WO2001023118A1 - Method of processing connecting ends of deformed steel bar used for reinforcing concrete, and deformed steel bar processed by this method - Google Patents

Method of processing connecting ends of deformed steel bar used for reinforcing concrete, and deformed steel bar processed by this method Download PDF

Info

Publication number
WO2001023118A1
WO2001023118A1 PCT/KR1999/000581 KR9900581W WO0123118A1 WO 2001023118 A1 WO2001023118 A1 WO 2001023118A1 KR 9900581 W KR9900581 W KR 9900581W WO 0123118 A1 WO0123118 A1 WO 0123118A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel bar
deformed steel
concrete reinforcement
deformed
cylindrical body
Prior art date
Application number
PCT/KR1999/000581
Other languages
French (fr)
Japanese (ja)
Inventor
Gyeng-Ok Chung
Chung-Ki Yoo
Original Assignee
Chung Gyeng Ok
Yoo Chung Ki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Gyeng Ok, Yoo Chung Ki filed Critical Chung Gyeng Ok
Priority to AU60080/99A priority Critical patent/AU6008099A/en
Priority to JP2001526313A priority patent/JP3780209B2/en
Priority to PCT/KR1999/000581 priority patent/WO2001023118A1/en
Publication of WO2001023118A1 publication Critical patent/WO2001023118A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/162Connectors or means for connecting parts for reinforcements
    • E04C5/163Connectors or means for connecting parts for reinforcements the reinforcements running in one single direction
    • E04C5/165Coaxial connection by means of sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F5/00Upsetting wire or pressing operations affecting the wire cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/56Making machine elements screw-threaded elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/02Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
    • E04C5/03Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance with indentations, projections, ribs, or the like, for augmenting the adherence to the concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling

Definitions

  • the present invention relates to a method of threading a connection end of a deformed steel bar for concrete reinforcement which forms a framework of a construction at a construction or civil engineering site, and a deformed steel bar processed by this method. It is about. BACKGROUND ART
  • concrete structures are erected in the process of casting and curing concrete after setting up a basic framework using deformed steel bars for concrete reinforcement.
  • atypical ⁇ means that protrusions are formed on the surface, but usually, the protrusions in the axial direction are called “reaves”, and the protrusions other than the axis, that is, the protrusions in the circumferential direction are “nodes”. Called.
  • deformed steel bars for concrete reinforcement are cut and supplied at a specified length by the manufacturing industry, it is necessary to cut or interconnect the deformed steel bars for concrete reinforcement depending on the size of the construction. Will be used at a reasonable length.
  • Reinforcing bars connected by the latching method are driven by concrete mortar, and after curing is completed, steel bars connected for the first time by the adhesive force with concrete Due to the strength of the muscle structure, if there is a problem with concrete mortar or curing, the fragile structural properties of the structure can appear.
  • connection end which is a kind of mechanical connection method
  • a hot upsetting method of a connection end which is a kind of mechanical connection method
  • a force was applied in the axial direction of the deformed steel bar
  • the connection end was set up, and a rolling screw was machined at the upset portion.
  • this method also has a problem that the material is lost due to the reduced length of the deformed bar.
  • the elongation is reduced due to the structural change in the material of the connection end between the heat-affected part and the unaffected part, resulting in impact.
  • FIGS. 1A and 1B A different cold method has been developed to solve the above problems.
  • a method has been proposed in which the connection end of the deformed steel bar is upset at room temperature with a large pressure along the axial direction.
  • the deformed steel bars processed by the above upset method have the problem that tensile strength and hardness are very high due to work hardening, and the impact absorption energy value drops sharply. It may also indicate the phenomenon of breaking at the processed part.
  • the deformed steel bars with connecting ends as shown in Fig. 2D are connected by a force blur and a tensile load is applied in the axial direction and the vertical direction of the shaft.
  • a tensile load is applied in the axial direction and the vertical direction of the shaft.
  • pearlite and ferrite microstructures are arranged long in the working direction, but work hardening occurs when this part is subjected to primary cold plastic working. Occurs during secondary rolling screw machining. Curing atypical steel bar inside the organization there is a problem that is thus destroyed the work hardening occurs.
  • Figs. 6 and 7 show the upset and the original material, respectively.
  • Fig. 7 ⁇ ⁇ shows that the ferrite and pearlite microstructures are continuously elongated in the axial direction
  • Fig. 6 ⁇ shows that the metal microstructures are discontinued in the axial direction. I understand.
  • Fig. 6 and Fig. 7 show the structure along the direction perpendicular to the axis of the upset and the base material, respectively.
  • the ferrite and pearlite structures are uniformly distributed in the base material in Fig. 7
  • the metal structure becomes considerably coarse. This shows that the texture of the upset portion is formed unevenly.
  • the present invention has been devised to solve the above various problems. Rolling thread processing into the lead and joint of the deformed steel bar without cutting, or swaging the connecting end of the deformed steel bar larger than the diameter of the fuselage surface.
  • connection end of the deformed steel bar for concrete reinforcement which has increased tensile strength while maintaining the inherent fiber structure of the deformed steel bar by forming the part, and the deformed steel bar connection end obtained by this method Providing a department has its purpose.
  • the present invention improves the mechanical strength by being manufactured by cold swaging and rolled screw processing without applying heat, thereby increasing the metal structure and reducing the internal structure including the cylindrical body.
  • a method for adding a connection end of a deformed steel bar for concrete reinforcement, which is capable of withstanding high loads and impacts by being maintained in an inherent structure, and a connection end of a deformed steel bar obtained by this method There are other objectives in providing the department.
  • FIG. 1A is a schematic view of a connection end of a deformed steel bar processed by an upset method according to a conventional technique.
  • FIG. 1B is a diagram showing a shape obtained by rolling and forming a connecting end portion of a deformed steel bar processed by the upset method of FIG. 1A.
  • FIG. 2A to FIG. 2C are processing sequence diagrams of a connection end portion of a deformed steel bar according to the related art.
  • FIG. 2D is a diagram of a paddle state of a notch portion generated by a cold plastic working degree.
  • 3A to 3D are flowcharts showing a method of processing a connection end of a deformed steel bar for concrete reinforcement according to the present invention.
  • FIG. 3E is a thread shape diagram of the connection end portion of the deformed steel bar illustrated in FIG. 3D with the lateral joints facing upward.
  • FIG. 4A and FIG. 4B are swaging state diagrams of the deformed bar according to the present invention.
  • FIG. 5A and FIG. 5B are sequence diagrams for processing a rolled screw portion without performing a swaging step as another embodiment of the present invention.
  • FIG. 6A is a metallographic diagram along the axial direction of the connection end portion in FIG.
  • FIG. 6B is a metal thread diagram along a direction perpendicular to the axis of the connection end of FIG.
  • FIG. 7A is a metallographic diagram of an original material used in the present invention and the prior art along the axial direction.
  • FIG. 7B is a metallographic diagram along the direction perpendicular to the axis of the original material used in the present invention and the prior art.
  • FIG. 8A is a metallographic diagram of the connection end portion of the deformed steel bar according to the present invention in the axial direction.
  • FIG. 8B is a metal assembly diagram along a direction perpendicular to the axis of the connection end of the modified steel bar according to the present invention.
  • FIGS. 9A and 9B are desirable illustrations of threads formed at the connection end of the modified steel bar according to the present invention.
  • FIG. 10 is an enlarged view of the screw portion of FIG. 3E.
  • FIG. 11A to FIG. 11C are views showing a state in which a deformed steel bar for concrete reinforcement is connected with a coupler.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention relates to a method for connecting at least one of a transverse rib formed on a cylindrical body surface and a deformed steel bar having a number of circumferential nodes.
  • a method for processing a connection end of a deformed steel bar for concrete reinforcement in which a screw is processed only in a leave and a node formed in a predetermined section on an end side.
  • the present invention also relates to a deformed steel bar for interconnecting a deformed steel bar in which a lateral leave and a large number of circumferential nodes are formed on the surface of a cylindrical body, at least one end of the deformed steel bar.
  • the predetermined section of the portion is formed by swaging to be larger than the diameter of the cylindrical body surface by a predetermined size, the swaging is performed as described above.
  • the present invention provides a deformed steel bar for reinforcing concrete in which a thread is formed at a lateral leave and a circumferential node.
  • a deformed steel bar for interconnecting a deformed steel bar in which a lateral leave and a large number of circumferential nodes are formed on a cylindrical body surface at least one of the above-described deformed steel bars has a predetermined section at one end. Is formed to be larger than the diameter of the cylindrical body surface by a predetermined size by swaging, but the above-mentioned swaged transverse ribs and threaded joints at the circumferential section are used for concrete reinforcement.
  • Fig. 3A shows the deformed steel bar for concrete reinforcement before processing.
  • the deformed steel bar for concrete reinforcement (100) has a prototype body (10) and nodes formed at equal intervals on the circumferential surface of the body. (20), and a lateral leave formed in the axial direction of the cylindrical body ⁇ ).
  • Figure 3 ⁇ shows the swaging process, in which a fluid or mechanical device is inserted into a swaging mold made of two or more pieces or rolls (Figure 4 ⁇ is a front view, and Figure 4 ⁇ is a side view). Perform the swaging process at room temperature with strong force. Along with this, the diameter of the leave (30) and the joint (20) of the connection end (40) shown in Fig. 3 ⁇ is squeezed by a predetermined size larger than the body diameter (10) of the deformed steel bar (100).
  • the height ( ⁇ 2) of the circumferential knot (20) and the horizontal leave (30) after being removed is the circumferential knot ( ⁇ ) or the horizontal leave height (HI) of the original material. It is desirable to form 5 to 95% or more of this. This is because when the swaging diameter is less than 5% of the knot or leave height of the original material, that is, when it is close to the diameter of the cylindrical body, the notch probability increases, and when it is more than 95%, When approaching the knots or leave heights of the original material, the rolled thread machining length must be longer than the thread length corresponding to the nominal diameter of the deformed bar.
  • the swaging diameter is equal to that of the knot or lead in the state of the original material. It is a well-known fact that the height is not necessarily limited to 5 to 95% of the bush height, but may appear slightly different depending on the manufacturing specifications of each reinforcing steel company or the swaging condition.
  • the boundary between the circumferential node (20) and the cylindrical body (10) is processed so as to maintain the shape of the original material, thereby suppressing the occurrence of cracks. Can be made more reliable.
  • the axis (19) of the cylindrical body (10) and the axis (59) of the swaging part (50) are aligned.
  • the deformed protruding portions of the nodes (20) and the leaves (30) or the deformed bar steel can be straightened through this process.
  • the cross-section (53) of the connecting end protruded in the swaging process is cross-sectioned and chamfered, and the cross-section (53) is flattened to obtain a cross-section (53).
  • the outer peripheral edge (55) is chamfered. In this way, it is intended to suppress screw damage at the corners when handling deformed steel bars and to improve the tightenability.
  • FIG. 3D and FIG. 3E are state diagrams in which rolled screws have been machined at the connection ends of the deformed steel bars that have been swaged.
  • Fig. 3D shows the shape of the thread when the transverse leave is located in the front direction. Although the outer peripheral surface of the swaging part (50) is rolled, the transverse leave (30) is used. The complete thread (60) is formed at the circumferential node (20) and the incomplete thread (61) is formed at the cylindrical body.
  • FIG. 3E is a view showing the shape of the thread when the above-mentioned lateral leave is positioned on the upper side, and shows a state where a complete thread is machined into the joint portion and the cylindrical body surface.
  • the outer diameter (64, 62) of the rolled screw portion (60, 61) is formed larger than the diameter (11) of the body ⁇ ). In this way, the thread (60, 61) of the deformed steel bar for concrete reinforcement processed according to the present invention is not cut, and the circumferential joint (20) and the lateral leave (30) are cooled.
  • the mechanical strength is improved by inter-swinging and rolling thread processing, the metal structure becomes finer, and the internal structure including the cylindrical body (10) maintains its inherent structure, so high loads and impacts Also endure.
  • Table 1 shows a comparative example of the tensile strength of the deformed steel bars processed according to the present invention and the corresponding deformed steel bars of the ASTM (US Industrial Standard) standard and the KS (Korean Industrial Standard) standard. [Table 1] Tensile strength (kgfZmm 2 )
  • connection end of the deformed steel bar is swaged
  • the present invention is not limited to this.
  • a rolled screw portion can be formed in a node (20 ′;) and a leave (30 ′) of the original material itself of the deformed bar.
  • a coupler with a length greater than the sum of the diameters of both deformed steel bars must be used.However, when rolling threads are processed in the original material state, work hardening does not occur. Not only does this not only make it easier, but also there is no notch that adversely affects tensile strength.
  • FIGS. 8A and 8B show micrographs of the structure of the connection end portion of the deformed steel bar according to the present invention.
  • Fig. 8A shows the metal structure along the axial direction of the deformed bar, and it can be seen that the continuity of the pearlite and ferrite structures shown in Fig. 7A appears more clearly and the structure becomes denser.
  • Fig. 8B shows the microstructure of the deformed bar in the direction perpendicular to the axis, which appears denser than the pearlite and ferrite microstructures in Fig. 7B.
  • the diameter of the thread valley (65) at the boundary adjacent to the above-mentioned leave (30) and the joint (20) at the roll-formed thread (60) is changed to the other side. It is possible to suppress the stress concentration phenomenon by processing sequentially larger than the valley diameter (63).
  • FIG. 3A shows a deformed steel bar (100) for concrete reinforcement in which the leaves (30) and the nodes (20) are formed, but the present invention is not limited to this. Or it can also be applied to deformed steel bars for concrete reinforcement with leaves formed by X-rays.
  • FIGS. 11A to 11C show a method of connecting the deformed steel bars for concrete reinforcement of the present invention configured as described above.
  • the shape of the rolled thread (60, 61) corresponds to the shape of the rolled thread (60, 61) formed at the connection end of each deformed steel bar (100).
  • the use of a coupler (200) having a nut part allows the threaded threaded parts formed at the odd-shaped connection ends to be interconnected.
  • connection is formed by cold swaging and rolling
  • the threads are formed completely in the leaves and joints, and the incomplete threads are formed in the cylindrical body to maximize work hardening.

Abstract

A method of processing the connecting ends of deformed steel bars used for reinforcing concrete, comprising the steps of either machining a raw material for a deformed steel bar and forming rolled threads in the ribs and nodes or swaging the connecting end of the deformed steel bar to provide a greater diameter than that of a barrel and forming rolled threads therein, thereby improving the mechanical strength and faciliting processing while retaining the intrinsic fiber structure of deformed steel bars and the processing cost is greatly reduced; and a deformed steel bar obtained by this method. While cold swaging is performed such that a predetermined region on the side associated with the connecting end of at least one deformed steel bar having transverse ribs and a number of circumferential nodes on its cylindrical barrel surface is plastically deformed at ordinary temperature, the method includes a first stage for processing the transverse ribs and circumferential nodes to have a diameter greater than that of the cylindrical barrel by a predetermined amount, and a second stage for forming a threaded portion by rolling a predetermined region on the side associated with the connecting end of the swaged, deformed steel bar.

Description

明 細 書 コンクリート補強用の異型棒鋼の連結端部の加工方法及び  Description Processing method of connecting end of deformed steel bar for concrete reinforcement and
この方法により加工された異型棒鋼 技術分野 本発明は建設、 土木現場で施工物の骨格を形成するコンクリート補強用の異 型棒鋼の連結端部のねじ加工方法と、 この方法により加工された異型棒鋼に関 するものである。 背景技術 一般に、 建設及び土木現場ではコンクリート補強用の異型棒鋼を使用して基 本骨格を立てた後にコンクリートを打ち込み ·養生させる過程で施工物を立て る。 ここで、 異型 ^とは表面に突起が形成されたことを意味するのに、 通例 的に軸線方向の突起を 「リーブ」 と称すり、 軸線以外の突起すなわち円周方向 の突起を 「節」 と称する。  TECHNICAL FIELD The present invention relates to a method of threading a connection end of a deformed steel bar for concrete reinforcement which forms a framework of a construction at a construction or civil engineering site, and a deformed steel bar processed by this method. It is about. BACKGROUND ART In general, at construction and civil engineering sites, concrete structures are erected in the process of casting and curing concrete after setting up a basic framework using deformed steel bars for concrete reinforcement. Here, atypical ^ means that protrusions are formed on the surface, but usually, the protrusions in the axial direction are called “reaves”, and the protrusions other than the axis, that is, the protrusions in the circumferential direction are “nodes”. Called.
そして、 上記コンクリート補強用の異型棒鋼は製造業体で所定の長さで切断 されて供給されるために施工物の大きさによってコンクリート捕強用の異型棒 鋼を切断したり相互連結して必要な長さで使用するようになる。  Since the above-mentioned deformed steel bars for concrete reinforcement are cut and supplied at a specified length by the manufacturing industry, it is necessary to cut or interconnect the deformed steel bars for concrete reinforcement depending on the size of the construction. Will be used at a reasonable length.
上記異型棒鋼を相互連結する時、 従来には各異型棒鋼の連結端部を重畳させ た後、 通常鉄ワイヤーで結束させるラッチング法が利用されていた。 しかし、 これは各異型棒鋼の連結端部を重畳して使用するために材料の損失が大きくて、 鉄ワイヤーを使用して異型棒鋼を連結するので時間の経過によって連結部位が 脆弱になる問題点と共に、 連結作業にともなう人力の損失が大きくなって費用 が高まる問題点があった。  Conventionally, when interconnecting the above-mentioned deformed steel bars, a latching method in which the connecting ends of the respective deformed steel bars are overlapped and then bound with an iron wire has been used. However, this is a problem in that the connection end of each deformed steel bar is used in an overlapping manner, resulting in a large loss of material, and since the deformed steel bars are connected using iron wire, the connection part becomes weaker with the passage of time. At the same time, there was a problem that the loss of manpower accompanying the connection work increased and the cost increased.
また、 ラッチング法により連結した鉄筋はコンクリートモールタルを打ち込 んで、 養生が完了した後にコンクリートとの附着力によりはじめて連結した鉄 筋構造の特性が発揮されるので、 万一コンクリートモールタル又は養生に問題 がある場合、 構造物の脆弱な構造特性が現れることができる。 Reinforcing bars connected by the latching method are driven by concrete mortar, and after curing is completed, steel bars connected for the first time by the adhesive force with concrete Due to the strength of the muscle structure, if there is a problem with concrete mortar or curing, the fragile structural properties of the structure can appear.
このような問題点を解決するための方法として、 機械的の連結方法の一種で ある連結端部の熱間アップセット法 (upsetting method)が提示された。 この方 法は連結端部を加熱した後、 異型棒鋼の軸方向に力を加えて、 上記連結端部を アップセットさせて、 上記ァップセット部位に転造ねじを加工した。  As a method for solving such a problem, a hot upsetting method of a connection end, which is a kind of mechanical connection method, has been proposed. In this method, after the connection end was heated, a force was applied in the axial direction of the deformed steel bar, the connection end was set up, and a rolling screw was machined at the upset portion.
しかし、 この方法もやはり異型棒鋼の長さが減ることによつて発生する材料 の損失という問題点がある。 さらに、 連結端部に局部的に熱を加える熱間加工 であるから、 熱に影響を受ける部分と影響を受けない部分との間の連結端部の 材質の組織変化によって延伸率が低くなり衝撃に弱くて、 部分的な加熱によつ て不規則的な組織の分布を表す問題点があつた。  However, this method also has a problem that the material is lost due to the reduced length of the deformed bar. In addition, since hot working is performed by locally applying heat to the connection end, the elongation is reduced due to the structural change in the material of the connection end between the heat-affected part and the unaffected part, resulting in impact. There was a problem in that it was weak and showed irregular tissue distribution due to partial heating.
上記問題点を解決するために上記とは異なる冷間方法が開発された。 すなわ ち、 図 1A及び図 1Bに図示した通り常温で異型棒鋼の連結端部を軸方向に沿つ て大きい圧力でアップセットさせる方法が提案された。  A different cold method has been developed to solve the above problems. In other words, as shown in FIGS. 1A and 1B, a method has been proposed in which the connection end of the deformed steel bar is upset at room temperature with a large pressure along the axial direction.
これはアップセットされた連結端部に切削ねじ部を形成する第 1方法と、 ァ ップセットされた連結端部をスキーム(SKIM)する切削加工を経た後に転造ねじ 部を形成させる第 2方法である。 参考に、 第 1方法はフランスのテク二ブルエ スにより開発されたことで、 韓国特許公告第 94- 8311号及びそれの対応の米国 特許第 5, 158, 527に開示されていて、 第 2方法は英国 CCLで開発したことで英 国特許 2 286 782Aに開示されている。  This is a first method of forming a cutting thread at the upset connection end, and a second method of forming a rolled thread after the upset connection end is subjected to a cutting (SCHIM) scheme. is there. For reference, the first method, which was developed by French Techables, is disclosed in Korean Patent Publication No. 94-8311 and its corresponding US Patent No. 5,158,527, and the second method Was developed in the UK CCL and is disclosed in UK Patent 2 286 782A.
し力 し、 上記アップセット法により加工された異型棒鋼は加工硬化によって 引張強度及ぴ硬度がとても高く、 衝撃吸収エネルギー値が急激に落ちる問題点 があって、 組織の境界部では引張試験中に加工部で折れる現象を表すこともす る。  However, the deformed steel bars processed by the above upset method have the problem that tensile strength and hardness are very high due to work hardening, and the impact absorption energy value drops sharply. It may also indicate the phenomenon of breaking at the processed part.
上記冷間アップセット法による異型棒鋼の連結端部の加工方法の問題点を改 善するために、 S本公開特許公報平 10-37386号では図 2Aないし図 2Cに図示 した通り異型棒鋼の連結端部側の所定区間 (dl)ぐらい節(102)とリーブ (103)の 直径が円筒胴体面(101)の直径と同一になるようにスエージングによる冷間塑 性加工を遂行し、 上記塑性加工された部分に転造ねじ(104)を形成した構造が 提示された。 In order to improve the problem of the method of processing the connection end portion of the deformed bar by the cold upset method, in S Patent Publication No. 10-37386, as shown in FIGS. The cold plastic working by swaging is performed so that the diameter of the node (102) and the leave (103) of the predetermined section (dl) at the end side are the same as the diameter of the cylindrical body surface (101). The structure that formed the rolling screw (104) in the processed part Presented.
しかし、 上記日本公開特許公報平 10-37386号の場合はスエージングによる 冷間塑性加工が加工硬化のための目的に従レ、利用されているため塑性工程が難 しくて、 これに伴い生産性及び経済性が低下される問題点がある。 また、 図 2B に図示された通り、 円周方向の節(103)と横方向のリーブ(102)の直径を円 筒胴体面(101)の直径と一致させるようにスエージング加工を遂行する過程で、 リーブと円筒胴体の境界部が互いに相異な組織であるために、 詳細図 "Β'に図 示した通り上記リーブと円筒胴体面の境界部位に切欠きが発生するようになつ て引張強度を急激に低下させる原因になっていて、 これにより図 2D に図示し たような連結端部が形成された異型棒鋼を力ブラーで結合させた後軸方向及び 軸の垂直方向に引張荷重を加えた場合図示されたような破断断面を示す。 また、 熱間圧延製品の場合は加工方向にパーライト、 フェライト組織が長く配列され るのに、 この部分を 1次冷間塑性加工する時加工硬化が発生して、 2次転造ね じ加工時に追加的に加工硬化が発生して異型棒鋼内部の組織が上記加工硬化に よって破壊される問題点がある。  However, in the case of Japanese Patent Application Laid-Open No. Hei 10-37386, cold plastic working by swaging is used according to the purpose of work hardening, so that the plastic process is difficult, resulting in increased productivity. In addition, there is a problem that economic efficiency is reduced. Also, as shown in FIG. 2B, the process of performing swaging so that the diameter of the circumferential node (103) and the lateral leave (102) matches the diameter of the cylindrical body surface (101). Since the boundary between the sleeve and the cylindrical body has a different structure from each other, the notch is generated at the boundary between the leave and the cylindrical body surface as shown in the detailed diagram "Β '", and the tensile strength is increased. 2D, the deformed steel bars with connecting ends as shown in Fig. 2D are connected by a force blur and a tensile load is applied in the axial direction and the vertical direction of the shaft. In the case of hot-rolled products, pearlite and ferrite microstructures are arranged long in the working direction, but work hardening occurs when this part is subjected to primary cold plastic working. Occurs during secondary rolling screw machining. Curing atypical steel bar inside the organization there is a problem that is thus destroyed the work hardening occurs.
一方、 異型棒鋼のァップセットされた連結端部の金属組織 (図 6Α及び 6Β)を 元素材の金属組織 (図 7Α及び 7Β)と比較すると、 図 6Α及ぴ図 7Αは各々アップ セット及び元素材の軸方向にともなう金属組織を表したことで、 図 7Αではフ ェライト及びパーライト組織が軸方向に長く連続的に進行される反面に、 図 6Αでは金属組織の軸方向の連続性が途絶えることが分かる。  On the other hand, when comparing the metallographic structure of the upset connection end of the deformed bar (Figs. 6 and 6) with the metallographic structure of the original material (Figs. 7 and 7), Figs. 6 and 7 show the upset and the original material, respectively. Fig. 7 及 び shows that the ferrite and pearlite microstructures are continuously elongated in the axial direction, while Fig. 6Α shows that the metal microstructures are discontinued in the axial direction. I understand.
一方、 図 6Β及ぴ図 7Βは各々アップセット及ぴ元素材の軸の直角方向にとも なう組織を表したことで、 図 7Βの元素材ではフェライト及ぴパーライト組織 が均一に分布している反面に、 図 6Βのアップセット部では金属組織がだいぶ 粗大化になることが分かる。 これで、 アップセット部の組織が不均一に形成さ れることが分かる。 技術的課題 したがって、 本発明は上記の諸般問題点を解決するために案出されたことと して、 異型棒鋼の元素材の切削加工なしリーブと節に転造ねじ加工をしたり、 上記異型棒鋼の連結端部側を胴体表面の直径より大きくスエージング加工して、 ここに転造ねじ部を形成することによって、 異型棒鋼の固有の繊維組織はその まま維持しながら引張強度を大きくしたコンクリート補強用の異型棒鋼の連結 端部の加工方法及びこの方法によって得られた異型棒鋼め連結端部を提供する にその目的がある。 On the other hand, Fig. 6 and Fig. 7 show the structure along the direction perpendicular to the axis of the upset and the base material, respectively.The ferrite and pearlite structures are uniformly distributed in the base material in Fig. 7 On the other hand, it can be seen that in the upset part in Fig. 6Β, the metal structure becomes considerably coarse. This shows that the texture of the upset portion is formed unevenly. Technical Problems Therefore, the present invention has been devised to solve the above various problems. Rolling thread processing into the lead and joint of the deformed steel bar without cutting, or swaging the connecting end of the deformed steel bar larger than the diameter of the fuselage surface. The method of processing the connection end of the deformed steel bar for concrete reinforcement, which has increased tensile strength while maintaining the inherent fiber structure of the deformed steel bar by forming the part, and the deformed steel bar connection end obtained by this method Providing a department has its purpose.
また、 本発明は熱を加えないで冷間スエージング及び転造ねじ加工により製 造されることによって機械的強度が向上して、 金属組織が緻密になって、 円筒 胴体を含んだ内部組織を固有組織で維持されるようにして高い荷重と衝撃にも 耐えることができるようにしたコンクリート補強用の異型棒鋼の連結端部の加 ェ方法及びこの方法によつて得られた異型棒鋼の連結端部を提供するに他の目 的がある。  In addition, the present invention improves the mechanical strength by being manufactured by cold swaging and rolled screw processing without applying heat, thereby increasing the metal structure and reducing the internal structure including the cylindrical body. A method for adding a connection end of a deformed steel bar for concrete reinforcement, which is capable of withstanding high loads and impacts by being maintained in an inherent structure, and a connection end of a deformed steel bar obtained by this method There are other objectives in providing the department.
また、 本発明は連結端部をアップセットさせないことにより加工硬化による 組織の脆弱点を補完するためのコンクリート補強用の異型棒鋼の連結端部の加 ェ方法及びこの方法によつて得られた異型棒鋼の連結端部を提供するにまた別 の目的がある。 図面の簡単な説明 図 1Aは従来技術にかかるアップセット法により加工された異型棒鋼の連結端 部の形状図。  Further, the present invention provides a method of adding a connecting end of a deformed steel bar for concrete reinforcement to supplement a weak point of a structure due to work hardening by not upsetting the connecting end, and a deformed shape obtained by this method. Providing the connecting end of the steel bar has another purpose. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic view of a connection end of a deformed steel bar processed by an upset method according to a conventional technique.
図 1Bは図 1Aのァップセット法により加工された異型棒鋼の連結端部に転造ね じ加工された形状図。 FIG. 1B is a diagram showing a shape obtained by rolling and forming a connecting end portion of a deformed steel bar processed by the upset method of FIG. 1A.
図 2Aないし図 2Cは従来技術にかかる異型棒鋼の連結端部の加工順序図である。 図 2Dは冷間塑性加工度によって発生した切欠き部のパダン状態図である。 FIG. 2A to FIG. 2C are processing sequence diagrams of a connection end portion of a deformed steel bar according to the related art. FIG. 2D is a diagram of a paddle state of a notch portion generated by a cold plastic working degree.
図 3Aないし図 3Dは本発明にかかるコンクリート補強用の異型棒鋼の連結端部 の加工方法を表した順序図。 3A to 3D are flowcharts showing a method of processing a connection end of a deformed steel bar for concrete reinforcement according to the present invention.
図 3Eは図 3Dの横方向の節を上側として図示された異型棒鋼の連結端部のねじ 形状図。 図 4A及び図 4Bは本発明による異型棒鋼のスエージング加工状態図である。 図 5A及び図 5Bは本発明の他の実施例としてスエージング工程を実施しなくて 転造ねじ部を加工するための順序図である。 FIG. 3E is a thread shape diagram of the connection end portion of the deformed steel bar illustrated in FIG. 3D with the lateral joints facing upward. FIG. 4A and FIG. 4B are swaging state diagrams of the deformed bar according to the present invention. FIG. 5A and FIG. 5B are sequence diagrams for processing a rolled screw portion without performing a swaging step as another embodiment of the present invention.
図 6Aは図 1の連結端部の軸方向にともなう金属組織図である。 FIG. 6A is a metallographic diagram along the axial direction of the connection end portion in FIG.
図 6Bは図 1の連結端部の軸の直角方向にともなう金属糸且織図である。 FIG. 6B is a metal thread diagram along a direction perpendicular to the axis of the connection end of FIG.
図 7Aは本発明及び従来技術に使われる元素材の軸方向にともなう金属組織図 である。 FIG. 7A is a metallographic diagram of an original material used in the present invention and the prior art along the axial direction.
図 7Bは本発明及び従来技術に使われる元素材の軸の直角方向にともなう金属 組織図である。 FIG. 7B is a metallographic diagram along the direction perpendicular to the axis of the original material used in the present invention and the prior art.
図 8Aは本発明にかかる異型棒鋼の連結端部の軸方向にともなう金属組織図で ある。 FIG. 8A is a metallographic diagram of the connection end portion of the deformed steel bar according to the present invention in the axial direction.
図 8Bは本発明にかかる異型棒鋼の連結端部の軸の直角方向にともなう金属組 緣図である。 FIG. 8B is a metal assembly diagram along a direction perpendicular to the axis of the connection end of the modified steel bar according to the present invention.
図 9A及び図 9Bは本発明にかかる異型棒鋼の連結端部に形成されたねじ山の望 ましい例示図である。 FIGS. 9A and 9B are desirable illustrations of threads formed at the connection end of the modified steel bar according to the present invention.
図 10は図 3Eのねじ部の拡大図である。 FIG. 10 is an enlarged view of the screw portion of FIG. 3E.
図 11Aないし図 11Cはコンクリート補強用の異型棒鋼をカプラーで連結する状 態図である。 発明を実施するための最良の形態 上記目的を達成するために本発明は、 円筒胴体面に形成された横方向のリー ブと多数の円周方向の節を持った異型棒鋼の少なくとも一つの連結端部側の所 定区間に形成されたリーブと節にだけねじが加工されるようにしたコンクリ一 ト補強用の異型棒鋼の連結端部の加工方法を提供する。 FIG. 11A to FIG. 11C are views showing a state in which a deformed steel bar for concrete reinforcement is connected with a coupler. BEST MODE FOR CARRYING OUT THE INVENTION In order to achieve the above object, the present invention relates to a method for connecting at least one of a transverse rib formed on a cylindrical body surface and a deformed steel bar having a number of circumferential nodes. Provided is a method for processing a connection end of a deformed steel bar for concrete reinforcement, in which a screw is processed only in a leave and a node formed in a predetermined section on an end side.
また、 本発明は、 円筒胴体面に横方向のリーブと多数の円周方向の節が形成 された異型棒鋼を相互連結するための異型棒鋼において、 上記異型棒鋼の少な くともいずれか一側端部の所定区間がスエージング加工により円筒胴体面の直 径より所定大きさぐらい大きく形成されるものの、 上記スエージング加工され た横方向のリーブと円周方向の節にねじ部が成形されたコンクリ一ト補強用の 異型棒鋼 を提供する。 The present invention also relates to a deformed steel bar for interconnecting a deformed steel bar in which a lateral leave and a large number of circumferential nodes are formed on the surface of a cylindrical body, at least one end of the deformed steel bar. Although the predetermined section of the portion is formed by swaging to be larger than the diameter of the cylindrical body surface by a predetermined size, the swaging is performed as described above. The present invention provides a deformed steel bar for reinforcing concrete in which a thread is formed at a lateral leave and a circumferential node.
また、 円筒胴体面に横方向のリーブと多数の円周方向の節が形成された異型 棒鋼を相互連結するための異型棒鋼において、 上記異型棒鋼の少なくともいず れか一側端部の所定区間がスエージング加工により円筒胴体面の直径より所定 大きさぐらい大きく形成されるものの、 上記スエージング加工された横方向の リーブと円周方向の節にねじ部が成形されたコンクリ一ト補強用の異型棒鋼を 提供する。  Further, in a deformed steel bar for interconnecting a deformed steel bar in which a lateral leave and a large number of circumferential nodes are formed on a cylindrical body surface, at least one of the above-described deformed steel bars has a predetermined section at one end. Is formed to be larger than the diameter of the cylindrical body surface by a predetermined size by swaging, but the above-mentioned swaged transverse ribs and threaded joints at the circumferential section are used for concrete reinforcement. Provide deformed steel bars.
(実施例) (Example)
本発明は以下、 添付された図面を参照して本発明の実施例を詳細に説明する。 図 3Aは加工前のコンクリート補強用の異型棒鋼を表したことで、 コンクリ 一ト補強用の異型棒鋼(100)は原形胴体(10)と、 それの円周面に等間隔で形成 された節(20)と、 上記円筒胴体 αο)の軸線方向に形成された横方向のリーブ Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Fig. 3A shows the deformed steel bar for concrete reinforcement before processing. The deformed steel bar for concrete reinforcement (100) has a prototype body (10) and nodes formed at equal intervals on the circumferential surface of the body. (20), and a lateral leave formed in the axial direction of the cylindrical body αο).
(30)で構成される。 通常、 長さが長い異型棒鋼を切断した場合に図 3Αに示し た通り連結端部 (40)が異型棒鋼の中間部に対して曲がっている場合もある。 図 3Β はスエージング工程を表したことで、 2個以上の片またはロールでな されたスエージング金型 (図 4Αは正面図、 図 4Βは側面図)に挿入させた後に流 体または機械的な力を加えて常温でスエージング加工を実施する。 これに伴い、 図 3Αに表わした連結端部 (40)のリーブ (30)及び節 (20)の直径が異型棒鋼(100) の胴体直径(10)より所定大きさぐらい大きく圧搾されて、 圧搾された後の円周 方向の節(20)と横方向のリーブ (30)の高さ(Η2)は元素材の状態の円周方向の節 (Η)または横方向のリーブ高さ(HI)の 5〜95%以上大きく形成させることが望ま しい。 これはスエージング加工直径が元素材の状態の節またはリーブ高さの 5%以下の場合、 すなわち円筒胴体の直径に近接する場合切欠き発生確率が大き くなつて、 95%以上の場合、 すなわち元素材の節またはリーブ高さに近接する 場合は転造ねじ加工長さを異型棒鋼の公称直径に該当するねじ長さの以上長く ならなければならない。 (30). Normally, when a long deformed steel bar is cut, the connecting end (40) may bend with respect to the middle part of the deformed steel bar as shown in Fig. 3Α. Figure 3Β shows the swaging process, in which a fluid or mechanical device is inserted into a swaging mold made of two or more pieces or rolls (Figure 4Α is a front view, and Figure 4Β is a side view). Perform the swaging process at room temperature with strong force. Along with this, the diameter of the leave (30) and the joint (20) of the connection end (40) shown in Fig. 3Α is squeezed by a predetermined size larger than the body diameter (10) of the deformed steel bar (100). The height (Η2) of the circumferential knot (20) and the horizontal leave (30) after being removed is the circumferential knot (Η) or the horizontal leave height (HI) of the original material. It is desirable to form 5 to 95% or more of this. This is because when the swaging diameter is less than 5% of the knot or leave height of the original material, that is, when it is close to the diameter of the cylindrical body, the notch probability increases, and when it is more than 95%, When approaching the knots or leave heights of the original material, the rolled thread machining length must be longer than the thread length corresponding to the nominal diameter of the deformed bar.
し力 >し、 本実施例ではスエージング加工直径が元素材の状態の節またはリー ブ高さの 5〜95%で必ず限定するのではなくて、 各鉄筋会社の製造仕様により、 またはスエージング加工状態によって多少異なり現れうることは周知の事実で ある。 In this embodiment, the swaging diameter is equal to that of the knot or lead in the state of the original material. It is a well-known fact that the height is not necessarily limited to 5 to 95% of the bush height, but may appear slightly different depending on the manufacturing specifications of each reinforcing steel company or the swaging condition.
また、 本実施例では上記スエージング加工時、 円周方向の節(20)と円筒胴体 (10)の境界面が元素材の形状を維持するように加工して动欠きの発生を抑制す ることによって信頼性があるようにすることもできる。  Further, in the present embodiment, at the time of the above-mentioned swaging, the boundary between the circumferential node (20) and the cylindrical body (10) is processed so as to maintain the shape of the original material, thereby suppressing the occurrence of cracks. Can be made more reliable.
これで、 円筒胴体 (10)の軸線(19)とスエージング部 (50)の軸線 (59)がー致す るようにする。 また、 この工程を経ながら節(20)とリーブ (30)の畸形的な突出 部分または異型棒鋼の奇形をまっすぐに整えることができる。  Thus, the axis (19) of the cylindrical body (10) and the axis (59) of the swaging part (50) are aligned. In addition, the deformed protruding portions of the nodes (20) and the leaves (30) or the deformed bar steel can be straightened through this process.
以後、 図 3Cのように、 スエージング工程で突出された連結端部の断面(53) を断面及び面取り加工(facing & chamfering)して、 断面(53)を平平にして、 断面 (53)の外周縁 (55)を面取り作業をする。 これで、 異型棒鋼の取扱時の角部 のねじ損傷を抑制して締結性を向上させることである。  Thereafter, as shown in FIG. 3C, the cross-section (53) of the connecting end protruded in the swaging process is cross-sectioned and chamfered, and the cross-section (53) is flattened to obtain a cross-section (53). The outer peripheral edge (55) is chamfered. In this way, it is intended to suppress screw damage at the corners when handling deformed steel bars and to improve the tightenability.
次に、 図 3D及び図 3Eはスエージング加工作業が完了した異型棒鋼の連結端 部に転造ねじが加工された状態図である。 図 3D は横方向のリーブが正面方向 に位置された場合のねじ部の形状図で、 上記スエージング部(50)の外周面に転 造加工を実施するものの、 上記横方向のリーブ (30)と円周方向の節 (20)には完 全ねじ部 (60)が形成されるようにして、 円筒胴体部には不完全ねじ部 (61)を形 成するようになる。 図 3Eは上記横方向のリーブが上側に位置された場合のね じ部の形状図で節部分と円筒胴体面に完全ねじ部が加工された状態を示す。 上記転造ねじ部 (60、 61)の加工時それの外径 (64、 62)は胴体 θ)の直径(11) より大きく形成する。 このようにすることによって、 本発明により加工された コンクリート補強用の異型棒鋼のねじ部 (60、 61)は切断にならないで円周型の 節 (20)と横方向のリーブ (30)が冷間スエージング及び転造ねじ加工によって機 械的強度が向上して、 金属組織が微密になって、 円筒胴体 (10)を含んだ内部組 織は固有組織を維持するので、 高い荷重と衝撃にも耐えるようになる。  Next, FIG. 3D and FIG. 3E are state diagrams in which rolled screws have been machined at the connection ends of the deformed steel bars that have been swaged. Fig. 3D shows the shape of the thread when the transverse leave is located in the front direction. Although the outer peripheral surface of the swaging part (50) is rolled, the transverse leave (30) is used. The complete thread (60) is formed at the circumferential node (20) and the incomplete thread (61) is formed at the cylindrical body. FIG. 3E is a view showing the shape of the thread when the above-mentioned lateral leave is positioned on the upper side, and shows a state where a complete thread is machined into the joint portion and the cylindrical body surface. The outer diameter (64, 62) of the rolled screw portion (60, 61) is formed larger than the diameter (11) of the body θ). In this way, the thread (60, 61) of the deformed steel bar for concrete reinforcement processed according to the present invention is not cut, and the circumferential joint (20) and the lateral leave (30) are cooled. The mechanical strength is improved by inter-swinging and rolling thread processing, the metal structure becomes finer, and the internal structure including the cylindrical body (10) maintains its inherent structure, so high loads and impacts Also endure.
本願発明により加工された異型棒鋼とこれに対応する ASTM (米国工業標準) 規格及び KS (韓国工業標準)規格の異型棒鋼の引っ張り強度に対する比較例は 次の 【表 1】 のとおりである。 【表 1】 引っ張り強度 (kgfZmm2) Table 1 below shows a comparative example of the tensile strength of the deformed steel bars processed according to the present invention and the corresponding deformed steel bars of the ASTM (US Industrial Standard) standard and the KS (Korean Industrial Standard) standard. [Table 1] Tensile strength (kgfZmm 2 )
Figure imgf000010_0001
本実験では 10個の試料で引っ張り強度試験をしたし、 引用 1で 3番の試料 と引用 2での 5番の試料の場合引つ張り強度が急に落ちることがわかるが、 こ れはねじ加工の後切欠きによる破断といえるし、 本発明では切欠きによる破断 は発生しないことが分かる。 上記の通りに異型^ 3の連結端部に完全ねじと不完全ねじが形成された場合 には異型棒鋼の相互間を連結するカプラーが不必要に大きくなる必要がないし、 通常両異型棒鋼の直径長さを足した長さの 80%の長さであるカプラーを採用し てもいい。 また、 上記不完全ねじ部分は内部硬化層が表面にだけ発生するので 加工が容易になる。
Figure imgf000010_0001
In this experiment, a tensile strength test was performed on 10 samples, and it can be seen that the tensile strength of the sample No. 3 in Reference 1 and the sample No. 5 in Reference 2 dropped sharply. It can be said that the fracture is caused by the notch after the processing, and it is understood that the fracture due to the notch does not occur in the present invention. As described above, when the complete screw and the incomplete screw are formed at the connection end of the deformed ^ 3, the coupler connecting the deformed bars does not need to be unnecessarily large, and usually the diameter of both deformed bars You may use a coupler that is 80% of the total length. In addition, since the internal hardened layer is generated only on the surface of the incompletely threaded portion, the processing is facilitated.
一方、 本実施例では異型棒鋼の連結端部をスエージング加工した例を提示し ているが、 これに限定するのではない。 一例として本発明では図 5A及ぴ図 5B に図示された通り、 上記異型棒鋼の元素材自体の節(20';)とリーブ (30' )に転造 ねじ部を形成することもできる。 この場合には両異型棒鋼の直径を足した長さ より大きい長さのカプラーを採用しなければならないが、 元素材状態で転造ね じを加工する場合には加工硬化が起きないので、 加工性を容易にするだけでは なく、 引張強度上に悪影響を与える切欠きも発生しない。  On the other hand, in this embodiment, an example in which the connection end of the deformed steel bar is swaged is presented, but the present invention is not limited to this. As an example, in the present invention, as shown in FIG. 5A and FIG. 5B, a rolled screw portion can be formed in a node (20 ′;) and a leave (30 ′) of the original material itself of the deformed bar. In this case, a coupler with a length greater than the sum of the diameters of both deformed steel bars must be used.However, when rolling threads are processed in the original material state, work hardening does not occur. Not only does this not only make it easier, but also there is no notch that adversely affects tensile strength.
本発明にかかる異型棒鋼の連結端部の組織写真を図 8A及び図 8Bに示した。 図 8Aは異型棒鋼の軸方向にともなう金属組織を表したことで、 図 7Aに現れ たパーライト及びフェライト組織の連続性がより一層明確に現れて、 その組織 も稠密になることが分かる。 FIGS. 8A and 8B show micrographs of the structure of the connection end portion of the deformed steel bar according to the present invention. Fig. 8A shows the metal structure along the axial direction of the deformed bar, and it can be seen that the continuity of the pearlite and ferrite structures shown in Fig. 7A appears more clearly and the structure becomes denser.
また、 図 8B は異型棒鋼の軸の直角方向による金属組織を表したことで、 図 7Bのパーライト及びフェライト組織より稠密に現れる。  Fig. 8B shows the microstructure of the deformed bar in the direction perpendicular to the axis, which appears denser than the pearlite and ferrite microstructures in Fig. 7B.
本実施例での上記転造ねじ加工において、 丸ねじ、 三角ねじなどの各種ねじ の全部が可能であるが、 望ましくは丸ねじで加工である。 例えば図 9A及び図 9Bのようにねじを加工しうる。  In the above-mentioned rolling screw working in this embodiment, all kinds of screws such as a round screw and a triangular screw can be used, but it is preferable to work with a round screw. For example, a screw can be machined as shown in FIGS. 9A and 9B.
その理由は丸ねじで加工する場合、 ねじ山の断面が丸くなり梯形ねじのよう に歯根部分が厚く形成されることによって、 抵抗力が大きくなつて、 その結果 切欠き(notch)現象が発生されないことは勿論、 締結力が良くてホコリ、 砂な どが多くの建設現場で容易に締結しうるためである。  The reason is that when processing with a round screw, the cross section of the thread is rounded and the root part is formed thick like a trapezoidal screw, so the resistance is increased, and as a result, the notch phenomenon does not occur Of course, the strength is good and dust and sand can be easily fastened at many construction sites.
また、 上記丸ねじのピッチを一般ねじょり狭くすると締結力及び強度を向上 させることができることはもちろん振動がたくさん発生しても弛緩される心配 なくなる。  In addition, when the pitch of the above-mentioned round screw is made narrower, the tightening force and strength can be improved. Of course, there is no fear of loosening even if a lot of vibration is generated.
そして、 図 10 に図示された通り、 転造成形ねじ部 (60)で上記リーブ (30)及 ぴ節 (20)に隣接した境界部のねじ山の谷の径 (65)を他の側部の谷の径 (63)より 順次大きく加工して応力集中現象を抑制しうる。  Then, as shown in FIG. 10, the diameter of the thread valley (65) at the boundary adjacent to the above-mentioned leave (30) and the joint (20) at the roll-formed thread (60) is changed to the other side. It is possible to suppress the stress concentration phenomenon by processing sequentially larger than the valley diameter (63).
そして、 図 3Aでリーブ (30)と節 (20)が形成されたコンクリート補強用の異 型棒鋼(100)を図示しているが、 本発明はこれに限定されるのではなくて、 斜 線または X線で形成されるリーブを有するコンクリート補強用の異型棒鋼にも 適用できる。  FIG. 3A shows a deformed steel bar (100) for concrete reinforcement in which the leaves (30) and the nodes (20) are formed, but the present invention is not limited to this. Or it can also be applied to deformed steel bars for concrete reinforcement with leaves formed by X-rays.
上記の通りに構成された本発明のコンクリート補強用の異型棒鋼を連結する 方法は図 11Aないし図 11Cに表した。 図面に図示した通り、 各異型棒鋼(100) の連結端部に形成された転造ねじ部 (60、 61)を連結するために上記転造ねじ部 (60、 61)の形状と対応されるナツト部を具備したカプラー (200)を採用して異 型 の連結端部に形成された転造ねじ部を相互連結できるようになることで ある。  FIGS. 11A to 11C show a method of connecting the deformed steel bars for concrete reinforcement of the present invention configured as described above. As shown in the drawing, the shape of the rolled thread (60, 61) corresponds to the shape of the rolled thread (60, 61) formed at the connection end of each deformed steel bar (100). The use of a coupler (200) having a nut part allows the threaded threaded parts formed at the odd-shaped connection ends to be interconnected.
以上で説明した本発明は前述した実施例及び添付された図面により限定され ることがなくて、 本発明の技術的思想を抜け出さない範囲内で色々な置換、 変 形及び変更が可能さは本発明が属する技術分野で通常の知識を持った者にあつ て明白なことである。 産業上の利用可能性 上記の本発明によれば、 建設、 土木現場で使われるコンクリート補強用の異 型 の連結端部の鉄筋組織を破壊させないで加工しうるようにしてこの連結 部に対する機械的強度を向上させることができるようになる。 The present invention described above is limited by the embodiments described above and the accompanying drawings. Various substitutions, modifications and alterations are possible without departing from the technical idea of the present invention without departing from the spirit of the present invention, and it is obvious to those skilled in the art to which the present invention belongs. It is. INDUSTRIAL APPLICABILITY According to the present invention described above, it is possible to work without destroying the reinforcing steel structure of the irregular connection end for concrete reinforcement used in construction and civil engineering sites, and to provide a mechanical connection to this connection part. Strength can be improved.
特に、 冷間スエージング加工と転造加工で連結部を形成するものの、 リーブ と節部には完全ねじを成形して、 円筒胴体部には不完全ねじを成形して加工硬 化を最大限抑制させながら上記加工硬化が円筒表面にだけ発生するようにして、 内部組織は元素材の固有の組織をそのまま維持するようにすることによって転 造加工を非常に容易にして生産性を向上させることができるだけでなく、 これ にともなう製造費用も節减できるようになる。 特に、 丸ねじで加工する場合、 締結作業が非常に容易で、 ェ期短縮と費用を節減させることができて、 従来の ァップセット方式によって製造される異型棒鋼の連結構造に比べて異型棒鋼の 長さをそのまま維持するので、 約 1〜2%の材料を節減させることができる長所 がある。  In particular, although the connection is formed by cold swaging and rolling, the threads are formed completely in the leaves and joints, and the incomplete threads are formed in the cylindrical body to maximize work hardening. By suppressing the above work hardening only on the cylindrical surface while suppressing the internal structure and maintaining the original structure of the original material as it is, the rolling process becomes very easy and the productivity is improved. Not only can this be done, but also the associated manufacturing costs. In particular, when processing with round screws, the fastening work is very easy, shortening the period and reducing the cost, and compared with the connection structure of the deformed steel bars manufactured by the conventional upset method, The advantage of maintaining the length is that it saves about 1-2% of the material.

Claims

請求の範囲 The scope of the claims
1. 円筒胴体面に形成された横方向のリーブと多数の円周方向の節を持った 異型棒鋼の少なくとも一つの連結端部側の所定区間に形成されたリーブと節に だけねじが加工されるようにしたコンクリート補強用の異型棒鋼の連結端部の 加工方法。 1. Screws are formed only in the leaves and joints formed in a given section on at least one connection end side of a deformed steel bar having a lateral leave formed on the surface of the cylindrical body and a number of circumferential joints. Processing method of the connection end of deformed steel bar for concrete reinforcement.
2. 円筒胴体面に横方向のリーブと多数の円周方向の節を持った異型棒鋼の 少なくとも一つの異型棒鋼の連結端部側の所定区間を常温で塑性変形されるよ うにスエージング加工作業を遂行するものの、 上記横方向のリーブと円周方向 の節が円筒胴体の直径より所定大きさぐらい大きい直径を持つように加工する 第 1段階と、 2. At least one section of the deformed bar with a lateral leave and a number of circumferential nodes on the cylindrical body surface is swaged so that it can be plastically deformed at room temperature at a specified section on the connection end side. A first step in which the transverse leave and the circumferential knot have a diameter about a predetermined size larger than the diameter of the cylindrical body;
上記スエージング加工された異型棒鋼の連結端部側の所定区間をねじ加工する 第 2段階 Threading a predetermined section on the connection end side of the swaged deformed steel bar 2nd stage
とを含むコンクリート補強用の異型棒鋼の連結端部の加工方法。 And a method of processing a connection end of a deformed steel bar for concrete reinforcement, including:
3. 第 2項において、 3. In paragraph 2,
上記第 2段階はリーブ及び節は完全ねじで加工して、 円筒胴体部は不完全ねじ で加工するコンクリート補強用の異型棒鋼の連結端部の加工方法。 The second stage is a method of processing the connection end of a deformed steel bar for concrete reinforcement, in which the leaves and joints are completely screwed and the cylindrical body is processed with incomplete screws.
4. 第 2項または第 3項において、 4. In paragraph 2 or 3,
上記第 1段階のスエージング加工は冷間スエージング加工でなされて、 上記第 2段階のねじ加工は転造加工でなされるコンクリート補強用の異型棒鋼の連結 端部の加工方法。 The first-stage swaging is performed by cold swaging, and the second-stage threading is performed by rolling, which is a method of processing a connection end of a deformed steel bar for concrete reinforcement.
5. 第 2項または第 3項において、 上記第 1段階のスエージング加工時、 円 筒胴体と横方向リーブの境界面は緩やかな曲面のラウンド面を形成するコンク リ一ト補強用の異型棒鋼の連結端部の加工方法。 5. In Paragraph 2 or Paragraph 3, in the first stage of swaging, the boundary between the cylindrical body and the lateral leave forms a rounded surface with a gentle curve. Processing method of the connection end.
6. 第 2項または第 3項において、 6. In paragraph 2 or 3,
上記第 1段階で、 スエージング加工された異型棒鋼の連結端部の軸と上記リー ブ及び節が形成された異型棒鋼の軸が実質的に同心円をなるコンクリート補強 用の異型棒鋼の連結端部の加工方法。 In the first stage, the connecting end of the deformed steel bar for concrete reinforcement in which the axis of the connecting end of the swaged deformed steel bar and the shaft of the deformed steel bar on which the leaves and nodes are formed is substantially concentric. Processing method.
7. 第 2項または第 3項において、 7. In paragraph 2 or 3,
上記第 1段階のスエージング工程を経た異型棒鋼の連結端部の側断面を断面切 削及び面取り加工するコンクリート補強用の異型棒鋼の連結端部の加工方法。 A method of processing a connection end portion of a deformed steel bar for concrete reinforcement, in which a side cross section of the connection end portion of the deformed steel bar that has undergone the first-stage swaging process is cut and chamfered.
8. 第 2項または第 3項において、 8. In paragraph 2 or 3,
上記第 2段階の転造成形工程は上記ねじ成形部で上記リーブ、 節及び円筒胴体 のうちいずれかひとつに隣接した境界部のねじ山の谷の径を他側の谷の径ょり 順次大きくしたコンクリート補強用の異型棒鋼の連結端部の加工方法。 In the rolling forming step of the second step, the diameter of the thread valley at the boundary adjacent to any one of the leave, the knot, and the cylindrical body in the thread forming section is sequentially increased from the valley of the other side. Of connecting end of deformed steel bar for concrete reinforcement.
9. 第 4項において、 9. In paragraph 4,
上記冷間スエージング加工された部位の直径が円筒胴体の直径より所定大きさ ぐらい大きく圧搾されるものの、 上記圧搾された部分が実質的に元素材の状態 の円周方向の節(H)の高さまたは横方向のリ一ブの高さ(HI)のうちいずれか一 つの 5%〜95%で形成されたコンクリート補強用の異型棒鋼の連結端部の加工方 法。 Although the diameter of the cold swaged portion is squeezed by a predetermined size larger than the diameter of the cylindrical body, the squeezed portion of the circumferential node (H) is substantially in the original material state. A method of machining the connection end of a deformed steel bar for concrete reinforcement formed at 5% to 95% of one of the height or the height of the lateral rib (HI).
10. 円筒胴体面に横方向のリーブと多数の円周方向の節が形成された異型棒 鋼を相互連結するための異型棒鋼において、 10. In a deformed steel bar for interconnecting a deformed steel bar in which a lateral leave and a number of circumferential nodes are formed on the cylindrical body surface,
上記異型棒鋼の少なくともいずれか一側端の所定区間に形成された横方向のリ ーブと円周方向の節にだけねじ部が成形されたコンクリート補強用の異型棒鋼。 A deformed steel bar for concrete reinforcement in which a thread is formed only in a lateral leave and a circumferential node formed in a predetermined section on at least one side end of the deformed steel bar.
11. 第 10項において、 11. In paragraph 10,
上記ねじ部は転造加工により成形されたコンクリート補強用の異型棒鋼。 The threaded portion is a deformed steel bar for concrete reinforcement formed by rolling.
12. 第 10項または第 11項において、 12. In paragraph 10 or 11,
上記ねじ部の長さが異型棒鋼の公称直径に該当するねじ部の長さより所定長さ ぐらい長く形成されたコンクリート補強用の異型棒鋼。 A deformed steel bar for concrete reinforcement, wherein the length of the screw portion is longer than the length of the screw portion corresponding to the nominal diameter of the deformed steel bar by a predetermined length.
13. 円筒胴体面に横方向のリーブと多数の円周方向の節が形成された異型棒 鋼を相互連結するための異型棒鋼において、 13. In a deformed bar for interconnecting deformed bars in which a lateral leave and a number of circumferential nodes are formed on the cylindrical body surface,
上記異型棒鋼の少なくともいずれか一側端部の所定区間がスエージング加工に より円筒胴体面の直径より所定大きさぐらい大きく形成されるものの、 上記ス エージング加工された横方向のリーブと円周方向の節にねじ部が成形されたコ ンクリート補強用の異型棒鋼。 A predetermined section of at least one side end of the deformed steel bar is formed to be larger than a diameter of a cylindrical body surface by a predetermined size by swaging, but the swept lateral rib and the circumferential direction are formed. A deformed steel bar for concrete reinforcement with a threaded section formed at the joint.
14. 第 13項において、 14. In paragraph 13,
上記ねじ部はリ一ブと節の面に塑性加工された完全ねじ部と、 円筒胴体面に塑 ^ロェされた不完全ねじ部を含むコンクリート補強用の異型棒鋼。 The threaded part is a deformed steel bar for concrete reinforcement, including a complete threaded part that is plastically worked on the surface of the ribs and nodes, and an incomplete threaded part that is plasticized on the cylindrical body surface.
15. 第 13項において、 15. In paragraph 13,
上記ねじ部は転造加工により成形されたコンクリート補強用の異型棒鋼。 The threaded portion is a deformed steel bar for concrete reinforcement formed by rolling.
16. 第 13項ないし第 15項のいずれか一項において、 16. In any one of paragraphs 13 to 15,
上記ねじ部の長さが異型棒鋼の公称直径と実質的に同じに形成されたコンクリ ート補強用の異型棒鋼。 A deformed steel bar for concrete reinforcement, wherein the length of the thread portion is substantially the same as the nominal diameter of the deformed steel bar.
17. 第 13項ないし第 15項のいずれか一項において、 17. In any one of paragraphs 13 to 15,
上記ねじ部の長さが異型棒鋼の円周方向の節または横方向のリーブの直径のう ちいずれかひとつと実質的に同じに形成されたコンクリート補強用の異型棒鋼。 A deformed steel bar for concrete reinforcement, wherein the length of the thread portion is substantially the same as one of the diameter of the circumferential node or the lateral leave of the deformed steel bar.
18. 第 13項ないし第 15項のいずれか一項において、 18. In any one of paragraphs 13 to 15,
上記ねじ部の長さが異型棒鋼の円周方向の山形節を少なくとも 2個以上含んで 形成したコンクリート補強用の異型棒鋼。 A deformed steel bar for concrete reinforcement, wherein the length of the screw portion includes at least two circumferential angle-shaped nodes of the deformed steel bar.
19.第 13項ないし第 15項のいずれか一項において、 19.In any one of paragraphs 13 to 15,
上記冷間スエージング加工された部位の直径が円筒胴体の直径より所定大きさ ぐらい大きく圧搾されるものの、 上記圧搾された部分が実質的に元素材の状態 の円周方向の節(H)の高さまたは横方向のリ一ブの高さ(HI)のうちいずれか一 つの 5%〜95%で形成されたコンクリ一ト補強用の異型棒鋼。 Although the diameter of the cold swaged portion is squeezed by a predetermined size larger than the diameter of the cylindrical body, the squeezed portion of the circumferential node (H) is substantially in the original material state. A profiled steel bar for concrete reinforcement formed at 5% to 95% of either the height or the height of the transverse rib (HI).
20. 第 13項ないし第 15項のいずれか 1項において、 20. In any one of paragraphs 13 to 15,
上記転造成形ねじ部で、 上記リーブ及び節に隣接した境界部のねじ山の谷の径 を順次大きく形成したコンクリート補強用の異型棒鋼。 A deformed steel bar for concrete reinforcement, wherein the diameter of the thread valley at the boundary portion adjacent to the leave and the node is sequentially increased in the roll-formed screw portion.
PCT/KR1999/000581 1999-09-27 1999-09-27 Method of processing connecting ends of deformed steel bar used for reinforcing concrete, and deformed steel bar processed by this method WO2001023118A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU60080/99A AU6008099A (en) 1999-09-27 1999-09-27 Method of processing connecting ends of deformed steel bar used for reinforcing concrete, and deformed steel bar processed by this method
JP2001526313A JP3780209B2 (en) 1999-09-27 1999-09-27 Processing method of connecting end of deformed steel bar for concrete reinforcement and deformed steel bar processed by this method
PCT/KR1999/000581 WO2001023118A1 (en) 1999-09-27 1999-09-27 Method of processing connecting ends of deformed steel bar used for reinforcing concrete, and deformed steel bar processed by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR1999/000581 WO2001023118A1 (en) 1999-09-27 1999-09-27 Method of processing connecting ends of deformed steel bar used for reinforcing concrete, and deformed steel bar processed by this method

Publications (1)

Publication Number Publication Date
WO2001023118A1 true WO2001023118A1 (en) 2001-04-05

Family

ID=19571081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR1999/000581 WO2001023118A1 (en) 1999-09-27 1999-09-27 Method of processing connecting ends of deformed steel bar used for reinforcing concrete, and deformed steel bar processed by this method

Country Status (3)

Country Link
JP (1) JP3780209B2 (en)
AU (1) AU6008099A (en)
WO (1) WO2001023118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3527739A4 (en) * 2016-10-13 2020-05-20 Akira Fukuda Screw-type rebar joint structure of deformed rebar and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991073A (en) * 1972-12-30 1974-08-30
GB2162915A (en) * 1984-08-09 1986-02-12 Allied Steel Wire Ltd Reinforcing bar coupling
JPH02204555A (en) * 1989-02-02 1990-08-14 Kurosawa Kensetsu Kk Corrosion preventing coating pc steel rod with thread and manufacture thereof
US5158527A (en) * 1988-02-03 1992-10-27 Techniport S.A. Method and apparatus for mechanically joining concrete-reinforcing rods
US5660594A (en) * 1992-06-01 1997-08-26 Tartuntamarkkinointi Oy Method of making a threaded connection for reinforcing bars
US5776001A (en) * 1994-02-16 1998-07-07 Ccl Systems Limited Thread formation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991073A (en) * 1972-12-30 1974-08-30
GB2162915A (en) * 1984-08-09 1986-02-12 Allied Steel Wire Ltd Reinforcing bar coupling
US5158527A (en) * 1988-02-03 1992-10-27 Techniport S.A. Method and apparatus for mechanically joining concrete-reinforcing rods
JPH02204555A (en) * 1989-02-02 1990-08-14 Kurosawa Kensetsu Kk Corrosion preventing coating pc steel rod with thread and manufacture thereof
US5660594A (en) * 1992-06-01 1997-08-26 Tartuntamarkkinointi Oy Method of making a threaded connection for reinforcing bars
US5776001A (en) * 1994-02-16 1998-07-07 Ccl Systems Limited Thread formation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3527739A4 (en) * 2016-10-13 2020-05-20 Akira Fukuda Screw-type rebar joint structure of deformed rebar and manufacturing method thereof
US11274446B2 (en) 2016-10-13 2022-03-15 Akira Fukuda Screw-type rebar joint structure of deformed rebar and manufacturing method thereof
AU2017341568B2 (en) * 2016-10-13 2022-10-27 Akira Fukuda Screw-type rebar joint structure of deformed rebar and manufacturing method thereof

Also Published As

Publication number Publication date
AU6008099A (en) 2001-04-30
JP3780209B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
TW440482B (en) Manufacture method for concrete-strengthening deformed reinforcement bar and its connecting ends
JPH01295958A (en) Mechanical joining method of round steel for reinforcing concrete and said round steel and mechanical joint using round steel for reinforcing
US4883713A (en) Moldable material reinforcement fibers with hydraulic or non-hydraulic binder and manufacturing thereof
EP0745011B1 (en) Thread formation
US20060059841A1 (en) Reinforced concrete structure, rebar end anchor therefor and method of manufacturing
KR100316435B1 (en) Method of working connection end of deformed bar for reinforcing concrete, deformed bar worked by the method and structure of connecting deformed bar
WO2001023118A1 (en) Method of processing connecting ends of deformed steel bar used for reinforcing concrete, and deformed steel bar processed by this method
JPH10131303A (en) Joint construction of reinforcement
JP2916416B2 (en) Shaped steel bar for reinforced concrete having joints, its joint, and method for forming joint of deformed steel bar for reinforced concrete
US20100003105A1 (en) Method for producing a locking ring bolt and locking ring bolt
JP2023121246A (en) Acute angle screw node reinforcement and light-weight joint
DE19835075A1 (en) Reinforcing fibers for hardenable materials, especially concrete, comprises twisted instead of notched fibers to enhance grip with the matrix material
JP6545735B2 (en) Method of manufacturing deformed bar and method of manufacturing anchor bolt
JP2010168740A (en) Opening reinforcing structure
CN2314138Y (en) Mechanical joint for deformed steel bar with ribs
CN108972871A (en) A kind of construction method for the beams of concrete improving Torsion bearing capacity
DE10039830B4 (en) Use of annular fiber composites as reinforcing elements in concrete
CN216810636U (en) Assembled deviation-adjusting high-strength steel bar mechanical connecting device
JPH07180714A (en) Manufacture of bolt excellent in fatigue strength
CN211622277U (en) NPR spiral reinforcing steel bar
JP7082463B2 (en) Anchor reinforcement structure and anchor reinforcement method
KR100515204B1 (en) Connection structure of reinforcing bar for concrete reinforcement and processing method of the connection
Zavoloka et al. Effective butt joints of bar reinforcement in modern monolithic housing construction
CN1060133A (en) A kind of reinforcement screw connection member of gaining in strength
AU783664B2 (en) Concrete reinforcement product

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 526313

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase