WO2001021637A1 - Light-responsive oligonucleotide - Google Patents

Light-responsive oligonucleotide Download PDF

Info

Publication number
WO2001021637A1
WO2001021637A1 PCT/JP2000/006415 JP0006415W WO0121637A1 WO 2001021637 A1 WO2001021637 A1 WO 2001021637A1 JP 0006415 W JP0006415 W JP 0006415W WO 0121637 A1 WO0121637 A1 WO 0121637A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
oligonucleotide
photoresponsive
carbon atoms
atom
Prior art date
Application number
PCT/JP2000/006415
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Komiyama
Hiroyuki Asanuma
Takayuki Yoshida
Original Assignee
Makoto Komiyama
Hiroyuki Asanuma
Takayuki Yoshida
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makoto Komiyama, Hiroyuki Asanuma, Takayuki Yoshida filed Critical Makoto Komiyama
Priority to AU73173/00A priority Critical patent/AU7317300A/en
Publication of WO2001021637A1 publication Critical patent/WO2001021637A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/24Esteramides
    • C07F9/2404Esteramides the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/2408Esteramides the ester moiety containing a substituent or a structure which is considered as characteristic of hydroxyalkyl compounds

Definitions

  • the present invention relates to a light-responsive oligonucleotide, particularly to a light-responsive oligonucleotide used for controlling DNA synthesis and gene expression in the field of biotechnology.
  • the DNA double strand dissociates into a single strand during transcription, and it is possible to inhibit the activity of transcriptase by adding an oligonucleotide complementary to this single-stranded portion from outside. .
  • gene expression can be inhibited, but not restored. That is, with these methods, it is virtually impossible to dissociate the oligonucleotide once it binds to the gene or messenger RNA that is the target. Therefore, it is impossible to reversibly control gene expression.
  • Gene expression Reversibly regulates duplex formation with DNA, triplex, and RNA with external stimuli, such as light irradiation, without changing pH, ionic strength, etc. A way was desired.
  • An object of the present invention is to obtain a photoresponsive oligonucleotide capable of irreversibly changing the melting temperature of the ability to form a duplex or a triplex by irradiation with light. Disclosure of the invention
  • the present invention relates to the following light-responsive oligonucleotide.
  • a and B each independently represent a hydrogen atom, a nucleotide or an oligonucleotide
  • X represents a residue of azobenzene or a derivative thereof
  • R represents a hydrogen atom or a carbon number of 1 to 20, preferably 1 (3) representing a linear alkyl group of 1 to 4).
  • a and B each independently represent a hydrogen atom, a nucleotide or an oligonucleotide
  • Nb represents a nucleobase
  • X represents a residue of azobenzene or a derivative thereof. Responsive oligonucleotide.
  • i, in II and ill, RR, R 21 are each a direct bond; unsubstituted or halogen atom, a hydroxyl group, an amino group, a nitro group, carbon atom number of 1 to 20 substituted by a carboxyl group, etc., preferably 1 to 10, more preferably 1 to 4 alkylene groups, or 2 to 20, preferably 2 to 10, carbon atoms which are unsubstituted or substituted by a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxy group, or the like.
  • R 2 to R 7 , R s , I 1 , R 12 to R 17 , R 1S , R 2 R 22 to R 27 , R 29 and R 3 ° are each independently unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, etc.
  • Alkyl groups having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms Or an alkoxy group; unsubstituted or substituted with a halogen atom, hydroxyl group, amino group, nitro group, carboxyl group, etc., having 2 to 20, preferably 2 to 10, more preferably 2 to 4 carbon atoms. Hydroxyl or alkynyl; hydroxyl; halogen; amino; nitro
  • R 8 , R 18 , and R 28 each independently represent 1 to 20, preferably 1 to 10, carbon atoms each of which is unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, or the like.
  • a halogen atom Preferably an alkyl or alkoxy group of 1 to 4; unsubstituted or substituted by a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, etc., having 2 to 20, preferably 2 to 10, more preferably 2 to 2 carbon atoms.
  • R 7 , R 9 , R 17 , R 19 , H 27 and R 29 represent the above groups other than the nitro group.
  • one Q—R 1 — is an intervening group that does not form a resonance structure with azobenzene.
  • Q is oxygen atom in formula I
  • R 1 is an unsubstituted or halogen atom, a hydroxyl group, an amino group, a nitro group, and 1 carbon atoms substituted with a carboxyl group or the like 20 3 preferably 1-10, More preferably, it represents 1-4 alkylene groups.
  • Q represents an oxygen atom
  • R 1 is an unsubstituted or substituted halogen atom, hydroxyl group, amino group, nitro group, carboxyl group, etc., having 1 to 20, preferably 1 to 1 carbon atoms. It is preferred that 10, more preferably represents 1 to 4 alkylene groups, or one Q—: 1— represents one NH—CO— or one CO—NH—.
  • the formula iota represents Iotaiota, in ill, I 1, R 11 and R 21 is from 1 to 20 carbon atoms, preferably rather 1-10, more preferably 1-4 alkylene group, R 2 ⁇ R 10, R 12 ⁇ : 2G and R 22 ⁇ ! (6)
  • the present invention uses the above-mentioned photoresponsive oligonucleotide having a sequence substantially complementary to at least a part of DNA which is a type II of DNA extension reaction, and irradiates light having a wavelength within a specific range. Isomerization of the organic group of the photoresponsive oligonucleotide from one isomer to another isomer by irradiation with light having a wavelength within another specific range, thereby obtaining a double-stranded or The present invention relates to a method for controlling a DNA extension reaction, including reversibly forming and dissociating a triplex.
  • the present invention uses the above-described photoresponsive oligonucleotide having a sequence substantially complementary to at least a part of mRNA to be controlled, and irradiates the photoresponsive oligonucleotide by irradiation with light having a wavelength within a specific range. Isomerization from one isomer to another isomer and the opposite isomerization by irradiation with light having a wavelength within another specific range, whereby the light-responsive oligonucleotide and mRNA can be converted into two.
  • the present invention relates to a method for controlling gene expression including reversibly forming and dissociating a heavy chain.
  • the present invention provides the following compound for synthesizing a photoresponsive oligonucleotide.
  • a ' represents a protecting group, for example, a dimethoxytrityl group or a monomethoxytrityl group
  • B is a reactive group for the phosphodiester bond at the 5' position of the oligonucleotide, for example,
  • Man X represents a residue of azobenzene or a derivative thereof, and I represents a hydrogen atom or an unsubstituted or substituted carbon atom having 1 to 20, preferably 1 to 10, more preferably 1 to 4 linear alkyl. Represents a group, and Nb represents a nucleobase.
  • X may represent the groups described above for the photoresponsive oligonucleotide as X and also described below.
  • X is of the following formula I:
  • R 1 represents an alkylene group having 1 to 20, preferably 1 to 10, and more preferably 1 to 4 carbon atoms
  • 2 ° is a hydrogen atom or a carbon atom.
  • a linear alkyl group having 1 to 20, preferably 1 to 10, and more preferably 1 to 4 atoms represented by the following formula II:
  • Q represents an oxygen atom and R 11 represents an alkylene group having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms, or Q represents - ⁇ —CO— or — Represents CO—NH— and R 1 represents a direct bond, and! ⁇ ⁇ ! ⁇ is a hydrogen atom or a linear alkyl having 1 to 20, preferably 1 to 10, and more preferably 1 to 4 carbon atoms. Which represents a group).
  • the “light-responsive oligonucleotide” has a structure One or more organic groups that are isomerized (hereafter, sometimes referred to as photoresponsive organic groups) are bonded to each other to reversibly convert a substantially complementary oligonucleotide and double or triple strand by irradiation with light. Is an oligonucleotide that can be formed at
  • the photoresponsive oligonucleotide may be an oligomer or polymer of ribonucleic acid, an oligomer or polymer of deoxyribonucleic acid, or an oligomer or polymer in which both are mixed.
  • the oligonucleotide in which the photoresponsive oligonucleotide of the present invention forms a double-strand may be any of an oligomer or polymer of ribonucleic acid, an oligomer or polymer of deoxyribonucleic acid, or an oligomer or polymer in which both are mixed. Good.
  • the photoresponsive oligonucleotides of the present invention may form a double chain with each other.
  • sequences of the nucleobases of the oligonucleotides may be at least 50% or more complementary, but preferably at least 70% of the sequences are complementary.
  • substantially complementary means that at least a portion of the target DNA or mRNA under the conditions under which the experiment is performed when the organic group assumes a steric structure that stabilizes the duplex. It is complementary to the extent that it can hybridize to
  • the photoresponsive organic group may have any number of molecules as long as it has at least one molecule in the oligonucleotide.
  • the ratio of one molecule to four to 50 bases is preferable, and the ratio of one molecule to five to 16 bases is more preferable.
  • the rate of thermal isomerization of the photoresponsive organic group is preferably 0.07 min 1 or less at 50 ° C. the good Mashiku is 0. 0 3 min 1 below.
  • the thermal isomerization rate as used herein indicates a value measured for an optically responsive organic group introduced into an oligonucleotide in an aqueous solution having a pH of 6.0 to 8.0.
  • the photoresponsive organic group is preferably introduced as a side chain into the oligonucleotide.
  • a photoresponsive organic group is introduced into the main chain of the oligonucleotide, the structural difference from the natural oligonucleotide is increased, and the formation of a duplex or a triplex with the corresponding complementary strand is greatly inhibited. is there.
  • “introduced as a side chain” refers to an oligonucleotide or an intervening group such as an alkylene group interposed between an oligonucleotide and a photoresponsive organic group, and one photoresponsive organic group. It means that they are bound by a covalent bond. Therefore, in the present specification, the state where a photoresponsive organic group is bonded to the 5, 5 or 3 'end of the oligonucleotide also means that it is introduced as a side chain.
  • the photoresponsive organic group of the present invention may be bound to the 5 'end of the oligonucleotide or may be introduced at the 2-position of ribose or deoxyribose. Further, the photoresponsive organic group of the present invention may be covalently bonded to an ethylene chain or trimethylene chain side chain, and this may be introduced into the oligonucleotide. Further, the photoresponsive organic group of the present invention may be introduced into a phosphate group at the 5 ′ end or forming a phosphodiester bond.
  • the “photoresponsive organic group” is preferably a three-dimensional structure capable of stabilizing a double-chain or triple-chain bond by light of a specific wavelength to a three-dimensional structure destabilizing a double-chain bond. It may be an organic group that is structurally isomerized, preferably reversibly, from a substantially planar structure to a non-planar structure, for example, from a trans form to a cis form, from a merocyanine form to a svirobilane form, or vice versa.
  • the organic group whose steric structure can be reversibly changed by irradiation with light of a specific wavelength can be, for example, the residue of azobenzene, ssubiropyran, stilbene, and derivatives thereof, but preferably azobenzene or a derivative thereof. Derivative residue.
  • the photoresponsive organic group such as the residue of azobenzene or a derivative thereof is directly or an appropriate intervening group, for example, an alkylene group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, for example, an ethylene group or trimethylene group.
  • the light-responsive organic group may be introduced into the phosphoric acid moiety be introduced into 2 3-position of the ribose or Dokishiribosu, it may also be introduced at the 5 'or 3' end.
  • the photoresponsive oligonucleotide of the present invention is, for example, one represented by the following formula:
  • X is a photoresponsive organic group
  • a and B each represent hydrogen, nucleotide or oligonucleotide.
  • Nb indicates a nucleobase (adenine, cytosine, guanine, thymine or peracil).
  • n is an integer of 1 or more, preferably 1 or more and 10 or less, more preferably 1 or more and 6 or less.
  • R represents an alkyl group or alkoxy group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, which is unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, or the like.
  • X is preferably azobenzene or a derivative thereof.
  • any substituent may be present on the benzene ring, as long as it does not impair the function of reversibly changing the melting temperature of oligonucleotide duplex formation or triplex formation by isomerization by light irradiation.
  • any intervening group may be present at the bonding portion with the oligonucleotide.
  • the substituent and intervening group at the p-position of azobenzene are preferably groups that do not take a resonance structure with the benzene ring.
  • substituents such as carboxyl, amino and nitro at the p-position and amide bonds at the p-position are not preferred.
  • azobenzene is easily thermally isomerized from a cis-form to a trans-form.
  • the substituent at the m-position is desirably a group other than the two-terminal group.
  • Q: iTR represents the meaning defined above for the formulas i, II and ill.
  • R 2 to R 1 () and R 12 to R 2 The above R 2 to R 1 () and R 12 to R 2 .
  • R 22 to R 3C unsubstituted or substituted alkyl group, alkenyl group, alkynyl group and alkoxy group is preferably straight-chain.
  • Z 1 is any group other than a group having a resonance structure with a benzene ring, such as a nitro group, an amino group, and a carboxyl group.
  • Z 2 and Z 3 are arbitrary groups other than a nitro group, and each independently represents, for example, 1 to 2 carbon atoms that are unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, an nitro group, a carboxyl group, or the like. 0, preferably 1 to 10 and more preferably 1 to 4 alkyl groups or alkoxy groups; 2 to 2 carbon atoms which are unsubstituted or substituted by halogen atoms, hydroxyl groups, amino groups, nitrite groups, carboxyl groups, etc.
  • alkenyl or alkynyl 0, preferably 2 to 10, more preferably 2 to 4 alkenyl or alkynyl; hydroxyl; halogen; amino;
  • the unsubstituted or substituted alkyl group, alkenyl group, alkynyl group and alkoxy group are preferably straight-chain.
  • a polymethylene chain which is unsubstituted or substituted with an alkyl group for example, one having 2 to 10 carbon atoms, preferably one having 2 to 5 carbon atoms
  • an alkyl group for example, one having 2 to 10 carbon atoms, preferably one having 2 to 5 carbon atoms
  • a method of converting this into a phosphoramidite monomer and introducing it into an oligonucleotide using an existing DNA synthesizer can be used.
  • the synthesis of phosphoramidite monomers is described in The Journal of Organic 'Chemistry.
  • the photoresponsive organic group is preferably introduced covalently to any carbon atom in the case of an ethylene chain, or to the central carbon atom in the case of a trimethylene chain.
  • the photoresponsive organic group is located at the 2 position of ribose or deoxyribose. It may be introduced at the phosphate site, or may be introduced at the 5 or 3 terminal.
  • Irradiation light for structural isomerization of a photoresponsive organic group can be light of any wavelength from the ultraviolet region to the infrared region as long as the organic group can be isomerized. It is preferably 300 nm or more. For example, by irradiating 300 to 400 nm light (UV light), one isomer is structurally isomerized to another isomer, and by irradiating light (visible light) of 400 nm or more, the opposite is true. Can change.
  • the change in melting temperature due to light irradiation may be as small as possible as long as it is a significant change exceeding the range of error, but is preferably 1.0 ° C or higher, more preferably 2.0 ° C or higher. Melting temperature measurements were made using the bioconjugate 'Bioconjugate Chemistry', Volume 8, page 3 et seq. 1997, and the journal 'Ob the American K. 7J Le Society' (Journal of the American Chemical Society). ) Magazine, 1997, Vol. 119, p. 263 et seq.
  • the melting temperature can be determined in various ways, but is preferably determined as the temperature that gives the maximum of the first derivative of the melting temperature curve.
  • the photoresponsive oligonucleotide of the present invention can be used in any of in vivo and in vitro systems.
  • the photoresponsive oligonucleotide of the present invention may be applied to the light control of a DNA or RNA extension reaction by DNA polymerase or RNA polymerase.
  • the photoresponsive oligonucleotide of the present invention can be used for a protein or an enzyme that binds to DNA or RNA.
  • the photoresponsive oligonucleotide of the present invention can be used in Ribozyme DNA Enzyme.
  • the photoresponsive oligonucleotide of the present invention may be enzymatically introduced into natural DNA or may be enzymatically introduced into natural RNA. Accordingly, the present invention also provides a method for treating a human or non-human animal, comprising introducing the photoresponsive oligonucleotide into the DNA of a human or non-human animal.
  • the photoresponsive oligonucleotide (DNA) of the present invention can be hybridized with DNA used as a template in the middle.
  • DNA DNA
  • the elongation reaction by the polymerase stops before the photoresponsive oligonucleotide.
  • the photoresponsive oligonucleotide dissociates from the template DNA, and the DNA extension reaction proceeds to the end of the template strand. Therefore, the present invention also provides a method for controlling a DNA extension reaction using the above-described photoresponsive oligonucleotide.
  • the photoresponsive DNA of the present invention when used for the elongation reaction of RNA polymerase, the photoresponsive DNA of the present invention in which azobenzene is introduced into a part of the promoter or in the vicinity thereof may be used. Transcription by RNA polymerase occurs when the promoter forms a double strand (ie, trans form), but does not occur when the double strand is dissociated (ie, cis form). . Therefore, the present invention also provides a method for controlling an RNA extension reaction using the above-mentioned photoresponsive oligonucleotide.
  • the photoresponsive oligonucleotide of the present invention for antisense DNA, protein synthesis can be light-controlled. That is, when the photoresponsive oligonucleotide of the present invention as antisense DNA strongly hybridizes with mRNA (ie, in the case of trans form), translation is inhibited, but when dissociated from mRNA (ie, In the case of cis form), translation is performed. Therefore, the present invention also provides an antisense control method using the above-mentioned photoresponsive oligonucleotide as antisense DNA.
  • the photoresponsive oligonucleotide of the present invention having various sequences was synthesized using the above-described phosphoramidite monomer.
  • the oligonucleotide having no photoresponsive organic group of the present invention was synthesized in the same manner using a DNA synthesizer.
  • Table 1 shows the synthesized oligonucleotides.
  • Uazo represents a group represented by the following formula.
  • Uazo ′ ′ represents a group represented by the following formula (
  • XI ′ represents a group of the following formula c
  • X2 ′ represents a group of the following formula ⁇
  • Each of the photoresponsive oligonucleotides of the present invention of SEQ ID NOS: 1 to 10 synthesized as described above was adjusted to ⁇ 7.0 with 1 Ommo 1Z liter of a buffer, and the salt concentration was adjusted with sodium chloride. It was dissolved in an aqueous solution adjusted to 1 mo 1Z liter. This was irradiated with light (UV light) having a wavelength of 30 Onm or more and 400 nm or less through a UVD-36C filter using a xenon lamp for 10 minutes. As a result, 90% of the added photoresponsive oligonucleotide was isomerized to cis form. This is 50 in a thermostat. The thermal isomerization rate constant k was determined by keeping the temperature at C and tracking the process from the cis-form to the trans-form thermally by UV-Vis spectra. The results are shown in Table 2. Table 2
  • the corresponding complementary strands were added to the oligonucleotides of SEQ ID NOs: 1, 2, 3, 4, and 12, and the melting temperature was measured to evaluate the stability of the duplex.
  • the conditions for measuring the melting temperature are shown below.
  • Oligonucleotides 50 m o 1 liter
  • Table 3 shows the results. Before UV irradiation, more than 80% of the azobenzene residues were in the trans form. UV irradiation was performed by irradiating the sample containing the oligonucleotide with light of 300 nm or more and 400 nm or less through a UVD-36C filter using a xenon lamp for 10 minutes. As a result, more than 80% changed to cis form. The melting temperature was determined as the temperature giving the maximum value of the first derivative of the melting temperature curve. Table 3
  • the melting temperature of the triplex was measured using a duplex having the sequence shown below. Was.
  • a triple strand was formed by the duplex formed by these oligonucleotides and the oligonucleotides having the sequences of SEQ ID NOs: 7, 9, 8, 15, and 16, and the melting temperature was measured.
  • Table 4 shows the results. The conditions for measuring the melting temperature of the triplex are shown below.
  • Oligonucleotide of SEQ ID NO: 17 2 mo1 / liter
  • Oligonucleotide of SEQ ID NO: 18 2.2 mo 1 / liter
  • Light-responsive oligonucleotide 2.4 mol / liter
  • DMT Dimethoxytrityl group
  • azobenzene was introduced as a side chain of an oligonucleotide by the following method.
  • 4-aminoazobenzene is converted to 2,2-bis (hydroxymethyl) propionic acid by reacting dicyclohexyl carbamide with dimethyl sulfoxide (DMF) in the presence of 1-hydroxybenzotriazole.
  • DMF dimethyl sulfoxide
  • IV amide bond
  • the obtained compound (IV) was purified by recrystallization from a mixed solvent of hexane and chloroform.
  • one hydroxyl group of compound (IV) is reacted with 4,4-dimethoxytrityl (DMT) chloride in the presence of 4-dimethylaminoviridine in a mixed solvent of pyridine and methylene chloride to convert one hydroxyl group of compound (IV) to a dimethoxytrityl group (DMT).
  • photoresponsive oligonucleotides of the present invention having various sequences were synthesized by a DNA synthesizer. All of the resulting photoresponsive oligonucleotides have two diastereomers based on the asymmetric carbon of the phosphoramidite monomer (VI), which must be completely separated by liquid chromatography (HPLC) under the following conditions. Was completed.
  • the elution conditions were such that the concentration of acetonitrile increased linearly from 5% to 25% o in 25 minutes.
  • Example 5 oligonucleotide complementary to photoresponsive oligonucleotide (SEQ ID NO: 19): GGC TC AGC (SEQ ID NO: 20) was synthesized.
  • An aqueous solution was prepared by adding the photoresponsive oligonucleotide synthesized in Example 5 to a 1 OmM phosphate buffer (pH 7.1) containing 11 ⁇ & ⁇ 1 to a concentration of 5 OiM. .
  • the oligonucleotide (SEQ ID NO: 20) was added to a 1 OmM phosphate buffer (pH 7.1) containing 1 M NaCl to a concentration of 50 M to prepare an aqueous solution.
  • the aqueous solution of the photoresponsive oligonucleotide (SEQ ID NO: 19) prepared above and the aqueous solution of the above oligonucleotide (SEQ ID NO: 20) are mixed, and the azobenzene group is in a trans form by measuring the absorbance at 260 nm.
  • the Tm of the case was determined.
  • each mixed solution was irradiated with ultraviolet rays (wavelength 300 to 400 nm) to make the structure of azobenzene a cis-form. Thereafter, Tm was determined by the same method as described above.
  • 3--2-troazobenzene was synthesized by coupling 3-nitroazoline and nitrosobenzene in acetic acid ( a ). Next, this was reduced with NaSH in a mixed solvent of ethanol and water to obtain 3-aminoazobenzene (b). Subsequently, 3-aminoazobenzene is converted to 2,2-bis (hydroxymethyl) propionic acid by reacting dicyclohexylcarbodiimide with 1-hydroxybenzotriazole in dimethyl sulfoxide (DMF).
  • DMF dimethyl sulfoxide
  • Xm represents a photoresponsive organic group represented by the following formula.
  • Developing solvent Acetonitrile / water mixed solvent containing 50 itiM ammonium formate was eluted under elution conditions such that the concentration of acetonitrile increased directly from 5% to 25% in 25 minutes.
  • the pH of the photoresponsive oligonucleotide of the present invention synthesized in Example 7 was adjusted to 7.0 with 1 Ommo 1 / liter of a buffer, and the salt concentration was adjusted to 1 mol / liter with sodium chloride. It dissolved in the aqueous solution adjusted so that it might become.
  • the UVD-36C filter is passed through the filter at a wavelength of 300 nm or more and 400 n Light (UV light) of 10 m or less was irradiated for 10 minutes.
  • 90% of the added photoresponsive oligonucleotide was isomerized to cis form. 50 in a thermostat.
  • the thermal isomerization rate constant k was determined by keeping the temperature at C and tracing the process from the cis-form to the trans-form by UV-Vis spectrum. Table 6 shows the results.
  • the corresponding complementary strand was added to each of the oligonucleotides of SEQ ID NOs: 21, 22, 23, and 24, and the melting temperature was measured, thereby evaluating the stability of the duplex.
  • the conditions for melting temperature measurement are shown below.
  • Oligonucleotide 50 m 01 / liter
  • Table 7 shows the melting temperatures measured under the conditions of 60 ° C to over 15 ° C. Before UV irradiation, more than 80% of the azobenzene residues were in trans form. UV irradiation was performed by irradiating the sample containing the oligonucleotide with light of 300 nm or more and 400 nm or less through a UVD-36C filter using a xenon lamp for 10 minutes. as a result, More than 80% changed to cis form. The melting temperature was determined as the temperature giving the maximum value of the first derivative of the melting temperature curve. Table 7
  • the photoresponsive oligonucleotide of the present invention By using the photoresponsive oligonucleotide of the present invention, it is possible to reversibly change the melting temperature of the duplex and the triplex by light irradiation. Therefore, it becomes possible to reversibly control gene expression, DNA extension reaction and the like by light irradiation. This makes it possible to perform DNA, RNA synthesis, amplification, transcription, and the like under the control of light, thereby improving the reliability and efficiency of experiments in various fields of biotechnology. In addition, by using the photoresponsive oligonucleotide of the present invention for controlling gene expression, it is possible to perform gene diagnosis and gene therapy efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Saccharide Compounds (AREA)

Abstract

An oligonucleotide to which an organic group undergoing structural isomerization depending on light irradiation is attached. The melting temperature of a double-strand formed by this oligonucleotide and another oligonucleotide complementary thereto reversibly changes depending on light irradiation. Thus, the synthesis of DNA, the expression of a gene, etc. can be controlled by a convenient procedure of light irradiation in the field of biotechnology.

Description

明細書 光応答性オリゴヌクレオチド 技術分野  Description Photoresponsive oligonucleotide Technical field
本発明は、 光応答性オリゴヌクレオチド、 特にバイオテクノロジ一の分野にお ける D N A合成及び遺伝子発現の制御のために使用される光応答性オリゴヌクレ ォチドに関するものである。 背景技術  The present invention relates to a light-responsive oligonucleotide, particularly to a light-responsive oligonucleotide used for controlling DNA synthesis and gene expression in the field of biotechnology. Background art
D N Aの転写および翻訳を制御することにより、 遺伝子発現の人為的な制御が 可能である。 これまでに天然あるいは化学修飾したオリゴヌクレオチドを利用し た遺伝子発現の制御を目指した様々な方法が提案されている。 例えばバイオケィ ストリー誌 (Biochemistry) 1 9 9 6年第 3 5巻 1 0 5 3 9頁以降には、 D N A二重鎖中のホモ ' ピリミジン 'ホモ 'プリン部位が三重鎖形成可能なことを利 用して、 転写を制御する方法が提案されている。 また転写により生成したメッセ ンジャー R N Aに相補的なオリゴヌクレオチドを共存させることで、 翻訳過程を 阻害するいわゆる "アンチセンス法"も、高分子学会バイオ ·高分子研究会編「高 分子化学と核酸の機能デザイン」 (学会出版センタ一, 1 9 9 6年) の 2 7頁以 降に開示されている。 また D N A二重鎖は、 転写の際に解離して一本鎖になり、 この一本鎖部分に相補的なォリゴヌクレオチドを外部から加えることで転写酵素 の活性を阻害することも可能である。 しかしこれらの方法では、 遺伝子発現を阻 害することができても復活させることができない。 つまりこれらの手法では、 夕 ーゲヅ トとする遺伝子あるいはメッセンジャー R N Aにオリゴヌクレオチドがい つたん結合すると、 これを解離させることは実質不可能である。 従って遺伝子発 現を可逆的に制御することは不可能である。 もちろん系の温度を上げたり p Hや イオン強度等を変化させれば、 一度結合したォリゴヌクレオチドを解離させるこ とは可能である。 しかしこのような劇的な環境変化は、 ポリメラ一ゼなど遺伝子 発現に関与する酵素の活性そのものを失わせるため実用的ではない。 遺伝子発現 を可逆的に制御するために、 pH、 イオン強度等を変えずに DNAとの二重鎖、 三重鎖、 および RNAとの二重鎖形成を外部刺激、 例えば光照射により、 可逆的 に制御する方法が望まれていた。 By controlling the transcription and translation of DNA, it is possible to artificially control gene expression. Various methods have been proposed to control gene expression using natural or chemically modified oligonucleotides. For example, in Biochemistry, 1991, Vol. 35, pp. 105-39, the use of the fact that the homo 'pyrimidine' and 'homo' purine sites in a DNA duplex can form a triplex is used. Thus, a method for controlling transcription has been proposed. The so-called “antisense method”, which inhibits the translation process by coexisting complementary oligonucleotides with messenger RNA generated by transcription, is also known as the “High Molecular Chemistry and Nucleic Acid Functional Design ”(published by the Institute of Technology, 1, 996). In addition, the DNA double strand dissociates into a single strand during transcription, and it is possible to inhibit the activity of transcriptase by adding an oligonucleotide complementary to this single-stranded portion from outside. . However, with these methods, gene expression can be inhibited, but not restored. That is, with these methods, it is virtually impossible to dissociate the oligonucleotide once it binds to the gene or messenger RNA that is the target. Therefore, it is impossible to reversibly control gene expression. Of course, it is possible to dissociate the oligonucleotide once bound by raising the temperature of the system or changing the pH or ionic strength. However, such a dramatic environmental change is not practical because it loses the activity of enzymes involved in gene expression such as polymerase. Gene expression Reversibly regulates duplex formation with DNA, triplex, and RNA with external stimuli, such as light irradiation, without changing pH, ionic strength, etc. A way was desired.
過去に山名等によって、 オリゴヌクレオチドの主鎖にリン酸ジエステル結合を 通じて光異性化分子であるァゾベンゼンを導入した例が、 ヌクレオシドヌクレオ チド誌 (Nucleosides Nucleotides) 1998年第 17巻 233頁以降に報告 されている。 彼らは、 オリゴヌクレオチドの主鎖中に導入したァゾベンゼンがト ランス体からシス体 (あるいはその逆) に可逆的に異性化することを報告してい る。 しかし、 : DNAの安定性がァゾベンゼンの光異性化に基づいて変化するかど うかについては言及していない。  In the past, Yamana et al. Reported that azobenzene, a photoisomerized molecule, was introduced into the main chain of an oligonucleotide through a phosphodiester bond in Nucleosides Nucleotides, 1998, Vol. 17, p.233. Have been. They report that azobenzene introduced into the oligonucleotide backbone isomerically reversibly isomerized from the trans form to the cis form (or vice versa). However: No mention is made as to whether the stability of DNA changes based on the photoisomerization of azobenzene.
本発明の課題は、 二重鎖形成あるいは三重鎖形成能の融解温度を、 光照射で可 逆的に変化させることができる光応答性オリゴヌクレオチドを得ることにある。 発明の開示  An object of the present invention is to obtain a photoresponsive oligonucleotide capable of irreversibly changing the melting temperature of the ability to form a duplex or a triplex by irradiation with light. Disclosure of the invention
. 本発明は、 下記の光応答性オリゴヌクレオチドに関する。  The present invention relates to the following light-responsive oligonucleotide.
( 1 ) 特定波長の光の照射により構造異性化する有機基を 1または複数個結合さ せたォリゴヌクレオチドであって、 該オリゴヌクレオチドに実質的に相補的なォ リゴヌクレオチドとの二重鎖形成または三重鎖形成における融解温度が、 該光の 照射により可逆的に変化する光応答性ォリゴヌクレオチド。  (1) a double strand of an oligonucleotide to which one or more organic groups that are structurally isomerized by irradiation with light of a specific wavelength are bonded and which is substantially complementary to the oligonucleotide; A photoresponsive oligonucleotide whose melting temperature in formation or triplex formation is reversibly changed by irradiation with the light.
(2) 前記光応答性オリゴヌクレオチドの、 一方の異性体から他方の異性体への 熱異性化速度が、 50 Cで 0. 07m i n 1以下である ( 1 ) の光応答性オリゴ ヌクレオチド。 (2) The photoresponsive oligonucleotide according to (1), wherein the rate of thermal isomerization of the photoresponsive oligonucleotide from one isomer to the other is 0.07 min 1 or less at 50 C.
(3) 前記有機基がァゾベンゼンまたはその誘導体の残基であり、 直接または介 在基を介して前記オリゴヌクレオチドに結合している (1) または (2) の光応 答性オリゴヌクレオチド。  (3) The photoresponsive oligonucleotide according to (1) or (2), wherein the organic group is a residue of azobenzene or a derivative thereof, and is bonded to the oligonucleotide directly or via an intervening group.
(4) 次式:
Figure imgf000004_0001
(4) The following equation:
Figure imgf000004_0001
(式中、 A及び Bは各々独立に水素原子、 ヌクレオチドまたはオリゴヌクレオチ ドを表し、 Xはァゾベンゼンまたはその誘導体の残基を表し、 Rは水素原子また は炭素原子数 1~20、 好ましくは 1〜10、 特に 1〜4の直鎖アルキル基を表 す) で表される (3) の光応答性オリゴヌクレオチド。 (In the formula, A and B each independently represent a hydrogen atom, a nucleotide or an oligonucleotide, X represents a residue of azobenzene or a derivative thereof, and R represents a hydrogen atom or a carbon number of 1 to 20, preferably 1 (3) representing a linear alkyl group of 1 to 4).
Figure imgf000004_0002
Figure imgf000004_0002
(式中、 A及び Bは各々独立に水素原子、 ヌクレオチドまたはオリゴヌクレオチ ドを表し、 Nbは核酸塩基を表し、 Xはァゾベンゼンまたはその誘導体の残基を 表す) で表される (3) の光応答性オリゴヌクレオチド。 Wherein A and B each independently represent a hydrogen atom, a nucleotide or an oligonucleotide, Nb represents a nucleobase, and X represents a residue of azobenzene or a derivative thereof. Responsive oligonucleotide.
(6) Xが下記式 ェ、 II または ill で表される (4) または (5) の光応答性 オリゴヌクレオチド。 -Q-R1 (I)
Figure imgf000005_0001
(6) The photoresponsive oligonucleotide of (4) or (5), wherein X is represented by the following formula, II or ill. -QR 1 (I)
Figure imgf000005_0001
Figure imgf000005_0002
Figure imgf000005_0002
/  /
R (III)
Figure imgf000005_0003
R (III)
Figure imgf000005_0003
(上記 i、 II及び ill中、 R R 、 R21は各々直接の結合;未置換もしくは ハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭 素原子数 1〜20,好ましくは 1〜10,より好ましくは 1〜4のアルキレン基、 または未置換もしくはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシ ル基等で置換された炭素原子数 2〜20, 好ましくは 2〜10, より好ましくは 2〜4のァルケ二レン基であり、 Qは直接の結合、 酸素原子、 一 NH— CO—基 または— CO— NH—基であり、 R2〜R7、 Rs、 I 1。、 R12〜R17、 R1S、 R2 R22〜R27、 R29、 R3°は各々独立に、 未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 1〜20, 好ま しくは 1〜10, より好ましくは 1〜4のアルキル基もしくはアルコキシ基;未 置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置 換された炭素原子数 2〜 20, 好ましくは 2〜1 0, より好ましくは 2〜4のァ ルケ二ル基もしくはアルキニル基;水酸基;ハロゲン原子; ァミノ基;ニトロ某 (The i, in II and ill, RR, R 21 are each a direct bond; unsubstituted or halogen atom, a hydroxyl group, an amino group, a nitro group, carbon atom number of 1 to 20 substituted by a carboxyl group, etc., preferably 1 to 10, more preferably 1 to 4 alkylene groups, or 2 to 20, preferably 2 to 10, carbon atoms which are unsubstituted or substituted by a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxy group, or the like. More preferably, it is a 2-4 alkenylene group, Q is a direct bond, an oxygen atom, a mono-NH—CO— group or a —CO—NH— group, and R 2 to R 7 , R s , I 1 , R 12 to R 17 , R 1S , R 2 R 22 to R 27 , R 29 and R 3 ° are each independently unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, etc. Alkyl groups having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms Or an alkoxy group; unsubstituted or substituted with a halogen atom, hydroxyl group, amino group, nitro group, carboxyl group, etc., having 2 to 20, preferably 2 to 10, more preferably 2 to 4 carbon atoms. Hydroxyl or alkynyl; hydroxyl; halogen; amino; nitro
- Δ - ; またはカルボキシル基を表す。 R8、 R18、 R28は、 各々独立に、 未置換また はハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された 炭素原子数 1〜20, 好ましくは 1〜10, より好ましくは 1〜4のアルキル基 もしくはアルコキシ基;未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ 基、 カルボキシル基等で置換された炭素原子数 2〜20, 好ましくは 2〜 10, より好ましくは 2〜 4のアルケニル基もしくはアルキニル基;水酸基; またはハ ロゲン原子を表す)。 好ましくは R7, R9, R17, R19, H27及び R29はニトロ 基以外の前記の基を表す。 また、 好ましくは式 Iにおいては一 Q— R1—はァゾ ベンゼンと共鳴構造をとらない介在基である。 例えば、 式 Iにおいては Qは酸素 原子を表し、 R1は未置換もしくはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 1~203 好ましくは 1〜 10, より 好ましくは 1〜4のアルキレン基を表すのが好ましい。 式 II、 式 IIIにおいては、 Qは酸素原子を表し、 R1は未置換もしくはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 1~20, 好ましくは 1〜 10, より好ましくは 1〜4のアルキレン基を表すか、 または一 Q— : 1—が一 NH— CO—または一 CO— NH—を表すのが好ましい。 -Δ- Or a carboxyl group. R 8 , R 18 , and R 28 each independently represent 1 to 20, preferably 1 to 10, carbon atoms each of which is unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, or the like. Preferably an alkyl or alkoxy group of 1 to 4; unsubstituted or substituted by a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, etc., having 2 to 20, preferably 2 to 10, more preferably 2 to 2 carbon atoms. Alkenyl group or alkynyl group to 4; a hydroxyl group; or a halogen atom). Preferably, R 7 , R 9 , R 17 , R 19 , H 27 and R 29 represent the above groups other than the nitro group. Also, preferably in Formula I, one Q—R 1 — is an intervening group that does not form a resonance structure with azobenzene. For example, represents Q is oxygen atom in formula I, R 1 is an unsubstituted or halogen atom, a hydroxyl group, an amino group, a nitro group, and 1 carbon atoms substituted with a carboxyl group or the like 20 3 preferably 1-10, More preferably, it represents 1-4 alkylene groups. In Formulas II and III, Q represents an oxygen atom, and R 1 is an unsubstituted or substituted halogen atom, hydroxyl group, amino group, nitro group, carboxyl group, etc., having 1 to 20, preferably 1 to 1 carbon atoms. It is preferred that 10, more preferably represents 1 to 4 alkylene groups, or one Q—: 1— represents one NH—CO— or one CO—NH—.
(7) 上記式 ェ, II, ill 中、 I 1、 R11及び; 21が直接の結合を表し、 R2〜 R10, H12〜R2°及び R22~R3°が水素原子または炭素原子数 1〜20、 好まし くは 1〜10、 特に 1〜4の直鎖アルキル基を表し、 Qがー NH— CO—または -CO— NH—を表す (6) の光応答性オリゴヌクレオチド。 (7) In the above formulas, II, ill, I 1 , R 11 and; 21 represent a direct bond, and R 2 to R 10 , H 12 to R 2 ° and R 22 to R 3 ° represent a hydrogen atom or (6) a light-responsive oligo represented by the formula (6), which represents a linear alkyl group having 1 to 20, preferably 1 to 10, and especially 1 to 4 carbon atoms, and Q represents -NH-CO- or -CO-NH- nucleotide.
(8) 上記式 ι,ιι, ill 中、 IT、 R11及び R21が直接の結合を表し、 R2〜 RI0 S R12〜R2°及び R22〜R3°が水素原子を表し、 Qがー NH— CO—または — CO— NH—を表す (6) の光応答性オリゴヌクレオチド。 (8) In the above formulas ι, ιι, ill, IT, R 11 and R 21 represent a direct bond, and R 2 to R I0 S R 12 to R 2 ° and R 22 to R 3 ° represent a hydrogen atom. (6) The photoresponsive oligonucleotide according to (6), wherein Q represents —NH—CO— or —CO—NH—.
(9) 上記式 Ι,ΙΙ, ill 中、 I 1、 R11及び R21が炭素原子数 1〜20, 好まし くは 1〜10, より好ましくは 1 ~4のアルキレン基を表し、 R2〜R10、 R12 〜: 2G及び R22〜! 3°が水素原子または炭素原子数 1〜20、 好ましくは 1〜1 0、 特に 1〜4の直鎖アルキル基を表し、 Qが酸素原子を表す (6) の光応答性 オリゴヌクレオチド。 (9) The formula iota, represents Iotaiota, in ill, I 1, R 11 and R 21 is from 1 to 20 carbon atoms, preferably rather 1-10, more preferably 1-4 alkylene group, R 2 ~R 10, R 12 ~: 2G and R 22 ~! (6) The photoresponsive oligonucleotide according to (6), wherein 3 ° represents a hydrogen atom or a linear alkyl group having 1 to 20, preferably 1 to 10, particularly 1 to 4 carbon atoms, and Q represents an oxygen atom.
(10) 上記式 Ι,ΙΙ, ill 中、 R]、 1111及び1 が炭素原子数1〜20, 好ま しくは 1〜10, より好ましくは 1〜4のアルキレン基を表し、 R2〜R1Q、 R1 2〜: R2°及び R22〜R3°が水素原子を表し、 Qが酸素原子を表す (6) の光応答 性オリゴヌクレオチド。 (10) In the above formulas Ι, ΙΙ, ill, R ] , 11 11 and 1 are preferably those having 1 to 20 carbon atoms. Properly 1 to 10, represents a more preferably 1 to 4 alkylene group, R 2 ~R 1Q, R 1 2 ~: R 2 ° and R 22 to R 3 ° represents a hydrogen atom, Q is an oxygen atom The photoresponsive oligonucleotide of (6).
