WO2001032739A1 - Process for producing cycloolefin polymer - Google Patents
Process for producing cycloolefin polymer Download PDFInfo
- Publication number
- WO2001032739A1 WO2001032739A1 PCT/JP2000/007620 JP0007620W WO0132739A1 WO 2001032739 A1 WO2001032739 A1 WO 2001032739A1 JP 0007620 W JP0007620 W JP 0007620W WO 0132739 A1 WO0132739 A1 WO 0132739A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymerization
- solution
- reaction
- catalyst
- ylidene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
- C08G61/08—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
Definitions
- the present invention relates to a method for producing a ring-opened polymer of cyclic olefin using a ruthenium complex as a catalyst. More specifically, an improvement in the method of producing a ring-opened polymer of a cyclic olefin using a ruthenium complex as a catalyst, which produces a polymer that does not require post-curing treatment (post-curing) after polymerization and provides a high reaction rate.
- post-curing post-curing
- ruthenium complexes have been known as catalysts for ring-opening polymerization of cyclic olefins.
- Japanese Patent Application Laid-Open No. 10-508991 describes a complex compound in which a tertiary phosphine ligand or the like is bonded to at least one divalent cationic compound of ruthenium or osmium. ing.
- Japanese Patent Publication No. 9-5122828 discloses a carbene complex compound of ruthenium or osmium metal having various ligands, which is used as a catalyst for bulk polymerization of dicyclopentene. Experimental examples are described.
- the catalysts described in these publications have an advantage in that the polymerization of cyclic olefins is relatively insensitive to deactivated substances such as water and air.
- polymerization is performed using a system with a slow reaction rate in order to increase the reaction rate, and furthermore, it is necessary to use a post-polymer of the resulting polymer. I have.
- the reaction solution containing the catalyst is reacted at about 65 for 1 hour, and further reacted in an oven at 130 ° C. for 3 hours.
- the reaction yield after the reaction is stated to be 86%.
- an object of the present invention is to provide a polymer in which ring-opening polymerization of cyclic olefins using a ruthenium complex as a polymerization catalyst does not require a bostokine and has a high reaction rate. It is another object of the present invention to provide a method for producing a ring-opened polymer.
- the present inventors have conducted intensive studies on the conditions for bulk polymerization of cyclic olefins using a ruthenium complex.
- oxygen air
- the catalyst deactivates and degrades in the presence of, and the catalyst deactivation at high temperatures is suppressed by reacting in an inert gas atmosphere.
- a high reaction rate is achieved by self-heating due to self-heating. It has been found that post-curing of the produced polymer becomes unnecessary.
- a polymer that does not require a post-curing agent can be prepared simply by preparing the reaction stock solution in an inert gas atmosphere. And found that the present invention was completed.
- a catalyst comprising at least one complex selected from a neutral electron donor and a heteroatom-containing carbene compound coordinated to ruthenium as a ligand can be used as a cyclic olefin.
- a method for producing a cyclic olefin polymer comprising mixing the cyclic olefin with a reaction mixture containing the mixture and subjecting the cyclic olefin to ring-opening polymerization, wherein the reaction mixture is prepared under an inert gas atmosphere.
- the ring-opening polymerization may be either bulk polymerization or solution polymerization. However, it is preferable to use bulk polymerization in which the undiluted solution is poured into a mold and cured, and the maximum temperature of the polymer in the bulk polymerization is preferably 140 ° C. or higher.
- the catalyst for ring-opening polymerization of cyclic olefins used in the present invention is a neutral electron donor and At least one selected from terrorist atom-containing carbene compounds is a complex in which ruthenium is coordinated as a ligand.
- a ruthenium complex represented by the following general formulas [1] to [3] is used.
- each independently represents an anionic ligand, and 1 ⁇ independently represents at least one selected from a neutral electron donor and a heteroatom-containing carbene compound. And two, three or four of the following may combine with each other to form a polydentate chelating ligand: m is an integer from 0 to 2 and n is an integer from 1 to 3 Z is 1 or 2.
- R 2 may independently include hydrogen or at least one atom selected from a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom.
- X 2 and X 3 each independently represent any anionic ligand
- L 2 and L 3 each independently represent any neutral electron donor and hetero atom-containing ligand
- At least one selected from carbene compounds: 2, 3, 4, or 5 of R 2 , X 2 , X 3 , L 2 and L 3 are bonded to each other to form a polydentate compound. To form a ligand.
- R 3 and R 4 may each independently include hydrogen or at least one atom selected from a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and a silicon atom C .
- X 4 and X 5 each independently represent an anionic ligand.
- L 4 and L 5 independently represent at least one kind selected from arbitrary neutral donors and heteroatom-containing carbene compounds. Show. Two, three, four or five of R 3 , R 4 , X 4 , X 5 , L 4 , and L 5 may combine with each other to form a multidentate chelating ligand.
- the “carbene compound” is a general term for compounds having a methylene free radical, and refers to a compound having an uncharged divalent carbon atom represented by OC :).
- the carbene is generally present as an unstable intermediate generated during the reaction, but it can be isolated as a relatively stable carbene compound if it has a heteroatom.
- These are the atoms of Groups 15 and 16 of the Table, and specifically include nitrogen, oxygen, phosphorus, sulfur, arsenic, and selenium atoms. Among them, a nitrogen atom, an oxygen atom, a phosphorus atom and a sulfur atom are preferable for obtaining a stable carbene compound, and a nitrogen atom and a phosphorus atom are particularly preferable.
- carbene compound containing a hetero atom examples include 1,3-diisopropyl-14-imidazoline_2-ylidene, 1,3-dicyclohexyl-4-imidazoline-2-ylidene, and 1,3-di (methylphenyl) -4.
- those in which the hetero atom adjacent to the carbene has a bulky substituent are preferable, and specifically, 1,3-diisopropyl-14-imidazoline-2-ylidene, 1,3-dicyclohexyl- 4 —Imidazoline— 2 —Ilidene, 1,3-di (methylphenyl) — 4 —Imidazoline-1- 2 —Ilidene, 1,3-Di (methylnaphthyl) -14 —Imidazoline — 2 —Ylidene, 1,3-dimesityl— 4 1-imidazoline—2—ylidene, 1,3—diadamantyl—4—imidazoline—2—ylidene, 1,3—diphenyl—4_imidazoline 1-2—ylidene, 1,3,4,5-tetramethyl— 4-Imidazoline- 1 2 _ylidene, 1,3,4,5-tetraphenyl- 4 -imidazoline
- the anionic ligand in the formulas [1] to [3] may be any ligand as long as it has a negative charge when separated from the central metal.
- the neutral electron-donating compound can be any ligand that has a neutral charge when separated from the central metal, ie, a Lewis base.
- XX 2 , X 3 , X 4 and X 5 include halogen atoms such as F, Br, C 1 and I, hydrogen, acetylacetonato group, diketonate group, substituted cyclopentenyl group, Substituted aryl, alkenyl, alkyl, aryl, alkoxy, aryloxy, alkoxycarbonyl, carboxyl, alkylsulfonate, arylsulfonate, alkylthio, alkenylthio, aryl Examples thereof include an alkylthio group, an alkylsulfonyl group, and an alkylsulfinyl group.
- neutral electron donors include oxygen, water, heplonyl, amines, pyridines, ethers, nitriles, esters, phosphines, phosphinates, Examples include phosphites, stibines, sulfoxides, thioethers, amides, aromatic compounds, cyclic diolefins, olefins, isocyanides, thiosineates, and the like.
- RR 2 , R 3 and R 4 include hydrogen, alkenyl, alkynyl, alkyl, aryl, alkoxyl, alkoxy, alkenyloxy, alkynyloxy, aryloxy, and alkoxycarbonyl groups.
- ruthenium complexes represented by the formulas [1] to [3] include the following.
- examples of the general formula [1] include (P-cumene) tricyclohexylphosphine ruthenium dichloride, bis (tricyclohexylphosphine) ruthenium dichloride, [1,3-di (methylphenyl) 1-4] Imidazoline—2-ylidene] (p-cymene) ruthenium dichloride;
- Specific examples of the general formula [2] include benzylidenebis (tricyclohexylphosphine) ruthenium dichloride, (phenylthiomethylene) bis (triisopropylpropylphosphine) ruthenium dichloride, and (1,3-dicyclohexylimiimi) Dazolidine_2-ylidene) (tricyclohexylphosphine) benzylidene tenidimdichloride, (1,3-dicyclohexyl-4_imidazoline-l-2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride,
- Specific examples of the general formula [3] include phenylvinylidenebis (tricyclohexylphosphine) ruthenium dichloride, (1,3-dicyclohexylimidazolidine-2-ylidene) (tricyclohexylphosphine) phenyl N-vinylidene ruthenium dichloride, (1,3-dimesitylimidazolidine-1-ylidene) (tricyclohexylphosphine) t-butylvinylidene ruthenium dichloride, (1,3-dimesityl-14-imidazoline-1) 2-ylidene) (tricyclohexylphosphine) phenylvinylidene ruthenium dichloride, [1,3-di (methylphenyl) imidazolidine-12-ylidene] (tricyclohexylphosphine) t-butylvinylidene ruthenium
- the complex compound represented by the above general formula [2] or [3] is converted to di-chlorobis [(p-cymene) chlororuthenium], di-chlorobis [[p-cymene) chloro Osmium], a dinuclear (pentamethylcyclopentenyl) rhodium dimer and other dinuclear metal complexes such as ruthenium-carbene complex compounds obtained by reaction with a dinuclear metal complex may also be used.
- the ratio of the ruthenium complex to the cyclic olefin, which is a polymerization raw material, is usually from 1: 100 to 2,000,000, preferably 1: 500, as represented by the molar ratio of (metal ruthenium in the ruthenium complex: cyclic olefin). ⁇ : L ,, 000,000, more preferably 1: 1,000 to 500,000. If the amount of the ruthenium complex is too large, the cost increases, and if it is too small, sufficient activity cannot be obtained.
- the ruthenium complex can be used by dissolving it in a monomeric cyclic olefin under the condition that polymerization of the cyclic olefin does not proceed.
- the product may be suspended or dissolved in a small amount of a solvent as long as the properties of the product are not essentially impaired.
- a Lewis acid can be used in combination to increase the polymerization activity of the ruthenium complex catalyst.
- the Lewis acid used is an electron pair acceptor defined by Lewis and is usually represented by the following formulas [4] to [5].
- X represents an element of group 14 of the table, for example, titanium, tin, zirconium, and X 6 , X 7 , X 8 , X 9 , X 10 , and X 12 are each independently a halogen atom or a halogen atom, May contain at least one atom selected from oxygen atom, nitrogen atom, sulfur atom, phosphorus atom and silicon atom . Represents a hydrocarbon group.
- X 6 , X 7 , X 8 , X 9 , X 10 , X and X 12 include F, Br, Halogen atom such as C1 and I, acetyl acetonato group, diketonate group, substituted cyclopentenyl group, substituted aryl group, alkenyl group, alkyl group, aryl group, alkoxy group, aryloxy group, alkoxycarbonyl Groups, carboxy groups, alkyl or arylsulfonate groups, alkylthio groups, alkenylthio groups, arylthio groups, alkylsulfonyl groups, and alkylsulfinyl groups.
- Preferred examples of the above formula [4] include trialkoxyaluminum, triphenoxyaluminum, dialkoxyalkylaluminum, alkoxydialkylaluminum, trialkylaluminum, dialkoxyaluminum chloride, alkoxyalkylaluminum chloride, and dialkylaluminum chloride. And trialkoxy scandium.
- Preferred examples of the formula [5] include tetraalkoxytitanium, tetraalkoxytin, and tetraalkoxyzirconium.
- alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, and an n-octoxy group.
- Use of a halogen-containing alkoxy group in which a halogen is bonded to the 3-position in addition to these alkoxy groups is particularly preferable because not only the reaction rate is improved but also the reaction rate is increased.
- halogen-containing alkoxy group examples include a 2-chloroethoxy group, a 2,2-dichloroethoxy group, a 2,2,2-trichloroethoxy group, a 2-chloro-1-propoxy group, , 3-Dichloro_2-propoxy group, 1,1-dichloro-2-propoxy group, 1,1,1-trichloro-2-propoxy group, hexachloro-2-propoxy group, 2-chloro-2 —Propene-1 1-oxy group, 2-chloro-1-butoxy group, 1 —Chloro-3 —methoxy-2 —propoxy group, 1,3-dibromo — 2 —propoxy group, 1,3 —Jodo 2 — Examples include a propoxy group and a 2-chlorocyclohexoxy group. Among these, a 1,3-dichloro-2-propoxy group is particularly preferred.
- the alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a sec-butyl group.
- the ratio of the Lewis acid to the ruthenium complex is usually 1: 0.05 to: L00, preferably expressed as a molar ratio of (metal ruthenium in the ruthenium complex: Lewis acid). Is from 1: 0.2 to 20, more preferably from 1: 0.5 to: 10. If the amount of Lewis acid is too large or too small, a sufficiently high polymerization activity cannot be obtained.
- a Lewis base can be added to the catalyst solution containing the ruthenium complex, and the Lewis acid and the Lewis base can be used in combination.
- the amount of the Lewis base to be added to the catalyst solution is usually represented by a molar ratio of (metal ruthenium in the ruthenium complex: Lewis base) of 1: 0.01 to: 100, preferably 1: 0.05. ⁇ 20, more preferably 1: 0.1 ⁇ : L0.
- the Lewis base to be added is not particularly limited, for example, phosphines, sulfonated phosphines, phosphites, phosphinates, phosphonites, arsines, stibines, ethers, amines, amides, sulfoxides, Examples include carboxyls, nitrosyls, pyridines, thioethers, nitriles, thiophenes, and furans.
- Lewis bases include triisopropylphosphine, tricyclopentylphosphine, tricyclohexylphosphine, triphenylphosphine, pyridine, propylamine, tri-n-butylphosphine, benzonitrile, triphenylarsine, acetonitrile anhydride, thiophene. , Franc and the like.
- triisopropylphosphine, tricyclopentylphosphine, tricyclohexylphosphine, triphenylphosphine, and tri-n-butylphosphine are preferred.
- the monomer subjected to ring-opening polymerization is a cyclic olefin.
- the cyclic olefin include (1) polycyclic cyclic olefins having a norpolene ring, such as norbornenes, dicyclopentenes, trimers of cyclopentene (symmetric and asymmetric), and tetracyclododecenes; (2) Monocyclic cyclic olefins and the like can be used.
- These cyclic olefins may have a substituent such as an alkyl group, an alkenyl group or an alkylidene group, and may have a polar group. You may have. Further, in addition to the double bond of the norbornene ring, it may further have a double bond.
- cyclic olefins it is preferable to use tricyclic to hexacyclic cyclic olefins having a norporene ring, and tricyclic cyclic olefins such as dicyclopentene digenes and trimers of cyclopentadiene (Symmetric and asymmetric types) and tetracyclic cyclic olefins such as tetracyclododecene and methyltetracyclododecene are particularly preferred.
- dicyclopentenes are most preferable in terms of economy.
- cyclic olefins may be used alone or in combination of two or more, but the use of two or more is preferred. This is because, when two or more types are used, the range in which the monomer can be handled as a liquid is broadened due to the freezing point drop as compared with the case of single use.
- the production method of the present invention is characterized in that a reaction stock solution is prepared in an inert gas atmosphere.
- the unreacted solution refers to a liquid substance containing the cyclic olefin (monomer) as a main component and giving a ring-opened polymer of the cyclic olefin by mixing with the ruthenium complex.
- the inert gas used in the present invention includes nitrogen, helium, neon, argon, krypton, xenon, radon and the like. Preferred are nitrogen, helium, neon, and argon. From the standpoint of industrial availability, nitrogen and argon are more preferred, and nitrogen is most preferred.
- the inert gas can be used alone or in combination of two or more.
- preparing a reaction stock solution means that cyclic olefin or cyclic olefin and various additives are subjected to treatment such as distillation, degassing, dehydration, mixing, heating, stirring, and dissolving as necessary.
- treatment such as distillation, degassing, dehydration, mixing, heating, stirring, and dissolving as necessary.
- the process up to filling the storage container described below, and preparation This refers to the step of storing the resulting reaction stock solution in a container until it is used for polymerization.
- all of these processing steps may be performed in an inert gas atmosphere. However, if the storage state immediately before molding is an inert gas atmosphere, all the steps need to be performed in an inert gas atmosphere. There is no.
- various additives are dissolved in cyclic olefins in the air, and in the final treatment step, the solution is replaced by publishing with an inert gas, or the solution is degassed under reduced pressure and then inert gas. May be introduced into the system and replaced with an inert gas, etc. to make the reaction stock solution an inert gas atmosphere.
- the undiluted reaction solution prepared as described above is filled in a storage container without being substantially in contact with air and sealed, or an open container is used. Includes storing, transporting, and transporting the undiluted solution until it is used in the polymerization reaction described below, such as by sealing with an inert gas to block contact with air. . Also, even if the reaction stock solution filled in a storage container is temporarily brought into contact with air when transferring it to another storage container, if it is returned to an inert gas atmosphere again, it is included in the concept of the storage process. You.
- the gas phase part of the storage container may be substantially an inert gas atmosphere, but the oxygen content in the gas phase part in the container is usually 1% or less, preferably 0.1% or less.
- the amount of dissolved oxygen in the reaction stock solution is usually 50 ppm or less, preferably 5 ppm or less, and more preferably 1 ppm or less.
- the storage period of the undiluted reaction solution and the filling rate in the storage container are not particularly limited.
- Examples of the storage container include various tanks, containers, drums, pail cans, and kerosene cans.
- the material of the container is not particularly limited, but a material having air permeability is not preferred.
- the reaction stock solution it is preferable to add the above-mentioned Lewis acid to the reaction stock solution, but if necessary, various additives such as an antioxidant, an ultraviolet absorber, an elastomer, a polymer modifier, and a filler , A coloring agent, a flame retardant, a cross-linking agent, a sliding agent, an odorant, a class of filler for reducing the weight, a foaming agent, and a whisker for smoothing the surface.
- various additives such as an antioxidant, an ultraviolet absorber, an elastomer, a polymer modifier, and a filler , A coloring agent, a flame retardant, a cross-linking agent, a sliding agent, an odorant, a class of filler for reducing the weight, a foaming agent, and a whisker for smoothing the surface.
- Examples of the elastomer to be added to the reaction stock solution include natural rubber, polybutene diene, polyisoprene, styrene-butadiene copolymer (SBR), styrene-butane distyrene-styrene block copolymer (SBS), and styrene Isoprene-styrene Examples include a styrene copolymer (SIS), an ethylene-propylene-diene terpolymer (EPDM), an ethylene-vinyl acetate copolymer (EVA), and hydrides thereof.
- SBR styrene-butadiene copolymer
- SBS styrene-butane distyrene-styrene block copolymer
- Isoprene-styrene examples include a styrene copolymer (SIS), an ethylene-propylene-diene
- Antioxidants include various antioxidants for plastics and rubbers, such as hindered phenol-based, phosphorus-based, and amine-based antioxidants. Although these antioxidants may be used alone, it is preferable to use two or more kinds in combination.
- the mixing ratio is usually 0.5 part by weight or more, preferably 1 to 3 parts by weight, based on the norbornene-based monomer.
- the antioxidant may be one which can be copolymerized with the monomer, and specific examples thereof include a norbornenylphenol compound such as 5- (3,5-di-tert-butyl-4-hydroxybenzyl-2-norbornene). (See Japanese Patent Application Laid-Open No. 57-83522).
- Fillers include inorganic fillers such as glass powder, force pump racks, talc, calcium carbonate, mica, and aluminum hydroxide. It is preferable that such a filler is surface-treated with a silane coupling agent or the like. The use of iodide or peroxide as a crosslinking agent improves heat resistance.
- the undiluted reaction solution thus prepared can be stored for a long time, and is usually used immediately before the start of the polymerization by mixing with the above-mentioned catalyst solution containing the ruthenium complex.
- the ring-opening polymerization reaction may be a solution polymerization performed in a solvent or a bulk (bulk) polymerization, but the bulk polymerization in which a reaction solution is injected into a mold and cured is used. preferable.
- a solvent that dissolves the produced polymer and does not inhibit the polymerization is used.
- aliphatic hydrocarbons such as pentane, hexane, and heptane
- cyclopentane cyclopentane
- Alicyclics such as hexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, getylcyclohexane, decahydronaphthylene, bicycloheptane, tricyclo mouth decane, hexahydroindenecyclohexane, and cyclooctane
- Aromatic hydrocarbons such as benzene, toluene and xylene; nitromethane, Nitrogen-containing hydrocarbons such as ditrobenzene and acetonitrile; ethers such as getyl ether and te
- aromatic, aliphatic, and alicyclic hydrocarbon-based solvents and ethers which are widely used in industry, are preferable, and are inert during the polymerization reaction, and have excellent polymer solubility. From the viewpoint of, it is most preferable to use an alicyclic hydrocarbon solvent such as cyclohexane.
- the concentration of the cyclic olefin is preferably 1 to 50% by weight, more preferably 2 to 45% by weight, and particularly preferably 5 to 40% by weight. If the concentration of the cyclic olefins is too low, the productivity is deteriorated. If the concentration is too high, the viscosity after polymerization is too high, and post-treatment becomes difficult.
- the polymerization temperature of the solution polymerization is generally from 130 ° C. to 200 ° C., preferably from 0 ° C. to 180 ° C.
- the polymerization time is generally from 1 minute to 100 hours.
- RTM resin transfer molding
- RIM reaction injection molding
- An RTM machine generally consists of a reaction stock solution tank, a catalyst formulation solution tank, a metering pump, a mixer, etc., and the reaction stock solution and the catalyst formulation solution described above are metered by a metering pump into a volume of 100: 1 to 10: 1.
- the mixture is sent to a mixer at a specific ratio, and then injected into a molding die heated to a predetermined temperature, where it is immediately subjected to bulk polymerization to obtain a molded product.
- a preferred molding method using an RTM machine is a reaction solution in which a cyclic olefin is optionally added with a Lewis acid, a neutral electron donor as a ligand and a carbene compound containing Z or a hetero atom coordinated with ruthenium. Is prepared by dissolving the complex in a solvent, preparing a catalyst compounding solution to which a Lewis base is added as required, and mixing and molding these.
- the RIM machine feeds two or more kinds of undiluted reaction solutions into a mixing head, mixes them by means of collision energy, and then injects them into a hot molding die, where they immediately mass-react. It is comprised so that a molded article may be obtained by combining them.
- a preferred molding method using a RIM machine is to divide the cyclic olefin into two parts (solution A and solution B) and use a solution (solution C) in which a ruthenium complex catalyst is dissolved in a solvent as a third solution. This is a method of mixing and molding the three liquids by collision mixing.
- a Lewis acid may be added to one or both of the solution A and the solution B as desired, and a Lewis base may be added to the solution C as desired.
- a mold having a split mold structure that is, a core mold and a cavity mold is usually used, and the reaction liquid is injected into the cavity (cavity) to perform bulk polymerization.
- the core mold and the cavity mold are formed so as to form voids that match the shape of the target molded product.
- the temperature of the reaction solution before it is fed into the cavity is preferably 20 to 8 Ot :.
- the viscosity of the reaction solution at, for example, 30 is usually 2 to 5,000 cps, preferably 5 to 1.00 cps.
- the filling pressure (injection pressure) when filling the reaction stock solution into the cavity is usually 0.01 to 50 kgf Zcm 2 , preferably 0.1 to: L 0 kgf Zcm 2 .
- the mold temperature is usually room temperature or higher, preferably 40 to 200: particularly preferably 50 to 130.
- Clamping pressure is usually 0. 1 Ru 1 0 0 range der of kg / cm 2.
- the polymerization time may be appropriately selected, but is usually from 10 seconds to 20 minutes, preferably within 5 minutes.
- the maximum temperature of the contents in the mold is 140 or more.
- a more preferred maximum temperature is 150 to 250.
- reaction solution obtained by mixing the above-mentioned “reaction stock solution” and “ruthenium complex” with an RTM machine or a RIM machine is injected into the cavity of the mold, a bulk polymerization reaction is immediately started and the mixture is cured.
- the polymerization reaction is exothermic, and after reaching the maximum temperature, the temperature of the molded product in the mold gradually decreases as the curing time (curing one hour) increases. Normally, The mold is released after the temperature of the molded article has reached the glass transition temperature or lower.
- a nitrogen stream was flowed through the lateral mouth of the T-tube, and the operation of pressing and releasing the upper mouth of the T-tube with fingers was repeated about 40 times, and the inside of the glass bottle was purged with nitrogen. After that, the nitrogen stream continued to flow slowly.
- Stop stirring 30 seconds after the monomer injection record the temperature rise of the reaction solution with a thermocouple and a temperature recorder, and measure the time from the monomer injection until the solution temperature reaches 100 ° C (Table 1).
- the T100 of the sample was measured in seconds, and the maximum liquid temperature (peak temperature in Table 1 was measured in ° C).
- the glass bottle containing the polymer was cooled to room temperature, the polymer was taken out, and its glass transition temperature (Tg) was measured by a differential scanning calorimeter. Further, in the same manner as in the T g measurement, a reaction rate (%) was obtained from the polymer taken out of the glass bottle by heating from room temperature to 400 ° C. by using a heating stirrer, based on the residual ratio of the weight obtained.
- Example 1 The same operation as in Example 1 was performed except that the Lewis acid was not added. Table 1 shows the measurement results.
- Example 2 was repeated except that bis (1,3-diisopropyl_4-imidazoline-2-ylidene) benzylidene ruthenium dichloride (2.8 mg (concentration in the polymerization system: 0.5 mmol)) was used as the ruthenium complex. The operation was the same as in 4. The highest liquid temperature in the polymerization reaction was 218. The Tg of the obtained polymer was 119 ° C, and the conversion was 94.2% (Example 7).
- Example 8 Two pieces of iron plate with a thickness of 200 mm and a thickness of 200 mm and a thickness of 500 W were used. In order to create a cavity inside the two iron plates, a U-shaped resin spacer (4 mm thick) that matches the size of the iron plate is sandwiched between the four iron plates, and the four corners are shaky. It was a vise. A thermocouple for temperature control was attached to the upper part of the mold on the product side of the simple mold made in this way, and this was connected to a heater temperature controller so that the temperature of the mold could be adjusted. The back side mold was not energized. A thermocouple for temperature measurement was attached near the center of the upper inside of both molds while being insulated from the iron plate.
- A is the thermocouple on the product side
- B is the thermocouple on the back side.
- the pair C was set.
- Reaction stock solution 90 mg of benzylidenebis (tricyclohexylphosphine) ruthenium dichloride (manufactured by Strem Chemica 1) finely ground in a mortar in a 50 Om1 wide-mouth polyethylene bottle was charged with 90 mg and a stirrer. .
- a rubber stopper, a polyethylene T-shaped tube, and a glass tube which can be hermetically sealed were prepared at the wide mouth of the polyethylene bottle, and a polyethylene T-shaped tube was attached to the rubber stopper in the same manner as in Example 1 above.
- a glass tube used to transfer the undiluted reaction solution to the mold was passed through a rubber stopper, and the rubber stopper was attached to the mouth of a polyethylene bottle.
- the stirrer was rotated, and the same monomer (2,25 m 1) as in Example 1 was charged with a syringe. After 10 seconds, 0.56 ml of a dicyclopentene solution of 0.2 mol bis (1,3-dichloro-2-propoxy) aluminum chloride separately prepared as a Lewis acid was injected with a syringe. Then, the mixture was vigorously stirred for 20 seconds.
- the internal temperature was measured for 3 minutes after transferring the undiluted reaction solution, and the mold was removed to obtain a molded product.
- Table 2 shows the maximum temperature in the reaction system inside the mold, the glass transition temperature (Tg) and the reaction rate of the sample cut from the molded product. It can be seen that if the compounding and preparation are performed in a nitrogen atmosphere, high Tg and high conversion can be achieved without replacing the inside of the mold with nitrogen.
- a stirrer was placed in a 3 Om 1 wide-mouthed glass bottle, and 9.4 ml of the composition solution 1 and 0.5 ml of the Lewis acid solution 1 were added and stirred.After mixing, 0.1 ml of the catalyst solution 1 was stirred. After a further 10 seconds of stirring, the catalyst was thoroughly mixed and became a homogeneous solution. Thereafter, the stirring was stopped, and the internal temperature was measured with a thermocouple. The internal temperature gradually increased, and reached a maximum temperature of 179 ° C 6 minutes and 10 seconds after the introduction of the catalyst solution 1.
- Tg glass transition temperature
- a stirrer is placed in a 3 Om 1 wide-mouthed glass bottle, and 9.4 m 1 of the composition liquid 1 and 0.5 ml of dicyclobenzene (including 10% of cyclopentamer) are added and stirred. After mixing, 0.1 ml of the catalyst liquid 1 was added with stirring, and the mixture was further stirred for 10 seconds. As a result, the catalyst was sufficiently mixed and became a homogeneous solution. Then, the stirring was stopped and the internal temperature was measured with a thermocouple. The internal temperature gradually increased, and reached a maximum temperature of 79 18 minutes and 50 seconds after the introduction of the catalyst solution 1. The Tg of the polymer was 42 :.
- a stirrer was placed in a 30-m1 wide-mouth glass bottle, 9.9 m of dicyclopentene (99.8% purity) was added, and 0.05 m1 of Lewis acid solution 1 was added. After stirring and mixing, the catalyst solution 3 was stirred while stirring. Was added, and the mixture was further stirred for 10 seconds. As a result, the catalyst was sufficiently mixed and became a homogeneous solution. After that, stirring was stopped and the internal temperature was measured with a thermocouple. The internal temperature gradually increased, and reached a maximum temperature of 219 ° C 1 minute and 12 seconds after the introduction of the catalyst solution 3. The above polymerization operation was performed at 40 ° C. under a nitrogen atmosphere. The T g of the polymer was 145.
- Catalyst Solution 3 In addition, in order to examine the storage stability of Catalyst Solution 3, only 0.5 mL of Catalyst Solution 3 was placed in a 6-mL screw-down tube under a nitrogen atmosphere, and placed in a warm and cold bath at 55 for a 6-hour heating acceleration test. However, there was no change in the initial light brown color, and no precipitate was formed.
- catalyst solution 4 6 ml was placed in a nitrogen atmosphere. A 0.5 ml aliquot was placed in a screw tube and placed in a 55 ° C water bath to conduct a heating promotion test.At the beginning, the color was light brown, but after 1 hour it turned black and after 4 hours As a result, a precipitate was formed which was considered to be a decomposition product of the catalyst.
- a stirrer was placed in a 30 ml wide-mouthed glass bottle, and 9.95 ml of dicyclopentene (purity: 99.8%) was added. Then, 0.05 ml of catalyst solution 3 was added with stirring, and then 1 ml. After stirring for 0 seconds, the catalyst was thoroughly mixed and became a homogeneous solution. Then, stirring was stopped and the internal temperature was measured with a thermocouple. The internal temperature gradually increased, and reached a maximum temperature of 203 ° C. 7 minutes and 30 seconds after the introduction of the catalyst solution 3. The above polymerization operation was performed at 40 ° C. under a nitrogen atmosphere. The Tg of the polymer was 138 ° C.
- dicyclopentene-diene and 8-ethylidenetetracyclododecene having a purity of 99% and a weight ratio of 85: 1 were distilled and purified under a nitrogen gas atmosphere.
- the reaction vessel was sealed with a crown and placed in an oil bath at 100 ° C., and the reaction solution was stirred well for 2 hours. After removing the reaction vessel from the oil bath and returning to room temperature, the content was poured into about 100 ml of 2-propanol to coagulate the formed polymer. The coagulated polymer was washed with 2-propanol and dried under reduced pressure in an oven at 120 ° C. for about 3 hours. As a result of measuring the weight of the dried polymer, the yield was 90%. Industrial applicability
- the glass transition temperature (T g) can be increased by preparing the reaction solution under an inert gas atmosphere.
- a cyclic olefin polymer that does not require post-curing after polymerization can be obtained at a high conversion.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
A process for producing a cycloolefin polymer which comprises mixing a starting liquid reaction mixture comprising a cycloolefin with a catalyst comprising a complex comprising ruthenium and, coordinated thereto as a ligand, at least one member selected among neutral electron donors and heteroatom-containing carbene compounds and polymerizing the cycloolefin by ring-opening metathesis polymerization, characterized in that the starting liquid reaction mixture is prepared in an inert gas atmosphere. The ring-opening metathesis polymerization is conducted by bulk polymerization or solution polymerization. According to need, a Lewis acid is incorporated in the starting liquid reaction mixture comprising a cycloolefin, and a Lewis base is used in combination with the catalyst. By the process, a polymer which need not be postcured after polymerization can be obtained at a high conversion.
Description
明 細 書 環状ォレフィン重合体の製造方法 技術分野 Description Method for producing cyclic olefin polymer
本発明はルテニウム錯体を触媒として用いる環状ォレフィンの開環重合体の製 造方法に関する。 より詳しくは、 重合後の後硬化処理 (ポストキュア一) が不要 な重合体を生成し、 かつ高反応率をもたらす、 ルテニウム錯体を触媒として用い る環状ォレフィンの開環重合体の製造方法における改良に関する。 背景技術 The present invention relates to a method for producing a ring-opened polymer of cyclic olefin using a ruthenium complex as a catalyst. More specifically, an improvement in the method of producing a ring-opened polymer of a cyclic olefin using a ruthenium complex as a catalyst, which produces a polymer that does not require post-curing treatment (post-curing) after polymerization and provides a high reaction rate. About. Background art
従来、 環状ォレフィン類の開環重合用触媒として、 各種のルテニウム錯体が知 られている。 例えば、 特表平 1 0— 5 0 8 8 9 1号には、 ルテニウムまたはォス ミゥムの少なくとも一種の二価カチオン性化合物に、 三級ホスフィン配位子など が結合された錯体化合物が記載されている。 Conventionally, various ruthenium complexes have been known as catalysts for ring-opening polymerization of cyclic olefins. For example, Japanese Patent Application Laid-Open No. 10-508991 describes a complex compound in which a tertiary phosphine ligand or the like is bonded to at least one divalent cationic compound of ruthenium or osmium. ing.
また、 特表平 9— 5 1 2 8 2 8号には、 種々の配位子を有するルテニウムまた はオスミウム金属のカルべン錯体化合物が開示され、 ジシクロペン夕ジェンの塊 状重合用触媒として使用した実験例が記載されている。 In addition, Japanese Patent Publication No. 9-5122828 discloses a carbene complex compound of ruthenium or osmium metal having various ligands, which is used as a catalyst for bulk polymerization of dicyclopentene. Experimental examples are described.
これらの公報に記載された触媒は、 環状ォレフィンの重合に際して、 水や空気 のような失活物質の影響を比較的受け難いという利点がある。 しかしながら、 塊 状 ひ υレク) 重合に適用する場合には、 反応率を上げるために反応速度の遅い系 を用いて重合し、 さらに生成重合体のボストキユア一が必要であるという欠点も 有している。 The catalysts described in these publications have an advantage in that the polymerization of cyclic olefins is relatively insensitive to deactivated substances such as water and air. However, when applied to bulk polymerization, there is a drawback in that polymerization is performed using a system with a slow reaction rate in order to increase the reaction rate, and furthermore, it is necessary to use a post-polymer of the resulting polymer. I have.
例えば、 前記特表平 9一 5 1 2 8 2 8号の実験例によると、 触媒を添加した反応 液を約 6 5 で 1時間反応させ、 さらに 1 3 0 °Cのオーブン中で 3時間反応させ たあとの反応収率は 8 6 %と記載されている。 For example, according to the experimental example of Japanese Patent Application Laid-Open No. 91-12828, the reaction solution containing the catalyst is reacted at about 65 for 1 hour, and further reacted in an oven at 130 ° C. for 3 hours. The reaction yield after the reaction is stated to be 86%.
このように反応率を高めるために反応速度の遅い反応系を採用せざるをえない こと、 さらにポストキュア一工程が必要なことは、 工業的規模での成形品の生産 では大きな問題となっている。
発明の開示 The need to employ a reaction system with a slow reaction rate in order to increase the reaction rate, and the necessity of a single post-curing process are major problems in the production of molded products on an industrial scale. I have. Disclosure of the invention
従来技術の上記のような問題点に鑑み、 本発明の目的は、 ルテニウム錯体を重 合触媒とする環状ォレフィンの開環重合において、 ボストキユア一が不要な重合 体を生成し、 しかも高い反応率をもたらす開環重合体の製造方法を提供すること にある。 In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a polymer in which ring-opening polymerization of cyclic olefins using a ruthenium complex as a polymerization catalyst does not require a bostokine and has a high reaction rate. It is another object of the present invention to provide a method for producing a ring-opened polymer.
本発明者らは、 ルテニウム錯体を用いた環状ォレフィンの塊状重合の条件につ いても鋭意検討重ねた結果、 重合反応熱によって短時間で急激に起こる温度上昇 という特殊な状況においては、 酸素(空気) の存在下で触媒が失活しゃすいこと、 また、 不活性ガス雰囲気下で反応させることによって高温時の触媒失活が押さえ られて、 同時に自己発熱による自己キュア一によつて高反応率となり、 生成重合 体のポストキュア一が不要となることを見出した。 The present inventors have conducted intensive studies on the conditions for bulk polymerization of cyclic olefins using a ruthenium complex. As a result, in a special situation where the temperature rise occurs rapidly in a short time due to the heat of polymerization reaction, oxygen (air ) The catalyst deactivates and degrades in the presence of, and the catalyst deactivation at high temperatures is suppressed by reacting in an inert gas atmosphere. At the same time, a high reaction rate is achieved by self-heating due to self-heating. It has been found that post-curing of the produced polymer becomes unnecessary.
さらに、 金型内の空隙部における塊状重合においては、 該空隙部を窒素などの 不活性ガスで置換せずとも、 反応原液を不活性ガス雰囲気で調製するだけでもポ ストキユア一が不要な重合体が得られることを見出して、 本発明を完成させるに 至った。 Furthermore, in the bulk polymerization in the voids in the mold, even if the voids are not replaced with an inert gas such as nitrogen, a polymer that does not require a post-curing agent can be prepared simply by preparing the reaction stock solution in an inert gas atmosphere. And found that the present invention was completed.
かくして、 本発明によれば、 中性電子供与体およびへテロ原子含有カルベン化 合物の中から選ばれた少くとも一種が配位子としてルテニウムに配位された錯体 からなる触媒を環状ォレフィンを含有する反応原液と混合し、 該環状ォレフイン を開環メ夕セシス重合させる方法において、 該反応原液を不活性ガス雰囲気下に 調製することを特徴とする環状ォレフィン重合体の製造方法が提供される。 Thus, according to the present invention, a catalyst comprising at least one complex selected from a neutral electron donor and a heteroatom-containing carbene compound coordinated to ruthenium as a ligand can be used as a cyclic olefin. A method for producing a cyclic olefin polymer, comprising mixing the cyclic olefin with a reaction mixture containing the mixture and subjecting the cyclic olefin to ring-opening polymerization, wherein the reaction mixture is prepared under an inert gas atmosphere. .
前記開環メ夕セシス重合は、塊状重合または溶液重合のいずれであってもよい。 しかしながら、 金型に反応原液を注入して硬化させる塊状重合であることが好ま しく、 また、 塊状重合における重合物の最高到達温度は 1 4 0 °C以上であること が好ましい。 発明を実施するための最良の形態 The ring-opening polymerization may be either bulk polymerization or solution polymerization. However, it is preferable to use bulk polymerization in which the undiluted solution is poured into a mold and cured, and the maximum temperature of the polymer in the bulk polymerization is preferably 140 ° C. or higher. BEST MODE FOR CARRYING OUT THE INVENTION
ルテニウム錯体触媒 Ruthenium complex catalyst
本発明で用いる環状ォレフィンの開環重合用触媒は、 中性電子供与体およびへ
テロ原子含有カルベン化合物の中から選ばれた少くとも一種がルテニウムに配位 子として配位してなる錯体である。 このルテニウム錯体としては、 通常、 下記一 般式 [ 1] 〜 [3] で示されるルテニウム錯体が用いられる。 The catalyst for ring-opening polymerization of cyclic olefins used in the present invention is a neutral electron donor and At least one selected from terrorist atom-containing carbene compounds is a complex in which ruthenium is coordinated as a ligand. As the ruthenium complex, usually, a ruthenium complex represented by the following general formulas [1] to [3] is used.
( (X,) m (L,) nR u) z [1 ] ((X,) m (L,) n R u) z [1]
(式中、 は互いに独立に任意のァニオン性配位子を示し、 1^は互いに独立に 任意の、 中性電子供与体およびへテロ原子含有カルベン化合物の中から選ばれた 少くとも一種を示す。 およびし〗の 2個、 3個または 4個が互いに結合して 多座キレート化配位子を形成してもよい。 mは 0〜2の整数で、 nは 1〜3の整 数である。 zは 1または 2である。 ) (Wherein each independently represents an anionic ligand, and 1 ^ independently represents at least one selected from a neutral electron donor and a heteroatom-containing carbene compound. And two, three or four of the following may combine with each other to form a polydentate chelating ligand: m is an integer from 0 to 2 and n is an integer from 1 to 3 Z is 1 or 2.
(式中、 および R2は、 互いに独立に水素、 またはハロゲン原子、 酸素原子、 窒素原子、 硫黄原子、 リン原子およびけい素原子の中から選ばれた少くとも一種 の原子を含んでもよい Ci Cz。の炭化水素基を示し、 X2および X3は、 互いに 独立に任意のァニオン性配位子を示す。 L2および L3は互いに独立に任意の、 中 性電子供与体およびへテロ原子含有カルベン化合物の中から選ばれた少くとも一 種を示す。 R2、 X2、 X3、 L2および L3の 2個、 3個、 4個または 5個 は互いに結合して多座キレ一ト化配位子を形成してもよい。 ) (Wherein, and R 2 may independently include hydrogen or at least one atom selected from a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom. X 2 and X 3 each independently represent any anionic ligand L 2 and L 3 each independently represent any neutral electron donor and hetero atom-containing ligand At least one selected from carbene compounds: 2, 3, 4, or 5 of R 2 , X 2 , X 3 , L 2 and L 3 are bonded to each other to form a polydentate compound. To form a ligand.
(式中、 R3および R4は、 互いに独立に水素、 またはハロゲン原子、 酸素原子、 窒素原子、 硫黄原子、 リン原子およびけい素原子の中から選ばれた少くとも一種 の原子を含んでもよい C
。の炭化水素基を示し、 X4および X5は、 互いに 独立に任意のァニオン性配位子を示す。 L4、 L5は互いに独立に任意の、 中性電 子供与体およびへテロ原子含有カルベン化合物の中から選ばれた少くとも一種を
示す。 R3、 R4、 X4、 X5、 L4、 L5の 2個、 3個、 4個または 5個が互いに 結合して多座キレート化配位子を形成してもよい。 ) (Wherein, R 3 and R 4 may each independently include hydrogen or at least one atom selected from a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and a silicon atom C . And X 4 and X 5 each independently represent an anionic ligand. L 4 and L 5 independently represent at least one kind selected from arbitrary neutral donors and heteroatom-containing carbene compounds. Show. Two, three, four or five of R 3 , R 4 , X 4 , X 5 , L 4 , and L 5 may combine with each other to form a multidentate chelating ligand. )
前記 「カルベン化合物」 とは、 メチレン遊離基を有する化合物の総称であり、 OC : ) で表されるような電荷のない 2価の炭素原子を有する化合物のことで ある。 カルベンは、 一般的には反応中に生じる不安定な中間体として存在するが、 ヘテロ原子を有すると比較的安定なカルベン化合物として単離することができる また、 前記 「ヘテロ原子」 とは、 周期律表第 1 5族および第 1 6族の原子のこと であり、 具体的には、 窒素原子、 酸素原子、 リン原子、 硫黄原子、 ヒ素原子、 セ レン原子などを挙げることができる。 なかでも、 窒素原子、 酸素原子、 リン原子、 硫黄原子が安定なカルベン化合物を得るためには好ましく、 窒素原子、 リン原子 が特に好ましい。 The “carbene compound” is a general term for compounds having a methylene free radical, and refers to a compound having an uncharged divalent carbon atom represented by OC :). The carbene is generally present as an unstable intermediate generated during the reaction, but it can be isolated as a relatively stable carbene compound if it has a heteroatom. These are the atoms of Groups 15 and 16 of the Table, and specifically include nitrogen, oxygen, phosphorus, sulfur, arsenic, and selenium atoms. Among them, a nitrogen atom, an oxygen atom, a phosphorus atom and a sulfur atom are preferable for obtaining a stable carbene compound, and a nitrogen atom and a phosphorus atom are particularly preferable.
ヘテロ原子含有カルベン化合物の具体例としては、 1, 3—ジイソプロピル一 4—イミダゾリン _ 2—イリデン、 1, 3—ジシクロへキシルー 4—イミダゾリ ンー 2 _イリデン、 1, 3—ジ (メチルフエニル) — 4—イミダゾリン一 2—ィ リデン、 1, 3—ジ (メチルナフチル) — 4—イミダゾリン— 2—イリデン、 1, Specific examples of the carbene compound containing a hetero atom include 1,3-diisopropyl-14-imidazoline_2-ylidene, 1,3-dicyclohexyl-4-imidazoline-2-ylidene, and 1,3-di (methylphenyl) -4. —Imidazoline- 1- 2-ylidene, 1,3-Di (methylnaphthyl) — 4-—Imidazoline— 2-—Ilidene, 1,
3—ジメシチルー 4 _イミダゾリン— 2—イリデン、 1, 3—ジァダマンチル—3—Dimesityl-4 _Imidazoline— 2-Ilidene, 1,3-Diadamantyl—
4—イミダゾリン— 2—イリデン、 1, 3—ジフエ二ルー 4—イミダゾリン一 2 一イリデン、 1, 3, 4, 5—テトラメチル— 4—イミダゾリン一 2—イリデン、 1, 3, 4, 5—テトラフエ二ルー 4—イミダゾリン— 2—イリデン、 1, 3— ジイソプロピルイミダゾリジン— 2 _イリデン、 1, 3—ジシクロへキシルイミ ダゾリジン一 2 _イリデン、 1, 3—ジ (メチルフェニル) ィミダゾリジン— 2 一イリデン、 1, 3—ジ (メチルナフチル) イミダゾリジン— 2—イリデン、 1 , 3—ジメシチルイミダゾリジン一 2—イリデン、 1, 3—ジァダマンチルイミダ ゾリジン一 2 _イリデン、 1, 3—ジフエ二ルイミダゾリジン— 2—イリデン、 1, 3, 4, 5—テトラメチルイミダゾリジン— 2—イリデン、 1, 3—ジシク 口へキシルへキサヒドロピリミジン— 2—イリデン、 N, N, N' , N' —テト ライソプロピルホルムアミジニリデン、 1, 3, 4 _トリフエニル— 4, 5—ジ ヒドロー 1 H_ 1, 2, 4—トリァゾ一ル— 5—イリデン、 3 _ (2, 6—ジィ ソプロピルフエニル) _ 2, 3—ジヒドロチアゾール— 2—イリデンなどを挙げ
ることができる。 4-imidazoline—2-ylidene, 1,3-diphenyl 4-imidazoline-one-one-ylidene, 1,3,4,5-tetramethyl—4-imidazoline-one-two-ylidene, 1,3,4,5- Tetraphenyl-2-imidazoline-2-ylidene, 1,3-diisopropylimidazolidin-2_ylidene, 1,3-dicyclohexylimidamidazolidine 1-2_ylidene, 1,3-di (methylphenyl) imidazolidine-2-1-ylidene , 1,3-di (methylnaphthyl) imidazolidine—2-ylidene, 1,3-dimesitylimidazolidine-1-ylidene, 1,3-diadamantyl imidazolidine 1-2_ylidene, 1,3 —Diphenylimidazolidin — 2-ylidene, 1,3,4,5-tetramethylimidazolidine—2-ylidene, 1,3-dicyclohexylhexahexahydropyrimidine —2-ylidene, N, N N ', N'-tetraisopropylformamidinylidene, 1,3,4-triphenyl-4,5-dihydro-1H_1,2,4-triazol-5-ylidene, 3_ (2,6 —Diisopropylpropyl) _ 2,3-dihydrothiazole—2-ylidene Can be
これらの中では、 カルベンに隣接するへテロ原子が嵩高い置換基を有するもの が好ましく、 具体的には 1, 3—ジイソプロピル一 4 —イミダゾリン— 2 —イリ デン、 1, 3 —ジシクロへキシル— 4 —イミダゾリン— 2 —イリデン、 1, 3— ジ (メチルフエニル) — 4 —イミダゾリン一 2 —イリデン、 1 , 3—ジ (メチル ナフチル) 一 4 _イミダゾリン _ 2 —イリデン、 1, 3—ジメシチル— 4 一イミ ダゾリン— 2 —イリデン、 1 , 3 —ジァダマンチル— 4 —イミダゾリン— 2 —ィ リデン、 1, 3 —ジフエ二ル— 4 _イミダゾリン一 2 —イリデン、 1 , 3 , 4, 5—テトラメチル— 4—イミダゾリン一 2 _イリデン、 1, 3, 4, 5—テトラ フエニル— 4 —イミダゾリン— 2 —イリデン、 1, 3—ジイソプロピルイミダゾ リジン一 2—イリデン、 1, 3—ジシクロへキシルイミダゾリジン一 2 _イリデ ン、 1, 3—ジ (メチルフエニル) イミダゾリジン— 2 _イリデン、 1, 3—ジ (メチルナフチル) イミダゾリジン— 2 —イリデン、 1 , 3—ジメシチルイミダ ゾリジン一 2 _イリデン、 1, 3—ジァダマンチルイミダゾリジン— 2 —イリデ ン、 1, 3 —ジフエ二ルイミダゾリジン— 2 _イリデン、 1, 3 , 4, 5—テト ラメチルイミダゾリジン一 2—ィリデンなどが挙げられる。 Among these, those in which the hetero atom adjacent to the carbene has a bulky substituent are preferable, and specifically, 1,3-diisopropyl-14-imidazoline-2-ylidene, 1,3-dicyclohexyl- 4 —Imidazoline— 2 —Ilidene, 1,3-di (methylphenyl) — 4 —Imidazoline-1- 2 —Ilidene, 1,3-Di (methylnaphthyl) -14 —Imidazoline — 2 —Ylidene, 1,3-dimesityl— 4 1-imidazoline—2—ylidene, 1,3—diadamantyl—4—imidazoline—2—ylidene, 1,3—diphenyl—4_imidazoline 1-2—ylidene, 1,3,4,5-tetramethyl— 4-Imidazoline- 1 2 _ylidene, 1,3,4,5-tetraphenyl- 4 -imidazoline-2 -ylidene, 1,3-diisopropylimidazolidin- 1 -2-ylidene, 1,3-disi Rohexylimidazolidine-1_2-ylidene, 1,3-di (methylphenyl) imidazolidine-2_ylidene, 1,3-di (methylnaphthyl) imidazolidine-2'-ylidene, 1,3-dimesitylimidazolidine-1 ' _Ilidene, 1,3-Diadamantylimidazolidine—2—Ilidene, 1,3-Diphenylimidazolidine—2 _Ylidene, 1,3,4,5—Tetramethylimidazolidine-1-2-Ylidene And the like.
前記式 [ 1 ] 〜 [ 3 ] 中のァニオン性配位子は、 中心金属から引き離されたと きに負の電荷を持つ配位子であればいかなるものであってもよい。 中性の電子供 与性化合物は、 中心金属から引き離されたときに中性の電荷を持つ配位子、 すな わちルイス塩基であればいかなるものでもよい。 The anionic ligand in the formulas [1] to [3] may be any ligand as long as it has a negative charge when separated from the central metal. The neutral electron-donating compound can be any ligand that has a neutral charge when separated from the central metal, ie, a Lewis base.
X X 2、 X 3、 X 4および X 5の具体例としては、 F、 B r、 C 1および Iな どのハロゲン原子、 水素、 ァセチルァセトナト基、 ジケトネート基、 置換シクロ ペン夕ジェニル基、 置換ァリル基、 アルケニル基、 アルキル基、 ァリール基、 ァ ルコキシ基、 ァリールォキシ基、 アルコキシカルボニル基、 カルボキシル基、 ァ ルキルスルフォネート基、 ァリールスルフォネート基、 アルキルチオ基、 ァルケ 二ルチオ基、 ァリ一ルチオ基、 アルキルスルホニル基、 アルキルスルフィニル基 を挙げることができる。 Specific examples of XX 2 , X 3 , X 4 and X 5 include halogen atoms such as F, Br, C 1 and I, hydrogen, acetylacetonato group, diketonate group, substituted cyclopentenyl group, Substituted aryl, alkenyl, alkyl, aryl, alkoxy, aryloxy, alkoxycarbonyl, carboxyl, alkylsulfonate, arylsulfonate, alkylthio, alkenylthio, aryl Examples thereof include an alkylthio group, an alkylsulfonyl group, and an alkylsulfinyl group.
中性電子供与体の具体例としては、 酸素、 水、 力ルポニル、 アミン類、 ピリジ ン類、 エーテル類、 二トリル類、 エステル類、 ホスフィン類、 ホスフィナイ ト類、
ホスファイ ト類、 スチビン類、 スルホキシド類、 チォエーテル類、 アミ ド類、 芳 香族化合物、 環状ジォレフイン類、 ォレフィン類、 イソシアニド類、 チオシァネ 一ト類などが挙げられる。 Specific examples of neutral electron donors include oxygen, water, heplonyl, amines, pyridines, ethers, nitriles, esters, phosphines, phosphinates, Examples include phosphites, stibines, sulfoxides, thioethers, amides, aromatic compounds, cyclic diolefins, olefins, isocyanides, thiosineates, and the like.
R R 2、 R 3および R 4の具体例としては、 水素、 アルケニル基、 アルキニル 基、 アルキル基、 ァリール基、 力ルポキシル基、 アルコキシ基、 アルケニルォキ シ基、 アルキニルォキシ基、 ァリールォキシ基、 アルコキシカルボニル基、 アル キルチオ基、 ァリ一ルチオ基、 アルキルスルホニル基、 アルキルスルフィニル基 などを挙げることができる。 Specific examples of RR 2 , R 3 and R 4 include hydrogen, alkenyl, alkynyl, alkyl, aryl, alkoxyl, alkoxy, alkenyloxy, alkynyloxy, aryloxy, and alkoxycarbonyl groups. , An alkylthio group, an arylthio group, an alkylsulfonyl group, an alkylsulfinyl group, and the like.
前記式 [ 1 ] 〜 [ 3 ] で示されるルテニウム錯体の具体例としては、 以下のも のを挙げることができる。 Specific examples of the ruthenium complexes represented by the formulas [1] to [3] include the following.
すなわち、 一般式 [ 1 ] の例としては、 (P—クメン) トリシクロへキシルホ スフインルテニウムジクロリ ド、 ビス (トリシクロへキシルホスフィン) ルテニ ゥムジクロリ ド、 [ 1, 3—ジ (メチルフエニル) 一 4—イミダゾリン— 2—ィ リデン] ( p—シメン) ルテニウムジクロリ ドなど; That is, examples of the general formula [1] include (P-cumene) tricyclohexylphosphine ruthenium dichloride, bis (tricyclohexylphosphine) ruthenium dichloride, [1,3-di (methylphenyl) 1-4] Imidazoline—2-ylidene] (p-cymene) ruthenium dichloride;
前記一般式 [ 2 ] の具体例としては、 ベンジリデンビス (トリシクロへキシル ホスフィン) ルテニウムジクロリ ド、 (フエ二ルチオメチレン) ビス (トリイソ プロピルホスフィン) ルテニウムジクロリ ド、 (1 , 3—ジシクロへキシルイミ ダゾリジン _ 2 _イリデン) (トリシクロへキシルホスフィン) ベンジリデンル テニゥムジクロリ ド、 ( 1, 3—ジシクロへキシルー 4 _イミダゾリン一 2—ィ リデン) (トリシクロへキシルホスフィン) ベンジリデンルテニウムジクロリ ド、 Specific examples of the general formula [2] include benzylidenebis (tricyclohexylphosphine) ruthenium dichloride, (phenylthiomethylene) bis (triisopropylpropylphosphine) ruthenium dichloride, and (1,3-dicyclohexylimiimi) Dazolidine_2-ylidene) (tricyclohexylphosphine) benzylidene tenidimdichloride, (1,3-dicyclohexyl-4_imidazoline-l-2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride,
( 1, 3—ジメシチルイミダゾリジン一 2—イリデン) (卜リシクロへキシルホ スフイン) ベンジリデンルテニウムジクロリ ド、 ( 1 , 3—ジメシチルイミダゾ リジン _ 2 _イリデン) (トリフエニルホスフィン) ベンジリデンルテニウムジ クロリ ド、 ( 1, 3—ジメシチルー 4—イミダゾリン— 2 —イリデン) (トリシ クロへキシルホスフィン) ベンジリデンルテニウムジクロリ ド、 ( 1, 3—ジメ シチル— 4—イミダゾリン一 2—イリデン) (トリフエニルホスフィン) ベンジ リデンルテニウムジクロリ ド、 [ 1, 3—ジ (メチルフエニル) イミダゾリジン — 2—イリデン] (トリシクロへキシルホスフィン) ベンジリデンルテニウムジ クロリ ド、 [ 1, 3—ジ (メチルナフチル) イミダゾリジン一 2 _イリデン] (ト
リシクロへキシルホスフィン) ベンジリデンルテニウムジクロリ ド、 (1, 3, 4, 5—テトラフエ二ルイミダゾリジン一 2—イリデン) (トリシクロへキシル ホスフィン) ベンジリデンルテニウムジクロリ ド、 (1, 3—ジシクロへキシル へキサヒドロピリミジン— 2 _イリデン) (トリシクロへキシルホスフィン) ベ ンジリデンルテニウムジクロリ ド、 ビス (1, 3—ジイソプロピルイミダゾリジ ンー 2—イリデン) ベンジリデンルテニウムジクロリ ド、 ビス ( 1, 3—ジシク 口へキシルイミダゾリジン— 2—ィリデン)ベンジリデンルテニウムジクロリ ド、 ビス ( 1 , 3—ジイソプロピル— 4一イミダゾリン一 2—イリデン) ベンジリデ ンルテニウムジクロリ ド、 ビス (1, 3—ジシクロへキシル— 4一イミダゾリン 一 2—ィリデン) ベンジリデンルテニウムジクロリ ドなど; (1,3-dimesitylimidazolidine-1-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride, (1,3-dimesitylimidazolysine_2_ylidene) (triphenylphosphine) benzylidene ruthenium Dichloride, (1,3-dimesityl-4-imidazoline-2-imidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride, (1,3-dimesityl-4-imidazoline 1-2-ylidene) (triphenyl) Phosphine) benzylidene ruthenium dichloride, [1,3-di (methylphenyl) imidazolidine—2-ylidene] (tricyclohexylphosphine) benzylidene ruthenium dichloride, [1,3-di (methylnaphthyl) imidazolidine] 2 _Iliden] (G Benzylidene ruthenium dichloride, (1,3,4,5-tetraphenylimidazolidin-1-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride, (1,3-dicyclohexyl) Hexahydropyrimidine—2_ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride, bis (1,3-diisopropylimidazolidin-2-ylidene) benzylidene ruthenium dichloride, bis (1,3-dicyclic) Mouth-hexylimidazolidine—2-ylidene) benzylidene ruthenium dichloride, bis (1,3-diisopropyl—4-imidazoline-12-ylidene) benzylidene ruthenium dichloride, bis (1,3-dicyclohexyl) -4 One imidazoline one two-ylidene) ben Benzylidene ruthenium dichloride Donado;
前記一般式 [3] の具体例としては、 フエ二ルビニリデンビス (トリシクロへ キシルホスフィン) ルテニウムジクロリ ド、 (1, 3—ジシクロへキシルイミダ ゾリジン— 2—イリデン) (卜リシクロへキシルホスフィン) フエ二ルビニリデ ンルテニウムジクロリ ド、 (1, 3—ジメシチルイミダゾリジン一 2—イリデン) (トリシクロへキシルホスフィン) t—プチルビ二リデンルテニウムジクロリ ド、 ( 1, 3—ジメシチル一 4—イミダゾリン一 2—イリデン) (トリシクロへキシ ルホスフィン) フエ二ルビ二リデンルテニウムジクロリ ド、 [ 1, 3—ジ (メチ ルフエニル) イミダゾリジン一 2—ィリデン] (トリシクロへキシルホスフィン) t—プチルビ二リデンルテニウムジクロリ ド、 [1, 3—ジ (メチルナフチル) イミダゾリジン— 2 _イリデン] (トリ ン) フエ二ルビ 二リデンルテニウムジクロリ ド、 (1, 3, 4, 5 テトラフエ二ルイミダゾリ ジン— 2—イリデン) (トリ ン) t一プチルビ二リデン ルテニウムジク口リ ド、 ( 1, 3 ド口ピリミジン一 2—イリデン) (トリシクロへキシルホスフィン) フエ二ルビニリデンルテニゥ ムジクロリ ド、 ビス (1, 3—ジイソプロピルイミダゾリジン— 2 _イリデン) フエ二ルビ二リデンルテニウムジクロリ ド、 ビス (1, 3—ジシクロへキシルイ ミダゾリジン一 2—イリデン) t一プチルビ二リデンルテニウムジクロリ ド、 ビ ス (1, 3—ジイソプロピル一 4 _イミダゾリン— 2—イリデン) t—プチルビ 二リデンルテニウムジクロリ ド、 ビス ( 1 , 3—ジシクロへキシル— 4一イミダ
ゾリンー 2 _イリデン) フエ二ルビ二リデンルテニウムジクロリ ドなどが挙げら れる。 Specific examples of the general formula [3] include phenylvinylidenebis (tricyclohexylphosphine) ruthenium dichloride, (1,3-dicyclohexylimidazolidine-2-ylidene) (tricyclohexylphosphine) phenyl N-vinylidene ruthenium dichloride, (1,3-dimesitylimidazolidine-1-ylidene) (tricyclohexylphosphine) t-butylvinylidene ruthenium dichloride, (1,3-dimesityl-14-imidazoline-1) 2-ylidene) (tricyclohexylphosphine) phenylvinylidene ruthenium dichloride, [1,3-di (methylphenyl) imidazolidine-12-ylidene] (tricyclohexylphosphine) t-butylvinylidene ruthenium Dichloride, [1,3-di (methylnaphthyl) imidazolidine—2 [Den] (Trin) phenylene bilidene ruthenium dichloride, (1,3,4,5 tetraphenylimidazolidinin-2-ylidene) (trin) t-butylvinylidene ruthenium dichloride, (1 , 3D-pyrimidine-1-ylidene) (tricyclohexylphosphine) phenylvinylidene ruthenium dichloride, bis (1,3-diisopropylimidazolidin-2_ylidene) phenylvinylidene ruthenium dichloride, bis (1,3-dicyclohexylimidazolidine-1-ylidene) t-butylpyridinyl ruthenium dichloride, bis (1,3-diisopropyl-14-imidazoline-2-ylidene) t-butylpyridene ruthenium dichloride , Bis (1,3-dicyclohexyl—4-imida Zoline-2_ylidene) phenylene bilidene ruthenium dichloride.
さらに、 前記一般式 [2] または [3] で表わされる錯体化合物を、 ジ— — クロ口ビス [ (p—シメン) クロ口ルテニウム] 、 ジ一 一クロ口ビス [ (p— シメン) クロ口オスミウム] 、 ジクロロ (ペンタメチルシクロペン夕ジェニル) ロジウムダイマ一などの複核金属錯体と反応させて得られる、 複核ルテニウム一 カルべン錯体化合物を用いてもよい。 Further, the complex compound represented by the above general formula [2] or [3] is converted to di-chlorobis [(p-cymene) chlororuthenium], di-chlorobis [[p-cymene) chloro Osmium], a dinuclear (pentamethylcyclopentenyl) rhodium dimer and other dinuclear metal complexes such as ruthenium-carbene complex compounds obtained by reaction with a dinuclear metal complex may also be used.
重合原料である環状ォレフィンに対するルテニウム錯体の割合は、 (ルテニゥ ム錯体中の金属ルテニウム :環状ォレフィン) のモル比で示すと、 通常、 1 : 1 00〜 2, 000, 000、 好ましくは 1 : 500〜: L, 000, 000、 より 好ましくは 1 : 1, 000〜500, 000である。 ルテニウム錯体量が多すぎ るとコスト高になり、 少なすぎると十分な活性が得られない。 The ratio of the ruthenium complex to the cyclic olefin, which is a polymerization raw material, is usually from 1: 100 to 2,000,000, preferably 1: 500, as represented by the molar ratio of (metal ruthenium in the ruthenium complex: cyclic olefin). ~: L ,, 000,000, more preferably 1: 1,000 to 500,000. If the amount of the ruthenium complex is too large, the cost increases, and if it is too small, sufficient activity cannot be obtained.
ルテニウム錯体は、 環状ォレフィンの重合が進行しない条件下においては、 単 量体である環状ォレフィンに溶解して用いることができる。 また、 生成物の性質 を本質的に損なわない範囲であれば、 少量の溶剤に懸濁または溶解させて用いて もよい。 The ruthenium complex can be used by dissolving it in a monomeric cyclic olefin under the condition that polymerization of the cyclic olefin does not proceed. The product may be suspended or dissolved in a small amount of a solvent as long as the properties of the product are not essentially impaired.
本発明においては、 ルテニウム錯体触媒の重合活性を高めるために、 ルイス酸 を併用することができる。 使用されるルイス酸は、 ルイスが定義した電子対受容 体であって、 通常、 下記式 [4]〜[5]で示される。 In the present invention, a Lewis acid can be used in combination to increase the polymerization activity of the ruthenium complex catalyst. The Lewis acid used is an electron pair acceptor defined by Lewis and is usually represented by the following formulas [4] to [5].
(Mx) (X6) (X7) (X8) [4] (M x ) (X 6 ) (X 7 ) (X 8 ) [4]
(Mi) (X9) (X10) (X (X12) [5] (Mi) (X 9 ) (X 10 ) (X (X 12 ) [5]
(式中、 は周期表第 3族または第 1 3族元素を示し、 例えばアルミニウム、 ホウ素、 スカンジウムが挙げられる。 M2は周期律表第 4族元素または第三周期 以下 (ゲルマニウム以下) の周期律表第 14族元素を示し、 例えばチタン、 スズ、 ジルコニウムが挙げられる。 X6、 X7、 X8、 X9、 X10、 および X12は、 互いに独立に、 ハロゲン原子、 またはハロゲン原子、 酸素原子、 窒素原子、 硫黄 原子、 リン原子およびけい素原子の中から選ばれた少くとも一種の原子を含んで もよい
。の炭化水素基を示す。 ) (In the formula, represents a Group 3 or Group 13 element of the Periodic Table, for example, aluminum, boron, and scandium. M 2 is a Group 4 element of the Periodic Table or a period of 3rd period or less (germanium or less) X represents an element of group 14 of the table, for example, titanium, tin, zirconium, and X 6 , X 7 , X 8 , X 9 , X 10 , and X 12 are each independently a halogen atom or a halogen atom, May contain at least one atom selected from oxygen atom, nitrogen atom, sulfur atom, phosphorus atom and silicon atom . Represents a hydrocarbon group. )
X6、 X7、 X8、 X9、 X10、 X および X12の具体例を挙げると、 F、 B r、
C 1および Iなどのハロゲン原子、 ァセチルァセトナト基、 ジケトネート基、 置 換シクロペン夕ジェニル基、 置換ァリル基、 アルケニル基、 アルキル基、 ァリ一 ル基、 アルコキシ基、 ァリールォキシ基、 アルコキシカルボニル基、 カルボキシ ル基、 アルキルまたはァリールスルフォネート基、 アルキルチオ基、 アルケニル チォ基、 ァリールチオ基、 アルキルスルホニル基、 アルキルスルフィニル基を挙 げることができる。 Specific examples of X 6 , X 7 , X 8 , X 9 , X 10 , X and X 12 include F, Br, Halogen atom such as C1 and I, acetyl acetonato group, diketonate group, substituted cyclopentenyl group, substituted aryl group, alkenyl group, alkyl group, aryl group, alkoxy group, aryloxy group, alkoxycarbonyl Groups, carboxy groups, alkyl or arylsulfonate groups, alkylthio groups, alkenylthio groups, arylthio groups, alkylsulfonyl groups, and alkylsulfinyl groups.
前記式 [ 4 ] の好ましい例としては、 トリアルコキシアルミニウム、 トリフエ ノキシアルミニウム、 ジアルコキシアルキルアルミニウム、 アルコキシジアルキ ルアルミニウム、 トリアルキルアルミニウム、 ジアルコキシアルミニウムクロリ ド、 アルコキシアルキルアルミニウムクロリ ド、 ジアルキルアルミニウムクロリ ド、 トリアルコキシスカンジウムが挙げられる。 Preferred examples of the above formula [4] include trialkoxyaluminum, triphenoxyaluminum, dialkoxyalkylaluminum, alkoxydialkylaluminum, trialkylaluminum, dialkoxyaluminum chloride, alkoxyalkylaluminum chloride, and dialkylaluminum chloride. And trialkoxy scandium.
前記式 [ 5 ] の好ましい例としては、 テトラアルコキシチタン、 テトラアルコ キシスズ、 テトラアルコキシジルコニウムが挙げられる。 Preferred examples of the formula [5] include tetraalkoxytitanium, tetraalkoxytin, and tetraalkoxyzirconium.
前記アルコキシ基としては、 例えば、 メトキシ基、 エトキシ基、 n —プロポキ シ基、 イソプロポキシ基、 n—ブトキシ基、 s e c—ブトキシ基、 n—ォクトキ シ基などを挙げることができる。 これらのアルコキシ基の他に、 3位にハロゲン が結合したハロゲン含有アルコキシ基を用いると、反応率が向上するだけでなく、 反応速度も速くなるので、 特に好適に用いられる。 Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, and an n-octoxy group. Use of a halogen-containing alkoxy group in which a halogen is bonded to the 3-position in addition to these alkoxy groups is particularly preferable because not only the reaction rate is improved but also the reaction rate is increased.
このようなハロゲン含有アルコキシ基の具体例としては、 2—クロ口エトキシ 基、 2 , 2—ジクロロエトキシ基、 2, 2, 2—トリクロ口エトキシ基、 2—ク ロロ— 1—プロポキシ基、 1 , 3 —ジクロロ _ 2 —プロポキシ基、 1 , 1—ジク ロロ— 2—プロポキシ基、 1, 1, 1 一トリクロ口— 2—プロポキシ基、 へキサ クロ口— 2—プロポキシ基、 2 _クロロー 2—プロペン一 1 一ォキシ基、 2—ク ロロ— 1—ブトキシ基、 1 —クロロー 3 —メトキシ— 2 —プロポキシ基、 1, 3 一ジブロモ _ 2 —プロポキシ基、 1, 3 —ジョ一ドー 2 —プロポキシ基、 2—ク ロロシクロへキソキシ基などが挙げられる。 これらの中では、 1, 3—ジクロロ - 2—プロポキシ基が特に好ましい。 Specific examples of such a halogen-containing alkoxy group include a 2-chloroethoxy group, a 2,2-dichloroethoxy group, a 2,2,2-trichloroethoxy group, a 2-chloro-1-propoxy group, , 3-Dichloro_2-propoxy group, 1,1-dichloro-2-propoxy group, 1,1,1-trichloro-2-propoxy group, hexachloro-2-propoxy group, 2-chloro-2 —Propene-1 1-oxy group, 2-chloro-1-butoxy group, 1 —Chloro-3 —methoxy-2 —propoxy group, 1,3-dibromo — 2 —propoxy group, 1,3 —Jodo 2 — Examples include a propoxy group and a 2-chlorocyclohexoxy group. Among these, a 1,3-dichloro-2-propoxy group is particularly preferred.
また、 前記アルキル基としては、 メチル基、 ェチル基、 n —プロピル基、 イソ プロピル基、 n —ブチル基、 s e c —ブチル基などを挙げることができる。
ルイス酸を併用する場合、 ルテニウム錯体に対するルイス酸の割合は、 (ルテ 二ゥム錯体中の金属ルテニウム :ルイス酸) のモル比で示すと、 通常、 1 : 0. 05〜: L 00、 好ましくは 1 : 0. 2〜20、 より好ましくは 1 : 0. 5〜: 1 0 である。ルイス酸が多すぎても、 少なすぎても十分に高い重合活性が得られない。 また、 このようにして反応原液にルイス酸を添加する場合には、 ルテニウム錯 体を含む触媒液にルイス塩基を添加し、 ルイス酸とルイス塩基を組み合わせて使 用することができる。 触媒液にルイス塩基を添加することにより、 触媒液の安定 性や触媒液と反応原液の混合性が向上する。 触媒液に添加するルイス塩基の使用 量は、 (ルテニウム錯体中の金属ルテニウム :ルイス塩基) のモル比で示すと、 通常、 1 : 0. 0 1〜: 1 00、 好ましくは 1 : 0. 05〜 20、 より好ましくは 1 : 0. 1〜: L 0である。 Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a sec-butyl group. When a Lewis acid is used in combination, the ratio of the Lewis acid to the ruthenium complex is usually 1: 0.05 to: L00, preferably expressed as a molar ratio of (metal ruthenium in the ruthenium complex: Lewis acid). Is from 1: 0.2 to 20, more preferably from 1: 0.5 to: 10. If the amount of Lewis acid is too large or too small, a sufficiently high polymerization activity cannot be obtained. When the Lewis acid is added to the undiluted reaction solution in this way, a Lewis base can be added to the catalyst solution containing the ruthenium complex, and the Lewis acid and the Lewis base can be used in combination. By adding a Lewis base to the catalyst solution, the stability of the catalyst solution and the mixing property between the catalyst solution and the reaction solution are improved. The amount of the Lewis base to be added to the catalyst solution is usually represented by a molar ratio of (metal ruthenium in the ruthenium complex: Lewis base) of 1: 0.01 to: 100, preferably 1: 0.05. ~ 20, more preferably 1: 0.1 ~: L0.
添加するルイス塩基は特に限定されないが、 例えば、 ホスフィン類、 スルホン 化ホスフィン類、 ホスファイ ト類、 ホスフィナイ ト類、 ホスホナイト類、 アルシ ン類、 スチビン類、 エーテル類、 アミン類、 アミド類、 スルホキシド類、 カルボ キシル類、 ニトロシル類、 ピリジン類、 チォエーテル類、 二トリル類、 チォフエ ン類、 フラン類などが挙げられる。 かかるルイス塩基の具体例としては、 トリィ ソプロピルホスフィン、 卜リシクロペンチルホスフィン、 トリシクロへキシルホ スフイン、 トリフエニルホスフィン、 ピリジン、 プロピルァミン、 トリー n—ブ チルホスフィン、 ベンゾニトリル、 トリフエニルアルシン、 無水ァセトニトリル、 チォフェン、 フランなどが挙げられる。 これらの中でも、 トリイソプロピルホス フィン、 トリシクロペンチルホスフィン、 トリシクロへキシルホスフィン、 トリ フエニルホスフィン、 トリ— n—ブチルホスフィンが好ましい。 Although the Lewis base to be added is not particularly limited, for example, phosphines, sulfonated phosphines, phosphites, phosphinates, phosphonites, arsines, stibines, ethers, amines, amides, sulfoxides, Examples include carboxyls, nitrosyls, pyridines, thioethers, nitriles, thiophenes, and furans. Specific examples of such Lewis bases include triisopropylphosphine, tricyclopentylphosphine, tricyclohexylphosphine, triphenylphosphine, pyridine, propylamine, tri-n-butylphosphine, benzonitrile, triphenylarsine, acetonitrile anhydride, thiophene. , Franc and the like. Among these, triisopropylphosphine, tricyclopentylphosphine, tricyclohexylphosphine, triphenylphosphine, and tri-n-butylphosphine are preferred.
環状ォレフィン類 Cyclic olefins
本発明において開環メ夕セシス重合に供される単量体は、 環状ォレフィンであ る。 環状ォレフィンとしては、 (1) ノルボルネン類、 ジシクロペン夕ジェン類、 シクロペン夕ジェンの三量体類 (対称型、 非対称型) 、 テトラシクロドデセン類 などのノルポルネン環を有する多環の環状ォレフィン類、 (2) 単環の環状ォレ フィン類、 などを使用することができる。 これらの環状ォレフィンは、 アルキル 基やアルケニル基、 アルキリデン基などの置換基を有していてもよく、 極性基を
有していてもよい。 また、 ノルボルネン環の二重結合以外に、 二重結合をさらに 有していてもよい。 In the present invention, the monomer subjected to ring-opening polymerization is a cyclic olefin. Examples of the cyclic olefin include (1) polycyclic cyclic olefins having a norpolene ring, such as norbornenes, dicyclopentenes, trimers of cyclopentene (symmetric and asymmetric), and tetracyclododecenes; (2) Monocyclic cyclic olefins and the like can be used. These cyclic olefins may have a substituent such as an alkyl group, an alkenyl group or an alkylidene group, and may have a polar group. You may have. Further, in addition to the double bond of the norbornene ring, it may further have a double bond.
これらの環状ォレフィンの中でも、 ノルポルネン環を有する 3環体〜 6環体の 環状ォレフィン類を使用するのが好ましく、 ジシクロペン夕ジェン類などの 3環 体の環状ォレフィン類、 シクロペンタジェンの三量体類 (対称型、 非対称型) お よびテトラシクロドデセン、 メチルテトラシクロドデセンなどの 4環体の環状ォ レフィン類が特に好ましい。 特に経済性の点でジシクロペン夕ジェン類が最も好 ましい。 Among these cyclic olefins, it is preferable to use tricyclic to hexacyclic cyclic olefins having a norporene ring, and tricyclic cyclic olefins such as dicyclopentene digenes and trimers of cyclopentadiene (Symmetric and asymmetric types) and tetracyclic cyclic olefins such as tetracyclododecene and methyltetracyclododecene are particularly preferred. In particular, dicyclopentenes are most preferable in terms of economy.
上記環状ォレフィンは単独でも二種以上を使用してもよいが、 二種以上の使用 が好ましい。 二種以上使用する場合には、 単一使用の場合と比較して凝固点降下 により、 モノマーを液状として取扱える範囲が広がるからである。 また、 ジシク 口ペン夕ジェン類またはテトラシクロドデセン類と、 これらと共重合可能な環状 ォレフィンを共重合することが好ましく、 この場合ジシクロペン夕ジェン類また はテトラシクロドデセン類を、 全単量体重量に基づき、 通常 1〜 1 0 0重量%用 いればよいが、 重合体の耐熱性および単量体の入手し易さの点から、 好ましくは The above-mentioned cyclic olefins may be used alone or in combination of two or more, but the use of two or more is preferred. This is because, when two or more types are used, the range in which the monomer can be handled as a liquid is broadened due to the freezing point drop as compared with the case of single use. In addition, it is preferable to copolymerize dicyclopentenes or tetracyclododecenes with a cyclic olefin which can be copolymerized with these, and in this case, dicyclopentenes or tetracyclododecenes may be used as a whole monomer. Usually, it is sufficient to use 1 to 100% by weight based on the body weight. However, from the viewpoint of the heat resistance of the polymer and the availability of the monomer, it is preferably used.
1 0〜 1 0 0重量%、 より好ましくは 2 0〜 1 0 0重量%用いられる。 It is used in an amount of 10 to 100% by weight, more preferably 20 to 100% by weight.
反応原液の調製 Preparation of reaction stock solution
本発明の製造方法は、 反応原液を不活性ガス雰囲気下で調製することを特徴と している。 反応原液とは、 前記環状ォレフィン (単量体) を主成分として含有し、 前記ルテニウム錯体と混合することによって環状ォレフィンの開環重合体を与え る液状物をいう。 The production method of the present invention is characterized in that a reaction stock solution is prepared in an inert gas atmosphere. The unreacted solution refers to a liquid substance containing the cyclic olefin (monomer) as a main component and giving a ring-opened polymer of the cyclic olefin by mixing with the ruthenium complex.
本発明で使用される不活性ガスとしては、 窒素、 ヘリウム、 ネオン、 アルゴン、 クリプトン、 キセノン、 ラドンなどが挙げられる。 好ましくは窒素、 ヘリウム、 ネオン、 アルゴンである。 工業的な入手の容易性からは窒素、 アルゴンがより好 ましく、 窒素がもっとも好ましい。 不活性ガスは単独または 2種以上を併用する ことができる。 The inert gas used in the present invention includes nitrogen, helium, neon, argon, krypton, xenon, radon and the like. Preferred are nitrogen, helium, neon, and argon. From the standpoint of industrial availability, nitrogen and argon are more preferred, and nitrogen is most preferred. The inert gas can be used alone or in combination of two or more.
本発明において、 「反応原液を調製する」 とは、 環状ォレフィンまたは環状ォ レフインと各種添加剤を、 必要に応じて蒸留、 脱気、 脱水、 混合、 加熱、 攪拌、 溶解などの処理をして、 後述する保存容器に充填するまでの工程、 および、 調製
した反応原液を重合に供するまで容器中に保存しておく工程をいう。本発明では、 これらの処理工程のすべてを不活性ガス雰囲気下で行ってもよいが、 成形直前の 保存状態が不活性ガス雰囲気であれば、 必ずしも全ての工程を不活性ガス雰囲気 下で行なう必要はない。例えば、空気中で各種添加剤を環状ォレフィンに溶解し、 最終の処理工程において、 該溶解液を不活性ガスでパブリングして置換する、 ま たは該溶解液を減圧脱気後、 不活性ガスを系内に導入して不活性ガスで置換する などの操作により反応原液を不活性ガス雰囲気にしてもよい。 In the present invention, "preparing a reaction stock solution" means that cyclic olefin or cyclic olefin and various additives are subjected to treatment such as distillation, degassing, dehydration, mixing, heating, stirring, and dissolving as necessary. , The process up to filling the storage container described below, and preparation This refers to the step of storing the resulting reaction stock solution in a container until it is used for polymerization. In the present invention, all of these processing steps may be performed in an inert gas atmosphere. However, if the storage state immediately before molding is an inert gas atmosphere, all the steps need to be performed in an inert gas atmosphere. There is no. For example, various additives are dissolved in cyclic olefins in the air, and in the final treatment step, the solution is replaced by publishing with an inert gas, or the solution is degassed under reduced pressure and then inert gas. May be introduced into the system and replaced with an inert gas, etc. to make the reaction stock solution an inert gas atmosphere.
また、 反応原液を不活性ガス雰囲気下で保存する工程では、 上記のように調製 した反応原液を空気に実質的に接触させることなく保存容器に充填して密閉する、 または、 開放容器を用いる場合においては、 不活性ガスでシールして空気との接 触を遮断するなどの方法により、 後述する重合反応に使用するまでの期間、 反応 原液を貯蔵し、 移送し、 輸送することなどが含まれる。 また、 保存容器に充填し てある反応原液を別の保存容器に移しかえる際などに一時的に空気と接触させた としても、 再び不活性ガス雰囲気に戻す場合は、 保存工程の概念に包含される。 保存容器の気相部は、 実質的に不活性ガス雰囲気であればよいが、 容器内気相 部における酸素の含有率は、 通常、 1 %以下、 好ましくは、 0 . 1 %以下である。 また、 反応原液中の溶存酸素量は、 通常、 5 0 p p m以下、 好ましくは 5 p p m 以下、 さらに好ましくは 1 p p m以下である。 In the step of storing the undiluted reaction solution in an inert gas atmosphere, the undiluted reaction solution prepared as described above is filled in a storage container without being substantially in contact with air and sealed, or an open container is used. Includes storing, transporting, and transporting the undiluted solution until it is used in the polymerization reaction described below, such as by sealing with an inert gas to block contact with air. . Also, even if the reaction stock solution filled in a storage container is temporarily brought into contact with air when transferring it to another storage container, if it is returned to an inert gas atmosphere again, it is included in the concept of the storage process. You. The gas phase part of the storage container may be substantially an inert gas atmosphere, but the oxygen content in the gas phase part in the container is usually 1% or less, preferably 0.1% or less. The amount of dissolved oxygen in the reaction stock solution is usually 50 ppm or less, preferably 5 ppm or less, and more preferably 1 ppm or less.
反応原液の保存期間、 保存容器への充填率は、 特に限定されない。 保存容器と しては、 各種のタンク、 コンテナ一、 ドラム缶、 ペール缶、 灯油缶などが挙げら れる。容器の材質は特に限定されないが、空気透過性のある材質は好ましくない。 本発明において、反応原液には前述したルイス酸を添加することが好ましいが、 必要に応じて各種の添加剤、 例えば、 酸化防止剤、 紫外線吸収剤、 エラストマ一、 高分子改質剤、 充填剤、 着色剤、 難燃剤、 架橋剤、 摺動化剤、 着臭剤、 軽量化の ためのフイラ一類、 発泡剤、 表面平滑化のためのゥイスカーなどを含有させるこ とができる。 The storage period of the undiluted reaction solution and the filling rate in the storage container are not particularly limited. Examples of the storage container include various tanks, containers, drums, pail cans, and kerosene cans. The material of the container is not particularly limited, but a material having air permeability is not preferred. In the present invention, it is preferable to add the above-mentioned Lewis acid to the reaction stock solution, but if necessary, various additives such as an antioxidant, an ultraviolet absorber, an elastomer, a polymer modifier, and a filler , A coloring agent, a flame retardant, a cross-linking agent, a sliding agent, an odorant, a class of filler for reducing the weight, a foaming agent, and a whisker for smoothing the surface.
反応原液に添加するエラストマ一としては、 例えば、 天然ゴム、 ポリブ夕ジェ ン、 ポリイソプレン、 スチレン一ブタジエン共重合体 (S B R ) 、 スチレン—ブ 夕ジェン一スチレンブロック共重合体 (S B S ) 、 スチレン一イソプレン—スチ
レン共重合体 (S I S ) 、 エチレン一プロピレン一ジエンターポリマ一 (E P D M) 、 エチレン一酢酸ビニル共重合体 (E V A) およびこれらの水素化物などが 挙げられる。 これらのエラストマ一を反応液に添加すると、 得られるポリマーに 耐衝撃性が付与されるだけではなく、 反応液の粘度を調節することができる。 酸化防止剤としては、 ヒンダードフエノール系、 リン系、 アミン系などの各種 のプラスチック · ゴム用酸化防止剤がある。 これらの酸化防止剤は単独で用いて もよいが、 2種以上を組合せ用いることが好ましい。 配合割合は、 通常、 ノルボ ルネン系モノマーに対して 0 . 5重量部以上、 好ましくは 1〜3重量部である。 また酸化防止剤はモノマーと共重合可能なものでもよく、 その具体例として 5— ( 3 , 5—ジ— t e r t—ブチルー 4ーヒドロキシベンジル— 2—ノルボルネン のようなノルボルネニルフエノール系化合物などが例示される (特開昭 5 7 - 8 3 5 2 2号公報参照) 。 Examples of the elastomer to be added to the reaction stock solution include natural rubber, polybutene diene, polyisoprene, styrene-butadiene copolymer (SBR), styrene-butane distyrene-styrene block copolymer (SBS), and styrene Isoprene-styrene Examples include a styrene copolymer (SIS), an ethylene-propylene-diene terpolymer (EPDM), an ethylene-vinyl acetate copolymer (EVA), and hydrides thereof. The addition of these elastomers to the reaction solution not only imparts impact resistance to the resulting polymer, but also controls the viscosity of the reaction solution. Antioxidants include various antioxidants for plastics and rubbers, such as hindered phenol-based, phosphorus-based, and amine-based antioxidants. Although these antioxidants may be used alone, it is preferable to use two or more kinds in combination. The mixing ratio is usually 0.5 part by weight or more, preferably 1 to 3 parts by weight, based on the norbornene-based monomer. Further, the antioxidant may be one which can be copolymerized with the monomer, and specific examples thereof include a norbornenylphenol compound such as 5- (3,5-di-tert-butyl-4-hydroxybenzyl-2-norbornene). (See Japanese Patent Application Laid-Open No. 57-83522).
充填剤には、 ガラス粉末、 力一ポンプラック、 タルク、 炭酸カルシウム、 雲母、 水酸化アルミニウムなどの無機質充填剤がある。 かかる充填剤はシランカツプリ ング剤などで表面処理したものが好ましい。 架橋剤としてィォゥまたは過酸化物 を用いると耐熱性が向上する。 Fillers include inorganic fillers such as glass powder, force pump racks, talc, calcium carbonate, mica, and aluminum hydroxide. It is preferable that such a filler is surface-treated with a silane coupling agent or the like. The use of iodide or peroxide as a crosslinking agent improves heat resistance.
このようにして調製される反応原液は、 長期間保存することができ、 通常、 重 合開始直前に前記したルテニウム錯体を含有する触媒液と混合して使用される。 The undiluted reaction solution thus prepared can be stored for a long time, and is usually used immediately before the start of the polymerization by mixing with the above-mentioned catalyst solution containing the ruthenium complex.
重合体の製造方法 Method for producing polymer
本発明において、開環メ夕セシス重合反応は溶媒中で行う溶液重合であっても、 塊状 (バルク) 重合であってもよいが、 金型に反応原液を注入して硬化させる塊 状重合が好ましい。 In the present invention, the ring-opening polymerization reaction may be a solution polymerization performed in a solvent or a bulk (bulk) polymerization, but the bulk polymerization in which a reaction solution is injected into a mold and cured is used. preferable.
溶液重合に用いる溶媒としては、 生成する重合体を溶解し、 かつ重合を阻害し ないものが用いられ、 その具体例としては、 ペンタン、 へキサン、 ヘプタンなど の脂肪族炭化水素; シクロペンタン、 シクロへキサン、 メチルシクロへキサン、 ジメチルシクロへキサン、 トリメチルシクロへキサン、 ェチルシクロへキサン、 ジェチルシクロへキサン、 デカヒドロナフ夕レン、 ビシクロヘプタン、 トリシク 口デカン、 へキサヒドロインデンシクロへキサン、 シクロオクタンなどの脂環族 炭化水素;ベンゼン、 トルエン、 キシレンなどの芳香族炭化水素;ニトロメタン、
二トロベンゼン、 ァセトニトリルなどの含窒素系炭化水素; ジェチルエーテル、 テトラヒドロフランなどのエーテル類; クロ口ホルム、 ジクロロメタン、 クロ口 ベンゼン、 ジクロロベンゼンなどの含ハロゲン系炭化水素を使用することができ る。 これらの溶媒の中でも、 工業的に汎用な芳香族、 脂肪族、 および脂環族炭化 水素系溶媒、 ならびにエーテル類が好ましく、 重合反応時に不活性であること、 重合体の溶解性に優れることなどの観点から、 シクロへキサンなどの脂環族炭化 水素系溶媒を使用するのが最も好ましい。 As the solvent used for the solution polymerization, a solvent that dissolves the produced polymer and does not inhibit the polymerization is used. Specific examples thereof include aliphatic hydrocarbons such as pentane, hexane, and heptane; cyclopentane, cyclopentane Alicyclics such as hexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, getylcyclohexane, decahydronaphthylene, bicycloheptane, tricyclo mouth decane, hexahydroindenecyclohexane, and cyclooctane Aromatic hydrocarbons such as benzene, toluene and xylene; nitromethane, Nitrogen-containing hydrocarbons such as ditrobenzene and acetonitrile; ethers such as getyl ether and tetrahydrofuran; halogen-containing hydrocarbons such as chloroform, dichloromethane, cyclobenzene, and dichlorobenzene can be used. Among these solvents, aromatic, aliphatic, and alicyclic hydrocarbon-based solvents and ethers, which are widely used in industry, are preferable, and are inert during the polymerization reaction, and have excellent polymer solubility. From the viewpoint of, it is most preferable to use an alicyclic hydrocarbon solvent such as cyclohexane.
重合を溶媒中で行う場合には、 環状ォレフィン類の濃度は、 1〜 5 0重量%が 好ましく、 2〜4 5重量%がより好ましく、 5〜4 0重量%が特に好ましい。 環 状ォレフィン類の濃度が過度に低いと生産性が悪くなり、 過度に高いと重合後の 粘度が高すぎて、 後処理が難しくなる。 When the polymerization is carried out in a solvent, the concentration of the cyclic olefin is preferably 1 to 50% by weight, more preferably 2 to 45% by weight, and particularly preferably 5 to 40% by weight. If the concentration of the cyclic olefins is too low, the productivity is deteriorated. If the concentration is too high, the viscosity after polymerization is too high, and post-treatment becomes difficult.
溶液重合の重合温度は、 一般には、 一 3 0 °C〜 2 0 0 °C、 好ましくは、 0 °C〜 1 8 0 °Cである。 重合時間は、 概して 1分間から 1 0 0時間である。 The polymerization temperature of the solution polymerization is generally from 130 ° C. to 200 ° C., preferably from 0 ° C. to 180 ° C. The polymerization time is generally from 1 minute to 100 hours.
本発明において、 塊状重合を行う場合は、 特にレジントランスファーモールデ イング (R T M) 法や反応射出成形 (R I M) 法により、 環状ォレフィンを金型 内において塊状で重合する方法が有用である。 これらの方法は、 実質的に塊状で あればよく、 重合系に少量の不活性化合物が存在していてもよい。 これらの方法 においては、 従来から R T M機や R I M機として公知の成形機を、 二種類または それ以上の反応原液および触媒液を混合するために使用することができる。 In the present invention, when performing bulk polymerization, it is particularly useful to use a resin transfer molding (RTM) method or a reaction injection molding (RIM) method to polymerize cyclic olefins in a bulk in a mold. These methods need only be substantially bulky, and may contain a small amount of an inert compound in the polymerization system. In these methods, a molding machine conventionally known as an RTM machine or a RIM machine can be used for mixing two or more kinds of reaction stock solutions and catalyst solutions.
R T M機は、 一般に反応原液タンク、 触媒配合液タンク、 計量ポンプ、 ミキサ 一などからなり、 前記したような反応原液と触媒配合液を計量ポンプにより 1 0 0 0 : 1から 1 0 : 1の容量比でミキサーに送り込み、 次いで所定温度に加熱し た成形金型中に注入し、 そこで即座に塊状重合させて成形品を得る。 R T M機を 用いた好ましい成形法は、 環状ォレフィンに所望によりルイス酸を添加した反応 原液と、 ルテニウムに配位子として中性電子供与体および Zまたはへテロ原子含 有カルベン化合物が配位してなる錯体を溶媒に溶解させ、 所望によりルイス塩基 を添加した触媒配合液を用意し、 これらを混合して成形する方法である。 An RTM machine generally consists of a reaction stock solution tank, a catalyst formulation solution tank, a metering pump, a mixer, etc., and the reaction stock solution and the catalyst formulation solution described above are metered by a metering pump into a volume of 100: 1 to 10: 1. The mixture is sent to a mixer at a specific ratio, and then injected into a molding die heated to a predetermined temperature, where it is immediately subjected to bulk polymerization to obtain a molded product. A preferred molding method using an RTM machine is a reaction solution in which a cyclic olefin is optionally added with a Lewis acid, a neutral electron donor as a ligand and a carbene compound containing Z or a hetero atom coordinated with ruthenium. Is prepared by dissolving the complex in a solvent, preparing a catalyst compounding solution to which a Lewis base is added as required, and mixing and molding these.
R I M機は、 二種類以上の反応原液をミキシングへッドに送り込み衝突エネル ギ一によつて混合させ、 次いで高温の成形金型中に注入し、 そこで即座に塊状重
合させて成形品が得られるように構成される。 R I M機を用いた好ましい成形法 は、 環状ォレフィンを二つの部分 (A液、 B液) に分け、 三液目としてルテニゥ ム錯体触媒を溶媒に溶解させた液 (C液) を使用し、 これらの三液を衝突混合に よって混合して成形する方法である。 A液、 B液のいずれか一方または双方には、 所望によりルイス酸を添加してもよく、 C液には所望によりルイス塩基を添加し てもよい。 The RIM machine feeds two or more kinds of undiluted reaction solutions into a mixing head, mixes them by means of collision energy, and then injects them into a hot molding die, where they immediately mass-react. It is comprised so that a molded article may be obtained by combining them. A preferred molding method using a RIM machine is to divide the cyclic olefin into two parts (solution A and solution B) and use a solution (solution C) in which a ruthenium complex catalyst is dissolved in a solvent as a third solution. This is a method of mixing and molding the three liquids by collision mixing. A Lewis acid may be added to one or both of the solution A and the solution B as desired, and a Lewis base may be added to the solution C as desired.
金型としては、 通常、 割型構造すなわちコア型とキヤビティ一型を有するもの が用いられ、 それらの空隙部 (キヤビティー) に反応液を注入して塊状重合を行 なう。 コア型とキヤビティー型は、 目的とする成形品の形状にあった空隙部を形 成するように作成される。 金型の形状、 材質、 大きさには、 特に制限はない。 低 粘度の反応液を用い、 比較的低温低圧で成形できるため、 金属製の金型だけでは なく、 各種合成樹脂、低融点合金など種々の材料で作成されたものが使用できる。 前記のキヤビティー内へ供給する前の反応原液の温度は、 好ましくは 2 0〜 8 O t:である。 反応液の粘度は、 例えば 3 0でにおいて、 通常、 2〜5, 0 0 0 c p s、 好ましくは、 5〜 1, 0 0 0 c p sである。 反応原液をキヤビティー内に 充填する際の充填圧力 (射出圧) は、 通常 0 . 0 1〜5 0 k g f Z c m2、 好ま しくは 0 . 1〜: L 0 k g f Z c m 2である。 As the mold, a mold having a split mold structure, that is, a core mold and a cavity mold is usually used, and the reaction liquid is injected into the cavity (cavity) to perform bulk polymerization. The core mold and the cavity mold are formed so as to form voids that match the shape of the target molded product. There is no particular limitation on the shape, material, and size of the mold. Since it can be molded at a relatively low temperature and low pressure using a low-viscosity reaction solution, not only metal molds but also various materials such as various synthetic resins and low melting point alloys can be used. The temperature of the reaction solution before it is fed into the cavity is preferably 20 to 8 Ot :. The viscosity of the reaction solution at, for example, 30 is usually 2 to 5,000 cps, preferably 5 to 1.00 cps. The filling pressure (injection pressure) when filling the reaction stock solution into the cavity is usually 0.01 to 50 kgf Zcm 2 , preferably 0.1 to: L 0 kgf Zcm 2 .
金型温度は、 通常、 室温以上、 好ましくは 4 0〜2 0 0 :、 特に好ましくは 5 0〜 1 3 0でである。 型締圧力は通常 0 . 1〜 1 0 0 k g / c m2の範囲内であ る。 重合時間は適宜選択すればよいが、 通常、 1 0秒〜 2 0分、 好ましくは 5分 以内である。 The mold temperature is usually room temperature or higher, preferably 40 to 200: particularly preferably 50 to 130. Clamping pressure is usually 0. 1 Ru 1 0 0 range der of kg / cm 2. The polymerization time may be appropriately selected, but is usually from 10 seconds to 20 minutes, preferably within 5 minutes.
金型内の内容物の最高到達温度は 1 4 0で以上になるように制御することが好 ましい。 より好ましい最高到達温度は 1 5 0〜2 5 0でである。 このように最高 到達温度を制御することによって、 ガラス転移温度 (T g ) が特に高い重合体を 高反応率で得ることができる。 It is preferable to control the maximum temperature of the contents in the mold to be 140 or more. A more preferred maximum temperature is 150 to 250. By controlling the maximum temperature in this way, a polymer having a particularly high glass transition temperature (Tg) can be obtained at a high conversion.
前記した 「反応原液」 と 「ルテニウム錯体」 を R T M機または R I M機で混合 した反応液を、 金型の空隙部に注入すると、 即座に塊状重合反応を開始し、 硬化 する。 重合反応は発熱反応であり、 最高温度に到達した後は、 硬化時間 (キュア 一時間)が長くなるにつれ金型内の成形品の温度は徐々に低下していく。通常は、
成形品がガラス転移点以下の温度になつてから脱型を行う。 When a reaction solution obtained by mixing the above-mentioned “reaction stock solution” and “ruthenium complex” with an RTM machine or a RIM machine is injected into the cavity of the mold, a bulk polymerization reaction is immediately started and the mixture is cured. The polymerization reaction is exothermic, and after reaching the maximum temperature, the temperature of the molded product in the mold gradually decreases as the curing time (curing one hour) increases. Normally, The mold is released after the temperature of the molded article has reached the glass transition temperature or lower.
以下に実施例および比較例を挙げて、 本発明についてさらに具体的に説明する 力 本発明は、 これらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. The present invention is not limited to these Examples.
窒素雰囲気下でのノルボルネン系単量体の塊状重合 Bulk polymerization of norbornene monomers under nitrogen atmosphere
実施例 1 Example 1
30m 1の広口ガラス瓶に、 乳鉢で細かくすりつぶしたべンジリデンビス (ト リシクロへキシルホスフィン) ルテニウムジクロリ ド (S t r em Ch em i c a l社製) 4mg (重合系での濃度 0. 5ミリモル Zリットル) と攪拌子を入 れた。このガラス瓶の広口に密栓できるゴム栓とポリエチレン製 T字管を用意し、 ゴム栓の中央付近に横向きの T字になるように T字管を貫通させた後、 ガラス瓶 に装着した。 T字管の横方向の口から窒素気流を流し、 T字管上方向の口を指で 押さえたり、 離したりする動作を 40回ほど繰返して、 ガラス瓶内を窒素置換し た。 その後、 窒素気流をゆるやかに流し続けた。 In a 30m1 wide-mouth glass bottle, benzylidenebis (tricyclohexylphosphine) ruthenium dichloride (manufactured by Strem Chemical Co.) 4 mg (0.5 mmol Z liter in polymerization system) stirred finely in a mortar I have a child. A rubber stopper and a polyethylene T-tube that can be sealed at the wide mouth of this glass bottle were prepared, and the T-tube was penetrated near the center of the rubber stopper so as to form a horizontal T-shape, and then attached to the glass bottle. A nitrogen stream was flowed through the lateral mouth of the T-tube, and the operation of pressing and releasing the upper mouth of the T-tube with fingers was repeated about 40 times, and the inside of the glass bottle was purged with nitrogen. After that, the nitrogen stream continued to flow slowly.
T字管を通して温度測定用の熱電対をセットした後、ジシクロペン夕ジェン(約 1 0%のシクロペン夕ジェン 3量体を含む) 1 Om 1を注射器で加えて、 マグネ ティックスターラーで激しく攪拌した。 このモノマー投入の 1 0秒後に、 ルイス 酸として小型注射器でビス ( 1, 3—ジクロ口 _ 2—プロボキシ) アルミニウム クロライドのジシクロペン夕ジェン溶液 (0. 2モル/リットル) を 0. 025 m l (重合系での濃度 0. 5ミリモル/リットル) 注入した。 なお、 単量体溶液 やルイス酸溶液が入った容器、 反応用ガラス瓶および注射器は、 25°Cに設定し た恒温槽中に置いてあったものを取り出して、 すぐに使用した。 After setting a thermocouple for temperature measurement through a T-tube, 1 Om 1 of dicyclopentene (containing about 10% of a cyclopentene trimer) was added with a syringe, and the mixture was vigorously stirred with a magnetic stirrer. 10 seconds after the introduction of the monomer, 0.025 ml of a solution of bis (1,3-dichloro mouth_2-propoxy) aluminum chloride in dicyclopentene (0.2 mol / liter) was added as a Lewis acid using a small syringe (polymerization). Concentration in the system 0.5 mmol / l) was injected. The containers containing the monomer solution and Lewis acid solution, the reaction glass bottles, and the syringes were placed in a thermostat set at 25 ° C, and used immediately.
単量体の注入から 30秒後に攪拌を停止し、 反応液の温度上昇を熱電対と温度 記録計で記録し、 単量体注入から液温が 1 00°Cに達するまでの時間 (表 1の T 100、 単位は秒) 、 液温の最高温度 (表 1のピーク温度、 単位は °C) を測定し た。 また、 重合終了後、 重合体の入ったガラス瓶を室温に冷やし、 重合体を取り 出し、 示差走査熱量計によりそのガラス転移温度 (Tg) を測定した。 また、 T g測定と同様にガラス瓶から取り出した重合体について、 熱天抨により室温から 400°Cまで加熱して求めた重量の残分率によって反応率 (%) を求めた。 Stop stirring 30 seconds after the monomer injection, record the temperature rise of the reaction solution with a thermocouple and a temperature recorder, and measure the time from the monomer injection until the solution temperature reaches 100 ° C (Table 1). The T100 of the sample was measured in seconds, and the maximum liquid temperature (peak temperature in Table 1 was measured in ° C). After completion of the polymerization, the glass bottle containing the polymer was cooled to room temperature, the polymer was taken out, and its glass transition temperature (Tg) was measured by a differential scanning calorimeter. Further, in the same manner as in the T g measurement, a reaction rate (%) was obtained from the polymer taken out of the glass bottle by heating from room temperature to 400 ° C. by using a heating stirrer, based on the residual ratio of the weight obtained.
これらの測定結果を表 1に示す。
実施例 2 Table 1 shows the measurement results. Example 2
ルイス酸を添加しなかった他は、 実施例 1と同様に操作した。 測定結果を表 1 に示す。 The same operation as in Example 1 was performed except that the Lewis acid was not added. Table 1 shows the measurement results.
実施例 3 Example 3
ルテニウム錯体として、 (フエ二ルチオメチレン) ビス (トリイソプロピルホ スフイン) ルテニウムジクロリ ド 6. 1 mg (重合系での濃度 1ミリモルノリツ トル) を使用し、 ルイス酸を添加しなかった他は、 実施例 1と同様に操作した。 測定結果を表 1に示す。 As the ruthenium complex, (phenylthiomethylene) bis (triisopropylphosphine) ruthenium dichloride 6.1 mg (concentration 1 mmol in the polymerization system) was used, except that no Lewis acid was added. The procedure was as in Example 1. Table 1 shows the measurement results.
空気中でのノルボルネン系モノマ一の小スケール塊状重合 Small-scale bulk polymerization of norbornene-based monomers in air
比較例 3 Comparative Example 3
ゴム栓とポリエチレン製 T字管を使用せず、 窒素置換の工程を省略して、 ガラ ス瓶の上部を開放して、 空気中で反応を行った他は、 実施例 1〜3と同様に操作 した。 測定結果を表 1に示す。 実施例 1〜3と比較すると、 空気中で反応させる と T g及び反応率が低下することが分かる。 The same as in Examples 1 to 3, except that the rubber stopper and the polyethylene T-tube were not used, the nitrogen replacement step was omitted, the upper part of the glass bottle was opened, and the reaction was performed in air. Operated. Table 1 shows the measurement results. When compared with Examples 1 to 3, it can be seen that Tg and the reaction rate are reduced when the reaction is performed in the air.
表 1 table 1
窒素雰囲気下および空気中でのノルボルネン系モノマーの小スケール塊状重合 実施例 4、 比較例 4 Small-scale bulk polymerization of norbornene-based monomers under nitrogen atmosphere and in air Example 4, Comparative Example 4
ルテニウム錯体として、 (1, 3—ジメシチルイミダゾリジン一 2—イリデン) (トリシクロへキシルホスフィン) ベンジリデンルテニウムジクロリ ド (O r g. L e t t . 1 999, 1 , 953の記載に基づいて合成したもの) を 1. Omg (重合系での濃度 0. 1 25ミリモル Zリットル) を実施例 1と同じガラス瓶に 仕込み、 窒素置換した。 0. 05m 1のジクロロメタンを添加して触媒を溶解さ せた後、 予め 50 に加熱したジシクロペン夕ジェン (約 10 %のシクロペン夕 ジェン 3量体を含む) 0. 95m lを加えて、 マグネティックス夕一ラーで激し く攪拌した (実施例 4) 。 重合反応における液温の最高温度は 220°Cであった。
得られた重合体の Tgは 1 52°C、 反応率は 97. 5 %であった。 As the ruthenium complex, (1,3-dimesitylimidazolidine-1-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride (Org. Lett. 1999, 1, 953, synthesized based on the description) Was charged in the same glass bottle as in Example 1 and charged with 1.Omg (concentration in the polymerization system: 0.125 mmol Z liter), followed by purging with nitrogen. After adding 0.05 ml of dichloromethane to dissolve the catalyst, add 0.95 ml of dicyclopentene (containing about 10% cyclopentene trimer) preheated to 50, and add the magnetics. The mixture was stirred vigorously in the evening stirrer (Example 4). The maximum liquid temperature in the polymerization reaction was 220 ° C. The Tg of the obtained polymer was 152 ° C., and the conversion was 97.5%.
一方、 この反応を空気中で行なうと、 得られた重合体の T gは 1 30° (:、 反応 率は 94. 8 %であった (比較例 4) 。 On the other hand, when this reaction was carried out in air, the T g of the obtained polymer was 130 ° (:, the reaction rate was 94.8% (Comparative Example 4)).
実施例 5、 比較例 5 Example 5, Comparative Example 5
ルテニウム錯体として、 ( 1, 3—ジメシチルイミダゾリジン _ 2 _イリデン) (トリシクロへキシルホスフィン) ベンジリデンルテニウムジクロリ ドを 0. 4 mg (重合系での濃度 0. 0 5ミリモル /リットル) を使用した他は、 実施例 4 と同様に操作した。 重合反応における液温の最高温度は 20 1°Cであった。 得ら れた重合体の T gは 145°C、 反応率は 97. 2 %であった (実施例 5) 。 As a ruthenium complex, (1,3-dimesitylimidazolidine_2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride 0.4 mg (concentration in polymerization system 0.05 mol / l) Other than that used, it operated similarly to Example 4. The maximum liquid temperature in the polymerization reaction was 201 ° C. The T g of the obtained polymer was 145 ° C., and the conversion was 97.2% (Example 5).
一方、 この反応を空気中で行なうと、 得られた重合体の Tgは 29°C、 反応率 は 72. 0 %であった (比較例 5) 。 On the other hand, when this reaction was performed in air, the Tg of the obtained polymer was 29 ° C., and the conversion was 72.0% (Comparative Example 5).
実施例 6、 比較例 6 Example 6, Comparative Example 6
ルテニウム錯体として、 ( 1, 3—ジメシチル _ 4一イミダゾリン— 2 _イリ デン) (トリシクロへキシルホスフィン) ベンジリデンルテニウムジクロリ ドを 2. lmg (重合系での濃度 0. 25ミリモル リットル) を使用した他は、 実 施例 4と同様に操作した。重合反応における液温の最高温度は 2 1 5°Cであった。 得られた重合体の Tgは 1 52° (:、 反応率は 97. 0 %であった (実施例 6) 。 As the ruthenium complex, (1,3-dimesityl_4-imidazoline-2_ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride was used in an amount of 2. lmg (concentration in a polymerization system of 0.25 mmol liter). Otherwise, the procedure was the same as in Example 4. The maximum liquid temperature in the polymerization reaction was 215 ° C. The Tg of the obtained polymer was 152 ° (:, the conversion was 97.0% (Example 6)).
一方、 この反応を空気中で行なうと、 得られた重合体の Tgは 1 32°C、 反応 率は 94. 9 %であった (比較例 6) 。 On the other hand, when this reaction was performed in air, the Tg of the obtained polymer was 132 ° C., and the conversion was 94.9% (Comparative Example 6).
実施例 7、 比較例 7 Example 7, Comparative Example 7
ルテニウム錯体として、 ビス (1, 3—ジイソプロピル _ 4一イミダゾリン— 2—イリデン) ベンジリデンルテニウムジクロリ ドを 2. 8mg (重合系での濃 度 0. 5ミリモル リットル) を使用した他は、 実施例 4と同様に操作した。 重 合反応における液温の最高温度は 2 1 8でであった。 得られた重合体の Tgは 1 1 9°C、 反応率は 94. 2 %であった (実施例 7) 。 Example 2 was repeated except that bis (1,3-diisopropyl_4-imidazoline-2-ylidene) benzylidene ruthenium dichloride (2.8 mg (concentration in the polymerization system: 0.5 mmol)) was used as the ruthenium complex. The operation was the same as in 4. The highest liquid temperature in the polymerization reaction was 218. The Tg of the obtained polymer was 119 ° C, and the conversion was 94.2% (Example 7).
一方、 この反応を空気中で行なうと、 得られた重合体の Tgは 86°C、 反応率 は 90. 2 %であった (比較例 7) 。 On the other hand, when this reaction was carried out in air, the Tg of the obtained polymer was 86 ° C., and the conversion was 90.2% (Comparative Example 7).
窒素雰囲気下での平板成形 Flat plate forming under nitrogen atmosphere
実施例 8
( 1 ) 金型: 2 0 O mm X 2 0 0 mmの 5 0 0 Wヒ一夕一付きクロ一ムメツキ 鉄板を 2枚使用した。 2枚の鉄板の内側に空隙部 (キヤビティー) を作るために、 鉄板のサイズにあわせたコの字形の樹脂製スぺーサ一 (厚さ 4 mm) を間に挟ん で、 4隅をシヤコ型万力でしめた。 このようにして作った簡易金型内の製品面側 金型上部に温度調節用の熱電対を貼り、 これをヒーターの温度調節機へ接続して 同金型の温度を調節できるようにした。 なお、 裏面側金型には通電しないように した。 両方の金型の内側上部中央付近には、 鉄板と絶縁した状態で温度測定用の 熱電対を貼った。 製品面側の熱電対を Aとし、 裏面側の熱電対を Bとする。 また、 熱電対の先端 1 5 mm程度の部分にガムテープを厚さ約 4 mmになるようにまい て、 これを金型内側の中央付近まで差し込んで、 成形品内の温度が測定できるよ うに熱電対 Cをセッ卜した。 Example 8 (1) Die: Two pieces of iron plate with a thickness of 200 mm and a thickness of 200 mm and a thickness of 500 W were used. In order to create a cavity inside the two iron plates, a U-shaped resin spacer (4 mm thick) that matches the size of the iron plate is sandwiched between the four iron plates, and the four corners are shaky. It was a vise. A thermocouple for temperature control was attached to the upper part of the mold on the product side of the simple mold made in this way, and this was connected to a heater temperature controller so that the temperature of the mold could be adjusted. The back side mold was not energized. A thermocouple for temperature measurement was attached near the center of the upper inside of both molds while being insulated from the iron plate. A is the thermocouple on the product side, and B is the thermocouple on the back side. Also, apply a piece of gum tape about 15 mm thick to the end of the thermocouple to a thickness of about 4 mm, insert it around the center of the inside of the mold, and measure the temperature inside the molded product. The pair C was set.
( 2 ) 反応原液: 5 0 O m 1の広口ポリエチレン瓶に乳鉢で細かくすりつぶし たべンジリデンビス(トリシクロへキシルホスフィン)ルテニウムジクロリ ド(S t r e m C h e m i c a 1社製) 9 0 m gと攪拌子を入れた。 このポリェチレ ン瓶の広口に密栓できるゴム栓、 ポリエチレン製 T字管、 ガラス管を用意し、 ゴ ム栓に前記実施例 1と同じ要領でポリエチレン製 T字管を取りつけた。 また、 そ の隣に反応原液を上記金型へ移送する時に使うガラス管をゴム栓に貫通させた後、 ゴム栓をポリエチレン瓶の口に装着した。 ガラス管の上部につないである反応液 移送用シリコンゴムチューブをクリップで締めて塞いで、 T字管の横方向の口か ら窒素気流を流し、 T字管上方向の口を指で押さえたり、 離したりする動作を 4 0回ほど繰返して、 瓶内を窒素置換した。 その後、 シリコンゴムチューブのクリ ップをはずして、 窒素気流を緩やかに流し続けた。 (2) Reaction stock solution: 90 mg of benzylidenebis (tricyclohexylphosphine) ruthenium dichloride (manufactured by Strem Chemica 1) finely ground in a mortar in a 50 Om1 wide-mouth polyethylene bottle was charged with 90 mg and a stirrer. . A rubber stopper, a polyethylene T-shaped tube, and a glass tube which can be hermetically sealed were prepared at the wide mouth of the polyethylene bottle, and a polyethylene T-shaped tube was attached to the rubber stopper in the same manner as in Example 1 above. In addition, a glass tube used to transfer the undiluted reaction solution to the mold was passed through a rubber stopper, and the rubber stopper was attached to the mouth of a polyethylene bottle. Close the silicone rubber tube for transferring the reaction solution, which is connected to the top of the glass tube, with a clip and close it.A nitrogen stream flows from the lateral mouth of the T-tube, and the upper mouth of the T-tube is pressed with a finger. The separation operation was repeated about 40 times, and the inside of the bottle was replaced with nitrogen. After that, the clip of the silicon rubber tube was removed, and the nitrogen gas flow was kept flowing slowly.
攪拌子を回転させ、 前記実施例 1と同じモノマー 2 2 5 m 1 を注射器で仕込ん だ。 その 1 0秒後に、 ルイス酸として別途調製した 0 . 2モル リットルのビス ( 1, 3—ジクロロー 2—プロボキシ) アルミニウムクロライ ドのジシクロペン 夕ジェン溶液 0 . 5 6 m 1を注射器で注入した。 そして、 2 0秒間激しく攪拌し た。 The stirrer was rotated, and the same monomer (2,25 m 1) as in Example 1 was charged with a syringe. After 10 seconds, 0.56 ml of a dicyclopentene solution of 0.2 mol bis (1,3-dichloro-2-propoxy) aluminum chloride separately prepared as a Lewis acid was injected with a syringe. Then, the mixture was vigorously stirred for 20 seconds.
( 3 ) 成形方法: 前記反応原液の調製において、 ルイス酸を添加した 2 0秒後 に、 反応原液移送用のガラス管の下端を瓶の液面下に深くさし込み、 T字管の上
側の口を塞いで、 窒素圧により反応原液を前記した金型(製品面側の型温 95°C、 裏面側の型温 65°C) の空隙部へ圧送した。 この際、 注入前に金型内部の窒素置 換は行わなかった。 瓶内の反応原液の残量が、 約 40m 1程度になった時点で圧 送を停止し、 移送用ゴムチューブをクリップで塞いだ。 (3) Molding method: In the preparation of the reaction stock solution, 20 seconds after the addition of the Lewis acid, insert the lower end of the glass tube for transferring the reaction stock solution deep below the liquid level of the bottle, and place it on the T-tube. The opening on the side was closed, and the reaction stock solution was pressure-fed to the above-mentioned mold (mold temperature on the product side 95 ° C, mold temperature on the back side 65 ° C) by nitrogen pressure. At this time, the nitrogen inside the mold was not replaced before the injection. When the remaining amount of the undiluted solution in the bottle reached about 40 m1, the pumping was stopped and the transfer rubber tube was closed with a clip.
反応原液を移送後 3分間、 内部温度を測定後、 金型を外して成形物を得た。 金 型内部の反応系中の最高到達温度および成形物から切り出したサンプルのガラス 転移温度 (Tg) および反応率を表 2に示す。 窒素雰囲気で配合調製をすれば、 金型内を窒素置換しなくても高 Tg、 高反応率になることが分かる。 The internal temperature was measured for 3 minutes after transferring the undiluted reaction solution, and the mold was removed to obtain a molded product. Table 2 shows the maximum temperature in the reaction system inside the mold, the glass transition temperature (Tg) and the reaction rate of the sample cut from the molded product. It can be seen that if the compounding and preparation are performed in a nitrogen atmosphere, high Tg and high conversion can be achieved without replacing the inside of the mold with nitrogen.
空気中での平板成形 Flat plate forming in air
比較例 8 Comparative Example 8
( 1 ) 金型: 実施例 8と同じ。 (1) Die: Same as in Example 8.
(2) 反応原液: 50 Om 1の広口ポリエチレン瓶に乳鉢で細かくすりつぶし たべンジリデンビス(トリシクロへキシルホスフィン)ルテニウムジクロリ ド(S t r em C h e m i c a 1社製) 90 m gど攪拌子を入れた。 攪拌子を回転さ せ、 前記実施例 1と同じモノマー 225m 1を空気中で仕込んだ。 その 1 0秒後 に、 ルイス酸として別途調整した 0. 2モルノリットルのビス ( 1, 3—ジクロ 口— 2—プロボキシ) アルミニウムクロライドのジシクロペン夕ジェン溶液 0. (2) Unreacted solution: A stirrer of 90 mg of benzylidenebis (tricyclohexylphosphine) ruthenium dichloride (manufactured by Strain Chemica 1 Co.) was finely ground in a mortar into a 50 Om1 wide-mouth polyethylene bottle. The stirrer was rotated, and 225 ml of the same monomer as in Example 1 was charged in the air. 10 seconds later, 0.2 mol of the bis (1,3-dichloro-2--2-propoxy) aluminum chloride in dicyclopentene was prepared separately as a Lewis acid.
56m 1を注射器で注入した。 そして、 20秒間激しく攪拌した。 56 ml was injected with a syringe. And it stirred vigorously for 20 seconds.
(3)成形方法: 前記反応原液の調整においてルイス酸を添加した 20秒後に、 反応原液を前記した金型 (製品面側の型温 95° (、 裏面側の型温 65°C) に注い だ。 反応原液を注いでから 3分間、 内部温度を測定後、 金型を外して成形物を得 た。 金型内部の反応系中の最高到達温度及び成形物から切り出したサンプルのガ ラス転移温度 (Tg) および反応率を表 2に示す。 実施例 8と比較すると、 空気 中で配合液を調製すると Tgおよび反応率が低下することが分かる。 (3) Molding method: 20 seconds after the addition of the Lewis acid in the preparation of the reaction stock solution, the reaction stock solution is poured into the above-mentioned mold (mold temperature 95 ° on the product side (65 ° C on the back side)). After measuring the internal temperature for 3 minutes after pouring the undiluted solution, the mold was removed to obtain a molded product.The maximum temperature in the reaction system inside the mold and the glass transition of the sample cut from the molded product The temperature (Tg) and the reaction rate are shown in Table 2. Comparing with Example 8, it is understood that the Tg and the reaction rate decrease when the mixed solution is prepared in the air.
表 2 Table 2
実施例 8 比較例 8 Example 8 Comparative Example 8
最高温度 (t:) 184 157 Maximum temperature (t :) 184 157
Tg (。c) 147 95 Tg (.c) 147 95
反応率 (%) 98.4 93.1
ベンジリデンビス (トリシクロへキシルホスフィン) ルテニウムジクロリ ドと トリフエニルホスフィン (ルイス塩基) のトルエン溶液を用いたジシクロペン夕 ジェンの塊状重合 Reaction rate (%) 98.4 93.1 Bulk polymerization of dicyclopentadiene using toluene solution of benzylidenebis (tricyclohexylphosphine) ruthenium dichloride and triphenylphenylphosphine (Lewis base)
実施例 9 Example 9
磁気攪拌子を備えた 500m lのナス型フラスコに、ジシクロペン夕ジェン(純 度 98. 5 %) 1 76 g、 5—ェチリデン— 2—ノルボルネン (純度 99 %) 9 gおよび S I S (クインタック 3530、 日本ゼオン製) 1 5 gを加えて、 窒素 雰囲気下 80でで 2時間攪拌し、 溶解させた。 その後、 攪拌しながら減圧にして、 低沸点成分を 0. 5 gだけ除去した (組成液 1) 。 In a 500 ml eggplant-shaped flask equipped with a magnetic stirrer, 176 g of dicyclopentene (98.5% purity), 9 g of 5-ethylidene-2-norbornene (99% purity) and SIS (Quintac 3530, 15 g (manufactured by Zeon Corporation) was added, and the mixture was stirred at 80 under a nitrogen atmosphere for 2 hours and dissolved. Thereafter, the pressure was reduced while stirring, and only 0.5 g of low boiling components was removed (composition liquid 1).
磁気攪拌子を備えた 20m 1のナス型フラスコに、 ベンジリデンビス (トリシ ク口へキシルホスフィン) ルテニウムジクロリ ド (S t r em Ch em i c a 1社製) 0. 2 1 g、 トリシクロへキシルホスフィン 0. 28 g、 トルエン 4. 5m lを加え、 攪拌して溶解させた (触媒液 1、 ルテニウム及びホスフィン濃度 は、 それぞれ 0. 05モル リットル、 0. 2モルノリットル) 。 In a 20 ml eggplant-shaped flask equipped with a magnetic stirrer, benzylidenebis (tris-hexyl hexylphosphine) ruthenium dichloride (manufactured by Strain Chemica 1) 0.2 1 g, tricyclohexylphosphine 0 28 g and toluene (4.5 ml) were added and dissolved by stirring (catalyst solution 1, ruthenium and phosphine concentrations were 0.05 mol liter and 0.2 mol no liter, respectively).
磁気攪拌子を備えた 20 Om 1のナス型フラスコに、ジシクロペン夕ジェン(1 0 %のシクロペン夕ジェン 3量体を含む) 48 g、 ジェチルアルミニウムクロリ ド 0. 63m l、 1, 3—ジクロロ一 2—プロパノール 0. 9 5m lを攪拌しな がら加えて反応させ、 0. 1モル リットル濃度のビス ( 1 , 3—ジクロ口— 2 —プロボキシ) アルミニウムクロリ ド溶液を調製した (ルイス酸溶液 1) 。 In a 20 Om 1 eggplant-shaped flask equipped with a magnetic stirrer, 48 g of dicyclopentene (including 10% of cyclopentane trimer), 0.63 ml of getyl aluminum chloride, 1,3-dichloro 0.95 ml of 2-propanol was added with stirring to react, and a solution of bis (1,3-dichloro-2--2-propoxy) aluminum chloride having a concentration of 0.1 mol liter was prepared (Lewis acid solution). 1)
3 Om 1の広口ガラス瓶に攪拌子を入れ、 組成液 1を 9. 4m 1、 ルイス酸溶 液 1を 0. 5m 1を加えて攪拌 ·混合後、 攪拌しながら触媒液 1を 0. 1m lカロ え、 さらに 1 0秒間攪拌したところ、 触媒は充分に混合され、 均一溶液となった。 その後攪拌を止め、 熱電対で内温を測定した。 内温は次第に上昇していき、 触媒 液 1投入後 6分 1 0秒後に最高温度 1 79°Cに達した。 A stirrer was placed in a 3 Om 1 wide-mouthed glass bottle, and 9.4 ml of the composition solution 1 and 0.5 ml of the Lewis acid solution 1 were added and stirred.After mixing, 0.1 ml of the catalyst solution 1 was stirred. After a further 10 seconds of stirring, the catalyst was thoroughly mixed and became a homogeneous solution. Thereafter, the stirring was stopped, and the internal temperature was measured with a thermocouple. The internal temperature gradually increased, and reached a maximum temperature of 179 ° C 6 minutes and 10 seconds after the introduction of the catalyst solution 1.
以上の操作は、 窒素雰囲気下で行った。 また、 重合は室温で行なった。 室温は、 23°Cであった。 以下の比較例 1, 2の操作も同様とする。 The above operation was performed in a nitrogen atmosphere. The polymerization was performed at room temperature. Room temperature was 23 ° C. The same applies to the operations of Comparative Examples 1 and 2 below.
重合物が冷えた後、 ガラス転移点温度 (Tg) 測定を行った。 試験法は、 J I S K 7 1 2 1にしたがって T i gを測定して Tgとした。 以下の Tg測定も 同様とする。 T gは 142°Cであった。
比較例 9 After the polymer cooled, the glass transition temperature (Tg) was measured. In the test method, Tig was measured in accordance with JISK 7121 and defined as Tg. The same applies to the following Tg measurement. T g was 142 ° C. Comparative Example 9
磁気攪拌子を備えた 20m 1のナス型フラスコに、 ベンジリデンビス (トリシ クロへキシルホスフィン) ルテニウムジクロリ ド (S t r em Ch em i c a 1社製) 0. 2 1 g、 トルエン 4. 8m lを加え、 攪拌して溶解させた (触媒液 2、 ルテニウム濃度は 0. 05モル Zリットル) 。 In a 20 ml eggplant-shaped flask equipped with a magnetic stirrer, 0.21 g of benzylidenebis (tricyclohexylphosphine) ruthenium dichloride (manufactured by Strain Chemica 1) and 4.8 ml of toluene In addition, it was dissolved by stirring (catalyst solution 2, ruthenium concentration: 0.05 mol Z liter).
3 Om 1の広口ガラス瓶に攪拌子を入れ、 組成液 1を 9. 4m 1、 ジシクロべ ン夕ジェン ( 1 0 %のシクロペン夕ジェン 3量体を含む) を 0. 5m lを加えて 攪拌 '混合後、 攪拌しながら触媒液 2を 0. 1m l加え、 さらに 1 0秒間攪拌し たところ、 混合は不充分で、 一部の固化した部分と液状のままの部分とが混在す る状態となった。 Put a stirrer into a 3 Om 1 wide-mouthed glass bottle, add 9.4 m1 of the composition solution 1 and 0.5 ml of dicyclobenzene (including 10% of cyclopentene trimer) and stir. After mixing, add 0.1 ml of catalyst solution 2 with stirring, and further stir for 10 seconds, the mixing is insufficient, and a state where some solidified parts and parts that remain liquid are mixed became.
以上より、 ルイス塩基 (トリシクロへキシルホスフィン) を含まない系では、 混合不良になることが分かる。 From the above, it can be seen that in the system containing no Lewis base (tricyclohexylphosphine), poor mixing occurs.
比較例 1 0 Comparative Example 10
3 Om 1の広口ガラス瓶に攪拌子を入れ、 組成液 1を 9. 4m 1、 ジシクロべ ン夕ジェン ( 1 0 %のシクロペン夕ジェン 3量体を含む) を 0. 5m lを加えて 攪拌 ·混合後、 攪拌しながら触媒液 1を 0. 1m l加え、 さらに 1 0秒間攪拌し たところ、 触媒は充分に混合され、 均一溶液となった。 その後攪拌を止め、 熱電 対で内温を測定した。 内温は次第に上昇していき、 触媒液 1投入後 1 8分 50秒 後に最高温度 79 に達した。 重合体の Tgは 42 :であった。 A stirrer is placed in a 3 Om 1 wide-mouthed glass bottle, and 9.4 m 1 of the composition liquid 1 and 0.5 ml of dicyclobenzene (including 10% of cyclopentamer) are added and stirred. After mixing, 0.1 ml of the catalyst liquid 1 was added with stirring, and the mixture was further stirred for 10 seconds. As a result, the catalyst was sufficiently mixed and became a homogeneous solution. Then, the stirring was stopped and the internal temperature was measured with a thermocouple. The internal temperature gradually increased, and reached a maximum temperature of 79 18 minutes and 50 seconds after the introduction of the catalyst solution 1. The Tg of the polymer was 42 :.
以上より、 ルイス塩基 (トリシクロへキシルホスフィン) を添加しても、 ルイ ス酸 (ビス ( 1, 3—ジクロロ— 2—プロボキシ) アルミニウムクロリ ド) を添 加しない系では、 混合不良にはならないが、 触媒の活性が低下して、 低反応速度、 低 T gとなることが分かる。 From the above, even if a Lewis base (tricyclohexylphosphine) is added, mixing failure does not occur in a system in which Lewis acid (bis (1,3-dichloro-2-propoxy) aluminum chloride) is not added. However, it can be seen that the activity of the catalyst decreases, resulting in a low reaction rate and low Tg.
ベンジリデン (1, 3—ジメシチルイミダゾリジン— 2—イリデン) (トリシ クロへキシルホスフィン) ルテニウムジクロリ ドとトリ一 n_ブチルホスフィン (ルイス塩基) のトルエン溶液を用いたジシクロペン夕ジェンの塊状重合 実施例 10 Bulk polymerization of dicyclopentadiene using toluene solution of ruthenium dichloride and tri-n-butylphosphine (Lewis base) with benzylidene (1,3-dimesitylimidazolidine-2-ylidene) (tricyclohexylphosphine) Example 10
磁気攪拌子を備えた 1 Om 1のナス型フラスコに、 ベンジリデン (1, 3—ジ メシチルイミダゾリジン— 2—イリデン) (トリシクロへキシルホスフィン) ル
テニゥムジクロリ ド (O r g. L e t t . 1 999, 1, 953の記載に基づい て合成したもの) 5 1mg、 トリー η_ブチルホスフィンのトルエン溶液 (濃度 は 1 0ミリモル Ζリットル) 3. 0m 1を加え、 攪拌して溶解させた (触媒液 3、 ルテニウムおよびホスフィン濃度は、 それぞれ 20ミリモルノリットル、 1 0ミ リモルノリッ トル) 。 以上の操作は、 室温、 窒素雰囲気下で行った。 In a 1 Om 1 eggplant type flask equipped with a magnetic stirrer, benzylidene (1,3-dimesitylimimidazolidine-2-ylidene) (tricyclohexylphosphine) Tendium dichloride (synthesized based on the description in Org. Lett. 1999, 1, 953) 51 mg, triluene solution of η_butylphosphine in toluene (concentration: 10 mmolΖl) 3.0 ml 1 In addition, it was dissolved by stirring (catalyst solution 3, ruthenium and phosphine concentrations were 20 mmol mol and 10 mol mol, respectively). The above operation was performed at room temperature under a nitrogen atmosphere.
30m 1の広口ガラス瓶に攪拌子を入れ、 ジシクロペン夕ジェン (純度 99. 8 %) を 9. 9mし ルイス酸溶液 1を 0. 05m 1を加えて攪拌 ·混合後、 攪 拌しながら触媒液 3を 0. 05m l加え、 さらに 1 0秒間攪拌したところ、 触媒 は充分に混合され、 均一溶液となった。 その後^ t拌を止め、 熱電対で内温を測定 した。 内温は次第に上昇していき、 触媒液 3投入後 1分 1 2秒後に最高温度 2 1 9°Cに達した。 以上の重合操作は、 窒素雰囲気下、 40°Cで行った。 重合体の T gは、 145 であった。 A stirrer was placed in a 30-m1 wide-mouth glass bottle, 9.9 m of dicyclopentene (99.8% purity) was added, and 0.05 m1 of Lewis acid solution 1 was added. After stirring and mixing, the catalyst solution 3 was stirred while stirring. Was added, and the mixture was further stirred for 10 seconds. As a result, the catalyst was sufficiently mixed and became a homogeneous solution. After that, stirring was stopped and the internal temperature was measured with a thermocouple. The internal temperature gradually increased, and reached a maximum temperature of 219 ° C 1 minute and 12 seconds after the introduction of the catalyst solution 3. The above polymerization operation was performed at 40 ° C. under a nitrogen atmosphere. The T g of the polymer was 145.
また、 触媒液 3の保存安定性を調べるため、 窒素雰囲気下で触媒液 3を 6m l スクリユー管瓶に 0. 5m lだけ入れ、 55でのウォー夕一バスにつけて 6時間 加熱促進試験をしたが、 目視では初期の薄茶色に変化は見られず、 沈殿の生成も 見られなかった。 In addition, in order to examine the storage stability of Catalyst Solution 3, only 0.5 mL of Catalyst Solution 3 was placed in a 6-mL screw-down tube under a nitrogen atmosphere, and placed in a warm and cold bath at 55 for a 6-hour heating acceleration test. However, there was no change in the initial light brown color, and no precipitate was formed.
比較例 1 1 Comparative Example 1 1
磁気攪拌子を備えた 1 Om 1のナス型フラスコに、 ベンジリデン ( 1, 3—ジ メシチルイミダゾリジン— 2—イリデン) (トリシクロへキシルホスフィン) ル テニゥムジクロリ ド (〇 r g. L e t t . 1 999, 1, 953の記載に基づい て合成したもの) 5 1mg、 トルエン 3. Om 1を加え、 攪拌して溶解させた (触 媒液 4、 ルテニウム濃度は 20ミリモル Zリットル) 。 以上の操作は、 室温、 窒 素雰囲気下で行った。 In a 1 Om 1 eggplant-shaped flask equipped with a magnetic stirrer, benzylidene (1,3-dimesitylimimidazolidine-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride (〇rg. Lett. 1999) , 1, 953) 5 1 mg, toluene 3. Om1 were added and dissolved by stirring (catalyst solution 4, ruthenium concentration: 20 mmol Z liter). The above operation was performed at room temperature in a nitrogen atmosphere.
3 Om 1の広口ガラス瓶に攪拌子を入れ、 ジシクロペン夕ジェン (純度 99. 8%) を 9. 9 5m 1を加えた後、 攪拌しながら触媒液 4を 0. 05m l加え、 さらに 1 0秒間攪拌したところ、 混合は不充分で、 一部の固化した部分と液状の ままの部分とが混在する状態となった。以上の重合操作は、窒素雰囲気下、 40°C で行った。 Put a stirrer into a 3 Om 1 wide-mouthed glass bottle, add 9.95 ml of dicyclopentenegen (purity 99.8%), add 0.05 ml of catalyst solution 4 with stirring, and wait another 10 seconds As a result of the stirring, the mixing was insufficient, and a portion of the solidified portion and a portion of the liquid remained mixed. The above polymerization operation was performed at 40 ° C. under a nitrogen atmosphere.
また、 触媒液 4の保存安定性を調べるため、 窒素雰囲気下で触媒液 4を 6m 1
スクリュー管瓶に 0. 5m lだけ入れ、 5 5 °Cのウォー夕一バスにつけて加熱促 進試験をしたところ、 初期は薄茶色であつたが、 1時間後には黒色となり、 4時 間後には触媒の分解生成物と見られる沈殿が生成した。 In addition, to examine the storage stability of catalyst solution 4, 6 ml of catalyst solution 4 was placed in a nitrogen atmosphere. A 0.5 ml aliquot was placed in a screw tube and placed in a 55 ° C water bath to conduct a heating promotion test.At the beginning, the color was light brown, but after 1 hour it turned black and after 4 hours As a result, a precipitate was formed which was considered to be a decomposition product of the catalyst.
以上より、 ルイス塩基 (トリー n—ブチルホスフィン) を含まない系では混合 不良になり、 触媒溶液の安定性も悪いことが分かる。 From the above, it can be seen that in the system not containing the Lewis base (tree n-butylphosphine), the mixing was poor and the stability of the catalyst solution was poor.
比較例 1 2 Comparative Example 1 2
3 0m 1の広口ガラス瓶に攪拌子を入れ、 ジシクロペン夕ジェン (純度 9 9. 8 %) を 9. 9 5m l加えてた後、 攪拌しながら触媒液 3を 0. 0 5m l加え、 さらに 1 0秒間攪拌したところ、 触媒は充分に混合され、 均一溶液となった。 そ の後攪拌を止め、 熱電対で内温を測定した。 内温は次第に上昇していき、 触媒液 3投入後 7分 3 0秒後に最高温度 2 0 3°Cに達した。 以上の重合操作は、 窒素雰 囲気下、 40°Cで行った。 重合体の T gは、 1 38°Cであった。 A stirrer was placed in a 30 ml wide-mouthed glass bottle, and 9.95 ml of dicyclopentene (purity: 99.8%) was added. Then, 0.05 ml of catalyst solution 3 was added with stirring, and then 1 ml. After stirring for 0 seconds, the catalyst was thoroughly mixed and became a homogeneous solution. Then, stirring was stopped and the internal temperature was measured with a thermocouple. The internal temperature gradually increased, and reached a maximum temperature of 203 ° C. 7 minutes and 30 seconds after the introduction of the catalyst solution 3. The above polymerization operation was performed at 40 ° C. under a nitrogen atmosphere. The Tg of the polymer was 138 ° C.
以上より、 ルイス塩基 (トリ— n_ブチルホスフィン) を添加しても、 ルイス 酸 (ビス ( 1 , 3—ジクロロ _ 2—プロボキシ) アルミニウムクロリ ド) を添加 しない系では、 混合不良にはならないが、 触媒の活性が低下して、 低反応速度と なることが分かる。 実生産に応用した場合、 成形サイクルが長くなり、 好ましい ことではない。 From the above, even if the Lewis base (tri-n_butylphosphine) is added, mixing failure does not occur in a system to which the Lewis acid (bis (1,3-dichloro_2-propoxy) aluminum chloride) is not added. However, it can be seen that the activity of the catalyst is reduced and the reaction rate is reduced. When applied to actual production, the molding cycle becomes longer, which is not desirable.
ルテニウム錯体触媒とルイス酸によるノルボルネン系単量体の溶液重合 実施例 1 1 Solution Polymerization of Norbornene-Based Monomer with Ruthenium Complex Catalyst and Lewis Acid Example 11
磁気攪拌子を備えた 1 0 0m lのガラス製耐圧反応容器に、窒素ガス雰囲気下、 蒸留精製した純度 9 9 %のジシクロペン夕ジェンと 8—ェチリデンテトラシクロ ドデセンを重量比 8 5 : 1 5に混合した単量体 2 g ( 14. 5ミリモル) 、 S t r em Ch em i c a l社製のベンジリデンビス (トリシキロへキシルホスフ イン) ルテニウムジクロリ ド 0. 4mg (0. 48 //モル) を溶解したシクロへ キサン溶液 0. 5m l、 連鎖移動剤として 1—へキセン 1 2. 2 mg (0. 1 4 5ミリモル) を含むシクロへキサン溶液 0. 5m 1、 蒸留精製したシクロへキサ ン 2 5mし そしてルイス酸として別途調製した ( 1, 3—ジクロ口— 2—プロ ポキシ) ェチルアルミニウムクロライ ドのジシクロペン夕ジェン (約 1 0 %のシ クロペン夕ジェン 3量体を含む) 溶液を、 前記ルテニウム錯体のルテニウム金属
に対し 5倍モルになるように仕込んだ。 In a 100-ml glass pressure-resistant reaction vessel equipped with a magnetic stirrer, dicyclopentene-diene and 8-ethylidenetetracyclododecene having a purity of 99% and a weight ratio of 85: 1 were distilled and purified under a nitrogen gas atmosphere. Dissolve 2 g (14.5 mmol) of the monomer mixed in 5 and 0.4 mg (0.48 // mol) of benzylidenebis (tris-kilohexylphosphine) ruthenium dichloride manufactured by Strain Chemical 0.5 ml of purified cyclohexane solution, 0.5 ml of a cyclohexane solution containing 1-hexene (12.2 mg, 0.145 mmol) as a chain transfer agent, and cyclohexane distilled and purified 2 A solution of (1,3-dichloro-2-propoxy) ethylaluminum chloride in dicyclopentene (containing about 10% cyclopentene trimer) was prepared separately as a Lewis acid. The ruthenium metal of the ruthenium complex It was charged so as to be 5 times the mol of the compound.
この反応容器を王冠で密栓し 1 0 0 °Cの油浴に入れて、 反応液を 2時間よく攪 拌した。 反応容器を油浴から取り出し、 室温に戻したあと、 内容物を約 1 0 0 m 1の 2—プロパノール中へ注いで、 生成した重合体を凝固させた。 凝固した重合 体は、 2 —プロパノールで洗浄後、 1 2 0 °Cのオーブン中で約 3時間、 減圧乾燥 した。 この乾燥した重合体の重量を測定した結果、 収率は 9 0 %であった。 産業上の利用可能性 The reaction vessel was sealed with a crown and placed in an oil bath at 100 ° C., and the reaction solution was stirred well for 2 hours. After removing the reaction vessel from the oil bath and returning to room temperature, the content was poured into about 100 ml of 2-propanol to coagulate the formed polymer. The coagulated polymer was washed with 2-propanol and dried under reduced pressure in an oven at 120 ° C. for about 3 hours. As a result of measuring the weight of the dried polymer, the yield was 90%. Industrial applicability
ルテニウム錯体触媒を環状ォレフィンを含有する反応原液と混合し開環メ夕セ シス重合を行う方法において、 該反応原液を不活性ガス雰囲気下に調製すること によって、 ガラス転移温度 (T g ) が高く、 重合後のポストキュアが不要な環状 ォレフィン重合体を高反応率で得ることができる。
In a method of performing ring-opening polymerization by mixing a ruthenium complex catalyst with a reaction solution containing a cyclic olefin, the glass transition temperature (T g) can be increased by preparing the reaction solution under an inert gas atmosphere. A cyclic olefin polymer that does not require post-curing after polymerization can be obtained at a high conversion.
Claims
1 . 中性電子供与体およびへテロ原子含有カルベン化合物の中から選ばれた 少くとも一種が配位子としてルテニウムに配位された錯体からなる触媒を環状ォ レフィンを含有する反応原液と混合し、 該環状ォレフィンを開環メ夕セシス重合 させる方法において、 該反応原液を不活性ガス雰囲気下に調製することを特徴と する環状ォレフィン重合体の製造方法。 1. A catalyst consisting of a complex in which at least one selected from a neutral electron donor and a hetero atom-containing carbene compound is coordinated to ruthenium as a ligand is mixed with a reaction solution containing a cyclic olefin. A method for producing a cyclic olefin polymer, which comprises subjecting the cyclic olefin to ring-opening polymerization by preparing the reaction solution under an inert gas atmosphere.
2 . 前記開環メ夕セシス重合が、 溶液重合である請求項 1記載の環状ォレフ ィン重合体の製造方法。 2. The method for producing a cyclic olefin polymer according to claim 1, wherein the ring-opening polymerization is a solution polymerization.
3 . 前記開環メ夕セシス重合が、 金型に反応原液を注入して硬化させる塊状 重合である請求項 1記載の環状ォレフィン重合体の製造方法。 3. The method for producing a cyclic olefin polymer according to claim 1, wherein the ring-opening polymerization is a bulk polymerization in which an undiluted reaction solution is injected into a mold and cured.
4 . 前記塊状重合において金型内の重合反応混合物の最高到達温度が 1 4 O :以上である請求項 3記載の環状ォレフィン重合体の製造方法。 4. The process for producing a cyclic olefin polymer according to claim 3, wherein the maximum temperature of the polymerization reaction mixture in the mold in the bulk polymerization is 14 O: or more.
5 . ルイス酸を含有する反応原液を用いることを特徴とする請求項 1記載の 環状ォレフィン重合体の製造方法。 5. The method for producing a cyclic olefin polymer according to claim 1, wherein a reaction solution containing a Lewis acid is used.
6 . 前記触媒とルイス塩基を含有する触媒液を、 環状ォレフィンを含有する 反応原液と混合し、 開環メ夕セシス重合させる請求項 5記載の環状ォレフィン重 合体の製造方法。
6. The method for producing a cyclic olefin polymer according to claim 5, wherein the catalyst solution containing the catalyst and the Lewis base is mixed with a reaction solution containing cyclic olefin, and the mixture is subjected to ring-opening polymerization.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31082599 | 1999-11-01 | ||
JP11/310825 | 1999-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001032739A1 true WO2001032739A1 (en) | 2001-05-10 |
Family
ID=18009873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/007620 WO2001032739A1 (en) | 1999-11-01 | 2000-10-30 | Process for producing cycloolefin polymer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2001032739A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005089744A (en) * | 2003-08-13 | 2005-04-07 | Nippon Zeon Co Ltd | Ring-opening polymer, hydrogenated product of the ring-opening polymer, method for producing the same, and polymerization catalyst composition |
WO2005114711A1 (en) * | 2004-05-21 | 2005-12-01 | Jsr Corporation | Liquid for immersion exposure and immersion exposure method |
JP2006052333A (en) * | 2004-08-12 | 2006-02-23 | Nippon Zeon Co Ltd | Method for producing norbornene-based ring-opened polymer hydrogenation product and norbornene-based ring-opened polymer hydrogenation product |
JP2008173979A (en) * | 2008-02-06 | 2008-07-31 | Nippon Zeon Co Ltd | Laminate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4426502A (en) * | 1982-06-14 | 1984-01-17 | The B. F. Goodrich Company | Bulk polymerization of cycloolefins |
US5312940A (en) * | 1992-04-03 | 1994-05-17 | California Institute Of Technology | Ruthenium and osmium metal carbene complexes for olefin metathesis polymerization |
-
2000
- 2000-10-30 WO PCT/JP2000/007620 patent/WO2001032739A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4426502A (en) * | 1982-06-14 | 1984-01-17 | The B. F. Goodrich Company | Bulk polymerization of cycloolefins |
US5312940A (en) * | 1992-04-03 | 1994-05-17 | California Institute Of Technology | Ruthenium and osmium metal carbene complexes for olefin metathesis polymerization |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005089744A (en) * | 2003-08-13 | 2005-04-07 | Nippon Zeon Co Ltd | Ring-opening polymer, hydrogenated product of the ring-opening polymer, method for producing the same, and polymerization catalyst composition |
WO2005114711A1 (en) * | 2004-05-21 | 2005-12-01 | Jsr Corporation | Liquid for immersion exposure and immersion exposure method |
US7580111B2 (en) | 2004-05-21 | 2009-08-25 | Jsr Corporation | Liquid for immersion exposure and immersion exposure method |
JP2006052333A (en) * | 2004-08-12 | 2006-02-23 | Nippon Zeon Co Ltd | Method for producing norbornene-based ring-opened polymer hydrogenation product and norbornene-based ring-opened polymer hydrogenation product |
JP2008173979A (en) * | 2008-02-06 | 2008-07-31 | Nippon Zeon Co Ltd | Laminate |
JP4548491B2 (en) * | 2008-02-06 | 2010-09-22 | 日本ゼオン株式会社 | Laminated body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4681699B2 (en) | Method for extending pot life of olefin metathesis polymerization reaction | |
US8487046B2 (en) | Polycycloolefin (PCO) thermoset assembly and process for its preparation | |
US5606085A (en) | Thermally activated olefin metathesis catalyst precursor | |
JPH0710908B2 (en) | Reaction stock solution for reaction injection molding | |
KR920004140B1 (en) | Metathesis polymerization of cycloolefins | |
TW473491B (en) | A solventless polymerisable composition | |
WO2001032739A1 (en) | Process for producing cycloolefin polymer | |
US5068296A (en) | Metathesis polymerized cross-linked copolymer | |
JP4352648B2 (en) | Norbornene-based resin molded product and method for producing the same | |
US20240109984A1 (en) | Catalysts for Olefin Metathesis, Methods of Preparation, and Processes for the use Thereof | |
JP2001163959A (en) | Catalytic system for ring-opening polymerization, method for producing ring-opened polymer, reaction stock solution and molding method | |
JPS633017A (en) | Molded article of crosslinked polymer, production thereof and combination of reactive solution | |
US20230001395A1 (en) | Catalysts for Olefin Metathesis, Methods of Preparation, and Processes for the Use Thereof | |
JP4288826B2 (en) | Polynorbornene resin | |
JP2002363264A (en) | Method for producing norbornene resin | |
JPH0739473B2 (en) | Method for producing crosslinked polymer molding | |
JP2892713B2 (en) | Method for producing norbornene-based polymer | |
JP4218314B2 (en) | Molded material, manufacturing method thereof and molded product | |
JP2002356540A (en) | Method for producing norbornene resin molded article | |
JP4232350B2 (en) | Norbornene resin and method for producing molded product | |
JPS6392625A (en) | Crosslinked polymer molding, its production and combination of reactive solutions | |
JP2002338664A (en) | Process for producing norbornene resin molding | |
JP2001131264A (en) | Process for preparing cycloolefin polymer | |
JP2002293891A (en) | Production method for norbornene-based resin molded product | |
JP2004035615A (en) | Methods for producing thermoplastic resin, cross-linked resin, cross-linked composite material and copper-clad laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 535436 Kind code of ref document: A Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase |