WO2001031713A1 - Piezoelektrischer vielschichtaktor mit keramischen innenelektroden - Google Patents

Piezoelektrischer vielschichtaktor mit keramischen innenelektroden Download PDF

Info

Publication number
WO2001031713A1
WO2001031713A1 PCT/DE2000/003546 DE0003546W WO0131713A1 WO 2001031713 A1 WO2001031713 A1 WO 2001031713A1 DE 0003546 W DE0003546 W DE 0003546W WO 0131713 A1 WO0131713 A1 WO 0131713A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic body
piezoelectric ceramic
body according
conductive material
mixed conductive
Prior art date
Application number
PCT/DE2000/003546
Other languages
English (en)
French (fr)
Inventor
Thomas Schulte
Marianne Hammer
Friederike Lindner
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2001533564A priority Critical patent/JP2003512989A/ja
Priority to EP00972619A priority patent/EP1226614A1/de
Publication of WO2001031713A1 publication Critical patent/WO2001031713A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based

Definitions

  • the invention relates to a piezoelectric ceramic body, in particular a piezoelectric ceramic actuator, according to the preamble of the main claim.
  • Ceramic piezo actuators which consist of a multiplicity of thin ceramic, piezoactive layers, which are each separated from one another via an inner electrode layer and can be electrically contacted and controlled via them, are widely known.
  • Known piezo actuators consist, for example, essentially of a PZT ceramic, ie Pb (T ⁇ Zr y ) 0 3 with 0.40 ⁇ x ⁇ 0.60, in the form of a large number of sintered, ceramic, piezoactive layers made of this PZT ceramic can be controlled electrically in a defined manner via the internal electrodes arranged in between, and experience mechanical expansion or compression when an external voltage is applied via the reverse piezo effect (electrostriction). Since such PZT ceramics, depending on the doping and
  • the piezoelectric ceramic body according to the invention has the advantage over the prior art that a significant reduction in the material costs for the electrode material used for the internal electrodes is thereby achieved.
  • the use of mixed-conducting materials according to the invention can thus, for example, significantly reduce the production costs for piezo actuators.
  • a mixed-conducting material is understood to mean, in accordance with general usage, a material which has both good electronic conductivity and ion conductivity.
  • the numerous potential material combinations and doping of the inner electrode materials enable the respective inner electrode materials to be optimally matched to the adjacent insulating layers with the actual ceramic, piezoactive material.
  • This adaptation to the ceramic, piezoactive layers, ie in particular the PZT carrier foils, is advantageously carried out both with regard to the thermal expansion and the sintering temperature of the electrode material.
  • phase stability is understood here to mean that no phase transformation of the material of the inner electrodes and / or of the material of the insulating layers occurs during sintering.
  • the material of the internal electrodes advantageously contains a perwoskite or fluorite-based ceramic, since this
  • Materials with a suitable selection have a high electronic and ionic conductivity and already have a sufficient conductivity for the application even at low temperatures below 100 ° C. Moreover, the synthesis and handling of such materials very easily and inexpensively. Furthermore, the sintering temperatures required for such ceramic mixed conductors are in the range between 1000 ° C. and 1200 ° C., ie they are excellently adapted to PZT ceramics. In addition, they are often phase stable compared to PZT ceramics.
  • the figure shows a piezoelectric ceramic body in the form of a piezoceramic actuator consisting of a layer sequence of piezoactive insulating layers and inner electrode layers.
  • the figure shows a known structure of a piezoelectric ceramic body 5 in the form of a cuboid with a large number of insulating layers 12 made of a known piezoactive PZT ceramic, which are separated from one another in regions in the form of thin layers.
  • the PZT ceramic has, for example, the composition Pb (Ti x Zr y ) 0 3 with 0.40 ⁇ x ⁇ 0.60.
  • the thickness of the insulating layers 12 is, for example, 50 ⁇ m to 130 ⁇ m with a typical number of 300 to 600; the thickness of the inner electrodes 13, 14 is preferably between 500 n and 5 ⁇ m, in particular 1 to 2 ⁇ m.
  • the end faces of the ceramic body 5 are further contacted in a manner known per se by two opposing, for example metallic, outer electrodes 10, 11, the first outer electrode 10 on the assigned end face of the cuboid the first inner electrodes 13 contacts and the second outer electrode 11 on the assigned end face of the cuboid, the second inner electrodes
  • the internal electrodes 13, 14 can be subjected to a field strength, which is typically between 1 kV / mm and 3 kV / mm, and in the ceramic body 5 via the reverse piezoelectric effect (electrostriction) to stretch or compress the Insulating layers 12 leads in the direction of the surface normal of the insulating layers 12.
  • the inner electrodes 13, 14 thus form the plates of a plate capacitor with the insulating layers 12 as a dielectric.
  • the inner electrodes 13, 14 each consist of a mixed conductive ceramic material.
  • the material has proven to be particularly suitable
  • the mixed-conductive ceramic material Lax- x Sr x Coi- y CU y Oa- with 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 1 can also be used .
  • perovskite or fluorite-based materials such as La ⁇ - x Ca x Co0 3 -. ⁇ , SrCe0 3 , LaCr ! _ x Mg x ⁇ 3 , Lai- x SryMnOs or LaNi-yCa x Oa are particularly suitable.
  • the specific electrical resistance of the mixed conductor must be at least less than 1 * 10 ⁇ 3 ⁇ cm and in particular in the range from 1 * 10 "6 ⁇ cm to 5 * 10 4 ⁇ cm.
  • ceramic green foils are first produced in a manner known per se, which are intended to form the later insulating layers 12. These are then provided on one side with a further film, corresponding to the manner shown in the figure, which is intended to form a later inner electrode 13, 14.
  • the material forming the later internal electrodes can also be printed on the ceramic green foils in regions by means of screen printing. These pairs of green foils or the printed green foils are then stacked in such a manner that they are alternately rotated by 180 ° relative to one another, so that a periodic sequence of insulating layer 12, first inner electrode 13, insulating layer 12, second inner electrode 14, insulating layer 12, first inner electrode 13, etc. is produced. Finally, the green body obtained in this way is pressed or laminated in a die and then sintered at temperatures between 1000 ° C. and 1200 ° C., so that the ceramic body 5 is formed.
  • the ceramic body 5 obtained is usually ground on the outside and then contacted with the outer electrodes 10, 11 on two opposite end faces of the ceramic body 5. Due to the alternating internal electrodes not reaching to the end faces of the ceramic body 5, the first contacts
  • Outer electrode 10 only the first inner electrodes 13 and the second outer electrode 11 only the second inner electrodes 14. Further details can be found, for example, in K. Ruschmeyer, “Piezoceramic: Fundamentals, Material, Applications ", expert-Verlag, Renningen, 1995, page 79.

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Es wird ein piezoelektrischer Keramikkörper (5), insbesondere ein piezoelektrischer keramischer Aktor, mit einer Mehrzahl von übereinander angeordneten Isolierschichten (12) mit einem piezoaktiven keramischen Material vorgeschlagen, wobei die Isolierschichten (12) voneinander jeweils zumindest bereichsweise durch Innenelektroden (13, 14) getrennt sind. Die Innenelektroden (13, 14) enthalten dabei ein gemischtleitendes Material, insbesondere ein perowskitisches oder fluoritbasiertes keramisches Material.

Description

PIEZOELEKTRISCHER VIELSCHICHTAKTOR MIT KERAMISCHEN INNENELEKTRODEN
Die Erfindung betrifft einen piezoelektrischen Keramikkorper, insbesondere einen piezoelektrischen keramischen Aktor, nach der Gattung des Hauptanspruches.
Stand der Technik
Keramische Piezoaktoren, die aus einer Vielzahl von dünnen keramischen, piezoaktiven Schichten bestehen, die jeweils über eine Innenelektrodenschicht voneinander getrennt und darüber elektrisch kontaktierbar und ansteuerbar sind, sind vielfach bekannt. Dazu sei beispielsweise auf K. Ruschmeyer, „Piezokeramik: Grundlagen, Werkstoff, Applikationen", expert- Verlag, Renningen, 1995, verwiesen.
Bekannte Piezoaktoren bestehen beispielsweise im wesentlichen aus einer PZT-Keramik, d.h. Pb(Tι Zry)03 mit 0,40 < x < 0,60, in Form einer Vielzahl von zusammengesinterten, keramischen, piezoaktiven Schichten aus dieser PZT-Keramik, die über dazwischen angebrachte Innenelektroden elektrisch in definierter Weise ansteuerbar sind, und bei Anlegen einer äußeren Spannung über den umgekehrten Piezoeffekt (Elektrostriktion) eine mechanische Dehnung oder Stauchung erfahren. Da derartige PZT-Keramiken je nach Dotierung und
Herstellungsverfahren bei Temperaturen von 1000°C bis 1200°C und unter oxidierenden Bedingungen gesintert werden müssen, sind bisher als Materialien für die Innenelektroden lediglich metallische Legierungen wie Ag/Pd-Legierungen bekannt. Dazu sei beispielsweise auf A.C. Caballero et al . , J. Mat. Sei., 32, 3257-3262, (1997), verwiesen.
Diese Materialien für die Innenelektroden stellen einen Kompromiß zwischen elektrischer Leitfähigkeit, Materialkosten, Sintertemperatur, Sinteratmosphare und angepaßtem thermischen Ausdehnungsverhalten dar. Dennoch sind die Materialkosten für die Innenelektroden trotz einer typischen Dicke von lediglich ca. 1 μm bis 3 μm aufgrund der hohen Anzahl von Innenelektroden von typischerweise mehr als 500 immer noch betrachtlich. Sie erreichen derzeit im Fall von der Ag/Pd-Legierung Werte von 6800 DM pro Kilogramm Elektrodenmaterial.
Vorteile der Erfindung
Der erfindungsgemaße piezoelektrische Keramikkorper hat gegenüber dem Stand der Technik den Vorteil, daß damit eine deutliche Verringerung der Materialkosten für das verwendete Elektrodenmaterial der Innenelektroden erreicht wird. Damit können durch den erfindungsgemaßen Einsatz gemischtleitender Materialien beispielsweise die Herstellungkosten für Piezoaktoren deutlich gesenkt werden.
Unter einem gemischtleitenden Material wird dabei im übrigen entsprechend dem allgemeinen Sprachgebrauch ein Material verstanden, das sowohl eine gute elektronische Leitfähigkeit als auch eine Ionenleitfahigkeit aufweist. Gleichzeitig ermöglichen die zahlreichen potentiellen Materialkombinationen und Dotierungen der Innenelektrodenmaterialien eine optimale Anpassung der jeweiligen Innenelektrodenmaterialien an die benachbarten Isolierschichten mit dem eigentlichen keramischen, piezoaktiven Material. Diese Anpassung an die keramischen, piezoaktiven Schichten, d.h. insbesondere die PZT-Tragerfolien, erfolgt dabei vorteilhaft sowohl hinsichtlich der thermischen Ausdehnung als auch der Sintertemperatur des Elektrodenmaterials.
Der Fachmann hat somit vorteilhaft die Möglichkeit, aus zahlreichen, preiswerten Materialien als
Innenelektrodenmaterialien auswählen zu können, wobei im Einzelfall die Kriterien für das jeweils am besten geeignete Material, neben den Kosten, vor allem die Sintertemperatur der piezoaktiven Keramik, die möglichst gute elektrische Leitfähigkeit des Elektrodenmaterials der Innenelektroden im betreffenden Temperaturbereich und die Phasenstabilitat des Innenelektrodenmaterials und des piezoaktiven Materials beim gemeinsamen Sintern zu dem Keramikkorper durch einen Cofiring- Prozeß sind. Unter Phasenstabilitat wird dabei verstanden, daß beim Sintern keine Phasenumwandlung des Materials der Innenelektroden und/oder des Materials der Isolierschichten auftritt .
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteranspruchen genannten Maßnahmen.
So enthalt das Material der Innenelektroden vorteilhaft eine perwoskitische oder fluorit-basierte Keramik, da diese
Materialien bei geeigneter Auswahl über eine hohe elektronische und ionische Leitfähigkeit verfugen und auch bei tiefen Temperaturen von unter 100°C bereits eine für die Anwendung ausreichende Leitfähigkeit aufweisen. Überdies ist die Synthese und Handhabung derartiger Materialien sehr einfach und preiswert. Weiter liegen die erforderlichen Sintertemperaturen für derartige keramische Gemischtleiter im Bereich zwischen 1000°C und 1200°C, d.h. sie sind hervorragend an PZT-Keramiken angepaßt. Überdies sind sie vielfach phasenstabil gegenüber PZT- Keramik.
Zeichnung
Ausfuhrungsbeispiele der Erfindung werden anhand der Zeichnung und in der nachfolgenden Beschreibung naher erläutert. Es zeigt die Figur einen piezoelektrischen Keramikkorper in Form eines piezokeramischen Aktors aus einer Schichtfolge von piezoaktiven Isolierschichten und Innenelektrodenschichten .
Ausführungsbeispiele
Die Figur zeigt einen an sich bekannten Aufbau eines piezoelektrischen Keramikkorpers 5 in Form eines Quaders mit einer Vielzahl von Isolierschichten 12 aus einer an sich bekannten, piezoaktiven PZT-Keramik, die über Innenelektroden 13, 14 in Form von dünnen Schichten bereichsweise jeweils voneinander getrennt sind. Die PZT-Keramik hat beispielsweise die Zusammensetzung Pb(TixZry)03 mit 0,40 < x < 0,60. Die Dicke der Isolierschichten 12 betragt beispielsweise 50 μm bis 130 μm bei einer typischen Anzahl von 300 bis 600; die Dicke der Innenelektroden 13, 14 betragt liegt bevorzugt zwischen 500 n und 5 μm, insbesondere bei 1 bis 2 μm.
Die Stirnseiten des Keramikkorpers 5 sind weiter durch zwei gegenüberliegende, beispielsweise metallische, ganzflachig aufgebrachte Außenelektroden 10, 11 in an sich bekannter Weise kontaktiert, wobei die erste Außenelektrode 10 an der zugeordneten Stirnseite des Quaders die ersten Innenelektroden 13 kontaktiert und die zweite Außenelektrode 11 an der zugeordneten Stirnseite des Quaders die zweiten Innenelektroden
14 kontaktiert. Über die Außenelektroden 10, 11 sind die Innenelektroden 13, 14 mit einer Feldstarke beaufschlagbar, die typischerweise zwischen 1 kV/mm und 3 kV/mm liegt, und in dem Keramikkorper 5 über den umgekehrten piezoelektrischen Effekt (Elektrostriktion) zu einer Dehnung oder Stauchung der Isolierschichten 12 in Richtung der Flachennormalen der Isolierschichten 12 fuhrt. Die Innenelektroden 13, 14 bilden somit die Platten eines Plattenkondensators mit den Isolierschichten 12 als Dielektrikum.
Weiter bestehen die Innenelektroden 13, 14 jeweils aus einem gemischtleitenden keramischen Material. Als besonders geeignet hat sich im Fall einer PZT-Keramik als Material der
Isolierschichten 12 für das Material der Innenelektroden 13, 14 SrFeCθo,sOx herausgestellt, da dieses Material oberhalb von 25°C eine ausreichende Leitfähigkeit aufweist und seine Sintertemperatur zwischen 1000°C und 1200°C liegt, d.h. auf die Sintertemperatur der PZT-Keramik angepaßt ist.
Alternativ kommt anstelle von SrFeCo0,5θx für das Material der Innenelektroden 13, 14 jedoch auch das gemischtleitende keramische Material Lax-xSrxCoi-yCUyOa- mit 0 < x < 1 und 0 < y < 1 in Frage.
Weiterhin sind auch perowskitische oder fluorit-basierte Materialien wie Laι-xCaxCo03-.δ, SrCe03, LaCr!_xMgxθ3, Lai-xSryMnOs oder LaNi-yCaxOa besonders geeignet.
Ein wichtiges Kriterium für die Auswahl geeigneter, insbesondere keramischer Gemischtleiter ist deren möglichst geringer spezifischer elektrischer Widerstand, der im Fall von Pt als Elektrodenmaterial bei Raumtemperatur bei 10,6 μΩcm und bei AgPd mit einer Zusammensetzung von 70 zu 30 Massenprozent bei 15 μΩcm liegt. Insofern muß der spezifische elektrische Widerstand des Gemischtleiters zumindest kleiner als 1*10~3 Ωcm sein und insbesondere im Bereich von 1*10"6 Ωcm bis 5*104 Ωcm liegen.
Zur Herstellung des Keramikkorpers 5 werden zunächst in an sich bekannter Weise keramische Grunfolien hergestellt, die die spateren Isolierschichten 12 bilden sollen. Diese werden dann bereichsweise, entsprechend in der in der Figur dargestellten Weise, einseitig mit einer weiteren Folie versehen, die eine spatere Innenelektrode 13, 14 bilden soll.
Alternativ kann das die spateren Innenelektroden bildende Material jedoch auch mittels Siebdruck bereichsweise auf die keramischen Grunfolien gedruckt werden. Anschließend werden diese Grunfolienpaare bzw. die bedruckten Grunfolien dann derart abwechselnd um 180° gegeneinander gedreht gestapelt, so daß eine periodische Abfolge von Isolierschicht 12, erste Innenelektrode 13, Isolierschicht 12, zweite Innenelektrode 14, Isolierschicht 12, erste Innenelektrode 13 usw. entsteht. Schließlich wird der derart erhaltene Grunkorper in einer Matrize gepreßt bzw. laminiert und anschließend bei Temperaturen zwischen 1000 °C und 1200 °C gesintert, so daß der Keramikkorper 5 entsteht.
Nach dem Sintern wird der erhaltene Keramikkorper 5 üblicherweise außen geschliffen und danach auf zwei gegenüberliegenden Stirnflachen des Keramikkorpers 5 mit den Außenelektroden 10, 11 kontaktiert. Aufgrund der abwechselnd jeweils nicht bis zu den Stirnseiten des Keramikkorpers 5 reichenden Innenelektroden kontaktiert somit die erste
Außenelektrode 10 lediglich die ersten Innenelektroden 13 und die zweite Außenelektrode 11 lediglich die zweiten Innenelektroden 14. Weitere Details dazu sind beispielsweise in K. Ruschmeyer, „Piezokeramik: Grundlagen, Werkstoff, Applikationen", expert-Verlag, Renningen, 1995, Seite 79, beschrieben .
Bezugszeichenliste
5 Keramikkorper
10 erste Außenelektrode
11 zweite Außenelektrode 12 Isolierschicht
13 erste Innenelektrode
14 zweite Innenelektrode

Claims

Ansprüche
1. Piezoelektrischer Keramikkorper mit einer Mehrzahl von übereinander angeordneten Isolierschichten (12) mit einem piezoaktiven keramischen Material, die zumindest bereichsweise durch Innenelektroden (13, 14) voneinander getrennt sind, dadurch gekennzeichnet, daß die Innenelektroden (13, 14) ein gemischtleitendes Material enthalten.
2. Piezoelektrischer Keramikkorper nach Anspruch 1, dadurch gekennzeichnet, daß das gemischtleitende Material ein keramisches Material ist.
3. Piezoelektrischer Keramikkorper nach Anspruch 1, dadurch gekennzeichnet, daß das gemischtleitende Material zumindest oberhalb Temperaturen von 25°C eine zumindest weitgehend metallische Leitfähigkeit aufweist.
4. Piezoelektrischer Keramikkorper nach Anspruch 1, dadurch gekennzeichnet, daß die Sintertemperatur des gemischtleitenden Materials zwischen 1000°C und 1200°C liegt.
5. Piezoelektrischer Keramikkorper nach Anspruch 1, dadurch gekennzeichnet, daß die Isolierschichten (12) aus einer PZT- Keramik, insbesondere aus Pb(TιxZry)03 mit 0,40 < x < 0,60, bestehen.
6. Piezoelektrischer Keramikkorper nach Anspruch 1, dadurch gekennzeichnet, daß das gemischtleitende Material beim
Sintern gegenüber dem Material der Isolierschichten (12) phasenstabil ist.
7. Piezoelektrischer Keramikkorper nach Anspruch 1, dadurch gekennzeichnet, daß das Material der Isolierschichten (12) beim Sintern gegenüber dem gemischtleitenden Material phasenstabil ist.
8. Piezoelektrischer Keramikkorper nach Anspruch 1, dadurch gekennzeichnet, daß das gemischtleitende Material ein perowskitisches keramisches Material oder ein fluoritbasiertes keramisches Material enthalt.
9. Piezoelektrischer Keramikkorper nach Anspruch 1, dadurch gekennzeichnet, daß der spezifische elektrische Widerstand des gemischtleitenden Materials kleiner als 1*10~3 Ωcm ist.
10. Piezoelektrischer Keramikkorper nach Anspruch 1, dadurch gekennzeichnet, daß das gemischtleitende Material SrFeCo0,5θx, Laι-xSrxCθι-yCuy03-d mit 0 < x < 1 und 0 < y < 1 oder Laι-xCaCo03_ δ, SrCe03, LaCrι_xMgx03, Laι_xSrxMn03 oder LaNiι_xCax03 enthalt.
PCT/DE2000/003546 1999-10-22 2000-10-10 Piezoelektrischer vielschichtaktor mit keramischen innenelektroden WO2001031713A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001533564A JP2003512989A (ja) 1999-10-22 2000-10-10 圧電セラミック成形体
EP00972619A EP1226614A1 (de) 1999-10-22 2000-10-10 Piezoelektrischer vielschichtaktor mit keramischen innenelektroden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19951016A DE19951016A1 (de) 1999-10-22 1999-10-22 Piezoelektrischer Keramikkörper
DE19951016.4 1999-10-22

Publications (1)

Publication Number Publication Date
WO2001031713A1 true WO2001031713A1 (de) 2001-05-03

Family

ID=7926587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003546 WO2001031713A1 (de) 1999-10-22 2000-10-10 Piezoelektrischer vielschichtaktor mit keramischen innenelektroden

Country Status (4)

Country Link
EP (1) EP1226614A1 (de)
JP (1) JP2003512989A (de)
DE (1) DE19951016A1 (de)
WO (1) WO2001031713A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333506A2 (de) * 2002-01-31 2003-08-06 Toyota Jidosha Kabushiki Kaisha Laminierter piezoelektrischer Aktuator
US20150380160A1 (en) * 2014-06-25 2015-12-31 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10006352A1 (de) 2000-02-12 2001-08-30 Bosch Gmbh Robert Piezoelektrischer Keramikkörper mit silberhaltigen Innenelektroden
DE20022469U1 (de) 2000-07-11 2002-01-31 Robert Bosch Gmbh, 70469 Stuttgart Gesinterter, elektrisch leitfähiger Werkstoff

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0337373A2 (de) * 1988-04-12 1989-10-18 Matsushita Electric Industrial Co., Ltd. Dielektrisches Mehrschichtbauelement
JPH02132870A (ja) * 1988-11-14 1990-05-22 Toyota Motor Corp 積層圧電素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227852A (ja) * 1993-02-05 1994-08-16 Onoda Cement Co Ltd 導電性組成物
DE4443365A1 (de) * 1994-12-06 1996-06-13 Philips Patentverwaltung Brenn- und Sinterverfahren für ein keramisches elektronisches Bauteil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0337373A2 (de) * 1988-04-12 1989-10-18 Matsushita Electric Industrial Co., Ltd. Dielektrisches Mehrschichtbauelement
JPH02132870A (ja) * 1988-11-14 1990-05-22 Toyota Motor Corp 積層圧電素子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ABE K ET AL: "Barium titanate-based actuator with ceramic internal electrodes", FERROELECTRICS, vol. 68, no. 1-4, July 1986 (1986-07-01), pages 215 - 223, XP000979331, ISSN: 0015-0193 *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 368 (E - 0962) 9 August 1990 (1990-08-09) *
RAYEVSKY I P ET AL: "Relaxor perovskite multilayer actuators and capacitors with internal ceramic electrodes", FERROELECTRICS, vol. 131, no. 1-4, 1992, pages 327 - 329, XP000987069, ISSN: 0015-0193 *
ZHANG Y ET AL: "Conducting lanthanum nickel oxide as electrodes for lead zirconate titanate films", SYMPOSIUM F: 'THIN FILMS AND MULTILAYERS: SCIENCE AND APPLICATIONS'. FIFTH IUMRS-INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS (IUMRS-ICAM), BEIJING, CHINA, 13.-18. JUNI 1999, vol. 375, no. 1-2, Thin Solid Films, 31 Oktober 2000, pages 87 - 90, XP000986822, ISSN: 0040-6090 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333506A2 (de) * 2002-01-31 2003-08-06 Toyota Jidosha Kabushiki Kaisha Laminierter piezoelektrischer Aktuator
EP1333506A3 (de) * 2002-01-31 2004-08-25 Toyota Jidosha Kabushiki Kaisha Laminierter piezoelektrischer Aktuator
US20150380160A1 (en) * 2014-06-25 2015-12-31 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and manufacturing method thereof
US9672984B2 (en) * 2014-06-25 2017-06-06 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and manufacturing method thereof

Also Published As

Publication number Publication date
DE19951016A1 (de) 2001-05-31
EP1226614A1 (de) 2002-07-31
JP2003512989A (ja) 2003-04-08

Similar Documents

Publication Publication Date Title
EP1597780B1 (de) Elektrisches vielschichtbauelement und schichtstapel
EP0958620B1 (de) Piezoaktor mit neuartiger kontaktierung und herstellverfahren
DE19903572A1 (de) Monolithischer Kondensator
WO1999034455A1 (de) Verfahren zur herstellung piezoelektrischer aktoren und piezoelektrischer aktor
DE19945933C1 (de) Piezoaktor mit isolationszonenfreier elektrischer Kontaktierung und Verfahren zu dessen Herstellung
EP2256836B1 (de) Verfahren zur Herstellung eines Vielschichtbauelementes
DE102019107084A1 (de) Verfahren zur Herstellung eines gepolten piezokeramischen Formkörpers
EP1124265A2 (de) Piezoelektrischer Keramikkörper mit silberhaltigen Innenelektroden
DE10159451A1 (de) Elektrisches Bauelement mit einem negativen Temperaturkoeffizienten
EP1425762B1 (de) Elektrisches vielschichtbauelement
EP2207758B1 (de) Piezokeramisches vielschichtelement
EP1192672A1 (de) Piezoelement mit einem mittels faltung hergestellten mehrschichtaufbau
EP1949465A1 (de) Piezoaktor und verfahren zur herstellung desselben
DE102016107931A1 (de) Elektronisches Bauelement zur Einschaltstrombegrenzung und Verwendung eines elektronischen Bauelements
DE69726056T2 (de) Dielektrische Dickschichtzusammensetzung für Kondensatoren
WO2001031713A1 (de) Piezoelektrischer vielschichtaktor mit keramischen innenelektroden
EP1129493B1 (de) Piezokeramische vielschichtstruktur mit regelmässiger polygon-querschnittsfläche
EP2798679A1 (de) Piezostack mit passivierung und verfahren zur passivierung eines piezostacks
EP0478998B1 (de) Herstellverfahren für einen Piezoantrieb
DE102020118857B4 (de) Vielschichtkondensator
WO2002004379A2 (de) Gesinterter, elektrisch leitfähiger werkstoff, keramisches mehrlagenbauteil mit diesem werkstoff, und verfahren zu dessen herstellung
EP3430653B1 (de) Piezoelektrisches aktuatorbauelement und herstellungsverfahren zum herstellen eines piezoelektrischen aktuatorbauelementes
DE10110680A1 (de) Elektrisches Bauelement
WO2001024287A2 (de) Innenelektroden für einen piezostapelaktor und zugehöriges herstellung-verfahren
DE102019206018A1 (de) Elektromechanischer Aktor mit keramischer Isolierung, Verfahren zu dessen Herstellung sowie Verfahren zur Ansteuerung eines solchen Aktors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000972619

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 533564

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000972619

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000972619

Country of ref document: EP