また、 本発明は、 DN A伸長反応の铸型となる DN Aの少なくとも一部と実質 的に相補的な配列を有する上記光応答性ォリゴヌクレオチドを用い、 特定範囲内 の波長の光の照射により上記光応答性オリゴヌクレオチドの有機基を一の異性体 から他の異性体に異性化し、 別の特定範囲内の波長の光の照射によりその逆に異 性化することにより、 二重鎖または三重鎖の形成及び解離を可逆的に行うことを 含む DN A伸長反応の制御方法に関する。  Further, the present invention uses the above-mentioned photoresponsive oligonucleotide having a sequence substantially complementary to at least a part of DNA which is a type II of DNA extension reaction, and irradiates light having a wavelength within a specific range. Isomerization of the organic group of the photoresponsive oligonucleotide from one isomer to another isomer by irradiation with light having a wavelength within another specific range, thereby obtaining a double-stranded or The present invention relates to a method for controlling a DNA extension reaction, including reversibly forming and dissociating a triplex.
さらに、 本発明は、 制御すべき mRN Aの少なくとも一部と実質的に相補的な 配列を有する上記光応答性オリゴヌクレオチドを用い、 特定範囲内の波長の光の 照射により上記光応答性オリゴヌクレオチドの有機基を一の異性体から他の異性 体に異性化し、 別の特定範囲内の波長の光の照射によりその逆に異性化すること により、 該光応答性オリゴヌクレオチドと mRN Aとの二重鎖の形成及び解離を 可逆的に行うことを含む遺伝子発現の制御方法に関する。  Furthermore, the present invention uses the above-described photoresponsive oligonucleotide having a sequence substantially complementary to at least a part of mRNA to be controlled, and irradiates the photoresponsive oligonucleotide by irradiation with light having a wavelength within a specific range. Isomerization from one isomer to another isomer and the opposite isomerization by irradiation with light having a wavelength within another specific range, whereby the light-responsive oligonucleotide and mRNA can be converted into two. The present invention relates to a method for controlling gene expression including reversibly forming and dissociating a heavy chain.
また、本発明は、下記の光応答性オリゴヌクレオチド合成用化合物を提供する。  Further, the present invention provides the following compound for synthesizing a photoresponsive oligonucleotide.
Figure imgf000007_0001
Figure imgf000007_0001
(式中、 A' は保護基、 例えばジメ トキシトリチル基またはモノメ トキシトリチ ル基を表し、 B, はオリゴヌクレオチドの 5 ' 位へのホスホジエステル結合のた めの反応性基、 例えば (Where A 'represents a protecting group, for example, a dimethoxytrityl group or a monomethoxytrityl group, and B, is a reactive group for the phosphodiester bond at the 5' position of the oligonucleotide, for example,
NC NC
0 /P\ 0 / P \
N  N
人 を表し、 Xはァゾベンゼンまたはその誘導体の残基を表し、 I ま水素原子または 未置換もしくは置換された炭素原子数 1〜20, 好ましくは 1〜10, より好ま しくは 1〜4の直鎖アルキル基を表し、 Nbは核酸塩基を表す。) Man X represents a residue of azobenzene or a derivative thereof, and I represents a hydrogen atom or an unsubstituted or substituted carbon atom having 1 to 20, preferably 1 to 10, more preferably 1 to 4 linear alkyl. Represents a group, and Nb represents a nucleobase. )
Xは、 光応答性オリゴヌクレオチドについて Xとして前記で説明した、 また後 述する基を表し得る。  X may represent the groups described above for the photoresponsive oligonucleotide as X and also described below.
より好ましくは、 Xは、 次式 I :  More preferably, X is of the following formula I:
Figure imgf000008_0001
Figure imgf000008_0001
(式中、 Qは酸素原子を表し、 R1は炭素原子数 1〜20, 好ましくは 1〜10, より好ましくは 1〜4のアルキレン基を表し、 : 2〜; ΕΓ°は水素原子または炭素 原子数 1〜20, 好ましくは 1〜10, より好ましくは 1〜4の直鎖アルキル基 を表す) で表される基、 次式 II: (Wherein Q represents an oxygen atom, R 1 represents an alkylene group having 1 to 20, preferably 1 to 10, and more preferably 1 to 4 carbon atoms, and 2 ° is a hydrogen atom or a carbon atom. A linear alkyl group having 1 to 20, preferably 1 to 10, and more preferably 1 to 4 atoms) represented by the following formula II:
Figure imgf000008_0002
Figure imgf000008_0002
(式中、 Qが酸素原子を表し且つ R 11が炭素原子数 1〜20, 好ましくは 1〜1 0, より好ましくは 1〜4のアルキレン基を表すか、 または Qがー ΝΗ— CO— または— CO— NH—を表し且つ R1が直接の結合を表し、 !^〜!^^が水素原子 または炭素原子数 1~20, 好ましくは 1〜10, より好ましくは 1〜4の直鎖 アルキル基を表す) で表される基である。 発明を実施するための最良の形態 Wherein Q represents an oxygen atom and R 11 represents an alkylene group having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms, or Q represents -ΝΗ—CO— or — Represents CO—NH— and R 1 represents a direct bond, and! ^ ~! ^^ is a hydrogen atom or a linear alkyl having 1 to 20, preferably 1 to 10, and more preferably 1 to 4 carbon atoms. Which represents a group). BEST MODE FOR CARRYING OUT THE INVENTION
(光応答性オリゴヌクレオチド)  (Light-responsive oligonucleotide)
本明細書において、 「光応答性オリゴヌクレオチド」 は、 光の照射により構造 異性化する有機基 (以下、 場合により光応答性有機基と記す) を 1または複数個 結合させてなり、 光の照射により実質的に相補的なオリゴヌクレオチドと二重鎖 もしくは三重鎖を可逆的に形成し得るオリゴヌクレオチドである。 In the present specification, the “light-responsive oligonucleotide” has a structure One or more organic groups that are isomerized (hereafter, sometimes referred to as photoresponsive organic groups) are bonded to each other to reversibly convert a substantially complementary oligonucleotide and double or triple strand by irradiation with light. Is an oligonucleotide that can be formed at
該光応答性オリゴヌクレオチドは、 リボ核酸のオリゴマーまたはボリマ一、 デ ォキシリボ核酸のォリゴマ一またはポリマ一、 あるいはその両者が混在するオリ ゴマーまたはポリマーのいずれでもよい。 本発明の光応答性ォリゴヌクレオチド が二重鎖を形成するオリゴヌクレオチドも、 リボ核酸のォリゴマーまたはポリマ 一、 デォキシリボ核酸のオリゴマーまたはポリマ一、 あるいはその両者が混在す るオリゴマ一またはポリマーのいずれでもよい。 また本発明の光応答性オリゴヌ クレオチド同士で二重鎖を組ませてもよい。二重鎖または三重鎖を組ませる場合、 互いのォリゴヌクレオチドの核酸塩基の配列は 5割以上相補的であればよいが、 7割以上の配列が相補的であることが好ましい。 本明細書において 「実質的に相 補的」 とは、 前記有機基が二重鎖を安定化する立体構造をとる時に、 実験が行わ れる条件下で、 目的の D N Aまたは mR N Aの少なくとも一部にハイブリダィズ し得る程度に相補的であることを意味する。  The photoresponsive oligonucleotide may be an oligomer or polymer of ribonucleic acid, an oligomer or polymer of deoxyribonucleic acid, or an oligomer or polymer in which both are mixed. The oligonucleotide in which the photoresponsive oligonucleotide of the present invention forms a double-strand may be any of an oligomer or polymer of ribonucleic acid, an oligomer or polymer of deoxyribonucleic acid, or an oligomer or polymer in which both are mixed. Good. Further, the photoresponsive oligonucleotides of the present invention may form a double chain with each other. When a double or triple strand is assembled, the sequences of the nucleobases of the oligonucleotides may be at least 50% or more complementary, but preferably at least 70% of the sequences are complementary. As used herein, “substantially complementary” means that at least a portion of the target DNA or mRNA under the conditions under which the experiment is performed when the organic group assumes a steric structure that stabilizes the duplex. It is complementary to the extent that it can hybridize to
光応答性有機基は、 ォリゴヌクレオチド中に 1分子以上であれば何分子結合し ていてもよい。 4塩基から 5 0塩基に対して 1分子の割合が好ましく、 5塩基か ら 1 6塩基に対して 1分子の割合がより好ましい。  The photoresponsive organic group may have any number of molecules as long as it has at least one molecule in the oligonucleotide. The ratio of one molecule to four to 50 bases is preferable, and the ratio of one molecule to five to 16 bases is more preferable.
二重鎖及び三重鎖形成能を光で可逆的に制御するために、 光応答性有機基の熱 による異性化速度は、 好ましくは 5 0 °Cで 0 . 0 7 m i n 1以下であり、 より好 ましくは 0 . 0 3 m i n 1以下である。 ここでいう熱異性化速度は、 オリゴヌク レオチドに導入された状態の光応答性有機基について、 p Hが 6 . 0から 8 . 0 の水溶液中で測定した値のことを示す。 In order to reversibly control the duplex and triplex forming ability with light, the rate of thermal isomerization of the photoresponsive organic group is preferably 0.07 min 1 or less at 50 ° C. the good Mashiku is 0. 0 3 min 1 below. The thermal isomerization rate as used herein indicates a value measured for an optically responsive organic group introduced into an oligonucleotide in an aqueous solution having a pH of 6.0 to 8.0.
また、 光応答性有機基はオリゴヌクレオチドに側鎖として導入されているのが 好ましい。 光応答性有機基をオリゴヌクレオチドの主鎖に導入した場合、 天然の オリゴヌクレオチドとの構造的な相違が大きくなり、 対応する相補鎖との二重鎖 あるいは三重鎖形成が大きく阻害されるからである。 本明細書において、 「側鎖 として導入」 とは、 オリゴヌクレオチドに、 または、 オリゴヌクレオチドと光応 答性有機基の間に介在するアルキレン基等の介在基に、 光応答性有機基が一つの 共有結合によって結合していることを意味する。 従って、 本明細書においては、 オリゴヌクレオチドの 5, 末端または 3 ' 末端に光応答性有機基が結合している 状態も、 側鎖として導入されていることを意味する。 Further, the photoresponsive organic group is preferably introduced as a side chain into the oligonucleotide. When a photoresponsive organic group is introduced into the main chain of the oligonucleotide, the structural difference from the natural oligonucleotide is increased, and the formation of a duplex or a triplex with the corresponding complementary strand is greatly inhibited. is there. In the present specification, “introduced as a side chain” refers to an oligonucleotide or an intervening group such as an alkylene group interposed between an oligonucleotide and a photoresponsive organic group, and one photoresponsive organic group. It means that they are bound by a covalent bond. Therefore, in the present specification, the state where a photoresponsive organic group is bonded to the 5, 5 or 3 'end of the oligonucleotide also means that it is introduced as a side chain.
例えば、 本発明の光応答性有機基は、 オリゴヌクレオチドの 5 ' 末端に結合し ていても、 リボースまたはデォキシリボースの 2, 位に導入されていてもよい。 また、 本発明の光応答性有機基は、 エチレン鎖またはトリメチレン鎖の側鎖に共 有結合的に結合し、 これがオリゴヌクレオチドに導入されていてもよい。 また、 本発明の光応答性有機基は 5 ' 末端のまたはホスホジエステル結合を形成するリ ン酸基に導入されていもよい。  For example, the photoresponsive organic group of the present invention may be bound to the 5 'end of the oligonucleotide or may be introduced at the 2-position of ribose or deoxyribose. Further, the photoresponsive organic group of the present invention may be covalently bonded to an ethylene chain or trimethylene chain side chain, and this may be introduced into the oligonucleotide. Further, the photoresponsive organic group of the present invention may be introduced into a phosphate group at the 5 ′ end or forming a phosphodiester bond.
本発明において、 「光応答性有機基」 は、 特定波長の光により二重鎖または三 重鎖の結合を安定させ得る立体構造から二重鎖の結合を不安定にする立体構造 へ、 好ましくは実質的に平面的な構造から平面的でない構造へ、 例えばトランス 型からシス型へ、 メロシアニン型からスビロビラン型へ、 またはその逆方向に、 好ましくは可逆的に構造異性化する有機基であり得る。 そのように、 立体構造が 特定波長の光の照射によって可逆的に変化する有機基は、例えば、ァゾベンゼン、 スビロピラン、 スチルベン、 およびこれらの誘導体の残基であり得るが、 好まし くはァゾベンゼンまたはその誘導体の残基である。  In the present invention, the “photoresponsive organic group” is preferably a three-dimensional structure capable of stabilizing a double-chain or triple-chain bond by light of a specific wavelength to a three-dimensional structure destabilizing a double-chain bond. It may be an organic group that is structurally isomerized, preferably reversibly, from a substantially planar structure to a non-planar structure, for example, from a trans form to a cis form, from a merocyanine form to a svirobilane form, or vice versa. As such, the organic group whose steric structure can be reversibly changed by irradiation with light of a specific wavelength can be, for example, the residue of azobenzene, ssubiropyran, stilbene, and derivatives thereof, but preferably azobenzene or a derivative thereof. Derivative residue.
ァゾベンゼンまたはその誘導体の残基等の光応答性有機基は、 直接、 または適 当な介在基、 例えば炭素原子数 1〜 1 0、 好ましくは 1〜6のアルキレン基、 例 えばエチレン基またはトリメチレン基を介してオリゴヌクレオチドに結合するこ とができる。 また、 該光応答性有機基は、 リボースまたはデォキシリボースの 2 3 位に導入してもリン酸部位に導入してもよく、 また、 5 ' 末端または 3 ' 末端 に導入してもよい。 The photoresponsive organic group such as the residue of azobenzene or a derivative thereof is directly or an appropriate intervening group, for example, an alkylene group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, for example, an ethylene group or trimethylene group. Can be bound to the oligonucleotide via Further, the light-responsive organic group may be introduced into the phosphoric acid moiety be introduced into 2 3-position of the ribose or Dokishiribosu, it may also be introduced at the 5 'or 3' end.
本発明の光応答性ォリゴヌクレオチドは、 例えば下記式で表されるものであり
Figure imgf000011_0001
The photoresponsive oligonucleotide of the present invention is, for example, one represented by the following formula:
Figure imgf000011_0001
SIWO/OOdT/IDd LZ9UIIQ OAV 上記式中、 Xは光応答性有機基であり、 A及び Bは各々水素、 ヌクレオチドまた はオリゴヌクレオチドを示す。 N bは核酸塩基(アデニン、 シトシン、 グァニン、 チミンまたはゥラシル)を示す。 nは 1以上の整数、好ましくは 1以上 1 0以下、 より好ましくは 1以上 6以下の整数である。 Rは、 未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 1〜2 0, 好ましくは 1〜 1 0, より好ましくは 1〜4のアルキル基もしくはアルコキ シ基;未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル 基等で置換された炭素原子数 2〜 2 0 , 好ましくは 2〜 1 0 , より好ましくは 2 〜 4のアルケニル基もしくはアルキニル基;水酸基;ハロゲン原子;ァミノ基; ニトロ基; またはカルボキシル基を表す。 SIWO / OOdT / IDd LZ9UIIQ OAV In the above formula, X is a photoresponsive organic group, and A and B each represent hydrogen, nucleotide or oligonucleotide. Nb indicates a nucleobase (adenine, cytosine, guanine, thymine or peracil). n is an integer of 1 or more, preferably 1 or more and 10 or less, more preferably 1 or more and 6 or less. R represents an alkyl group or alkoxy group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, which is unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, or the like. Si group; unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, etc., having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 4 alkenyl groups or alkynyl. A hydroxyl group; a halogen atom; an amino group; a nitro group; or a carboxyl group.
Xは、 好ましくはァゾベンゼンまたはその誘導体である。 この場合、 光照射に よる異性化によりオリゴヌクレオチドの二重鎖形成または三重鎖形成の融解温度 を可逆的に変化させる機能を害しない限り、 ベンゼン環にいかなる置換基を有し ていてもよく、 また、 オリゴヌクレオチドとの結合部にいかなる介在基を有して いてもよい。 しかしながら、 ァゾベンゼンの p位の置換基及び介在基は、 好まし くはベンゼン環と共鳴構造をとらない基である。 例えば、 p位におけるカルボキ シル基、 アミノ基、 ニトロ基のような置換基及び p位におけるアミ ド結合等は好 ましくない。 p位に共鳴構造をとる置換基または介在基が結合すると、 ァゾベン ゼンはシス体から トランス体へ熱的に異性化しやすくなるからである。 なお、 m 位の置換基は二ト口基以外の基であることが望ましい。  X is preferably azobenzene or a derivative thereof. In this case, any substituent may be present on the benzene ring, as long as it does not impair the function of reversibly changing the melting temperature of oligonucleotide duplex formation or triplex formation by isomerization by light irradiation. Further, any intervening group may be present at the bonding portion with the oligonucleotide. However, the substituent and intervening group at the p-position of azobenzene are preferably groups that do not take a resonance structure with the benzene ring. For example, substituents such as carboxyl, amino and nitro at the p-position and amide bonds at the p-position are not preferred. This is because when a substituent or an intervening group having a resonance structure is bonded to the p-position, azobenzene is easily thermally isomerized from a cis-form to a trans-form. The substituent at the m-position is desirably a group other than the two-terminal group.
