吐出流量) を示している。 最小値選択手段 1 4は、 スピード対応ポンプ傾転角設定手段 1 2によ り設定されるスピード対応制御信号 F 2 1 e V e rと、 許容馬力対応傾 転角設定手段 1 3により設定される許容馬力対応制御信号 F 2 p o w e rとを比較して、 ポンプ傾転角が小となる制御信号 (ポンプ流量が少な くなる制御信号) を選択し、 これを最終的なポンプ傾転角制御信号 F p 2として設定して、 第 2油圧ポンプ 5 2へ出力するものである。 The allowable horsepower limit-based control signal F2power calculated in this way is based on the allowable horsepower limit-based control signal F2power and the pump discharge pressure as shown in Fig. 8. It is represented as a characteristic diagram that associates P2 with P2. Note that, in the characteristic diagram shown in FIG. 8, the straight line indicated by the symbol A indicates the maximum tilt angle (maximum discharge flow rate) of the pump. The minimum value selecting means 14 is set by the speed corresponding control signal F 2 1 e Ver set by the speed corresponding pump tilt angle setting means 12 and the allowable horsepower corresponding tilt angle setting means 13. By comparing with the allowable horsepower control signal F 2 power, a control signal that reduces the pump tilt angle (a control signal that reduces the pump flow rate) is selected, and this is selected as the final pump tilt angle control signal F. This is set as p 2 and output to the second hydraulic pump 52.
なお、 ここでは、 ポンプ流量とポンプ傾転角とを対応するものとして 述べてきたが、 ポンプ流量とポンプ傾転角との換算はエンジン回転数セ ンサ (エンジン回転数検知手段) 7 1により検知されるエンジン回転数 に基づいてコントローラ 1により行なわれる。  Here, the description has been made assuming that the pump flow rate and the pump tilt angle correspond to each other. However, the conversion of the pump flow rate and the pump tilt angle is detected by the engine speed sensor (engine speed detecting means) 71. This is performed by the controller 1 based on the engine speed to be performed.
本実施形態にかかる建設機械の制御装置は、 上述のように構成される ため、 この制御装置によるポンプ傾転角 (ポンプ流量) の制御方法は、 以下のようにして行なわれる。  Since the control device of the construction machine according to the present embodiment is configured as described above, the control method of the pump tilt angle (pump flow rate) by this control device is performed as follows.
まず、 第 1油圧ポンプ傾転角制御手段 3のバイパス圧力対応傾転角設 定手段 5が、 第 1回路部 5 5の油路 (作動油給排通路, 作動油供給通路) 6 1の各制御弁 5 7〜6 0の下流側に配設されたバイパス圧力検知手段 としての圧力センサ 7 4により検出された作動油圧の検出信号を読み込 む。 同様に、 第 2油圧ポンプ傾転角制御手段 4のバイパス圧力対応傾転 角設定手段 1 0が、 第 2回路部 5 6の油路 (作動油給排通路, 作動油供 給通路) 6 6の各制御弁 6 2〜6 5の下流側に配設されたバイパス圧力 検知手段としての圧力センサ 7 5により検出された作動油の圧力の検出 信号を読み込む。 これらのステップを作動油圧力検出ステップという。 次に、 第 1油圧ポンプ傾転角制御手段 3のバイパス圧力対応傾転角設 定手段 5は、 この作動油の流量に略逆比例する特性に基づいてポンプ流 量 (ポンプ傾転角) を制御するための第 1の制御信号 (ポンプ傾転角制 御信号) F①ー 1を設定する。 同様に、 第 2油圧ポンプ傾転角制御手段 4のバイパス圧力対応傾転角設定手段 1 0は、 この作動油の流量に逆比 例する特性に基づいてポンプ流量 (ポンプ傾転角) を制御するための第 1の制御信号 (ポンプ傾転角制御信号) F① _ 2を設定する。 これらの ステップを第 1の制御信号設定ステップという。 First, the tilt angle setting means 5 corresponding to the bypass pressure of the first hydraulic pump tilt angle control means 3 is connected to the oil passages (hydraulic oil supply / discharge passage, hydraulic oil supply passage) 6 1 of the first circuit unit 55. A detection signal of the operating oil pressure detected by the pressure sensor 74 as bypass pressure detecting means disposed downstream of the control valves 57 to 60 is read. Similarly, the tilt angle setting means 10 corresponding to the bypass pressure of the second hydraulic pump tilt angle control means 4 is connected to the oil passage (hydraulic oil supply / discharge passage, hydraulic oil supply passage) of the second circuit portion 56. The control signal of the hydraulic oil detected by the pressure sensor 75 as the bypass pressure detecting means disposed downstream of each of the control valves 62 to 65 is read. These steps are called hydraulic oil pressure detection steps. Next, the tilt angle setting means 5 corresponding to the bypass pressure of the first hydraulic pump tilt angle control means 3 adjusts the pump flow rate (pump tilt angle) based on the characteristic substantially inversely proportional to the flow rate of the hydraulic oil. First control signal for controlling (pump tilt angle control signal) Set F-1. Similarly, the second hydraulic pump tilt angle control means The fourth tilt angle setting means 10 corresponding to the bypass pressure is provided with a first control signal (pump tilt angle) for controlling the pump flow rate (pump tilt angle) based on a characteristic inversely proportional to the hydraulic oil flow rate. Angle control signal) Set F①_2. These steps are called a first control signal setting step.
一方、 操作部材信号処理手段 2が各操作部材 5 4の操作量に応じた電 気信号を読み込み、 操作部材信号処理手段 2が、 各操作部材 5 4からの 電気信号に基づいて各制御弁 5 7〜6 0 , 6 2〜6 5の移動量を設定す る。  On the other hand, the operation member signal processing means 2 reads an electric signal corresponding to the operation amount of each operation member 54, and the operation member signal processing means 2 controls each control valve 5 based on the electric signal from each operation member 54. Set the travel distance of 7 to 60 and 62 to 65.
次に、 第 1油圧ポンプ傾転角制御手段 3の操作部材対応傾転角設定手 段 6が、 操作部材信号処理手段 2により設定された各制御弁 5 7〜 6 0 の移動量に相当する制御信号に基づいて操作部材操作量に略正比例する 特性に基づいてポンプ流量を制御するための第 2の制御信号 (ポンプ傾 転角制御信号) F②ー 1を設定する。 同様に、 第 2油圧ポンプ傾転角制 御手段 4の操作部材対応傾転角設定手段 1 1が、 操作部材信号処理手段 2により設定された各制御弁 6 2〜6 5の移動量に相当する制御信号に 基づいて操作部材操作量に略正比例する特性に基づいてポンプ流量を制 御するための第 2の制御信号 (ポンプ傾転角制御信号) F②ー 2を設定 する。 これらのステップを第 2の制御信号設定ステップという。  Next, the operation member corresponding tilt angle setting means 6 of the first hydraulic pump tilt angle control means 3 corresponds to the movement amount of each of the control valves 57 to 60 set by the operation member signal processing means 2. Set a second control signal (pump tilt angle control signal) F-1 for controlling the pump flow rate based on a characteristic that is substantially directly proportional to the operation amount of the operation member based on the control signal. Similarly, the tilt angle setting means 11 corresponding to the operation member of the second hydraulic pump tilt angle control means 4 corresponds to the movement amount of each control valve 62 to 65 set by the operation member signal processing means 2. Set a second control signal (pump tilt angle control signal) F②-2 for controlling the pump flow rate based on a characteristic that is substantially directly proportional to the operation amount of the operation member based on the control signal to be performed. These steps are called a second control signal setting step.
そして、 第 1油圧ポンプ傾転角制御手段 3のスピード制御対応傾転角 設定手段 7が、 第 1の制御信号設定ステップで設定された第 1の制御信 号 F①ー 1及び第 2の制御信号設定ステップで設定された第 2の制御信 号 F②— 1のいずれか一方の制御信号を選択し、 許容馬力範囲内で、 こ の選択された制御信号に基づいて油圧ポンプ 5 1のポンプ傾転角 (ボン プ流量) を制御する。 同様に、 第 2油圧ポンプ傾転角制御手段 4のスピ ード制御対応傾転角設定手段 1 2が第 1の制御信号設定ステップで設定 された第 1の制御信号 F①ー 2及び第 2の制御信号設定ステップで設定 された第 2の制御信号 F②— 2のいずれか一方の制御信号を選択し、 許 容馬力範囲内で、 この選択された制御信号に基づいて油圧ポンプ 5 2の ポンプ傾転角 (ポンプ流量) を制御する。 これらのステップをポンプ流 量制御ステップという。 Then, the tilt control angle setting means 7 corresponding to the speed control of the first hydraulic pump tilt angle control means 3 outputs the first control signal F-1 and the second control signal set in the first control signal setting step. One of the second control signals F②-1 set in the setting step is selected, and within the allowable horsepower range, the hydraulic pump 51 is tilted based on the selected control signal. Controls the angle (pump flow). Similarly, the speed control-compatible tilt angle setting means 12 of the second hydraulic pump tilt angle control means 4 controls the first control signal F−2 and the second control signal F−2 set in the first control signal setting step. Set in control signal setting step The selected second control signal F②-2 is selected, and within the allowable horsepower range, the pump tilt angle (pump flow rate) of the hydraulic pump 52 based on the selected control signal is selected. Control. These steps are called pump flow control steps.
具体的には、ポンプ流量制御ステップで、第 1の制御信号 F① _ 1 ( F Specifically, in the pump flow control step, the first control signal F① _ 1 (F
①— 2 ) 及び第 2の制御信号 F②ー 1 ( F②ー 1 ) のうちポンプ流量を 少なくする制御信号を選択する。 Select the control signal that reduces the pump flow rate from ①- 2) and the second control signal F-1 (F-1).
したがって、 本建設機械の制御装置及びその制御方法によれば、 作動 油給排通路 6 1 b, 6 1 cの制御弁 5 7〜 6 0 , 6 2〜 6 5の下流側の 作動油の圧力を圧力センサ 7 4により検出し、 この圧力センサ 7 4によ り検出される圧力に相当するバイパス流量に略逆比例する特性に基づい て油圧ポンプ 5 1, 5 2のポンプ傾転角 (ポンプ流量) を制御するため の第 1の制御信号 F①— 1, F① _ 2及び各操作部材 5 4の操作量に略 正比例する特性に基づいて油圧ポンプ 5 1 , 5 2のポンプ傾転角 (ボン プ流量) を制御するための第 2の制御信号 F②— 1, F②ー 2のいずれ か一方の制御信号を選択して油圧ポンプ 5 1, 5 2からの作動油の吐出 流量を制御するように構成されているため、 オペレータの好みに応じて ポジティブフローコントロールとネガティブフ口一コントロールとを使 い分けることができ、 運転フィーリングを向上させることができるとい う利点がある。  Therefore, according to the control device and the control method thereof of the present construction machine, the pressure of the hydraulic oil downstream of the control valves 57 to 60 and 62 to 65 of the hydraulic oil supply / discharge passages 61 b and 61 c Is detected by the pressure sensor 74, and the pump tilt angles (pump flow rate) of the hydraulic pumps 51 and 52 are determined based on a characteristic substantially inversely proportional to the bypass flow rate corresponding to the pressure detected by the pressure sensor 74. ) Of the hydraulic pumps 51 and 52 based on the first control signals F①-1, F①_2 and the characteristics that are substantially directly proportional to the operation amounts of the operation members 54. The second control signal is used to control the discharge flow rate of hydraulic oil from the hydraulic pumps 51 and 52 by selecting one of the control signals F②-1 and F②-2. Positive flow control and negative flow control according to the operator's preference. Can be divided have used the Control is advantageous cormorants have to be able to improve the driving feeling.
また、 掘削作業や吊り作業等の作業に応じてポジティブフローコント ロールとネガティブフローコントロールとを使い分けることで、 それぞ れのポンプ傾転角制御による不利な点を他の制御で補うことができると いう利点がある。 つまり、 例えばオペレータが一定の作業機スピードで 作業を行なおうとしている場合や吊り作業等 (操作部材の中間操作域や 微操作域)においてはポジティブフローコントロールを選択することで、 ネガティブフローコントロールの不利な点である油圧ァクチユエ一夕 1 0 5〜 1 0 7, 1 09 R, 1 09 L, 1 1 0にかかる負荷の減少に伴つ て油圧ァクチユエ一夕 1 0 5〜: 1 07, 1 09 R, 1 09 L, 1 1 0の 作動スビードが急増したり、 これに誘発されてハンチング現象が生じた りするのを抑制することができる。 In addition, by selectively using positive flow control and negative flow control depending on the work such as excavation work and suspension work, the disadvantages of each pump tilt angle control can be compensated by other controls. There are advantages. In other words, for example, when the operator intends to perform work at a fixed work machine speed, or in a hanging work (intermediate operation area or fine operation area of the operation member), by selecting the positive flow control, Hydraulic factories, which are disadvantages of negative flow control 105-107, 109R, 109L, 110 Hydraulic factories 105- It is possible to suppress a sudden increase in the operating bead of 107, 109 R, 109 L, 110 and a hunting phenomenon caused by this.
例えば、 ブームアップ微操作とスティックァゥト微操作とを同時に行 なってスティック 1 04の先端に吊り下げた吊り荷を吊り上げる作業を 行なう場合、 スティック 1 04が図 9中、 d方向へ回動するにしたがつ て荷重作用点が旋回中心に近づくため、 ブ一ムシリンダ 1 05及びステ イツクシリンダ 1 06へ作用する負荷が減少することになるが、 このよ うな作業においてポジティブフローコントロールを選択することで、 ブ 一ムシリンダ 1 0 5及びスティックシリンダ 1 0 5の作業スピードが急 増したり、 これに起因してハンチング減少が生じてしまうのを抑制する ことができるのである。  For example, when performing a boom-up fine operation and a stick-art fine operation at the same time to lift a suspended load suspended at the tip of the stick 104, the stick 104 rotates in the direction d in FIG. Therefore, since the load application point approaches the center of rotation, the load acting on the bump cylinder 105 and the stake cylinder 106 decreases.However, by selecting positive flow control in such work, Thus, it is possible to suppress a sudden increase in the working speed of the cylinder 105 and the stick cylinder 105 and a reduction in hunting due to the increase in the working speed.
逆に、 例えばスティック 1 04が図 9中、 C方向へ回動するにしたが つて荷重作用点が旋回中心から遠ざかるため、 ブームシリンダ 1 0 5及 びスティックシリンダ 1 06へ作用する負荷が増大することになるが、 このような作業においてポジティブフ口一コントロールを選択すること で、 ブームシリンダ 1 05及びスティックシリンダ 1 05の作業スピー ドが低下したり、 吊り作業時の作業条件 (即ち、 操作部材操作量や荷重 の大きさ) によってブーム 1 0 3ゃスティック 1 04の作動がストップ してしまうのを防止することができるのである。  Conversely, for example, as the stick 104 rotates in the direction C in FIG. 9, the load acting point moves away from the center of rotation, so that the load acting on the boom cylinder 105 and the stick cylinder 106 increases. However, by selecting the positive mouth control in such a work, the working speed of the boom cylinder 105 and the stick cylinder 105 is reduced, and the working conditions during the lifting work (that is, operating members) It is possible to prevent the operation of the boom 103 0 stick 104 from being stopped due to the operation amount or the magnitude of the load).
一方、 例えば掘削作業等においてネガティブフローコントロールを選 択することで、 ポジティブフローコントロールでは得られない油圧ァク チユエ一夕 1 05〜 1 07 , 1 09 R, 1 0 9 L, 1 1 0にかかる負荷 の増加に伴って油圧ァクチユエ一夕 1 0 5〜 1 0 7, 1 0 9 R, 1 0 9 L , 1 1 0の作動スピードを減少させることによる負荷感応フィ一リン グを確保することができるという利点がある。 例えば、 操作部材 5 4を 中間操作量としてスティックイン操作を行なって掘削作業を行なってい る場合に、 地中の埋設物 (例えばパイプ等) に接触して負荷が大きくな ると、 ポンプ流量を減少させるように作用する、 これによりスティック インスピードが減少することになる。 これにより、 オペレータはこのス ティックィンスピードの変化を感知してスティックイン操作の中断又は 修正を行なうことが可能となるという有利な面がある。 On the other hand, for example, selecting negative flow control in excavation work, etc., will result in a hydraulic actuator that cannot be obtained with positive flow control. As the load increases, hydraulic actuators 105-107, 109 R, 109 There is an advantage that load-sensitive filling by reducing the operating speed of L, 110 can be ensured. For example, when excavation work is performed by performing stick-in operation using the operation member 54 as an intermediate operation amount, if the load increases due to contact with an underground object (for example, a pipe), the pump flow rate is reduced. Acts to reduce, which will reduce stick-in speed. Thus, there is an advantageous aspect that the operator can interrupt or correct the stick-in operation by sensing the change in the stick-in speed.
これにより、 オペレー夕の意図した操作を行なうことができ、 操作性 の面で好ましく、 また作業機の作動スピードが急激に変化してしまうの を抑制できるため、 安全性の面でも好ましい。  As a result, the intended operation of the operator can be performed, which is preferable in terms of operability. Also, it is possible to suppress a sudden change in the operating speed of the working machine, which is also preferable in terms of safety.
また、 第 1の制御信号 F①— 1 , F①— 2及び第 2の制御信号 F②— 1 , F②— 2のうちポンプ流量を少なくする制御信号を選択して油圧ポ ンプ 5 1 , 5 2からの作動油の吐出流量を制御するため、 例えば掘削作 業や吊り作業等の作業に応じて油圧ァクチユエ一夕 1 0 5〜1 0 7 , 1 0 9 R , 1 0 9 L , 1 1 0にかかる負荷が変動するが、 この負荷の変動 に応じてポジティブフローコントロールとネガティブフローコント口一 ルとを自動的に切り替えることができるという利点がある。 また、 第 1 の制御信号 F①— 1, F① _ 2と第 2の制御信号 F② _ 1 , F② _ 2と を比較して、 第 1の制御信号 F①— 1, F①— 2及び第 2の制御信号 F ②— 1, F②ー 2のうちポンプ流量を少なくする制御信号を選択するた め、 ポジティブフローコン卜ロールとネガティブフローコントロールと の切り替えを簡素な構成で行なえるという利点もある。  Further, a control signal for decreasing the pump flow rate is selected from the first control signal F①-1 and F①-2 and the second control signal F②-1 and F②-2, and the control signal from the hydraulic pumps 51 and 52 is selected. In order to control the hydraulic oil discharge flow, it takes about 105 to 107, 109R, 109L, 110H for the hydraulic actuators depending on the work such as excavation work and lifting work. Although the load fluctuates, there is an advantage that the positive flow control and the negative flow control can be automatically switched according to the fluctuation of the load. Further, the first control signals F①−1, F①_2 and the second control signals F②_1, F②_2 are compared with each other, and the first control signals F①−1, F②−2 and the second control signal F①−1, F②_2 are compared with each other. Since the control signal that reduces the pump flow rate is selected from the signal F 2-1 and F-2, there is also an advantage that switching between positive flow control and negative flow control can be performed with a simple configuration.
さらに、 第 2の制御信号 F②ー 1, F②— 2が所定値 F 1 a 1 l o w ( F 2 a 1 l o w) よりも小さい場合は第 2の制御信号 F②— 1 , F② Further, when the second control signals F②-1 and F②-2 are smaller than a predetermined value F 1 a 1 low (F 2 a 1 low), the second control signals F②-1 and F②
- 2を選択して油圧ポンプ 5 1 , 5 2からの作動油の吐出流量を制御す るため、 オペレータからの要求ポンプ流量が所定ポンプ流量よりも少な い場合は操作部材 5 4の操作量に略正比例する特性に基づいてポンプ流 量が制御され、 例えば吊り作業等のようにオペレータが操作部材 5 4を 微操作する微操作域での負荷変動に伴う油圧ァクチユエ一夕 1 0 5〜 1 0 7, 1 0 9 R , 1 0 9 L , 1 1 0の作動スピードの変化を抑制するこ とができるという利点もある。 -2 to control the discharge flow rate of hydraulic oil from hydraulic pumps 51 and 52 Therefore, when the pump flow rate requested by the operator is smaller than the predetermined pump flow rate, the pump flow rate is controlled based on a characteristic that is substantially directly proportional to the operation amount of the operation member 54. Suppress changes in the operating speed of hydraulic actuators 105 to 107, 109R, 109L, 110H due to load fluctuations in the fine operation area where the operating member 54 is finely operated. There is also the advantage of being able to do this.
さらに、 第 1の制御信号 F① _ 1, F①ー 2と第 2の制御信号 F②— 1, F②一 2とを選択的に使用することをコントロ一ラ 1のソフトゥェ ァで行なうようにしているため、 制御弁やポンプ等のハードウエアを変 更することなく、 例えばオペレー夕の好みや特殊ツール (八ンマー, グ ラップル等) の操作等の特殊な要求にも容易に対応できるという利点も ある。  Further, since the first control signal F①_1, F①2 and the second control signal F②-1, F②1-2 are selectively used by the software of the controller 1, Another advantage is that it can easily respond to special requirements such as operating preferences and operation of special tools (e.g., hammer, grapple, etc.) without changing hardware such as control valves and pumps.
なお、 上述の実施形態では、 スピード制御対応傾転角設定手段 7の最 小信号選択手段 2 0によってバイパス流量に逆比例する第 1の制御信号 (ネガティブフローコントロール) と操作部材操作量に正比例する第 2 の制御信号 (ポジティブフローコントロール) とのうちの小さい方の制 御信号を選択するようにしているが、 制御信号の選択方法はこれに限ら れるものではなく、 オペレータの好みや特殊ツール (ハンマー, グラッ プル等) の操作に対応するために、 例えばオペレー夕が操作しうる選択 用スィッチ等を設け、 この選択用スィッチを操作することで、 バイパス 流量に逆比例する第 1の制御信号のみを使用するポンプ傾転角制御 (ネ ガティブフローコントールのみ) と、 操作部材操作量に正比例する第 2 の制御信号のみを使用してポンプ傾転角制御 (ポジティブフローコント ロールのみ) とを選択できるように構成することもできる。  In the above-described embodiment, the first control signal (negative flow control) inversely proportional to the bypass flow rate and the operation member operation amount are directly proportional to the first control signal (negative flow control) by the minimum signal selection means 20 of the speed control corresponding tilt angle setting means 7. Although the smaller control signal is selected from the second control signal (positive flow control), the control signal selection method is not limited to this, and the operator's preference and special tool ( In order to respond to the operation of the hammer, the grapple, etc., for example, a selection switch that can be operated by the operator is provided. By operating this selection switch, only the first control signal inversely proportional to the bypass flow rate is provided. Using the pump tilt angle control (only for negative flow control) and the second control signal that is directly proportional to the operation amount of the operating member. May be to use a configuration can be selected and a pump tilting angle control (positive flow control only).
また、上述の実施形態では、スピード制御対応傾転角設定手段 7では、 最小信号選択手段 2 0を用いて設定されたポンプ傾転角制御信号 F m i nと、 操作部材対応傾転角設定手段 6を用いて設定されたポンプ傾転角 制御信号 F② _ 1 ( F②ー 2 ) とのうちのいずれかのポンプ傾転角制御 信号を要求傾転角比較手段 2 1による判定結果に基づいて選択するよう になっているが、 これに限られるものではなく、 最小信号選択手段 2 0 を用いて設定されたポンプ傾転角制御信号 F m i nと、 操作部材対応傾 転角設定手段 6を用いて設定されたポンプ傾転角制御信号 F②— 1 ( F ②— 2 ) とのうちのいずれかのポンプ傾転角制御信号を用いるかの選択 をオペレータの要求する作業毎に行なうことも可能である。 Further, in the above-described embodiment, the tilt angle setting means 7 corresponding to the speed control sets the pump tilt angle control signal F mi set using the minimum signal selecting means 20. n and the pump tilt angle control signal F② _ 1 (F②2) set using the tilt angle setting means 6 corresponding to the operation member. The selection is made based on the determination result by the comparing means 21, but is not limited to this, and the pump tilt angle control signal F min set by using the minimum signal selecting means 20 and the operation The operator selects whether to use any one of the pump tilt angle control signals F ②-1 (F ②-2) set using the member corresponding tilt angle setting means 6. It is also possible to perform each required operation.
例えば、 オペレータによる操作部材の操作量に基づいて設定されるポ ンプ傾転角 (要求傾転角) が所定値 F 1 a 1 l o w ( F 2 a 1 l o w) よりも小さいか否かを判定することでオペレータが要求している作業を 判定する要求傾転角比較手段 2 1の代わりに、 オペレータによる各操作 部材の操作に応じた各操作部材からの電気信号に基づいてオペレータが 要求している作業を判定する要求作業判定手段を設け、 この要求作業判 定手段の判定結果に基づいて、 最小信号選択手段 2 0を用いて設定され たポンプ傾転角制御信号と、 操作部材対応傾転角設定手段 6を用いて設 定されたポンプ傾転角制御信号とのうちのいずれかのポンプ傾転角制御 信号を用いるかの選択を行なうようにしても良い。  For example, it is determined whether or not the pump tilt angle (required tilt angle) set based on the operation amount of the operation member by the operator is smaller than a predetermined value F1a1low (F2a1low). Therefore, instead of the required tilt angle comparing means 21 which determines the operation requested by the operator, the operator makes a request based on an electric signal from each operation member according to the operation of each operation member by the operator. A request work determining means for determining the work; a pump tilt angle control signal set by using the minimum signal selecting means based on the determination result of the required work determining means; and a tilt angle corresponding to the operation member. A selection may be made as to which of the pump tilt angle control signals set using the setting means 6 is to be used.
この場合、 主として掘削作業時に行なわれるスティックインやバケツ トインが行なわれた場合には要求作業判定手段により掘削作業等である と判定され、 この判定結果に基づいて最小信号選択手段 2 0を用いたポ ンプ傾転角の設定 〔図 7 ( c ) に示す特性に基づくポンプ傾転角の設定〕 を行なうとともに、 吊り作業時に行なわれるブームアップ及びスティッ クァゥトが行なわれた場合には要求作業判定手段により吊り作業等であ ると判定され、 この判定結果に基づいて要求傾転角比較手段 2 1を用い たポンプ傾転角の設定 〔図 7 ( d ) に示す特性に基づくポンプ傾転角の 設定〕 を行なう等の使い分けを行なうことができる。 なお、 要求作業判 定手段を、 トラックローデイングモード (ブーム優先モード) , トレン チングモード (スウィング優先モード) , レべリングモード, タンピン グモ一ド等の複数のワークモ一ドスィツチからの信号に基づいてォペレ —夕が要求している作業を判定するものとして構成しても良い。 産業上の利用可能性 In this case, when stick-in or bucket-in performed mainly during excavation work is performed, the required work determination means determines that the work is excavation work, and the minimum signal selection means 20 is used based on the determination result. In addition to setting the pump tilt angle (setting the pump tilt angle based on the characteristics shown in Fig. 7 (c)), if the boom-up and stick-out performed during the lifting work are performed, the required work determination means Is determined to be a lifting operation, etc., and based on the result of this determination, setting of the pump tilt angle using the required tilt angle comparing means 21 (the pump tilt angle based on the characteristics shown in FIG. Settings]. The required work determination means is based on signals from a plurality of work mode switches such as a truck loading mode (boom priority mode), a trenching mode (swing priority mode), a leveling mode, and a tamping mode. Operet — It may be configured to determine the work that Evening is requesting. Industrial applicability
以上のように、 本発明の建設機械の制御装置及び制御方法は、 作業機 を駆動するための油圧ァチユエ一夕に油圧ポンプからの作動油を供給す る建設機械 (例えば、 油圧ショベル) に有用であり、 特に、 油圧ァクチ ユエ一夕に供給される作動油の流量によっては、 油圧ァクチユエ一夕の 作動スピードが急増したり、 これに誘発されてハンチング現象が生じた りする建設機械に適している。  INDUSTRIAL APPLICABILITY As described above, the control device and the control method for a construction machine of the present invention are useful for a construction machine (for example, a hydraulic shovel) that supplies hydraulic oil from a hydraulic pump to a hydraulic machine for driving a work machine. Particularly, depending on the flow rate of the hydraulic oil supplied to the hydraulic actuator, the operating speed of the hydraulic actuator is rapidly increased, and this is suitable for a construction machine in which a hunting phenomenon occurs due to this. I have.

Claims

請 求 の 範 囲 The scope of the claims
1. オペレータにより操作されて電気信号を出力する操作部材 (54) と、 1. An operation member (54) that is operated by an operator to output an electric signal;
タンク内の作動油を吐出する油圧ポンプ (5 1), (52) と、 該油圧ポンプにより吐出される作動油により駆動される油圧ァクチュ エー夕 ( 1 0 5) 〜 ( 1 07), ( 1 09 R), ( 1 09 L) と、  Hydraulic pumps (51), (52) that discharge hydraulic oil in the tank, and hydraulic actuators (105) to (107), (1) that are driven by hydraulic oil discharged by the hydraulic pumps 09 R), (1 09 L)
該油圧ァクチユエ一夕へ作動油を供給する作動油供給通路(6 1 a), ( 66 a) と、  Hydraulic oil supply passages (61a) and (66a) for supplying hydraulic oil to the hydraulic actuator;
該作動油供給通路に介装され、 該油圧ァクチユエ一夕への作動油の供 給を制御する制御弁 (57) 〜 (6 0), (62) 〜 (6 5) と、  Control valves (57) to (60), (62) to (65) which are interposed in the hydraulic oil supply passage and control the supply of hydraulic oil to the hydraulic actuator;
該制御弁を介して該油圧ァクチユエ一夕へ供給されなかった作動油を 該タンクへ戻すバイパス通路 (6 1 b), (66 c) とを備える建設機械 の制御装置において、  A control device for a construction machine, comprising: bypass passages (61b) and (66c) for returning hydraulic oil not supplied to the hydraulic actuator through the control valve to the tank.
該油圧ポンプからの作動油の吐出流量を制御するポンプ流量制御手段 Pump flow control means for controlling the discharge flow rate of hydraulic oil from the hydraulic pump
(3), (4) を備え、 (3), (4)
該ポンプ流量制御手段が、 該バイパス通路内の作動油の流量に略逆比 例する特性に基づいてポンプ流量を制御するための第 1の制御信号 F① - 1 (F①ー 2) 及び該操作部材の操作量に略正比例する特性に基づい てポンプ流量を制御するための第 2の制御信号 F② _ 1 (F②— 2) の いずれか一方の制御信号を選択して該油圧ポンプからの作動油の吐出流 量を制御するように構成されることを特徴とする、建設機械の制御装置。  A first control signal F①-1 (F①-2) for controlling the pump flow rate based on a characteristic substantially inversely proportional to a flow rate of the hydraulic oil in the bypass passage, and the operating member; The second control signal F②_ 1 (F②-2) for controlling the pump flow rate based on the characteristic substantially directly proportional to the manipulated variable of A control device for a construction machine, wherein the control device is configured to control a discharge flow rate.
2. 該ポンプ流量制御手段 (3), (4) が、 該第 1の制御信号 F①— 1 (F①ー 2) 及び該第 2の制御信号 F② _ 1 (F②— 2) のうちポンプ 流量を少なくする制御信号を選択して該油圧ポンプ (5 1), (5 2) か らの作動油の吐出流量を制御するように構成されることを特徴とする、 請求の範囲第 1項記載の建設機械の制御装置。 2. The pump flow rate control means (3), (4) controls the pump flow rate of the first control signal F①-1 (F①-2) and the second control signal F②_1 (F②-2). Select the control signal to be reduced and select the hydraulic pump (5 1), (5 2) 2. The control device for a construction machine according to claim 1, wherein the control device is configured to control a discharge flow rate of the hydraulic oil.
3. 該ポンプ流量制御手段 (3), (4) が、 該第 2の制御信号 F② _ 1 (F②— 2) が所定値よりも小さい場合は該第 2の制御信号を選択して 該油圧ポンプ (5 1), (52) からの作動油の吐出流量を制御するよう に構成されることを特徴とする、 請求の範囲第 1項記載の建設機械の制 御装置。 3. The pump flow rate control means (3), (4) selects the second control signal when the second control signal F②_1 (F②-2) is smaller than a predetermined value, and selects the hydraulic pressure 2. The control device for a construction machine according to claim 1, wherein the control device is configured to control a discharge flow rate of hydraulic oil from the pumps (51) and (52).
4. 該ポンプ流量制御手段 (3), (4) が、 該第 2の制御信号 F② _ 1 (F②— 2)が所定値よりも大きい場合は該第 1の制御信号 F①— 1 (F ① _ 2) 及び該第 2の制御信号のうちポンプ流量を少なくする制御信号 を選択する一方、 該第 2の制御信号が所定値以下の場合は該第 2の制御 信号を選択して該油圧ポンプ (5 1), (52) からの作動油の吐出流量 を制御するように構成されることを特徴とする、 請求の範囲第 1項記載 の建設機械の制御装置。 4. The pump flow control means (3), (4) outputs the first control signal F①-1 (F ①) when the second control signal F②_1 (F②-2) is larger than a predetermined value. _ 2) and the control signal for reducing the pump flow rate among the second control signals, while selecting the second control signal when the second control signal is equal to or less than a predetermined value, and selecting the hydraulic pump The control device for a construction machine according to claim 1, wherein the control device is configured to control a discharge flow rate of hydraulic oil from (51), (52).
5. オペレータにより操作されて電気信号を出力する操作部材 (54) と、 5. An operating member (54) operated by an operator to output an electric signal;
タンク内の作動油を吐出する油圧ポンプ ( 5 1 ), (52) と、 該油圧ポンプにより吐出される作動油により駆動される油圧ァクチュ エー夕 ( 1 0 5) 〜 ( 1 0 7), ( 1 09 R), ( 1 09 L) と、  Hydraulic pumps (51), (52) for discharging hydraulic oil in the tank, and hydraulic actuators (105) to (107), (107) driven by hydraulic oil discharged from the hydraulic pumps 1 09 R), (1 09 L)
該油圧ァクチユエ一夕へ作動油を供給する作動油供給通路(6 1 a), (66 a) と、  Hydraulic oil supply passages (61a), (66a) for supplying hydraulic oil to the hydraulic actuator;
該作動油供給通路に介装され、 該油圧ァクチユエ一夕への作動油の供 給を制御する制御弁 (57) 〜 (60), (62) 〜 (6 5) と、 該制御弁を介して該油圧ァクチユエ一夕へ供給されなかった作動油を 該タンクへ戻すバイパス通路 (6 1 b), (66 c) とを備える建設機械 の制御方法であって、 Control valves (57) to (60), (62) to (65) which are interposed in the hydraulic oil supply passage and control the supply of hydraulic oil to the hydraulic actuator; A control method for a construction machine comprising: bypass passages (61b) and (66c) for returning hydraulic oil not supplied to the hydraulic actuator through the control valve to the tank;
該バイパス通路内の作動油の流量を検出し、 該作動油の流量に略逆比 例する特性に基づいてポンプ流量を制御するための第 1の制御信号 F① 一 1 (F①— 2) を設定する第 1の制御信号設定ステップと、  Detecting the flow rate of the hydraulic oil in the bypass passage, and setting a first control signal F① 1 (F①-2) for controlling the pump flow rate based on characteristics substantially inversely proportional to the flow rate of the hydraulic oil A first control signal setting step of
該操作部材からの電気信号を検出し、 該操作部材の操作量に略正比例 する特性に基づいてボンプ流量を制御するための第 2の制御信号 F②ー 1 (F②— 2) を設定する第 2の制御信号設定ステップと、  A second control signal F②-1 (F②-2) for detecting an electrical signal from the operation member and controlling a pump flow rate based on a characteristic substantially directly proportional to the operation amount of the operation member. A control signal setting step of
該第 1の制御信号設定ステツプで設定された第 1の制御信号及び該第 2の制御信号設定ステップで設定された第 2の制御信号のいずれか一方 の制御信号を選択して該油圧ポンプからの作動油の吐出流量を制御する ポンプ流量制御ステップとを備えることを特徴とする、 建設機械の制御 方法。  One of the first control signal set in the first control signal setting step and the second control signal set in the second control signal setting step is selected, and the control signal is selected from the hydraulic pump. And a pump flow control step of controlling a discharge flow rate of the hydraulic oil.
6. 該ポンプ流量制御ステップで、 該第 1の制御信号 F①— 1 (F①— 2) 及び該第 2の制御信号 F②— 1 (F②— 2) のうちポンプ流量を少 なくする制御信号を選択することを特徴とする、 請求の範囲第 5項記載 の建設機械の制御方法。 6. In the pump flow rate control step, a control signal for reducing the pump flow rate is selected from the first control signal F①-1 (F①-2) and the second control signal F②-1 (F②-2). 6. The method for controlling a construction machine according to claim 5, wherein:
7. 該ポンプ流量制御ステップで、 該第 2の制御信号 F② _ 1 (F②— 2) が所定値よりも小さい場合は該第 2の制御信号を選択することを特 徴とする、 請求の範囲第 5項記載の建設機械の制御方法。 7. In the pump flow rate control step, the second control signal is selected when the second control signal F②_1 (F②-2) is smaller than a predetermined value. Item 6. The control method for a construction machine according to Item 5.
8. 該ポンプ流量制御ステップで、 該第 2の制御信号 F②ー 1 (F②— 2)が所定値よりも大きい場合は該第 1の制御信号 F①— 1 (F①— 2) 及び該第 2の制御信号のうちポンプ流量を少なくする制御信号を選択す る一方、 該第 2の制御信号が所定値以下の場合は該第 2の制御信号を選 択することを特徴とする、請求の範囲第 5項記載の建設機械の制御方法。 8. In the pump flow control step, if the second control signal F②-1 (F②-2) is larger than a predetermined value, the first control signal F①-1 (F①-2) And selecting a control signal that reduces the pump flow rate from the second control signals, and selecting the second control signal when the second control signal is equal to or less than a predetermined value. 6. The control method for a construction machine according to claim 5, wherein
PCT/JP2000/007124 1999-11-18 2000-10-13 Control apparatus and control method for construction machine WO2001036755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/328250 1999-11-18
JP32825099A JP3612253B2 (en) 1999-11-18 1999-11-18 Construction machine control device and control method thereof

Publications (1)

Publication Number Publication Date
WO2001036755A1 true WO2001036755A1 (en) 2001-05-25

Family

ID=18208125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007124 WO2001036755A1 (en) 1999-11-18 2000-10-13 Control apparatus and control method for construction machine

Country Status (2)

Country Link
JP (1) JP3612253B2 (en)
WO (1) WO2001036755A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268149A (en) * 2017-06-29 2019-09-20 株式会社久保田 Working rig
CN113359535A (en) * 2021-06-30 2021-09-07 潍柴动力股份有限公司 Excavator action priority control method and device, excavator and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177087A (en) * 1994-12-22 1996-07-09 Hitachi Constr Mach Co Ltd Controller of construction machinery
JPH08219104A (en) * 1995-02-08 1996-08-27 Yutani Heavy Ind Ltd Hydraulic controller
JPH09257001A (en) * 1996-03-22 1997-09-30 Hitachi Constr Mach Co Ltd Hydraulictransmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177087A (en) * 1994-12-22 1996-07-09 Hitachi Constr Mach Co Ltd Controller of construction machinery
JPH08219104A (en) * 1995-02-08 1996-08-27 Yutani Heavy Ind Ltd Hydraulic controller
JPH09257001A (en) * 1996-03-22 1997-09-30 Hitachi Constr Mach Co Ltd Hydraulictransmission

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268149A (en) * 2017-06-29 2019-09-20 株式会社久保田 Working rig
EP3647571A4 (en) * 2017-06-29 2021-03-24 Kubota Corporation Work machine
CN110268149B (en) * 2017-06-29 2022-04-15 株式会社久保田 Working machine
CN113359535A (en) * 2021-06-30 2021-09-07 潍柴动力股份有限公司 Excavator action priority control method and device, excavator and storage medium
CN113359535B (en) * 2021-06-30 2022-11-29 潍柴动力股份有限公司 Excavator action priority control method and device, excavator and storage medium

Also Published As

Publication number Publication date
JP2001140285A (en) 2001-05-22
JP3612253B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
US6564548B2 (en) Speed control apparatus of working vehicle and speed control method thereof
JP4475767B2 (en) Work vehicle
JP3985756B2 (en) Hydraulic control circuit for construction machinery
JP3865590B2 (en) Hydraulic circuit for construction machinery
JP4437771B2 (en) Engine control device for traveling work machine
CN111587306B (en) Rotary hydraulic engineering machinery
JP2000104290A (en) Controller for construction machine
JP3634980B2 (en) Construction machine control equipment
US7607245B2 (en) Construction machine
WO2001036755A1 (en) Control apparatus and control method for construction machine
WO2022102391A1 (en) Construction machine
JP3539720B2 (en) Control equipment for construction machinery
JP3541154B2 (en) Control equipment for construction machinery
WO2021251244A1 (en) Rotary construction machine
JP3629382B2 (en) Construction machine control equipment
JP3594837B2 (en) Control equipment for construction machinery
JP3645740B2 (en) Construction machine control equipment
JP2001199676A (en) Hydraulic circuit for operation system of construction machine
JPH09324446A (en) Hydraulic drive device for construction vehicle
JP3784149B2 (en) Hydraulic pump cut-off device
JP3705886B2 (en) Hydraulic drive control device
EP4174236A1 (en) Working control device in working vehicle
JP3541142B2 (en) Control equipment for construction machinery
WO2023074809A1 (en) Shovel
JP7205264B2 (en) Slewing drive for working machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase