WO2001030980A2 - Methods and compositions for enhancing developmental potential of oocytes and zygotes - Google Patents
Methods and compositions for enhancing developmental potential of oocytes and zygotes Download PDFInfo
- Publication number
- WO2001030980A2 WO2001030980A2 PCT/CA2000/001283 CA0001283W WO0130980A2 WO 2001030980 A2 WO2001030980 A2 WO 2001030980A2 CA 0001283 W CA0001283 W CA 0001283W WO 0130980 A2 WO0130980 A2 WO 0130980A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rephcative
- oocytes
- donor cell
- mitochondna
- donor
- Prior art date
Links
- 210000000287 oocyte Anatomy 0.000 title claims abstract description 158
- 238000000034 method Methods 0.000 title claims abstract description 105
- 239000000203 mixture Substances 0.000 title claims abstract description 15
- 230000002708 enhancing effect Effects 0.000 title claims abstract description 13
- 238000012546 transfer Methods 0.000 claims abstract description 55
- 210000001161 mammalian embryo Anatomy 0.000 claims abstract description 36
- 210000003470 mitochondria Anatomy 0.000 claims abstract description 36
- 230000001965 increasing effect Effects 0.000 claims abstract description 21
- 238000000338 in vitro Methods 0.000 claims abstract description 17
- 230000037041 intracellular level Effects 0.000 claims abstract description 16
- 230000004720 fertilization Effects 0.000 claims abstract description 14
- 210000004027 cell Anatomy 0.000 claims description 83
- 241000894007 species Species 0.000 claims description 31
- 210000002257 embryonic structure Anatomy 0.000 claims description 28
- 210000003855 cell nucleus Anatomy 0.000 claims description 24
- 210000000130 stem cell Anatomy 0.000 claims description 23
- 108020005196 Mitochondrial DNA Proteins 0.000 claims description 16
- 210000004940 nucleus Anatomy 0.000 claims description 15
- 230000037430 deletion Effects 0.000 claims description 14
- 238000012217 deletion Methods 0.000 claims description 14
- 230000013020 embryo development Effects 0.000 claims description 14
- 230000035772 mutation Effects 0.000 claims description 14
- 241000124008 Mammalia Species 0.000 claims description 12
- 241001465754 Metazoa Species 0.000 claims description 11
- 230000009946 DNA mutation Effects 0.000 claims description 10
- 230000001850 reproductive effect Effects 0.000 claims description 9
- 108020004414 DNA Proteins 0.000 claims description 7
- 230000007159 enucleation Effects 0.000 claims description 6
- 210000003754 fetus Anatomy 0.000 claims description 6
- 230000001086 cytosolic effect Effects 0.000 claims description 5
- 210000004962 mammalian cell Anatomy 0.000 claims description 5
- 210000000056 organ Anatomy 0.000 claims description 5
- 210000001109 blastomere Anatomy 0.000 claims description 4
- 230000001627 detrimental effect Effects 0.000 claims description 4
- 238000001727 in vivo Methods 0.000 claims description 4
- 230000031864 metaphase Effects 0.000 claims description 4
- 238000010367 cloning Methods 0.000 claims description 3
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 2
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 2
- 210000001612 chondrocyte Anatomy 0.000 claims description 2
- 210000003981 ectoderm Anatomy 0.000 claims description 2
- 210000001900 endoderm Anatomy 0.000 claims description 2
- 210000001339 epidermal cell Anatomy 0.000 claims description 2
- 210000003743 erythrocyte Anatomy 0.000 claims description 2
- 210000002950 fibroblast Anatomy 0.000 claims description 2
- 210000002216 heart Anatomy 0.000 claims description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims description 2
- 230000001771 impaired effect Effects 0.000 claims description 2
- 210000003734 kidney Anatomy 0.000 claims description 2
- 210000004185 liver Anatomy 0.000 claims description 2
- 210000004072 lung Anatomy 0.000 claims description 2
- 210000002540 macrophage Anatomy 0.000 claims description 2
- 210000002752 melanocyte Anatomy 0.000 claims description 2
- 210000003716 mesoderm Anatomy 0.000 claims description 2
- 238000000520 microinjection Methods 0.000 claims description 2
- 210000001616 monocyte Anatomy 0.000 claims description 2
- 210000003205 muscle Anatomy 0.000 claims description 2
- 210000000663 muscle cell Anatomy 0.000 claims description 2
- 210000003061 neural cell Anatomy 0.000 claims description 2
- 230000010627 oxidative phosphorylation Effects 0.000 claims description 2
- 210000000496 pancreas Anatomy 0.000 claims description 2
- 230000007170 pathology Effects 0.000 claims description 2
- 210000002784 stomach Anatomy 0.000 claims description 2
- 210000001519 tissue Anatomy 0.000 claims description 2
- 210000003708 urethra Anatomy 0.000 claims description 2
- 210000003932 urinary bladder Anatomy 0.000 claims description 2
- 210000004291 uterus Anatomy 0.000 claims description 2
- 210000000936 intestine Anatomy 0.000 claims 1
- 230000003362 replicative effect Effects 0.000 abstract description 5
- 238000002347 injection Methods 0.000 description 22
- 239000007924 injection Substances 0.000 description 22
- 210000002459 blastocyst Anatomy 0.000 description 16
- 238000013467 fragmentation Methods 0.000 description 16
- 238000006062 fragmentation reaction Methods 0.000 description 16
- 230000030833 cell death Effects 0.000 description 15
- 238000011161 development Methods 0.000 description 15
- 230000018109 developmental process Effects 0.000 description 15
- 241000699670 Mus sp. Species 0.000 description 14
- 230000006907 apoptotic process Effects 0.000 description 11
- 230000035935 pregnancy Effects 0.000 description 9
- 210000000805 cytoplasm Anatomy 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 210000004379 membrane Anatomy 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 101001056180 Homo sapiens Induced myeloid leukemia cell differentiation protein Mcl-1 Proteins 0.000 description 7
- 102100026539 Induced myeloid leukemia cell differentiation protein Mcl-1 Human genes 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 230000008774 maternal effect Effects 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 210000001082 somatic cell Anatomy 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 102100026596 Bcl-2-like protein 1 Human genes 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 206010048804 Kearns-Sayre syndrome Diseases 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 4
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 3
- 231100000277 DNA damage Toxicity 0.000 description 3
- 230000005778 DNA damage Effects 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 208000032087 Hereditary Leber Optic Atrophy Diseases 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 241001494479 Pecora Species 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 231100000182 Sperm DNA damage Toxicity 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000006721 cell death pathway Effects 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 210000001771 cumulus cell Anatomy 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000004064 dysfunction Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 210000002503 granulosa cell Anatomy 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- PJPOCNJHYFUPCE-UHFFFAOYSA-N picen-1-ol Chemical compound C1=CC=CC2=C(C=CC=3C4=CC=C5C=CC=C(C=35)O)C4=CC=C21 PJPOCNJHYFUPCE-UHFFFAOYSA-N 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 231100000167 toxic agent Toxicity 0.000 description 3
- 239000003440 toxic substance Substances 0.000 description 3
- ARSRBNBHOADGJU-UHFFFAOYSA-N 7,12-dimethyltetraphene Chemical compound C1=CC2=CC=CC=C2C2=C1C(C)=C(C=CC=C1)C1=C2C ARSRBNBHOADGJU-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 208000031404 Chromosome Aberrations Diseases 0.000 description 2
- 241001550206 Colla Species 0.000 description 2
- 241000699800 Cricetinae Species 0.000 description 2
- VFZRZRDOXPRTSC-UHFFFAOYSA-N DMBA Natural products COC1=CC(OC)=CC(C=O)=C1 VFZRZRDOXPRTSC-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 2
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 2
- 201000000639 Leber hereditary optic neuropathy Diseases 0.000 description 2
- 208000035752 Live birth Diseases 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 241001665167 Solter Species 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 238000005138 cryopreservation Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000004700 fetal blood Anatomy 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000893 inhibin Substances 0.000 description 2
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000010449 nuclear transplantation Methods 0.000 description 2
- 210000004508 polar body Anatomy 0.000 description 2
- 230000000270 postfertilization Effects 0.000 description 2
- 230000001012 protector Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- 230000002407 ATP formation Effects 0.000 description 1
- 102000005606 Activins Human genes 0.000 description 1
- 108010059616 Activins Proteins 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- 101100421200 Caenorhabditis elegans sep-1 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010008805 Chromosomal abnormalities Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 208000032274 Encephalopathy Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 210000000712 G cell Anatomy 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000006771 Gonadotropins Human genes 0.000 description 1
- 108010086677 Gonadotropins Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 201000003533 Leber congenital amaurosis Diseases 0.000 description 1
- 208000009564 MELAS Syndrome Diseases 0.000 description 1
- 201000009035 MERRF syndrome Diseases 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 208000036572 Myoclonic epilepsy Diseases 0.000 description 1
- 206010069825 Myoclonic epilepsy and ragged-red fibres Diseases 0.000 description 1
- 201000009623 Myopathy Diseases 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 208000001300 Perinatal Death Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 208000034790 Twin pregnancy Diseases 0.000 description 1
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 101100082060 Xenopus laevis pou5f1.1 gene Proteins 0.000 description 1
- 239000000488 activin Substances 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 238000002669 amniocentesis Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- 210000000625 blastula Anatomy 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 231100000244 chromosomal damage Toxicity 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002577 cryoprotective agent Substances 0.000 description 1
- 230000000959 cryoprotective effect Effects 0.000 description 1
- 239000008150 cryoprotective solution Substances 0.000 description 1
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 1
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000009547 development abnormality Effects 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 201000009028 early myoclonic encephalopathy Diseases 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 230000012173 estrus Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 239000002871 fertility agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000002622 gonadotropin Substances 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 208000021267 infertility disease Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000009027 insemination Effects 0.000 description 1
- 208000006443 lactic acidosis Diseases 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000004898 mitochondrial function Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 210000000472 morula Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 230000034004 oogenesis Effects 0.000 description 1
- 206010030875 ophthalmoplegia Diseases 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 230000016087 ovulation Effects 0.000 description 1
- 230000008775 paternal effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000007542 postnatal development Effects 0.000 description 1
- 230000009237 prenatal development Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000031877 prophase Effects 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 210000005000 reproductive tract Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 210000000538 tail Anatomy 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001573 trophoblastic effect Effects 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 210000004340 zona pellucida Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/873—Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0271—Chimeric vertebrates, e.g. comprising exogenous cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2517/00—Cells related to new breeds of animals
- C12N2517/10—Conditioning of cells for in vitro fecondation or nuclear transfer
Definitions
- TITLE Methods and Compositions for Enhancing Developmental Potential of Oocytes and Zygotes FIELD OF THE INVENTION
- the invention relates to compositions and methods for enhancing the developmental potential of oocytes, zygotes, and preimplantation embryos.
- IVF in vitro fertilization
- other assisted reproductive technologies about 50% of human embryos undergo a suicide program of active cell death and become fragmented.
- zygote development and the first cleavage divisions depend upon maternal RNA and protein products accumulated during oogenesis. Reproductive failure can be attributed to the lack of cleavage in the developing embryo. This phenomenon can be traced to a defect in the composition of the oocyte cytoplasm. Maternal cytoplasmic components are involved in embryonic arrest, because the "2-cell block" in mice can be overcome by transplantation of ooplasm from zygotes of non-arresting strains into the zygotes of arresting strains (Muggleton-Harns et al. Nature. 1982 Sep 30;299 (5882):460-2).
- the invention relates to a method for enhancing developmental potential of oocytes comprising increasing intracellular levels of rephcative mitochondria in the oocytes.
- the intracellular levels of rephcative mitochondria are increased by introducing rephcative mitochondria into the oocytes.
- a method of the invention may additionally comp ⁇ se fertilizing the oocytes to obtain a zygote with mcreased intracellular levels of rephcative mitochond ⁇ a.
- the invention also relates to a method for enhancing developmental potential of zygotes comp ⁇ sing increasing intracellular levels of rephcative mitochond ⁇ a in the zygotes.
- the intracellular levels of rephcative mitochond ⁇ a are increased by introducing rephcative mitochondria into zygotes.
- the invention further relates to an oocyte or a zygote with increased intracellular levels of rephcative mitochondria obtamed from a method of the invention.
- the invention relates to a composition comp ⁇ sing rephcative mitochond ⁇ a for enhancing developmental potential of oocytes or zygotes, and for treating and preventing he ⁇ table mitochond ⁇ al diseases.
- the composition may comp ⁇ se cryopreserved mitochondna.
- the invention provides a method for fertilizing oocytes comp ⁇ sing removing oocytes from a follicle of an ovary, introducing rephcative mitochrond ⁇ a into the oocytes, and fertilizing the resulting oocytes with spermatozoa.
- the invention provides a method for stonng and then enhancing the developmental potential of oocytes comp ⁇ sing cryopreservmg immature oocytes, thawing the cryopreserved oocytes, and introducing rephcative mitochond ⁇ a into the oocytes.
- a method is also contemplated for enhancing the developmental potential of oocytes comp ⁇ sing cryopreservmg rephcative mitochond ⁇ a, thawing the mitochond ⁇ a, and introducing the rephcative mitochond ⁇ a into oocytes.
- the methods and compositions of the invention improve the quality of the oocytes that are being fertilized and the quality of zygotes, to increase the rate of success m embryo development and ongoing pregnancy
- the methods and compositions are particularly useful m enhancing the developmental potential of oocytes or zygotes with mitochond ⁇ al DNA mutations or abnormal mitochond ⁇ al metabolic activity.
- the invention provides a method for improving embryo development after in vitro fertilization or embryo transfer in a female mammal comp ⁇ smg implanting into the female mammal an embryo de ⁇ ved from an ooctye or zygote containing mcreased intracellular levels of rephcative mitochond ⁇ a.
- the invention also provides a method for reducmg the detrimental effects of mitochond ⁇ al DNA mutations (e g. deletion or rmssense mutations) m the progeny of an individual affected by such mutations comp ⁇ smg introducing mto oocytes or zygotes from the individual rephcative mitochondna that does not contain the DNA mutations (i.e. healthy mitochond ⁇ a).
- the invention further provides an oocyte or a zygote comp ⁇ sing both mitochond ⁇ a with mitochond ⁇ al DNA mutations, and punfied and isolated rephcative mitochondna that do not contain the mitochond ⁇ al DNA mutations (i.e. healthy mitochond ⁇ a).
- the mvention also relates to a method for treating he ⁇ table mitochond ⁇ al diseases m the progeny of an individual affected by such diseases compnsmg mtroducmg mto oocytes or zygotes from the individual rephcative mitochond ⁇ a comp ⁇ smg mitochond ⁇ a that does not contain the DNA mutations (i.e. healthy mitochond ⁇ a).
- the oocyte is a recipient ooctye m a nuclear transfer method.
- the mvention relates to a method for enhaincing developmental potential of recipient oocytes in a nuclear transfer method compnsmg mtroducmg rephcative mitochondna mto the recipient oocytes.
- the mvention also contemplates recipient oocytes comp ⁇ smg rep cattve mitochondna, and blastocyts, embryos, and non-human animals formed from the nuclear transfer methods of the invention.
- the donor nucleus is placed in an enucleated oocyte obtamed from a different mdividual.
- mitochondria in the recipient oocyte have not-co-existed with the donor nucleus. Since mitochondria are always maternally inhe ⁇ ted, their replication, transc ⁇ ption, translation, and function does not only depend on mitochond ⁇ al DNA, but is tightly intercalated with the nuclear genome that co-exists with the mitochrondna.
- the invention by introducing rephcative mitochondna mto recipient oocytes enhances the developmental potential of the recipient oocytes. This is expected to increase the live birth rate in nuclear transfer methods.
- the invention provides a method of cloning a non-human mammalian embryo by nuclear transfer comp ⁇ smg
- the method may further compnse permitting the embryo to develop mto a cloned mammal.
- the invention also provides a method of cloning a non-human mammal by nuclear transfer comp ⁇ sing
- a method of clonmg a non-human mammalian fetus by nuclear transfer is provided compnsmg the following steps:
- mtroducmg a donor cell nucleus from a donor cell of a non-human mammal, and rephcative mitochondria preferably from the same species as the donor cell, more preferably from the same species and cell type as the donor cell, most preferably from the non-human mammal from which the donor cell nucleus is denved, mto an enucleated recipient oocyte of the same species as the donor cell to form a nuclear transfer unit,
- (c) transfemng the cultured nuclear transfer unit to a host non-human mammal of the same species such that the nuclear transfer unit develops into a fetus.
- the method may also compnse developing the fetus into an offspring.
- the invention provides a recipient oocyte compnsmg a penvitelline space and a donor cell nucleus and rephcative mitochondria preferably from the same species as the donor cell, more preferably from the same species and cell type as the donor cell, most preferably from the same individual from which the donor cell nucleus is dervied, deposited in the penvitelline space
- FIG. 1 is a bar graph showing the effect of mitochond ⁇ a injection on preimplantaion embryo development DETAILED DESCRIPTION OF THE INVENTION
- oocytes refers to the gamete from the follicle of a female animal, whether vertebrate or invertebrate.
- the animal is a mammal, and more preferably is a non-human p ⁇ mate, a bovme, equine, porcme, ovme, caprine, buffalo, guinea pig, hamster, rabbit, mice, rat, dog, cat, or a human Suitable oocytes for use in the invention include immature oocytes, and mature oocytes from ovanes stimulated by administering to the oocyte donor, in vitro or in vivo, a fertility agent or fertility enhancmg agent (e g.
- the oocytes are aged (e.g. from humans 40 years +, or from animals past their reproductive prime).
- the oocytes some embodiments of the invention contain mitochond ⁇ al DNA mutations. Methods for isolating oocytes are known in the art.
- oocytes are used as recipient cells (such cells are referred to herein as "recipient oocytes")
- the recipient ooctyes are obtamed from non-human mammals, in particular domestic, sports, zoo, and pet animals mcludmg but not limited to bovme, ovine, porcine, equme, capnne, buffalo, and gumea pigs, rabbits, mice, hamsters, rats, primates, etc.
- zygote refers to a fertilized oocyte p ⁇ or to the first cleavage division.
- the expression "enhancing the developmental potential of oocytes” refers to increasing the quality of the oocyte so that it will be more capable of bemg fertilized and/or enhancmg mitochond ⁇ al function or activity m the oocyte for subsequent development and reproduction. Increasmg the quality of the oocyte, and thus the fertilized oocyte (e.g. zygote), preferably results m enhanced development of the oocyte into an embryo and its ability to be implanted and form a healthy pregnancy.
- the expression "enhancing the developmental potential of zygotes” refers to increasing the quality of the zygotes and/or enhancmg rmtochondnal function or activity m the zygotes for subsequent development and reproduction.
- Increasing the quality of the zygotes preferably results in enhanced development of the zygotes into an embryo and their ability to be implanted and form a healthy pregnancy.
- Quality can be assessed by the appearance of the developing embryo by visual means and by the IVF or nuclear transfer success rate.
- Cntena to judge quality of the developing embryo by visual means include, for example, their shape, rate of cell division, fragmentation, appearance of cytoplasm, and other means recognized in the art of IVF and nuclear transfer.
- “Spermatozoa” refers to male gametes that can be used to fertilize oocytes.
- “Heritable mitochond ⁇ al diseases” refers to diseases caused by defects in mitochond ⁇ al DNA or by defects in nuclear genes that are important to mitochondnal function. Examples of rmtochondnal diseases include but are not limited to Kearns-Sayre syndrome, MERRF syndrome (Myoclonic Epilepsy with Ragged Red Fibres), MELAS syndrome (Mitochondnal Encephalopathy, Myopathy, Lactic Acidosis and Stroke-like episodes), and Leber's disease (I. Nonaka, Cu ⁇ ent Opinion in Neurology and Neurosurgery, 5 (1992) 622)
- rephcative microchondna refers to a preparation of punfied mitochondna that are capable of replicating during embryo development and increasing mitochondnal copy number or function.
- the rephcative mitochondna is substantially free of other cytoplasmic components mcludmg nuclear DNA, mRNA, protems, antioxidants, and organelles other than mitochond ⁇ a.
- the rephcative mitochondria preparations are at least 60% free, preferably 75% free, and most preferably 90% free from other cytoplasmic components.
- the rephcative mitochond ⁇ a preparations contam greater than 70%, more preferably greater than 80%, most preferably greater than 90% functional mitochondria.
- a rephcative mitochondna preparation typically contams about 2,000 to 20,000 mitochondna in a volume of 5 to 15 picoL.
- rephcative mitochondna are preferably denved from any stem cell (e.g. hematopoietic, embryonic, trophoblastic, primordial germ cells) or from any immortalized cell lme (e.g. cancer, or intentionally transformed somatic cells) of any species, preferably human.
