WO2001033677A9 - COUCHES ACTIVES DE TYPE I ET DE TYPE II, EN InGaNPAsSb, PSEUDOMORPHIQUES, A GRANDE LONGUEUR D'ONDE, DESTINEES A UN SYSTEME EN MATERIAU GAAS - Google Patents

COUCHES ACTIVES DE TYPE I ET DE TYPE II, EN InGaNPAsSb, PSEUDOMORPHIQUES, A GRANDE LONGUEUR D'ONDE, DESTINEES A UN SYSTEME EN MATERIAU GAAS

Info

Publication number
WO2001033677A9
WO2001033677A9 PCT/US2000/041775 US0041775W WO0133677A9 WO 2001033677 A9 WO2001033677 A9 WO 2001033677A9 US 0041775 W US0041775 W US 0041775W WO 0133677 A9 WO0133677 A9 WO 0133677A9
Authority
WO
WIPO (PCT)
Prior art keywords
layers
layer
band
type
active region
Prior art date
Application number
PCT/US2000/041775
Other languages
English (en)
Other versions
WO2001033677A2 (fr
WO2001033677A3 (fr
Inventor
Shane Johnson
Philip Dowd
Wolfgang Braun
Yong-Hang Zhang
Chang-Zhi Guo
Original Assignee
Univ Arizona
Shane Johnson
Philip Dowd
Wolfgang Braun
Yong-Hang Zhang
Chang-Zhi Guo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Arizona, Shane Johnson, Philip Dowd, Wolfgang Braun, Yong-Hang Zhang, Chang-Zhi Guo filed Critical Univ Arizona
Priority to KR1020027005594A priority Critical patent/KR20020059663A/ko
Priority to JP2001535268A priority patent/JP2003513476A/ja
Priority to US10/129,061 priority patent/US6859474B1/en
Priority to EP00991716A priority patent/EP1228557A2/fr
Publication of WO2001033677A2 publication Critical patent/WO2001033677A2/fr
Publication of WO2001033677A3 publication Critical patent/WO2001033677A3/fr
Publication of WO2001033677A9 publication Critical patent/WO2001033677A9/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • H01S5/32358Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers containing very small amounts, usually less than 1%, of an additional III or V compound to decrease the bandgap strongly in a non-linear way by the bowing effect
    • H01S5/32366(In)GaAs with small amount of N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3422Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers comprising type-II quantum wells or superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3434Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds

Definitions

  • the present invention generally relates to semiconductor detectors such as
  • RCPDs resonant cavity photodetectors
  • semiconductor light sources such as light emitting
  • LEDs vertical-cavity surface-emitting lasers
  • NCSELs vertical-cavity surface-emitting lasers
  • strained layer semiconductor lasers having emission wavelengths of 1.0 to 1.6 ⁇ m.
  • NCSELs Vertical-cavity surface-emitting lasers
  • devices may enable digital communications applications such as "fiber to the home,” which
  • GaAs GaAs.
  • InP has been the traditional substrate material for edge-emitting lasers
  • GaAs GaAs
  • NCSELs are light emitting semiconductor devices including two
  • DBRs Distributed Bragg Reflectors
  • a typical VCSEL structure is shown schematically in
  • the active region consists of several InGaAs quantum wells separated by
  • GaAs barriers and illustrates the general conduction band-edge alignment required in an active
  • the semiconductor structure is designed to have the minimum separation between the
  • the wavelength of the emitted light is determined by the energy separation between electrons
  • the particular active region shown is designed for emission at
  • Al reflexGa,_,As spacer is used to define the cavity length, which matches a multiple of half the
  • the mirrors consist of alternate ⁇ /4 layers
  • the partial waves At the lasing wavelength, the partial waves
  • DBRs distributed Bragg reflectors
  • a waveguiding structure for the optical mode is required, for instance in the
  • optical mode is confined by etching away the material around a pillar-shaped volume to form an
  • Very high resistivity regions may be created by firing high energy protons or ions
  • the gain region is confined laterally, and the mode forms in the free area.
  • VCSELs require laser-quality active materials and high reflectivity DBR mirrors.
  • the production of VCSELs emitting in the region of 1.3 to 1.55 ⁇ m may
  • the materials used for lattice-matched mirrors on InP substrates are InP and
  • GaAs stacks grown on InP require more InP/InGaAsP layers to produce the same reflectivity.
  • InGaAsP displays a higher thermal resistance than GaAs or AlAs. This increases
  • GaAs may offer significant advantages in terms of lower substrate cost
  • wavelength emission using such methods because process parameters such as critical thickness
  • Layers can show surface roughness or corrugation
  • the volume of the active region becomes significantly smaller. This will reduce the maximum achievable gain provided by the
  • strain accumulation may result in surface
  • Structural non-uniformities such as
  • corrugation will cause spectral broadening and reduced gain.
  • DBRs are grown with separate InP substrates and then bonded together to form the VCSEL.
  • QD quantum dot
  • GaAsSb quantum wells (QWs) and lasing has been reported in an edge-emitting device at 1.27
  • GaAs-based VCSEL structure using a single GalnNAs QW, and RT pulsed operation GaAs-based VCSEL structure using a single GalnNAs QW, and RT pulsed operation.
  • the invention provides for
  • the alloy is tailored so that each of these constituents contributes both to the
  • the present invention may have utility for both or either of emission and absorption of light, or for light modulation, and may further be by virtue of their physical and optical party adapted
  • the alloy to a wavelength at which it can efficiently process, i.e. absorb and/or emit, light.
  • composition for the quantum well layers is optimized so that the longest possible wavelength is
  • N nitrogen
  • Phosphorus (P) also has this property, while
  • valence and conduction bands differ from one layer to another.
  • valence band edge -- holes have an inverted energy scale — is sandwiched between layers where the conduction band edge is higher and the valence band edge is lower.
  • a device having such a structure may have
  • light-processing utility either as a light emitter or a light receptor/detector, or a light modulator
  • quantum wells can be stacked in periodic order, as shown in Figure 5.
  • quantum wells are closely coupled, such an arrangement is called a superlattice and has its own
  • Such a type-II quantum well has spatially separated regions to trap the electrons and the holes
  • the two electron (hole) wells is relatively low.
  • the electron (hole) wavefunction has
  • the quantum well layers of the structures demonstrated here have a
  • both sides of the quantum well layers may be made of a material with a smaller lattice constant
  • Figure 1 sets forth a schematic design of a generic VCSEL structure with the
  • Figure 2 illustrates a typical VCSEL structure showing (a) index guided device
  • Figure 3 shows the structure of a generic detector using the same active region
  • Figure 4 depicts a type-I quantum well.
  • Figure 5 shows a type-I multi quantum well.
  • Figure 6 shows a type-II quantum well.
  • Figure 7 shows a type-II symmetric quantum well.
  • Figure 8 illustrates the principle of strain compensation.
  • Figure 9 shows band-edge alignment diagram of a type-I strain compensated QW
  • Figure 10 compares point bandgap energy versus strain for coherently strained
  • region is direct bandgap material while the left-hand shaded region is indirect bandgap material.
  • Figure 11 illustrates an A/B/C/B/A type-I single quantum well utilizing material
  • Figure 12 illustrates A/B/C/B/A type-I multi quantum wells utilizing material
  • Figure 13 illustrates an A/B/C/D/B/A type-II single quantum well utilizing
  • Figure 14 illustrates A B/C/D/B/A type-II multi quantum wells utilizing material
  • Figure 15 illustrates an A/B/D/C/B/A type-II single quantum well utilizing
  • Figure 16 illustrates A/B/D/C/B/A type-II multi quantum wells utilizing material
  • Figure 17 illustrates an A/B/D/C/D/B/A type-II single quantum well utilizing
  • Figure 18 illustrates A/B/D/C/D/B/A type-II multi quantum wells utilizing
  • Figure 19 illustrates an A/B/C/D/C/B/A type-II single quantum well utilizing
  • Figure 20 illustrates A/B/C/D/C/B/A type-II multi quantum wells utilizing
  • the present invention's material system comprises: 1) Compressively strained
  • type-I and type-II band-edge alignments are utilized in the present invention.
  • Light emission or absorption at wavelengths 1.0 ⁇ m to 1.6 ⁇ m are achieved by the
  • strain compensation material B with strain compensation material B, with type-I active material C, or with type-II active
  • A Al p Ga ⁇ p As, 0 ⁇ p ⁇ 1
  • the quantum wells — layers C and D ⁇ are compressively strained, while tensile
  • strain in the spacer barrier ⁇ layer B is used to compensate fully or partially the overall strain in
  • the degree of strain compensation affects the total thickness and the number
  • each layer will lie essentially parallel to the other layers as a result of the
  • Figure 9 shows the conduction band and valence band edge alignments for a particular material system made in accordance with the present invention.
  • the strain of the barrier layer is +1.5% (tensile), while for the well layer it is -
  • MBE molecular beam epitaxy
  • composition of the QW can also be
  • the active material has a direct band-to-band energy transition corresponding to a
  • pseudomo ⁇ hic GaPSb on GaAs is an indirect bandgap material for compressive strain levels
  • GaPSb As an example, the bandgap energy versus strain for GaPAsSb is shown in
  • Figure 10 the ternaries GaPAs, GaPSb, and GaAsSb ternaries border the GaPAsSb
  • compositions are suitable as active materials for lasers.
  • region labeled For the region labeled
  • indirect bandgap the lowest energy band to band transition is an indirect transition that occurs
  • the X, L, and T band structure notations refer to separate electron or crystal
  • transition refers to a change in both momentum and energy during the transition.
  • bandgap materials are not suitable as active materials for lasers because the optical band-to-band
  • GaP has a large bandgap (> 2 eV) and an indirect bandgap, it is not
  • GaAs-based lasers include, but are not limited to:
  • GaP GaP or GaSb
  • GaPAsSb is a direct bandgap material.
  • N seems to inco ⁇ orate as a localized state
  • system 1 One embodiment of the present invention, denoted herein as system 1, consists of
  • an active layer of layer sequence that may be A-B-C-B-A on a substrate close in composition to
  • GaAs i.e., comprising GaAs and/or its structural and functional equivlaent in substantial
  • A Al p Ga,. p As, O ⁇ p ⁇ l;
  • sequence designation A-B-C-B-A (as just described, for example) characterizes sequentially-
  • each layer being adjacent to the next-denoted layer (again following the just- described example, a layer of composition A adjacent to a layer of composition B, itself adjacent
  • composition B which is finally adjacent on its opposite side to a layer of composition A).
  • strain compensation may also be zero.
  • the C-B unit of the active layer may be
  • the strain compensation may also be substantially zero.
  • system 2 One embodiment of the invention, denoted herein as system 2, consists of an
  • A Al p Ga,. p As, 0 ⁇ p ⁇ l;
  • the strain compensation may also be substantially zero.
  • the C-D-B unit of the active layer may be
  • the strain compensation may also be zero.
  • system 3 One embodiment of the invention, denoted herein as system 3, consists of an
  • D In a Ga, .a N b As,. b , 0 ⁇ a ⁇ l;0 ⁇ b ⁇ 0.1.
  • the strain compensation may also be zero.
  • the D-C-B unit of the active layer may be any D-C-B unit of the active layer.
  • the strain compensation may also be substantially zero.
  • system 4 One embodiment of the invention, denoted herein as system 4, consists of an
  • A Al p Ga H> As,0 ⁇ p ⁇ l;
  • D In a Ga,. a N b As,. b , 0 ⁇ a ⁇ l;0 ⁇ b ⁇ 0.1.
  • the strain compensation may also be substantially zero.
  • the strain compensation may also be substantially zero.
  • One embodiment of the present invention denoted system 5, consists of an active
  • D In a Ga,. a N b As,. b , 0 ⁇ a ⁇ l;0 ⁇ b ⁇ 0.1.
  • the strain compensation may also be substantially zero.
  • the strain compensation may also be substantially zero.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

La présente invention concerne des structures et des techniques améliorées, permettant la formation de dispositifs de traitement de la lumière (par exemple, des dispositifs émetteurs de lumière et absorbeurs de lumière/de détection), notamment de lasers à cavité verticale et à émission par la surface (VCSEL), pouvant trouver des applications dans les télécommunications. Lesdits dispositifs VCSEL et lesdits procédés de production fournissent une région active présentant une structure de puits quantique croissant sur des substrats contenant du GaAs, assurant ainsi une compatibilité de traitement pour la lumière de longueur d'onde située entre 1,0 et 1,6 νm. La structure à région active combine des barrières de compensation de contrainte avec différents alignements de bande dans les puits quantiques, afin d'obtenir une grande longueur d'onde d'émission, tout en diminuant la contrainte dans la structure. L'amélioration apportée au fonctionnement desdits dispositifs résulte de leur construction avec des couches d'alliage à plusieurs composants, qui présentent un grand nombre de constituants. Chaque couche d'alliage peut être sélectionnée selon des préférences décrites, de façon que les constituants variés contribuent à la fois à la contrainte accumulée et à une longueur d'onde d'émission/d'absorption plus grande. Des couches barrière de minimisation de contrainte supplémentaires aident à compenser ou à améliorer en outre la contrainte globale de la structure, ce qui permet de réduire à un niveau optimum l'incidence de dislocation et d'autres anomalies qui altèrent l'efficacité et la durée de vie du dispositif. La présente invention concerne également un constituant clé, dans les couches d'alliage proposées, pour la région active d'une substance, tel que l'azote (N), conçu pour réduire l'énergie de bande interdite (c'est-à-dire augmenter la longueur d'onde de la lumière), associée aux couches, et simultanément réduire la constante de réseau associée à la structure et ainsi, réduire la contrainte.
PCT/US2000/041775 1999-11-01 2000-11-01 COUCHES ACTIVES DE TYPE I ET DE TYPE II, EN InGaNPAsSb, PSEUDOMORPHIQUES, A GRANDE LONGUEUR D'ONDE, DESTINEES A UN SYSTEME EN MATERIAU GAAS WO2001033677A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020027005594A KR20020059663A (ko) 1999-11-01 2000-11-01 GaAs 재료 시스템용 장파장 부정규형InGaNPAsSb 타입-Ⅰ 및 타입-Ⅱ 활성층
JP2001535268A JP2003513476A (ja) 1999-11-01 2000-11-01 GaAs材料系のための長波長仮像InGaNPAsSbタイプIおよびタイプIIアクティブ層
US10/129,061 US6859474B1 (en) 1999-11-01 2000-11-01 Long wavelength pseudomorphic InGaNPAsSb type-I and type-II active layers for the gaas material system
EP00991716A EP1228557A2 (fr) 1999-11-01 2000-11-01 COUCHES ACTIVES DE TYPE I ET DE TYPE II, EN InGaNPAsSb, PSEUDOMORPHIQUES, A GRANDE LONGUEUR D'ONDE, DESTINEES A UN SYSTEME EN MATERIAU GAAS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16281399P 1999-11-01 1999-11-01
US60/162,813 1999-11-01

Publications (3)

Publication Number Publication Date
WO2001033677A2 WO2001033677A2 (fr) 2001-05-10
WO2001033677A3 WO2001033677A3 (fr) 2001-10-25
WO2001033677A9 true WO2001033677A9 (fr) 2002-08-15

Family

ID=22587237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/041775 WO2001033677A2 (fr) 1999-11-01 2000-11-01 COUCHES ACTIVES DE TYPE I ET DE TYPE II, EN InGaNPAsSb, PSEUDOMORPHIQUES, A GRANDE LONGUEUR D'ONDE, DESTINEES A UN SYSTEME EN MATERIAU GAAS

Country Status (5)

Country Link
EP (1) EP1228557A2 (fr)
JP (1) JP2003513476A (fr)
KR (1) KR20020059663A (fr)
CN (1) CN1384990A (fr)
WO (1) WO2001033677A2 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7058112B2 (en) * 2001-12-27 2006-06-06 Finisar Corporation Indium free vertical cavity surface emitting laser
US6922426B2 (en) * 2001-12-20 2005-07-26 Finisar Corporation Vertical cavity surface emitting laser including indium in the active region
JP3735047B2 (ja) * 2000-07-31 2006-01-11 古河電気工業株式会社 半導体レーザ素子及びその作製方法
US6803604B2 (en) * 2001-03-13 2004-10-12 Ricoh Company, Ltd. Semiconductor optical modulator, an optical amplifier and an integrated semiconductor light-emitting device
US6888873B2 (en) 2002-02-21 2005-05-03 Finisar Corporation Long wavelength VCSEL bottom mirror
US6822995B2 (en) 2002-02-21 2004-11-23 Finisar Corporation GaAs/AI(Ga)As distributed bragg reflector on InP
US6711195B2 (en) * 2002-02-28 2004-03-23 Agilent Technologies, Inc. Long-wavelength photonic device with GaAsSb quantum-well layer
US6927412B2 (en) 2002-11-21 2005-08-09 Ricoh Company, Ltd. Semiconductor light emitter
CN101432936B (zh) 2004-10-01 2011-02-02 菲尼萨公司 具有多顶侧接触的垂直腔面发射激光器
US7860137B2 (en) 2004-10-01 2010-12-28 Finisar Corporation Vertical cavity surface emitting laser with undoped top mirror
JP5196750B2 (ja) * 2006-08-25 2013-05-15 キヤノン株式会社 発振素子
JP2010034506A (ja) * 2008-06-24 2010-02-12 Ricoh Co Ltd 面発光型半導体レーザー、面発光型レーザーアレイ素子、光走査装置及び画像形成装置
EP2131458B1 (fr) * 2008-06-03 2017-08-16 Ricoh Company, Ltd. Laser à émission de surface à cavité verticale (VCSEL), réseau de VCSELs, dispositif de balayage optique et appareil de formation d'images
DE102008048491A1 (de) 2008-09-23 2010-04-01 Meiko Maschinenbau Gmbh & Co.Kg Geschirrspülmaschine mit Niedertemperatur-Nachspülung
DE102009056933A1 (de) * 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Sicherheitselement mit Farbfilter, Wertdokument mit so einem solchen Sicherheitselement sowie Herstellungsverfahren eines solchen Sicherheitselementes
US9306115B1 (en) 2015-02-10 2016-04-05 Epistar Corporation Light-emitting device
KR102030080B1 (ko) * 2015-03-06 2019-10-08 에피스타 코포레이션 발광 디바이스
JP2020098890A (ja) * 2018-12-19 2020-06-25 住友電気工業株式会社 半導体レーザ
KR102120356B1 (ko) * 2019-10-01 2020-06-09 에피스타 코포레이션 발광 디바이스
CN114552379B (zh) * 2020-11-25 2023-08-08 上海禾赛科技有限公司 谐振腔、激光单元、激光器和激光雷达
CN114430002B (zh) * 2022-04-06 2022-06-07 苏州长光华芯光电技术股份有限公司 高效率有源层和半导体发光器件及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825796A (en) * 1996-09-25 1998-10-20 Picolight Incorporated Extended wavelength strained layer lasers having strain compensated layers
JP3854693B2 (ja) * 1996-09-30 2006-12-06 キヤノン株式会社 半導体レーザの製造方法
EP0896406B1 (fr) * 1997-08-08 2006-06-07 Matsushita Electric Industrial Co., Ltd. Dispositif laser à semiconducteur, système optique de communication l'utilisant

Also Published As

Publication number Publication date
WO2001033677A2 (fr) 2001-05-10
KR20020059663A (ko) 2002-07-13
JP2003513476A (ja) 2003-04-08
CN1384990A (zh) 2002-12-11
WO2001033677A3 (fr) 2001-10-25
EP1228557A2 (fr) 2002-08-07

Similar Documents

Publication Publication Date Title
US6566688B1 (en) Compound semiconductor structures for optoelectronic devices
US5960018A (en) Extended wavelength strained layer lasers having strain compensated layers
WO2001033677A9 (fr) COUCHES ACTIVES DE TYPE I ET DE TYPE II, EN InGaNPAsSb, PSEUDOMORPHIQUES, A GRANDE LONGUEUR D'ONDE, DESTINEES A UN SYSTEME EN MATERIAU GAAS
US5719894A (en) Extended wavelength strained layer lasers having nitrogen disposed therein
US5719895A (en) Extended wavelength strained layer lasers having short period superlattices
US6782021B2 (en) Quantum dot vertical cavity surface emitting laser
EP1182756B1 (fr) Dispositif laser à semiconducteur avec seuil de courant diminué
US10020423B2 (en) Light emitting semiconductor device
US6711195B2 (en) Long-wavelength photonic device with GaAsSb quantum-well layer
US5712865A (en) Temperature-insensitive vertical-cavity surface-emitting lasers and method for fabrication thereof
EP1401069A2 (fr) Systèmes de matériaux pour les jonctions à l'effet tunnel dans des dispositifs à émission de lumière
EP1246328A2 (fr) VCSEL à grandes longueurs d'onde contacté par l'intérieure avec des couches enterrées d'Antimoine
CN1780004A (zh) 一种含隧道结的垂直腔型光电子器件
US7095770B2 (en) Vertical cavity surface emitting laser including indium, antimony and nitrogen in the active region
WO2001029943A1 (fr) Procede et appareil pour laser a semi-conducteurs a grande longueur d'onde
US6859474B1 (en) Long wavelength pseudomorphic InGaNPAsSb type-I and type-II active layers for the gaas material system
US20030123501A1 (en) Vertical cavity surface emitting laser including indium and antimony in the active region
JP5381692B2 (ja) 半導体発光素子
US7058112B2 (en) Indium free vertical cavity surface emitting laser
US20030118069A1 (en) Vertical cavity surface emitting laser including indium in the active region
WO1998013879A1 (fr) Lasers a couches contraintes et a longueur d'ondes amplifiee
Tränkle et al. Visible (Red) Vertical-Cavity Surface-Emitting Lasers
Fiore et al. Postgrowth tuning of cavity resonance for multiple-wavelength laser and detector arrays

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 008149682

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10129061

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 535268

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027005594

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000991716

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027005594

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000991716

Country of ref document: EP

COP Corrected version of pamphlet

Free format text: PAGE 1, DESCRIPTION, REPLACED BY A NEW PAGE 1; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

WWW Wipo information: withdrawn in national office

Ref document number: 2000991716

Country of ref document: EP