WO2001028284A1 - Sound-collecting device - Google Patents

Sound-collecting device Download PDF

Info

Publication number
WO2001028284A1
WO2001028284A1 PCT/JP2000/007169 JP0007169W WO0128284A1 WO 2001028284 A1 WO2001028284 A1 WO 2001028284A1 JP 0007169 W JP0007169 W JP 0007169W WO 0128284 A1 WO0128284 A1 WO 0128284A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
negative feedback
sound pickup
light source
microphone
Prior art date
Application number
PCT/JP2000/007169
Other languages
French (fr)
Japanese (ja)
Inventor
Alexander Kots
Okihiro Kobayashi
Nobuhiro Miyahara
Original Assignee
Phone-Or Ltd.
Paritsky, Alexander
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phone-Or Ltd., Paritsky, Alexander filed Critical Phone-Or Ltd.
Priority to EP00966515A priority Critical patent/EP1150541A1/en
Publication of WO2001028284A1 publication Critical patent/WO2001028284A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/008Transducers other than those covered by groups H04R9/00 - H04R21/00 using optical signals for detecting or generating sound
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones

Definitions

  • the present invention relates to a sound collecting device, and more particularly to a sound collecting device capable of setting an optimum microphone characteristic according to a use environment.
  • accessory microphones such as a desktop type, built-in type, nose type, and hand type, depending on the application. Functionally, omnidirectional type and single directional type are available. Are known.
  • a microphone that can be switched between a standard microphone and a telephoto microphone according to the type of operation.
  • microphones classified into vocal type, stand type, and 'clip type' are used.
  • the present invention has been made to solve the above-described problem, and provides a sound pickup device capable of switching the characteristics of a microphone and a microphone so that optimum microphone characteristics can be obtained according to a use environment of the microphone.
  • the purpose is to do. Disclosure of the invention
  • a sound pickup apparatus for achieving the above object is a sound pickup apparatus that picks up sound by switching the directivity of microphones directed to sound pickup targets located in a plurality of different environments according to the environment.
  • a diaphragm vibrating by a sound pressure; a light source irradiating the diaphragm with a light beam; and a light receiving the reflected light of the light beam irradiated on the diaphragm corresponding to the vibration of the diaphragm.
  • a light detector that outputs a signal; a light source driving circuit that drives the light source to supply a predetermined current; and a negative signal that supplies the signal output from the light detector to the light source driving circuit as a negative feedback signal.
  • An optical microphone including a feedback circuit is used, and a negative feedback amount of the negative feedback circuit is switched according to the environment.
  • means for recognizing a voice or noise spectrum from the sound collection target is provided, and an environment in which the sound collection target is located can be determined based on the recognition result.
  • the spectrum can be recognized at an arbitrary time.
  • FIG. 1 is a configuration diagram illustrating a main configuration of a sound collection device according to the present invention.
  • FIG. 4 is a diagram showing a change in the directivity pattern of the optical microphone element used in the present invention.
  • FIG. 2 is a diagram showing a structure of an optical microphone element used in the present invention.
  • FIG. 1 is a circuit diagram illustrating a schematic configuration of an optical microphone device used in the present invention.
  • FIG. 5 is a change diagram of the directivity pattern of the optical microphone element of FIG.
  • FIG. 4 is a directional pattern diagram of an optical microphone element used in the present invention.
  • FIG. 9 is a configuration diagram illustrating a main configuration of another embodiment of the present invention.
  • FIG. 4 is a diagram showing a recognition result of a speech spectrum using the present invention.
  • the sound collecting device of the present invention uses an optical microphone as a microphone for collecting sound.
  • FIG. 3 is a diagram showing a structure of a head portion of the optical microphone element 50.
  • a light source 3 such as an LED for irradiating a light beam obliquely to the surface 2 b of the diaphragm 2 is provided inside the head 1 located on the surface 2 b opposite to the surface 2 a of the diaphragm 2.
  • a light detector 5 and a lens 6 are provided to enlarge the displacement of the optical path of the reflected light due to the vibration of the diaphragm 2.
  • the vibration plate 2 vibrates when the sound wave 7 strikes the surface 2a of the vibration plate 2 in this manner, the light receiving position of the reflected light incident on the photodetector 5 on the light receiving surface 5a changes.
  • the photodetector 5 is configured as a position sensor, an electric signal corresponding to the vibration of the diaphragm 2 is extracted from the position where the reflected light is irradiated.
  • This is the basic structure of an optical microphone.
  • the optical microphone shown in Fig. 3 cannot expect much noise reduction.
  • the diaphragm 2 also vibrates due to the noise reaching the diaphragm 2, and this is superimposed on the vibration by the normal sound wave 7 as a noise signal.
  • An optical microphone having a structure as shown in FIG. 4 has been known as an optical microphone which has reduced the influence of this noise and has further improved the noise reduction effect.
  • the diaphragm 2 vibrating by the sound wave 7 is stretched almost at the center of the head 1.
  • the first opening 15 and the second opening 16 are provided on both sides of the head 1 so as to be symmetrical with respect to the diaphragm 2.
  • FIG. 7 is a diagram showing the directivity pattern of the optical microphone element shown in FIGS.
  • (A) shows the directivity pattern of the optical microphone element 50 shown in FIG. 3, and is substantially a circle having the maximum sensitivity in the direction perpendicular to the diaphragm 2 toward the opening (left side in the figure). It has a directional pattern of shape.
  • FIG. 4 is the directivity pattern of the optical microphone element 50 shown in FIG. 4 and has an almost 8-shaped directivity pattern having the maximum sensitivity in both directions of the openings 15 and 16.
  • FIGS. The directivity pattern of the optical microphone element 50 shown in FIG. 4 can be changed so as to extend in the axial direction showing the maximum sensitivity as shown in FIG. 2 or FIG. 6, or to narrow down in the direction perpendicular to the axis.
  • a part of the detection output from the photodetector 5 is negatively fed back (negative feedback) to a light source driving circuit that drives the light source 3 using a negative feedback circuit.
  • FIG. 5 is a diagram showing a schematic configuration of an optical microphone device using a feedback circuit 100 for changing a beam pattern as shown in FIG. 2 or FIG.
  • the output from the photodetector 5 is taken out through a filter circuit 8 and amplified by an amplifier 9 to become a microphone output.
  • the filter circuit 8 is used to extract only signal components in a desired frequency range.
  • a predetermined current is supplied to the light source 3 through a negative feedback (NFB) circuit 100 by using a part of the output signal extracted from the photodetector 5.
  • the light source driving circuit 13 that drives the lever 3 is configured to be supplied as a negative feedback signal.
  • the negative feedback circuit 100 includes a small signal amplifier circuit 10, a filter circuit 11 for extracting only a signal component in a desired frequency range from an output thereof, and a comparator 12.