- the cells are preferably free of the common mitochondnal deletion mutation found clinically m patients with KSS syndrome (i.e. deleted 4799bp region at nt 8470-13,447; see Simonnetti et al, 1992) and any other pathologic mitochond ⁇ al DNA mutation.
- Stem cells used to prepare the rephcative mitochond ⁇ a can be genetically modified by genetic engineering techniques.
- a transgene may be introduced mto the cells via conventional techniques such as calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, hpofection, electroporation, or micromjection. Suitable methods for transforming and transfecting cells can be found m Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press (1989)), and other laboratory textbooks. (See also Nolta et al Blood. 1995 Jul 1 ,86(1):101-10; and Nolta et al Proc Natl Acad Sci U S A.
- a transgene may be introduced mto cells using an appropnate expression vector including but not limited to cosmids, plasmids, or modified viruses (e g replication defective retroviruses, adenoviruses and adeno-associated viruses). Transfection is easily and efficiently obtamed usmg standard methods including cultunng the cells on a monolayer of virus-producing cells (Van der Putten, Proc Natl Acad Sci U S A. 1985 Sep;82(18):6148-52; Stewart et al (1987) EMBO J 6:383-388). Examples of genes that may be introduced into the stem cells include genes encoding cell death protectors such as Bcl-xL and McL- 1.
- Cryoprotective methods can be used to maintain maximum viability of the rephcative mitochond ⁇ a.
- Cryopreservation can be earned out in a medium contammg for example dimethylsulphoxide, ethylene glycol, or glycerol or sucrose with 1,2-propanediol, or the mitochondna can be vitnfied using cryoprotectants such as ethylene glycol and dimethyl sulphoxide.
- the cryopreservation procedure involves cooling the mitochond ⁇ a in a cryoprotective solution to an appropnate temperature (e.g -176°)
- Scanning and transmission electron microscopy can be used to assess the pu ⁇ ty and morphology of a preparation.
- the preparation can be analyzed for membrane mitochondnal potential and the total number and concentration of functional mitochond ⁇ a present can be determined in accordance with conventional methods as described herem.
- Rephcative ability of the mitochondna in a preparation can be determined usmg conventional techniques mcludmg restnction fragment polymorphism methods as desc ⁇ bed herem.
- the present invention generally involves the use of rephcative mitochondna to enhance the developmental potential of animal oocytes, especially mammals, mcludmg sports, zoo, pet, and farm animals, in particular dogs, cats, cattle, pigs, horses, goats, buffalo, rodents (e.g. mice, rats, guinea pigs), monkeys, sheep, and humans.
- rephcative mitochond ⁇ a are used to enhance the developmental potential of non-human recipient oocytes.
- a method of the mvention involves removmg the oocytes from follicles m the ovary.
- rephcative mitochondna are introduced into the oocytes, or the oocytes can be cryopreserved for storage m a gamete or cell bank. If the oocytes are not cryopreserved the oocytes should be treated m accordance with the method of the mvention preferably within 48 hours after aspiration. If the oocytes are frozen, they can be thawed when it is desired to use them and treated in accordance with a method of the invention.
- Rephcative mitochond ⁇ a may be introduced mto the oocytes (or zygotes) by conventional micromjection techniques or by other techniques such as electrofiision of mitochond ⁇ a contained withm hposomes or other suitable means.
- the oocytes are fertilized with suitable spermatozoa from the same species.
- the fertilization can be earned out by known techniques mcludmg sperm injection.
- Suitable human m vitro fertilization and embryo transfer procedures that can be used mclude m vitro fertilization (IVF) (Trounson et al. Med J Aust. 1993 Jun 21 ;158(12):853-7, Trouson and Leeton, m Edwards and Purdy, eds..
- the methods and compositions of the invention can be used to mcrease the success rate of embryo development.
- they can be used to reduce the detrimental effects of mitochond ⁇ al DNA mutations (e.g. deletion or missense mutations) or abnormal or deficient mitochondnal function in the progeny of an individual affected by such mutations or abnormal or deficient function, by introducing in oocytes or zygotes from the mdividual rephcative mitochond ⁇ a that compnses healthy mitochondna.
- Mitochond ⁇ al DNA deletions or mutations usually result m impaired oxidative phosphorylation and clinical pathology related to muscle or neurologic tissues.
- KSS Kearns- Sayre syndrome
- progressive extemal ophthalmoplegia is the result of a common 4799 bp deletion (Holt et al, Ann Neurol.
- the invention also contemplates unproved nuclear transfer methods usmg rephcative mitochondna.
- Nuclear transfer methods or nuclear transplantation methods are known in the literature and are descnbed m for example, Campbell et al, The ⁇ ogenology, 43:181 (1995); Collas et al, Mol. Report Dev., 38:264-267 (1994); Keefer et al, Biol. Reprod., 50:935-939 (1994); Sims et al, Proc. Natl. Acad. Sci., USA, 90:6143-6147 (1993); WO 94/26884; WO 94/24274, WO 90/03432, U.S. Pat. Nos. 4,944,384 and 5,057,420.
- This process generally requires collectmg immature (prophase I) oocytes from mammalian ovaries, and maturing the oocytes m a maturation medium pnor to fertilization or enucleation until the oocyte attains the metaphase II stage.
- Metaphase II stage oocytes which have been matured in vivo, may also be used in nuclear transfer techniques.
- Enucleation of the recipient oocytes may be earned out by known methods, such as desc ⁇ bed in U.S Pat. No. 4,994,384
- metaphase II oocytes may be placed in HECM, optionally containing cytochalasin B, for immediate enucleation, or they may be placed in a suitable medium, (e.g an embryo culture medium), and then enucleated later, preferably not more than 24 hours later.
- Enucleation may be achieved microsurgically using a micropipette to remove the polar body and the adjacent cytoplasm (McGrath and Solter, Science, 220:1300, 1983), or usmg functional enucleation (see U.S. 5,952,222).
- the recipient oocytes may be screened to identify those which have been successfully enucleated.
- the recipient oocytes may be activated on, or after nuclear transfer using methods known to a person skilled in the art. Suitable methods include cultu ⁇ ng at sub-physiological temperatures, applymg known activation agents (e.g. penetration by sperm, elect ⁇ cal and chemical shock), increasing levels of divalent cations, or reducing phosphorylation of cellular protems (see U.S. 5, 496,720) .
- activation agents e.g. penetration by sperm, elect ⁇ cal and chemical shock
- increasing levels of divalent cations e.g. penetration by sperm, elect ⁇ cal and chemical shock
- increasing levels of divalent cations e.g. penetration by sperm, elect ⁇ cal and chemical shock
- reducing phosphorylation of cellular protems see U.S. 5, 496,720.
- a nucleus of a donor cell is introduced into the enucleated recipient oocyte.
- the donor cell nucleus may be obtamed from any mammalian cells.
- Donor cells may be differentiated mammalian cells denved from mesoderm, endoderm, or ectoderm.
- the donor cell nucleus may be obtained from epithelial cells, neural cells, epidermal cells, kera ⁇ nocytes, hematopoietic cells, melanocytes, chondrocytes, B- lymphocytes, T-lymphocytes, erythrocytes, macrophages, monocytes, fibroblasts, and muscle cells.
- Suitable mammalian cells may be obtamed from any cell or organ of the body.
- the mammalian cells may be obtamed from different organs mcludmg skm, lung, pancreas, liver, stomach, mtestme, heart, reproductive organ, bladder, kidney and urethra.
- the nucleus of the donor cell is preferably membrane-bounded.
- a donor cell nucleus may consist of an entire blastomere or it may consist of a karyoplast.
- a karyoplast is an aspirated cellular subset including a nucleus and a small amount of cytoplasm bounded by a plasma membrane. (See Methods and Success of Nuclear Transplantation m Mammals, A. McLaren, Nature, Volume 109, June 21, 194 for methods for preparing karyoplasts).
- Rephcative mitochondna is introduced mto the enucleated recipient oocyte.
- the rephcative mitochondria is preferably de ⁇ ved from the same species as the donor cell, more preferably from the same species and cell type as the donor cell, and most preferably from the same mdividual from which the donor cell nucleus is de ⁇ ved. Methods for preparing rephcative mitochond ⁇ a are desc ⁇ bed herem.
- Donor cells may be propagated, genetically modified, and selected m vitro pnor to extracting the nucleus, or the rephcative mitochondna.
- the nucleus of a donor cell and/or the rephcative mitochond ⁇ a may be introduced mto an enucleated recipient oocyte usmg micromampulation or micro-surgical techmques known m the art (see McGrath and Solter, supra).
- the nucleus of a donor cell may be transfe ⁇ ed to the enucleated recipient oocyte by depositing an aspirated blastomere or karyoplast under the zona pellucida so that its membrane abutts the plasma membrane of the recipient oocyte. This may be accomplished using a transfer pipette. Similar methods may be used to introduce the rephcative mitochondria.
- Fusion of the donor nucleus and the enucleated oocyte may be accomplished according to methods known m the art. For example, fusion may be aided or induced with viral agents, chemical agents, or electro-induced. Electrofusion involves providing a pulse of electricity sufficient to cause a transient breakdown of the plasma membrane. (See U.S. 4, 994,384). In some cases (e.g. with small donor nuclei) it may be preferable to inject the nucleus directly into the oocyte rather than usmg electroporation fusion. Such techniques are disclosed in Collas and Barnes, Mol. Reprod. Dev., 38:264- 267 (1994).
- the clones produced usmg the nuclear transfer methods as descnbed herem may be cultured either in vivo (e g in sheep oviducts) or in vitro (e.g. in suitable culture medium) to the morula or blastula stage.
- the resulting embryos may then be transplanted mto the ute ⁇ of a suitable animal at a suitable stage of estrus usmg methods known to those skilled m the art.
- a percentage of the transplants will initiate pregnancies in the stn ⁇ ogate animals.
- the offspring will be genetically identical where the donor cells are from a single embryo or a clone of the embryo.
- Example 1 The following non-limiting examples are illustrative of the present invention: Example 1
- Example 2 Assessment of mitochondrial function, mtDNA copy number and mtDNA deletion rates in human oocytes of various ages and in human embryos showing preimplantation developmental defects.
- oocytes and embryos will be incubated with a fluorochrome (DePsipher, R&D Systems) that allows simultaneous detection of mitochond ⁇ a with disrupted (non- functional) and maintained mitochondnal potential.
- Samples will be analyzed usmg a deconvolution microscope and the amount of fluorescence will be recorded using Delta Vision software package (Silicon Graphics).
- the dye In dy g cells or those with disrupted membrane potential, the dye will remain in its monomenc form in the cytoplasm and the mitochond ⁇ a will appear green, whereas m healthy cells the dye aggregates m the mitochondna will appear red.
- this technique can be used to estimate mitochondnal copy number based on the total amount of fluorescence emitted on both channels.
- the immature (GV and MI stage) oocytes obtamed from the ICSI program, unfertilized oocytes from IVF, and spare embryos donated to research will be analyzed.
- C/ mtDNA deletions Although the above studies will determine the viability and abundance of the mitochondna, a further assessment can be done using PCR to semi-quantitatively assess mtDNA deletions in the same population of human oocytes and embryos used above. Different PCR p ⁇ mer sets, encompassmg all regions of the mitochondnal chromosome, have been designed and the proportion of mitochondria with a deletion m any part of the chromosome will be determined usmg the approach of Zhang et al. (Biochem Biophys Res Commun 1996 Jun 14,223(2).450-5).
- ES and TS cells will be grown in vitro under standard culture conditions (Hadjantonakis et al Mech Dev. 1998 Aug;76(l-2)-79-90, Tanaka et al Science.
- the nucleated cells obtained from human umbilical cord blood of healthy donors will be isolated using a Ficoll gradient.
- CD34+/CD38- cells will be separated usmg a cell depletion magnetic column.
- Equivalent (but adult rather than fetal) cells can also be obtained from munne bone manow of adult animals (Ploemacher et al Exp Hematol 1989 Mar, 17(3).263-6)
- the somatic cell source will be luteimzed granulosa/cumulus cells isolated from folhcular fluid during oocyte retneval for IVF or from ova ⁇ es of hormonally pruned mice (Trbovich et al Cell Death Differ.
- mitochondnal fraction can be isolated from all stem cell types and from granulosa cells usmg the method of Rickwood (Darley-Usmer VM., Rickwood D, Willson MT Mitochondna, a Practical Approach, Oxford Washmgton DC, IRL Press,
- cells are suspended m a sucrose-based buffer and lysed usmg a glass homogenizer.
- the nuclei are pelleted and the mitochondnal fraction is further ennched and punfied usmg a continuous Percoll gradient to separate damaged from intact mitochond ⁇ a and to eliminate most cellular deb ⁇ s Scanning and transmission electron microscopy will be used to assess the pu ⁇ ty and morphology of the mitochond ⁇ al fraction.
- the maintenance of membrane mitochond ⁇ al potential will be analyzed by DePsipher dye as desc ⁇ bed above m Example 1, coupled with FACS analysis for rapid calculation of the total number and concentration of both functional and damaged mitochond ⁇ a present.
- Ovulated oocytes will be snipped of their cumulus cells and will be injected with mitochondna ennched fraction m a dose response fashion accordmg to the technique of Van Blerkom et al . (Hum Reprod. 1998 Oct;13(10):2857-68). It has been estimated that mature oocytes contain about 100,000 mitochondna (Jansen and de Boer, Mol Cell Endocnnol. 1998 Oct 25;145(l-2):81-8). Between 2000 and 20,000 mitochondna m a volume of 5 to 15 picoL will be mjected.
- a control group of oocytes will be left intact or mjected with either buffer used for suspension of mitochondna, or with the mitochond ⁇ a depleted fraction. Damaged mitochond ⁇ a obtamed from the percoll gradient will also be injected to determine possible negative effects of damaged mitochond ⁇ a on oocyte survival. All oocytes will then be cultured and scored for fragmentation at 24 and 48 hours. This model will be used to confirm the optimal number and type of mitochondria to inject to protect against fragmentation Expected Outcome- It is expected that mitochond ⁇ a de ⁇ ved from stem cells will be successful in preventing fragmentation, and will have the benefit of potential rephcative ability. b) Does injection of mitochondria from stem cells into normal mouse zygotes fertilized in vitro provide long-lasting protection from cell death ?
- zygotes from aged mice will be mjected with an ennched fraction of mitochondna and then- development to the blastocyst stage will be observed in vitro.
- the number of mitochondna to be injected will be estimated usmg the methods set out m the previous experiment, and the concentration will be fine tuned if necessary.
- blastocyst cell numbers and cell death rates will be recorded, with particular attention to the inner cell mass.
- DMBA which have all been shown to activate the cell death pathway during blastocyst formation, will be investigated.
- zygotes injected with appropnate mitochondna will be cultured in KSOM medium until they reach the early blastocyst stage, when the experimental treatment will be performed m vitro with either doxorubicin (200nM), glucose (30mM) ennched medium or with DMBA ( l ⁇ M).
- Zygotes injected with buffer or with mitochondna-depleted fractions that develop to the blastocyst stage will be used as controls.
- blastocyst cell number and cell death mdex will be determined as previously descnbed (Junsicova et al . 1998, supra). Expected outcome. Somatic cell mitochondria have been shown to be diluted out by subsequent cell divisions of preimplantation embryos, and are non-detectable by the blastocyst stage (Ebert et al l 989, J Reprod Fertil Jan, 82(1) 145-9 9) Stem cell mitochondria should behave more like oocyte mitochondria, which have been demonstrated by Van Blerkom et al (Hum Reprod. 1998 Oct,13(10):2857-68) to be detectable at least 80 hours after injection mto mouse oocytes.
- FVB zygotes will be injected with va ⁇ ous stem or somatic cell mitochond ⁇ a-en ⁇ ched fractions as described above and transfened into pseudopregnant females. At least 20 progeny in each group will be obtained The offspnng will be followed over an 18-month penod for detection of any developmental abnormalities, reproductive dysfunction, or reduced life span, that might be attributable to a deleterious effect of donor mitochondria injection on pre and postnatal development.
- RFLP restriction fragment length polymorphism
- the rephcative potential of injected mitochondna can then be confirmed m the offspnng by determining the RFLP status of the isolated mitochondna. Expected outcome.
- the offspring created by donor stem-cell mitochond ⁇ al injection should be phenotypically normal, with normal hfespan. These mice may have improved reproductive function, and decreased oocyte apoptosis in vitro, if the donor mitochondna are rephcative and capable of creating heteroplasmy.
- the ability to create heteroplasmy is c ⁇ tical to the success of any future clinical studies aimed at correcting he ⁇ table mitochond ⁇ al diseases.
- mice when mated to these treated males, produce embryos with a high rate of fragmentation and low pregnancy rates secondary to chromosomal damage (Doerksen and Trasler, 1996, supra).
- 5-AZC 5-AZC (4 mg/kg for 3 weeks)
- sperm will be collected from the cauda epididimus and mjected together with stem cell mitochondna or buffer mto the oocytes of FVB strain mice.
- Transfected lines will be selected based on their resistance to neomycm and will be assessed for protem levels of Mel- 1 or Bcl-x L within their mitochond ⁇ al fraction usmg western blot analysis.
- Cytochrome C another mitochond ⁇ al- localized protem, will be used as a loadmg control m order to show enhanced levels of Bcl-xL and Mcl-1 m mitochondna ennched fractions.
- mitochond ⁇ a Upon establishing mcreased levels of protem expression on the mitochond ⁇ al membranes within these cells, mitochond ⁇ a will be isolated and used in similar experiments to those descnbed above. Therefore, early embryos can be augmented with more functional mitochondria, but also with mitochondna containing a higher protem content of either Bcl- x L or Mcl-1.
- Example 5 Injection of mitochondria into human oocytes at the time of ICSI and rescue of fragmented embryos.
- Oocytes from each patient will be divided mto two groups. Oocytes m group one will be mjected with a smgle speim as previously descnbed (Casper et al , 1996, supra). Oocytes m group 2 will be mjected with a smgle sperm aspirated mto the injection pipette together with between 5,000 and 20,000 intact mitochondna from human umbilical cord blood- derived hematopoetic stem/progenitor cells prepared as descnbed above.
- oocytes will be transfe ⁇ ed mto a 100 ⁇ l droplet of HTF medium supplemented with 5% human serum albumin m a plastic 60 x 15 mm petn dish, covered with mineral oil and mcubated m a humidified 5% CO, environment at 37°C Cultured oocytes will be assessed for the presence of two pronuclei, indicative of normal fertilization at 16-18 h after ICSI. Embryo development and gradmg according to the method of Veeck (1991; Acta Eur Fertil. 1992 Nov-Dec;23(6):275-88) will be performed daily.
- the embryo score (cell number X 1/grade) will be determined for each embryo at 48, and 72 hours, and cell number estimated at 96 and 120 hours. Morphologically normal appearing expanded blastocysts will be transferred at day 5 post-fertilization. If normal embryo development occurs in any of the control injected oocytes, they will be transfe ⁇ ed first. The pregnancies obtamed by this technique will be followed closely and the patients advised to consider amniocentesis to rule out a gross chromosomal abnormality. Babies born as a result of this procedure will have their cord blood collected and stored for determination of mitochondnal heteroplasmy if possible (le.
- a mtDNA mutation is detected in the unfertilized oocytes), and which may be responsible for the embryo fragmentation or delayed development seen initially in these patients.
- the babies will also be followed with assessment for normal development at birth, and at mtervals thereafter for as long as the parents agree.
- Group 1 oocytes should result m embryos with delayed development or which are completely fragmented, consistent with the patient's past history.
- group 2 oocytes injection of an ennched fraction of stem cell mitochondna will allow normal development to the blastocyst stage with lntraute ⁇ ne transfer and pregnancy in some patients.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Environmental Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Animal Husbandry (AREA)
- Cell Biology (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002389117A CA2389117A1 (en) | 1999-10-27 | 2000-10-27 | Methods and compositions for enhancing developmental potential of oocytes and zygotes |
EP00972510A EP1234021A2 (en) | 1999-10-27 | 2000-10-27 | Methods and compositions for enhancing developmental potential of oocytes and zygotes |
AU11233/01A AU1123301A (en) | 1999-10-27 | 2000-10-27 | Methods and compositions for enhancing developmental potential of oocytes and zygotes |
JP2001533963A JP2003512833A (en) | 1999-10-27 | 2000-10-27 | METHODS AND COMPOSITIONS FOR ENHANCED DEVELOPMENTAL CAPABILITIES OF OOCYTES AND ZYGOTS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16179799P | 1999-10-27 | 1999-10-27 | |
US60/161,797 | 1999-10-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001030980A2 true WO2001030980A2 (en) | 2001-05-03 |
WO2001030980A3 WO2001030980A3 (en) | 2001-11-29 |
Family
ID=22582774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2000/001283 WO2001030980A2 (en) | 1999-10-27 | 2000-10-27 | Methods and compositions for enhancing developmental potential of oocytes and zygotes |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1234021A2 (en) |
JP (1) | JP2003512833A (en) |
AU (1) | AU1123301A (en) |
CA (1) | CA2389117A1 (en) |
WO (1) | WO2001030980A2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003057863A2 (en) * | 2002-01-14 | 2003-07-17 | The University Of Birmingham | Cloning methods and other methods of producing cells |
US7968336B2 (en) | 2001-11-15 | 2011-06-28 | Children's Medical Center Corporation | Methods of isolation, expansion and differentiation of fetal stem cells from chorionic villus, amniotic fluid, and placenta and therapeutic uses thereof |
WO2012142500A3 (en) * | 2011-04-14 | 2012-12-13 | The General Hospital Corporation | Compositions and methods for autologous germline mitochondrial energy transfer |
US8652840B2 (en) | 2004-05-17 | 2014-02-18 | The General Hospital Corporation | Method for obtaining female germline stem cells and uses thereof |
EP2726601A1 (en) * | 2011-06-29 | 2014-05-07 | The General Hospital Corporation | Compositions and methods for enhancing bioenergetic status in female germ cells |
AU2014202447B2 (en) * | 2011-04-14 | 2015-05-07 | The General Hospital Corporation | Compositions and methods for autologous germline mitochondrial energy transfer |
US9267111B2 (en) | 2004-05-17 | 2016-02-23 | The General Hospital Corporation | Methods of treating female subjects in need of in vitro fertilization |
CN114214270A (en) * | 2021-12-17 | 2022-03-22 | 中国农业科学院北京畜牧兽医研究所 | Method for regulating and controlling developmental capacity of frozen bovine oocyte and application thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019113743A1 (en) * | 2017-12-11 | 2019-06-20 | 清华大学 | Genetic modification method |
-
2000
- 2000-10-27 AU AU11233/01A patent/AU1123301A/en not_active Abandoned
- 2000-10-27 WO PCT/CA2000/001283 patent/WO2001030980A2/en not_active Application Discontinuation
- 2000-10-27 EP EP00972510A patent/EP1234021A2/en not_active Withdrawn
- 2000-10-27 CA CA002389117A patent/CA2389117A1/en not_active Abandoned
- 2000-10-27 JP JP2001533963A patent/JP2003512833A/en active Pending
Non-Patent Citations (4)
Title |
---|
MORITA YUTAKA ET AL: "Oocyte apoptosis: Like sand through an hourglass." DEVELOPMENTAL BIOLOGY, vol. 213, no. 1, pages 1-17, XP002168146 ISSN: 0012-1606 * |
PEREZ GLORIA I ET AL: "Further studies on the role of mitochondria in controlling oocyte apoptosis." BIOLOGY OF REPRODUCTION, vol. 62, no. Supplement 1, 2000, page 132 XP001002323 Thirty-Third Annual Meeting of the Society for the Study of Reproduction;Madison, Wisconsin, USA; July 15-18, 2000 ISSN: 0006-3363 * |
TAKEDA K ET AL: "Dominant distribution of mitochondrial DNA from recipient oocytes in bovine embryos and offspring after nuclear transfer." JOURNAL OF REPRODUCTION AND FERTILITY, vol. 116, no. 2, June 1999 (1999-06), pages 253-259, XP001002337 ISSN: 0022-4251 * |
VAN BLERKOM JONATHAN ET AL: "Mitochondrial transfer between oocytes: Potential applications of mitochondrial donation and the issue of heteroplasmy." HUMAN REPRODUCTION (OXFORD), vol. 13, no. 10, October 1998 (1998-10), pages 2857-2868, XP001002313 ISSN: 0268-1161 cited in the application * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7968336B2 (en) | 2001-11-15 | 2011-06-28 | Children's Medical Center Corporation | Methods of isolation, expansion and differentiation of fetal stem cells from chorionic villus, amniotic fluid, and placenta and therapeutic uses thereof |
US8021876B2 (en) | 2001-11-15 | 2011-09-20 | Children's Medical Center Corporation | Methods of isolation, expansion and differentiation of fetal stem cells from chorionic villus, amniotic fluid, and placenta and therapeutic uses thereof |
WO2003057863A3 (en) * | 2002-01-14 | 2003-10-16 | Univ Birmingham | Cloning methods and other methods of producing cells |
US7547549B2 (en) | 2002-01-14 | 2009-06-16 | The University Of Birmingham | Method to produce a hybrid cell having a single mitochondrial genotype |
WO2003057863A2 (en) * | 2002-01-14 | 2003-07-17 | The University Of Birmingham | Cloning methods and other methods of producing cells |
US8652840B2 (en) | 2004-05-17 | 2014-02-18 | The General Hospital Corporation | Method for obtaining female germline stem cells and uses thereof |
US9962411B2 (en) | 2004-05-17 | 2018-05-08 | The General Hospital Corporation | Isolated populations of female germline stem cells and cell preparations and compositions thereof |
US9267111B2 (en) | 2004-05-17 | 2016-02-23 | The General Hospital Corporation | Methods of treating female subjects in need of in vitro fertilization |
US20130052727A1 (en) * | 2011-04-14 | 2013-02-28 | The General Hospital Corporation | Compositions and methods for autologous germline mitochondrial energy transfer |
US9150830B2 (en) | 2011-04-14 | 2015-10-06 | The General Hospital Corporation | Compositions for autologous ovarian oogonial stem cell mitochondrial energy transfer |
CN103562378A (en) * | 2011-04-14 | 2014-02-05 | 通用医疗公司 | Compositions and methods for autologous germline mitochondrial energy transfer |
AU2017201404B2 (en) * | 2011-04-14 | 2019-04-18 | The General Hospital Corporation | Compositions And Methods For Autologous Germline Mitochondrial Energy Transfer |
JP2014514928A (en) * | 2011-04-14 | 2014-06-26 | ザ ジェネラル ホスピタル コーポレーション | Compositions and methods for autologous germline mitochondrial energy transfer |
EP2787073A1 (en) * | 2011-04-14 | 2014-10-08 | The General Hospital Corporation | Compositions and methods for autologous germline mitochondrial energy transfer |
AU2012242591B2 (en) * | 2011-04-14 | 2014-10-23 | The General Hospital Corporation | Compositions and methods for autologous germline mitochondrial energy transfer |
WO2012142500A3 (en) * | 2011-04-14 | 2012-12-13 | The General Hospital Corporation | Compositions and methods for autologous germline mitochondrial energy transfer |
AU2014202447B2 (en) * | 2011-04-14 | 2015-05-07 | The General Hospital Corporation | Compositions and methods for autologous germline mitochondrial energy transfer |
US8647869B2 (en) | 2011-04-14 | 2014-02-11 | The General Hospital Corporation | Compositions and methods for autologous germline mitochondrial energy transfer |
US8642329B2 (en) | 2011-04-14 | 2014-02-04 | The General Hospital Corporation | Compositions and methods for autologous germline mitochondrial energy transfer |
CN103562378B (en) * | 2011-04-14 | 2016-09-07 | 通用医疗公司 | Composition and method for the transfer of autologous germline mitochondria energy |
AU2014268160B2 (en) * | 2011-04-14 | 2016-12-01 | The General Hospital Corporation | Compositions and Methods for Autologous Germline Mitochondrial Energy Transfer |
US9845482B2 (en) | 2011-06-29 | 2017-12-19 | The General Hospital Corporation | Compositions and methods for enhancing bioenergetic status in female germ cells |
EP2726601A4 (en) * | 2011-06-29 | 2015-04-15 | Gen Hospital Corp | Compositions and methods for enhancing bioenergetic status in female germ cells |
EP2726601A1 (en) * | 2011-06-29 | 2014-05-07 | The General Hospital Corporation | Compositions and methods for enhancing bioenergetic status in female germ cells |
EP3495470A1 (en) * | 2011-06-29 | 2019-06-12 | The General Hospital Corporation | In vivo methods for enhancing bioenergetic status in female germ cells |
CN114214270A (en) * | 2021-12-17 | 2022-03-22 | 中国农业科学院北京畜牧兽医研究所 | Method for regulating and controlling developmental capacity of frozen bovine oocyte and application thereof |
CN114214270B (en) * | 2021-12-17 | 2023-11-24 | 中国农业科学院北京畜牧兽医研究所 | Method for regulating and controlling developmental capacity of frozen bovine oocytes and application thereof |
Also Published As
Publication number | Publication date |
---|---|
AU1123301A (en) | 2001-05-08 |
EP1234021A2 (en) | 2002-08-28 |
WO2001030980A3 (en) | 2001-11-29 |
CA2389117A1 (en) | 2001-05-03 |
JP2003512833A (en) | 2003-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1234021A2 (en) | Methods and compositions for enhancing developmental potential of oocytes and zygotes | |
Rhind et al. | 69 Dolly: a final report | |
Arat et al. | 25 COLD STORAGE OF TISSUES AS SOURCE FOR DONOR CELLS DOES NOT REDUCE THE IN VITRO DEVELOPMENT OF BOVINE EMBRYOS FOLLOWING NUCLEAR TRANSFER | |
Vajta et al. | 75 HIGHLY EFFICIENT AND RELIABLE CHEMICALLY ASSISTED ENUCLEATION METHOD FOR HANDMADE CLONING IN CATTLE AND SWINE | |
Matshikiza et al. | 57 EMBRYO DEVELOPMENT FOLLOWING INTERSPECIES NUCLEAR TRANSFER OF AFRICAN BUFFALO (SYNCERUS CAFFER), BONTEBOK (DAMALISCUS DORCUS DORCUS) AND ELAND (TAUROTRAGUS ORYX) SOMATIC CELLS INTO BOVINE CYTOPLASTS | |
Adams et al. | 22 PRODUCTION OF A CLONED CALF USING KIDNEY CELLS OBTAINED FROM A 48-HOUR COOLED CARCASS | |
Bartels et al. | 27 Birth of Africa’s first nuclear-transferred animal produced with handmade cloning | |
Wani et al. | 78 CHRONOLOGICAL EVENTS OF IN VITRO MATURATION IN CAMEL (CAMELUSDROMEDARIES) OOCYTES | |
Begin et al. | 28 PREGNANCIES RESULTED FROM GOAT NT EMBRYOS PRODUCED BY FUSING COUPLETS IN THE PRESENCE OF LECTIN | |
DeLegge et al. | 34 Effect of genotype and cell line on the efficiency of live calf production by somatic cell nuclear transfer | |
Kim et al. | 47 BOVINE OOCYTE CYTOPLASM SUPPORTS NUCLEAR REMODELING BUT NOT REPROGRAMMING OF MURINE FIBROBLASTS | |
Vanderwall et al. | 76 cloned horse pregnancies produced using adult cumulus cells | |
Behboodi et al. | 29 HEALTH AND REPRODUCTIVE PROFILES OF NUCLEAR TRANSFER GOATS PRODUCING THE MSP1-42 MALARIA ANTIGEN | |
Melican et al. | 58 ESTRUS SYNCHRONIZATION OF DAIRY GOATS UTILIZED AS RECIPIENTS FOR CAPRINE NUCLEAR TRANSFER EMBRYOS | |
Echelard et al. | 36 COMPARISON OF THE DEVELOPMENTAL POTENTIAL OF CAPRINE NUCLEAR TRANSFER EMBRYOS DERIVED FROM IN VITRO AND IN VIVO MATURED OOCYTES | |
Nel-Themaat et al. | 61 ISOLATION AND CULTURE OF SOMATIC CELLS OBTAINED FROM SEMEN AND MILK OF GULF COAST NATIVE SHEEP | |
Rho et al. | 70 PRODUCTION OF CLONES BY FIBROBLAST NUCLEAR TRANSFER FROMAN X-AUTOSOME TRANSLOCATION CARRIER COW | |
Kim et al. | 48 EFFECT OF INSULIN-LIKE GROWTH FACTOR-1 SUPPLEMENT TO NCSU-23 MEDIUM ON PREIMPLANTATION DEVELOPMENT OF PORCINE EMBRYOS DERIVED FROM IN VITRO FERTILIZATION AND SOMATIC CELL NUCLEAR TRANSFER | |
Hoffert et al. | 42 ANGIOGENESIS IN CLONED AND IVF-DERIVED BOVINE PREGNANCIES AT DAY 30 OF GESTATION | |
Hiendleder et al. | 39 MATERNAL ORIGIN OF OOCYTES AFFECTS IN UTERODEVELOPMENTAL CAPACITY AND PHENOTYPE OF BOVINE NUCLEAR TRANSFER FETUSES | |
Baqir et al. | 26 ABERRANT REPROGRAMMING OF IMPRINTED GENE EXPRESSION IN ENLARGED PLACENTAS OF MICE CLONED FROM ES CELLS TREATED WITH TSA OR 5AZAC | |
Eckardt et al. | 37 DEVELOPMENTAL POTENTIAL OF CLONE CELLS IN MURINE CLONE-FERTILIZED AGGREGATION CHIMERAS | |
Nguyen et al. | 62 SPINDLE MORPHOGENESIS AND THE MORPHOLOGY OF CHROMOSOMES IN MOUSE NUCLEAR TRANSFER: AN ABNORMAL START IN CLONING OF MICE | |
Alexander et al. | 24 ASSESSMENT OF TELOMERE LENGTH IN NUCLEAR TRANSFER DERIVED SHEEP CLONES, THEIR OFFSPRING, AND CONTROL ANIMALS | |
Salamone et al. | 73 EFFECT OF CALF RECLONING ON EMBRYO AND FETAL SURVIVAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
ENP | Entry into the national phase in: |
Ref country code: JP Ref document number: 2001 533963 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2389117 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11233/01 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000972510 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2000972510 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000972510 Country of ref document: EP |