は、 例えば下記式 I、 ェ I及び I I Iで表される。  Is represented, for example, by the following formulas I, I and III.
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000012_0001
Figure imgf000013_0001
/ /
Figure imgf000013_0002
式 i、 II及び ill中、 Q、 : iT R は上記で式 i、 II及び illについて定 義した意味を表す。 なお、 上記 R2〜R1()、 R12〜R2。、 R22〜R3C)において、 未置換または置換アルキル基、 アルケニル基、 アルキニル基及びアルコキシ基は 好ましくは直鎖である。
Figure imgf000013_0002
In the formulas i, II and ill, Q: iTR represents the meaning defined above for the formulas i, II and ill. The above R 2 to R 1 () and R 12 to R 2 . In R 22 to R 3C), unsubstituted or substituted alkyl group, alkenyl group, alkynyl group and alkoxy group is preferably straight-chain.
Xのさらに具体的な例を下記式に示す c
Figure imgf000014_0001
More specific examples of X are shown in the following formulas c ,
Figure imgf000014_0001
ゝ N ゝ N
Figure imgf000014_0002
Figure imgf000014_0002
Figure imgf000014_0003
式中、 Z 1はニトロ基、 アミノ基、 カルボキシル基等のベンゼン環と共鳴構造 をとる基以外の任意の基であり、例えば各々独立に、未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 1〜2 0, 好ましくは 1〜 1 0, より好ましくは 1〜4のアルキル基もしくはアルコキ シ基;未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル 基等で置換された炭素原子数 2〜 2 0 , 好ましくは 2 ~ 1 0, より好ましくは 2 〜4のアルケニル基もしくはアルキニル基;水酸基; またはハロゲン原子を表 す。 Z 2及び Z 3はニトロ基以外の任意の基であり、 例えば各々独立に、 未置換ま たはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換され た炭素原子数 1〜2 0 , 好ましくは 1〜 1 0 , より好ましくは 1〜4のアルキル 基もしくはアルコキシ基;未置換またはハロゲン原子、 水酸基、 アミノ基、 ニト 口基、カルボキシル基等で置換された炭素原子数 2〜 2 0 ,好ましくは 2〜 1 0 , より好ましくは 2〜4のアルケニル基もしくはアルキニル基;水酸基;ハロゲン 原子; アミノ基; またはカルボキシル基を表す。 なお、 上記未置換または置換ァ ルキル基、 アルケニル基、 アルキニル基及びアルコキシ基は好ましくは直鎖であ る。
Figure imgf000014_0003
In the formula, Z 1 is any group other than a group having a resonance structure with a benzene ring, such as a nitro group, an amino group, and a carboxyl group.For example, each independently represents an unsubstituted or halogen atom, a hydroxyl group, an amino group, a nitro group An alkyl or alkoxy group having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms substituted with a carboxyl group or the like; unsubstituted or halogen atom, hydroxyl group, amino group, nitro group A alkenyl group or alkynyl group having 2 to 20, preferably 2 to 10, more preferably 2 to 4 carbon atoms substituted with a carboxyl group or the like; a hydroxyl group; or a halogen atom. Z 2 and Z 3 are arbitrary groups other than a nitro group, and each independently represents, for example, 1 to 2 carbon atoms that are unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, an nitro group, a carboxyl group, or the like. 0, preferably 1 to 10 and more preferably 1 to 4 alkyl groups or alkoxy groups; 2 to 2 carbon atoms which are unsubstituted or substituted by halogen atoms, hydroxyl groups, amino groups, nitrite groups, carboxyl groups, etc. 0, preferably 2 to 10, more preferably 2 to 4 alkenyl or alkynyl; hydroxyl; halogen; amino; The unsubstituted or substituted alkyl group, alkenyl group, alkynyl group and alkoxy group are preferably straight-chain.
(光応答性オリゴヌクレオチドの合成)  (Synthesis of photoresponsive oligonucleotide)
光応答性有機基のオリゴヌクレオチドへの導入方法としては、 未置換またはァ ルキル基で置換されたポリメチレン鎖 (例えば炭素原子数 2〜 1 0のもの、 好ま しくは炭素原子数 2〜 5のもの) の側鎖に共有結合的に導入した後、 これをホス ホアミダイ トモノマーにして、 既存の D N A合成機を使用してオリゴヌクレオチ ドに導入する方法を用いることができる。 ホスホアミダイ トモノマーの合成は、 ザ . ジャーナル . ォブ . オーガニック ' ケミス ト リ— ( The Journal of As a method for introducing a photoresponsive organic group into an oligonucleotide, a polymethylene chain which is unsubstituted or substituted with an alkyl group (for example, one having 2 to 10 carbon atoms, preferably one having 2 to 5 carbon atoms) After the covalent introduction into the side chain of (2), a method of converting this into a phosphoramidite monomer and introducing it into an oligonucleotide using an existing DNA synthesizer can be used. The synthesis of phosphoramidite monomers is described in The Journal of Organic 'Chemistry.
Organic Chemistry) 誌 1 9 9 7年第 6 2巻 8 4 6ページ以降に記載の方法を 用いればよい。 この場合、 ポリメチレン鎖は様々な長さのものを用いることがで きるが、 未置換またはアルキル基で置換されたエチレン鎖またはトリメチレン鎖 が好ましい。 この場合、 光応答性有機基は、 エチレン鎖の場合はいずれかの炭素 原子に、 トリメチレン鎖の場合は中央の炭素原子に共有結合的に導入するのが好 ましい。 また、 光応答性有機基は、 リボースまたはデォキシリボースの 2, 位に 導入しても、 リン酸部位に導入してもよく、 また、 5, 末端または 3, 末端に導 入してもよい。 The method described in Organic Chemistry (1992), Vol. 62, No. 62, page 846 may be used. In this case, polymethylene chains of various lengths can be used, but ethylene chains or trimethylene chains which are unsubstituted or substituted with an alkyl group are preferred. In this case, the photoresponsive organic group is preferably introduced covalently to any carbon atom in the case of an ethylene chain, or to the central carbon atom in the case of a trimethylene chain. The photoresponsive organic group is located at the 2 position of ribose or deoxyribose. It may be introduced at the phosphate site, or may be introduced at the 5 or 3 terminal.
光応答性有機基の構造異性化のために照射する光は、 該有機基の異性化が可能 ならば紫外領域から赤外領域までのすべての波長の光を用いることができるが、 DNAを損傷させない 300 nm以上が好ましい。 例えば、 300〜400 nm の光 (UV光) を照射することにより、 一の異性体から他の異性体に構造異性化 し、 400 nm以上の光 (可視光) を照射することにより、 その逆の変化を起こ すことができる。  Irradiation light for structural isomerization of a photoresponsive organic group can be light of any wavelength from the ultraviolet region to the infrared region as long as the organic group can be isomerized. It is preferably 300 nm or more. For example, by irradiating 300 to 400 nm light (UV light), one isomer is structurally isomerized to another isomer, and by irradiating light (visible light) of 400 nm or more, the opposite is true. Can change.
光照射による融解温度の変化は、 誤差の範囲を超える有為な変化ならばいくら 小さくても構わないが、 1. 0°C以上が好ましく、 より好ましくは 2. 0°C以上 である。融解温度測定は、バイオコンジュゲート 'ケミストリ一(Bioconjugate Chemistry) 誌 1997年第 8卷 3頁以降およびジャーナル 'ォブ ·ザ ·ァメ リカン ·ケ 7Jル · ソサエティ——( Journal of the American Chemical Society)誌 1997年第 1 19卷 263頁以降に記載の方法を参考にすること ができる。 融解温度は様々な方法で決定することができるが、 融解温度曲線の一 次微分の極大を与える温度として決定するのが好ましい。  The change in melting temperature due to light irradiation may be as small as possible as long as it is a significant change exceeding the range of error, but is preferably 1.0 ° C or higher, more preferably 2.0 ° C or higher. Melting temperature measurements were made using the bioconjugate 'Bioconjugate Chemistry', Volume 8, page 3 et seq. 1997, and the journal 'Ob the American K. 7J Le Society' (Journal of the American Chemical Society). ) Magazine, 1997, Vol. 119, p. 263 et seq. The melting temperature can be determined in various ways, but is preferably determined as the temperature that gives the maximum of the first derivative of the melting temperature curve.
本発明の光応答性オリゴヌクレオチドは、 in vivo, in vitroのいずれの系 でも使用することができる。 本発明の光応答性オリゴヌクレオチドを、 DNAポ リメラーゼあるいは R N Aポリメラ一ゼによる D N Aあるいは R N A伸長反応の 光制御に応用してもよい。 また、 DNAまたは RNAに結合するタンパク質ある いは酵素に、 本発明の光応答性オリゴヌクレオチドを使用することもできる。 ま た、 リボザィムゃ DN Aェンザィムに本発明の光応答性オリゴヌクレオチドを使 用することもできる。 更に本発明の光応答性ォリゴヌクレオチドを天然の DN A 中に酵素的に導入しても、 天然の RNA中に酵素的に導入してもよい。 従って、 本発明は、 上記光応答性オリゴヌクレオチドをヒ トまたはヒト以外の動物の DN Aに導入することを含むヒ トまたはヒ ト以外の動物の治療方法をも提供する。  The photoresponsive oligonucleotide of the present invention can be used in any of in vivo and in vitro systems. The photoresponsive oligonucleotide of the present invention may be applied to the light control of a DNA or RNA extension reaction by DNA polymerase or RNA polymerase. In addition, the photoresponsive oligonucleotide of the present invention can be used for a protein or an enzyme that binds to DNA or RNA. In addition, the photoresponsive oligonucleotide of the present invention can be used in Ribozyme DNA Enzyme. Furthermore, the photoresponsive oligonucleotide of the present invention may be enzymatically introduced into natural DNA or may be enzymatically introduced into natural RNA. Accordingly, the present invention also provides a method for treating a human or non-human animal, comprising introducing the photoresponsive oligonucleotide into the DNA of a human or non-human animal.
DN Aポリメラーゼの伸長反応に利用する場合は、 テンプレートとして使用す る DNAの途中に本発明の光応答性オリゴヌクレオチド (DNA) をハイブリダ ィズさせて用いることができる。 トランス体の場合は、 テンプレート; DNAに強 く結合するのでポリメラーゼによる伸長反応は光応答性ォリゴヌクレオチドの手 前で停止する。 一方、 シス体に異性化させた場合にはテンプレート DNAから光 応答性オリゴヌクレオチドが解離するので、 DN A伸長反応はテンプレート鎖の 最後まで進行する。 従って、 本発明は上記光応答性オリゴヌクレオチドを用いて DN A伸長反応を制御する方法をも提供する。 When used for the extension reaction of DNA polymerase, the photoresponsive oligonucleotide (DNA) of the present invention can be hybridized with DNA used as a template in the middle. For trans form, template; strong against DNA As a result, the elongation reaction by the polymerase stops before the photoresponsive oligonucleotide. On the other hand, when the cis-isomer isomerized, the photoresponsive oligonucleotide dissociates from the template DNA, and the DNA extension reaction proceeds to the end of the template strand. Therefore, the present invention also provides a method for controlling a DNA extension reaction using the above-described photoresponsive oligonucleotide.
RN Aポリメラ一ゼの伸長反応に利用する場合は、 プロモータ一部分またはそ の近傍にァゾベンゼンを導入した本発明の光応答性 DNAを用いると良い。 プロ モーター部分が二重鎖を形成している (すなわちトランス体) 場合には RNAポ リメラーゼによる転写が起きるが、 二重鎖が解離している (すなわちシス体) 場 合には転写が起こらない。 従って、 本発明は上記光応答性オリゴヌクレオチドを 用いて RN A伸長反応を制御する方法をも提供する。  When used for the elongation reaction of RNA polymerase, the photoresponsive DNA of the present invention in which azobenzene is introduced into a part of the promoter or in the vicinity thereof may be used. Transcription by RNA polymerase occurs when the promoter forms a double strand (ie, trans form), but does not occur when the double strand is dissociated (ie, cis form). . Therefore, the present invention also provides a method for controlling an RNA extension reaction using the above-mentioned photoresponsive oligonucleotide.
また、 アンチセンス DNAに本発明の光応答性オリゴヌクレオチドを使用する ことにより、 タンパク質合成を光制御することができる。 即ち、 アンチセンス D N Aとしての本発明の光応答性オリゴヌクレオチドが mRN Aと強くハイブリダ ィズした場合 (即ち、 トランス体の場合) には翻訳が阻害されるが、 mRNAと 解離した場合 (即ち、 シス体の場合) には翻訳が行われる。 従って、 本発明はァ ンチセンス DNAとして上記光応答性オリゴヌクレオチドを用いるアンチセンス 制御方法をも提供する。 実施例  Further, by using the photoresponsive oligonucleotide of the present invention for antisense DNA, protein synthesis can be light-controlled. That is, when the photoresponsive oligonucleotide of the present invention as antisense DNA strongly hybridizes with mRNA (ie, in the case of trans form), translation is inhibited, but when dissociated from mRNA (ie, In the case of cis form), translation is performed. Therefore, the present invention also provides an antisense control method using the above-mentioned photoresponsive oligonucleotide as antisense DNA. Example
実施例 1 :ホスホアミダイ トモノマーの合成 Example 1: Synthesis of phosphoramidite monomer
まず、 テトラへドロン (Tetrahedron) 誌 1992年第 48巻 2223頁、 ニュークレイック ' ァヅシズ ' リサ一チ (Nucleic Acids Research) 誌 1 987年第 15卷 6131頁、 およびザ · ジャーナル ·ォブ ·オーガニック ·ケ ミス 卜 リー (The Journal of Organic Chemistry) 誌 1989年第 5 4卷 2321頁に記載の手法に従い、 ゥリジンの 5, と 3, の水酸基を 1, 3— ジクロロー 1, 1, 3, 3—テトライソプロビルジシロキサンで保護し、 続いて N 3位をべンジルク ロ リ ドで保護 した。 次にマク ロモレキュールズ (Macromolecules) 誌 1 984年第 1 7卷 782頁以降に記載の方法に従つ W First, Tetrahedron, 1992, Vol. 48, p. 2223, Nucleic Acids Research, Nucleic Acids Research, 1987, Vol. 15, p. 6131, and The Journal of Organics. According to the method described in The Journal of Organic Chemistry, Vol. 54, pp. 2321, 1989, the hydroxyl groups of 5, 5 and 3 of peridine are 1,3-dichloro-1,1,3,3- Protected with tetraisopropyldisiloxane, followed by benzyl chloride protection at the N 3 position. Next, follow the method described in Macromolecules, Vol. W
て合成した 4一プロモメチルァゾベンゼンを、 上記保護ゥリジンに加え、 ジメチ ルホルムアミ ドに溶解させた。 これを一 20°Cに冷却し、 ジメチルホルムアミ ド に分散させた水素化ナトリウムをゆっく り加えることによって、 2' 位にァゾべ ンゼンを導入した。 この後定法に従って保護基を外し、 2, 一 0— (p—フエ二 ルァゾベンジル) ゥリジンを合成した (Uazo)。 その後、 ザ ' ジャーナル .ォブ •ォ一77ニック 'ケ ストリ一 (The Journal of Organic Chemistry) 誌 1997年第 62巻 846頁に記載の方法にしたがって、下記式に示すように、 5, 位にジメチルトリチル基を、 3, 位にホスホロアミジドを付加して、 ホスホ アミダイ トモノマ一 (Amidite — Uazo) を合成した。 The 4-bromomethylazobenzene synthesized above was added to the protected peridine and dissolved in dimethylformamide. This was cooled to 120 ° C and azobenzene was introduced at the 2'-position by slowly adding sodium hydride dispersed in dimethylformamide. Thereafter, the protecting group was removed in accordance with a standard method, and 2,10- (p-phenylazobenzyl) peridine was synthesized (Uazo). Then, according to the method described in The Journal of Organic Chemistry, Vol. 62, p. 846, 1997, the fifth place was obtained as shown in the following formula. Phosphoramidite monomer (Amidite-Uazo) was synthesized by adding a dimethyltrityl group and a phosphoramidide at the 3-position.
Figure imgf000018_0001
Figure imgf000018_0001
実施例 2 :ホスホアミダイ トモノマーの合成 Example 2: Synthesis of phosphoramidite monomer
オリゴヌクレオチドの 5' 末端に導入することを目的として、 以下のようなホ スホアミダイ トモノマ一を合成した。 4一プロモアゾベンゼンとエチレングリコ —ルをジメチルホルムアミ ドに溶解させ、 一 20°Cで水素化ナトリウムを滴下し て、 2— (p—フエニルァゾ) ベンジルォキシエタノール (下記式中、 XI) を 合成した。 同様にして 3— (p—フエニルァゾ) ベンジルォキシー 1—プロパノ —ル (下記式中、 X2) を合成した。 これに上記と同様にしてホスホロアミジド を付加したホスホアミ ダイ トモノマー (下記式中、 Amidite-Xl および Amidite- X2) を合成した。  The following phosphoramidite monomers were synthesized for the purpose of introducing them to the 5 'end of the oligonucleotide. 4 Dissolve bromoazobenzene and ethylene glycol in dimethylformamide, and add sodium hydride dropwise at 120 ° C to give 2- (p-phenylazo) benzyloxyethanol (XI in the following formula). Synthesized. Similarly, 3- (p-phenylazo) benzyloxy 1-propanol (X2 in the following formula) was synthesized. Phosphoramidite monomers (Amidite-Xl and Amidite-X2 in the following formula) having phosphoramidide added thereto were synthesized in the same manner as described above.