  • a reference power supply 14 serving as a reference voltage is connected to the non-inverting input terminal of the comparator 12. The signal extracted through the filter circuit 1 1 is supplied to the inverting input terminal of the comparator 1 2
  • the comparator 12 outputs a lower output level as the output of the filter circuit 11 increases, whereby the light source driving circuit 13 operates to reduce the current supplied to the light source 3.
  • the small signal amplifier circuit 10 amplifies the signal only when the input signal level is lower than a predetermined level, and does not amplify the signal higher than a certain level. Therefore, when the input signal level is higher than a certain level, the output signal level does not change and the amplification (gain) becomes zero.
  • the signal is amplified so that the lower the signal level, the higher the amplification.
  • the rate of increase of the output signal with respect to the input signal increases as the input signal level decreases.
  • the output from the photodetector 5 is proportional to the volume of the received wave, the output of the small signal amplifier circuit 10 is amplified and output as the volume becomes smaller.
  • the output level of the comparator 12 decreases as the volume decreases.
  • the current supplied to the light source 3 operates so that the light output of the light source 3 decreases as the volume decreases.
  • the sensitivity of the microphone does not decrease. For sounds that come from the axial direction perpendicular to the diaphragm and that do not cause a decrease in microphone sensitivity, shifting the sound from the axial direction leads to sensitivity along the original directivity pattern curve. Gradually decreases.
  • the small-signal amplifier circuit 10 When the level falls below a certain level, the small-signal amplifier circuit 10 has an amplification factor, and the supply current control of the light source drive circuit 13 works to further lower the sensitivity of the microphone.
  • the pattern of the directional beam is narrower than the directional pattern of the sensitivity as shown in FIG. 2 or FIG. Figures 2 and 6 show the change in the directivity pattern due to the change in the amount of negative feedback.
  • (A) shows the directivity pattern when no negative feedback is applied. In this case, the pattern is almost circular.
  • the directivity patterns when negative feedback is applied are shown in (B) and (C).
  • the amount of negative feedback is small, and in the case of (C), the amount of negative feedback is large.
  • the amount of negative feedback is changed to extend the directivity pattern of sensitivity in the axial direction of the maximum sensitivity, or to narrow down in the direction perpendicular to the axis. Can be changed to In this manner, the directional characteristics of the sensitivity of the optical microphone can be changed.
  • FIG. 1 is a configuration diagram showing a main configuration of a sound collection device according to an embodiment of the present invention.
  • the above-described optical microphone element 50 is used as a sound collecting element.
  • the detection signal from the optical microphone element 50 is taken out via the amplifier 9 and becomes an audio signal.
  • a part of the detection signal extracted from the optical microphone element 50 is transmitted through the switching switch 55 to a negative feedback circuit having a different amount of negative feedback.
  • Negative feedback (negative feedback) is provided to the light source drive circuit 13 that drives the element 50.
  • the switching positions A, B, C, and N of the switching switch 55 may be switched so as to have an optimal beam pattern according to the use environment.
  • the negative feedback amount is the smallest at the switching position A of the switching switch 55 and the beam pattern is almost circular, the beam pattern is medium at the position B, and the beam pattern is the most at the position C. It is set to be thin. At position N, no negative feedback is applied.
  • FIG. 10 is a diagram showing an external configuration of the sound pickup device of the present invention. As shown in FIG. 10 (A), a back hole 57 for taking in sound from behind the optical microphone element 50 is provided. If an optical microphone element having the structure shown in Fig. 4 is used, ambient noise from a distant place can be accurately suppressed.
  • the switching switch 55 may be provided with a slider 56 for sliding a plurality of positions so as to slide and set the plurality of positions.
  • the switching switch 55 is configured to be manually switched, but this switching is not necessarily limited to this.
  • Another embodiment of the present invention shown in FIG. 8 shows a configuration in which the switching of the switching switch 55 is performed automatically.
  • a part of the audio output signal is configured to be detected by a single-pass filter 61, a band-pass filter 62, and a high-pass filter 63, respectively, to detect the frequency spectrum. I have.
  • the detected frequency spectrum is analyzed by the microcomputer 64, the use environment of the microphone is recognized from the state of the frequency spectrum, and the switch 55 is switched to the most suitable position based on the recognition result. I'm trying to do it.
  • a low-frequency part, a medium-frequency part, and a high-temperature part voice or noise spectrum are extracted and analyzed by the microcomputer 64.
  • FIG. 9 shows frequency characteristics from various environments detected by the microcomputer 64 from the frequency spectrum detected by the filters 61 to 63.
  • Fig. 9 (a) shows an environment in which the signal strength in the low frequency range is weak, and the signal strength increases as the frequency increases.
  • Figure 9 (b) shows an environment in which the signal strength increases in the mid-tone frequency domain.
  • Fig. 9 (c) shows an environment in which the signal strength is high in the low frequency range and the signal strength is low in the high frequency range.
  • Figure Fig. 9 (d) shows an environment in which the signal strength is almost constant in the low to high frequency range.
  • Position N is a position that indicates the normal microphone use condition, and is used especially when it is not necessary to narrow down the directional beam pattern.In this case, the operation of the negative feedback circuit is stopped or the negative feedback circuit is used. There is no configuration. Industrial applicability
  • the sound pickup device of the present invention employs an optical switch using a switching switch for selecting a directional characteristic so as to have an optimum microphone characteristic according to an environment where a sound pickup target is located. Since the microphone is switched, sound pickup with reduced ambient noise is possible.
  • Such a sound pickup device of the present invention makes it possible to reduce the noise reduction level, which is normally limited to 5 to 8 dB, to 20 dB or more. :

Abstract

A device for collecting sounds from objects comprises a plurality of microphones whose directivity can be varied depending on the environment in which each object is located. An optical microphone includes a vibration board (2) which vibrates by sound pressure, a light source (3) for emitting a light beam to the vibration board (2), a photodetector (5) which receives the light beam reflected from the vibration board (2) and produces a signal corresponding to the vibration of the vibration board (2), a drive circuit (13) for supplying the light source (3) with predetermined current, and a negative feedback circuit (100) that supplies the drive circuit (13) with a negative feedback signal consisting of a signal output from the photodetector (5). The negative feedback circuit (100) changes the amount of negative feedback depending on the environment.

Description

技術分野 Technical field
本発明は収音装置に係り、 特に使用環境に応じて最適なマイクロフォン特性を 設定することの可能な収音装置に関する。 背景技術  The present invention relates to a sound collecting device, and more particularly to a sound collecting device capable of setting an optimum microphone characteristic according to a use environment. Background art
従来、 用途ゃ収音対象に応じて最適なマイクロフォン特性を有するよう選択す るアクセサリーマイクロフォンが知られている。  Conventionally, there has been known an accessory microphone which is selected so as to have an optimum microphone characteristic according to the purpose of sound collection.
このようなアクセサリーマイクロフォンの種類としては卓上型、 組込み型、 ノ、 ンド型等の、 用途に応じたものがあり、 また機能的には無指向性のものと単一指 向性のものとが知られている。  There are various types of such accessory microphones, such as a desktop type, built-in type, nose type, and hand type, depending on the application. Functionally, omnidirectional type and single directional type are available. Are known.
また、 動作の種類に応じて、 標準マイクロフォンと望遠マイクロフォンとの切 替えが可能なマイクロフォンが知られている。 またマイクロフォンの形状に合わ せて、 ボーカル型、 スタンド型、' クリップ型に分類されるマイクロフォンが使用 されている。  Also known is a microphone that can be switched between a standard microphone and a telephoto microphone according to the type of operation. Depending on the shape of the microphone, microphones classified into vocal type, stand type, and 'clip type' are used.
このように従来のァクセザ-リーマイクロフォンとしては機能や用途に応じて種 々のマイクロフォンが使用されてきた。  Thus, various microphones have been used as conventional conventional microphones according to their functions and applications.
しかし上述した従来のアクセサリ一マイクロフォンはいずれも特定方向からの 収音には最適とは言えなかった。 これは従来のアクセサリーマイクロフォンがそ の指向性を収音対象に対してビーム上に絞れなかったためである。 However, none of the conventional accessory microphones described above was optimal for sound pickup from a specific direction. This is because the conventional accessory microphone could not focus its directivity on the beam for the sound pickup target.
また特定の用途に用いられているマイクロフォンを別の用途に用いるように切 替えることは必ずしも可能ではなかった。 例えば、 会議用に使用されるマイクロ フォンを屋外に置いて使用すると、 周囲騒音の影響を受け音声の収録が必ずしも 十分に行われないという'問題があつた。 Also, it was not always possible to switch the microphone used for a specific application to use it for another application. For example, if a microphone used for a meeting is placed outdoors and used, ambient sound will affect the recording of audio. It wasn't done enough.
本発明は上述した問題点を解消するためになされたもので、 マイクロフォンの 使用環境に応じて最適なマイクロフォン特性を得ることができるようにマイク口 フォンの特性を切替えることのできる収音装置を提供することを目的とする。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and provides a sound pickup device capable of switching the characteristics of a microphone and a microphone so that optimum microphone characteristics can be obtained according to a use environment of the microphone. The purpose is to do. Disclosure of the invention
上記目的を達成するための本発明の収音装置は、 複数のそれぞれ異なる環境に 位置する収音対象に指向させたマイクロフォンの指向性を前記環境に応じて切替 えて収音する収音装置において、 前記マイクロフォンとして、 音圧により振動す る振動板と、 前記振動板に光ビームを照射する光源と、 前記振動板に照射された 前記光ビームの反射光を受光し前記振動板の振動に対応する信号を出力する光検 出器と、 前記光源に所定電流を供給するよう駆動する光源駆動回路と、 前記光検 出器から出力される前記信号を負帰還信号として前記光源駆動回路に供給する負 帰還回路とを具備する光マイクロフォンを用い、 前記環境に応じて前記負帰還回 路の負帰還量を切替えることを特徴とする。  A sound pickup apparatus according to the present invention for achieving the above object is a sound pickup apparatus that picks up sound by switching the directivity of microphones directed to sound pickup targets located in a plurality of different environments according to the environment. A diaphragm vibrating by a sound pressure; a light source irradiating the diaphragm with a light beam; and a light receiving the reflected light of the light beam irradiated on the diaphragm corresponding to the vibration of the diaphragm. A light detector that outputs a signal; a light source driving circuit that drives the light source to supply a predetermined current; and a negative signal that supplies the signal output from the light detector to the light source driving circuit as a negative feedback signal. An optical microphone including a feedback circuit is used, and a negative feedback amount of the negative feedback circuit is switched according to the environment.
また本発明の収音装置において、 前記収音対象からの音声又は騒音のスぺクト ラムを認識する手段を設け、 認識結果に基づき前記収音対象の位置する環境を決 定することが出来る。  Further, in the sound collection device of the present invention, means for recognizing a voice or noise spectrum from the sound collection target is provided, and an environment in which the sound collection target is located can be determined based on the recognition result.
さらに本発明の収音装置において、 前記スぺクトラムの認識を任意の時間タイ ミングで実行することが出来る。 図面の簡単な説明  Further, in the sound pickup device of the present invention, the spectrum can be recognized at an arbitrary time. BRIEF DESCRIPTION OF THE FIGURES
【図 1】  【Figure 1】
本発明の収音装置の要部構成を示す構成図。  FIG. 1 is a configuration diagram illustrating a main configuration of a sound collection device according to the present invention.
【図 2】  【Figure 2】
本発明に用いる光マイクロフォン素子の指向性パターンの変化を示す図。  FIG. 4 is a diagram showing a change in the directivity pattern of the optical microphone element used in the present invention.
【図 3】  [Figure 3]
本発明に用いる光マイクロフォン素子の構造を示す図。 P FIG. 2 is a diagram showing a structure of an optical microphone element used in the present invention. P
3 Three
【図 4】 [Fig. 4]
本発明に用いる他の光マイクロフォン素子の構造を示す図。  The figure which shows the structure of the other optical microphone element used for this invention.
【図 5】  [Figure 5]
本発明に用いる光マイクロフォン装置の概略構成を示す回路図。  FIG. 1 is a circuit diagram illustrating a schematic configuration of an optical microphone device used in the present invention.
【図 6】  [Fig. 6]
図 4の光マイクロフォン素子の指向性パターンの変化図。  FIG. 5 is a change diagram of the directivity pattern of the optical microphone element of FIG.
【図.7】  [Fig.7]
本発明に用いられる光マイクロフォン素子の指向特性パターン図。  FIG. 4 is a directional pattern diagram of an optical microphone element used in the present invention.
【図 8】  [Fig. 8]
本発明の他の実施の形態の要部構成を示す構成図。  FIG. 9 is a configuration diagram illustrating a main configuration of another embodiment of the present invention.
【図 9】  [Fig. 9]
本発明を用いた音声スぺクトラムの認識結杲を示す図。  FIG. 4 is a diagram showing a recognition result of a speech spectrum using the present invention.
【図 1 0】  [Fig. 10]
本発明の収音装置の外観構成を示す図。 発明を実施するための最良の形態  The figure which shows the external appearance structure of the sound collection device of this invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の収音装置は収音を行うマイクロフォンとして光マイクロフォンを用い ている。  The sound collecting device of the present invention uses an optical microphone as a microphone for collecting sound.
以下本発明の収音装置の実施の形態を説明するに先立って本発明で用いられる 光マイクロフォンの基本原理とその構成とを説明する。 図 3は光マイクロフォン素子 5 0のへッド部の構造を示す図である。  Prior to describing an embodiment of the sound pickup device of the present invention, the basic principle and configuration of an optical microphone used in the present invention will be described below. FIG. 3 is a diagram showing a structure of a head portion of the optical microphone element 50.
マイクロフォンヘッド 1の内部には音波が当たることにより振動する振動板 2 が張設されており、 音波が当たる側の面 2 aは外部に露出されている。 従ってこ の面 2 aに音波 7が到達してこの振動板 2を振動させる。 また振動板 2の面 2 a とは反対の面 2 bに位置するへッド 1の内部には振動板 2の面 2 bに斜めから光 ビームを照射する L E D等の光源 3と、 この光源 3からの光ビームを所定のビー ム形とするするためのレンズ 4と、 ビーム面が面 2 bで反射された反射光を受光 する光検出器 5と振動板 2の振動に伴う反射光の光路の変位を拡大するためレン ズ 6とが設けられている。 Inside the microphone head 1, a diaphragm 2 that vibrates when hit by a sound wave is stretched, and a surface 2a on the side to which the sound wave hits is exposed to the outside. Accordingly, the sound wave 7 reaches the surface 2a and vibrates the diaphragm 2. A light source 3 such as an LED for irradiating a light beam obliquely to the surface 2 b of the diaphragm 2 is provided inside the head 1 located on the surface 2 b opposite to the surface 2 a of the diaphragm 2. A lens 4 for converting the light beam from 3 into a predetermined beam shape, and receives the reflected light whose beam surface is reflected by surface 2b A light detector 5 and a lens 6 are provided to enlarge the displacement of the optical path of the reflected light due to the vibration of the diaphragm 2.
このようにして振動板 2の面 2 aに音波 7が当たつて振動板 2が振動すると、 光検出器 5に入射される反射光の受光面 5 aへの受光位置が変化する。 光検出器 5をポジションセンサとして構成しておけば、 反射光の照射位置から 振動板 2の振動に応じた電気信号は取り出される。 これが光マイクロフォンの基 本構造である。 しかし、 図 3に示す光マイクロフォンでは騒音低減効果はさほど 期待できない。  When the vibration plate 2 vibrates when the sound wave 7 strikes the surface 2a of the vibration plate 2 in this manner, the light receiving position of the reflected light incident on the photodetector 5 on the light receiving surface 5a changes. If the photodetector 5 is configured as a position sensor, an electric signal corresponding to the vibration of the diaphragm 2 is extracted from the position where the reflected light is irradiated. This is the basic structure of an optical microphone. However, the optical microphone shown in Fig. 3 cannot expect much noise reduction.
すなわち振動板 2に到達する騒音によっても振動板 2は振動し、 これが雑音信 号として通常の音波 7による振動に重畳されてしまうからである。 この騒音の影響を低減させ、 更に騒音低減効果を図った光マイクロフオンとし て図 4に示すような構造のものが知られている。  That is, the diaphragm 2 also vibrates due to the noise reaching the diaphragm 2, and this is superimposed on the vibration by the normal sound wave 7 as a noise signal. An optical microphone having a structure as shown in FIG. 4 has been known as an optical microphone which has reduced the influence of this noise and has further improved the noise reduction effect.
図 4に示す構造では音波 7によって振動する振動板 2をへッド 1のほぼ中央部 分に張設している。 そしてへッド 1の両側に振動板 2に対して互いに対称位置と なるように第 1開口部 1 5及び第 2開口部 1 6を設ける。  In the structure shown in FIG. 4, the diaphragm 2 vibrating by the sound wave 7 is stretched almost at the center of the head 1. The first opening 15 and the second opening 16 are provided on both sides of the head 1 so as to be symmetrical with respect to the diaphragm 2.
このように構成することにより音波はいずれの開口部からもへッド 1内に侵入 し振動板 2を振動させる。 図 4に示す光マイクロフォン素子 5 0において第 1開口部 1 5から侵入する音 波と第 2開口部 1 6から侵入する音波のそれぞれの振幅と位相とが等しい場合、 これらの 2つの音波は振動板 2の両面 2 a, 2 bにおいて互いに打ち消しあって 振動板 2を振動させることはない。  With such a configuration, sound waves enter the head 1 from any of the openings and vibrate the diaphragm 2. In the optical microphone element 50 shown in FIG. 4, when the amplitude and the phase of the sound wave entering from the first opening 15 and the sound wave entering from the second opening 16 are equal, these two sound waves vibrate. The two sides 2a and 2b of the plate 2 do not cancel each other and vibrate the diaphragm 2.
2つの受波感度の等しいマイクロフォン素子を近接して配置し、 遠距離で発生 した音波を受波した場合、 2つのマイクロフォン素子は到来音波を等しく検出す ることが知られている。  It is known that when two microphone elements having the same receiving sensitivity are arranged close to each other and a sound wave generated at a long distance is received, the two microphone elements detect the incoming sound waves equally.
—般に、 音波はマイクロフォン素子から近距離だけ離れた人の口から発生する 、 即ち、 音声はこのマイクロフォン素子から近距離の所で発生する。 この近距離 の人の音声は円形曲線により示されるように球形場特性を有している。 これに対 して遠距離で発生する、 例えば、 騒音音響による音波は平面場の特性を有してい る。 球状波の音響強度はその球面又は包絡線に沿ってほぼ同一であって、 その球 の半径に沿って変化するが、 平面波の場合には音響強度は平面の全ての点でほぼ 同一となる。 従って、 図 4に示すような光マイクロフォン素子は 2つのマイクロフォン素子 を結合したものと考えることができるためこれが遠距離場に置かれた場合には第 1開口部 1 5と第 2開口部 1 6とからほぼ同一の振幅と位相特性とを持った音波 が振動板 2に到来することになり、 前述したように互いに打ち消しあってその影 響は低減される。 —In general, sound waves are emitted from the mouth of a person at a short distance from the microphone element That is, sound is generated at a short distance from the microphone element. This short-range person's voice has a spherical field characteristic as shown by the circular curve. On the other hand, sound waves generated at a long distance, for example, by noise and acoustics have the properties of a plane field. The acoustic intensity of a spherical wave is approximately the same along its sphere or envelope and varies along the radius of the sphere, but for a plane wave, the acoustic intensity is approximately the same at all points in the plane. Therefore, the optical microphone element as shown in Fig. 4 can be considered as a combination of two microphone elements. As a result, sound waves having substantially the same amplitude and phase characteristics arrive at the diaphragm 2 and cancel each other out as described above, thereby reducing the effect.
—方、 近距離場からの音波は第 1開口部 1 5又は第 2開口部 1 6から不均一に 入射するため振動板 2を振動させ、 光検出器 5から信号として取り出される。 このようにして、 騒音の影響をより低減させることのできる光マイクロフォン 素子が図 4の構造により得られる。 図 7は図 3および図 4に示す光マイクロフォン素子の指向性パターンを示す図 である。  On the other hand, the sound wave from the near field is incident nonuniformly from the first opening 15 or the second opening 16 so that the diaphragm 2 is vibrated, and is taken out from the photodetector 5 as a signal. In this way, an optical microphone element capable of further reducing the influence of noise is obtained with the structure of FIG. FIG. 7 is a diagram showing the directivity pattern of the optical microphone element shown in FIGS.
(A) は図 3に示す光マイクロフォン素子 5 0の指向性パターンを示したもの で、 開口部 (図の左側方向) に向かって振動板 2に垂直な方向に最大感度を有す るほぼ円形状の指向性パターンを有する。  (A) shows the directivity pattern of the optical microphone element 50 shown in FIG. 3, and is substantially a circle having the maximum sensitivity in the direction perpendicular to the diaphragm 2 toward the opening (left side in the figure). It has a directional pattern of shape.
(B ) は図 4に示す光マイクロフォン素子 5 0の指向性パターンで、 開口部 1 5及び 1 6の両方向に最大感度を有するほぼ 8の字状の指向性パターンを有する ここで図 3及び図 4に示す光マイクロフォン素子 5 0の指向性パターンを、 図 2または図 6に示すように最大感度を示す軸方向に伸長させ、 または軸に直交す る方向で絞り込むように変化させることができる。 このように指向性のパターンを変化させるためには、 光検出器 5からの検出出 力の一部を負帰還回路を用いて光源 3を駆動する光源駆動回路へネガティブフィ ードバック (負帰還) させればよい。 図 5はビームパターンを図 2又は図 6のよ うに変化させるための帰還回路 1 0 0を用いた光マイクロフォン装置の概略構成 を示す図である。 (B) is the directivity pattern of the optical microphone element 50 shown in FIG. 4 and has an almost 8-shaped directivity pattern having the maximum sensitivity in both directions of the openings 15 and 16. Here, FIGS. The directivity pattern of the optical microphone element 50 shown in FIG. 4 can be changed so as to extend in the axial direction showing the maximum sensitivity as shown in FIG. 2 or FIG. 6, or to narrow down in the direction perpendicular to the axis. In order to change the directivity pattern in this way, a part of the detection output from the photodetector 5 is negatively fed back (negative feedback) to a light source driving circuit that drives the light source 3 using a negative feedback circuit. Just do it. FIG. 5 is a diagram showing a schematic configuration of an optical microphone device using a feedback circuit 100 for changing a beam pattern as shown in FIG. 2 or FIG.
光検出器 5からの出力はフィル夕回路 8を介して取り出され、 増幅器 9により 増幅されてマイク出力となる。 フィル夕回路 8は希望周波数範囲の信号成分のみ を取り出すために用いられる。 ここで、 図 5に示す光マイクロフォン装置では、 この光検出器 5から取り出さ れる出力信号の一部を負帰還 (ネガティブフィードバック : N F B ) 回路 1 0 0 を介して、 光源 3に所定電流を供給してこの光源 3を駆動している光源駆動回路 1 3に負帰還信号として供給するように構成している。  The output from the photodetector 5 is taken out through a filter circuit 8 and amplified by an amplifier 9 to become a microphone output. The filter circuit 8 is used to extract only signal components in a desired frequency range. Here, in the optical microphone device shown in FIG. 5, a predetermined current is supplied to the light source 3 through a negative feedback (NFB) circuit 100 by using a part of the output signal extracted from the photodetector 5. The light source driving circuit 13 that drives the lever 3 is configured to be supplied as a negative feedback signal.
負帰還回路 1 0 0は小信号増幅回路 1 0と、 その出力から希望周波数範囲の信 号成分のみを取り出すフィル夕回路 1 1と、 比較器 1 2とから構成される。 比較 器 1 2の非反転入力端子には基準電圧となる基準電源 1 4が接続される。 フィル 夕回路 1 1を介して取り出された信号は比較器 1 2の反転入力端子に供給される  The negative feedback circuit 100 includes a small signal amplifier circuit 10, a filter circuit 11 for extracting only a signal component in a desired frequency range from an output thereof, and a comparator 12. A reference power supply 14 serving as a reference voltage is connected to the non-inverting input terminal of the comparator 12. The signal extracted through the filter circuit 1 1 is supplied to the inverting input terminal of the comparator 1 2
このように構成すると比較器 1 2はフィル夕回路 1 1の出力が大きいほど小さ な出力レベルを出力し、 これにより光源駆動回路 1 3は光源 3に供給する電流を 減らすように動作する。 With this configuration, the comparator 12 outputs a lower output level as the output of the filter circuit 11 increases, whereby the light source driving circuit 13 operates to reduce the current supplied to the light source 3.
ここで、 小信号増幅回路 1 0は入力信号レベルが所定レベル以下の場合のみそ の信号を増幅し、 あるレベル以上の信号は増幅しない。 従って入力信号レベルが あるレベル以上の場合には出力信号レベルは変化せず増幅度 (利得) は 0となる 。 また入力信号が所定の信号レベル以下の時には、 信号レベルが小さいほど増幅 度が大きくなるように増幅する。 更に、 入力信号に対する出力信号の増加率は入 力信号レベルが小さいほど高くなる。 ここで光検出器 5からの出力は受波音量に比例しているため、 小信号増幅回路 1 0の出力は小音量ほど大きく増幅されて出力される。 Here, the small signal amplifier circuit 10 amplifies the signal only when the input signal level is lower than a predetermined level, and does not amplify the signal higher than a certain level. Therefore, when the input signal level is higher than a certain level, the output signal level does not change and the amplification (gain) becomes zero. When the input signal is lower than a predetermined signal level, the signal is amplified so that the lower the signal level, the higher the amplification. Furthermore, the rate of increase of the output signal with respect to the input signal increases as the input signal level decreases. Here, since the output from the photodetector 5 is proportional to the volume of the received wave, the output of the small signal amplifier circuit 10 is amplified and output as the volume becomes smaller.
この出力はフィルタ回路 1 1を介して比較器 1 2の反転入力端子に入力されて いるため、 比較器 1 2の出力は逆に小音量ほどその出力レベルは低下する。 その 結果、 光源 3に供給される電流は小音量ほど光源 3の光出力を低下させるように 動作する。 すなわち小音量ほどマイクロフォンの感度は低下することになる。 また所定レベル以上の信号は増幅されないため、 その信号レベルでは光出力は 制限されない。 そのためマイクロフォンの感度も低下することはない。 振動板に直交する軸方向から来た音でマイクロフォンの感度低下が発生しない ような大きさの音に対して、 その音を軸方向からずらして行くと本来の指向性パ ターン曲線に沿って感度は徐々に低下していく。 そしてあるレベル以下になると 小信号増幅回路 1 0が増幅度を持つようになり、 光源駆動回路 1 3の供給電流制 御が働いて更にマイクロフォンの感度は低下する。 この結果、 負帰還回路 1 0 0 を有する光マイクロフォン装置では図 2あるいは図 6に示すように感度の指向性 パターンよりも指向性ビームの幅がより絞られたパターンとなる。 図 2及び図 6は負帰還量を変化させたことによる指向性のパターン変化を示し ている。  Since this output is input to the inverting input terminal of the comparator 12 through the filter circuit 11, the output level of the comparator 12 decreases as the volume decreases. As a result, the current supplied to the light source 3 operates so that the light output of the light source 3 decreases as the volume decreases. In other words, the lower the volume, the lower the sensitivity of the microphone. Also, since a signal above a predetermined level is not amplified, the light output is not limited at that signal level. Therefore, the sensitivity of the microphone does not decrease. For sounds that come from the axial direction perpendicular to the diaphragm and that do not cause a decrease in microphone sensitivity, shifting the sound from the axial direction leads to sensitivity along the original directivity pattern curve. Gradually decreases. When the level falls below a certain level, the small-signal amplifier circuit 10 has an amplification factor, and the supply current control of the light source drive circuit 13 works to further lower the sensitivity of the microphone. As a result, in the optical microphone device having the negative feedback circuit 100, the pattern of the directional beam is narrower than the directional pattern of the sensitivity as shown in FIG. 2 or FIG. Figures 2 and 6 show the change in the directivity pattern due to the change in the amount of negative feedback.
(A) は負帰還をかけない場合の指向性パターンを示しており、 この場合には ほぼ円形の指向性パターンとなる。 次に、 負帰還をかけた場合の指向性パターン を (B ) および (C ) に示している。  (A) shows the directivity pattern when no negative feedback is applied. In this case, the pattern is almost circular. Next, the directivity patterns when negative feedback is applied are shown in (B) and (C).
(B ) の場合には負帰還量が小さく、 (C ) の場合には負帰還量が大きい。 こ のように小信号増幅回路 1 0の増幅度を可変することにより負帰還量を変化させ て感度の指向性パターンを最大感度の軸方向に伸長させ、 または軸に直交する方 向に絞り込むように変化させることができる。 このようにして光マイクロフォン の感度の指向特性を変化させることができる。  In the case of (B), the amount of negative feedback is small, and in the case of (C), the amount of negative feedback is large. In this way, by changing the amplification degree of the small signal amplifier circuit 10, the amount of negative feedback is changed to extend the directivity pattern of sensitivity in the axial direction of the maximum sensitivity, or to narrow down in the direction perpendicular to the axis. Can be changed to In this manner, the directional characteristics of the sensitivity of the optical microphone can be changed.
本発明に係る収音装置ではこのような指向性のビームパターンを変化させるこ とのできる光マイクロフォンを用いて、 選択されたマイクロフォンの指向特性を 変化させるようにしている。 図 1は本発明の一実施形態に係る収音装置の要部構成を示す構成図である。 本発明では上述した光マイクロフォン素子 5 0を収音素子として用いている。 光マイクロフォン素子 5 0からの検出信号は増幅器 9を介して取り出され音声 信号となる。 この光マイクロフォン素子 5 0から取り出された検出信号の一部は 切替えスィッチ 5 5を介して異なる負帰還量を持つ負帰還回路 1 0 O A, 1 0 0 B, 1 0 0 Cを介して光マイクロフォン素子 5 0を駆動する光源駆動回路 1 3に ネガティブフィードバック (負帰還) されている。 The sound pickup device according to the present invention can change such a directional beam pattern. The directional characteristics of the selected microphone are changed using an optical microphone that can be used. FIG. 1 is a configuration diagram showing a main configuration of a sound collection device according to an embodiment of the present invention. In the present invention, the above-described optical microphone element 50 is used as a sound collecting element. The detection signal from the optical microphone element 50 is taken out via the amplifier 9 and becomes an audio signal. A part of the detection signal extracted from the optical microphone element 50 is transmitted through the switching switch 55 to a negative feedback circuit having a different amount of negative feedback. Negative feedback (negative feedback) is provided to the light source drive circuit 13 that drives the element 50.
従って切替えスィツチ 5 5の接点位置を切替えることにより所定の負帰還回路 が選択されて異なる負帰還量が光源駆動回路 1 3に印加されることになる。 これ に伴って光マイクロフォン素子 5 0の感度の指向性を示すビームパターンが図 2 あるいは図 6に示すように切替えられる。 従って使用環境に応じて最適なビーム パターンを有するように切替えスィッチ 5 5の切替えポジション A, B, C , N を切替えればよい。 なお図 1に示す実施の形態では、 切替えスィッチ 5 5の切替えポジション Aに おいて最も負帰還量が小さくビームパターンがほぼ円形に近く、 ポジション Bに おいて中程度、 ポジション Cにおいて最もビームパターンが細くなるように設定 されている。 またポジション Nにおいては負帰還をかけないようにしている。 そこで、 この収音装置を使用する環境に応じてこの切替えスィッチ 5 5の切替 えを行い、 最適なマイクロフォンの特性が得られるように設定する。 即ち、 会議 室内で会議用に用いる時には、 ポジション Bに切替えしてビームパターンを中程 度に絞り込む。 また、 屋外で使用して遠方の収音対象からの収音を行う場合には 、 ポジション Cに切り替えしてビームパターンを最も絞り込み、 遠方からの音声 が感度よくとらえられるようにする。 図 1 0は本発明の収音装置の外観構成を示す図で、 図 1 0 (A) に示すように 光マイクロフォン素子 5 0の後方からの音を取り込むためのバックホール 5 7を 設け、 図 4に示すような構造の光マイクロフォン素子を用いると遠方からの周囲 雑音を的確に抑制することができる。 Therefore, by switching the contact position of the switching switch 55, a predetermined negative feedback circuit is selected and a different amount of negative feedback is applied to the light source drive circuit 13. Accordingly, the beam pattern indicating the directivity of the sensitivity of the optical microphone element 50 is switched as shown in FIG. 2 or FIG. Therefore, the switching positions A, B, C, and N of the switching switch 55 may be switched so as to have an optimal beam pattern according to the use environment. In the embodiment shown in FIG. 1, the negative feedback amount is the smallest at the switching position A of the switching switch 55 and the beam pattern is almost circular, the beam pattern is medium at the position B, and the beam pattern is the most at the position C. It is set to be thin. At position N, no negative feedback is applied. Therefore, the switching switch 55 is switched according to the environment in which the sound pickup device is used, and the setting is made so that the optimum microphone characteristics can be obtained. That is, when used for a conference in a conference room, switch to position B and narrow the beam pattern to a moderate level. In addition, in the case where the sound is picked up from a distant sound pickup object when used outdoors, the position is switched to the position C so that the beam pattern is most narrowed down so that sound from a distant place can be captured with high sensitivity. FIG. 10 is a diagram showing an external configuration of the sound pickup device of the present invention. As shown in FIG. 10 (A), a back hole 57 for taking in sound from behind the optical microphone element 50 is provided. If an optical microphone element having the structure shown in Fig. 4 is used, ambient noise from a distant place can be accurately suppressed.
また、 切替えスィッチ 5 5は図 1 0 ( B ) に示すように複数のポジションをス ライドするスライダ 5 6を設けて複数のポジションをスライドさせて設定するよ うに構成してもよい。  Further, as shown in FIG. 10 (B), the switching switch 55 may be provided with a slider 56 for sliding a plurality of positions so as to slide and set the plurality of positions.
図 1に示す実施の形態では切替えスィツチ 5 5を手動により切替えるように構 成しているが、 この切替えは必ずしもこれに限定されるものではない。 図 8に示す本発明の他の実施の形態ではこの切替えスィツチ 5 5の切替えを自 動で行う場合の構成を示している。  In the embodiment shown in FIG. 1, the switching switch 55 is configured to be manually switched, but this switching is not necessarily limited to this. Another embodiment of the present invention shown in FIG. 8 shows a configuration in which the switching of the switching switch 55 is performed automatically.
即ち図 8に示す実施の形態では、 音声出力信号の一部を口一パスフィルタ 6 1 、 バンドパスフィルタ 6 2、 ハイパスフィルタ 6 3でそれぞれその周波数スぺク トルを検出するように構成している。  That is, in the embodiment shown in FIG. 8, a part of the audio output signal is configured to be detected by a single-pass filter 61, a band-pass filter 62, and a high-pass filter 63, respectively, to detect the frequency spectrum. I have.
この検出された周波数スぺクトルはマイクロコンピュータ 6 4により分析され 、 その周波数スペクトルの状態からマイクロフォンの使用環境が認識され、 この 認識結果に基づいて最も適したポジション位置に切替えスィッチ 5 5の切替えを 行うようにしている。 それぞれのフィルタ 6 1〜6 3において低音部、 中音部及 び高温部の音声又は騒音のスぺクトラムが抽出され、 マイクロコンピュータ 6 4 によりこれが分析される。 図 9はフィルタ 6 1〜6 3により検出された周波数スぺクトラムからマイクロ コンピュータ 6 4が検出した種々の環境からの周波数特性を示している。  The detected frequency spectrum is analyzed by the microcomputer 64, the use environment of the microphone is recognized from the state of the frequency spectrum, and the switch 55 is switched to the most suitable position based on the recognition result. I'm trying to do it. In each of the filters 61 to 63, a low-frequency part, a medium-frequency part, and a high-temperature part voice or noise spectrum are extracted and analyzed by the microcomputer 64. FIG. 9 shows frequency characteristics from various environments detected by the microcomputer 64 from the frequency spectrum detected by the filters 61 to 63.
図 9 ( a ) では低音周波数領域での信号強度は弱く、 周波数が高くなるに従つ て信号強度が強くなるような環境を示している。 図 9 ( b ) では中音の周波数領 域で信号強度が高くなるような環境を示している。 図 9 ( c ) では低周波領域で 信号強度が高く、 高周波領域で信号強度が低くなるような環境を示している。 図 9 ( d ) では低音から高温の周波数領域でほぼ一定の信号強度を有する環境を示 している。 このような周波数スぺクトラムがマイクロコンピュータ 6 4の検出結果として 得られた場合、 このスぺクトラムに応じて切替えスィッチ 5 5の切替えが自動的 に行われる。 Fig. 9 (a) shows an environment in which the signal strength in the low frequency range is weak, and the signal strength increases as the frequency increases. Figure 9 (b) shows an environment in which the signal strength increases in the mid-tone frequency domain. Fig. 9 (c) shows an environment in which the signal strength is high in the low frequency range and the signal strength is low in the high frequency range. Figure Fig. 9 (d) shows an environment in which the signal strength is almost constant in the low to high frequency range. When such a frequency spectrum is obtained as a detection result of the microcomputer 64, the switching of the switching switch 55 is automatically performed in accordance with the spectrum.
即ち、 図 9 ( a ) や図 9 ( c ) のようなスペクトラムが得られた場合には指向 性ビームを最大に絞って収音方向からの感度を上げるためにポジション Cに切替 えられる。 また図 9 ( b ) に示すようなスペクトラムが得られた場合にはポジシ ヨン Bが選択される。 また図 9 ( d ) に示すようなスペクトラムが得られた場合 にはポジション Nが選択される。  In other words, when the spectrum as shown in Fig. 9 (a) or Fig. 9 (c) is obtained, the position is switched to position C in order to narrow the directional beam to the maximum and increase the sensitivity in the sound pickup direction. If the spectrum shown in Fig. 9 (b) is obtained, position B is selected. If the spectrum shown in Fig. 9 (d) is obtained, position N is selected.
なおポジション Nは通常のマイクロフォンの使用状態を示す位置で、 特に指向 性のビームパターンを絞り込む必要のない状態で使用されるもので、 この場合負 帰還回路の動作を停止するか負帰還回路を使用しない構成としてある。 産業上の利用可能性  Position N is a position that indicates the normal microphone use condition, and is used especially when it is not necessary to narrow down the directional beam pattern.In this case, the operation of the negative feedback circuit is stopped or the negative feedback circuit is used. There is no configuration. Industrial applicability
以上実施の形態に基づいて詳細に説明したように、 本発明の収音装置では収音 対象の位置する環境に応じて最適のマイクロフォン特性を有するように指向特性 を選択する切替えスィツチを用いて光マイクロフオンを切替えるようにしている ため、 周囲の騒音を低減した収音が可能となる。  As described in detail based on the above embodiments, the sound pickup device of the present invention employs an optical switch using a switching switch for selecting a directional characteristic so as to have an optimum microphone characteristic according to an environment where a sound pickup target is located. Since the microphone is switched, sound pickup with reduced ambient noise is possible.
このような本発明の収音装置により通常は 5〜 8 d Bが限度であつた騒音低減 レベルを 2 0 d B以上に削減することが可能となった。:  Such a sound pickup device of the present invention makes it possible to reduce the noise reduction level, which is normally limited to 5 to 8 dB, to 20 dB or more. :

Claims

請求の範囲 The scope of the claims
1 . 複数のそれぞれ異なる環境に位置する収音対象に指向させた マイクロフォンの指向性を前記環境に応じて切替えて収音する収音装置において 前記マイクロフォンとして、 1. In a sound pickup device that switches sound directivity according to the environment and picks up sound, the sound pickup device is directed to sound pickup targets located in a plurality of different environments.
音圧により振動する振動板と、 前記振動板に光ビームを照射する光源と、 前記 振動板に照射された前記光ビームの反射光を受光し前記振動板の振動に対応する 信号を出力する光検出器と、 前記光源に所定電流を供給するよう駆動する光源 動回路と、 前記光検出器から出力される前記信号を負帰還信号として前記光源 動回路に供給する負帰還回路とを具備する光マイクロフオンを用い、  A diaphragm vibrating by sound pressure, a light source for irradiating the diaphragm with a light beam, and a light receiving reflected light of the light beam irradiated on the diaphragm and outputting a signal corresponding to the vibration of the diaphragm A light comprising: a detector; a light source driving circuit that drives the light source to supply a predetermined current; and a negative feedback circuit that supplies the signal output from the photodetector to the light source driving circuit as a negative feedback signal. Using microphone,
前記環境に応じて前記負帰還回路の負帰還量を切替えることを特徵とする収音 装置。  A sound pickup device characterized by switching a negative feedback amount of the negative feedback circuit according to the environment.
2 . 請求項 1に記載の収音装置において、  2. The sound pickup device according to claim 1,
前記収音対象からの音声又は騒音のスぺクトラムを認識する手段を設け、 認識 結果に基づき前記収音対象の位置する環境を決定することを特徵とする収音装置  A sound pickup apparatus comprising: means for recognizing a voice or noise spectrum from the sound pickup target; and determining an environment in which the sound pickup target is located based on a recognition result.
3 . 請求項 2に記載の収音装置において、 3. The sound pickup device according to claim 2,
前記スぺクトラムの認識を任意の時間タイミングで実行することを特徵とする 収音装置。  A sound pickup apparatus characterized in that the spectrum is recognized at an arbitrary time.
PCT/JP2000/007169 1999-10-15 2000-10-16 Sound-collecting device WO2001028284A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00966515A EP1150541A1 (en) 1999-10-15 2000-10-16 Sound-collecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/294223 1999-10-15
JP29422399A JP2001119785A (en) 1999-10-15 1999-10-15 Sound collection device

Publications (1)

Publication Number Publication Date
WO2001028284A1 true WO2001028284A1 (en) 2001-04-19

Family

ID=17804942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007169 WO2001028284A1 (en) 1999-10-15 2000-10-16 Sound-collecting device

Country Status (4)

Country Link
US (1) US6459798B1 (en)
EP (1) EP1150541A1 (en)
JP (1) JP2001119785A (en)
WO (1) WO2001028284A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119784A (en) * 1999-10-15 2001-04-27 Phone Or Ltd Optical microphone system
JP2001119797A (en) * 1999-10-15 2001-04-27 Phone Or Ltd Mobile phone
JP2001119782A (en) * 1999-10-15 2001-04-27 Phone Or Ltd Sound collection device
CN1203727C (en) * 1999-12-03 2005-05-25 株式会社建伍 Acoustoelectric transducer using optical device
JP4150321B2 (en) * 2003-10-10 2008-09-17 本田技研工業株式会社 Continuously variable transmission control device
US7656543B2 (en) * 2004-11-12 2010-02-02 Hewlett-Packard Development Company, L.P. Albuming images
JP2008051556A (en) * 2006-08-22 2008-03-06 Sii Nanotechnology Inc Optical displacement detecting mechanism, and surface information measuring device using the same
US9767817B2 (en) * 2008-05-14 2017-09-19 Sony Corporation Adaptively filtering a microphone signal responsive to vibration sensed in a user's face while speaking
US8594507B2 (en) * 2011-06-16 2013-11-26 Honeywell International Inc. Method and apparatus for measuring gas concentrations
US20120321322A1 (en) * 2011-06-16 2012-12-20 Honeywell International Inc. Optical microphone
KR101478970B1 (en) 2013-07-08 2015-01-05 한국기술교육대학교 산학협력단 Microphone for estimating sound direction
DE102018009800A1 (en) * 2018-12-18 2020-06-18 Forschungszentrum Jülich GmbH Device and method for determining the volume and porosity of objects and bulk materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125599A (en) * 1992-10-12 1994-05-06 Asahi Optical Co Ltd Microphone
JPH06165286A (en) * 1992-11-24 1994-06-10 Sony Corp Variable directivity microphone equipment
JPH09149490A (en) * 1995-11-22 1997-06-06 Matsushita Electric Ind Co Ltd Microphone device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2050890A5 (en) * 1969-06-27 1971-04-02 Bernard Patrice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125599A (en) * 1992-10-12 1994-05-06 Asahi Optical Co Ltd Microphone
JPH06165286A (en) * 1992-11-24 1994-06-10 Sony Corp Variable directivity microphone equipment
JPH09149490A (en) * 1995-11-22 1997-06-06 Matsushita Electric Ind Co Ltd Microphone device

Also Published As

Publication number Publication date
EP1150541A1 (en) 2001-10-31
JP2001119785A (en) 2001-04-27
US20020080982A1 (en) 2002-06-27
US6459798B1 (en) 2002-10-01

Similar Documents

Publication Publication Date Title
US8249273B2 (en) Sound input device
US8767975B2 (en) Sound discrimination method and apparatus
US9007871B2 (en) Passive proximity detection
WO2001028284A1 (en) Sound-collecting device
WO2009142249A1 (en) Voice input device and manufacturing method thereof, and information processing system
JP2006245725A (en) Microphone system
US8638955B2 (en) Voice input device, method of producing the same, and information processing system
US8731693B2 (en) Voice input device, method of producing the same, and information processing system
JP2004513591A (en) Directional microphone
JP2001119797A (en) Mobile phone
WO2001028285A1 (en) Video camera with microphone
JP3576915B2 (en) Mobile phone equipment
WO2001028282A1 (en) Sound-collecting device
WO2001028281A1 (en) Directional optical microphone
WO2001028286A1 (en) Optical microphone element and optical microphone
JP2001245187A (en) Video camera with microphone
WO2001028283A1 (en) Sound collector
Behler Microphones
JP2005136628A (en) Stereo-microphone device
US20220345814A1 (en) Transducer apparatus: positioning and high signal-to-noise-ratio microphones
JP2009130391A (en) Voice input device, its manufacturing method and information processing system
JP2020008300A (en) Moving object detection device and sound recognition speaker device
CTROACOUSTIC ELECTROACOUSTIC DEVICES

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000966515

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000966515

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000966515

Country of ref document: EP