WO2001032856A2 - Seed-preferred promoter from barley - Google Patents
Seed-preferred promoter from barley Download PDFInfo
- Publication number
- WO2001032856A2 WO2001032856A2 PCT/US2000/030537 US0030537W WO0132856A2 WO 2001032856 A2 WO2001032856 A2 WO 2001032856A2 US 0030537 W US0030537 W US 0030537W WO 0132856 A2 WO0132856 A2 WO 0132856A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- promoter
- seed
- nucleotide sequence
- sequence
- Prior art date
Links
- 240000005979 Hordeum vulgare Species 0.000 title claims description 15
- 235000007340 Hordeum vulgare Nutrition 0.000 title claims description 15
- 230000014509 gene expression Effects 0.000 claims abstract description 78
- 239000002773 nucleotide Substances 0.000 claims abstract description 58
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 39
- 230000001131 transforming effect Effects 0.000 claims abstract description 5
- 241000196324 Embryophyta Species 0.000 claims description 107
- 210000004027 cell Anatomy 0.000 claims description 35
- 239000013598 vector Substances 0.000 claims description 35
- 240000008042 Zea mays Species 0.000 claims description 22
- 239000012634 fragment Substances 0.000 claims description 22
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 21
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 19
- 235000009973 maize Nutrition 0.000 claims description 19
- 230000009466 transformation Effects 0.000 claims description 16
- 238000009396 hybridization Methods 0.000 claims description 15
- 108091033319 polynucleotide Proteins 0.000 claims description 12
- 102000040430 polynucleotide Human genes 0.000 claims description 12
- 239000002157 polynucleotide Substances 0.000 claims description 12
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 10
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 8
- 235000010469 Glycine max Nutrition 0.000 claims description 7
- 244000068988 Glycine max Species 0.000 claims description 7
- 244000061176 Nicotiana tabacum Species 0.000 claims description 7
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 7
- 229920001184 polypeptide Polymers 0.000 claims description 7
- 238000013518 transcription Methods 0.000 claims description 7
- 230000035897 transcription Effects 0.000 claims description 7
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 6
- 240000007594 Oryza sativa Species 0.000 claims description 6
- 235000007164 Oryza sativa Nutrition 0.000 claims description 6
- 240000006394 Sorghum bicolor Species 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 5
- 235000009566 rice Nutrition 0.000 claims description 5
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 claims description 4
- 235000006008 Brassica napus var napus Nutrition 0.000 claims description 4
- 240000000385 Brassica napus var. napus Species 0.000 claims description 4
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 claims description 4
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims description 4
- 244000020551 Helianthus annuus Species 0.000 claims description 4
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 4
- 240000004658 Medicago sativa Species 0.000 claims description 4
- 235000007238 Secale cereale Nutrition 0.000 claims description 4
- 244000082988 Secale cereale Species 0.000 claims description 4
- 235000011684 Sorghum saccharatum Nutrition 0.000 claims description 4
- 235000021307 Triticum Nutrition 0.000 claims description 4
- 230000000977 initiatory effect Effects 0.000 claims description 4
- 241000972773 Aulopiformes Species 0.000 claims description 3
- 244000075850 Avena orientalis Species 0.000 claims description 3
- 235000007319 Avena orientalis Nutrition 0.000 claims description 3
- 238000012357 Gap analysis Methods 0.000 claims description 3
- 241000209510 Liliopsida Species 0.000 claims description 3
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000023852 carbohydrate metabolic process Effects 0.000 claims description 3
- 235000021256 carbohydrate metabolism Nutrition 0.000 claims description 3
- 241001233957 eudicotyledons Species 0.000 claims description 3
- 229930195732 phytohormone Natural products 0.000 claims description 3
- 235000019515 salmon Nutrition 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 235000007558 Avena sp Nutrition 0.000 claims description 2
- 235000003255 Carthamus tinctorius Nutrition 0.000 claims description 2
- 244000020518 Carthamus tinctorius Species 0.000 claims description 2
- 229920000742 Cotton Polymers 0.000 claims description 2
- 244000098338 Triticum aestivum Species 0.000 claims description 2
- 239000010903 husk Substances 0.000 claims description 2
- 241000219146 Gossypium Species 0.000 claims 1
- 206010020649 Hyperkeratosis Diseases 0.000 claims 1
- 210000005069 ears Anatomy 0.000 claims 1
- 210000002257 embryonic structure Anatomy 0.000 claims 1
- 230000004129 fatty acid metabolism Effects 0.000 claims 1
- 230000022558 protein metabolic process Effects 0.000 claims 1
- 210000001938 protoplast Anatomy 0.000 claims 1
- 230000022983 regulation of cell cycle Effects 0.000 claims 1
- 150000007523 nucleic acids Chemical group 0.000 abstract description 27
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 15
- 230000001105 regulatory effect Effects 0.000 abstract description 15
- 239000000203 mixture Substances 0.000 abstract description 5
- 230000001172 regenerating effect Effects 0.000 abstract description 2
- 108090000623 proteins and genes Proteins 0.000 description 59
- 210000001519 tissue Anatomy 0.000 description 28
- 108020004707 nucleic acids Proteins 0.000 description 25
- 102000039446 nucleic acids Human genes 0.000 description 25
- 108020004414 DNA Proteins 0.000 description 22
- 239000013612 plasmid Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 12
- 108010060309 Glucuronidase Proteins 0.000 description 11
- 102000053187 Glucuronidase Human genes 0.000 description 11
- 230000008117 seed development Effects 0.000 description 11
- 108091026890 Coding region Proteins 0.000 description 10
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 235000013339 cereals Nutrition 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 210000001161 mammalian embryo Anatomy 0.000 description 7
- 238000003752 polymerase chain reaction Methods 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 6
- 108700008625 Reporter Genes Proteins 0.000 description 6
- 108010050181 aleurone Proteins 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 239000003623 enhancer Substances 0.000 description 6
- 101150091511 glb-1 gene Proteins 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 230000006353 environmental stress Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000002123 temporal effect Effects 0.000 description 5
- 230000009261 transgenic effect Effects 0.000 description 5
- 241000589158 Agrobacterium Species 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 235000002595 Solanum tuberosum Nutrition 0.000 description 4
- 244000061456 Solanum tuberosum Species 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 230000004720 fertilization Effects 0.000 description 4
- 235000011073 invertase Nutrition 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 108020004491 Antisense DNA Proteins 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 208000035240 Disease Resistance Diseases 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 108700026226 TATA Box Proteins 0.000 description 3
- 241000209140 Triticum Species 0.000 description 3
- 230000009418 agronomic effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003816 antisense DNA Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- -1 hexose sugars Chemical class 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000001573 invertase Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 230000037039 plant physiology Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000035040 seed growth Effects 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000001018 virulence Effects 0.000 description 3
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 2
- 244000099147 Ananas comosus Species 0.000 description 2
- 235000007119 Ananas comosus Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 229940122644 Chymotrypsin inhibitor Drugs 0.000 description 2
- 101710137926 Chymotrypsin inhibitor Proteins 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 244000299507 Gossypium hirsutum Species 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 241000710118 Maize chlorotic mottle virus Species 0.000 description 2
- 241000723994 Maize dwarf mosaic virus Species 0.000 description 2
- 235000014826 Mangifera indica Nutrition 0.000 description 2
- 240000007228 Mangifera indica Species 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 244000025272 Persea americana Species 0.000 description 2
- 235000008673 Persea americana Nutrition 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- 244000299461 Theobroma cacao Species 0.000 description 2
- 235000009470 Theobroma cacao Nutrition 0.000 description 2
- 241000723792 Tobacco etch virus Species 0.000 description 2
- 241000723873 Tobacco mosaic virus Species 0.000 description 2
- 108700009124 Transcription Initiation Site Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 206010000210 abortion Diseases 0.000 description 2
- 231100000176 abortion Toxicity 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 239000003541 chymotrypsin inhibitor Substances 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 108010052305 exodeoxyribonuclease III Proteins 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 101150015886 nuc-1 gene Proteins 0.000 description 2
- 239000002853 nucleic acid probe Substances 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 230000009120 phenotypic response Effects 0.000 description 2
- 230000008121 plant development Effects 0.000 description 2
- 210000002706 plastid Anatomy 0.000 description 2
- 230000010152 pollination Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 231100000241 scar Toxicity 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- FLUSEOZMBNGLSB-HNTFPEDGSA-N (2S,3R,4R,5R,6R)-2-bromo-3-chloro-3,4,5,6-tetrahydroxy-4-(1H-indol-2-yl)oxane-2-carboxylic acid Chemical class O[C@H]1[C@H](O)O[C@](Br)(C(O)=O)[C@](O)(Cl)[C@@]1(O)C1=CC2=CC=CC=C2N1 FLUSEOZMBNGLSB-HNTFPEDGSA-N 0.000 description 1
- JLIDBLDQVAYHNE-LXGGSRJLSA-N 2-cis-abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\C1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-LXGGSRJLSA-N 0.000 description 1
- 101710168820 2S seed storage albumin protein Proteins 0.000 description 1
- UPMXNNIRAGDFEH-UHFFFAOYSA-N 3,5-dibromo-4-hydroxybenzonitrile Chemical compound OC1=C(Br)C=C(C#N)C=C1Br UPMXNNIRAGDFEH-UHFFFAOYSA-N 0.000 description 1
- 108010020183 3-phosphoshikimate 1-carboxyvinyltransferase Proteins 0.000 description 1
- JXCKZXHCJOVIAV-UHFFFAOYSA-N 6-[(5-bromo-4-chloro-1h-indol-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid;cyclohexanamine Chemical compound [NH3+]C1CCCCC1.O1C(C([O-])=O)C(O)C(O)C(O)C1OC1=CNC2=CC=C(Br)C(Cl)=C12 JXCKZXHCJOVIAV-UHFFFAOYSA-N 0.000 description 1
- 101710146995 Acyl carrier protein Proteins 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 241000724328 Alfalfa mosaic virus Species 0.000 description 1
- 244000291564 Allium cepa Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 241000193388 Bacillus thuringiensis Species 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 240000008100 Brassica rapa Species 0.000 description 1
- 235000011292 Brassica rapa Nutrition 0.000 description 1
- 239000005489 Bromoxynil Substances 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 108091027551 Cointegrate Proteins 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 241000289763 Dasygaster padockina Species 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 241000710188 Encephalomyocarditis virus Species 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241001131785 Escherichia coli HB101 Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 241000218218 Ficus <angiosperm> Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 101710186901 Globulin 1 Proteins 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 235000009432 Gossypium hirsutum Nutrition 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 101000899240 Homo sapiens Endoplasmic reticulum chaperone BiP Proteins 0.000 description 1
- 108700032155 Hordeum vulgare hordothionin Proteins 0.000 description 1
- 101100049353 Hypocrea virens (strain Gv29-8 / FGSC 10586) virC gene Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 235000021506 Ipomoea Nutrition 0.000 description 1
- 241000207783 Ipomoea Species 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 241000234280 Liliaceae Species 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 235000004456 Manihot esculenta Nutrition 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 235000010624 Medicago sativa Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000234295 Musa Species 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 235000002725 Olea europaea Nutrition 0.000 description 1
- 241001147398 Ostrinia nubilalis Species 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 241000710078 Potyvirus Species 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 241000508269 Psidium Species 0.000 description 1
- 240000001679 Psidium guajava Species 0.000 description 1
- 235000013929 Psidium pyriferum Nutrition 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 108010016634 Seed Storage Proteins Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 101100018379 Shigella flexneri icsA gene Proteins 0.000 description 1
- 235000007230 Sorghum bicolor Nutrition 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 235000006468 Thea sinensis Nutrition 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 101100476911 Yersinia enterocolitica yscW gene Proteins 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000036579 abiotic stress Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 108091000039 acetoacetyl-CoA reductase Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229930002877 anthocyanin Natural products 0.000 description 1
- 235000010208 anthocyanin Nutrition 0.000 description 1
- 239000004410 anthocyanin Substances 0.000 description 1
- 150000004636 anthocyanins Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000680 avirulence Effects 0.000 description 1
- 229940097012 bacillus thuringiensis Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 230000001744 histochemical effect Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000005562 seed maturation Effects 0.000 description 1
- 239000011734 sodium Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 235000020238 sunflower seed Nutrition 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 101150076562 virB gene Proteins 0.000 description 1
- 101150033532 virG gene Proteins 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8222—Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
- C12N15/823—Reproductive tissue-specific promoters
- C12N15/8234—Seed-specific, e.g. embryo, endosperm
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
Definitions
- the present invention relates to the field of plant molecular biology, more particularly to regulation of gene expression in plants.
- heterologous DNA sequences in a plant host is dependent upon the presence of an operably-linked promoter that is functional within the plant host. Choice of the promoter sequence will determine when and where within the plant the heterologous DNA sequence is expressed. Where continuous expression is desired throughout the cells of a plant, constitutive promoters are utilized. In contrast, where gene expression in response to a stimulus is desired, inducible promoters are the regulatory element of choice. Where expression in specific tissues or organs is desired, tissue-preferred promoters are used. That is, these promoters can drive expression in specific tissues or organs.
- Additional regulatory sequences upstream and/or downstream from the core promoter sequence can be included in expression cassettes of transformation vectors to bring about varying levels of expression of heterologous nucleotide sequences in a transgenic plant. See, for example, U.S. Patent No. 5,850,018.
- Regulatory sequences may also be useful in controlling temporal and/or spatial expression of endogenous DNA.
- specialized tissues are involved in fertilization and seed development. Identification of promoters which are active in these seed tissues is of interest. In grain crops of agronomic importance, seed formation is the ultimate goal of plant development. Seeds are harvested for use in food, feed, and industrial products. The quantities and proportions of protein, oil, and starch components in those seeds determine their utility and value.
- the timing of seed development is critical. Environmental conditions at any point prior to fertilization through seed maturation may affect the quality and quantity of seed produced. In particular, the first 10 to 12 days after pollination (the lag phase) are critical in maize seed development. Several developmental events during the lag phase are important determinants of the fate of subsequent seed growth and development. (Cheikh, N. et al., Plant Physiology 106:45-51 (1994)) Therefore, a means to influence plant development, particularly in response to stress during this phase of growth, is of interest. Identification of a promoter sequence active in tissues of developing seeds exposed to abiotic stresses would be useful. Specialized plant tissues are central to seed development.
- a short-distance transport mechanism operates to move the assimilates from the vascular tissues to the endosperm and embryo.
- photosynthate enters the seed via the pedicel; in wheat and barley, via the nucellar projection and the aleurone layer. It is possible that this short-distance assimilate pathway between the phloem and the endosperm can operate to regulate the rate of sucrose transport into the grain.
- a promoter active in gene expression within these specialized tissues such as the nucellar projection or pedicel, may have significant effects on grain development.
- sucrose is unloaded passively from the phloem into the apoplast of the pedicel parenchyma and inverted to hexose sugars by a cell-wall-bound acid invertase.
- the hydrolysis of sucrose in the apoplast maintains a favorable gradient for continued unloading from the phloem and provides hexoses that are taken up by the basal endosperm cells. It has been shown that maize seeds induced to abort, in vitro, have only low levels of invertase activity in the pedicel. (Hanft, J.M. et al. (1986) Plant Physiol.
- the maize Glb1 gene encodes globulin-1 , a major embryo storage protein.
- Glb1 is expressed in the developing maize seed during embryo development.
- the promoter region of Glb1 has been identified, cloned, and introduced into tobacco plants by Agrobacter/i/m-mediated transformation. (Liu, S., et al. (1996) Plant Cell Reports 16:158-162)
- the transformed plants demonstrate that the Glb1 promoter has desirable temporal and tissue specificity.
- the Glb1 promoter is positively regulated by abscisic acid (ABA) .
- ABA abscisic acid
- levels of the plant hormone ABA are known to fluctuate under conditions of cold or desiccation.
- Himmelbach, A., et al. (1998) Phil. Trans. R. Soc. Lond. 353:1439-1444)
- the activity of the Glb1 promoter can be differentially affected by environmental stress.
- the present invention relates to an isolated nucleic acid comprising a member selected from the group consisting of: a) nucleic acids capable of driving expression in the carpel, embryo scutellum, pedicel, nucellus, pericarp, aleurone, or pedicel-forming region of a developing seed; b) nucleic acids capable of driving expression in the carpel, embryo scutellum, pedicel, nucellus, pericarp, aleurone, or pedicel-forming region of a developing seed during critical periods of seed development; c) nucleic acids capable of driving expression in the carpel, embryo scutellum, pedicel, nucellus, pericarp, aleurone, or pedicel-forming region of a developing seed during favorable or unfavorable growing conditions; d) nucleic acids comprising a functional variant or fragment of at least 20 contiguous nucleotides of the sequence set forth in SEQ ID NO 1 ; e)
- the present invention relates to expression cassettes comprising the promoter operably linked to a nucleotide sequence, vectors containing the expression cassette, and plants stably transformed with at least one expression cassette.
- the present invention relates to a method for modulating expression in the seed of a stably transformed plant comprising the steps of (a) transforming a plant cell with an expression cassette comprising the promoter of the present invention operably linked to at least one nucleotide sequence; (b) growing the plant cell under plant growing conditions and (c) regenerating a stably transformed plant from the plant cell wherein said linked nucleotide sequence is expressed in the seed.
- a nucleotide sequence that allows initiation of transcription in seed.
- the sequence of the invention comprises transcriptional initiation regions associated with seed formation and seed tissues.
- compositions of the present invention comprise a novel nucleotide sequence for a plant promoter, more particularly a seed-preferred promoter.
- seed or “kernel” is intended to include the grain or ripened ovule of a plant, or more broadly, a propagative plant structure.
- seed and kernel are used interchangeably herein.
- seed-preferred is intended favored expression in the seed, including at least one of embryo, seed or kernel, pericarp, endosperm, nucellar projection, nucellus, aleurone, pedicel, and the like.
- heterologous nucleotide sequence is intended a sequence that is not naturally occurring with the promoter sequence. While this nucleotide sequence is heterologous to the promoter sequence, it may be homologous (native) or heterologous (foreign) to the plant host.
- promoter is intended a regulatory region of DNA usually comprising a TATA box capable of directing RNA polymerase II to initiate RNA synthesis at the appropriate transcription initiation site for a particular coding sequence.
- a promoter can additionally comprise other recognition sequences generally positioned upstream or 5' to the TATA box, referred to as upstream promoter elements, which influence the transcription initiation rate. It is recognized that having identified the nucleotide sequences for the promoter region disclosed herein, it is within the state of the art to isolate and identify further regulatory elements in the 5' untranslated region upstream from the particular promoter region identified herein.
- the promoter region disclosed herein is generally further defined by comprising upstream regulatory elements such as those responsible for tissue and temporal expression of the coding sequence, enhancers and the like.
- upstream regulatory elements such as those responsible for tissue and temporal expression of the coding sequence, enhancers and the like.
- the promoter elements which enable expression in the desired tissue such as the seed can be identified, isolated, and used with other core promoters to confirm seed-preferred expression.
- the isolated promoter sequence of the present invention can be modified to provide for a range of expression levels of the heterologous nucleotide sequence. Less than the entire promoter region can be utilized and the ability to drive seed- preferred expression retained. However, it is recognized that expression levels of mRNA can be decreased with deletions of portions of the promoter sequence. Thus, the promoter can be modified to be a weak or strong promoter. Generally, by “weak promoter” is intended a promoter that drives expression of a coding sequence at a low level. By “low level” is intended levels of about 1/10,000 transcripts to about 1/100,000 transcripts to about 1/500,000 transcripts.
- a strong promoter drives expression of a coding sequence at a high level, or at about 1/10 transcripts to about 1/100 transcripts to about 1/1 ,000 transcripts.
- at least about 20 nucleotides of an isolated promoter sequence will be used to drive expression of a nucleotide sequence.
- shorter segments of a promoter may be effective in driving expression, and may particularly enhance expression within specific tissues.
- Enhancers can be utilized in combination with the promoter regions of the invention. Enhancers are nucleotide sequences that act to increase the expression of a promoter region. Enhancers are known in the art and include the SV40 enhancer region, the 35S enhancer element, and the like.
- isolated refers to material, such as a nucleic acid or a protein, which is: (1 ) substantially or essentially free from components which normally accompany or interact with it as found in its natural environment.
- the isolated material optionally comprises material not found with the material in its natural environment; or (2) if the material is in its natural environment, the material has been synthetically altered or synthetically produced by deliberate human intervention and/or placed at a different location within the cell.
- the synthetic alteration or creation of the material can be performed on the material within or apart from its natural state. For example, a naturally-occurring nucleic acid becomes an isolated nucleic acid if it is altered or produced by non-natural, synthetic methods, or if it is transcribed from DNA which has been altered or produced by non-natural, synthetic methods.
- the isolated nucleic acid may also be produced by the synthetic re-arrangement ("shuffling") of a part or parts of one or more allelic forms of the gene of interest. Likewise, a naturally-occurring nucleic acid (e.g., a promoter) becomes isolated if it is introduced to a different locus of the genome. Nucleic acids which are "isolated,” as defined herein, are also referred to as “heterologous" nucleic acids.
- sequence for the promoter region of the present invention is set forth in SEQ ID NO 1.
- the promoter region of the invention may be isolated from any plant, including, but not limited to, barley (Hordeum vulgare), maize (Zea mays), canola (Brassica napus, Brassica rapa ssp.), alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), sunflower (Helianthus annuus), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanut (Arachis hypogaea), cotton (Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Cofea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.),
- Promoter sequences from other plants may be isolated according to well- known techniques based on their sequence homology to the promoter sequence set forth herein. In these techniques, all or part of the known promoter sequence is used as a probe which selectively hybridizes to other sequences present in a population of cloned genomic DNA fragments (i.e. genomic libraries) from a chosen organism. Methods are readily available in the art for the hybridization of nucleic acid sequences.
- the entire promoter sequence or portions thereof can be used as a probe capable of specifically hybridizing to corresponding promoter sequences.
- probes include sequences that are unique and are preferably at least about 10 nucleotides in length, and most preferably at least about 20 nucleotides in length.
- Such probes can be used to amplify corresponding promoter sequences from a chosen organism by the well-known process of polymerase chain reaction (PCR). This technique can be used to isolate additional promoter sequences from a desired organism or as a diagnostic assay to determine the presence of the promoter sequence in an organism. Examples include hybridization screening of plated DNA libraries (either plaques or colonies; see e.g.
- stringent conditions or “stringent hybridization conditions” includes reference to conditions under which a probe will hybridize to its target sequence, to a detectably greater degree than to other sequences (e.g., at least 2- fold over background).
- Stringent conditions are target-sequence-dependent and will differ depending on the structure of the polynucleotide. By controlling the stringency of the hybridization and/or washing conditions, target sequences can be identified which are 100% complementary to a probe (homologous probing).
- probes of this type are in a range of about 1000 nucleotides in length to about 250 nucleotides in length.
- sequences that correspond to the promoter sequence of the present invention and hybridize to the promoter sequence disclosed herein will be at least 50% homologous, 70% homologous, and even 85% homologous or more with the disclosed sequence. That is, the sequence similarity between probe and target may range, sharing at least about 50%, about 70%, and even about 85% sequence similarity.
- stringent wash temperature conditions are selected to be about 5°C to about 2°C lower than the melting point (T m ) for the specific sequence at a defined ionic strength and pH.
- T m melting point
- the melting point, or denaturation, of DNA occurs over a narrow temperature range and represents the disruption of the double helix into its complementary single strands. The process is described by the temperature of the midpoint of transition, T m , which is also called the melting temperature. Formulas are available in the art for the determination of melting temperatures.
- Preferred hybridization conditions for the promoter sequence of the invention include hybridization at 42°C in 50%(w/v) formamide, 6X SSC, 0.5%(w/v) SDS, 100 ⁇ g/ml salmon sperm DNA.
- Exemplary low stringency washing conditions include hybridization at 42°C in a solution of 2X SSC, 0.5% (w/v) SDS for 30 minutes and repeating.
- Exemplary moderate stringency conditions include a wash in 2X SSC, 0.5% (w/v) SDS at 50°C for 30 minutes and repeating.
- Exemplary high stringency conditions include a wash in 2X SSC, 0.5% (w/v) SDS, at 65°C for 30 minutes and repeating. Sequences that correspond to the promoter of the present invention may be obtained using all the above conditions. For purposes of defining the invention, the high stringency conditions are used.
- Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman, Adv. Appl. Math. 2: 482 (1981 ); by the homology alignment algorithm of Needleman and Wunsch, J. Mol. Biol. 48: 443 (1970); by the search for similarity method of Pearson and Lipman, Proc. Natl. Acad. Sci.
- Sequence fragments with high percent identity to the sequence of the present invention also refer to those fragments of a particular promoter nucleotide sequence disclosed herein that operate to promote the seed-preferred expression of an operably-linked heterologous nucleotide sequence. These fragments will comprise at least about 20 contiguous nucleotides, preferably at least about 50 contiguous nucleotides, more preferably at least about 75 contiguous nucleotides, even more preferably at least about 100 contiguous nucleotides of the particular promoter nucleotide sequence disclosed herein. The nucleotides of such fragments will usually comprise the TATA recognition sequence of the particular promoter sequence.
- Such fragments can be obtained by use of restriction enzymes to cleave the naturally occurring promoter nucleotide sequences disclosed herein; by synthesizing a nucleotide sequence from the naturally occurring promoter DNA sequence; or can be obtained through the use of PCR technology. See particularly, Mullis et al. (1987) Methods Enzymol. 155:335-350, and Erlich, ed. (1989) PCR Technology (Stockton Press, New York). Again, variants of these promoter fragments, such as those resulting from site-directed mutagenesis, are encompassed by the compositions of the present invention.
- Nucleotide sequences comprising at least about 20 contiguous sequences of the sequence set forth in SEQ ID NO 1 are encompassed. These sequences can be isolated by hybridization, PCR, and the like. Such sequences encompass fragments capable of driving seed-preferred expression, fragments useful as probes to identify similar sequences, as well as elements responsible for temporal or tissue specificity.
- a regulatory "variant" is a modified form of a regulatory sequence wherein one or more bases have been modified, removed or added.
- a routine way to remove part of a DNA sequence is to use an exonuclease in combination with DNA amplification to produce unidirectional nested deletions of double stranded DNA clones.
- a commercial kit for this purpose is sold under the trade name Exo-SizeTM (New England Biolabs, Beverly, Mass.).
- this procedure entails incubating exonuclease III with DNA to progressively remove nucleotides in the 3' to 5' direction at 5' overhangs, blunt ends or nicks in the DNA template.
- exonuclease III is unable to remove nucleotides at 3', 4-base overhangs. Timed digestion of a clone with this enzyme produces unidirectional nested deletions.
- a regulatory sequence variant is a promoter formed by one or more deletions from a larger promoter.
- the 5' portion of a promoter up to the TATA box near the transcription start site can be deleted without abolishing promoter activity, as described by Zhu et al., The Plant Cell 7: 1681-89 (1995).
- Such variants should retain promoter activity, particularly the ability to drive expression in seed or seed tissues.
- Biologically active variants include, for example, the native promoter sequences of the invention having one or more nucleotide substitutions, deletions or insertions.
- Promoter activity can be measured by Northern blot analysis, reporter activity measurements when using transcriptional fusions, and the like. See, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.), herein incorporated by reference.
- the nucleotide sequence for the promoter of the invention can be provided in expression cassettes along with heterologous nucleotide sequences for expression in the plant of interest, more particularly in the seed of the plant.
- Such an expression cassette is provided with a plurality of restriction sites for insertion of the nucleotide sequence to be under the transcriptional regulation of the promoter.
- genes of interest expressed by the promoter of the invention can be used for varying the phenotype of seeds. This can be achieved by increasing expression of endogenous or exogenous products in seeds. Alternatively, the results can be achieved by providing for a reduction of expression of one or more endogenous products, particularly enzymes or cofactors in the seed. These modifications may result in a change in phenotype of the transformed seed.
- genes of interest for the purposes of the present invention include, for example, those genes involved in information, such as Zinc fingers, those involved in communication, such as kinases, and those involved in housekeeping, such as heat shock proteins. More specific categories of transgenes include genes encoding important traits for agronomic quality, insect resistance, disease resistance, herbicide resistance, and grain characteristics. Still other categories of transgenes include genes for inducing expression of exogenous products such as enzymes, cofactors, and hormones from plants and other eukaryotes as well as prokaryotic organisms. It is recognized that any gene of interest, including the native coding sequence, can be operably linked to the promoter of the invention and expressed in the seed.
- Modifications that affect grain traits include altering the levels of saturated and unsaturated fatty acids. Likewise, increasing the levels of lysine- and sulfur- containing amino acids may be desired, as well as modifications of the amount and/or type of starch contained in the seed. Examples of hordothionin protein modifications are described in PCT/US94/382 filed April 10, 1997; PCT/US96/08219 filed March 26, 1997; PCT/US96/08220 filed March 26, 1997 and U.S. Pat. No. 5,703,409 issued December 30, 1997; the disclosures of which are incorporated herein by reference.
- the promoter of the instant invention modulates genes encoding proteins which act as cell cycle regulators, or which control carbohydrate metabolism or phytohormone levels, as has been shown in tobacco and canola with other tissue-preferred promoters.
- proteins which act as cell cycle regulators, or which control carbohydrate metabolism or phytohormone levels, as has been shown in tobacco and canola with other tissue-preferred promoters.
- Expression of endogenous or heterologous nucleotides under the direction of the promoter may result in maintenance of a desirable seed phenotype under adverse environmental conditions.
- the gene encoding the barley high lysine polypeptide is derived from barley chymotrypsin inhibitor, PCT/US97/20441 filed November 1 , 1996 and PCT/US97/20441 filed October 31 , 1997; the disclosures of each are incorporated herein by reference.
- Other proteins include methionine- rich plant proteins such as from sunflower seed, Lilley et al. (1989) Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs, Applewhite, H.
- Agronomic traits in seeds can be improved by altering expression of genes that affect the response of seed growth and development during environmental stress, Cheikh-N et al., (1994) Plant Physiol. 106(1 ):45-51 , and genes controlling carbohydrate metabolism to reduce seed abortion in maize, Zinselmeier et al. (1995) Plant Physiol. 107(2):385-391.
- Insect resistance genes may encode resistance to pests that have great yield drag such as rootworm, cutworm, European Corn Borer, and the like.
- Such genes include, for example, Bacillus thuringiensis endotoxin genes, U.S. Pat. Nos. 5,366,892; 5,747,450; 5,737,514; 5,723,756; 5,593,881 ; Geiser ef al. (1986) Gene 48:109; lectins, Van Damme ef al. (1994) Plant Mot. Biol. 24:825; and the like.
- Genes encoding disease resistance traits include detoxification genes, such as against fumonosin (PCT/US95/10284 filed June 7, 1995); avirulence (avr) and disease resistance (R) genes Jones ef al. (1994) Science 266:789; Martin et al. (1993) Science 262:1432; Mindrinos ef al. (1994) Cell 78:1089; and the like.
- Alterations in gene expression may also affect the type or amount of products of commercial interest; for example, starch for the production of paper, textiles and ethanol.
- Another important commercial use of transformed plants is the production of polymers and bioplastics such as described in U.S. Patent No. 5,602,321 issued February 11 , 1997.
- Genes such as B-Ketothiolase, PHBase (polyhydroxybutyrate synthase) and acetoacetyl-CoA reductase (see Schubert et al. (1988) J. Bacteriol 170(12):5837-5847) facilitate expression of polyhyroxyalkanoates (PHAs).
- the nucleotide sequence operably linked to the promoter disclosed herein can be an antisense sequence for a targeted gene.
- antisense DNA nucleotide sequence is intended a sequence that is in inverse orientation to the 5'-to-3' normal orientation of that nucleotide sequence.
- expression of the antisense DNA sequence prevents normal expression of the DNA nucleotide sequence for the targeted gene.
- the antisense nucleotide sequence encodes an RNA transcript that is complementary to and capable of hybridizing with the endogenous messenger RNA (mRNA) produced by transcription of the DNA nucleotide sequence for the targeted gene. In this case, production of the native protein encoded by the targeted gene is inhibited to achieve a desired phenotypic response.
- mRNA messenger RNA
- the promoter sequence disclosed herein can be operably linked to antisense DNA sequences to reduce or inhibit expression of a native protein in the plant seed.
- the expression cassette will also include at the 3' terminus of the heterologous nucleotide sequence of interest, a transcriptional and translational termination region functional in plants.
- the termination region can be native with the promoter nucleotide sequence of the present invention, can be native with the DNA sequence of interest, or can be derived from another source.
- Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also, Guerineau et al. (1991 ) Mol. Gen. Genet. 262:141-144; Proudfoot (1991 ) Cell 64:671-674; Sanfacon et al. (1991 ) Genes Dev.
- the expression cassettes can additionally contain 5' leader sequences.
- leader sequences can act to enhance translation.
- Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region), Elroy-Stein et al. (1989J Proc. Nat. Acad. Sci. USA 86:6126-6130; potyvirus leaders, for example, TEV leader (Tobacco Etch Virus), Allison et al. (1986); MDMV leader (Maize Dwarf Mosaic Virus), Virology 154:9-20; human immunoglobulin heavy-chain binding protein (BiP), Macejak et al.
- EMCV leader Engelphalomyocarditis 5' noncoding region
- potyvirus leaders for example, TEV leader (Tobacco Etch Virus), Allison et al.
- the cassette can also contain sequences that enhance translation and/or mRNA stability such as introns.
- the expression cassette can further comprise a coding sequence for a transit peptide.
- transit peptides are well known in the art and include, but are not limited to, the transit peptide for the acyl carrier protein, the small subunit of RUBISCO, plant EPSP synthase, and the like.
- the various DNA fragments can be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame.
- adapters or linkers can be employed to join the DNA fragments or other manipulations can be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like.
- in vitro mutagenesis, primer repair, restriction digests, annealing, and resubstitutions, such as transitions and transversions can be involved.
- the present invention provides vectors capable of expressing genes of interest under the control of the promoter. In general, the vectors should be functional in plant cells. At times, it may be preferable to have vectors that are functional in E.
- E. coli e.g., production of protein for raising antibodies, DNA sequence analysis, construction of inserts, obtaining quantities of nucleic acids.
- Vectors and procedures for cloning and expression in E. coli are discussed in Sambrook et al. (supra).
- the transformation vector comprising the promoter sequence of the present invention operably linked to a heterologous nucleotide sequence in an expression cassette can also contain at least one additional nucleotide sequence for a gene to be cotransformed into the organism.
- the additional sequence(s) can be provided on another transformation vector.
- Vectors that are functional in plants can be binary plasmids derived from Agrobacterium. Such vectors are capable of transforming plant cells. These vectors contain left and right border sequences that are required for integration into the host (plant) chromosome. At minimum, between these border sequences is the gene to be expressed under control of the promoter. In preferred embodiments, a selectable marker and a reporter gene are also included. For ease of obtaining sufficient quantities of vector, a bacterial origin that allows replication in E. coli is preferred.
- Reporter genes can be included in the transformation vectors. Examples of suitable reporter genes known in the art can be found in, for example, Jefferson et al. (1991 ) in Plant Molecular Biology Manual, ed. Gelvin et al. (Kluwer Academic Publishers), pp. 1-33; DeWet et al. (1987) Mol. Cell. Biol. 7:725-737; Goff et al. (1990) EMBO J. 9:2517-2522; Kain et al. (1995) BioTechniques 19:650-655; and Chiu et al. (1996) Current Biology 6:325-330.
- Selectable marker genes for selection of transformed cells or tissues can be included in the transformation vectors. These can include genes that confer antibiotic resistance or resistance to herbicides. Examples of suitable selectable marker genes include, but are not limited to, genes encoding resistance to chloramphenicol, Herrera Estrella et al. (1983) EMBO J. 2:987-992; methotrexate, Herrera Estrella et al. (1983) Nature 303:209-213; Meijer et al. (1991) Plant Mol. Biol. 16:807-820; hygromycin, Waldron et al. (1985) Plant Mol. Biol. 5:103-108; Zhijian et al.
- genes that could serve utility in the recovery of transgenic events but might not be required in the final product would include, but are not limited to, examples such as GUS ( ⁇ -glucuronidase), Jefferson (1987) Plant Mol. Biol. Rep. 5:387); GFP (green florescence protein), Chalfie et al. (1994) Science 263:802; luciferase, Teeri et al. (1989) EMBO J. 8:343; and the maize genes encoding for anthocyanin production, Ludwig et al. (1990) Science 247:449.
- GUS ⁇ -glucuronidase
- GFP green florescence protein
- Chalfie et al. (1994) Science 263:802 Science 263:802
- luciferase Teeri et al. (1989) EMBO J. 8:343
- the transformation vector comprising the particular promoter sequence of the present invention, operably linked to a heterologous nucleotide sequence of interest in an expression cassette, can be used to transform any plant.
- genetically modified plants, plant cells, plant tissue, seed, and the like can be obtained. Transformation protocols can vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of transforming plant cells include microinjection, Crossway et al. (1986) Biotechniques 4:320-334; electroporation, Riggs et al. (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606; transformation, see for example, Townsend et al. U.S.
- Patent 5,563,055 direct gene transfer, Paszkowski et al. (1984) EMBO J. 3:27 '17 '-2722; and ballistic particle acceleration, see for example, Sanford et al. U.S. Patent 4,945,050; Tomes et al. (1995) in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); and McCabe et al. (1988) Biotechnology 6:923-926. Also see Weissinger et al. (1988) Annual Rev. Genet. 22:421-477; Sanford et al. (1987) Particulate Science and Technology 5:27-37 (onion); Christou et al.
- the cells that have been transformed can be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986) Plant Cell Reports 5:81-84. These plants can then be grown, and pollinated with the same transformed strain or different strains. The resulting hybrid having seed- preferred expression of the desired phenotypic characteristic can then be identified. Two or more generations can be grown to ensure that seed-preferred expression of the desired phenotypic characteristic is stably maintained and inherited.
- the primers and barley genomic DNA were used in conjunction with the
- GenomeWalker Kit (Clontech) to isolate the promoter. The manufacturer's protocol was followed and approximately 1.3 Kb of 5' sequence were obtained. Analysis of the upstream sequence revealed no obvious control element motifs. An approximately 1-Kb fragment of the 5' upstream sequence, starting at the first methionine of the barley coding sequence, was then isolated. Two primers (SEQ ID No. 5: CCCAAGCTTTACGTTTGAGACGTATCATGTCG and SEQ ID No. 6: CGGGATCCCGCTCCTTGCTCGTGCTGGCGAAG ) with restriction sites were designed and PCR was used to isolate the fragment using techniques known to those of skill in the art. The fragment was 1091 bp long (SEQ ID NO. 1 ), and was designated Nude The DNA was inserted into a transformation vector (see Example 2, below). The construct was transformed into maize and the plants were used to evaluate promoter activity.
- the Agrobacterium strain utilized in this example was modified to contain nucleic acid encoding the Nude promoter and a GUS reporter gene to be expressed in the transformed cells.
- the nucleic acid to be transferred is incorporated into the T-region and is flanked by at least one T-DNA border sequence.
- the T-region is distinct from the vir region whose functions are responsible for transfer and integration.
- Binary vector systems have been developed where the manipulated disarmed T-DNA carrying foreign DNA and the vir functions are present on separate plasmids.
- a modified T-DNA region comprising foreign DNA (the nucleic acid to be transferred) is constructed in a small plasmid which replicates in E. coli.
- This plasmid is transferred conjugatively in a tri-parental mating into A. tumefaciens which contains a compatible plasmid-carrying virulence gene.
- the vir functions are supplied in trans to transfer the T-DNA into the plant genome.
- Preferred vectors are super-binary vectors. See, for example, U.S. Patent No. 5,591 ,616 and EPA 0604662A1 , herein incorporated by reference.
- Such a super-binary vector has been constructed containing a DNA region originating from the virulence region of Ti plasmid pTiBo542 (Jin et al. (1987) J. Bacteriol 169:4417-4425) contained in a super-virulent Agrobacterium tumefaciens A281 exhibiting extremely high transformation efficiency (Hood et al. (1984) Biotechnol. 2:702-709; Hood et al. (1986) J. Bacteriol.
- Patent Appl. No. 4-222527, EP-A-504,869, EP-A-604,662, and U.S. Patent No. 5,591 ,616 herein incorporated by reference
- pTOK233 Komari, T. (1990) Plant Cell Reports 9:303-306; and Ishida et al. (1996) Nature Biotechnology 74:745; herein incorporated by reference
- Other super-binary vectors may be constructed by the methods set forth in the above references.
- super-binary vector pTOK162 is capable of replication in both E. coli and in A. tumefaciens.
- the vector contains the virB, virC, and virG genes from the virulence region of pTiBo542.
- the plasmid also contains an antibiotic resistance gene, a selectable marker gene, and the nucleic acid of interest to be transformed into the plant.
- the T-region of the super-binary vectors and other vectors for use in gene expression are constructed to have restriction sites for the insertion of the genes to be delivered.
- the DNA to be transformed can be inserted in the T- DNA region of the vector by utilizing in vivo homologous recombination. See, Herrera-Esterella et al. (1983) EMBO J. 2:987-995; Horch et al. (1984) Science 223:496-498).
- homologous recombination relies on the fact that the super- binary vector has a region homologous with a region of pBR322 or other similar plasmid.
- the vectors of this example were constructed using standard molecular biology techniques known to those of ordinary skill in the art.
- a reporter gene and a selectable marker gene were inserted between the T-DNA borders of a superbinary vector.
- the reporter gene was the ⁇ -glucuronidase (GUS) gene (Jefferson, R.A. et al., 1986, Proc. Natl. Acad. Sci. (USA) 83:8447-8451 ) into whose coding region was inserted the second intron from the potato ST-LS1 gene (Vancanneyt et al., Mol. Gen. Genet. 220:245-250, 1990), to produce intron-GUS, in order to prevent expression of the gene in Agrobacterium (see Ohta, S.
- a Cauliflower Mosaic Virus 35S promoter with a duplicated enhancer region (2X35S; bases -421 to -90 and -421 to +2 from Gardner et al., Nucl. Acids Res. 9:2871-2888, 1981 ) was created.
- a fragment containing Omega-prime leader sequence (Gallie, D.R., et al., 1987, Nucleic Acids Research 15(8):3257-3273) was inserted downstream of the 35S promoter followed by a fragment containing the first intron of the maize alcohol dehydrogenase gene ADH1-S (Dennis et al., Nucl. Acids Res. 12:3983-3990, 1984).
- the BAR coding sequence (Thompson et al., EMBO J. 6:2519-2523, 1987) was cloned downstream of the leader sequence, with the pinll terminator ligated downstream of BAR, to create the BAR expression cassette.
- the plasmid was constructed by inserting the GUS expression cassette and the BAR expression cassette between the right and left T-DNA borders in pSB11.
- the GUS cassette is inserted proximal to the right T-DNA border.
- the Nude promoter fragment was inserted into the vector in front of the intron-GUS gene.
- the plasmid pSB11 was obtained from Japan Tobacco Inc. (Tokyo, Japan).
- the construction of pSB11 from pSB21 and the construction of pSB21 from starting vectors is described by Komari et al. (1996, Plant J. 10:165- 174).
- the T-DNA of this plasmid was integrated into the superbinary plasmid pSB1 (Saito et al., EP 672 752 A1 ) by homologous recombination between the two plasmids.
- the plasmid pSB1 was also obtained from Japan Tobacco Inc.
- E. coli strain HB101 containing the plasmid containing the Nud e promoter was mated with Agrobacterium strain LBA4404 harboring pSB1 to create the cointegrate plasmid in the Agrobacterium tumefaciens strain LBA4404 using the method of Ditta et al., (Proc. Natl. Acad. Sci.
- the resulting co-integrated plasmid was transformed into the genotypes (1 ) Hi-ll and (2) Hi-ll x PHN46. (See U.S. Patent No. 5,567,861 for more information about PHN46.) TO plants were generated and promoter analysis was conducted on T1 seed from both genotypes.
- Immature kernels from 21 transgenic events were collected at specific intervals after pollination, starting at 0 DAP and extending to 20 DAP. Each kernel was dissected vertically from silk scar to pedicel and was examined by histochemical staining. Specifically, each section was incubated in a solution of 0.1 M sodium phosphate buffer, pH 7.0, containing 0.5% X-gluc (5-bromo-4- chloro-3-indolyl- ⁇ -D-glucuronic acid, sodium salt, first dissolved in DMSO) and 0.1% Triton X-100. Sections were incubated overnight at 37°C.
- Plasmids containing polynucleotide sequences of the invention were deposited on June 29, 2000, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Virginia USA, 20110-2209, and assigned Accession No. PTA-2176. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. In addition, during the pendency of this patent application, access to the deposited cultures will be available to the Commissioner of Patents and Trademarks and to persons determined by the Commissioner to be entitled thereto under 37 C.F.R. ⁇ 114 and 35 U.S.C. ⁇ 122.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Reproductive Health (AREA)
- Pregnancy & Childbirth (AREA)
- Developmental Biology & Embryology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HU0203063A HUP0203063A3 (en) | 1999-11-02 | 2000-11-02 | Seed-preferred promoter from barley |
EP00976984A EP1226261A2 (en) | 1999-11-02 | 2000-11-02 | Seed-preferred promoter from barley |
MXPA02004307A MXPA02004307A (es) | 1999-11-02 | 2000-11-02 | Promotor de semilla seleccionada de cebada. |
CA002389759A CA2389759A1 (en) | 1999-11-02 | 2000-11-02 | Seed-preferred promoter from barley |
AU14684/01A AU1468401A (en) | 1999-11-02 | 2000-11-02 | Seed-preferred promoter from barley |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16311499P | 1999-11-02 | 1999-11-02 | |
US60/163,114 | 1999-11-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001032856A2 true WO2001032856A2 (en) | 2001-05-10 |
WO2001032856A3 WO2001032856A3 (en) | 2001-09-27 |
Family
ID=22588548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/030537 WO2001032856A2 (en) | 1999-11-02 | 2000-11-02 | Seed-preferred promoter from barley |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1226261A2 (hu) |
AU (1) | AU1468401A (hu) |
CA (1) | CA2389759A1 (hu) |
HU (1) | HUP0203063A3 (hu) |
MX (1) | MXPA02004307A (hu) |
WO (1) | WO2001032856A2 (hu) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998008961A2 (en) * | 1996-08-30 | 1998-03-05 | Olsen Odd Arne | Endosperm and nucellus specific genes, promoters and uses thereof |
-
2000
- 2000-11-02 WO PCT/US2000/030537 patent/WO2001032856A2/en active Search and Examination
- 2000-11-02 HU HU0203063A patent/HUP0203063A3/hu unknown
- 2000-11-02 EP EP00976984A patent/EP1226261A2/en not_active Withdrawn
- 2000-11-02 AU AU14684/01A patent/AU1468401A/en not_active Abandoned
- 2000-11-02 CA CA002389759A patent/CA2389759A1/en not_active Abandoned
- 2000-11-02 MX MXPA02004307A patent/MXPA02004307A/es not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998008961A2 (en) * | 1996-08-30 | 1998-03-05 | Olsen Odd Arne | Endosperm and nucellus specific genes, promoters and uses thereof |
Non-Patent Citations (3)
Title |
---|
DATABASE EMBL [Online] EBI; Nucleotide sequence accession number AF108009, 2 August 1999 (1999-08-02) FEUILLET C. AND KELLER B.: "Hordeum vulgare HV1PST (Hv1Pst) gene, complete cds." XP002165300 * |
DATABASE EMBL [Online] EBI; Nucleotide sequence accession number AP000426, 13 September 1999 (1999-09-13) SHIMIZU N. ET AL.: "Homo sapiens genomic DNA, chromosome 8q23, clone:KB1107E3" XP002165301 * |
DOAN D N P ET AL: "ISOLATION OF MOLECULAR MARKERS FROM THE BARLEY ENDOSPERM COENOCYTE AND THE SURROUNDING NUCELLUS CELL LAYERS" PLANT MOLECULAR BIOLOGY,NL,NIJHOFF PUBLISHERS, DORDRECHT, vol. 31, no. 4, 1 July 1996 (1996-07-01), pages 877-886, XP002051184 ISSN: 0167-4412 cited in the application * |
Also Published As
Publication number | Publication date |
---|---|
AU1468401A (en) | 2001-05-14 |
MXPA02004307A (es) | 2002-10-31 |
HUP0203063A2 (hu) | 2002-12-28 |
CA2389759A1 (en) | 2001-05-10 |
HUP0203063A3 (en) | 2004-10-28 |
EP1226261A2 (en) | 2002-07-31 |
WO2001032856A3 (en) | 2001-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6403862B1 (en) | Seed-preferred promoter from maize | |
CA2332628C (en) | Seed-preferred promoters | |
US6407315B1 (en) | Seed-preferred promoter from barley | |
US6903205B2 (en) | Seed-preferred promoters from end genes | |
US7432418B2 (en) | Seed-preferred regulatory elements and uses thereof | |
US7321031B2 (en) | Seed preferred regulatory elements | |
US7211712B2 (en) | Seed-preferred regulatory elements | |
US6921815B2 (en) | Cytokinin Oxidase Promoter from Maize | |
US8044263B2 (en) | Cytokinin oxidase promoter from maize | |
US20040210043A1 (en) | Seed preferred regulatory elements | |
AU2003218155B2 (en) | Early inflorescence-preferred regulatory elements and uses thereof | |
US20070238179A1 (en) | Cell Division and Proliferation Preferred Regulatory Elements and Uses Thereof | |
EP1226261A2 (en) | Seed-preferred promoter from barley |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2002/004307 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2389759 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000976984 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14684/01 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2000976984 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000976984 Country of ref document: EP |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) |