一 1フ ー ° OH One 1 foo ° OH
X1 X1
Amidtto-X1  Amidtto-X1
Figure imgf000019_0001
Ο Q ズべ
Figure imgf000019_0001
Ο Q
C  C
X2 Amidite-X2  X2 Amidite-X2
実施例 3 :光応答性ォリゴヌクレオチドの合成 Example 3 Synthesis of Photoresponsive Oligonucleotide
次に DNAを合成機を用いて、 上記のホスホアミダイ トモノマーを使用して様 々な配列を持つ本発明の光応答性ォリゴヌクレオチドを合成した。 また比較のた め、 上記本発明の光応答性有機基を有しないオリゴヌクレオチドを同様に DN A 合成機を使用して合成した。 表 1に合成したォリゴヌクレオチドを示す。  Next, using a DNA synthesizer, the photoresponsive oligonucleotide of the present invention having various sequences was synthesized using the above-described phosphoramidite monomer. For comparison, the oligonucleotide having no photoresponsive organic group of the present invention was synthesized in the same manner using a DNA synthesizer. Table 1 shows the synthesized oligonucleotides.
なお、 以下、 Uazo'は下記式の基を表す。  Hereinafter, Uazo 'represents a group represented by the following formula.
Figure imgf000019_0002
なお、 以下、 Uazo' 'は下記式の基を表す (
Figure imgf000019_0002
Hereinafter, Uazo ′ ′ represents a group represented by the following formula (
Figure imgf000020_0001
Figure imgf000020_0001
XI'は下記式の基を表す c XI ′ represents a group of the following formula c
Figure imgf000020_0002
Figure imgf000020_0002
X2'は、 下記式の基を表す <  X2 ′ represents a group of the following formula <
Figure imgf000020_0003
表 1
Figure imgf000020_0003
table 1
配列番号 記号 配列 Sequence number Symbol Sequence
1 (Uazo' ) 5'-(Uazo' )TTTTTTT-3 ' 本発明 1 (Uazo ') 5'-(Uazo ') TTTTTTT-3' The present invention
2 (Uazo' ' )A4 5 ' -AAA(Uazo ' ' )AAAA-3 本発明2 (Uazo '') A 4 5 '-AAA (Uazo'') AAAA-3
3 T3(Uazo',)T4 5 ' -TTT(Uazo ' ' )TTTT-3 ' 本発明 3 T 3 (Uazo ',) T 4 5' -TTT (Uazo '') TTTT-3 ' present invention
4 (Uazo' ) 5'-(Uazo' )AAAAAAA - 3, 本発明 5 (XI ' )Ae 5' -(XI, )ΑΑΑΑΑΑΑΑ-3' 本発明 4 (Uazo ') 5'-(Uazo ') AAAAAAAA-3, the present invention 5 (XI ') Ae 5'-(XI,) ΑΑΑΑΑΑΑΑ-3 'The present invention
6 (Χ2 ' )As 5' -(Χ2' )ΑΑΑΑΑΑΑΑ-3' 本発明  6 (Χ2 ') As 5'-(Χ2 ') ΑΑΑΑΑΑΑΑ-3' The present invention
7 (XI ' )Τπ 5' -(χι ' )ΤΤΤΤΤΤΤΤΤΤΤ-3' 本発明  7 (XI ') Τπ 5'-(χι ') ΤΤΤΤΤΤΤΤΤΤΤ-3'
8 (XI ' )ΤΗ 5' -(χΐ' )ττττττττττττττ - 3' 本発明  8 (XI ') ΤΗ 5'-(χΐ ') ττττττττττττττ-3'
9 (Χ2 ' )Tu 5, -(Χ2 * )ΤΤΤΤΤΤΤΤΤΤΤ-3 ' 本発明  9 (Χ2 ') Tu 5,-(Χ2 *)' -3 'The present invention
10 (Χ2' )Τΐ4 5, -(Χ2' )τΊ ΤΤΤΤΤΤΤΤΤΤΤ-3' 本 日  10 (Χ2 ') Τΐ4 5,-(Χ2') τΊ ΤΤΤΤΤΤΤΤΤΤΤ-3 'today
11 As 5' -AAAAAAAA-3 ' 比較例  11 As 5 '-AAAAAAAA-3' Comparative example
12 Τβ 5' -ΤΤΤΤΤΤΤΤ-3 ' 比較例  12 Τβ 5 '-ΤΤΤΤΤΤΤΤ-3' Comparative example
13 ΤΑ 3 5' - ΤΤΤΤΑΤΤΤ - 3, 比較例  13 ΤΑ 3 5 '-ΤΤΤΤΑΤΤΤ-3, Comparative example
14 Ύ,Ά 5' -ΤΤΤΤΤΤΤΑ-3 ' 比較例  14 Ύ 、 Ά 5 '-ΤΤΤΤΤΤΤΑ-3' Comparative example
15 Τπ 5' ~* τ τ τ τ τ τ τ τ τ τ τ™~ *^ ' 比較例  15 Τπ 5 '~ * τ τ τ τ τ τ τ τ τ τ ττ ~~ * ^' Comparative example
16 T 5' "ΤΤ'ΤΤ'ΤΤΤΤ'ΤΤΤΤ'Τ'Τ"- , 比較例 試験例 1 :熱異性化速度の測定  16 T 5 '"ΤΤ'ΤΤ'ΤΤΤΤ'ΤΤΤΤ'ΤΤΤΤ'Τ"-, Comparative example Test example 1: Measurement of thermal isomerization rate
上記で合成した配列番号 1〜 10の本発明の光応答性ォリゴヌクレオチドの各 々を、 1 Ommo 1Zリッ トルのへぺスバッファ一で ρΗを 7. 0に調整し、 塩 濃度を塩化ナトリゥムで 1 mo 1Zリッ トルになるように調整した水溶液に溶解 した。 これに、 キセノンランプを用いて UVD— 36 Cフィル夕一を通して、 3 0 Onm以上 400 nm以下の光 (UV光) を 10分間照射した。 その結果、 添 加した光応答性オリゴヌクレオチドの 90%が、 シス型に異性化した。 これを恒 温槽で 50。Cに保ち、 シス型からトランス型への過程を UV— Vi sスペクトル で熱的に追跡することで、熱異性化速度定数 kを求めた。その結果を表 2に示す。 表 2  Each of the photoresponsive oligonucleotides of the present invention of SEQ ID NOS: 1 to 10 synthesized as described above was adjusted to ρΗ 7.0 with 1 Ommo 1Z liter of a buffer, and the salt concentration was adjusted with sodium chloride. It was dissolved in an aqueous solution adjusted to 1 mo 1Z liter. This was irradiated with light (UV light) having a wavelength of 30 Onm or more and 400 nm or less through a UVD-36C filter using a xenon lamp for 10 minutes. As a result, 90% of the added photoresponsive oligonucleotide was isomerized to cis form. This is 50 in a thermostat. The thermal isomerization rate constant k was determined by keeping the temperature at C and tracking the process from the cis-form to the trans-form thermally by UV-Vis spectra. The results are shown in Table 2. Table 2
配列番号 記号 速度定数 k(min— Sequence number Symbol Rate constant k (min—
1 (Uazo* )Τ7 0. 01以下  1 (Uazo *) Τ7 0.01 or less
2 As iUazo' ' )A« 0. 01以下  2 As iUazo '') A «0.01 or less
3 T3(Uazo' ' )T4 0. 01以下 3 T 3 (Uazo '') T 4 0.01 or less
4 (Uazo' )A, 0. 01以下 5 (XI ' )A8 0 01以下 4 (Uazo ') A, 0.01 or less 5 (XI ') A 8 0 01 or less
6 (X2 ' )AB 0 01以下  6 (X2 ') AB 0 01 or less
7 (XI ' )T1: 0 01以下 7 (XI ') T 1: 0 01 or less
8 (XI ' )TI< 0 01以下  8 (XI ') TI <0 01 or less
9 (X2, )TIJ 0 01以下  9 (X2,) TIJ 0 01 or less
10 (X2 ' )T" 0 01以下 表 2に示すように、 本発明の光応答性オリゴヌクレオチドは、 シス体から トラ ンス体への熱異性化速度がすべて十分に遅いことが判明した。  10 (X2 ′) T ″ 001 and below As shown in Table 2, it was found that the photoresponsive oligonucleotide of the present invention had a sufficiently low rate of thermal isomerization from a cis-form to a trans-form.
試験例 2 :融解温度の測定  Test example 2: Measurement of melting temperature
上記配列番号 1, 2 , 3, 4 , 12のオリゴヌクレオチドに、 対応する相補鎖 を加えて、 融解温度を測定し、 これにより二重鎖の安定性を評価した。 融解温度 測定の条件を以下に示す。  The corresponding complementary strands were added to the oligonucleotides of SEQ ID NOs: 1, 2, 3, 4, and 12, and the melting temperature was measured to evaluate the stability of the duplex. The conditions for measuring the melting temperature are shown below.
p H ( 10 mm o 1/リ ツ トル N a 2 H P 04バッファ一) : 7. 0 p H (10 mm o 1 / Li Tsu torr N a 2 HP 0 4 buffer 1): 7.0
ォリゴヌクレオチド : 50 m o 1 リッ トル  Oligonucleotides: 50 m o 1 liter
塩化ナトリウム : 1 m 01 /リッ トル Sodium chloride: 1 m 01 / liter
測定波長: 260 nm Measurement wavelength: 260 nm
温度掃引速度: _ 1. 0 °CZm i n Temperature sweep speed: _ 1.0 ° CZmin
測定温度範囲: 6 CTC^ ^— 5°C Measurement temperature range: 6 CTC ^ ^ — 5 ° C
結果を表 3に示す。 UV光照射前のァゾベンゼン残基は 80 %以上がトランス 体であった。 UV照射は、 オリゴヌクレオチドを入れた試料に、 キセノンランプ を用いて UVD— 36 Cフィル夕一を通して 300 nm以上 400 nm以下の光 を 10分間照射することにより行った。 その結果、 80%以上がシス体に変化し た。 融解温度は、 融解温度曲線の一次微分の極大値を与える温度として求めた。 表 3  Table 3 shows the results. Before UV irradiation, more than 80% of the azobenzene residues were in the trans form. UV irradiation was performed by irradiating the sample containing the oligonucleotide with light of 300 nm or more and 400 nm or less through a UVD-36C filter using a xenon lamp for 10 minutes. As a result, more than 80% changed to cis form. The melting temperature was determined as the temperature giving the maximum value of the first derivative of the melting temperature curve. Table 3
融解温度 (°c)  Melting temperature (° c)
配列番号 記号 相補鎖 U 照射前 UV照射後 SEQ ID No.Complementary strand U Before irradiation After UV irradiation
1 (Uazo' )Ίι Αβ 30.5 21.9 本発明 2 A3(Uszo 'つ 4AT3 21.4 0.4 本発明1 (Uazo ') Ίι Αβ 30.5 21.9 The present invention 2 A3 (Uszo '4AT3 21.4 0.4 The present invention
3 T3(UaZO' ' AS 13.4 8.4 本発明 3 T 3 (UaZO '''AS 13.4 8.4 The present invention
4 (Uazo' )Ai T7A 30.9 25.3 本発明  4 (Uazo ') Ai T7A 30.9 25.3 The present invention
12 Ts As 23.7 23.6 比較例 このように、 ァゾベンゼン誘導体残基を結合したオリゴヌクレオチドを、 これ とフルマツチの相補鎖とハイブリダィズさせる場合、 UV光照射により、 即ち、 ァゾベンゼンをトランス体からシス体にすることにより、 5°C以上も融解温度が 変化することが明らかとなった。 更に驚くべきことに配列番号 1の本発明のオリ ゴヌクレオチドは、 トランス体では、 対応する従来のオリゴヌクレオチド (配列 番号 12) より 5°C以上融解温度が高く、 ァゾベンゼンの導入により二重鎖形成 能が高くなつていることがわかる。 一方比較例に示すように従来の未修飾のオリ ゴヌクレオチドでは、 U V照射前後でほとんど融解温度の変化はなかった。  12 Ts As 23.7 23.6 Comparative Example As described above, when an oligonucleotide bound to an azobenzene derivative residue is hybridized with the complementary strand of Furumatsu, the azobenzene is converted from a trans form to a cis form by irradiation with UV light. It was found that the melting temperature changed by more than 5 ° C. Even more surprisingly, the oligonucleotide of the present invention of SEQ ID NO: 1 has a melting temperature higher than that of the corresponding conventional oligonucleotide (SEQ ID NO: 12) by 5 ° C. or more, and forms a duplex by introduction of azobenzene. It can be seen that the performance is getting higher. On the other hand, as shown in the comparative example, the melting temperature of the conventional unmodified oligonucleotide hardly changed before and after UV irradiation.
この後、 キセノンランプを用いて L一 42フィルタ一を通すことにより 420 nm以上の可視光を 10分間照射したところ、 80 %以上がトランス体に戻った。 上記と同じ条件で融解温度を求めたところ、 UV照射前の値と誤差範囲内で一致 した。 このように可逆的に融解温度が変化することが明らかとなった。 上記の操 作を 5回繰り返したが、 特に劣化することなく可逆的にァゾベンゼン残基は異性 化した。 それに伴い融解温度も可逆的に変化した。  After that, visible light of 420 nm or more was irradiated for 10 minutes by passing through a L-42 filter using a xenon lamp, and 80% or more returned to the transformer. When the melting temperature was determined under the same conditions as above, it was consistent with the value before UV irradiation within the error range. Thus, it was revealed that the melting temperature changes reversibly. The above operation was repeated five times, and the azobenzene residue was reversibly isomerized without any particular deterioration. The melting temperature also reversibly changed.
試験例 3 :三重鎖の融解温度測定 Test Example 3: Measurement of melting temperature of triple chain
以下に示す配列を有する二重鎖を使用して、三重鎖の融解温度を測定した。た。 The melting temperature of the triplex was measured using a duplex having the sequence shown below. Was.
5 '一 GCCACGAAATTTTTTTTTTTTTTAAACCGACG-3 ' (配列番号 17 ) 5 'One GCCACGAAATTTTTTTTTTTTTTAAACCGACG-3' (SEQ ID NO: 17)
51 - CGTCGGTTTAAAAAAAAAAAAAATTTCGTGGC - 3 ' (配歹!]番号 18) 5 1 -CGTCGGTTTAAAAAAAAAAAAAATTTCGTGGC-3 '(system!) Number 18
これらのオリゴヌクレオチドにより形成される二重鎖と、配列番号 7, 9, 8, 15, 16の配列を有するオリゴヌクレオチドにより、 三重鎖を形成し、 その融 解温度を測定した。 結果を表 4に示す。 以下に三重鎖の融解温度測定の条件を示 す。  A triple strand was formed by the duplex formed by these oligonucleotides and the oligonucleotides having the sequences of SEQ ID NOs: 7, 9, 8, 15, and 16, and the melting temperature was measured. Table 4 shows the results. The conditions for measuring the melting temperature of the triplex are shown below.
p H ( 10 mmo 1/リツ トルへぺスバッファー) : 7. 0 pH (10 mmo1 / liter little buffer): 7.0
配列番号 17のオリゴヌクレオチド : 2 m o 1 /リツ トル 配列番号 18のオリゴヌクレオチド : 2. 2 mo 1/リッ トル Oligonucleotide of SEQ ID NO: 17: 2 mo1 / liter Oligonucleotide of SEQ ID NO: 18: 2.2 mo 1 / liter
光応答性オリゴヌクレオチド : 2. 4 mo l/リットル  Light-responsive oligonucleotide: 2.4 mol / liter
塩化マグネシウム : 0. 1または 0. 4 mo l/リッ トル  Magnesium chloride: 0.1 or 0.4 mol / liter
測定波長: 280 nm  Measurement wavelength: 280 nm
温度掃引速度:一 0. 5。C/m i n  Temperature sweep speed: 0.5. C / m i n
測定温度範囲: 60°C〜一 5eC 表 4 Measurement temperature range: 60 ° Celsius to one 5 e C Table 4
融解温度 ( )  Melting temperature ()
配列番号 記号 uv照射前 UV照射後  SEQ ID No.Before UV irradiation After UV irradiation
7 (XI ' )Τπ 25 3 6.  7 (XI ') Τπ 25 3 6.
9 (Χ2 ' )Τπ 25 6 10 9 9 (Χ2 ') Τπ 25 6 10 9
Figure imgf000024_0001
Figure imgf000024_0001
8 (XI ' )Tn 23 1 10 6  8 (XI ') Tn 23 1 10 6
10 (X2, )T 25 8 1 1 4 10 (X2,) T 25 8 1 1 4
Figure imgf000024_0002
Figure imgf000024_0002
塩化マグネシウム濃度:配列番号 7,9,15については 0. 4 mol ヅ トル Magnesium chloride concentration: 0.4 mol ト ル torr for SEQ ID NOs: 7,9,15
配列番号 8,10,16については 0 1 mol ットル このように、 本発明の光応答性オリゴヌクレオチドを使用することで光照射で 1 o°c以上も融解温度が変化することが明らかとなった。 一方比較例に示すよう に従来の未修飾のオリゴヌクレオチドでは、 UV照射前後で殆ど融解温度の変化 はなかった。  As for SEQ ID NOs: 8, 10, and 16, 0 1 mol liter As described above, it was revealed that the use of the photoresponsive oligonucleotide of the present invention changed the melting temperature by 1 o ° c or more by light irradiation. . On the other hand, as shown in the comparative examples, the melting temperature of the conventional unmodified oligonucleotide hardly changed before and after UV irradiation.
この後、 キセノンランプを用いて L— 42フィル夕一を通すことにより 420 nm以上の可視光を 10分間照射したところ、 80 %以上がトランス体に戻った。 上記と同じ条件で融解温度を求めたところ、 UV照射前の値と誤差範囲内で一致 した。 このように可逆的に融解温度が変化することが明らかとなった。 上記の操 作を 5回繰り返したが、 特に劣化することなく可逆的にァゾベンゼン残基は異性 化した。 それに伴い融解温度も可逆的に変化した。 実施例 4 :ホスホアミダイ トモノマ一の合成 After that, when a visible light of 420 nm or more was irradiated for 10 minutes by passing through an L-42 filter using a xenon lamp, 80% or more returned to the transformer. When the melting temperature was determined under the same conditions as above, it was consistent with the value before UV irradiation within the error range. Thus, it was revealed that the melting temperature changes reversibly. The above operation was repeated five times, and the azobenzene residue was reversibly isomerized without any particular deterioration. The melting temperature also reversibly changed. Example 4: Synthesis of phosphoramidite monomer
H H
Figure imgf000025_0001
Figure imgf000025_0001
Figure imgf000025_0002
Figure imgf000025_0002
NC  NC
V 0  V 0
N  N
 Man
VI VI
DMT =ジメ トキシトリチル基 テトラへドロン(Tetrahedron)誌 1998年第 39卷 9015〜 9018頁 に記載の方法に従い、 以下の手法でァゾベンゼンをォリゴヌクレオチドの側鎖と して導入した。 まずジメチルスルホキシド (DMF) 中で、 ジシクロへキシルカ ルポジィミ ドと 1ーヒドロキシベンゾトリアゾ一ルの存在下で反応させることに より、 4—アミノアゾベンゼンを 2 , 2—ビス (ヒドロキシメチル) プロビオン 酸に、 アミ ド結合によって導入した (IV)。 得られた化合物 (IV) はへキサン一 クロ口ホルム混合溶媒から再結晶することにより精製した。 次にピリジン ·塩化 メチレン混合溶媒中で 4ージメチルアミノビリジンの存在下で 4, 4ージメ トキ シトリチル (DMT) クロリ ドと反応させることにより、 化合物 (IV) の一方の 水酸基をジメ トキシトリチル基(DMT)で保護した(V)。得られた化合物(V) は、 展開溶媒として塩化メチレン : トリエチルァミン :メタノール = 90 : 5 : 10の混合溶媒を使用して、シリカゲル · クロマトグラフ法により分離精製した。 この後ザ · ジャーナル 'ォブ 'オーガニック 'ケミストリー (The Journal of Organic Chemistry)誌 1997年第 62卷 846頁に記載の方法に従って、 も う一方の水酸基にホスホロアミジドを付加して、ホスホアミダイ トモノマー(VI) を合成した。 DMT = Dimethoxytrityl group According to the method described in Tetrahedron, 1998, Vol. 39, pp. 9015 to 9018, azobenzene was introduced as a side chain of an oligonucleotide by the following method. First, 4-aminoazobenzene is converted to 2,2-bis (hydroxymethyl) propionic acid by reacting dicyclohexyl carbamide with dimethyl sulfoxide (DMF) in the presence of 1-hydroxybenzotriazole. And introduced by amide bond (IV). The obtained compound (IV) was purified by recrystallization from a mixed solvent of hexane and chloroform. Next, one hydroxyl group of compound (IV) is reacted with 4,4-dimethoxytrityl (DMT) chloride in the presence of 4-dimethylaminoviridine in a mixed solvent of pyridine and methylene chloride to convert one hydroxyl group of compound (IV) to a dimethoxytrityl group (DMT). ) Protected (V). The obtained compound (V) was separated and purified by silica gel chromatography using a mixed solvent of methylene chloride: triethylamine: methanol = 90: 5: 10 as a developing solvent. Thereafter, a phosphoramidide was added to the other hydroxyl group according to the method described in The Journal of Organic Chemistry, Vol. 62, p. 846, 1997, to give a phosphoramidite monomer (VI). Was synthesized.
実施例 5  Example 5
実施例 4で合成したホスホアミダイ トモノマ一を使用し DN A合成機により様 々な配列を持つ本発明の光応答性オリゴヌクレオチドを合成した。 得られた光応 答性オリゴヌクレオチドには全て、 ホスホアミダイ トモノマー (VI) の不斉炭素 に基づく二つのジァステレオマーが存在し、これらは液体クロマトグラフィ一(H PLC) で以下の条件で完全に分離することができた。  Using the phosphoramidite monomer synthesized in Example 4, photoresponsive oligonucleotides of the present invention having various sequences were synthesized by a DNA synthesizer. All of the resulting photoresponsive oligonucleotides have two diastereomers based on the asymmetric carbon of the phosphoramidite monomer (VI), which must be completely separated by liquid chromatography (HPLC) under the following conditions. Was completed.
カラム : Merck LiChrospher 100 RP-18ie  Column: Merck LiChrospher 100 RP-18ie
通液速度: l.Oml/min  Flow rate: l.Oml / min
展開溶媒: 50mMの蟻酸アンモニゥムを含むァセトニトリル Z水混合溶媒  Developing solvent: Acetonitrile Z water mixed solvent containing 50 mM ammonium formate
一 h  One h
その際、 ァセトニトリルの濃度が 25分で 5 %から 25 % oに直線的に増加する ような溶離条件で行った。  The elution conditions were such that the concentration of acetonitrile increased linearly from 5% to 25% o in 25 minutes.
以上の条件で、保持時間の短い(先に溶出してくる)方のジァステレオマーを、 以下の実験に使用した。 合成した光応答性オリゴヌクレオチドの一つ (配列番号 Under the above conditions, the diastereomer having the shorter retention time (eluting first) was used in the following experiment. One of the synthesized photoresponsive oligonucleotides (SEQ ID NO:
19) を下記式に示す。 19) is shown in the following equation.
5' -CCGAXGTCG- 3 ' X二5'-CCGAXGTCG- 3 'X two
Figure imgf000026_0001
Figure imgf000026_0001
(19)  (19)
試験例 4 : Test example 4:
DNA合成機を用いて、 実施例 5で合成したオリゴヌクレオチド (光応答性ォ リゴヌクレオチド (配列番号 19 ) と相補的なォリゴヌクレオチド : GGC T C AGC (配列番号 20) を合成した。 Using a DNA synthesizer, the oligonucleotide synthesized in Example 5 (oligonucleotide complementary to photoresponsive oligonucleotide (SEQ ID NO: 19): GGC TC AGC (SEQ ID NO: 20) was synthesized.
11^の &〇1を含有する 1 OmMリン酸緩衝液 (pH7. 1) に実施例 5で 合成した光応答性オリゴヌクレオチドを 5 O iMの濃度となるように添加して、 水溶液を調製した。 また、 1Mの NaClを含有する 1 OmMリン酸緩衝液 (p H7. 1) に上記オリゴヌクレオチド (配列番号 20) を 50 Mの濃度となる ように添加して、 水溶液を調製した。  An aqueous solution was prepared by adding the photoresponsive oligonucleotide synthesized in Example 5 to a 1 OmM phosphate buffer (pH 7.1) containing 11 ^ & 〇1 to a concentration of 5 OiM. . The oligonucleotide (SEQ ID NO: 20) was added to a 1 OmM phosphate buffer (pH 7.1) containing 1 M NaCl to a concentration of 50 M to prepare an aqueous solution.
上記で調製した光応答性オリゴヌクレオチド (配列番号 19) の水溶液と、 上 記オリゴヌクレオチド (配列番号 20) の水溶液を混合し、 260 nm の吸光度 を測定することにより、ァゾベンゼン基がトランス体である場合の Tmを求めた。 次に、 各々の混合溶液に 紫外線 (波長 300〜400 nm) を照射すること により、 ァゾベンゼンの構造をシス体とした。その後、上記と同様の方法により、 Tmを求めた。  The aqueous solution of the photoresponsive oligonucleotide (SEQ ID NO: 19) prepared above and the aqueous solution of the above oligonucleotide (SEQ ID NO: 20) are mixed, and the azobenzene group is in a trans form by measuring the absorbance at 260 nm. The Tm of the case was determined. Next, each mixed solution was irradiated with ultraviolet rays (wavelength 300 to 400 nm) to make the structure of azobenzene a cis-form. Thereafter, Tm was determined by the same method as described above.
ァゾベンゼン基がトランス体である場合の Tmは 35. 0。Cであるのに対し、 シス体である場合の Tmは 25. 0°Cであり、 その差は 10°Cであった。 実施例 6 :ホスホアミダイ トモノマ一の合成  Tm when the azobenzene group is in the trans form is 35.0. In contrast to C, the Tm of the cis form was 25.0 ° C, and the difference was 10 ° C. Example 6: Synthesis of phosphoramidite monomer
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000028_0001
上記の反応式に従い、 ホスホアミダイ トモノマ一を合成レた。
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000028_0001
According to the above reaction formula, a phosphoramidite monomer was synthesized.
まず、 3—二トロア二リンとニトロソベンゼンを酢酸中でカツプリングさせて、 3—二トロアゾベンゼンを合成した (a)。 次にこれをエタノール .水混合溶媒 中で N a S Hで還元して 3—アミノアゾベンゼンを得た (b)。 続いてジメチル スルホキシド (DMF) 中で、 ジシクロへキシルカルボジイミ ドと 1ーヒドロキ シベンゾトリァゾ一ルの存在下で反応させることにより、 3—アミノアゾベンゼ ンを 2, 2—ビス (ヒドロキシメチル) プロビオン酸にアミ ド結合によって導入 した (c) これをカラムクロマトグラフ法で分離精製した後、 ピリジン '塩化メ チレン混合溶媒中で 4ージメチルアミノビリジンの存在下、 4, 4ージメ トキシ トリチル (DMT) で一方の水酸基を保護した (d)。 これを再びカラムクロマ トグラフ法で分離精製した後、 ザ · ジャーナル ·ォブ ·オーガニック 'ケミスト リー(The Journal of Organic Chemistry)誌 1997年 62卷 846頁 ίこ言 3 載の方法に従って、 もう一方の水酸基にホスホロアミジドを付加してホスホロァ ミダイ トモノマ一を合成した。 First, 3--2-troazobenzene was synthesized by coupling 3-nitroazoline and nitrosobenzene in acetic acid ( a ). Next, this was reduced with NaSH in a mixed solvent of ethanol and water to obtain 3-aminoazobenzene (b). Subsequently, 3-aminoazobenzene is converted to 2,2-bis (hydroxymethyl) propionic acid by reacting dicyclohexylcarbodiimide with 1-hydroxybenzotriazole in dimethyl sulfoxide (DMF). (C) This was separated and purified by column chromatography, and then mixed with 4,4 dimethyltrityl (DMT) in the presence of 4-dimethylaminoviridine in a pyridine-methylene chloride mixed solvent. The hydroxyl group was protected (d). This was separated and purified again by column chromatography, and then the other hydroxyl group was prepared according to the method described in The Journal of Organic Chemistry, 1997, Vol. 62, p. 846. A phosphoramidite monomer was synthesized by adding a phosphoramidide to the product.
実施例 7 :光応答性オリゴヌクレオチドの合成 Example 7: Synthesis of photoresponsive oligonucleotide
実施例 6で合成したホスホアミダイ トモノマ一を使用して DN Α合成機により 下記の表 5に示す光応答性オリゴヌクレオチドを合成した。 表 5  Using the phosphoramidite monomer synthesized in Example 6, a photoresponsive oligonucleotide shown in Table 5 below was synthesized by a DNII synthesizer. Table 5
配列番号 配列 Sequence number sequence
21 5'-ΑΑΑ(Χιη)ΑΑΑΑ-3' (Ρ) 22 5'-AAA(XHI)AAAA-3' (L) 21 5'-ΑΑΑ (Χιη) ΑΑΑΑ-3 '(Ρ) 22 5'-AAA (XHI) AAAA-3 '(L)
23 5'-Α(Χια)ΑΑΑΑΑΑ-3' (p)  23 5'-Α (Χια) ΑΑΑΑΑΑ-3 '(p)
24 5'-Α(ΧΠΙ)ΑΑΑΑΑΑ-3 ' (l)  24 5'-Α (ΧΠΙ) ΑΑΑΑΑΑ-3 '(l)
25 5' -(Xm)TTTTTTTTTTT-3'  25 5 '-(Xm) TTTTTTTTTTT-3'
表中、 Xmは下記式の光応答性有機基を表す。  In the table, Xm represents a photoresponsive organic group represented by the following formula.
Figure imgf000029_0001
Figure imgf000029_0001
 〇
 ヽ
得られた光応答性オリゴヌクレオチドには全て、 上記式 VIのホスホロアミダイ トモノマーの不斉炭素に基づく二つのジァステレオマ一が存在し、 これらは 5, 末端にァゾベンゼンを導入した場合 (配列番号 25) を除き、 以下の条件で液体 クロマトグラフィー (HPLC) により分離することができた。 In all of the photoresponsive oligonucleotides obtained, there are two diastereomers based on the asymmetric carbon of the phosphoramidite monomer of formula VI above, except for the case where azobenzene is introduced at the 5, terminal (SEQ ID NO: 25). It could be separated by liquid chromatography (HPLC) under the following conditions.
(P)、 (L) は各々保持時間が短い方と長い方のジァステレオマーに対応す カラム : Merck Lichrospher 100RP-18(e)  (P) and (L) correspond to the shorter and longer diastereomers, respectively. Column: Merck Lichrospher 100RP-18 (e)
通被迷度: 0.5ml/min Passivity: 0.5ml / min
展開溶媒: 50 itiMの蟻酸アンモニゥムを含むァセトニトリル/水混合溶媒 溶離は、 ァセトニトリルの濃度が 25分で 5 %から 25 %に直接的に増加する ような溶離条件で行った。 Developing solvent: Acetonitrile / water mixed solvent containing 50 itiM ammonium formate was eluted under elution conditions such that the concentration of acetonitrile increased directly from 5% to 25% in 25 minutes.
試験例 5 :熱異性化速度の測定 Test Example 5: Measurement of thermal isomerization rate
実施例 7で合成した本発明の光応答性オリゴヌクレオチドを、 1 Ommo 1/ リッ トルのへぺスバッファーで pHを 7. 0に調整し、 塩濃度を塩化ナトリウム で 1 mo 1/リッ トルになるように調整した水溶液に溶解した。 これに、 キセノ ンランプを用いて UVD— 36 Cフィル夕一を通して、 300 nm以上 400 n m以下の光 (UV光) を 10分間照射した。 その結果、 添加した光応答性オリゴ ヌクレオチドの 90%が、 シス型に異性化した。 これを恒温槽で 50。Cに保ち、 熱的にシス型から トランス型への過程を UV— V i sスぺクトルで追跡すること により、 熱異性化速度定数 kを求めた。 その結果を表 6に示す。 The pH of the photoresponsive oligonucleotide of the present invention synthesized in Example 7 was adjusted to 7.0 with 1 Ommo 1 / liter of a buffer, and the salt concentration was adjusted to 1 mol / liter with sodium chloride. It dissolved in the aqueous solution adjusted so that it might become. Using a xenon lamp, the UVD-36C filter is passed through the filter at a wavelength of 300 nm or more and 400 n Light (UV light) of 10 m or less was irradiated for 10 minutes. As a result, 90% of the added photoresponsive oligonucleotide was isomerized to cis form. 50 in a thermostat. The thermal isomerization rate constant k was determined by keeping the temperature at C and tracing the process from the cis-form to the trans-form by UV-Vis spectrum. Table 6 shows the results.
表 6  Table 6
配列番号 速度定数 k (min一1) Sequence number Rate constant k (min- 1 )
21 0. 01以下  21 0.01 or less
22 0. 01以下  22 0.01 or less
23 0. 01以下  23 0.01 or less
24 0. 01以下  24 0.01 or less
25 0. 01以下  25 0.01 or less
表 6に示すように、 本発明の光応答性オリゴヌクレオチドは、 シス体からトラ ンス体への熱異性化速度がすべて十分に遅いことが判明した。 試験例 6 :融解温度の測定  As shown in Table 6, the photoresponsive oligonucleotides of the present invention were found to have sufficiently low rates of thermal isomerization from cis to trans form. Test Example 6: Measurement of melting temperature
上記配列番号 21, 22, 23, 24のオリゴヌクレオチドの各々に、 対応す る相補鎖を加えて融解温度を測定し、 これにより二重鎖の安定性を評価した。 融 解温度測定の条件を以下に示す。  The corresponding complementary strand was added to each of the oligonucleotides of SEQ ID NOs: 21, 22, 23, and 24, and the melting temperature was measured, thereby evaluating the stability of the duplex. The conditions for melting temperature measurement are shown below.
p H ( 10 mmo 1 Zリ ッ トル N a 2 H P 04バッファー) : 7. 0 p H (10 mmo 1 Z l N a 2 HP 0 4 buffer): 7.0
オリゴヌクレオチド : 50 m 01 /リッ トル Oligonucleotide: 50 m 01 / liter
塩化ナトリウム : 1 mo 1/リヅ トル Sodium chloride: 1 mo 1 / liter
測定波長: 260 nm Measurement wavelength: 260 nm
温度掃引速度: — 1. 0 °C/m i n Temperature sweep speed: — 1.0 ° C / min
測定温度範囲: 60°C〜一 5°C 以上の条件下で測定した融解温度を表 7に示す。 UV光照射前のァゾベンゼン 残基は 80%以上がトランス体であった。 UV照射は、 オリゴヌクレオチドを入 れた試料に、 キセノンランプを用いて UVD— 36 Cフィル夕一を通して 300 nm以上 400 nm以下の光を 10分間照射することにより行った。 その結果、 80%以上がシス体に変化した。 融解温度は、 融解温度曲線の一次微分の極大値 を与える温度として求めた。 表 7 Measurement temperature range: Table 7 shows the melting temperatures measured under the conditions of 60 ° C to over 15 ° C. Before UV irradiation, more than 80% of the azobenzene residues were in trans form. UV irradiation was performed by irradiating the sample containing the oligonucleotide with light of 300 nm or more and 400 nm or less through a UVD-36C filter using a xenon lamp for 10 minutes. as a result, More than 80% changed to cis form. The melting temperature was determined as the temperature giving the maximum value of the first derivative of the melting temperature curve. Table 7
融解温度 C)  Melting temperature C)
配列番号 相補鎖 U 照射前 UV照射後 SEQ ID NO Complementary strand U Before irradiation After UV irradiation
21 5'-ΤΤΤΤΤΤΤΤ-3 24.3 16.6  21 5'-ΤΤΤΤΤΤΤΤ-3 24.3 16.6
22 5' -ΤΤΤΤΤΤΤΤ-3 20.5 15.1  22 5 '-ΤΤΤΤΤΤΤΤ-3 20.5 15.1
23 5, - ΤΤΤΤΤΤΤΤ - 3 ' 26.0 20.4  23 5,-ΤΤΤΤΤΤΤΤ-3 '26.0 20.4
24 5' - ΤΤΤΤΤΤΤΤ一 3' 22.7 19.4 この後、 キセノンランプを用いて L一 42フィルターを通すことにより 420 nm以上の可視光を 10分間照射したところ、 80 %以上がトランス体に戻った。 上記と同じ条件で融解温度を求めたところ、 UV照射前の値と誤差範囲内で一致 した。 このように可逆的に融解温度が変化することが明らかとなった。 上記の操 作を 5回繰り返したが、 特に劣化することなく可逆的にァゾベンゼン残基は異性 化した。 それに伴い融解温度も可逆的に変化した。 産業上の利用可能性  24 5'-ΤΤΤΤΤΤΤΤ-1 3 '22.7 19.4 After that, when irradiated with visible light of 420 nm or more for 10 minutes by passing through an L-42 filter using a xenon lamp, 80% or more returned to the transformer. When the melting temperature was determined under the same conditions as above, it was consistent with the value before UV irradiation within the error range. Thus, it was revealed that the melting temperature changes reversibly. The above operation was repeated five times, and the azobenzene residue was reversibly isomerized without any particular deterioration. The melting temperature also reversibly changed. Industrial applicability
本発明の光応答性オリゴヌクレオチドを使用することで、 光照射により二重鎖 および三重鎖の融解温度を可逆的に変化させることができる。 従って、 光の照射 により遺伝子発現、 DNA伸長反応等を可逆的に制御することが可能になる。 こ れにより、 DNA及び RNAの合成、 増幅、 転写等を光による制御下で行うこと が可能となり、 バイオテクノロジーの種々の分野において、 実験の信頼性及び効 率を向上することができる。 また、 本発明の光応答性オリゴヌクレオチドを遺伝 子発現の制御に使用することにより、 遺伝子診断、 遺伝子治療を効率的に行うこ とが可能になる。  By using the photoresponsive oligonucleotide of the present invention, it is possible to reversibly change the melting temperature of the duplex and the triplex by light irradiation. Therefore, it becomes possible to reversibly control gene expression, DNA extension reaction and the like by light irradiation. This makes it possible to perform DNA, RNA synthesis, amplification, transcription, and the like under the control of light, thereby improving the reliability and efficiency of experiments in various fields of biotechnology. In addition, by using the photoresponsive oligonucleotide of the present invention for controlling gene expression, it is possible to perform gene diagnosis and gene therapy efficiently.

Claims

請求の範囲  The scope of the claims
1 . 特定波長の光の照射により構造異性化する有機基を 1または複数個結合さ せたォリゴヌクレオチドであって、 該ォリゴヌクレオチドに実質的に相補的なォ リゴヌクレオチドとの二重鎖形成または三重鎖形成における融解温度が、 該光の 照射により可逆的に変化する光応答性オリゴヌクレオチド。 1. A double strand of an oligonucleotide having one or more organic groups that are structurally isomerized by irradiation with light of a specific wavelength, and which is substantially complementary to the oligonucleotide. A photoresponsive oligonucleotide whose melting temperature in formation or triplex formation is reversibly changed by irradiation with the light.
2 . 該光応答性オリゴヌクレオチドの、 一方の異性体から他方の異性体への熱 異性化速度が、 5 0 °Cで 0 . 0 7 m i n 1以下である請求の範囲第 1項記載の光 応答性オリゴヌクレオチド。 2. The light according to claim 1 , wherein the rate of thermal isomerization of the photoresponsive oligonucleotide from one isomer to the other is 0.07 min1 or less at 50 ° C. Responsive oligonucleotide.
3 . 前記有機基がァゾベンゼンまたはその誘導体の残基であり、 直接または介 在基を介して前記ォリゴヌクレオチドに結合している請求の範囲第 1項記載の光 応答性オリゴヌクレオチド。  3. The photoresponsive oligonucleotide according to claim 1, wherein the organic group is a residue of azobenzene or a derivative thereof, and is bonded to the oligonucleotide directly or via an intervening group.
4 . 前記有機基がァゾベンゼンまたはその誘導体の残基であり、 直接または介 在基を介して前記ォリゴヌクレオチドに結合している請求の範囲第 2項記載の光 応答性オリゴヌクレオチド。  4. The photoresponsive oligonucleotide according to claim 2, wherein the organic group is a residue of azobenzene or a derivative thereof, and is bonded to the oligonucleotide directly or via an intervening group.
5 . 次式:  5. The following formula:
Figure imgf000032_0001
Figure imgf000032_0001
(式中、 A及び Bは各々独立に水素原子、 ヌクレオチドまたはオリゴヌクレオチ ドを表し、 Xはァゾベンゼンまたはその誘導体の残基を表し、 Rは水素原子また は炭素原子数 1〜4の直鎖アルキル基を表す) で表される請求の範囲第 1項記載 の光応答性ォリゴヌクレオチド。 次式 (Wherein A and B each independently represent a hydrogen atom, a nucleotide or an oligonucleotide, X represents a residue of azobenzene or a derivative thereof, and R represents a hydrogen atom or a linear alkyl having 1 to 4 carbon atoms. The photoresponsive oligonucleotide according to claim 1, which is represented by the following formula: Next formula
A  A
Nb  Nb
O o O o
po o ll  po o ll
o  o
H X ノヽ B  H X NO B
(式中、 A及び Bは各々独立に水素原子、 ヌクレオチドまたはオリゴヌクレオチ ドを表し、 Nbは核酸塩基を表し、 Xはァゾベンゼンまたはその誘導体の残基を 表す) で表される請求の範囲第 1項記載の光応答性ォリゴヌクレオチド。 (Wherein, A and B each independently represent a hydrogen atom, a nucleotide or an oligonucleotide, Nb represents a nucleobase, and X represents a residue of azobenzene or a derivative thereof). The photoresponsive oligonucleotide according to the above item.
7. Xが下記式 I、 II または ill で表される請求の範囲第 5項記載の光応答 性オリゴヌクレオチド。 7. The photoresponsive oligonucleotide according to claim 5, wherein X is represented by the following formula I, II or ill.
Figure imgf000033_0001
Figure imgf000033_0002
I
Figure imgf000033_0001
Figure imgf000033_0002
I
Figure imgf000034_0001
Figure imgf000034_0001
(上記 i、 II及び ill中、 R R"、 R21は各々直接の結合;未置換もしくは ハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭 素原子数 1〜 2 0のアルキレン基、または未置換もしくはハロゲン原子、水酸基、 アミノ基、 ニトロ基、 力ルポキシル基等で置換された炭素原子数 2〜2 0のアル ケニレン基であり、 Qは直接の結合、 酸素原子、 一 NH— CO—基または一 CO — NH—基であり、 R2〜R7、 Rs、 R10, R12〜: R17、 R19、 R2。、 R22〜 R2 R2 R3Dは各々独立に、 未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 1〜20のアルキル基もし くはアルコキシ基;未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 2〜 2 0のアルケニル基もしくはアル キニル基;水酸基;ハロゲン原子; ァミノ基;ニトロ基; またはカルボキシル基 を表す。 R8、 R1S、 : 28は、 各々独立に、 未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 1〜2 0のアル キル基もしくはアルコキシ基;未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 2〜 20のアルケニル基も しくはアルキニル基;水酸基; またはハロゲン原子を表す)。 (In the above i, II and ill, RR ", R 21 are each a direct bond; unsubstituted or halogen atom, a hydroxyl group, an amino group, a nitro group, has been carbon atom number 1-2 0 substituted with a carboxyl group or the like An alkylene group or an unsubstituted or substituted alkenylene group having 2 to 20 carbon atoms such as a halogen atom, a hydroxyl group, an amino group, a nitro group or a propyloxyl group, wherein Q is a direct bond, an oxygen atom, NH—CO— group or one CO—NH— group, R 2 to R 7 , R s , R 10 , R 12 to: R 17 , R 19 , R 2 , R 22 to R 2 R 2 R 3D Is independently an alkyl or alkoxy group having 1 to 20 carbon atoms, which is unsubstituted or substituted by a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, etc .; an unsubstituted or halogen atom, a hydroxyl group, an amino group Carbon source substituted with a group, nitro group, carboxyl group, etc. . Alkenyl or aralkyl Kiniru group having 2-2 0, a hydroxyl group, a halogen atom; Amino group; a nitro group; represents a or carboxyl group R 8, R 1S,: 28 each independently unsubstituted or halogen atom, An alkyl or alkoxy group having 1 to 20 carbon atoms substituted with a hydroxyl group, an amino group, a nitro group, a carboxyl group, etc .; unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, etc. An alkenyl or alkynyl group having 2 to 20 carbon atoms; a hydroxyl group; or a halogen atom).
8. Xが下記式 ェ、 II または ill で表される請求の範囲第 6項記載の光応答 性オリゴヌクレオチド。 (I )
Figure imgf000035_0001
8. The photoresponsive oligonucleotide according to claim 6, wherein X is represented by the following formula, II or ill. (I)
Figure imgf000035_0001
(II)
Figure imgf000035_0002
(II)
Figure imgf000035_0002
/  /
R
Figure imgf000035_0003
R
Figure imgf000035_0003
(上記 i、 II及び ill中、 I 1、 R11, R21は各々直接の結合;未置換もしくは ハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭 素原子数 1〜 2 0のアルキレン基、または未置換もしくはハロゲン原子、水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 2〜 2 0のアル ケニレン基であり、 Qは直接の結合、 酸素原子、 —NH— CO—基または一 CO 一 NH—基であり、 : 2〜R7、 R9、 R10、 R12〜R17、 R"、 R2。、 R22〜 R2 R2 R3Dは各々独立に、 未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 1〜20のアルキル基もし くはアルコキシ基;未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 2〜 2 0のアルケニル基もしくはアル キニル基;水酸基;ハロゲン原子; ァミノ基; ニトロ基; またはカルボキシル基 を表す。 ; 8、 R18、 R28は、 各々独立に、 未置換またはハロゲン原子、 水酸基、 アミノ基、 ニトロ基、 カルボキシル基等で置換された炭素原子数 1〜2 0のアル キル基もしくはアルコキシ基;未置換またはハロゲン原子、 水酸基、 アミノ基、 二トロ基、 カルボキシル基等で置換された炭素原子数 2〜20のアルケニル基も しくはアルキニル基;水酸基;またはハロゲン原子を表す)。 (In the above i, II and ill, I 1 , R 11 , and R 21 are each a direct bond; the number of carbon atoms is 1 to 10 A 20-alkylene group or an alkenylene group having 2 to 20 carbon atoms, which is unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, etc., where Q is a direct bond or an oxygen atom , —NH—CO— group or one CO—NH— group, and: 2 to R 7 , R 9 , R 10 , R 12 to R 17 , R ″, R 2. , R 22 to R 2 R 2 R 3D is each independently an unsubstituted or halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group or the like, an alkyl or alkoxy group having 1 to 20 carbon atoms; an unsubstituted or halogen atom, a hydroxyl group, Carbon substituted with amino group, nitro group, carboxyl group, etc. Alkenyl or aralkyl Kiniru group atoms 2-2 0; hydroxyl; represents a group or a carboxyl group; a halogen atom; Amino group; a nitro group. 8, R 18, R 28 are each independently unsubstituted or substituted with a halogen atom , A hydroxyl group, an amino group, a nitro group, a carboxyl group, etc. A alkenyl or alkynyl group having 2 to 20 carbon atoms, which is unsubstituted or substituted with a halogen atom, a hydroxyl group, an amino group, a nitro group, a carboxyl group, or the like; a hydroxyl group; or a halogen atom ).
9. 上記式 Ι, ΙΙ, ill 中、 R R11及び R21が直接の結合を表し、 R2〜 R1D、 R12〜R2D及び R22〜R3°が水素原子または炭素原子数 1〜20の直鎖ァ ルキル基を表し、 Qがー NH— CO—または— CO— NH—を表す請求の範囲第 7項記載の光応答性オリゴヌクレオチド。 9. In the above formulas Ι, ΙΙ, ill, RR 11 and R 21 represent a direct bond, and R 2 to R 1D , R 12 to R 2D and R 22 to R 3 ° are a hydrogen atom or a carbon atom having 1 to 8. The photoresponsive oligonucleotide according to claim 7, which represents 20 linear alkyl groups, and Q represents —NH—CO— or —CO—NH—.
1 0. 上記式 Ι, ΙΙ, ill 中、 IT、 R11及び R21が直接の結合を表し、 R2〜 R10. 1112〜1 2°及び1 22〜1 3°が水素原子または炭素原子数1〜20の直鎖ァ ルキル基を表し、 Qがー NH— CO—または一 CO— NH—を表す請求の範囲第 8項記載の光応答性オリゴヌクレオチド。 1 0. The above equation Ι, ΙΙ, in ill, IT, R 11 and R 21 represents a direct bond, R 2 ~ R 10. 11 12 ~1 2 ° and 1 22 to 1 3 ° is a hydrogen atom or a C 9. The photoresponsive oligonucleotide according to claim 8, wherein the oligonucleotide represents a linear alkyl group having 1 to 20 atoms, and Q represents -NH-CO- or 1CO-NH-.
1 1. 上記式 Ι, ΙΙ, ill 中、 IT、 R11及び R21が直接の結合を表し、 R2〜 R1Q、 : R12〜; 2°及び R22〜R3Qが水素原子を表し、 Qがー NH— CO—または -CO-NH-を表す請求の範囲第 7項記載の光応答性ォリゴヌクレオチド。1 1. In the above formulas Ι, ΙΙ, ill, IT, R 11 and R 21 represent a direct bond, R 2 to R 1Q , R 12 to 2 ° and R 22 to R 3Q represent a hydrogen atom. 8. The photoresponsive oligonucleotide according to claim 7, wherein Q represents -NH-CO- or -CO-NH-.
1 2. 上記式 Ι, ΙΙ, ill 中、 IT、 R11及び R21が直接の結合を表し、 R2〜 R10, R12〜: 2°及び H22〜R3Qが水素原子を表し、 Qがー NH— CO—または -CO-NH-を表す請求の範囲第 8項記載の光応答性ォリゴヌクレオチド。1 2. In the above formulas Ι, ΙΙ, ill, IT, R 11 and R 21 represent a direct bond, R 2 to R 10 , R 12 to: 2 ° and H 22 to R 3Q represent a hydrogen atom, 9. The photoresponsive oligonucleotide according to claim 8, wherein Q represents -NH-CO- or -CO-NH-.
1 3. 上記式 Ι, ΙΙ, ill 中、 R R11及び R21が炭素原子数 1〜4のアルキ レン基を表し、 R2~R1Q、 R12〜R2Q及び R22〜R3°が水素原子または炭素原 子数 1〜 20の直鎖アルキル基を表し、 Qが酸素原子を表す請求の範囲第 7項記 載の光応答性ォリゴヌクレオチド。 1 3. above formula Ι, ΙΙ, in ill, RR 11 and R 21 represent an alkylene group having 1 to 4 carbon atoms, R 2 ~ R 1Q, R 12 ~R 2Q and R 22 to R 3 ° is 8. The photoresponsive oligonucleotide according to claim 7, wherein the photoresponsive oligonucleotide represents a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms, and Q represents an oxygen atom.
14. 上記式 Ι, ΙΙ, ill 中、 IT、 R11及び R21が炭素原子数 1〜4のアルキ レン基を表し、 R2〜R1Q、 R12〜R2°及び R22〜R3°が水素原子または炭素原 子数 1〜 20の直鎖アルキル基を表し、 Qが酸素原子を表す請求の範囲第 8項記 載の光応答性オリゴヌクレオチド。 14. In the above formulas Ι, ΙΙ, ill, IT, R 11 and R 21 represent an alkylene group having 1 to 4 carbon atoms, and R 2 to R 1Q , R 12 to R 2 ° and R 22 to R 3 9. The photoresponsive oligonucleotide according to claim 8, wherein ° represents a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms, and Q represents an oxygen atom.
1 5. 上記式 ι,ιι, ill 中、 ΙΓ、 R11及び R21が炭素原子数 1〜4のアルキ レン基を表し、 R2〜: R1Q、 R12〜: 2°及び R22〜R3°が水素原子を表し、 Qが 酸素原子を表す請求の範囲第 7項記載の光応答性ォリゴヌクレオチド。 1 5. In the above formulas ι, ιι, ill, ΙΓ, R 11 and R 21 represent an alkylene group having 1 to 4 carbon atoms, R 2 to: R 1Q , R 12 to: 2 ° and R 22 to 8. The photoresponsive oligonucleotide according to claim 7, wherein R 3 ° represents a hydrogen atom, and Q represents an oxygen atom.
1 6. 上記式 Ι, ΙΙ, ill 中、 R R11及び R21が炭素原子数 1〜4のアルキ レン基を表し、 R2〜! 1D、 R12〜R2Q及び R22〜R3Qが水素原子を表し、 Qが 酸素原子を表す請求の範囲第 8項記載の光応答性ォリゴヌクレオチド。 1 6. In the above formulas Ι, ΙΙ, ill, RR 11 and R 21 are alkyls having 1 to 4 carbon atoms. Represents a len group, R 2 ~! 1D, R 12 ~R 2Q and R 22 to R 3Q represents a hydrogen atom, Q is photoresponsive O Rigo nucleotide claims paragraph 8, wherein an oxygen atom.
17. DN A伸長反応の錶型となる DN Aの少なくとも一部と実質的に相補的 な配列を有する請求の範囲第 1項〜第 16項のいずれか 1項に記載の光応答性ォ リゴヌクレオチドを用い、 特定範囲内の波長の光の照射により上記光応答性ォリ ゴヌクレオチドの有機基を一の異性体から他の異性体に異性化し、 別の特定範囲 内の波長の光の照射によりその逆に異性化することにより、 二重鎖または三重鎖 の形成及び解離を可逆的に行うことを含む DN A伸長反応の制御方法。  17. The photoresponsive oligo according to any one of claims 1 to 16, which has a sequence that is substantially complementary to at least a part of DNA that forms type II of the DNA extension reaction. Using nucleotides, the organic group of the above-mentioned photoresponsive oligonucleotide is isomerized from one isomer to another by irradiation with light having a wavelength within a specific range, and is irradiated with light having a wavelength within another specific range. A method for controlling a DNA extension reaction comprising reversibly forming and dissociating a duplex or a triplex by isomerization in reverse.
18. 制御すべき mRN Aの少なくとも一部と実質的に相補的な配列を有する 請求の範囲第 1項〜第 16項のいずれか 1項に記載の光応答性ォリゴヌクレオチ ドを用い、 特定範囲内の波長の光の照射により上記光応答性オリゴヌクレオチド の有機基を一の異性体から他の異性体に異性化し、 別の特定範囲内の波長の光の 照射によりその逆に異性化することにより、 該光応答性ォリゴヌクレオチドと m RN Aとの二重鎖の形成及び解離を可逆的に行うことを含む遺伝子発現の制御方  18. Having a sequence substantially complementary to at least a part of mRNA to be controlled, using the photoresponsive oligonucleotide according to any one of claims 1 to 16 within a specific range. Isomerization of the organic group of the photoresponsive oligonucleotide from one isomer to another by irradiation with light having a wavelength within the range described above, and vice versa by irradiation with light having a wavelength within another specific range. A method for controlling gene expression including reversibly forming and dissociating a duplex between the photoresponsive oligonucleotide and mRNA.
19 次式 19 Order
Figure imgf000037_0001
Figure imgf000037_0001
(式中、 Α, は保護基を表し、 B' はオリゴヌクレオチドの 5, 位へのホスホジ エステル結合のための反応性基を表し、 Xはァゾベンゼンまたはその誘導体の残 基を表し、 Rは水素原子または炭素原子数 1〜4の直鎖アルキル基を表す) で表 される請求の範囲第 5項に記載の光応答性ォリゴヌクレオチド合成のための光応 答性ォリゴヌクレオチド合成用化合物。 (In the formula, Α, represents a protecting group, B ′ represents a reactive group for a phosphodiester bond at the 5-position of the oligonucleotide, X represents the residue of azobenzene or a derivative thereof, and R represents hydrogen. 6. The compound for synthesizing a photoresponsive oligonucleotide for synthesizing a photoresponsive oligonucleotide according to claim 5, wherein the compound is a straight-chain alkyl group having 1 to 4 carbon atoms.
20. A 3 がジメ トキシトリチル基またはモノメ トキシトリチル基を表し、 Β' が次式 20. A 3 represents a dimethoxytrityl group or a monomethoxytrityl group, Β 'is
NC NC
0パヽ  0 par
Ν  Ν
人 で表される基を表す請求の範囲第 19項記載の光応答性ォリゴヌクレオチド合成 用化合物。  20. The compound for synthesizing a photoresponsive oligonucleotide according to claim 19, which represents a group represented by human.
21. Xが次式 I :  21. X is the following formula I:
Figure imgf000038_0001
Figure imgf000038_0001
(式中、 Qは酸素原子を表し、 R1は炭素原子数 1〜4のアルキレン基を表し、 R2〜R1Qは水素原子または炭素原子数 1〜20の直鎖アルキル基を表す) で表 される基である請求の範囲第 20項記載の光応答性ォリゴヌクレオチド合成用化 合物。 (Wherein Q represents an oxygen atom, R 1 represents an alkylene group having 1 to 4 carbon atoms, and R 2 to R 1Q represents a hydrogen atom or a straight-chain alkyl group having 1 to 20 carbon atoms). 21. The compound for synthesizing a photoresponsive oligonucleotide according to claim 20, which is a group represented by the formula.
22. Xが次式 II:  22. X is the following formula II:
Figure imgf000038_0002
Figure imgf000038_0002
(式中、 Qが酸素原子を表し且つ R1が炭素原子数 1 ~4のアルキレン基を表す か、 または Qがー NH— CO—または一 CO— NH—を表し且つ R1が直接の結 合を表し、 R 2〜: R 1Qが水素原子または炭素原子数 1〜 20の直鎖アルキル基を 表す) で表される基である請求の範囲第 20項記載の光応答性オリゴヌクレオチ ド合成用化合物。 Wherein Q represents an oxygen atom and R 1 represents an alkylene group having 1 to 4 carbon atoms, or Q represents —NH—CO— or 1 CO—NH— and R 1 represents a direct bond. 21. The photoresponsive oligonucleotide synthesis according to claim 20, wherein R 2 to R 1Q represent a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms. Compound.
23. 次式: b
Figure imgf000039_0001
23. The following equation: b
Figure imgf000039_0001
O X  O X
B, B 、
(式中、 A, は保護基を表し、 B, はオリゴヌクレオチドの 5' 位へのホスホジ エステル結合のための反応性基を表し、 Nbは核酸塩基を表し、 Xはァゾベンゼ ンまたはその誘導体の残基を表す) で表される請求の範囲第 6項に記載の光応答 性ォリゴヌクレオチド合成のための光応答性ォリゴヌクレオチド合成用化合物。 24. A' がジメ トキシトリチル基またはモノメ トキシトリチル基を表し、 B ' が次式: (Where A, represents a protecting group, B, represents a reactive group for the phosphodiester bond to the 5'-position of the oligonucleotide, Nb represents a nucleobase, and X represents a azobenzene or derivative thereof. 7. The compound for synthesizing a photoresponsive oligonucleotide for synthesizing a photoresponsive oligonucleotide according to claim 6, which is represented by the following formula: 24. A 'represents a dimethoxytrityl group or a monomethoxytrityl group, and B' represents the following formula:
0  0
NC  NC
0パヽ  0 par
N A  N A
 Man
で表される基を表す請求の範囲第 23項記載の光応答性ォリゴヌクレオチド合成 用化合物。 24. The compound for synthesizing a photoresponsive oligonucleotide according to claim 23, which represents a group represented by the formula:
25. Xが次式 I :  25. X is the following formula I:
(I)
Figure imgf000039_0002
(I)
Figure imgf000039_0002
(式中、 Qは酸素原子を表し、 R1は炭素原子数 1〜4のアルキレン基を表し、 R 2〜! 1(1は水素原子または炭素原子数 1〜20の直鎖アルキル基を表す) で表 される基である請求の範囲第 24項記載の光応答性オリゴヌクレオチド合成用化 合物。 (Wherein Q represents an oxygen atom, R 1 represents an alkylene group having 1 to 4 carbon atoms, and R 2 to 1 (1 represents a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms.) 25. The compound for synthesizing a photoresponsive oligonucleotide according to claim 24, which is a group represented by the following formula:
26. Xが次式 II 26. X is the following formula II
Figure imgf000040_0001
Figure imgf000040_0001
(式中、 Qが酸素原子を表し且つ R 1が炭素原子数 1〜 4のアルキレン基を表す か、 または Qがー NH— CO—または一 CO— NH—を表し且つ H 1が直接の結 合を表し、 :^2〜1^°が水素原子または炭素原子数1〜20の直鎖アルキル基を 表す) で表される基である請求の範囲第 24項記載の光応答性オリゴヌクレオチ ド合成用化合物。 (Wherein Q represents an oxygen atom and R 1 represents an alkylene group having 1 to 4 carbon atoms, or Q represents —NH—CO— or 1 CO—NH— and H 1 represents a direct bond. 25. The photoresponsive oligonucleotide according to claim 24, wherein: ^ 2 to 1 ^ ° represents a hydrogen atom or a linear alkyl group having 1 to 20 carbon atoms. Compound for synthesis.
PCT/JP2000/006415 1999-09-20 2000-09-20 Light-responsive oligonucleotide WO2001021637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU73173/00A AU7317300A (en) 1999-09-20 2000-09-20 Light-responsive oligonucleotide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30447999 1999-09-20
JP11/304479 1999-09-20

Publications (1)

Publication Number Publication Date
WO2001021637A1 true WO2001021637A1 (en) 2001-03-29

Family

ID=17933530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006415 WO2001021637A1 (en) 1999-09-20 2000-09-20 Light-responsive oligonucleotide

Country Status (2)

Country Link
AU (1) AU7317300A (en)
WO (1) WO2001021637A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059116A (en) * 2008-09-05 2010-03-18 Institute Of Physical & Chemical Research Pyrimidine nucleoside compound and utilization of the same
JP2010143864A (en) * 2008-12-19 2010-07-01 Osaka Univ Optically responsive azobenzene compound
WO2012029434A1 (en) * 2010-08-31 2012-03-08 国立大学法人名古屋大学 Oligonucleotide and use thereof
JP2015156872A (en) * 2010-11-24 2015-09-03 株式会社カネカ Method of detecting amplified nucleic acid and detecting device
EP3015555A1 (en) 2014-10-31 2016-05-04 Sysmex Corporation Method for amplifying nucleic acid
US9783844B2 (en) 2012-04-27 2017-10-10 Kaneka Corporation Method for amplifying nucleic acid and method for detecting amplified nucleic acid
US10392652B2 (en) 2013-11-22 2019-08-27 Kaneka Corporation Micro RNA detection method using two primers to produce an amplified double stranded DNA fragment having a single stranded region at one end
CN110951836A (en) * 2019-12-03 2020-04-03 华东师范大学 Photochemical regulation-based method for nucleic acid molecular chain replacement kinetics
EP4253563A1 (en) * 2022-03-29 2023-10-04 Miltenyi Biotec B.V. & Co. KG Photo-responsive oligonucleotides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051006A (en) * 1991-06-25 1993-01-08 Seiko Epson Corp Azobenzene compound
JPH10227776A (en) * 1997-02-17 1998-08-25 Shimadzu Corp High-speed liquid chromatography column equipped with light switching function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051006A (en) * 1991-06-25 1993-01-08 Seiko Epson Corp Azobenzene compound
JPH10227776A (en) * 1997-02-17 1998-08-25 Shimadzu Corp High-speed liquid chromatography column equipped with light switching function

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASANUMA H. ET AL.: "Photo-responsive oligonucleotides carrying azobenzene in the side-chains", TETRAHEDRON LETTERS, vol. 39, no. 49, 1998, pages 9015 - 9018, XP002934800 *
DATABASE CAPLUS [online] AMERICAN CHEMICAL SOCIETY (ACS), (COLUMBUS, OHIO, USA); accession no. STN Database accession no. 118:223007 *
SHADAN HOUJIN NIPPON KAGAKU GAKKAI: "Kouen yokoushu; Nippon kagaku gakkai dai 77 shuuki nenkai kagaku kankeigaku kyoukai rengou kyougikai kenkyu happyoukai", 10 September 1999, XP002935101 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059116A (en) * 2008-09-05 2010-03-18 Institute Of Physical & Chemical Research Pyrimidine nucleoside compound and utilization of the same
JP2010143864A (en) * 2008-12-19 2010-07-01 Osaka Univ Optically responsive azobenzene compound
WO2012029434A1 (en) * 2010-08-31 2012-03-08 国立大学法人名古屋大学 Oligonucleotide and use thereof
JPWO2012029434A1 (en) * 2010-08-31 2013-10-28 国立大学法人名古屋大学 Oligonucleotides and uses thereof
US9018362B2 (en) 2010-08-31 2015-04-28 National University Corporation Nagoya University Oligonucleotide and use thereof
JP2015156872A (en) * 2010-11-24 2015-09-03 株式会社カネカ Method of detecting amplified nucleic acid and detecting device
US10829805B2 (en) 2010-11-24 2020-11-10 Kaneka Corporation Amplified nucleic acid detection method and detection device
US9920356B2 (en) 2010-11-24 2018-03-20 Kaneka Corporation Amplified nucleic acid detection method and detection device
US9783844B2 (en) 2012-04-27 2017-10-10 Kaneka Corporation Method for amplifying nucleic acid and method for detecting amplified nucleic acid
US10392652B2 (en) 2013-11-22 2019-08-27 Kaneka Corporation Micro RNA detection method using two primers to produce an amplified double stranded DNA fragment having a single stranded region at one end
JP2016086694A (en) * 2014-10-31 2016-05-23 シスメックス株式会社 Nucleic acid amplification method
US10066261B2 (en) 2014-10-31 2018-09-04 Sysmex Corporation Method for amplifying nucleic acid
EP3015555A1 (en) 2014-10-31 2016-05-04 Sysmex Corporation Method for amplifying nucleic acid
CN110951836A (en) * 2019-12-03 2020-04-03 华东师范大学 Photochemical regulation-based method for nucleic acid molecular chain replacement kinetics
CN110951836B (en) * 2019-12-03 2023-05-23 华东师范大学 Method for regulating and controlling nucleic acid molecule strand displacement dynamics based on photochemistry
EP4253563A1 (en) * 2022-03-29 2023-10-04 Miltenyi Biotec B.V. & Co. KG Photo-responsive oligonucleotides

Also Published As

Publication number Publication date
AU7317300A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
JP3368353B2 (en) Methods and reagents for cleaving and deprotecting oligonucleotides
EP1307469B1 (en) Nucleic acid binding compounds containing pyrazolo¬3,4-d pyrimidine analogues of purin-2,6-diamine and their uses
US6017700A (en) Cationic oligonucleotides, and related methods of synthesis and use
EP1954707B1 (en) Polynucleotide containing a phosphate mimetic
Sinha et al. Labile exocyclic amine protection of nucleosides in DNA, RNA and oligonucleotide analog synthesis facililating N-deacylation, minimizing depurination and chain degradation
JP2002527523A (en) Functionalized pyrimidine derivatives
JPH10510433A (en) Oligonucleotides with high chiral purity phosphorothioate linkages
EP1546390B1 (en) Compositions and methods for the use of fmoc derivatives in dna/ rna synthesis
WO2001021637A1 (en) Light-responsive oligonucleotide
Herrlein et al. Selective chemical autoligation on a double-stranded DNA template
JP3753942B2 (en) 5-pyrimidine-containing nucleic acid and reversible ligation method using the same
US5175266A (en) Nucleosides and oligonucleosides with a phosphate-free internucleoside backbone and process for preparing the same
Seela et al. The base pairing properties of 8‐aza‐7‐deaza‐2′‐deoxyisoguanosine and 7‐halogenated derivatives in oligonucleotide duplexes with parallel and antiparallel chain orientation
Lauritsen et al. Oligodeoxynucleotides containing amide-linked LNA-type dinucleotides: synthesis and high-affinity nucleic acid hybridization
JPS62255499A (en) Fluorescent nucleoside or nucleotide
Damha et al. Structural basis for the RNA binding selectivity of oligonucleotide analogues containing alkylsulfide internucleoside linkages and 2′-substituted 3′-deoxyribonucleosides
Ramzaeva et al. Oligonucleotides Functionalized by Fluorescein and Rhodamine Dyes: Michael Addition of Methyl Acrylate to 2′‐Deoxypseudouridine
Ivanov et al. Chemical synthesis of an artificially branched hairpin ribozyme variant with RNA cleavage activity
Miller Biochemistry of nucleic acids
JP2001346579A (en) Oligonucleotide for detecting snp
Meldgaard et al. Automated synthesis of branched oligodeoxynucleotide analogues using arabino-uridine as branching nucleotide
WO2022220019A1 (en) Long-chain dna synthesis using non-natural base
Bizdēna et al. Synthesis and properties of 2'-O-methoxymethyl oligonucleotides
Klimkowski The application of thiazole orange and artificial backbone modifications in the synthesis of fluorescent nucleic acids probes
Rösler et al. The mechanism of DNA repair by uracil-DNA glycosylase: studies using nucleotide analogues

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 525211

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase