WO2001034754A1 - Sterilizing and disinfecting compound - Google Patents

Sterilizing and disinfecting compound Download PDF

Info

Publication number
WO2001034754A1
WO2001034754A1 PCT/US1999/026349 US9926349W WO0134754A1 WO 2001034754 A1 WO2001034754 A1 WO 2001034754A1 US 9926349 W US9926349 W US 9926349W WO 0134754 A1 WO0134754 A1 WO 0134754A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
solution
acid
calcium
compound
Prior art date
Application number
PCT/US1999/026349
Other languages
French (fr)
Inventor
Stephen Ray Wurzburger
James Michael Overton
Original Assignee
Stephen Ray Wurzburger
James Michael Overton
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stephen Ray Wurzburger, James Michael Overton filed Critical Stephen Ray Wurzburger
Priority to AU18153/00A priority Critical patent/AU1815300A/en
Priority to PCT/US1999/026349 priority patent/WO2001034754A1/en
Publication of WO2001034754A1 publication Critical patent/WO2001034754A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0094Process for making liquid detergent compositions, e.g. slurries, pastes or gels
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/06Hydroxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/08Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/20Water-insoluble oxides

Definitions

  • This invention relates to a composition useful for sterilizing and disinfecting E. coli and salmonella infected foods, materials and surfaces and particularly to a compound having a higher concentration of hydronium ion.
  • sterilization generally infers that the sterilizing agent has eliminated all viable microorganisms found on food or in food preparation areas. This also includes spores of the microorganisms.
  • disinfection generally refers to the process of killing microorganism or sometimes merely reducing the potential infectivity of the material and does not necessarily imply removal or destruction of all the living microorganisms and their spores.
  • the most commonly used household or commercial methods of disinfection or sterilization employ heat or chemical agents. The most common instance of application of heat is in boiling water. Under ideal conditions at sea level, the best kill expressed logarithmically is log 4 (99.99%) The boiling temperature must be maintained for 20 minutes or more.
  • boiling water results in sterilized water.
  • the water may only be disinfected and not sterilized.
  • boiling will not kill or even inactivate all of the spores of such microorganisms and they remain viable at 212°F (boiling point at sea level). Above 5000 feet, boiling occurs below 200°F and does not kill the most dangerous pathogens and microorganisms.
  • these inactivated pathogens can be revived or spores can again be activated into active organisms which, even if present in small numbers, can reproduce to large numbers in a short period of time.
  • the most commonly used disinfection or sterilizing agent is dissolved chlorine gas. which is generated by these agents.
  • Chlorine gas is objectionable since in aqueous solution, it forms hypochlorous acid and has a very sharp odor in concentrations as low as 3.5 part s per million. It forms toxic and possibly carcinogenic organic halogen compounds while causing irritation of the pulmonary mucosa.
  • halogen containing compounds such as, for example, chlorine dioxide, bromine oxide, bromine chloride, monochloroamine, bromic acid, hypochlorous acid, chlorates, hypochlorites, iodine monochloride, iodine trichloride and iodine monobromide, among others are known to be effective disinfectants and sterilizing agents if applied in proper concentrations.
  • chlorine dioxide has been used for many years to treat municipal water supplies and has recently been demonsttate to be effective as a
  • Chlorine dioxide has been demonstrated to result in the destruction of many microorganisms and their spores at strengths as low as 0.75 ppm; as little as 1 ppm of chlorine dioxide in solution will kill or inactivate 99.99 % of Escherichia coli bacteria upon contact for five minutes. Chlorine dioxide has also been effective in inactivating, among others, bacteria such as Bacillus anth acoides, B subtilis, B. cereus, B. stearothermilus, B. mesentericus, B.
  • halogen containing compounds such as chlorine dioxide, bromine oxide, bromine chloride and monochloroamine among others are unstable and there have been a number of problems associated with such instability.
  • the use of chlorine dioxide is somewhat problematic because, at 25 °C, it exists as a yellow gas which is explosive and may detonate under certain conditions.
  • chlorine being readily soluble in water, is usually stored as an aqueous solution at a low temperature to reduce its instability.
  • Such halogen containing compounds e,g. chlorine dioxide, bromine oxide, monochloroamine and bromine chloride and, in particular, chlorine dioxide
  • Such halogen containing compounds e,g. chlorine dioxide, bromine oxide, monochloroamine and bromine chloride and, in particular, chlorine dioxide
  • biofilms can be controlled by use of microbiocides, biodispersants, and by limiting nutrient.
  • Microbiocides both oxidizing and nonoxidizing can be effective in overall biofilm control when applied properly.
  • the oxidizing microbiocides such as chlorine dioxide and ozone can be extremely effective in destroying both the extracellular polysaccharide and the bacterial cells, when using oxidizing microbiocides, one must be sure to obtain a sufficient residual for a long enough duration to effectively oxidize the biofilm.
  • Unfortunately there are those who are overly concerned with the corrosive nature of the oxidizing microbiocides and fail to apply the needed residual oxidant required to control biofilm. Low residual levels may significantly reduce planktonic counts but may not be sufficient to control biofilm.
  • the level of oxidant and duration required will vary from system to system. It is generally more effective to maintain a high residual for several hours than it is to continuously maintain a low residual.
  • the acid Microwater has a been found to have commercially viable bactericidal properties when used in the lowest pH range (2.65) attainable (reported) for this solution. It is believed that the active molecule is the "hydronium"ion having the structure:
  • the compound be applied as an aqueous solution situations where external incidental contact with human flesh does not lead to any deleterious effects.
  • a metal compound selected from the group of compounds that includes metal hydride, metal oxide and metal hydroxide it is an object to provide a disinfecting solution that is stable and has a pH of less than 1.00 and an impurity level that is less than 100 parts per million by weight.
  • this invention is directed toward a disinfecting compound and method of use which is made by adding chemical equivalents of a metal and acid together where the metal and acid are selected to create a highly insoluble salt which is then filtered from the solution, leaving an aqueous liquid that is a powerful disinfectant and yet to which organic tissue (human tissue ) and the surfaces of fruits and vegetables is relatively insensitive.
  • the metal is added as a metal hydride to the strong acid.
  • the metal hydride is calcium hydride and is added to a chemically equivalent amount of sulfuric acid resulting in the formation of the highly insoluble calcium sulfate.
  • a concentration of Ca of not more than 2500 ppm and a concentration of sulfate ions of not mere than 2500 ppm and a pH less than 2.5.
  • a further reduction of the sulfate ion concentration is achieved by mixing into the solution an alcohol that further reduces the solubility of anions (SO " ) and cations (Ca ++ Ho a level of less than 50 ppm while maintaining a pH of less than 1.00.
  • the alcohol is then distilled from the water.
  • the disinfecting solution is an aqueous solution containing a halogen- hydronium complex which is a highly effective disinfecting agent.
  • the precursor halogen containing compounds used in preparing the disinfectant is selected from a number of compounds including chlorine dioxide, calcium chloride, bromine oxide, bromine chloride, monochloroamine, bromic acid, iodine monochloride, iodine trichloride, and iodine monobromide. Calcium chloride is preferred.
  • the solution produced by this invention contains a concentration of hydronium ions in a highly stablized state as indicated by the large reduction potential in the absence of anions that have been removed by precipitation.
  • Fig.l is a flow diagram of the method for preparing the solution of this invention.
  • Fig. 2 is a flow chart listing steps in the preparation of the chlorided hydronium complex solution of this invention.
  • Fig. 3 shows a flow diagram for preparing the solution of this invention and using alcohol to further purify the end solution.
  • Fig. 4 shows a flow diagram for preparing the chlorided hydronium complex solution of this invention and using alcohol to further purify the end solution.
  • fig. 1 is a flow chart listing the steps in generating a solution having a concenti'ation of hydronium ions and in which anions have been removed:
  • an acid is selected and a compound being any one of (i) a metal hydride: (ii) metal hydroxide; (iii) metal oxide (iv) metal; is selected such that the metal cation and acid anion foim a virtually insoluble precipitate.
  • step 2 a quantity of the acid is added to water
  • step 3 a quantity of the compound is stirred into the acid solution of step 2 wherein the quantity of compound is the gram equivalent of the quantity of acid thereby forming the insoluble salt.
  • step 4 solution is filtered to remove the precipitate thereby removing the anion of the acid that has reacted with the metal leaving a "de-anionated" solution containing hydronium ions.
  • table I is a table listing the solubilities of salts formed from combining selected metals and acids.
  • insoluble is defined to mean that less than 0.3 gms of the salt is soluble in 100 gms. of water.
  • Table I indicates that preparation of the de-anionated hydronium solution of this invention according to fig. 1 can be performed by selecting as the metal:
  • a solution having a pH of less than 2.5, and less than 2500 parts per milhon of calcium sulfate is prepared by perfomiing the steps: (a) forming a solution of one mole H2SO4 per one liter of water:
  • step (c) filtering the solution of step (b) through an ten micron filter
  • step (d) allowing the solution of step (c) to digest for at least 10 hours ;
  • step (e) filtering the solution of step (d) through a two micron filter.
  • a sample of the invention was prepared in accordance with the listed steps using triply distilled water.
  • the resultant test sample was found to contain less than 2500 ppm of sulfate and less dian 2500 ppm of Calcium.
  • the pH was 2.0.
  • Bactericidal properties of the solution were evaluated by an independent laboratory, BioVir Laboratories, Inc. using the procedure ASTM El 153-87 which is hereby incorporated as reference into this specification.
  • test method was performed in the following manner:
  • TLB pH 10 Tiypticase Soy Broth pH 10 was employed as pH neutralizer.
  • test sample 10 mL of TSB pH 10 with 0,6 mL of the test sample resulted in a final pH 6.7. 5.
  • the test organisms were Staphylcoccous aui'eus and Enterobacter aerogenes.
  • the conclusion of the third party testing laboratory was that the disinfecting solution of the invention demonsti'ated a 99.9 ->99.99% bactericidal effect within five minutes.
  • the pH of the test solution resulting from preparing the test solution in accordance with the method of fig. 1 was measured to be 2.0 compared 2.7 which was the lowest value reported using the electrolysis method discussed in the BACKGROUND of the specification. The lower the attainable pH, it would be expected that the greater would be the bactericidal power of the product.
  • the anion (SO4" ) and the cation (Ca ++ ) concentration was measured to be less than 2500 ppm.
  • the resultant solution consists essentially of hydronium ions in view of the purity of the water, (being less than 2500 ppm of either Ca or Sulfate) in spite of a pH of 2.0.
  • the solution prepared according to the techniques of this invention is an oxidizing acid that can withdraw electrons from bacteria and kill them.
  • the solution contained in sufficient concentration (pH 2.0 or lower) can be used to clean hands and utensils, meat, vegetables, fruit, and sterilize cutting boards and wounds. Tests have shown that solutions of this type can be used effectively to treat athlete's foot, burns, insect bites and wounds. It is excellent for cleansing and household use. It has bleaching ability. It disinfects and sterilizes yet is harmless to the skin. It is an astringent. It tightens skin.
  • a major advantage of the present invention over the prior art is the ease and economy of preparing the solution.
  • the present method is a chemical method whereas the competing process is an electrophoretic method.
  • the competing process has the major disadvantage that the equipment is relatively expensive and difficult to maintain due to such factors as fouling of filter membranes by metal ions that are initially in the water. Furthermore, the achievable pH of the electrolytic process (reported 2.65) is not as low as can be achieved with the present invention. Another major advantage is that the solution of the present invention maintains a pH of less than 2.5 for longer than 48 hours (actually months compared to the electrolytic process of the prior art where pH remains at 2.65 for only a few hours.
  • a stabilized chlorided hydronium complex solution was prepared as follows:
  • Fig. 2 lists the steps in the preparation of the chlorided hydronium complex.
  • A One mole of analytical grade sulfuric acid in one liter of water is reacted with 1 - X mole of Calcium hydrate and allowed to digest for several hours.
  • X is a fraction expressing the intended ratio of CI " to H3 ⁇ +
  • B X moles of Ca CI2 is dissolved in one liter of water. The solution of calcium chloride is agitated for fifty minutes.
  • the two solutions are slowly mixed together and the reaction is allowed to go to completion, typically one hour.
  • the solution is then filtered with a 10 micron filter to remove solids.
  • An effective range for X is from 10 ⁇ 4 molar to one molar solution depending on the application.
  • the solution is slowly mixed together and the reaction is allowed to go to completion i typically one hour.
  • the solution is then filtered with a 10 micron filter.
  • a control sample was made by placing the culture in a physiologic saline solution at ambient temperature and incubated for five min.
  • the experimental and control samples were serially diluted and 50 microliters of each dilution were plated in quadi'uplicate. Culture plates were incubated at 37°C overnight and the colonies on each plate were enumerated the next morning.
  • Results The control sample showed 1 X 10° colony forming units. The experimental sample showed 0 colony forming units.
  • chlorinated hydronium complex solution of this invention was also investigated for the removal of biofilms found in the stainless steel pipes in equipment for manufacturing pharmaceuticals and in food processing where protein constituents of the product being processed form a coating on the interior of the pipes that become breeding grounds for pseudomonas aeruginosa and other bacteria. As these coatings become porous, the bacteria infiltrates deeply into the film. As portions of the biofilm flake off, the bacteria within now infects the solution.
  • viruses of the common cold, influenza and other diseases are spread by human contact with surfaces such as table tops that have collected these viruses by virtue of contact with other humans that are afflicted with these diseases.
  • a control sample was prepared by applying the physiologic saline solution of EXAMPLE I to an untreated table top, recapturing and incubating a specimen of the exposed control sample overnight.
  • wetting agents are well known in the art.
  • a general class of such compounds are the quaternary amines manufactured by the Shell Co. in Richmond, Ca.
  • Wetting agents are typically mixed with a washing liquid in a concenti'ation of 1 to 10 mgms/liter of solution.
  • the method of preparation of the complex provides that the ratio of the chloride to hydronium complex can be selected over a wide range depending on the application and provides that the compound of this invention has application in many areas including treatment of human ailments, preserving food stuffs, sterilizing equipment, etc.
  • FIG. 3 Another embodiment of the invention is represented in fig. 3 which is a further refinement of making the solution of the invention resulting in a de-anionated solution of hydronium ions of greater purity than the methods of fig. 1 and fig. 2.
  • step 1 a compound being any one of
  • step 2 a quantity of sulfuric acid is added to water
  • step 3 a quantity of the compound is stirred into the acid solution of step 2 wherein the quantity of sulfuric acid equals the gram molar equivalent of the compound thereby forming a precipitate of calcium sulfate;
  • step 4 solution is filtered through a ten micron filter to remove the precipitate.
  • step 5 the solution of step 4 is mixed with propyl alcohol according to the ratio 70 parts solution, 30 parts isopropyl alcohol by volume. A cloud of calcium sulfate precipitate is generated from trace amounts calcium and sulfate ions left after step 4.
  • step 6 the remaining precipitate generated in step 5 is filtered from solution using a two micron filter.
  • step 7 the alcohol is separated from the solution by distillation
  • a de-anionated aqueous solution containing hydronium ions was produced which contained less than 50 parts per million of sulfate ion by volume and in which the pH is less than 0.5.
  • the pH of less than 0.5 is a much more powerful disinfecting agent than the solution of "microwater” produced by electrolysis in which the lowest pH reported is 2..65.
  • a method has also been described for producing an aqueous chlorided hydronium complex by applying the technique of the preceding paragraph but supplying a portion of die reacting metal (e.g., calcium) as a chloride.
  • die reacting metal e.g., calcium
  • the solution can be further purified (i.e., removal of trace amounts of any remaining cations and anions) by mixing the solution with a suitable hydrogenated hydrocai'bon (alcohol, ketone, etc) to precipitate the remaining Q-ace amounts which are then removed by filtration followed by distillation to remove the hydrogenated hydrocai'bon leaving a solution of hydronium ions or chlorided hydronium complex having a very low pH (less than 0.5) and high purity (less than 50 ppm by weight of anions)
  • a suitable hydrogenated hydrocai'bon alcohol, ketone, etc
  • halogens are an obvious substitute for chlorine for certain applications in view of the reactions of these elements that are similar to those of chlorine.
  • Any one of a number of hydrogenated hydrocarbons may be used to remove trace remains of elements present in initial stages of the process which are insoluble in the hydrogenated hydrocarbon.
  • the hydrogenated hydrocarbon may include any one of ethanol, methanol, propanol, acetone, methyl ethyl ketone.
  • This invention to provide an effective disinfecting agent that is not corrosive to human flesh.
  • the compound be applied as- an aqueous solution situations where external incidental contact with human flesh does not lead to any deleterious effects. or as a disinfectant for destroying biofilms in systems for preparing food and phamaceuticals. It is also used as an aqueous disinfecting "wash” to wash produce (fruits and vegetables) without leaving the residues that characterize the use of chemicals presently used for this purpose.
  • the invention is a method for making a solution that has a large concentration of hydronium ions in which anions have been removed by precipitation of an acid with a metal compound selected from the group of compounds that includes metal hydride, metal oxide and metal hydroxide.
  • the invention provides a disinfecting solution that is stable and has a pH of less than 1.00 and an impurity level that is less than 100 parts per milhon by weight.

Abstract

A method and application of a disinfecting solution which comprises (1) adding to an acid the chemical equivalent of a metal chloride and (2) a metal compound wherein the metal compound is one of a hydride, oxide or hydroxide and the metal is selected to form a precipitate with said acid. (3) The solution is stirred to facilitate precipitation. (4) The precipitate is filtered from the solution leaving a de-anionated chlorided hydronium complex that is non corrosive to human tissue yet has powerful disinfecting properties. Calcium is the preferred metal.

Description

STERILIZING AND DISINFECTING COMPOUND
CROSS REFERENCE TO EARLIER FILED APPLICATIONS:
This application is a continuation -in-part of application number 08/994,547 filed 12/19/97 which is a continuation-in-part of application number 08/911773 which is a continuation in-part of application number 701,776 now issued as U.S. Patent 5,830,839 from all of which priority is claimed.
TECHNICAL FIELD OF THE INVENTION.:
This invention relates to a composition useful for sterilizing and disinfecting E. coli and salmonella infected foods, materials and surfaces and particularly to a compound having a higher concentration of hydronium ion.
BACKGROUND
In the past few years there has been a marked increase in the number of E. coli or other food born pathogen outbreaks. While some of these can be ttaced back to contaminated foods (food spoilage) , other cannot. It must therefore be assumed that most of these outbreaks are caused by secondary contamination sources such as from the facilities used to prepare the food or from the preparers. In view of these outbreaks, concern has intensified in developing and practicing improved techniques of food preparation. Many types of disinfecting and sterilizing agents have been investigated with limited success.
The term "sterilization" generally infers that the sterilizing agent has eliminated all viable microorganisms found on food or in food preparation areas. This also includes spores of the microorganisms. In conttast, the term "disinfection" generally refers to the process of killing microorganism or sometimes merely reducing the potential infectivity of the material and does not necessarily imply removal or destruction of all the living microorganisms and their spores. At this time, the most commonly used household or commercial methods of disinfection or sterilization employ heat or chemical agents. The most common instance of application of heat is in boiling water. Under ideal conditions at sea level, the best kill expressed logarithmically is log 4 (99.99%) The boiling temperature must be maintained for 20 minutes or more.
It is generally believed that the use of boiling water results in sterilized water. In fact, the water may only be disinfected and not sterilized. In fact, boiling will not kill or even inactivate all of the spores of such microorganisms and they remain viable at 212°F (boiling point at sea level). Above 5000 feet, boiling occurs below 200°F and does not kill the most dangerous pathogens and microorganisms. With a change in environment, these inactivated pathogens can be revived or spores can again be activated into active organisms which, even if present in small numbers, can reproduce to large numbers in a short period of time. The most commonly used disinfection or sterilizing agent is dissolved chlorine gas. which is generated by these agents.
There are many many methods which rely on other chemical agents but these methods are characterized by a number of disadvantages.
One such method requires the use of sodium hypochlorite and other chlorine gas generating chemicals. These solutions result in release of free chlorine gas into water which, in most situations, can cause a problem.
Chlorine gas is objectionable since in aqueous solution, it forms hypochlorous acid and has a very sharp odor in concentrations as low as 3.5 part s per million. It forms toxic and possibly carcinogenic organic halogen compounds while causing irritation of the pulmonary mucosa.
A number of halogen containing compounds, such as, for example, chlorine dioxide, bromine oxide, bromine chloride, monochloroamine, bromic acid, hypochlorous acid, chlorates, hypochlorites, iodine monochloride, iodine trichloride and iodine monobromide, among others are known to be effective disinfectants and sterilizing agents if applied in proper concentrations. In particular, chlorine dioxide has been used for many years to treat municipal water supplies and has recently been demonsttate to be effective as a
medical and dental equipment sterilizer, as a disinfectant and deodorizer for beds, as fungicide, as toothpaste additive used to prevent dental cavities and as a mouthwash additive.
Chlorine dioxide has been demonstrated to result in the destruction of many microorganisms and their spores at strengths as low as 0.75 ppm; as little as 1 ppm of chlorine dioxide in solution will kill or inactivate 99.99 % of Escherichia coli bacteria upon contact for five minutes. Chlorine dioxide has also been effective in inactivating, among others, bacteria such as Bacillus anth acoides, B subtilis, B. cereus, B. stearothermilus, B. mesentericus, B. megatherium, Clostridium pergigens, Erberthella typhose, , Pseudomonosa aeruginosa and viruses such as HTL-III, polio-virus, Sendaivirus, Vaccina virus, Bacteriophae f2, Coliphage and phage 0X 174.
However, some of such halogen containing compounds such as chlorine dioxide, bromine oxide, bromine chloride and monochloroamine among others are unstable and there have been a number of problems associated with such instability. In particulai", the use of chlorine dioxide is somewhat problematic because, at 25 °C, it exists as a yellow gas which is explosive and may detonate under certain conditions. Thus chlorine, being readily soluble in water, is usually stored as an aqueous solution at a low temperature to reduce its instability. Such halogen containing compounds, (e,g. chlorine dioxide, bromine oxide, monochloroamine and bromine chloride and, in particular, chlorine dioxide), even though in solution, remain unstable in the sense that they have relatively high rates of chemical breakdown or dissociation, particularly in light. These high rates of chemical breakthrough or dissociation render them inefficient and sometimes totally in effective.
In order to reduce the dissociation of such compounds in solution and take advantage of their excellent sterilization properties, there have been attempts either to provide stable stable solutions of such compounds or to generate such compounds at their place and time of use. For industrial or commercial applications having the necessary equipment and other resources, the chlorine dioxide is generally produced and used immediately. With household or other non-industrial; applications, it is not cost effective, feasible or safe to do this. There have thus been attempts to provide stable chlorine dioxide solutions such as disclosed in U.S. Patent 31123,521 and 3585,147 and 3591515 among others. In most of these situation, the chlorine dioxide is provided by releasing the gas by acidification of solutions in which the chlorine dioxide is made more stable by the addition of a peroxide or boron compounds. While this results in an increase of effective shelf life,of such chlorine dioxide generating solutions, there is still significant spontaneous breakdown of the chlorine dioxide and consequently the sterilizing capacity of the solution is rapidly diminished.
Preparation and of chlorine dioxide gas and purification to remove free chlorine is disclosed in Kirk-Othmer, Encyclopedia of Chemical Technology, vol. 5. pages 615-617 and Chlorine Dioxide: Chemistry and Environmental Impact of Oxychlorine Compounds by W. S. Masschelin, Ann Arbor Science Publishers, Inc. (1979 pages 9-11 and 112-140, the relevant portions of which are incorporated by reference.
In view of problems such as noted above, satisfactory methods of storing and/or transpiring such halogen containing compounds which allow them to retain their disinfecting properties have not been readily available. The result has been that it has not always been possible to utilize to its full potential the excellent disinfectant and sterilizing capability of chlorine dioxide and such other unstable halogen containing compounds, particularly in household and other non-industrial applications.
It is also known that strong acids and alkalies have great potential as sterilizing and disinfecting agents. These agents, in the strengths necessary to be an effective sterilizing or disinfecting agent are corrosive to flesh so there use is limited. It should be noted that a concentrated solution of hydronium ions will not only kill most microorganisms. It also dissolves the organisms and has the ability to destroy (dissolve) the toxins in the microbes as well as most spores.
The use chlorine dioxide, while being the most widely used disinfectant is essentially the "best of all evils". A difficult problem has been that, due to the volatility of the gas, in use such as in water supplies, its concentration diminishes over time so that more than enough is added initially in order to maintain a sufficient concentration over a period of time. The problem is that the inescapably harmful effects are accentuated, particularly when the first additions are made, such as to a water supply. These effects are not only the attacks of the chemical on the human — we are all familiar with the burning of the eyes after bathing in a community pool where specially high concentrations of the chloride dioxide is added,— but it is also found that the heavy chlorinated water can cause pitting of the stainless steel fittings that are used in food processing.
Conventional technologies say that biofilms can be controlled by use of microbiocides, biodispersants, and by limiting nutrient. Microbiocides, both oxidizing and nonoxidizing can be effective in overall biofilm control when applied properly. The oxidizing microbiocides, such as chlorine dioxide and ozone can be extremely effective in destroying both the extracellular polysaccharide and the bacterial cells, when using oxidizing microbiocides, one must be sure to obtain a sufficient residual for a long enough duration to effectively oxidize the biofilm. Unfortunately, there are those who are overly concerned with the corrosive nature of the oxidizing microbiocides and fail to apply the needed residual oxidant required to control biofilm. Low residual levels may significantly reduce planktonic counts but may not be sufficient to control biofilm. The level of oxidant and duration required will vary from system to system. It is generally more effective to maintain a high residual for several hours than it is to continuously maintain a low residual.
Extended use of these materials causes degradation of the interior of the stainless steel piping (corrosion and pitting which is regularly sloughed off with pieces of the biofilm infecting any product being manufactured, An effective biofilm treatment must not only remove the biofilm but be able to kill any bacteria within the film without being corrosive to the stainless steel pipe.
An apparatus (MicroWater™ distributed by Optimum Health Institute, San Mateo, Cal.) has been disclosed. The device produces two kinds of water with different redox potentials, one with a high reduction potential (referred to as "alkaline MicroWater") and one with a high oxidation potential (referred to as "acid MicroWater").
The acid Microwater has a been found to have commercially viable bactericidal properties when used in the lowest pH range (2.65) attainable (reported) for this solution. It is believed that the active molecule is the "hydronium"ion having the structure:
H+ H-O-H
It would be desirable to produce a solution of substantially exclusively hydronium ions having a pH less than 2.65 that would kill microbes on contact with the solution while not having a deleterious effect on human tissue since such a solution would be expected to have a stronger bactericidal effect than presently available solutions of hydronium ions.
SUMMARY OF THE INVENTION:
It is an object of this invention to provide an effective disinfecting agent that is not corrosive to human flesh.
It is another object that the compound be applied as an aqueous solution situations where external incidental contact with human flesh does not lead to any deleterious effects.
It is another object to provide a process for destroying biofilms in systems for preparing food and phamaceuticals.
It is another object to provide an aqueous disinfecting "wash" that can be used to wash produce (fruits and vegetables) without leaving the residues that chaiacterize the use of chemicals presently used for this puipose.
It is another object to present a method for making a solution that has a large concentration of hydronium ions in which unions have been removed by precipitation of an acid with a metal compound selected from the group of compounds that includes metal hydride, metal oxide and metal hydroxide. In accordance with the invention it is an object to provide a disinfecting solution that is stable and has a pH of less than 1.00 and an impurity level that is less than 100 parts per million by weight.
In one embodiment, this invention is directed toward a disinfecting compound and method of use which is made by adding chemical equivalents of a metal and acid together where the metal and acid are selected to create a highly insoluble salt which is then filtered from the solution, leaving an aqueous liquid that is a powerful disinfectant and yet to which organic tissue (human tissue ) and the surfaces of fruits and vegetables is relatively insensitive.
According to one method of practicing the invention, the metal is added as a metal hydride to the strong acid. Specifically, the metal hydride is calcium hydride and is added to a chemically equivalent amount of sulfuric acid resulting in the formation of the highly insoluble calcium sulfate. When filtered to the aqueous solution is left with a concentration of Ca of not more than 2500 ppm and a concentration of sulfate ions of not mere than 2500 ppm and a pH less than 2.5.
In yet another embodiment of the invention, a further reduction of the sulfate ion concentration is achieved by mixing into the solution an alcohol that further reduces the solubility of anions (SO") and cations (Ca++Ho a level of less than 50 ppm while maintaining a pH of less than 1.00. The alcohol is then distilled from the water.
In another embodiment of the invention, the disinfecting solution is an aqueous solution containing a halogen- hydronium complex which is a highly effective disinfecting agent. According to the invention, the precursor halogen containing compounds used in preparing the disinfectant is selected from a number of compounds including chlorine dioxide, calcium chloride, bromine oxide, bromine chloride, monochloroamine, bromic acid, iodine monochloride, iodine trichloride, and iodine monobromide. Calcium chloride is preferred.
While we do not wish to be bound by theory, it is believed that the solution produced by this invention contains a concentration of hydronium ions in a highly stablized state as indicated by the large reduction potential in the absence of anions that have been removed by precipitation.
BRIEF DESCRIPTION OF THE FIGURES:
Fig.l is a flow diagram of the method for preparing the solution of this invention.
Fig. 2 is a flow chart listing steps in the preparation of the chlorided hydronium complex solution of this invention.
Fig. 3 shows a flow diagram for preparing the solution of this invention and using alcohol to further purify the end solution.
Fig. 4 shows a flow diagram for preparing the chlorided hydronium complex solution of this invention and using alcohol to further purify the end solution.
DESCRIPTION OF THE BEST MODE;
Turning now to a description of the drawings, fig. 1 is a flow chart listing the steps in generating a solution having a concenti'ation of hydronium ions and in which anions have been removed: In step 1, an acid is selected and a compound being any one of (i) a metal hydride: (ii) metal hydroxide; (iii) metal oxide (iv) metal; is selected such that the metal cation and acid anion foim a virtually insoluble precipitate.
In step 2, a quantity of the acid is added to water;
In step 3, a quantity of the compound is stirred into the acid solution of step 2 wherein the quantity of compound is the gram equivalent of the quantity of acid thereby forming the insoluble salt.
In step 4 solution is filtered to remove the precipitate thereby removing the anion of the acid that has reacted with the metal leaving a "de-anionated" solution containing hydronium ions.
Selection of an appropriate metal and acid can be done by consulting table I which is a table listing the solubilities of salts formed from combining selected metals and acids. In the context of this specification, the term, "insoluble" is defined to mean that less than 0.3 gms of the salt is soluble in 100 gms. of water.
TABLE I sulfuric phosphoric oxalic stearic
Figure imgf000014_0001
Calcium insoluble insoluble insoluble insoluble
Magnesium soluble insoluble insoluble insoluble
Barium insoluble insoluble insoluble insoluble
Beryllium soluble soluble soluble insoluble
Table I indicates that preparation of the de-anionated hydronium solution of this invention according to fig. 1 can be performed by selecting as the metal:
(i) any one of calcium, and Barium and as the acid anyone of sulfuric, phosphoric, oxalic and stearic;
(ii) magnesium with any acid of phosphoric, oxalic and stearic;
(iii) beryllium with stearic acid.
As an example of the method of preparation, a solution having a pH of less than 2.5, and less than 2500 parts per milhon of calcium sulfate is prepared by perfomiing the steps: (a) forming a solution of one mole H2SO4 per one liter of water:
(b) stirring into said solution of step (a) one Gram Equivalent Weight of CaH2 per one mole of H2SO4
(c) filtering the solution of step (b) through an ten micron filter;
(d) allowing the solution of step (c) to digest for at least 10 hours ;
(e) filtering the solution of step (d) through a two micron filter.
By way of demonstrating the utility of the invention as a disinfecting agent, a sample of the invention was prepared in accordance with the listed steps using triply distilled water. The resultant test sample was found to contain less than 2500 ppm of sulfate and less dian 2500 ppm of Calcium. The pH was 2.0. Bactericidal properties of the solution were evaluated by an independent laboratory, BioVir Laboratories, Inc. using the procedure ASTM El 153-87 which is hereby incorporated as reference into this specification.
The test method was performed in the following manner:
1. 22 mm2 coverslips were used for the innocυla step (step 3.2).
2. Only 0.6 mL of ARS-I was used on the coverslips.
3. Tiypticase Soy Broth (TSB) pH 10 was employed as pH neutralizer.
4. 10 mL of TSB pH 10 with 0,6 mL of the test sample resulted in a final pH 6.7. 5. The test organisms were Staphylcoccous aui'eus and Enterobacter aerogenes.
6. Sterile petri dishes were substituted for sterile glass jars.
The results of the test are presented in table I.
)served Log reduction % reduction
S.aureus Control NA , ,000000 N NAA NA
S. aureus A 50,000 < <11 > >44..55 99.995
S. aureus B 50,000 < <11 > >44,,55 99.995
S. aureus C 50,000 9 900 2 2..77 99.9
-14-
E. aerogenes Ctrl NA 53,000 NA NA
E. aerogenes A 53,000 <1 >4.7 99.995
E. Aerogenes B 53,000 <1 >4.7 99.995
E. Aerogenes C 53,000 <1 >4.7 99.995
Conclusion of the testing lab (Bio-Vir):
The conclusion of the third party testing laboratory was that the disinfecting solution of the invention demonsti'ated a 99.9 ->99.99% bactericidal effect within five minutes. The pH of the test solution resulting from preparing the test solution in accordance with the method of fig. 1 was measured to be 2.0 compared 2.7 which was the lowest value reported using the electrolysis method discussed in the BACKGROUND of the specification. The lower the attainable pH, it would be expected that the greater would be the bactericidal power of the product. The anion (SO4" ) and the cation (Ca++) concentration was measured to be less than 2500 ppm.
The reaction of the solution of this invention on human tissue has been tested many times in this laboratory at pH 2.0 and lower and it has been found that there is no reaction whatsoever with periods of fifteen minutes exposure.
While WE DO NOT WISH TO BE BOUND BY THEORY, it is believed that the resultant solution consists essentially of hydronium ions in view of the purity of the water, (being less than 2500 ppm of either Ca or Sulfate) in spite of a pH of 2.0.
We believe that the solution prepared according to the techniques of this invention is an oxidizing acid that can withdraw electrons from bacteria and kill them. The solution contained in sufficient concentration (pH 2.0 or lower) can be used to clean hands and utensils, meat, vegetables, fruit, and sterilize cutting boards and wounds. Tests have shown that solutions of this type can be used effectively to treat athlete's foot, burns, insect bites and wounds. It is excellent for cleansing and household use. It has bleaching ability. It disinfects and sterilizes yet is harmless to the skin. It is an astringent. It tightens skin. A major advantage of the present invention over the prior art is the ease and economy of preparing the solution. The present method is a chemical method whereas the competing process is an electrophoretic method. The competing process has the major disadvantage that the equipment is relatively expensive and difficult to maintain due to such factors as fouling of filter membranes by metal ions that are initially in the water. Furthermore, the achievable pH of the electrolytic process (reported 2.65) is not as low as can be achieved with the present invention. Another major advantage is that the solution of the present invention maintains a pH of less than 2.5 for longer than 48 hours (actually months compared to the electrolytic process of the prior art where pH remains at 2.65 for only a few hours.
In another embodiment of the invention, a stabilized chlorided hydronium complex solution was prepared as follows:
To make the chlorided hydronium ion complex of this invention, the procedure of fig. 1 is followed except that mole chemical equivalent of sulfuric acid that is reacted with 1 - X mole chemical equivalent of metal compound plus X mole chemical equivalent of calcium chloride where X is the fraction of the chlorided hydronium complex diat is chlorine.
Fig. 2 lists the steps in the preparation of the chlorided hydronium complex. A. One mole of analytical grade sulfuric acid in one liter of water is reacted with 1 - X mole of Calcium hydrate and allowed to digest for several hours. X is a fraction expressing the intended ratio of CI " to H3θ+ B. X moles of Ca CI2 is dissolved in one liter of water. The solution of calcium chloride is agitated for fifty minutes.
C. The two solutions are slowly mixed together and the reaction is allowed to go to completion, typically one hour. The solution is then filtered with a 10 micron filter to remove solids.
An effective range for X is from 10~4 molar to one molar solution depending on the application.
For example, to make a 10% chlorinated solution, 0.1 mole calcium chloride and 0.9 mole of calcium metal or Ca hydrate is used to make the solution..
The solution is slowly mixed together and the reaction is allowed to go to completion i typically one hour. The solution is then filtered with a 10 micron filter.
EXAMPLE I.
The following test was performed to test the disinfecting power of a chlorided hydronium complex solution (sample A) made according to the above procedure where X = .005 giving a solution of pH = 0.56
An enrichment culture of E.Coh 0157H7was prepared.
An experimental sample was made by placing the culture in a solution of sample A diluted 1 :10at room temperature and incubated for five min.
A control sample was made by placing the culture in a physiologic saline solution at ambient temperature and incubated for five min.
The experimental and control samples were serially diluted and 50 microliters of each dilution were plated in quadi'uplicate. Culture plates were incubated at 37°C overnight and the colonies on each plate were enumerated the next morning.
Results: The control sample showed 1 X 10° colony forming units. The experimental sample showed 0 colony forming units.
The foregoing test demonstrated that exposure of the E-Coli culture to the chlorided hydronium complex reduced the viability of the E. Doli 0157H7 by 10"9 demonstrating that it is an extremely effective disinfectant.
In comparison, the same tests were repeated using standard chlorine containing compounds and kills of 10~ were observed demonstrating that the chlorided hydronium disinfecting compound of this invention is one million times more effective than the standard chlorine containing material. EXAMPLE II
More tests on many kinds of foodstuff which showed dramatically that the chlorided hydronium complex of this invention will kill all water and airborne molds and fungi that destroy food on the grocery shelves.
For example, Several baskets of small tomatoes were purchase. Two baskets of tomatoes were rinsed in tap water and the other two baskets of tomatoes were dipped in the chlorided hydronium complex and allowed to drip dry. A four baskets were left at room temperature. After three days, the untreated tomatoes began to show mold spots. After five days, 1/3 of the unti'eated tomatoes were very moldy and some had broken down and were putrid. The treated tomatoes had no visible mold or mildew. After seven days, the untreated baskets were totally rotten and the treated tomatoes were still mold and mildew free but there were signs of the tomatoes beginning to deteriorate. These results indicated that the shelf life of fresh fruit and vegetables can be extended by five or six days by washing in the chlorided hydronium complex solution.
EXAMPLE III
In another test, raisins that had about 10% mold contamination were rinsed in chlorided
hydi'onium complex and dried. The treated sample was sent to an EPA field office and retested. The test showed an 80% reduction in the number of mildewed raisins, i.e., less than 2% of the raisins showed mildew.
EXAMPLE IV
Use of chlorinated hydronium complex solution of this invention was also investigated for the removal of biofilms found in the stainless steel pipes in equipment for manufacturing pharmaceuticals and in food processing where protein constituents of the product being processed form a coating on the interior of the pipes that become breeding grounds for pseudomonas aeruginosa and other bacteria. As these coatings become porous, the bacteria infiltrates deeply into the film. As portions of the biofilm flake off, the bacteria within now infects the solution.
As part of the test, sections of stainless pipe from a examined and found to be heavily contaminated with biofilm. After being placed in the chlorided hydronium complex solution heated to 120°F, the pipe sections were visually inspected for plaque and for evidence of corrosion from the complex solution. No plaque was found and no visual corrosion was evident. The samples were cultured and no viable bacteria colonies were observed. Bacteria was killed at a rate greater than >log 6.
Additional tests showed that the stainless steel was not damaged even when very concentrated solutions of the chlorided hydronium complex is applied. Even if the the temperature is raised to 200°F or treated for several hours, there was no deterioration of the surface of the stainless steel.
In comparison of present standard practice to the methods and compound of this invention, it is noted that sodium hypochlorite and other halogenated chemicals are used that are not totally effective. In some cases, the pipe must be dissembled and mechanically cleaned to remove the coating and then decontaminated with a liquid sterilizing medium after reassembly.
EXAMPLE V
It is well known that viruses of the common cold, influenza and other diseases are spread by human contact with surfaces such as table tops that have collected these viruses by virtue of contact with other humans that are afflicted with these diseases.
A control sample was prepared by applying the physiologic saline solution of EXAMPLE I to an untreated table top, recapturing and incubating a specimen of the exposed control sample overnight.
Then the table top was swabbed with the chlorided hydronium complex solution of EXAMPLE I to which 5 ml per one liter of wetting agent had been added to improve wetability of the table top. . . Then, an experimental sample was prepai'ed by applying the physiologic saline solution of EXAMPLE I to the washed table top.
Both the experimental sample and control sample were incubated overnight.
Examination of both samples was conducted and it was observed that substantial colonization had occurred in the control sample and no colonization had occurred in the experimentally.
This test showed that the chlorided hydronium complex is very effective in disinfecting the surfaces that re collecting locations of infectious bacteria.
Many wetting agents are well known in the art. A general class of such compounds are the quaternary amines manufactured by the Shell Co. in Richmond, Ca. Wetting agents are typically mixed with a washing liquid in a concenti'ation of 1 to 10 mgms/liter of solution.
The foregoing examples show the superiority of the solution to disinfecting solutions of die prior art in terms of kill rate combined with minimal deleterious effects. Minimal deleterious effects include benign reaction with human tissue, and in teπris of stability resulting in long shelf life.
The method of preparation of the complex provides that the ratio of the chloride to hydronium complex can be selected over a wide range depending on the application and provides that the compound of this invention has application in many areas including treatment of human ailments, preserving food stuffs, sterilizing equipment, etc.
Another embodiment of the invention is represented in fig. 3 which is a further refinement of making the solution of the invention resulting in a de-anionated solution of hydronium ions of greater purity than the methods of fig. 1 and fig. 2.
In step 1, a compound being any one of
(i) calcium hydride:
(ii) calcium hydroxide;
(iii) calcium oxide or calcium metal is selected;
In step 2, a quantity of sulfuric acid is added to water;
In step 3, a quantity of the compound is stirred into the acid solution of step 2 wherein the quantity of sulfuric acid equals the gram molar equivalent of the compound thereby forming a precipitate of calcium sulfate;
In step 4 solution is filtered through a ten micron filter to remove the precipitate. In step 5 the solution of step 4 is mixed with propyl alcohol according to the ratio 70 parts solution, 30 parts isopropyl alcohol by volume. A cloud of calcium sulfate precipitate is generated from trace amounts calcium and sulfate ions left after step 4.
In step 6 the remaining precipitate generated in step 5 is filtered from solution using a two micron filter.
In step 7, the alcohol is separated from the solution by distillation
Using the method of fig. 3, a de-anionated aqueous solution containing hydronium ions was produced which contained less than 50 parts per million of sulfate ion by volume and in which the pH is less than 0.5. The pH of less than 0.5 is a much more powerful disinfecting agent than the solution of "microwater" produced by electrolysis in which the lowest pH reported is 2..65.
The technique of using alcohol followed by distillation to further remove trace amounts of calcium and sulfate ions may also be applied to produce aqueous chlorided hydronium complex by executing the steps A, B, C listed in fig. 2 followed by
Adding 30% isopropyl alcohol by weight to the solution produced by steps A, B, C;
filtering the solution using a two micron filter; A method has been described for forming an aqueous solution containing hydronium ions by mixing chemical equivalents of a strong acid (sulfuric) with a metal (calcium) selected to form a a highly insoluble salt (calcium sulfate). The precipitated salt is removed by filtration leaving a "de-anionated" aqueous solution of hydronium ions. The term "de- anionated" should be understood to mean that anions have been extracted from die solution by the precipitation-filtration process. The resulting solution has outstanding properties as a disinfecting agent. This procedure generates a solution that typically has less than 2500 ppm by weight of aqueous solution having a pH of less than 2,5 and is non-corrosive to human tissue.
A method has also been described for producing an aqueous chlorided hydronium complex by applying the technique of the preceding paragraph but supplying a portion of die reacting metal (e.g., calcium) as a chloride.
In both of these procedures, the solution can be further purified (i.e., removal of trace amounts of any remaining cations and anions) by mixing the solution with a suitable hydrogenated hydrocai'bon (alcohol, ketone, etc) to precipitate the remaining Q-ace amounts which are then removed by filtration followed by distillation to remove the hydrogenated hydrocai'bon leaving a solution of hydronium ions or chlorided hydronium complex having a very low pH (less than 0.5) and high purity (less than 50 ppm by weight of anions)
Vaiiations and modifications may be contemplated after reading the specification and studying the drawings which are within the scope of the invention. For example other halogens are an obvious substitute for chlorine for certain applications in view of the reactions of these elements that are similar to those of chlorine. Any one of a number of hydrogenated hydrocarbons may be used to remove trace remains of elements present in initial stages of the process which are insoluble in the hydrogenated hydrocarbon. The hydrogenated hydrocarbon may include any one of ethanol, methanol, propanol, acetone, methyl ethyl ketone.
INDUSTRIAL APPLICABILITY
This invention to provide an effective disinfecting agent that is not corrosive to human flesh. The compound be applied as- an aqueous solution situations where external incidental contact with human flesh does not lead to any deleterious effects. or as a disinfectant for destroying biofilms in systems for preparing food and phamaceuticals. It is also used as an aqueous disinfecting "wash" to wash produce (fruits and vegetables) without leaving the residues that characterize the use of chemicals presently used for this purpose. The invention is a method for making a solution that has a large concentration of hydronium ions in which anions have been removed by precipitation of an acid with a metal compound selected from the group of compounds that includes metal hydride, metal oxide and metal hydroxide. The invention provides a disinfecting solution that is stable and has a pH of less than 1.00 and an impurity level that is less than 100 parts per milhon by weight.

Claims

IN THE CLAIMS:
1. A method for preparing a disinfecting solution containing hydronium ions which includes the steps:
(a) selecting one of a metal and metal compound together with an acid having an anion capable of forming a virtually insoluble salt with said one of said metal and metal compound; wherein said metal compound is selected from a group of metal compounds which consist of an oxide of said metal, a hydride of said metal and a hydroxide of said metal;
(b) mixing a quantity of said acid in water;
(c) stirring into said acid in water a quantity of said one of said metal and metal compound equal to a chemical equivalent of said quantity of said acid in water;
(d) passing the resultant solution of step (c) through a filter that is at least as fine as 10 microns to remove precipitates of salt formed by mixing said one of said metal and said metal compound with said acid.
2. A method for preparing a de-anionated solution containing hydronium ions which includes the steps:
(a) selecting one of a metal and metal compound and selecting an acid having an anion capable of forming a substantially insoluble salt with said metal of said one of said metal and metal compound wherein said metal compound is selected from a group of metal compounds which consists of a metal oxide, a metal hydride and a metal hydroxide;
(b) mixing a quantity of said acid in water;
(c) stining into said acid in water a quantity of said one of said metal and metal compound equal to a chemical equivalent of said quantity of said acid in water;
(d) passing the resultant solution of step (c) through a filter to remove precipitates of salt formed by mixing said one of said metal and said metal compound with said acid.
3. The method of claim 2 wherein said step (a) includes the step: selecting said metal compound to be calcium hydride and said acid to be sulfuric acid.
4. The method of claim 2 wherein step (a) includes the step of selecting said metal from a group of metals which consists of Group IIA
5. The method of claim 2 wherein step (a) includes the step of selecting an acid from the group of acids that consists .sulfuric, phosphoric, oxalic and an organic acid soluble in water and selecting the metal from the group of metals consisting of Barium, calcium, Beryllium, Strontium and Magnesium with the further limitation that the selected metal and selected acid form a salt whose solubility is no greater than 0.3 grams per 100 milliliters of water.
6. A method for preparing a disinfecting solution which includes the steps:
(a) selecting one of a metal and a compound of said metal from a group of compounds that consists of:
(i) a hydride of said metal; (ii) an oxide of said metal; (iii) a hydroxide of said metal;
and an acid having an anion capable of forming a substantially insoluble salt with said one of said metal and said compound of said metal;
(b) mixing a quantity of said acid in water;
(c) stirring into said quantity of said acid in water a quantity of said one of said metal and said compound of said metal;
(d) stirring into said acid in water a quantity of a halide compound of said metal of said one of said metal and said compound of said metal wherein said quantity of said one of said metal and said compound of said metal plus said quantity of halide compound of said one of said metal and said compound of said metal equals a chemical equivalent of said quantity of said acid; (d) passing a resultant solution of step (d) through a filter that is finer than 10 microns to remove precipitates of salt formed by said metal and said acid.
7 The method of claim 6 which further comprises the steps
mixing in said resultant filtered solution a liquid selected to precipitate a salt consisting of said metal being a cation of said salt and said acid being an anion of said salt;
filtering said solution diereby precipitating said salt.
8 The method of claim 6A wherein said liquid is selected from a group of liquids that consists of ethanol, propanol, methanol, and ketone.
9. The method of claim 6 which further comprises the step of adding a wetting agent to said resultant solution according to a concenti'ation selected from a range of concentrations from 1 to 10 mgms. surfactant per liter of solution.
.
10. The method of claim 6 which includes the step of adding a wetting agent in an amount ranging from 1 to 10 ml per liter of solution.
11. The method of claim 6 which further comprises the step of heating said resultant solution to a temperature of at least 120 ° F.
12. A method for disinfecting a surface which comprises the step of washing the surface with the disinfecting solution prepared in accordance with the method of claim 6.
13. The method of claim 6 wherein said halide is a chloride.
14. The method of claim 6 wherein said quantity of halide compound of said metal is selected from a range of quantities from 0.1 % to 99% of the chemical equivalent of said first quantity.
15. A metiiod for preparing a disinfecting solution which includes the steps:
(a) selecting one of calcium metal and a calcium compound from a group of calcium compounds that consists of:
(i) calcium hydride (ii) calcium hydrate (iii) calcium hydroxide;
(b) mixing a quantity of sulfuric acid in water;
(c) stin'ing into said sulfuric acid in water a quantity of said one of said calcium and calcium compound; (d) stining into said sulfuric acid in water a quantity of calcium chloride; wherein said quantity of one of calcium and said calcium compound plus said quantity of calcium chloride equals a molar chemical equivalent of said first quantity of said acid;
(e) passing the solution of step (d) through a 10 micron filter to remove precipitates of salt formed by said metal and said acid.
16. The method of claim 15 which further comprises the steps:
(f) adding 30 parts propyl alcohol to 70 parts of the solution of step (e) by weight;
(g) removing precipitates from step (f) bypassing the solution of step (f) through a filter,
(h) distilling the solution of step (g) to separate said alcohol from aqueous solution containing hydronium ions.
17. A solution produced by the method of claim 16.
18. An aqueous solution which consists of a concentration of hydronium ions coiTesponding to less than 1.0 pH and an anion concentration less than 100 parts per milhon by weight. 19 A mediod for preparing a disinfecting solution which includes the steps:
(a) selecting one of calcium calcium and a calcium compound from a group of calcium compounds that consists of:
(i) calcium hydride (ii) calcium hydrate (iii) calcium hydroxide;
(b) mixing a mole of sulfuric acid in a liter of water;
(c) stirring into said mole of sulfuiic acid in a liter of water a fraction, X, of a mole of said calcium compound where X is a value ranging from 0.005 to 0.9;
(d) stin'ing into said mole of sulfuric acid in a liter of water another fraction, 1 - X, of calcium chloride;
(e) passing the resultant solution of step (d) through a 10 micron filter to remove precipitates of salt formed by said calcium and said sulfuric acid.
.20. A method for disinfecting stainless steel surfaces which includes die steps: providing the solution of claim 16;
heating said solution to at least 120°F; immersing said stainless steel surface in said solution for a sufficient time to disinfect said surface.
PCT/US1999/026349 1999-11-06 1999-11-06 Sterilizing and disinfecting compound WO2001034754A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU18153/00A AU1815300A (en) 1999-11-06 1999-11-06 Sterilizing and disinfecting compound
PCT/US1999/026349 WO2001034754A1 (en) 1999-11-06 1999-11-06 Sterilizing and disinfecting compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1999/026349 WO2001034754A1 (en) 1999-11-06 1999-11-06 Sterilizing and disinfecting compound

Publications (1)

Publication Number Publication Date
WO2001034754A1 true WO2001034754A1 (en) 2001-05-17

Family

ID=22274012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/026349 WO2001034754A1 (en) 1999-11-06 1999-11-06 Sterilizing and disinfecting compound

Country Status (2)

Country Link
AU (1) AU1815300A (en)
WO (1) WO2001034754A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007761A1 (en) * 2015-07-03 2017-01-12 Tygrus, LLC Material for enhancing attributes of a topical or surface treatment composition
CN109562936A (en) * 2016-07-19 2019-04-02 泰格鲁斯有限责任公司 Stable electrolyte and the solvent material containing it
US10446327B2 (en) 2015-04-23 2019-10-15 Tygrus, LLC Stable electrolyte material and solvent material containing same
US11759409B2 (en) 2016-03-31 2023-09-19 Tygrus, LLC Cosmetic material composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625908A (en) * 1968-06-24 1971-12-07 Itek Corp Composition for cleaning photographic equipment
US4623357A (en) * 1985-04-02 1986-11-18 Lever Brothers Company Bleach compositions
US5019288A (en) * 1989-12-22 1991-05-28 Chem-Shield, Inc. Cleaning composition for copper and copper alloys and method of manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625908A (en) * 1968-06-24 1971-12-07 Itek Corp Composition for cleaning photographic equipment
US4623357A (en) * 1985-04-02 1986-11-18 Lever Brothers Company Bleach compositions
US5019288A (en) * 1989-12-22 1991-05-28 Chem-Shield, Inc. Cleaning composition for copper and copper alloys and method of manufacture thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446327B2 (en) 2015-04-23 2019-10-15 Tygrus, LLC Stable electrolyte material and solvent material containing same
US11817274B2 (en) 2015-04-23 2023-11-14 Tygrus, LLC Stable electrolyte material and solvent material containing same
US11631547B2 (en) 2015-04-23 2023-04-18 Tygrus, LLC Stable electrolyte material and solvent material containing same
EP3316689A4 (en) * 2015-07-03 2019-01-02 Tygrus, LLC Material for enhancing attributes of a topical or surface treatment composition
WO2017007761A1 (en) * 2015-07-03 2017-01-12 Tygrus, LLC Material for enhancing attributes of a topical or surface treatment composition
US10798945B2 (en) 2015-07-03 2020-10-13 Tygrus, LLC Material for enhancing attributes of a topical or surface treatment composition
CN108024543A (en) * 2015-07-03 2018-05-11 泰格鲁斯有限责任公司 Material for the attribute for strengthening part or surface treating composition
IL256601A (en) * 2015-07-03 2018-02-28 Tygrus Llc Material for enhancing attributes of a topical or surface treatment composition
US11950598B2 (en) 2015-07-03 2024-04-09 Tygrus, LLC Material for enhancing attributes of a topical or surface treatment composition
US11957129B2 (en) 2015-07-03 2024-04-16 Tygrus, LLC Material for enhancing attributes of a topical or surface treatment composition
US11759409B2 (en) 2016-03-31 2023-09-19 Tygrus, LLC Cosmetic material composition
CN109562936A (en) * 2016-07-19 2019-04-02 泰格鲁斯有限责任公司 Stable electrolyte and the solvent material containing it
EP3487809A4 (en) * 2016-07-19 2020-04-01 Tygrus, LLC Stable electrolyte material and solvent material containing same
US10849343B2 (en) 2016-07-19 2020-12-01 Tygrus, LLC Stable electrolyte material and solvent material containing same

Also Published As

Publication number Publication date
AU1815300A (en) 2001-06-06

Similar Documents

Publication Publication Date Title
JP2523085B2 (en) Stable, corrosion-resistant peracetic acid / peroxide sterilant
CN104206413B (en) A kind of thimerosal for haemodialysis control unit cleaning and sterilizing and preparation method thereof
WO2005094904A1 (en) Disinfectant solutions
JPS6289602A (en) Bactericidal composition
Vizcaino-Alcaide et al. Comparison of the disinfectant efficacy of Perasafe® and 2% glutaraldehyde in in vitro tests
EP0785719A1 (en) Cold sterilant solution
Wysok et al. Ozone as an alternative disinfectant-a review.
WO2007025312A2 (en) Controlled-acidity composition
US6331514B1 (en) Sterilizing and disinfecting compound
KR20190115372A (en) Method and apparatus for producing of pure chlorite solution
US6007772A (en) Cold sterilant solution
WO2001034754A1 (en) Sterilizing and disinfecting compound
KR20210082627A (en) Method and apparatus for producing of pure chlorite solution
US6692757B1 (en) Multi-component, safe biocidal complex
CN109258641A (en) A kind of multifunctional disinfectant and preparation method thereof for haemodialysis control unit cleaning and sterilizing
EP0927516A1 (en) Disinfectant composition
Urata et al. Comparison of the microbicidal activities of superoxidized and ozonated water in the disinfection of endoscopes
CN1703148B (en) Organic compound and metal ion synergistic disinfection and purification system and method of manufacture
RU2786025C1 (en) Method for disinfecting surfaces during forced poultry slaughter
JP6931256B2 (en) Disinfectants for Legionella spp., Water treatment methods, bath water additives, and air conditioning cooling tower water additives
JPH07155770A (en) Infection preventing method, device therefor and production of sterilized drinking water and sterilized air-conditioning cooling water utilizing the device
US20240099301A1 (en) Disinfecting and Sanitizing Composition, Method for Preparing the Composition and Use of Same
Bajpai et al. Efficacy of Ef-Chlor for Drinking Water Purification and Multipurpose Disinfection
Popova Disinfection of Fruits with Activated Water
Lateef et al. Estimation of the Biological Activity of Some Commercial Bleaching Solutions (Hypochlorites) on Pathogenic Bacteria

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 18153

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase