WO2001020951A1 - Light-emitting/heat-generating spherical body and light-emitting/heat-generating body - Google Patents

Light-emitting/heat-generating spherical body and light-emitting/heat-generating body Download PDF

Info

Publication number
WO2001020951A1
WO2001020951A1 PCT/JP2000/001240 JP0001240W WO0120951A1 WO 2001020951 A1 WO2001020951 A1 WO 2001020951A1 JP 0001240 W JP0001240 W JP 0001240W WO 0120951 A1 WO0120951 A1 WO 0120951A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
sphere
light emitting
luminescent
heat
Prior art date
Application number
PCT/JP2000/001240
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Takahashi
Kiyoe Takahashi
Original Assignee
Kyowa Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Co., Ltd. filed Critical Kyowa Co., Ltd.
Priority to AU28261/00A priority Critical patent/AU2826100A/en
Priority to JP2001524397A priority patent/JP3866104B2/en
Publication of WO2001020951A1 publication Critical patent/WO2001020951A1/en
Priority to HK03103733A priority patent/HK1051622A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite

Definitions

  • the present invention relates to a light-emitting heating element that emits light and heat by generating a discharge when a voltage is applied, and a light-emitting heating element sphere used for the light-emitting heating element.
  • Known heating elements that generate high heat include metal heating elements and non-metal heating elements made of carbon and the like, and are used as heat sources for various heating devices such as heating furnaces and incinerators.
  • a high temperature of 100 ° C. or more can be obtained.
  • the maximum operating temperature of industrially used metal heating elements in air is 1200. It is about C.
  • waste for various types of waste, such as general waste, industrial waste, and medical waste, as well as crude oil, waste oil, petrochemicals, etc. (hereinafter referred to as waste, etc.)
  • waste for various types of waste, such as general waste, industrial waste, and medical waste, as well as crude oil, waste oil, petrochemicals, etc.
  • waste etc.
  • a heating element is applied.
  • harmful substances that have an adverse effect on the environment and the human body, such as dust, carbon dioxide, chlorine compounds such as hydrogen chloride, nitrogen compounds such as NOx, dioxin, etc. Is generated and emitted together with exhaust gas and smoke.
  • dioxin is a serious problem because it is very toxic and has a long-term adverse effect on the human body.
  • the waste In order to solve such a problem, it is preferable to treat the waste by pyrolysis at a high temperature without burning the waste. If the waste is treated by thermal decomposition instead of combustion (ie, oxidation reaction) as described above, it will generate harmful substances such as dust, chlorine compounds such as hydrogen chloride, nitrogen compounds such as NOx, and dioxin. Without waste, it is possible to treat the waste and the like.
  • a heating element made of general carbons may be exposed to chemical substances such as the harmful substances at high temperatures (when used). Deteriorated easily due to corrosion and oxidation by air. In addition, since it has strong adsorptivity, it has a problem that it releases gas such as carbon dioxide adsorbed at a high temperature (when used) and adsorbs the harmful substances.
  • the present invention solves the above-mentioned problems of the prior art, and can efficiently and stably generate a high temperature of about 300 ° C. or more, and maintain the high temperature. It is an object of the present invention to provide a luminescent heating element capable of efficiently thermally decomposing the waste without generating harmful substances, and a luminescent heating element sphere used for the luminescent heating element. In addition, when used It is another object of the present invention to provide a luminescent heating element sphere which is hardly susceptible to corrosion by a chemical substance such as the harmful substance or oxidized by air and hardly adsorbs a gas such as carbon dioxide or the harmful substance. Disclosure of the invention
  • the present invention has the following configuration. That is, the sphere for a luminescent heating element of the present invention is characterized by having a carbon material, particularly an impervious graphite, as a main component and a spherical shape.
  • a discharge is generated between the light emitting heating element spheres by applying a voltage by bringing the plurality of light emitting heating element spheres into contact with each other.
  • the temperature of the discharge part is as high as about 300 ° C. or more, it can be used as a heat source of a heating device such as a heating furnace.
  • the temperature of the discharge portion is a high temperature of about 300 ° C. or more, and the temperature at a position distant from the temperature by more than 10 cm is about 200 ° C. or less.
  • the waste and the like can be thermally decomposed without burning, and the waste and the like can be processed without generating the harmful substance.
  • exhaust gas and ash discharged from a general incinerator can be heat-treated to thermally decompose the harmful substances such as dioxin contained therein to make them harmless.
  • harmful chemicals, such as PCBs, for which no appropriate treatment has been found can be thermally decomposed into harmless low molecular weight substances.
  • the sphere for a light-emitting heating element of the present invention emits special intense light together with high heat due to the discharge. This light is considered to have the effect of accelerating the decomposition reaction of harmful substances during thermal decomposition. In particular, the effect is considered to be high for the thermal decomposition of dioxin.
  • the luminescent heating element sphere is mainly composed of a densified carbon material, in particular, impervious graphite, the surface has few pores and a small specific surface area. There is little risk of problems such as release of the adsorbed gas at high temperatures (when used) and adsorption of the harmful substances.
  • the luminescent heating element sphere can be used for a long period of time because it is hardly deteriorated by being corroded by a chemical substance such as the harmful substance or oxidized by air.
  • the light emitting heating element spheres constituting the light emitting heating element are in point contact with each other.
  • the discharge efficiency is reduced. Since the shape of the light emitting heating element sphere is spherical, the contact form of the light emitting heating element balls is always point contact. Therefore, the discharge is efficiently performed and a high temperature is easily obtained, and the cost for obtaining the high temperature can be reduced.
  • the sphere for a light-emitting heating element may be deteriorated due to the discharge or oxidation described above and may be deformed when used for a long period of time.
  • the portion where the discharge occurs is concentrated at a specific location, the degradation at that location is likely to increase.
  • the sphere for the luminous element is spherical, the sphere for the luminous element rotates by the action of the discharge, so that the discharge is generated. The part to be twisted is not easily concentrated on a specific part, and the discharge is highly likely to occur evenly in the entirety. Therefore, the shape of the light emitting heating element sphere is maintained as a spherical shape even if the sphere is deteriorated or deformed.
  • the densified carbon material means a carbon material having a density of 90.0% or more of the theoretical density of carbon.
  • General carbon materials have a density of about 75! 3 ⁇ 4, which is the theoretical density of carbon.
  • the light emitting heating element sphere may be a polyhedron such as a dodecahedron, an icosahedron, or the like. Also includes the polyhedron as described above. However, it is more preferable that the sphere for a luminescent heating element is a true sphere.
  • the luminous body for a light emitting heating element may be configured to contain at least one of titanium and tungsten.
  • the light emitting heating element sphere having such a configuration is superior in mechanical properties such as hardness and elastic modulus, corrosion resistance, and heat resistance as compared with those not containing titanium and tungsten. Therefore, the luminescent heating element sphere is less susceptible to corrosion and oxidative deterioration due to the chemical substance such as the harmful substance, and can be used for a long time.
  • the total content of titanium and tungsten is preferably 1 to 20 parts by weight.
  • the content is less than 1 part by weight, the effect of improving the properties (mechanical properties, corrosion resistance, heat resistance) is small, and if it exceeds 20 parts by weight, cracks are liable to be generated in the luminescent heating element sphere.
  • there may be inconveniences such as a tendency that the workability of the light emitting heating element sphere tends to decrease. Therefore, in order to avoid the above-mentioned inconvenience, it is necessary to perform detailed adjustment of the manufacturing conditions in the manufacturing process of the light emitting heating element sphere. From the balance between the characteristics of the luminescent heating element sphere and the inconvenience of the above-mentioned inconveniences, the total content of titanium and tungsten is determined.
  • the weight is more preferably 5 to 10 parts by weight.
  • the luminescent heating element sphere may be configured to contain at least one of zirconium, niobium, boron, tantalum, and molybdenum. According to such a configuration, the heat resistance of the light emitting heating element sphere can be improved.
  • the total content of zirconium, niobium, boron, tantalum, and molybdenum is preferably 10 to 20 parts by weight.
  • the content is less than 10 parts by weight, the effect of improving heat resistance is small, and when the content is more than 20 parts by weight, cracks tend to be easily generated in the light emitting heat generating sphere.
  • the structure may include at least one of titanium nitride and niobium nitride.
  • Titanium nitride has a structure in which nitrogen atoms penetrate into the lattice of titanium atoms, has a hardness and heat resistance close to that of diamond, and has an effect of improving the hardness and heat resistance of the luminescent heating element sphere.
  • Niobium nitride has the effect of improving heat resistance.
  • the luminescent heating element sphere may be configured to contain at least one of graphite, carbon black, coke, and charcoal.
  • the luminescent heating element sphere may be configured to contain at least one of carbon fibers, oxide fibers, carbide fibers, nitride fibers, and boron fibers.
  • the strength ⁇ abrasion resistance is improved.
  • a plurality of the above-mentioned spheres for a light-emitting heating element can be assembled to form a light-emitting heat generating element.
  • a discharge is generated between the light emitting heating element spheres by applying a voltage by bringing the plurality of light emitting heating element spheres into contact with each other. I will. Since the temperature of this discharge portion is high at about 300 ° C. or higher, if the luminescent heating element is applied to a processing device for the waste or the like, the high temperature of about 300 ° C. or higher causes Except for the boiling point metal, almost all substances including PCBs can be thermally decomposed without producing the harmful substances such as dioxin.
  • high temperature of about 300 ° C or more can be obtained instantaneously, and the temperature drops sharply when it is more than 10 cm away (about 200 nC ). It can be used in various fields.
  • FIG. 1 is a conceptual diagram showing a state in which a voltage is applied to a light emitting heating element formed by assembling a plurality of light emitting heating element spheres.
  • FIG. 2 is a conceptual diagram for explaining a state of discharge in a sphere for a light emitting heating element.
  • FIG. 3 is a perspective view showing an appearance of a pyrolysis furnace for exhaust gas.
  • FIG. 4 is a longitudinal sectional view of the exhaust gas pyrolysis furnace of FIG.
  • FIG. 5 is a horizontal sectional view taken along the line AA of the exhaust gas pyrolysis furnace of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • phenolic resin 55 parts by weight of a phenolic resin and 45 parts by weight of an acryl fiber having a length of 0.1 to 0.5 mm are mixed.
  • phenolic resin Polydivinylbenzene resin may be used instead of phenolic resin.
  • animal and plant fibers or a mixture of acrylic fiber and animal and plant fibers may be used instead of the acrylic fiber.
  • Fibers such as ataryl fibers are carbonized in the manufacturing process of the sphere for the luminous element, and become carbon fibers inside the sphere for the luminous element.
  • the acrylic fiber instead of the acrylic fiber, at least one of oxide-based fibers, carbide-based fibers, nitride-based fibers, and boron-based fibers may be used instead of the acrylic fiber.
  • a mixture of a phenolic resin and acryl fibers is filled in a mold, and the mixture is subjected to heat and pressure sufficient to cure the phenolic resin to form a sphere (for example, 33 mm in diameter).
  • the shape of the molded product may be a hemisphere, a rectangular parallelepiped, a column, or the like. In the case of a hemisphere, at this stage, the two hemispheres are integrated into a spherical shape. Further, the molded product may have a hole, a concave portion, or the like for injecting a desired component.
  • the molded article is subjected to a flameproofing treatment in an inert gas at 250 to 300 ° C., and further carbonized at 100 to L 500 ° C.
  • a flameproofing treatment in an inert gas at 250 to 300 ° C.
  • carbonized at 100 to L 500 ° C.
  • graphitized at 2000 to 300 ° C., and further subjected to a sizing treatment (surface treatment).
  • a sizing treatment surface treatment
  • graphite is densified by repeating firing in an inert gas while isotropically applying a pressure of 30 MPa or more by hot isostatic pressing (HIP). I do.
  • HIP hot isostatic pressing
  • impervious graphite When a phenolic resin is used as the filler, L, which has relatively few pores, Although graphite can be obtained, impervious graphite can be obtained with higher accuracy by sintering while applying pressure as described above. Such impervious graphite is resistant to most chemicals over a wide operating temperature range. Also, it has extremely high thermal conductivity compared to general corrosion resistant materials. Furthermore, it has excellent thermal stability and is not easily affected by sudden temperature changes.
  • the amount of the phenolic resin is preferably in the range of 10 to 60 parts by weight.
  • the amount of the phenolic resin exceeds 60 parts by weight, the specific gravity of the obtained impervious graphite becomes light, and air bubbles easily enter into the inside, and an uncured portion (gel-like portion) tends to remain. Or Furthermore, it is difficult to apply pressure isotropically in the carbonization process and the graphitization process. If the amount is less than 10 parts by weight, it becomes difficult to integrate the phenolic resin and acryl fibers into a molded product.
  • the phenolic resin in an amount of 20 to 55 parts by weight.
  • the amount of the phenolic resin required to harden the acrylic fiber is sufficient, and a smaller amount is preferable.
  • a spherical (for example, 30 mm in diameter) luminescent heating element sphere made of impervious graphite can be obtained.
  • a rectangular parallelepiped or cylindrical shape it is formed into a spherical shape by polishing or the like, and used as a sphere for a luminescent heating element.
  • the luminescent heating element sphere is made of impervious graphite, it has the same or lower adsorbability as rubber.
  • the strength is 2 to 3 times that of ordinary graphite, Shore hardness is 65 or more (68 in this embodiment), and density is 1.87 g / cm 3 or more (adjusted by the mixing ratio of fibers). Can be obtained).
  • the tensile strength is 16.7 MPa
  • the bending strength is 35.3 MPa
  • the compressive strength is 98.0 MPa
  • the elastic modulus is 127 000 M
  • the thermal expansion coefficient is 3.0 x 10— S / ° C
  • the thermal conductivity is 151 WZm • ° C
  • the heat resistance temperature is 300 ° C.
  • Chlorine 1 0 0 1 7 0 Chlorine water Saturation A
  • the luminous element sphere of the present embodiment can be used in air without any problem, it is preferable to use it in a vacuum state or an oxygen-free state, since the luminous element is hardly oxidized and deteriorated.
  • the details will be described in the section of the embodiment of the luminescent heating element below.
  • FIG. 1 is a conceptual diagram showing a state in which a voltage is applied to a light emitting heating element H formed by assembling a plurality of light emitting heating element spheres 1.
  • FIG. 2 (a) is a conceptual diagram showing a plurality of light emitting heating element spheres 1 in point contact with each other, and
  • FIG. 2 (b) is a conceptual diagram in which the contact portion is enlarged. is there.
  • a plurality of light emitting heating element spheres 1 constituting the light emitting heating element H are interposed between the pair of plate-shaped electrodes E 1 and E 2.
  • the electrode E is preferably a carbon electrode. Often used. Since the luminescent heating element spheres 1 are spherical, the luminescent heating element spheres 1 are in point contact with each other.
  • a power source (not shown) is connected to the electrodes E 1 and E 2. Then, when a voltage of about 200 V is applied to the carbon electrodes E, E, a discharge is generated between the adjacent spheres 1 for the light emitting heating element, and the discharge is performed in all the spheres 1 for the light emitting heating element. become.
  • the contact form is point contact as described above.
  • the surface of the luminescent heating element sphere 1 has small irregularities when viewed microscopically, in the contact portion, the contact point where the convex portions are in contact with each other, and the gap portion Exists.
  • a voltage is applied thereto, energization occurs through the contact points.However, the area where the light emitting heating element spheres 1 are in contact with each other is small, and a large current cannot be applied. Occurs and a spark S occurs. Therefore, if the luminescent heating element spheres 1 are in line contact or surface contact with each other and the contacting area is large, a large amount of current flows, and the discharge efficiency is reduced.
  • the temperature of this discharge part is about 300 ° C., and the light-emitting heating element H can be cooled to a high temperature of about 300 ° C. within a few tens of seconds after the voltage is applied. Set. If the discharge is stable, a low voltage of about 30 V (current of 300 to 400 A) is sufficient. Note that the temperature obtained can be adjusted by the degree of the applied voltage. Therefore, the degree of the applied voltage may be changed as desired.
  • the initially applied voltage is between 400 and 500 V
  • 500 ° C almost everything is decomposed and even ash, which is the residue of general incinerators And there is no residue at all.
  • the decomposition rate is high, a large amount of waste can be continuously decomposed. Note that once the temperature reaches about 500 ° C, a voltage of about 30 V is sufficient.
  • the luminous heating element H When the luminous heating element H is applied to the waste treatment device (pyrolysis furnace), when the temperature is stabilized at about 300 ° C., the luminous heating element H is brought into contact with the waste. Strictly speaking, the waste is brought into contact with the discharge portion (spark S). As a result, the waste and the like are heated to a high temperature of about 300 ° C. and thermally decomposed into harmless low-molecular-weight substances without generating the harmful substances such as dioxin.
  • the waste treatment device pyrolysis furnace
  • the luminescent heating element H When the luminescent heating element H is applied to an apparatus for thermally decomposing exhaust gas or ash containing the harmful substance discharged from an incinerator, the exhaust gas or the ash is converted to the luminescent heating element H (strictly speaking). And the discharge portion (spark S)). As a result, the exhaust gas or the ash is heated to a high temperature of about 300 ° C., and the contained harmful substances are thermally decomposed into harmless low molecular weight substances.
  • a waste gas pyrolysis furnace for exhaust gas
  • the discharge Along with the heat generation, the discharge also produces peculiar intense light. It is considered that the light accelerates the decomposition reaction in the thermal decomposition of the harmful substance such as dioxin. In particular, the effect of promoting the thermal decomposition of dioxin is considered to be high.
  • the temperature of the discharge portion is as high as about 300 ° C., but the temperature at a position distant from the area by more than 10 cm is about 200 ° C. or less. In addition, even when the temperature is as high as about 500 ° C., the temperature drops abruptly at a position about 20 to 30 cm away.
  • the low molecular weight material generated by pyrolysis is It will be rapidly cooled to about 200 ° C or less.
  • slow cooling the time period during which the low-molecular-weight substance is placed at a temperature at which dioxin is likely to be generated is prolonged, and dioxin may be regenerated during cooling.
  • the light emitting heating elements H possibilities little c present embodiment dioxin is regenerated, available without problems in air
  • the luminescent heating element sphere 1 is less likely to be oxidized and deteriorated, which is preferable as a use condition.
  • the luminous heating element sphere 1 can be prevented from being oxidized and deteriorated, it is unlikely that the luminous heating element sphere 1 is deformed and the discharge efficiency is reduced, so the luminous heating element sphere 1 is used for a long period of time.
  • the discharge efficiency is very good, but when it is deformed due to oxidative deterioration, the discharge efficiency is reduced.
  • the discharge efficiency is good and a high temperature is easily obtained in a vacuum state
  • the high temperature can be obtained with a small amount of power, and there is also an effect that the cost for obtaining the high temperature is inexpensive.
  • the existence density of molecules is low under a vacuum, there is an advantage that it is difficult to generate new chemical substances by recombining decomposed molecules.
  • the aforementioned anoxic state means a state where the oxygen concentration is equal to or lower than the oxygen concentration in the air.
  • the lower the oxygen concentration the better, but there is no problem if the oxygen concentration is lower than the oxygen concentration in the air.
  • the luminescent heating element sphere 1 becomes oxidatively deteriorated.
  • the above-mentioned vacuum state means a state where the degree of vacuum is lower than the atmospheric pressure.
  • the higher the degree of vacuum the more preferable because of the same reason as in the case of the oxygen concentration described above and the higher discharge efficiency as described above.
  • the degree of vacuum is At medium vacuum (less than 1 0 P a 1 0- 2 P a higher) is sufficient, no problem even low vacuum (1 0 P a higher atmospheric pressure non ⁇ ).
  • the waste or the like or the exhaust gas may be thermally decomposed by directly contacting the luminescent heating element H, or may be thermally decomposed by being indirectly heated from the outside while being disposed in a container or piping. Good. When brought into direct contact, the waste and the exhaust gas are heated to a high temperature of about 300 ° C., so that they can be almost completely thermally decomposed.
  • the waste or the like or the exhaust gas or the like does not come into contact with the luminescent heating element H.
  • the sphere for use 1 does not corrode or deteriorate and can be used for a long period of time.
  • the light emitting heating element H since the light emitting heating element H is separated from the waste or the like, the exhaust gas, or the like, the light emitting heating element H can be placed under a high oxygen-free state or a high vacuum state. Therefore, since the luminous body 1 is hardly oxidized and deteriorated, the luminous body 1 can be used for a longer period of time. In addition, if the device can be placed under a high vacuum, the discharge efficiency is better and a higher temperature can be easily obtained, so that a higher temperature can be obtained with less power and the cost for obtaining the higher temperature is lower. Becomes
  • the graphite powder may be charcoal black powder, fine powder of charcoal such as coke or bincho charcoal, or a mixture of two or more of these.
  • the light emitting heating element sphere thus obtained had the same excellent properties as the light emitting heating element sphere of the first embodiment.
  • the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat.
  • the method is based on the case of the luminescent heating element sphere of the first embodiment.
  • the graphite powder may be carbon black powder, cox, charcoal fine powder such as bincho charcoal, acrylic fiber, animal or plant fiber, or a mixture of two or more of these.
  • at least one of oxide-based fibers, carbide-based fibers, nitride-based fibers, and boron-based fibers may be used instead of carbon fibers.
  • a mixture of phenolic resin, graphite powder, and carbon fiber is subjected to the same operation as in the first embodiment to produce a spherical luminescent heating element sphere made of high-density, small-pore, impervious graphite. did.
  • the sphere for a luminous element thus obtained has the same excellent properties as the sphere for a luminous element of the first embodiment, and also has a higher strength due to the addition of carbon fibers.
  • the amount of phenolic resin added was 10 to 60 parts by weight, and The powder is preferably 30 to 89 parts by weight, and the carbon fiber is preferably 1 to 10 parts by weight, and it is possible to produce spheres for luminescent heating elements having various characteristics with a composition within this range. .
  • the phenolic resin exceeds 60 parts by weight, the above-mentioned inconvenience may occur in the first embodiment. If the amount is less than 10 parts by weight, it becomes difficult to integrate the phenolic resin and the graphite powder into a molded product. In order to more reliably prevent the above problems from occurring, the amount of the phenolic resin to be added is preferably 20 to 55 parts by weight. However, the amount of the phenolic resin necessary for solidifying the graphite powder is sufficient, and a smaller amount is preferable in consideration of thermal shock resistance.
  • the amount of carbon fiber added is less than 1 part by weight, the effect of improving the strength is small, and if it exceeds 10 parts by weight, cracks tend to occur in the obtained luminescent heating element sphere. . In consideration of the balance between the strength and the difficulty of crack generation, it is more preferable to add the carbon fiber in an amount of 3 to 7 parts by weight.
  • the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat.
  • the method is the same as in the case of the light emitting heating element sphere of the first embodiment (described in the section of the light emitting heating element embodiment), and the description thereof will be omitted.
  • the graphite powder may be charcoal black powder, coke, fine powder of charcoal such as bincho charcoal, acrylic fiber, animal or plant fiber, or a mixture of two or more of these.
  • the tungsten powder may be titanium powder (average particle size of about 1.0 // m, bulk specific gravity (no load) of 1.5 to 2.0, purity of 99.9% or more) or the above-mentioned stainless steel powder And a mixture of the above-mentioned titanium powder.
  • a mixture of phenolic resin, graphite powder, and tungsten powder was subjected to the same operation as in the first embodiment to produce a spherical luminescent heating element sphere made of high-density, small-pore, impervious graphite.
  • the light emitting heating element sphere of the present embodiment contains tungsten, and the final step of graphitization is performed in an inert gas at about 300 ° C. C has a heat treatment step.
  • Tungsten is treated with ditungsten monocarbide (W 2 C, formula weight 37.9.71, density 17.2 g Z cm 3 , Mohs hardness 9, electrical resistivity 8 1 by heat treatment at about 300 ° C. ⁇ cm (25 ° C)), and when titanium is contained, titanium carbide (TiC, formula weight 59.90, melting point 3140 ⁇ 90 ° C, It has a boiling point of 4300 ° C, a density of 4.94 g Z cm 3 , and an electrical resistivity of 19 ⁇ cm (room temperature).
  • titanium monocarbide is heated at 240 ° C. or higher, its crystal form becomes a stable / 3 type.c titanium has a melting point of 1675 ° C.
  • the sphere for a light emitting heating element made of impregnated graphite contained therein has the features described in the items of the first embodiment as described in (1) to (6) above. Corrosion resistance and mechanical strength (higher hardness, elastic modulus is 31000 to 44000 MPa) and heat resistance (compared to those not containing Nitan stainless steel and titanium carbide) (More than 300 ° C). Further, the electric conductivity is excellent (the electric resistivity is 70 O / z QZcm or less. In the case of the present embodiment, it is 10 ⁇ / cm), and the discharge efficiency is good.
  • the amount of the phenolic resin is preferably 10 to 60 parts by weight, the amount of the graphite powder is preferably 20 to 89 parts by weight, and the amount of the tungsten powder is preferably 1 to 20 parts by weight. If the phenolic resin is out of the above range, the above-described inconvenience may occur in the third embodiment. If the tungsten powder is added in an amount exceeding 10 parts by weight, the amount of the phenolic resin added must be reduced to integrate the phenolic resin, graphite powder, and tungsten powder into a molded product. The content is preferably 20 to 60 parts by weight.
  • the added amount of the tungsten powder is less than 1 part by weight, the effect of improving mechanical properties, corrosion resistance and heat resistance is small, and if it exceeds 20 parts by weight, the mechanical properties tend to decrease. Cracks on the sphere for the luminous heating element In some cases, inconveniences may occur, such as the tendency that the sphere for the light emitting heating element tends to deteriorate.
  • the amount of tungsten powder added should be 5 to 10 parts by weight. The power to do is more preferable.
  • the above-mentioned cracks and workability problems are likely to occur when the luminescent heating element sphere is formed by integrating two hemispheres into a sphere, and when the raw material is formed into a sphere from the beginning. Is unlikely to occur. Therefore, if a sphere having holes and recesses is molded from the raw material, and the tungsten powder is injected from the holes and recesses to produce spheres for the luminescent heating element, the added amount of tungsten powder exceeds 10 parts by weight. However, it is unlikely that the above problems will occur. Therefore, when the addition amount of the tungsten powder is more than 10 parts by weight and not more than 20 parts by weight, it is desirable to adopt the above method.
  • the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat.
  • the method is the same as in the case of the light emitting heating element sphere of the first embodiment (described in the section of the light emitting heating element embodiment), and the description thereof will be omitted.
  • phenolic resin and graphite powder fixed carbon 99. 70% by weight of tungsten powder (average particle size: about 1.011, purity: 99.9% or more) and 10 parts by weight are mixed.
  • tungsten powder may be used instead of the phenol resin.
  • the graphite powder may be charcoal black powder, coke, fine powder of charcoal such as bincho charcoal, acrylic fiber, animal or plant fiber, or a mixture of two or more of these.
  • the tungsten powder may be a titanium powder or a mixture of the tungsten powder and the titanium powder.
  • a mixture of phenolic resin, graphite powder, and tungsten powder is subjected to the same operation as in the fourth embodiment to produce a spherical luminescent heating element sphere made of high-density, small-pore, impervious graphite. did.
  • the sphere for a luminous element thus obtained has the same excellent properties as the sphere for a luminous element of the fourth embodiment, and the specific gravity was 1.5 to 1.8. .
  • the specific gravity of the luminescent heating element sphere is 2.66 to 2.7.
  • the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat.
  • the method is the same as in the case of the light emitting heating element sphere of the first embodiment (described in the section of the light emitting heating element embodiment), and the description thereof will be omitted.
  • the graphite powder may be carbon black powder, coke, fine powder of charcoal such as Bincho charcoal, acrylic fiber, animal or plant fiber, or a mixture of two or more of these.
  • the mixture of the phenolic resin, the graphite powder, and the zirconium powder is first heated to 250 to 300 ° C. to cure the phenolic resin, and then heated to 190 ° C. (the melting point of zirconium 18 HIP at 57 ° C or higher) to react carbon and zirconium to form zirconium carbide ZrC (melting point 350 ° C, boiling point 5100 ° C, Mohs hardness 8-9 or more). A carbon material with high density and few pores was used. Then, HIP firing was further performed at 300 ° C. to produce a spherical luminescent heating element sphere made of impervious graphite.
  • the added metal is zirconium, its melting point is 1857 ° C, so HIP baking was performed at 190 ° C above its melting point. Since H is reacted with carbon to form a metal carbide, it is preferable to perform H 1 P firing at a temperature equal to or higher than the melting point of the metal.
  • the luminescent heating element sphere thus obtained has the same excellent properties as the luminescent heating element sphere of the first embodiment, and the heat resistance of the luminescent heating element sphere is further enhanced by the addition of zirconium powder. Are better.
  • the amount of the zirconium powder is less than 10 parts by weight, a large improvement in heat resistance cannot be expected. If the amount exceeds 20 parts by weight, cracks occur as in the fourth and fifth embodiments. There is a problem that it becomes easier.
  • the zirconium powder may be niobium powder (Nb), boron powder (B), tantalum powder (T a), or molybdenum powder (Mo), or a mixture of two or more of these. Good. Further, at least one of tungsten powder and titanium powder may be added to these. It The amount of each addition should be 10 to 20 parts by weight, and the total amount of these metal components should not exceed 40 parts by weight.
  • the graphite powder (carbon black powder) is preferably at least 40 parts by weight, and the phenolic resin as a binder is preferably about 20 parts by weight.
  • Niob reacts with graphite powder (Ribbon black powder) to form niobium carbide, which has the effect of improving the heat resistance, hardness, and conductivity of the luminescent heating element sphere.
  • the light emitting heating element can be configured to generate light and heat.
  • the method is the same as that of the case of the sphere for the light emitting heating element of the first embodiment (described in the section of the embodiment of the light emitting heating element).
  • the raw material was placed in a mold and heated and pressed to form a spherical shape.
  • the raw material was placed in a capsule and heated and pressed to form a rod shape. Later, it may be cut into a spherical shape.
  • the inside of the capsule is evacuated to vacuum and heated to cure the phenolic resin. Then, the temperature is raised to 900 ° C. or higher, HIP firing is performed at a pressure of 49 to 294 MPa, and HIP firing is performed at 300 ° C.
  • the carbon material becomes extremely densified (a carbon material having a density of 90.0% or more of the theoretical density of carbon). Therefore, if the rod-like carbon material is ground into a spherical shape, it can be suitably used as a sphere for a light-emitting heating element having few pores.
  • a method using a mold the process of forming into a spherical shape and the HIP firing process Although it is necessary to perform two completely different steps, a method using such a capsule is economical because only one HIP firing step is required.
  • the material of the capsule is not particularly limited as long as it does not react with the raw materials at high temperatures, but usually, stainless steel, aluminum, iron and the like are used.
  • pitch (petroleum pitch, coal tar pitch, pine pitch, etc.) as the binder
  • the inside of the capsule is evacuated, baked at 1000 in vacuum, and then baked at 190 ° C. or more under a pressure of 49 to 2994 MPa to carbonize. Then, it was further graphitized at 300 ° C. and processed into a sphere to produce a luminescent heating element sphere made of high-density, small-pore L, impervious graphite.
  • the graphite powder is 40 parts by weight or more.
  • the metal powder is at least one selected from tungsten powder, titanium powder, zirconium powder, niobium powder, boron powder, tantalum powder, and molybdenum powder, for a total of 10 to 20 parts by weight.
  • the carbon material is extremely densified, so if it is ground to a spherical shape, it will have fewer pores. It can be suitably used as a sphere for a light emitting heating element.
  • the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat.
  • the method is based on the case of the luminescent heating element sphere of the first embodiment. Since it is the same as (described in the section of the embodiment of the light emitting heating element), the description thereof is omitted.
  • the pressurizing and firing steps are performed in an inert gas.
  • the inert gas is nitrogen
  • the added metal components such as titanium and niobium are nitrided. Therefore, it is possible to further enhance the strength, hardness, and discharge resistance of the luminescent heating element sphere.
  • the same effect can be obtained by firing the sphere for a light emitting heating element manufactured in the first to seventh embodiments again at 900 to 200 ° C. in a nitrogen atmosphere. be able to.
  • the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat.
  • the method is the same as in the case of the light emitting heating element sphere of the first embodiment (described in the section of the light emitting heating element embodiment), and the description thereof will be omitted.
  • FIG. 3 is a perspective view showing the appearance of the exhaust gas pyrolysis furnace 6
  • FIG. 4 is a longitudinal sectional view thereof
  • FIG. 5 is a horizontal sectional view taken along line AA of FIG.
  • terms indicating directions such as “up”, “down”, “front”, “rear”, “left”, “right” mean respective directions in each drawing for convenience of explanation. I can do it.
  • the light emitting heating element sphere of the present invention and the light emitting heating element sphere.
  • the application examples of the luminescent heating element are not limited to the use examples described below.
  • the exhaust gas pyrolysis furnace 6 having a heating chamber 10 therein has an inlet 20 for introducing exhaust gas into the heating chamber 10 on one side thereof, and the decomposition gas into which the exhaust gas is thermally decomposed.
  • An exhaust port 21 is provided on an upper surface of the heating chamber 10 for discharging the gas to the outside of the heating chamber 10.
  • the inlet 20 is composed of a pipe having a double structure consisting of an outer pipe 20a made of ceramic and an inner pipe 20b made of carbon. It is composed of a pipe having a double structure composed of an outer pipe 21a made of ceramic and an inner pipe 21b made of carbon.
  • the outer wall 11 of the exhaust gas pyrolysis furnace 6 has a two-layer structure, and is composed of an iron plate 12 coated with an outer layer heat-resistant paint and an inner layer heat-resistant refractory brick 14. As described later, the inside of the heating chamber 10 is at a high temperature of about 300 ° C. Since it is in an anoxic state or a vacuum state, heat conduction is low, so the configuration of the outer wall 11 is such a simple structure. Things are enough.
  • the rectangular parallelepiped space surrounded by the heat-resistant refractory bricks 14 forms an airtight heating chamber 10, and the exhaust gas introduced from the inlet 20 is heated and thermally decomposed in the heating chamber 10.
  • the structure is such that the decomposition gas is exhausted from the exhaust port 21.
  • the joints of the heat-resistant refractory bricks 14 are filled with irregular-shaped refractories such as refractory concrete (not shown), so that the airtightness of the heating chamber 10 is enhanced.
  • the heat-resistant tube 22 may be made of another material such as alumina as long as it can withstand a high temperature of about 300 ° C. Depending on the material, the structure may be a double structure in order to improve the heat resistance and strength of the heat-resistant tube 22.
  • the heat-resistant tube 2 2 has a horizontal portion and a vertical portion along the side of the heating chamber 10. And force ⁇ , are alternately combined, and have a form that extends vertically while meandering. And furthermore, the horizontal portion
  • the heat-resistant tube 22 has a form in which branching, merging, and meandering are repeated.
  • the heating chamber 10 other than the inside of the heat-resistant tube 22 is filled with a large number of the light-emitting heating element spheres 4 of the fourth embodiment. And constitute a luminous heating element. Since the luminescent heating element sphere 4 is spherical, it is in point contact with an adjacent luminescent heating element sphere 4. In addition, it is in point contact with the heat-resistant tube 22.
  • the luminescent heating element sphere 4 is provided with two force electrodes. It has a structure interposed between the bon electrodes 30 and 30.
  • Carbon rods 31 and 31 are attached to the carbon electrodes 30 and 30, and the carbon rods 31 protrude outside the exhaust gas pyrolysis furnace 6 through the outer wall 11.
  • the carbon rod 31 may be a rod made of heat-resistant and fire-resistant stainless steel. However, if the rod made of a heat-resistant and fire-resistant stainless steel penetrates the carbon electrode 30 and comes into contact with the luminescent heating element sphere 4, the contact part is made of carbon to prevent deterioration. It is necessary to cover with cover material.
  • a fibrous activated carbon filter-50 is provided between the heating chamber 10 and the exhaust port 21.
  • Innumerable pores on the surface of activated carbon (micropores with a diameter of 20 A or less, intermediate pores with a diameter of more than 20 A and less than 100 A, There are macro pores.) There is, therefore a specific surface area as large as 5 0 0 ⁇ 1 7 0 O m 2 Z g, the activated carbon have a strong adsorption properties, physical selectively larger molecules Can be adsorbed.
  • granular activated carbon may be used instead of the fibrous activated carbon filter 50. No.
  • the exhaust port 21 is provided with a blower 51 that sucks exhaust gas from the inlet port 20 and introduces the exhaust gas into the heating chamber 10.
  • the blower 51 may be a vacuum pump.
  • An opening 52 is provided at the top and bottom of the exhaust gas pyrolysis furnace 6 where the pressure electrode 30 is provided, so that the inside of the exhaust gas pyrolysis furnace 6 can be inspected or inspected. Maintenance (inspection of the degree of deterioration of the luminescent heating element sphere 4, the carbon electrode 30, the heat-resistant refractory brick 14 and the like, and replacement of the luminescent heating element sphere 4, the carbon electrode 30) can be performed.
  • the plate 53 is fixed to the outer wall 11 with a plurality of bolts 54, and further, the surface of the iron plate 12 of the plate 53 and the outer wall 11 is fixed.
  • the refractory concrete 55 may be a refractory brick.
  • Heating chamber 1 0 is not connected to a vacuum pump (not shown), vacuum more heating chamber 1 within 0 to vacuum pump (e.g., 6. 7 X 1 0- 2 may be used as the high vacuum of the order of P a , And a low vacuum of about 0.02 to 0.6 MPa may be used). Therefore, the light emitting / heating element sphere 4 filled in the heating chamber 10 is also placed in a vacuum state.
  • a power source (not shown) is connected to the carbon rods 31 and 31.
  • a voltage of about 200 V is applied to the pressure electrodes 30 and 30, a discharge is generated between the light emitting heating element spheres 4, and the discharge is caused by all the light emitting heating elements in the heating chamber 10. for It will be done on sphere 4.
  • a discharge is also performed between the luminous body 4 and the heat-resistant tube 2.
  • This discharge portion is at about 300 ° C., and the inside of the heating chamber 10 is heated to about 300 ° C. in a short time of several tens of seconds after applying the voltage. Since a discharge is also generated between the luminescent heating element sphere 4 and the heat-resistant tube 22, the heat-resistant tube 22 also has a high temperature of about 300 ° C. Due to this high temperature, the exhaust gas introduced into the heat-resistant tube 22 has a high temperature exceeding 2000 ° C. When no discharge occurs between the luminous element sphere 4 and the heat-resistant tube 22, the temperature of the exhaust gas in the heat-resistant tube 22 is 160 to 200 ° C. . At this time, the temperature of the outer wall 11 (iron plate 12) of the exhaust gas pyrolysis furnace 6 is about room temperature. If the discharge becomes stable, a low voltage of about 30 V (current of 300-40 O A) is sufficient. Note that the temperature to be obtained can be adjusted by the degree of the applied voltage. Therefore, the degree of the applied voltage may be changed as desired.
  • the exhaust gas discharged from the incinerator is introduced into the heat-resistant tube 22. Since the exhaust gas in the heat-resistant tube 22 is sucked by the blower 51, the exhaust gas does not flow backward or stay in the heat-resistant tube 22. Since the exhaust gas introduced into the heat-resistant pipe 22 is exposed to a high temperature exceeding 200 ° C, harmful substances such as dust, carbon dioxide, chlorine compounds, nitrogen compounds, and dioxin contained in the exhaust gas may burn. It is decomposed without heat and becomes harmless decomposition gas.
  • the discharge generates light as well as heat.
  • This luminescence is considered to have the effect of accelerating the decomposition reaction of the harmful substance during thermal decomposition.
  • its effect is considered to be high in the thermal decomposition of dioxin.
  • This cracked gas contains harmless low molecular weight substances, hydrocarbons, heavy metals, etc. However, since these are absorbed by the activated carbon filter 150, they are not discharged to the outside of the exhaust gas pyrolysis furnace 6 from the exhaust port 21. There is also a possibility that a small amount of harmful substances may remain, but this is also adsorbed by the activated carbon filter 150, and is discharged from the exhaust port 21 to the outside of the exhaust gas pyrolysis furnace 6. None.
  • the activated carbon filter 150 can be regenerated by spraying steam at 120 to 200 ° C. and used repeatedly. For this reason, it is excellent in terms of economy and prevention of secondary pollution. It is also possible to recover heavy metals from an activated carbon filter 50 with an increased ratio of adsorbed heavy metals by crushing with an industrial mill or the like and sieving at the specific gravity o
  • the positions of the inlet 20, the outlet 21, and the blower _ 51 in the exhaust gas pyrolysis furnace 6 are not limited to the use example as long as the object of the present invention can be achieved. Absent.
  • the blower 51 is attached to the exhaust port 21 in this usage example, but may be attached between the incinerator for discharging exhaust gas and the inlet port 20.
  • a plurality of exhaust gas pyrolysis furnaces 6 may be attached to the incinerator.
  • the exhaust gas from the incinerator is branched using an adapter for connecting the chimney of the incinerator to the inlets 20 of the plurality of exhaust gas pyrolysis furnaces 6, and each exhaust gas is separated.
  • the heat-resistant pipe 22 in order to allow sufficient time for the exhaust gas to be heated, the heat-resistant pipe 22 is formed in a meandering form, but the type, concentration, and decomposition of harmful substances contained in the exhaust gas are used.
  • the shape of the heat-resistant tube 22 can be freely designed according to conditions such as the amount of exhaust gas to be treated, and may be, for example, a linear shape.
  • the heat-resistant tube 22 is Although the configuration has been described as extending vertically, it is a matter of course that the configuration may extend horizontally. When it is configured to extend in the horizontal direction, it is possible to reduce the usage amount and the power consumption of the light emitting heating element sphere 4.
  • the luminous heating element of the present invention can obtain a high temperature of about 300 ° C. or more even in the air, dust compounds, chlorine compounds such as hydrogen chloride, nitrogen compounds such as NOX, dioxin, etc. It is possible to efficiently decompose the wastes mentioned above without generating harmful substances.
  • the sphere for a light-emitting heating element of the present invention constitutes the light-emitting heating element and is not easily susceptible to corrosion or oxidation by a chemical substance such as the harmful substance. It is difficult to adsorb substances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Resistance Heating (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A light-emitting/heat-generating body is characterized in that it is made of a high-density carbon material especially largely composed of impervious graphite and is spherical. By applying a voltage to multiple light-emitting/heat-generating spherical bodies in point-contact with each other, they emit light and generate heat to a temperature of more than 3000 °C, and thereby waste is thermally decomposed not by incineration and processed without producing harmful substances. The harmful substances contained in the gas exhausted from an incineration furnace is thermally decomposed and processed to harmless ones.

Description

明 細 書 発光発熱体用球体及び発光発熱体 技術分野  Description Sphere for luminescent heating element and luminescent heating element
本発明は、 電圧が印加されると放電を生じて、 光と熱とを発する発光 発熱体、 及びその発光発熱体に使用する発光発熱体用球体に関する。 背景技術  The present invention relates to a light-emitting heating element that emits light and heat by generating a discharge when a voltage is applied, and a light-emitting heating element sphere used for the light-emitting heating element. Background art
高熱を発する発熱体としては、 金属発熱体や、 炭素類等からなる非金 属発熱体等が知られており、 加熱炉, 焼却炉等の種々の加熱装置の熱源 として使用されている。  Known heating elements that generate high heat include metal heating elements and non-metal heating elements made of carbon and the like, and are used as heat sources for various heating devices such as heating furnaces and incinerators.
このような従来の発熱体を使用すると、 1 0 0 o °c以上の高温を得る ことができる。 例えば、 工業的に使用されている金属発熱体の空気中で の使用温度は最高で 1 2 0 0。C程度である。  When such a conventional heating element is used, a high temperature of 100 ° C. or more can be obtained. For example, the maximum operating temperature of industrially used metal heating elements in air is 1200. It is about C.
しかしながら、 このような 1 0 0 0 °C以上の高温であっても、 使用目 的によっては、 必ずしも十分な高温とは言えない場合がある。 例えば、 一般廃棄物、 産業廃棄物、 医療廃棄物等の様々な種類の廃棄物や原油, 廃油, 石油化学物質等 (以降、 廃棄物等と記す) を焼却処理する装置に、 上記のような発熱体を適用した場合である。 前記廃棄物等を焼却処理し た場合には、 煤塵, 二酸化炭素, 塩化水素等の塩素化合物, N O x等の 窒素化合物, ダイォキシン等のような環境及び人体に対して悪影響を及 ぼす有害物質が生成し、 排ガスや排煙と共に排出される。 特に、 ダイォ キシンに関しては、 その毒性が非常に強く、 また、 人体に対して長期的 に悪影響を及ぼすことから、 大きな問題となっている。  However, even at such a high temperature of 1000 ° C. or more, it may not always be possible to say that the temperature is sufficiently high depending on the purpose of use. For example, incinerators for various types of waste, such as general waste, industrial waste, and medical waste, as well as crude oil, waste oil, petrochemicals, etc. (hereinafter referred to as waste, etc.) This is the case where a heating element is applied. When the wastes are incinerated, harmful substances that have an adverse effect on the environment and the human body, such as dust, carbon dioxide, chlorine compounds such as hydrogen chloride, nitrogen compounds such as NOx, dioxin, etc. Is generated and emitted together with exhaust gas and smoke. In particular, dioxin is a serious problem because it is very toxic and has a long-term adverse effect on the human body.
3 0 0 - 5 0 0 °C程度の低温で前記廃棄物等を燃焼 させた際に生成しやすく、 8 0 0 °C以上の高温では生成しにくいことが 知られている。 しかしながら、 1 0 0 0 °C以上の高温でも、 微量のダイ ォキシンが生成することがあるので、 前記のような従来の発熱体を使用 した焼却処理装置では、 ダイォキシンを排出する可能性がまつたくない とは言えない。 Combustion of the above waste at a low temperature of about 300-500 ° C It is known that it is easy to form when heated and hard to form at temperatures as high as 800 ° C or higher. However, even at a high temperature of 1000 ° C. or higher, a small amount of dioxin may be generated.Therefore, in the incineration apparatus using the above-described conventional heating element, there is a great possibility that dioxin is discharged. I can't say no.
このような問題の解決のためには、 前記廃棄物等を燃焼させることな く、 高温で熱分解させて処理することが好ましい。 上記のような燃焼 (すなわち酸化反応) ではなく熱分解による前記廃棄物等の処理であれ ば、 煤塵, 塩化水素等の塩素化合物, N O x等の窒素化合物, ダイォキ シン等の有害物質を生成することなく、 前記廃棄物等を処理することが 可能である。  In order to solve such a problem, it is preferable to treat the waste by pyrolysis at a high temperature without burning the waste. If the waste is treated by thermal decomposition instead of combustion (ie, oxidation reaction) as described above, it will generate harmful substances such as dust, chlorine compounds such as hydrogen chloride, nitrogen compounds such as NOx, and dioxin. Without waste, it is possible to treat the waste and the like.
ダイォキシン等の前記有害物質を生成することなく、 前記廃棄物等を 効率よく熱分解するためには、 3 0 0 0 °C程度の高温が必要であるが、 3 0 0 0 °C程度の高温を効率よく安定して得ることができる実用的な発 熱体は知られていない。  In order to efficiently pyrolyze the waste without generating the harmful substances such as dioxin, a high temperature of about 300 ° C. is required, but a high temperature of about 300 ° C. There is no practical heat generator that can efficiently and stably obtain the heat.
また、 一般の炭素類は多孔質 (表面及び内部に多数の細孔を有する) であるので、 一般の炭素類からなる発熱体は高温下 (使用時) において、 前記有害物質等の化学物質による腐食や空気による酸化を受けて劣化し やすい。 また、 強い吸着性を有するので、 吸着している二酸化炭素等の 気体等を高温下 (使用時) において放出したり、 前記有害物質等を吸着 したりするという問題を有している。  In addition, since general carbons are porous (having a large number of pores on the surface and inside), a heating element made of general carbons may be exposed to chemical substances such as the harmful substances at high temperatures (when used). Deteriorated easily due to corrosion and oxidation by air. In addition, since it has strong adsorptivity, it has a problem that it releases gas such as carbon dioxide adsorbed at a high temperature (when used) and adsorbs the harmful substances.
本発明は、 上記のような従来技術の問題点を解決し、 約 3 0 0 0 °C以 上の高温を効率よく安定して発生させ、 それを維持することができ、 ダ ィォキシン等の前記有害物質を生成することなく前記廃棄物等を効率よ く熱分解することが可能な発光発熱体、 及びその発光発熱体に使用する 発光発熱体用球体を提供することを目的としている。 さらに、 使用時に おいて前記有害物質等の化学物質による腐食や空気による酸化を受けに く く、 二酸化炭素等の気体や前記有害物質等を吸着しにくい発光発熱体 用球体を提供することを目的としている。 発明の開示 The present invention solves the above-mentioned problems of the prior art, and can efficiently and stably generate a high temperature of about 300 ° C. or more, and maintain the high temperature. It is an object of the present invention to provide a luminescent heating element capable of efficiently thermally decomposing the waste without generating harmful substances, and a luminescent heating element sphere used for the luminescent heating element. In addition, when used It is another object of the present invention to provide a luminescent heating element sphere which is hardly susceptible to corrosion by a chemical substance such as the harmful substance or oxidized by air and hardly adsorbs a gas such as carbon dioxide or the harmful substance. Disclosure of the invention
前記目的を達成するため、 本発明は次のような構成からなる。 すなわ ち、 本発明の発光発熱体用球体は、 高密度化した炭素材、 特に不浸透性 黒鉛を主成分とし、 形状を球形としたことを特徴とする。  In order to achieve the above object, the present invention has the following configuration. That is, the sphere for a luminescent heating element of the present invention is characterized by having a carbon material, particularly an impervious graphite, as a main component and a spherical shape.
このような構成から、 複数の前記発光発熱体用球体を相互に接触させ て電圧を印加することにより、 前記発光発熱体用球体の間で放電が生じ る。 この放電部分の温度は約 3 0 0 0 °C以上の高温であるので、 加熱炉 等の加熱装置の熱源として使用可能である。 なお、 前記放電部分の温度 は約 3 0 0 0 °C以上の高温であるが、 そこから十数 c m離れた位置の温 度は約 2 0 0 °C以下である。  With such a configuration, a discharge is generated between the light emitting heating element spheres by applying a voltage by bringing the plurality of light emitting heating element spheres into contact with each other. Since the temperature of the discharge part is as high as about 300 ° C. or more, it can be used as a heat source of a heating device such as a heating furnace. The temperature of the discharge portion is a high temperature of about 300 ° C. or more, and the temperature at a position distant from the temperature by more than 10 cm is about 200 ° C. or less.
このような前記発光発熱体用球体からなる発光発熱体を前記廃棄物等 の処理装置に適用すれば、 約 3 0 0 0 °C以上という極めて高い温度に前 記廃棄物等を加熱することができるので、 高沸点の金属を除いて、 P C Bも含めてほぼ全ての物質を熱分解することが可能である。  If such a luminous heating element composed of spheres for a luminous heating element is applied to a processing device for the waste and the like, the waste and the like can be heated to an extremely high temperature of about 300 ° C. or more. As a result, almost all substances, including PCBs, can be pyrolyzed, excluding high-boiling metals.
したがって、 前記廃棄物等を燃焼させることなく熱分解して、 前記有 害物質を生成することなく前記廃棄物等を処理することができる。 また、 一般の焼却炉から排出された排ガスや灰を加熱処理して、 それらの中に 含まれるダイォキシン等の前記有害物質を熱分解して無害化することが できる。 さらに、 適切な処理方法が見出されていない P C Bのような有 害な化学物質についても、 無害な低分子量物質に熱分解することが可能 である。  Therefore, the waste and the like can be thermally decomposed without burning, and the waste and the like can be processed without generating the harmful substance. In addition, exhaust gas and ash discharged from a general incinerator can be heat-treated to thermally decompose the harmful substances such as dioxin contained therein to make them harmless. In addition, harmful chemicals, such as PCBs, for which no appropriate treatment has been found, can be thermally decomposed into harmless low molecular weight substances.
さらに、 通常の焼却処理では処理できない不燃性の廃棄物を含有する 場合や、 焼却処理するとダイォキシンを生成する可能性のある廃棄物を 含有する場合でも、 分離, 分別することなく一度に熱分解処理すること が可能であるので、 廃棄物の処理に大きな手間ゃコス卜を要しない。 なお、 本発明の発光発熱体用球体は、 前記放電により、 高熱と共に特 異な強い光を発する。 この光は、 有害物質等の熱分解において、 その分 解反応を促進する効果があると考えられる。 特に、 ダイォキシンの熱分 解に対しては、 その効果が高いと考えられる。 In addition, it contains noncombustible waste that cannot be treated by normal incineration. Even if the waste contains waste that may generate dioxin when incinerated, it can be thermally decomposed at once without separation and separation. You don't need a bird. In addition, the sphere for a light-emitting heating element of the present invention emits special intense light together with high heat due to the discharge. This light is considered to have the effect of accelerating the decomposition reaction of harmful substances during thermal decomposition. In particular, the effect is considered to be high for the thermal decomposition of dioxin.
前記発光発熱体用球体は高密度化した炭素材、 特に不浸透性黒鉛を主 成分としているので、 表面に存在する細孔が少なく、 比表面積が小さい,: したがって、 物質の吸着性が低いので、 吸着した気体等を高温下 (使用 時) において放出したり、 前記有害物質等を吸着したりする等の問題を 生じる恐れが少ない。 また、 前記有害物質等の化学物質による腐食や、 空気による酸化を受けにく く劣化しにくいので、 前記発光発熱体用球体 を長期にわたって使用することが可能である。  Since the luminescent heating element sphere is mainly composed of a densified carbon material, in particular, impervious graphite, the surface has few pores and a small specific surface area. There is little risk of problems such as release of the adsorbed gas at high temperatures (when used) and adsorption of the harmful substances. In addition, the luminescent heating element sphere can be used for a long period of time because it is hardly deteriorated by being corroded by a chemical substance such as the harmful substance or oxidized by air.
また、 前記発光発熱体において効率よく放電が生じるためには、 前記 発光発熱体を構成する前記発光発熱体用球体同志が点接触していること が好ましく、 線接触や面接触では多くの通電が生じて、 放電の効率が低 下してしまう。 前記発光発熱体用球体は、 その形状が球形であるので、 前記発光発熱体用球体同志の接触形態が必ず点接触となる。 よって、 放 電が効率良く行われ高温が得られやすく、 さらに、 高温を得るためのコ ス卜を安価とすることができる。  In addition, in order for the light emitting heating element to efficiently discharge, it is preferable that the light emitting heating element spheres constituting the light emitting heating element are in point contact with each other. As a result, the discharge efficiency is reduced. Since the shape of the light emitting heating element sphere is spherical, the contact form of the light emitting heating element balls is always point contact. Therefore, the discharge is efficiently performed and a high temperature is easily obtained, and the cost for obtaining the high temperature can be reduced.
また、 前記発光発熱体用球体は、 長期間にわたって使用していると前 記放電や酸化等により劣化し、 形状が変形する可能性がある。 特に、 前 記放電が生じる部分が特定の箇所に集中していると、 その箇所の劣化が 大きくなりやすい。 しかし、 前記発光発熱体用球体が球形であれば前記 放電の作用により前記発光発熱体用球体が回転するので、 前記放電が生 じる部分が特定の箇所に集中にく く、 まんべんなく全体において前記放 電が生じる可能性が高い。 したがって、 前記発光発熱体用球体が劣化や 変形を起こしても形状が球形のままに保たれるので、 前記放電の効率が 低下する可能性が低く好ましい。 In addition, the sphere for a light-emitting heating element may be deteriorated due to the discharge or oxidation described above and may be deformed when used for a long period of time. In particular, if the portion where the discharge occurs is concentrated at a specific location, the degradation at that location is likely to increase. However, if the sphere for the luminous element is spherical, the sphere for the luminous element rotates by the action of the discharge, so that the discharge is generated. The part to be twisted is not easily concentrated on a specific part, and the discharge is highly likely to occur evenly in the entirety. Therefore, the shape of the light emitting heating element sphere is maintained as a spherical shape even if the sphere is deteriorated or deformed.
なお、 本発明における高密度化した炭素材とは、 炭素の理論密度の 9 0 . 0 %以上の密度を有する炭素材を意味する。 一般の炭素材は、 炭素 の理論密度の 7 5 !¾程度の密度を有している。  In the present invention, the densified carbon material means a carbon material having a density of 90.0% or more of the theoretical density of carbon. General carbon materials have a density of about 75! ¾, which is the theoretical density of carbon.
また、 前記発光発熱体用球体同志の接触形態が点接触であれば、 前記 発光発熱体用球体は十二面体, 二十面体等の多面体でも問題なく、 本発 明の発光発熱体用球体には前記のような多面体も含まれる。 ただし、 前 記発光発熱体用球体は真球状であることが、 より好ましい。  Further, if the contact form of the light emitting heating element spheres is point contact, the light emitting heating element sphere may be a polyhedron such as a dodecahedron, an icosahedron, or the like. Also includes the polyhedron as described above. However, it is more preferable that the sphere for a luminescent heating element is a true sphere.
さらに、 前記発光発熱体用球体を、 チタン及びタングステンのうち少 なくとも一方を含有した構成とすることができる。 このような構成の発 光発熱体用球体は、 チタン及びタングステンを含有しないものと比較し て、 硬度や弾性率等の機械物性, 耐食性, 耐熱性が優れている。 そのた め、 前記発光発熱体用球体は前記有害物質等の化学物質による腐食や酸 化劣化を受けにく く、 長期にわたって使用することが可能である。 なお、 チタン及びタングステンの合計の含有量は、 1〜2 0重量部で あることが好ましい。 前記含有量が 1重量部未満であると、 前記特性 (機械物性, 耐食性, 耐熱性) を向上させる効果が小さく、 2 0重量部 を越えると、 前記発光発熱体用球体にクラックが生じやすくなる傾向と なり、 また、 前記発光発熱体用球体の加工性が低下する傾向となる等の 不都合が生じる場合がある。 そのため、 前記のような不都合が生じない ように、 前記発光発熱体用球体の製造工程において、 製造条件の詳細な 調整が必要になる。 前記発光発熱体用球体の前記特性と前記のような不 都合の生じ難さとのバランスから、 チタン及びタングステンの合計の含 有量は、 5〜 1 0重量部とすること力、 より好ましい。 Further, the luminous body for a light emitting heating element may be configured to contain at least one of titanium and tungsten. The light emitting heating element sphere having such a configuration is superior in mechanical properties such as hardness and elastic modulus, corrosion resistance, and heat resistance as compared with those not containing titanium and tungsten. Therefore, the luminescent heating element sphere is less susceptible to corrosion and oxidative deterioration due to the chemical substance such as the harmful substance, and can be used for a long time. The total content of titanium and tungsten is preferably 1 to 20 parts by weight. If the content is less than 1 part by weight, the effect of improving the properties (mechanical properties, corrosion resistance, heat resistance) is small, and if it exceeds 20 parts by weight, cracks are liable to be generated in the luminescent heating element sphere. In addition, there may be inconveniences such as a tendency that the workability of the light emitting heating element sphere tends to decrease. Therefore, in order to avoid the above-mentioned inconvenience, it is necessary to perform detailed adjustment of the manufacturing conditions in the manufacturing process of the light emitting heating element sphere. From the balance between the characteristics of the luminescent heating element sphere and the inconvenience of the above-mentioned inconveniences, the total content of titanium and tungsten is determined. The weight is more preferably 5 to 10 parts by weight.
さらに、 前記発光発熱体用球体を、 ジルコニウム, ニオブ, ホウ素, タンタル, 及びモリブデンのうち少なく とも 1種を含有した構成とする ことができる。 このような構成によれば、 前記発光発熱体用球体の耐熱 性を向上することができる。  Furthermore, the luminescent heating element sphere may be configured to contain at least one of zirconium, niobium, boron, tantalum, and molybdenum. According to such a configuration, the heat resistance of the light emitting heating element sphere can be improved.
なお、 ジルコニウム, ニオブ, ホウ素, タンタル, 及びモリブデンの 合計の含有量は、 1 0〜2 0重量部であることが好ましい。 前記含有量 が 1 0重量部未満であると、 耐熱性を向上させる効果が小さく、 2 0重 量部を越えると、 前記発光発熱体用球体にクラックが生じやすくなる傾 向となる。  In addition, the total content of zirconium, niobium, boron, tantalum, and molybdenum is preferably 10 to 20 parts by weight. When the content is less than 10 parts by weight, the effect of improving heat resistance is small, and when the content is more than 20 parts by weight, cracks tend to be easily generated in the light emitting heat generating sphere.
さらに、 窒化チタン及び窒化ニオブのうち少なく とも一方を含有した 構成とすることができる。 窒化チタンはチタン原子の格子中に窒素原子 が侵入した構造を有していて、 ダイヤモンドに近い硬度と耐熱性とを有 し、 前記発光発熱体用球体の硬度及び耐熱性を向上させる効果がある。 また、 窒化ニオブは耐熱性を向上させる効果がある。  Further, the structure may include at least one of titanium nitride and niobium nitride. Titanium nitride has a structure in which nitrogen atoms penetrate into the lattice of titanium atoms, has a hardness and heat resistance close to that of diamond, and has an effect of improving the hardness and heat resistance of the luminescent heating element sphere. . Niobium nitride has the effect of improving heat resistance.
さらに、 前記発光発熱体用球体を、 グラフアイ 卜, カーボンブラック, コ一クス, 及び木炭のうち少なく とも 1種を含有した構成とすることが できる。  Further, the luminescent heating element sphere may be configured to contain at least one of graphite, carbon black, coke, and charcoal.
さらに、 前記発光発熱体用球体を、 炭素繊維, 酸化物系繊維, 炭化物 系繊維, 窒化物系繊維, 及びホウ素系繊維のうち少なく とも 1種を含有 した構成とすることができる。 このような繊維を含有していれば (特に、 該繊維が一定方向に並んだ形態で含有していれば) 、 強度ゃ耐摩耗性が 向上する。  Furthermore, the luminescent heating element sphere may be configured to contain at least one of carbon fibers, oxide fibers, carbide fibers, nitride fibers, and boron fibers. When such fibers are contained (especially when the fibers are contained in a form arranged in a certain direction), the strength ゃ abrasion resistance is improved.
さらに、 上記のような発光発熱体用球体の複数を集合させて、 発光発 熱体とすることができる。 複数の前記発光発熱体用球体を相互に接触さ せて電圧を印加することにより、 前記発光発熱体用球体の間で放電が生 じる。 この放電部分の温度は約 3 0 0 0 °C以上の高温であるので、 前記 発光発熱体を前記廃棄物等の処理装置に適用すれば、 約 3 0 0 0 °C以上 の高温により、 高沸点の金属を除いて、 P C Bを含めてほぼ全ての物質 を、 ダイォキシン等の前記有害物質を生成することなく熱分解処理する ことが可能である。 Further, a plurality of the above-mentioned spheres for a light-emitting heating element can be assembled to form a light-emitting heat generating element. A discharge is generated between the light emitting heating element spheres by applying a voltage by bringing the plurality of light emitting heating element spheres into contact with each other. I will. Since the temperature of this discharge portion is high at about 300 ° C. or higher, if the luminescent heating element is applied to a processing device for the waste or the like, the high temperature of about 300 ° C. or higher causes Except for the boiling point metal, almost all substances including PCBs can be thermally decomposed without producing the harmful substances such as dioxin.
また、 瞬時に約 3 0 0 0 °C以上の高温を得ることができ、 且つ十数 c m離れると温度が急激に低下する (2 0 0 nC程度) という特性から、 超 高温のエネルギーを取り出して様々な分野にも利用可能である。 図面の簡単な説明 In addition, high temperature of about 300 ° C or more can be obtained instantaneously, and the temperature drops sharply when it is more than 10 cm away (about 200 nC ). It can be used in various fields. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 発光発熱体用球体の複数を集合させてなる発光発熱体に、 電圧を印加する様子を示す概念図である。  FIG. 1 is a conceptual diagram showing a state in which a voltage is applied to a light emitting heating element formed by assembling a plurality of light emitting heating element spheres.
第 2図は、 発光発熱体用球体における放電の様子を説明する概念図で ある o  FIG. 2 is a conceptual diagram for explaining a state of discharge in a sphere for a light emitting heating element.
第 3図は、 排ガス用熱分解炉の外観を示す斜視図である。  FIG. 3 is a perspective view showing an appearance of a pyrolysis furnace for exhaust gas.
第 4図は、 第 3図の排ガス用熱分解炉の縦断面図である。  FIG. 4 is a longitudinal sectional view of the exhaust gas pyrolysis furnace of FIG.
第 5図は、 第 4図の排ガス用熱分解炉の A - A線水平断面図である。 発明を実施するための最良の形態  FIG. 5 is a horizontal sectional view taken along the line AA of the exhaust gas pyrolysis furnace of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る発光発熱体用球体及び発光発熱体の実施の形態を、 図面 を参照しながら詳細に説明する。  Embodiments of a luminous body and a luminous body according to the present invention will be described in detail with reference to the drawings.
なお、 本発明は以下に説明する実施形態のみに限定されるものではな い。  Note that the present invention is not limited to only the embodiments described below.
(発光発熱体用球体の第一実施形態)  (First Embodiment of Light-Emitting Heating Sphere)
フヱノール系樹脂 5 5重量部と、 0 . 1〜0 . 5 m mの長さのァクリ ル繊維 4 5重量部とを混合する。 なお、 フエノール系樹脂の代わりに、 ポリジビニルベンゼン樹脂を用いてもよい。 55 parts by weight of a phenolic resin and 45 parts by weight of an acryl fiber having a length of 0.1 to 0.5 mm are mixed. In addition, instead of phenolic resin, Polydivinylbenzene resin may be used.
また、 アクリル繊維の代わりに、 動植物繊維や、 アクリル繊維と動植 物繊維との混合物を用いてもよい。 このようなアタリル繊維等の繊維は、 発光発熱体用球体の製造工程において炭化し、 発光発熱体用球体の内部 で炭素繊維となる。 さらに、 アクリル繊維の代わりに、 酸化物系繊維, 炭化物系繊維, 窒化物系繊維, 及びホウ素系繊維のうち少なくとも 1種 を用いてもよい。  In addition, animal and plant fibers or a mixture of acrylic fiber and animal and plant fibers may be used instead of the acrylic fiber. Fibers such as ataryl fibers are carbonized in the manufacturing process of the sphere for the luminous element, and become carbon fibers inside the sphere for the luminous element. Further, instead of the acrylic fiber, at least one of oxide-based fibers, carbide-based fibers, nitride-based fibers, and boron-based fibers may be used.
フエノール系樹脂及びァクリル繊維の混合物を金型に充塡し、 これに フエノール系樹脂が硬化するのに十分な熱と圧力とをかけて、 球形 (例 えば、 直径 3 3 m m ) に成形する。 なお、 成形物の形状は、 半球形, 直 方体, 円柱形等の形状でもよい。 半球形の場合は、 この段階で 2つの半 球形を一体化し球形としておく。 また、 この成形物は、 所望の成分を注 入するための穴や凹部等を有していてもよい。  A mixture of a phenolic resin and acryl fibers is filled in a mold, and the mixture is subjected to heat and pressure sufficient to cure the phenolic resin to form a sphere (for example, 33 mm in diameter). The shape of the molded product may be a hemisphere, a rectangular parallelepiped, a column, or the like. In the case of a hemisphere, at this stage, the two hemispheres are integrated into a spherical shape. Further, the molded product may have a hole, a concave portion, or the like for injecting a desired component.
そして、 該成形物を不活性ガス中、 2 5 0 ~ 3 0 0 °Cで耐炎化処理を 施し、 さらに 1 0 0 0〜; L 5 0 0 °Cで炭化する。 次いで、 2 0 0 0〜 3 0 0 0 °Cで黒鉛化し、 さらに、 サイジング処理 (表面処理) を施す。 炭化及び黒鉛化の工程においては、 熱間静水圧成形 (H I P ) で 3 0 M P a以上の圧力を等方的にかけながら、 不活性ガス中での焼成を繰り 返すことによって、 黒鉛を高密度化する。 なお、 H I Pは、 球形にも等 方的に圧力をかけることができる方法である。  Then, the molded article is subjected to a flameproofing treatment in an inert gas at 250 to 300 ° C., and further carbonized at 100 to L 500 ° C. Next, it is graphitized at 2000 to 300 ° C., and further subjected to a sizing treatment (surface treatment). In the carbonization and graphitization processes, graphite is densified by repeating firing in an inert gas while isotropically applying a pressure of 30 MPa or more by hot isostatic pressing (HIP). I do. Note that HIP is a method that can apply pressure isotropically to a spherical shape.
一般の黒鉛や炭素類の表面及び内部には多数の細孔が存在し、 細孔部 分の表面積は全表面積の 2 5 %程度であることが通常である。 しかし、 前記のような操作によって、 該黒鉛の表面及び内部に存在する細孔の表 面積を、 全表面積の 1 0 %以下にまで、 場合によっては 5 %以下にまで 低減することができる。  Many graphites and carbons have many pores on the surface and inside, and the surface area of the pores is usually about 25% of the total surface area. However, by the above-described operation, the surface area of the pores present on the surface and inside of the graphite can be reduced to 10% or less of the total surface area, and in some cases, to 5% or less.
フイラ一としてフヱノール系樹脂を使用すると、 細孔が比較的少な L、 黒鉛が得られるが、 前記のような圧力を加えながらの焼成によって、 よ り精度よく不浸透性黒鉛を得ることができる。 このような、 不浸透性黒 鉛は、 広い実用温度範囲にわたって、 ほとんどの化学薬品に対して耐食 性を有する。 また、 一般の耐食性材料と比較して、 極めて高い熱伝導性 を有している。 さらに、 熱安定性に優れており、 急激な温度変化にも悪 影響を受けにくい。 When a phenolic resin is used as the filler, L, which has relatively few pores, Although graphite can be obtained, impervious graphite can be obtained with higher accuracy by sintering while applying pressure as described above. Such impervious graphite is resistant to most chemicals over a wide operating temperature range. Also, it has extremely high thermal conductivity compared to general corrosion resistant materials. Furthermore, it has excellent thermal stability and is not easily affected by sudden temperature changes.
なお、 フエノ一ル系榭脂の添加量は 1 0〜 6 0重量部の範囲が好まし い。 フヱノール系樹脂が 6 0重量部を越えると、 得られた不浸透性黒鉛 の比重が軽くなつてしまい、 また、 内部に気泡が入りやすくなつたり未 硬化部分 (ゲル状部分) が残存しやすくなつたりする。 さらに、 炭化工 程及び黒鉛化工程において、 圧力を等方的にかけにく くなる。 また、 1 0重量部未满であると、 フエノール系樹脂とァクリル繊維とを一体化し て、 成形物とすることが困難になる。  The amount of the phenolic resin is preferably in the range of 10 to 60 parts by weight. When the amount of the phenolic resin exceeds 60 parts by weight, the specific gravity of the obtained impervious graphite becomes light, and air bubbles easily enter into the inside, and an uncured portion (gel-like portion) tends to remain. Or Furthermore, it is difficult to apply pressure isotropically in the carbonization process and the graphitization process. If the amount is less than 10 parts by weight, it becomes difficult to integrate the phenolic resin and acryl fibers into a molded product.
上記のような問題点がより確実に発生しないようにするためには、 フ ヱノール系樹脂の添加量は、 2 0 ~ 5 5重量部とすることが、 より好ま しい。 ただし、 耐熱衝撃性を考慮すると、 フヱノール系樹脂はアクリル 繊維を固めるのに必要な量で十分であり、 より少量の方が好ましい。  In order to prevent the above problems from occurring more reliably, it is more preferable to add the phenolic resin in an amount of 20 to 55 parts by weight. However, in consideration of thermal shock resistance, the amount of the phenolic resin required to harden the acrylic fiber is sufficient, and a smaller amount is preferable.
このような操作を施すことにより、 不浸透性黒鉛からなる球形 (例え ば、 直径 3 0 m m ) の発光発熱体用球体が得られる。 直方体, 円柱形等 の形状の場合には研磨等により球形に成形し、 発光発熱体用球体とする。 この発光発熱体用球体は不浸透性黒鉛で構成されているため、 ゴムと 同程度か、 それ以下の吸着性しか備えていない。 なおかつ、 強度は通常 の黒鉛の 2〜 3倍、 ショァ硬度は 6 5以上 (本実施形態の場合は 6 8 ) 、 密度は 1 . 8 7 g / c m 3 以上 (繊維の混合の割合で調節することが可 能) を得ることができる。 なお、 引張強度は 1 6 . 7 M P a、 曲げ強度 は 3 5 . 3 M P a、 圧縮強度は 9 8 . 0 M P a、 弾性率は 1 2 7 0 0 M P a以上、 熱膨張係数は 3. 0 x 1 0— S/°C、 熱伝導度は 1 5 1 WZm • °C、 耐熱温度は 3 0 0 0 °Cである。 By performing such an operation, a spherical (for example, 30 mm in diameter) luminescent heating element sphere made of impervious graphite can be obtained. In the case of a rectangular parallelepiped or cylindrical shape, it is formed into a spherical shape by polishing or the like, and used as a sphere for a luminescent heating element. Since the luminescent heating element sphere is made of impervious graphite, it has the same or lower adsorbability as rubber. The strength is 2 to 3 times that of ordinary graphite, Shore hardness is 65 or more (68 in this embodiment), and density is 1.87 g / cm 3 or more (adjusted by the mixing ratio of fibers). Can be obtained). The tensile strength is 16.7 MPa, the bending strength is 35.3 MPa, the compressive strength is 98.0 MPa, and the elastic modulus is 127 000 M The thermal expansion coefficient is 3.0 x 10— S / ° C, the thermal conductivity is 151 WZm • ° C, and the heat resistance temperature is 300 ° C.
また、 化学的性質については、 濃硫酸、 硝酸等の強酸性の薬品や、 水 酸化ナトリゥム水溶液等の強アル力リ性の薬品等に対して優れた耐食性 を示す。 ただし、 フエノール系樹脂を原料とした場合は、 耐アルカリ性 が若干劣る場合がある。 耐食性試験の結果を表 1〜 3にまとめて示す。 なお、 各表中の濃度の項の 「全」 は、 「全ての濃度」 を意味する。 As for chemical properties, it shows excellent corrosion resistance to strongly acidic chemicals such as concentrated sulfuric acid and nitric acid, and strong alkaline chemicals such as aqueous sodium hydroxide. However, when a phenolic resin is used as a raw material, the alkali resistance may be slightly inferior. Tables 1 to 3 summarize the results of the corrosion resistance test. In addition, “all” in the concentration column in each table means “all concentrations”.
(表 1 ) 化学薬品名 濃度 温度 耐食性 1: (Table 1) Chemical name Concentration Temperature Corrosion resistance 1:
(重量%) (。c)  (% By weight) (.c)
〔酸〕 (Acid)
塩酸 全 沸点 A 硝酸 1 0〜 4 0 6 0 B フッ化水素酸 4 8 沸点 A フッ化水素酸 4 8〜6 0 9 0 A 硫酸 2 5〜 7 5 1 3 0 A リ ン酸 8 5 沸点 A リ ン酸 9 6 1 0 0 A クロム酸 1 0 9 3 B 酢酸 全 沸点 A シユウ酸 全 沸点 A 亜硫酸 (亜硫酸ガス飽和) - 室温 A 塩酸 (塩素ガス飽和) 2 0 沸点 A フッ化水素酸十硝酸 5Z 1 5 9 3 A  Hydrochloric acid Total boiling point A Nitric acid 10 to 40.6 B Hydrofluoric acid 4 8 Boiling point A Hydrofluoric acid 4 8 to 6 0 9 0 A Sulfuric acid 2 5 to 7 5 1 3 0 A Phosphoric acid 8 5 Boiling point A Phosphoric acid 9 6 10 0 A Chromic acid 10 9 3 B Acetic acid Total boiling point A Oxalic acid Total boiling point A Sulfurous acid (sulfurous acid gas saturated)-Room temperature A Hydrochloric acid (chlorine gas saturated) 20 Boiling point A Hydrofluoric acid denitric acid 5Z 1 5 9 3 A
1 ) A : まったく浸食されない 1) A: Not eroded at all
B : ほとんど浸食されない (表 2 ) 化学薬品名 濃度 温度 耐食性' B: hardly eroded (Table 2) Chemical name Concentration Temperature Corrosion resistance
(重量%) (。C)  (% By weight) (.C)
〔アル力リ〕 [Al power]
レーョン紡糸液 沸点 A 苛性ソーダ水溶液 6 7 沸点 A 苛性ソーダ水溶液 6 7-8 0 1 2 5 A  Rayon spinning solution Boiling point A Caustic soda aqueous solution 6 7 Boiling point A Caustic soda aqueous solution 6 7-8 0 1 25 A
〔塩類水溶液〕 (Salt aqueous solution)
塩化亜鉛 全 沸点 A 塩化鉄 全 1 0 0 A 塩化ナトリウム 全 沸点 A 次亜塩素酸ナトリウム 5 A 過硫酸アンモニゥム 全 1 8 A 硫酸銅 全 沸点 A  Zinc chloride Total boiling point A Iron chloride Total 100 A A Sodium chloride Total boiling point A Sodium hypochlorite 5 A Ammonium persulfate Total 18 A Copper sulfate Total boiling point A
〔ハロゲン〕 [Halogen]
塩素 1 0 0 1 7 0 A 塩素水 飽和 A  Chlorine 1 0 0 1 7 0 A Chlorine water Saturation A
1 ) A : まったく浸食されない 1) A: Not eroded at all
B : ほとんど浸食されない 0951 B: hardly eroded 0951
(表 3) 化学薬品名 温度 耐食性 (Table 3) Chemical name Temperature Corrosion resistance
(重量%) (°C)  (% By weight) (° C)
〔有機化合物〕 (Organic compound)
アセ トン 1 0 0 沸点 A エチルアルコール 9 5 沸点 A 四塩化炭素 1 0 0 沸点 A 四塩化エタン 1 0 0 沸点 A クロ口ホルム 1 0 0 沸点 A ケロシン 1 0 0 沸点 A ダウサーム 2) 1 0 0 1 7 0 A ベンゼン 1 0 0 沸点 A ベンゼン (塩素飽和) 1 0 0 6 0 A ベンジルクロライ ド 1 0 0 1 7 0 A メチルアルコール 1 0 0 沸点 A モノ クロルベンゼン 1 0 0 沸点 A Acetone 1 0 0 Boiling point A Ethyl alcohol 9 5 Boiling point A Carbon tetrachloride 100 0 Boiling point A Ethyl tetrachloride 100 0 Boiling point A Cloth form 1 0 0 Boiling point A Kerosene 1 0 0 Boiling point A Dowtherm 2) 7 0 A benzene 1 0 0 Boiling point A Benzene (saturated with chlorine) 1 0 0 6 0 A Benzyl chloride 1 0 0 1 7 0 A Methyl alcohol 1 0 0 Boiling point A Monochlorobenzene 1 0 0 Boiling point A
1 ) A : まったく浸食されない 1) A: Not eroded at all
B : ほとんど浸食されない  B: hardly eroded
2 ) ダウケミカル社製の熱媒体 この発光発熱体用球体は上記のような不浸透性黒鉛からなるので、 以 下のような優れた特性を有する。 2) Heat medium manufactured by Dow Chemical Since this luminescent heating element sphere is made of the above-described impervious graphite, it has the following excellent characteristics.
( 1 ) 前記有害物質等の化学物質により劣化しにくい。  (1) It is hardly deteriorated by chemical substances such as the harmful substances.
( 2 ) 雰囲気中の酸素や前記廃棄物等が分解して生成した酸素と反応し にくいため劣化しにく く、 また、 一酸化炭素や二酸化炭素を発生するこ とがほとんどない。  (2) It is difficult to react with oxygen in the atmosphere or oxygen generated by the decomposition of the waste and the like, so that it hardly deteriorates, and almost no carbon monoxide or carbon dioxide is generated.
( 3 ) 強度が高いため、 摩耗が少なく耐久性に優れる。  (3) High strength, low wear and excellent durability.
( 4 ) 細孔が少ないため、 前記有害物質等を吸着しにくい。 また、 気体 等をほとんど吸着していないので、 高温下で吸着ガスを発することが極 めて少ない。  (4) Since there are few pores, it is difficult to adsorb the harmful substances and the like. Also, since it hardly adsorbs gases, it emits very little adsorbed gas at high temperatures.
( 5 ) 電気及び熱の伝導性に優れている。  (5) Excellent electrical and thermal conductivity.
( 6 ) 温度の急激な変化による衝撃に強い。  (6) Resistant to shocks caused by sudden changes in temperature.
本実施形態の発光発熱体用球体は、 空気中でも問題なく使用可能であ るが、 真空状態や無酸素状態において使用すれば、 発光発熱体用球体が 酸化劣化しにくいので使用条件としては好ましい。 なお、 詳細は下記の 発光発熱体の実施形態の項において述べる。  Although the luminous element sphere of the present embodiment can be used in air without any problem, it is preferable to use it in a vacuum state or an oxygen-free state, since the luminous element is hardly oxidized and deteriorated. The details will be described in the section of the embodiment of the luminescent heating element below.
(発光発熱体の実施形態)  (Embodiment of light emitting heating element)
第一実施形態の発光発熱体用球体の複数を集合させてなる発光発熱体 に電圧を印加して、 光及び熱を生じさせる方法を図面を参照しながら説 明する。  A method for generating light and heat by applying a voltage to a light emitting heating element formed by assembling a plurality of light emitting heating element spheres of the first embodiment will be described with reference to the drawings.
第 1図は、 発光発熱体用球体 1の複数を集合させてなる発光発熱体 H に、 電圧を印加する様子を示す概念図である。 また、 第 2図の ( a ) は、 複数の発光発熱体用球体 1が相互に点接触をしている様子を示す概念図 であり、 (b ) は、 その接触部分を拡大した概念図である。  FIG. 1 is a conceptual diagram showing a state in which a voltage is applied to a light emitting heating element H formed by assembling a plurality of light emitting heating element spheres 1. FIG. 2 (a) is a conceptual diagram showing a plurality of light emitting heating element spheres 1 in point contact with each other, and FIG. 2 (b) is a conceptual diagram in which the contact portion is enlarged. is there.
—対の板状の電極 E , Eの間に、 発光発熱体 Hを構成する複数の発光 発熱体用球体 1を介装する。 なお、 電極 Eには、 カーボン電極が好まし く使用される。 発光発熱体用球体 1は球形であるので、 各発光発熱体用 球体 1は相互に点接触をしている。 —A plurality of light emitting heating element spheres 1 constituting the light emitting heating element H are interposed between the pair of plate-shaped electrodes E 1 and E 2. The electrode E is preferably a carbon electrode. Often used. Since the luminescent heating element spheres 1 are spherical, the luminescent heating element spheres 1 are in point contact with each other.
電極 E , Eには、 図示しない電源が接続されている。 そして、 カーボ ン電極 E, Eに約 2 0 0 Vの電圧を印加すると、 隣接する発光発熱体用 球体 1の間に放電が生じ、 該放電は全ての発光発熱体用球体 1において 行われるようになる。  A power source (not shown) is connected to the electrodes E 1 and E 2. Then, when a voltage of about 200 V is applied to the carbon electrodes E, E, a discharge is generated between the adjacent spheres 1 for the light emitting heating element, and the discharge is performed in all the spheres 1 for the light emitting heating element. become.
放電が生じる仕組みを、 第 2図を参照して詳細に説明する。  The mechanism by which discharge occurs is described in detail with reference to FIG.
発光発熱体用球体 1は球形であるので、 上述のようにその接触形態は 点接触となっている。 ただし、 発光発熱体用球体 1の表面は、 ミクロ的 に見れば小さい凹凸を有しているので、 前記接触部分においては、 ミク 口な凸部同志が接触している接触点と、 間隙部とが存在する。 そこに電 圧を印加すると、 前記接触点を通じて通電が起こるが、 発光発熱体用球 体 1同志が接触している面積は小さく、 大電流を通電することはできな いため、 前記間隙部において放電が起こり火花 Sが発生する。 したがつ て、 発光発熱体用球体 1同志が線接触や面接触をしていて、 接触してい る面積が大きいと、 多くの電流が通電してしまうため、 前記放電の効率 が低下する。  Since the light emitting heating element sphere 1 is spherical, the contact form is point contact as described above. However, since the surface of the luminescent heating element sphere 1 has small irregularities when viewed microscopically, in the contact portion, the contact point where the convex portions are in contact with each other, and the gap portion Exists. When a voltage is applied thereto, energization occurs through the contact points.However, the area where the light emitting heating element spheres 1 are in contact with each other is small, and a large current cannot be applied. Occurs and a spark S occurs. Therefore, if the luminescent heating element spheres 1 are in line contact or surface contact with each other and the contacting area is large, a large amount of current flows, and the discharge efficiency is reduced.
この放電部分 (火花 S ) の温度は約 3 0 0 0 °Cであり、 電圧を印加し てから数十秒という短時間で、 発光発熱体 Hは約 3 0 0 0 °Cの高温に安 定する。 放電が安定して生じるようになれば、 印加する電圧は 3 0 V程 度の低電圧 (電流は 3 0 0〜4 0 0 A ) で十分である。 なお、 印加する 電圧の程度により、 得られる温度を調節することが可能であるので、 所 望により印加する電圧の程度を変化させてもよい。  The temperature of this discharge part (spark S) is about 300 ° C., and the light-emitting heating element H can be cooled to a high temperature of about 300 ° C. within a few tens of seconds after the voltage is applied. Set. If the discharge is stable, a low voltage of about 30 V (current of 300 to 400 A) is sufficient. Note that the temperature obtained can be adjusted by the degree of the applied voltage. Therefore, the degree of the applied voltage may be changed as desired.
例えば、 最初に印加する電圧を 4 0 0〜5 0 0 Vとすれば、 約 5 0 0 0 °Cの高温を得ることも可能である。 約 5 0 0 0 °Cにおいては、 ほとん ど全てのものが分解され、 一般の焼却炉の残留物である灰までも分解す ることができる上、 残留物がまったくない。 また、 分解速度が速いので 大量の廃棄物をコンスタントに分解し続けることができる。 なお、 一旦 約 5 0 0 0 °Cとなった後は、 電圧は 3 0 V程度で十分である。 For example, if the initially applied voltage is between 400 and 500 V, it is possible to obtain a high temperature of about 500 ° C. At about 500 ° C, almost everything is decomposed and even ash, which is the residue of general incinerators And there is no residue at all. In addition, since the decomposition rate is high, a large amount of waste can be continuously decomposed. Note that once the temperature reaches about 500 ° C, a voltage of about 30 V is sufficient.
発光発熱体 Hを前記廃棄物等の処理装置 (熱分解炉) に適用する場合 は、 温度が約 3 0 0 0 °Cに安定したら、 発光発熱体 Hに前記廃棄物等を 接触させる。 厳密には、 前記放電部分 (火花 S ) に前記廃棄物等が接触 する状態にする。 このことにより前記廃棄物等は約 3 0 0 0 °Cの高温に 加熱されて、 ダイォキシン等の前記有害物質を発生させることなく、 無 害な低分子量物質に熱分解される。  When the luminous heating element H is applied to the waste treatment device (pyrolysis furnace), when the temperature is stabilized at about 300 ° C., the luminous heating element H is brought into contact with the waste. Strictly speaking, the waste is brought into contact with the discharge portion (spark S). As a result, the waste and the like are heated to a high temperature of about 300 ° C. and thermally decomposed into harmless low-molecular-weight substances without generating the harmful substances such as dioxin.
また、 発光発熱体 Hを、 焼却炉から排出された前記有害物質を含有す る排ガスや灰を熱分解処理する装置に適用する場合は、 前記排ガス又は 前記灰を発光発熱体 H (厳密には、 前記放電部分 (火花 S ) ) に接触さ せる。 このことにより前記排ガス又は前記灰は約 3 0 0 0 °Cの高温に加 熱されて、 含有する前記有害物質は無害な低分子量物質に熱分解される なお、 発光発熱体 Hを、 焼却炉から排出された前記有害物質を含有する 排ガスを熱分解処理する装置 (排ガス用熱分解炉) に適用した例を、 使 用例として後に詳述する。  When the luminescent heating element H is applied to an apparatus for thermally decomposing exhaust gas or ash containing the harmful substance discharged from an incinerator, the exhaust gas or the ash is converted to the luminescent heating element H (strictly speaking). And the discharge portion (spark S)). As a result, the exhaust gas or the ash is heated to a high temperature of about 300 ° C., and the contained harmful substances are thermally decomposed into harmless low molecular weight substances. An example in which the present invention is applied to an apparatus for thermally decomposing exhaust gas containing the harmful substances discharged from a waste gas (pyrolysis furnace for exhaust gas) will be described in detail later as a usage example.
発熱と共に、 前記放電により特異な強い光も生じる。 該光は、 ダイォ キシン等の前記有害物質の熱分解において、 その分解反応を促進してい るものと考えられる。 そして、 特にダイォキシンの熱分解を促進する作 用が高いと考えられる。  Along with the heat generation, the discharge also produces peculiar intense light. It is considered that the light accelerates the decomposition reaction in the thermal decomposition of the harmful substance such as dioxin. In particular, the effect of promoting the thermal decomposition of dioxin is considered to be high.
なお、 前記放電部分の温度は 3 0 0 0 °C程度の高温であるが、 そこか ら十数 c m離れた位置の温度は約 2 0 0 °C以下である。 また、 約 5 0 0 0 °Cの高温とした場合でも、 2 0〜3 0 c m程離れた位置では、 温度は 急激に低くなっている。  The temperature of the discharge portion is as high as about 300 ° C., but the temperature at a position distant from the area by more than 10 cm is about 200 ° C. or less. In addition, even when the temperature is as high as about 500 ° C., the temperature drops abruptly at a position about 20 to 30 cm away.
したがって、 熱分解により生成した低分子量物質は、 約 3 0 0 0 °Cか ら約 2 0 0 °C以下に急冷されることとなる。 徐冷された場合は、 ダイォ キシンが生成しやすい温度に前記低分子量物質が置かれる時間が長くな つて、 冷却中にダイォキシンが再生成されることがあるが、 本実施形態 の発光発熱体 Hを使用した場合には、 上記のように前記低分子量物質が 急冷されるために、 ダイォキシンが再生成される可能性がほとんどない c 本実施形態の発光発熱体 Hは、 空気中でも問題なく使用可能であるが、 真空状態や無酸素状態において使用すれば、 発光発熱体用球体 1が酸化 劣化しにくいので使用条件としては好ましい。 Therefore, the low molecular weight material generated by pyrolysis is It will be rapidly cooled to about 200 ° C or less. In the case of slow cooling, the time period during which the low-molecular-weight substance is placed at a temperature at which dioxin is likely to be generated is prolonged, and dioxin may be regenerated during cooling. when using, the as described above in order to lower molecular weight material is rapidly cooled, the light emitting heating elements H possibilities little c present embodiment dioxin is regenerated, available without problems in air However, when used in a vacuum state or an oxygen-free state, the luminescent heating element sphere 1 is less likely to be oxidized and deteriorated, which is preferable as a use condition.
発光発熱体用球体 1が酸化劣化することを低減できれば、 発光発熱体 用球体 1が変形して放電の効率が低下するということが起こりにくいの で、 発光発熱体用球体 1を長期間にわたって使用することが可能である 例えば、 発光発熱体用球体 1が真球状であった場合は、 放電の効率が非 常に良好であるが、 酸化劣化により変形すると、 放電の効率が低下して しまう。  If the luminous heating element sphere 1 can be prevented from being oxidized and deteriorated, it is unlikely that the luminous heating element sphere 1 is deformed and the discharge efficiency is reduced, so the luminous heating element sphere 1 is used for a long period of time. For example, in the case where the luminescent heating element sphere 1 is a true sphere, the discharge efficiency is very good, but when it is deformed due to oxidative deterioration, the discharge efficiency is reduced.
特に、 真空状態下では放電の効率が良好で、 高温が得られやすいので、 少ない電力で高温を得ることができて、 高温を得るためのコス卜が安価 であるという効果もある。 さらに、 真空状態下では分子の存在密度が低 いので、 分解された分子同士の再結合により新たな化学物質が生成しに くいという利点がある。  In particular, since the discharge efficiency is good and a high temperature is easily obtained in a vacuum state, the high temperature can be obtained with a small amount of power, and there is also an effect that the cost for obtaining the high temperature is inexpensive. Furthermore, since the existence density of molecules is low under a vacuum, there is an advantage that it is difficult to generate new chemical substances by recombining decomposed molecules.
なお、 前述の無酸素状態とは、 酸素濃度が空気中の酸素濃度以下の状 態を意味している。 酸素濃度は低いほど好ましいが、 空気中の酸素濃度 以下であれば問題ない。 酸素濃度が空気中の酸素濃度を越える値になる と、 発光発熱体用球体 1が酸化劣化しゃすくなる。  The aforementioned anoxic state means a state where the oxygen concentration is equal to or lower than the oxygen concentration in the air. The lower the oxygen concentration, the better, but there is no problem if the oxygen concentration is lower than the oxygen concentration in the air. When the oxygen concentration exceeds the oxygen concentration in the air, the luminescent heating element sphere 1 becomes oxidatively deteriorated.
また、 前述の真空状態とは、 真空度が大気圧未満である状態を意味し ている。 上記の酸素濃度の場合と同様の理由、 及び上記のように放電の 効率が高まることから、 真空度は高いほど好ましい。 ただし、 真空度は 中真空 ( 1 0— 2 P a以上 1 0 P a未満) で十分であり、 低真空 ( 1 0 P a以上大気圧未满) でも差し支えない。 Further, the above-mentioned vacuum state means a state where the degree of vacuum is lower than the atmospheric pressure. The higher the degree of vacuum, the more preferable because of the same reason as in the case of the oxygen concentration described above and the higher discharge efficiency as described above. However, the degree of vacuum is At medium vacuum (less than 1 0 P a 1 0- 2 P a higher) is sufficient, no problem even low vacuum (1 0 P a higher atmospheric pressure non满).
前記廃棄物等や前記排ガス等は、 発光発熱体 Hと直接接触させて熱分 解してもよいし、 容器や配管内に配した状態で外部から間接的に加熱し て熱分解してもよい。 直接接触させると、 前記廃棄物等や前記排ガス等 は 3 0 0 0 °C程度の高温に加熱されるので、 ほぼ完全に熱分解すること が可能である。  The waste or the like or the exhaust gas may be thermally decomposed by directly contacting the luminescent heating element H, or may be thermally decomposed by being indirectly heated from the outside while being disposed in a container or piping. Good. When brought into direct contact, the waste and the exhaust gas are heated to a high temperature of about 300 ° C., so that they can be almost completely thermally decomposed.
間接的に加熱した場合は、 前記廃棄物等や前記排ガス等と発光発熱体 Hとが接触することがないので、 前記廃棄物等や前記排ガス等に由来す る前記有害物質により、 発光発熱体用球体 1が腐食したり劣化したりす ることがなく、 長期間の使用が可能であるという利点がある。  In the case of indirect heating, the waste or the like or the exhaust gas or the like does not come into contact with the luminescent heating element H. There is an advantage that the sphere for use 1 does not corrode or deteriorate and can be used for a long period of time.
また、 前記廃棄物等や前記排ガス等と発光発熱体 Hとを分離したので、 発光発熱体 Hを高い無酸素状態下又は高い真空状態下に置く ことが可能 である。 よって、 発光発熱体用球体 1が酸化劣化しにくいので、 発光発 熱体用球体 1をより長期間にわたって使用することが可能である。 また、 高い真空状態下に置くことができれば、 放電の効率がより良好で、 より 高温が得られやすいので、 より少ない電力で高温を得ることができて、 高温を得るためのコス卜がより安価となる。  Further, since the light emitting heating element H is separated from the waste or the like, the exhaust gas, or the like, the light emitting heating element H can be placed under a high oxygen-free state or a high vacuum state. Therefore, since the luminous body 1 is hardly oxidized and deteriorated, the luminous body 1 can be used for a longer period of time. In addition, if the device can be placed under a high vacuum, the discharge efficiency is better and a higher temperature can be easily obtained, so that a higher temperature can be obtained with less power and the cost for obtaining the higher temperature is lower. Becomes
(発光発熱体用球体の第二実施形態)  (Second Embodiment of Light Emitting Heating Element)
使用する原料以外は第一実施形態と全く同様であるので、 同様の部分 の説明は省略し、 相違点のみ説明する。  Except for the raw materials to be used, it is completely the same as the first embodiment, so the description of the same parts will be omitted, and only the differences will be described.
第一実施形態におけるアクリル繊維の代わりにグラフアイ 卜粉末 (固 定炭素 9 9 . 5 %, 平均粒径 4 mのもの) を使用した以外は、 第一実 施形態と全く同様にして、 発光発熱体用球体を製造した。 なお、 グラフ アイ ト粉末は、 力一ボンブラック粉, コークス, 備長炭等の木炭の微粉, 又はこれらのうちの 2種以上の混合物でもよい。 こうして得られた発光発熱体用球体は、 第一実施形態の発光発熱体用 球体と同様の優れた特性を有していた。 Except for using graphite powder (fixed carbon: 99.5%, average particle size: 4 m) instead of the acrylic fiber in the first embodiment, luminescence was performed in exactly the same manner as in the first embodiment. A sphere for a heating element was manufactured. The graphite powder may be charcoal black powder, fine powder of charcoal such as coke or bincho charcoal, or a mixture of two or more of these. The light emitting heating element sphere thus obtained had the same excellent properties as the light emitting heating element sphere of the first embodiment.
なお、 本実施形態の発光発熱体用球体に関しても、 第一実施形態の発 光発熱体用球体と同様に、 発光発熱体を構成して光及び熱を発生させる ことができる。 その方法は、 第一実施形態の発光発熱体用球体の場合 Note that, similarly to the light emitting heating element sphere of the first embodiment, the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat. The method is based on the case of the luminescent heating element sphere of the first embodiment.
(発光発熱体の実施形態の項に記載) と同様であるので、 その説明は省 略する。 Since it is the same as (described in the section of the embodiment of the light emitting heating element), the description thereof is omitted.
(発光発熱体用球体の第三実施形態)  (Third Embodiment of Light-Emitting Heating Sphere)
使用する原料以外は第一実施形態と全く同様であるので、 同様の部分 の説明は省略し、 相違点のみ説明する。  Except for the raw materials to be used, it is completely the same as the first embodiment, so the description of the same parts will be omitted, and only the differences will be described.
フヱノール系樹脂 5 5重量部と、 グラフアイ 卜粉末 (固定炭素 9 9 . 5 % , 平均粒径 4 のもの) 4 0重量部と、 炭素繊維 5重量部とを混 合する。  Mix 55 parts by weight of phenolic resin, 40 parts by weight of graphite powder (99.5% of fixed carbon, average particle size 4) and 5 parts by weight of carbon fiber.
なお、 フヱノール系樹脂の代わりに、 ポリジビニルベンゼン樹脂を用 いてもよい。 また、 グラフアイ ト粉末は、 カーボンブラック粉, コ一ク ス, 備長炭等の木炭の微粉, アクリル繊維, 動植物繊維, 又はこれらの うちの 2種以上の混合物でもよい。 さらに、 炭素繊維の代わりに、 酸化 物系繊維, 炭化物系繊維, 窒化物系繊維, 及びホウ素系繊維のうち少な く とも 1種を用いてもよい。  Note that a polydivinylbenzene resin may be used instead of the phenol resin. In addition, the graphite powder may be carbon black powder, cox, charcoal fine powder such as bincho charcoal, acrylic fiber, animal or plant fiber, or a mixture of two or more of these. Further, at least one of oxide-based fibers, carbide-based fibers, nitride-based fibers, and boron-based fibers may be used instead of carbon fibers.
フエノール系樹脂, グラフアイ ト粉末, 炭素繊維の混合物に第一実施 形態と同様の操作を施して、 高密度で細孔が少なぃ不浸透性黒鉛からな る球形の発光発熱体用球体を製造した。  A mixture of phenolic resin, graphite powder, and carbon fiber is subjected to the same operation as in the first embodiment to produce a spherical luminescent heating element sphere made of high-density, small-pore, impervious graphite. did.
こうして得られた発光発熱体用球体は、 第一実施形態の発光発熱体用 球体と同様の優れた特性を有することに加えて、 炭素繊維の添加により 強度がより優れている。  The sphere for a luminous element thus obtained has the same excellent properties as the sphere for a luminous element of the first embodiment, and also has a higher strength due to the addition of carbon fibers.
なお、 フ ノール系樹脂の添加量は 1 0〜6 0重量部、 グラフアイ ト 粉末は 3 0〜8 9重量部、 炭素繊維は 1〜 1 0重量部であることが好ま しく、 この範囲内の組成で様々な特性の発光発熱体用球体を製造するこ とが可能である。 The amount of phenolic resin added was 10 to 60 parts by weight, and The powder is preferably 30 to 89 parts by weight, and the carbon fiber is preferably 1 to 10 parts by weight, and it is possible to produce spheres for luminescent heating elements having various characteristics with a composition within this range. .
フエノール系樹脂が 6 0重量部を越えると、 第一実施形態において前 記した不都合が生じる場合がある。 また、 1 0重量部未满であると、 フ ェノール系樹脂とグラフアイ 卜粉末とを一体化して、 成形物とすること が困難になる。 上記のような問題点がより確実に発生しないようにする ためには、 フヱノール系樹脂の添加量は、 2 0〜5 5重量部とすること カ^ より好ましい。 ただし、 フヱノール系樹脂はグラフアイ 卜粉末を固 めるのに必要な量で十分であり、 耐熱衝撃性を考慮すると、 より少量の 方が好ましい。  If the phenolic resin exceeds 60 parts by weight, the above-mentioned inconvenience may occur in the first embodiment. If the amount is less than 10 parts by weight, it becomes difficult to integrate the phenolic resin and the graphite powder into a molded product. In order to more reliably prevent the above problems from occurring, the amount of the phenolic resin to be added is preferably 20 to 55 parts by weight. However, the amount of the phenolic resin necessary for solidifying the graphite powder is sufficient, and a smaller amount is preferable in consideration of thermal shock resistance.
また、 炭素繊維の添加量が 1重量部未満であると、 強度を向上させる 効果が小さく、 1 0重量部を越えると、 得られた発光発熱体用球体にク ラックが生じやすくなる傾向がある。 強度とクラックの生じ難さとのバ ランスから、 炭素繊維の添加量は 3〜7重量部とすることが、 より好ま しい。  If the amount of carbon fiber added is less than 1 part by weight, the effect of improving the strength is small, and if it exceeds 10 parts by weight, cracks tend to occur in the obtained luminescent heating element sphere. . In consideration of the balance between the strength and the difficulty of crack generation, it is more preferable to add the carbon fiber in an amount of 3 to 7 parts by weight.
なお、 本実施形態の発光発熱体用球体に関しても、 第一実施形態の発 光発熱体用球体と同様に、 発光発熱体を構成して光及び熱を発生させる ことができる。 その方法は、 第一実施形態の発光発熱体用球体の場合 (発光発熱体の実施形態の項に記載) と同様であるので、 その説明は省 略する。  Note that, similarly to the light emitting heating element sphere of the first embodiment, the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat. The method is the same as in the case of the light emitting heating element sphere of the first embodiment (described in the section of the light emitting heating element embodiment), and the description thereof will be omitted.
(発光発熱体用球体の第四実施形態)  (Fourth embodiment of light emitting heating element sphere)
使用する原料以外は第一実施形態と全く同様であるので、 同様の部分 の説明は省略し、 相違点のみ説明する。  Except for the raw materials to be used, it is completely the same as the first embodiment, so the description of the same parts will be omitted, and only the differences will be described.
フ ノール系樹脂 5 5重量部と、 グラフアイ 卜粉末 (固定炭素 9 9 . 5 %, 平均粒径 4 のもの) 4 0重量部と、 タングステン粉末 (平均 粒径 1 . 0 μ m程度, 嵩比重 (無荷重) 4 . 2 2 , 純度 9 9 . 9 %以 上) 5重量部とを混合する。 なお、 フヱノール系樹脂の代わりに、 ポリ ジビニルベンゼン樹脂を用いてもよい。 また、 グラフアイ ト粉末は、 力 一ボンブラック粉, コ一クス, 備長炭等の木炭の微粉, アクリル繊維, 動植物繊維, 又はこれらのうちの 2種以上の混合物でもよい。 さらに、 タングステン粉末は、 チタン粉末 (平均粒径 1 . 0 // m程度, 嵩比重 (無荷重) 1 . 5〜 2 . 0, 純度 9 9 · 9 %以上) 、 又は、 前記夕ング ステン粉末と前記チタン粉末との混合物でもよい。 55 parts by weight of phenolic resin, 40 parts by weight of graphite powder (fixed carbon 99.5%, average particle size 4) and 40 parts by weight of tungsten powder (average Particle size: about 1.0 μm, bulk specific gravity (no load): 4.22, purity: 99.9% or more) 5 parts by weight. Note that a polydivinylbenzene resin may be used instead of the phenol resin. The graphite powder may be charcoal black powder, coke, fine powder of charcoal such as bincho charcoal, acrylic fiber, animal or plant fiber, or a mixture of two or more of these. Further, the tungsten powder may be titanium powder (average particle size of about 1.0 // m, bulk specific gravity (no load) of 1.5 to 2.0, purity of 99.9% or more) or the above-mentioned stainless steel powder And a mixture of the above-mentioned titanium powder.
フエノール系樹脂, グラフアイ 卜粉末, タングステン粉末の混合物に 第一実施形態と同様の操作を施して、 高密度で細孔が少ない不浸透性黒 鉛からなる球形の発光発熱体用球体を製造した。 ただし、 第一実施形態 の場合とは異なり、 本実施形態の発光発熱体用球体はタングステンを含 有しており、 また、 黒鉛化の最終工程には不活性ガス中、 約 3 0 0 0 °C での熱処理工程を有している。  A mixture of phenolic resin, graphite powder, and tungsten powder was subjected to the same operation as in the first embodiment to produce a spherical luminescent heating element sphere made of high-density, small-pore, impervious graphite. . However, unlike the case of the first embodiment, the light emitting heating element sphere of the present embodiment contains tungsten, and the final step of graphitization is performed in an inert gas at about 300 ° C. C has a heat treatment step.
タングステンは約 3 0 0 0 °Cでの熱処理により一炭化二タングステン (W 2 C、 式量 3 7 9 . 7 1、 密度 1 7 . 2 g Z c m 3 、 モース硬度 9、 電気抵抗率 8 1 Ω c m ( 2 5 °C ) ) となっており、 また、 チタンが 含有される場合には炭化チタン (T i C、 式量 5 9 . 9 0、 融点 3 1 4 0 ± 9 0 °C、 沸点 4 3 0 0 °C、 密度 4 . 9 4 g Z c m 3 、 電気抵抗率 1 9 μ Ω c m (室温) ) となっている。 なお、 一炭化二夕ングステン は 2 4 0 0 °C以上で加熱された場合は、 その結晶形は安定な /3型となる c チタンは、 融点が 1 6 7 5 °C、 沸点が 3 2 6 2 °C、 密度が 4 . 5 4 g / c m 3 である力く、 炭化チタンとなることによって、 融点, 沸点が大幅 に上昇し、 密度も高密度となる。 なお、 タングステンの融点は 3 3 8 7 °C、 沸点は 5 9 6 2 °Cである。 Tungsten is treated with ditungsten monocarbide (W 2 C, formula weight 37.9.71, density 17.2 g Z cm 3 , Mohs hardness 9, electrical resistivity 8 1 by heat treatment at about 300 ° C. Ωcm (25 ° C)), and when titanium is contained, titanium carbide (TiC, formula weight 59.90, melting point 3140 ± 90 ° C, It has a boiling point of 4300 ° C, a density of 4.94 g Z cm 3 , and an electrical resistivity of 19 μΩcm (room temperature). In addition, when titanium monocarbide is heated at 240 ° C. or higher, its crystal form becomes a stable / 3 type.c titanium has a melting point of 1675 ° C. and a boiling point of 32 With the strength of 62 ° C and the density of 4.54 g / cm 3 , the melting point and boiling point are greatly increased and the density is also increased by forming titanium carbide. The melting point of tungsten is 3387 ° C and the boiling point is 5962 ° C.
このような一炭化二夕ングステン及び炭化チタンの少なく とも一方を 含有する不浸透性黒鉛からなる発光発熱体用球体は、 第一実施形態の項 に前記した ( 1 ) 〜 (6 ) のような特徴を有することに加えて、 第一実 施形態の一炭化二夕ングステン及び炭化チタンを含有しないものと比較 して、 耐食性、 機械的強度 (硬度が高く、 弾性率は 3 1 0 0 0 0〜4 4 0 0 0 0 MP aである) 、 耐熱性 ( 3 0 0 0 °C以上に耐える) がさらに 優れている。 また、 電気通電性に優れ (電気抵抗率は 7 O /z QZcm以 下である。 本実施形態の場合は、 1 0 Ω/ cmである。 ) 、 放電の効 率が良好である。 At least one of such tungsten carbide and titanium carbide is used. The sphere for a light emitting heating element made of impregnated graphite contained therein has the features described in the items of the first embodiment as described in (1) to (6) above. Corrosion resistance and mechanical strength (higher hardness, elastic modulus is 31000 to 44000 MPa) and heat resistance (compared to those not containing Nitan stainless steel and titanium carbide) (More than 300 ° C). Further, the electric conductivity is excellent (the electric resistivity is 70 O / z QZcm or less. In the case of the present embodiment, it is 10 Ω / cm), and the discharge efficiency is good.
なお、 不活性ガス中、 約 3 0 0 0。Cでの熱処理は、 下記のような利点 がある。  Approximately 300 in inert gas. Heat treatment with C has the following advantages.
(a) 熱処理後に、 発光発熱体用球体に光輝熱処理 (発光発熱体用球 体の表面を光沢を有する状態にする処理) 等の仕上げ処理や仕上げ加工 を施す必要がない。  (a) After the heat treatment, it is not necessary to perform a finishing treatment such as a brilliant heat treatment (a treatment for making the surface of the sphere for the luminous heating element glossy) or the like.
(b) 使用時に発光発熱体用球体の変形が小さい。  (b) The sphere for the light emitting heating element is small in use.
( c ) 無公害である。  (c) Pollution-free.
なお、 フヱノール系樹脂の添加量は 1 0〜6 0重量部、 グラフアイ ト 粉末は 2 0〜8 9重量部、 タングステン粉末は 1~2 0重量部であるこ とが好ましい。 フエノール系樹脂が上記の範囲を外れると、 第三実施形 態において前記したような不都合が生じる場合がある。 なお、 タングス テン粉末を 1 0重量部を越えて添加した場合には、 フヱノール系樹脂, グラフアイ ト粉末, 及びタングステン粉末を一体化して成形物とするた めに、 フヱノール系樹脂の添加量は 2 0〜6 0重量部とすることが好ま しい。  The amount of the phenolic resin is preferably 10 to 60 parts by weight, the amount of the graphite powder is preferably 20 to 89 parts by weight, and the amount of the tungsten powder is preferably 1 to 20 parts by weight. If the phenolic resin is out of the above range, the above-described inconvenience may occur in the third embodiment. If the tungsten powder is added in an amount exceeding 10 parts by weight, the amount of the phenolic resin added must be reduced to integrate the phenolic resin, graphite powder, and tungsten powder into a molded product. The content is preferably 20 to 60 parts by weight.
また、 タングステン粉末の添加量が 1重量部未満であると、 機械物性, 耐食性, 耐熱性を向上させる効果が小さく、 2 0重量部を越えると、 逆 に前記機械物性が低下する方向となって、 発光発熱体用球体にクラック が生じやすくなる傾向となり、 また、 発光発熱体用球体の加工性が低下 する傾向となる等の不都合が生じる場合がある。 機械物性, 耐食性, 耐 熱性を十分に向上させ、 且つ前記のクラックゃ加工性の問題が確実に生 じないようにするためには、 タングステン粉末の添加量は、 5〜 1 0重 量部とすること力^ より好ましい。 On the other hand, if the added amount of the tungsten powder is less than 1 part by weight, the effect of improving mechanical properties, corrosion resistance and heat resistance is small, and if it exceeds 20 parts by weight, the mechanical properties tend to decrease. Cracks on the sphere for the luminous heating element In some cases, inconveniences may occur, such as the tendency that the sphere for the light emitting heating element tends to deteriorate. In order to sufficiently improve mechanical properties, corrosion resistance, and heat resistance, and to ensure that the above-mentioned problems of cracking and workability do not occur, the amount of tungsten powder added should be 5 to 10 parts by weight. The power to do is more preferable.
ただし、 上記のクラックや加工性の問題は、 発光発熱体用球体が、 2 つの半球形を一体化し球形としたものである場合に発生しやすく、 初め から原料を球形に成形したものである場合は発生しにくい。 したがって、 穴や凹部等を有する球形を原料から成形し、 夕ングステン粉末をその穴 や凹部等から注入して発光発熱体用球体を製造すれば、 タングステン粉 末の添加量を 1 0重量部超過としても、 上記のような問題点が発生する 可能性が低い。 よって、 タングステン粉末の添加量が 1 0重量部超過 2 0重量部以下である場合には、 上記のような方法を採用することが望ま しい。  However, the above-mentioned cracks and workability problems are likely to occur when the luminescent heating element sphere is formed by integrating two hemispheres into a sphere, and when the raw material is formed into a sphere from the beginning. Is unlikely to occur. Therefore, if a sphere having holes and recesses is molded from the raw material, and the tungsten powder is injected from the holes and recesses to produce spheres for the luminescent heating element, the added amount of tungsten powder exceeds 10 parts by weight. However, it is unlikely that the above problems will occur. Therefore, when the addition amount of the tungsten powder is more than 10 parts by weight and not more than 20 parts by weight, it is desirable to adopt the above method.
なお、 本実施形態の発光発熱体用球体に関しても、 第一実施形態の発 光発熱体用球体と同様に、 発光発熱体を構成して光及び熱を発生させる ことができる。 その方法は、 第一実施形態の発光発熱体用球体の場合 (発光発熱体の実施形態の項に記載) と同様であるので、 その説明は省 略する。  Note that, similarly to the light emitting heating element sphere of the first embodiment, the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat. The method is the same as in the case of the light emitting heating element sphere of the first embodiment (described in the section of the light emitting heating element embodiment), and the description thereof will be omitted.
(発光発熱体用球体の第五実施形態)  (Fifth Embodiment of Light-Emitting Heating Element Sphere)
グラフアイ ト粉末をフェノ一ル系樹脂よりも多量に使用した場合の例 を説明する。 このようにフヱノ一ル系樹脂をバインダ一として使用する と、 硬度が向上するという利点がある。 使用する原料以外は第一実施形 態と全く同様であるので、 同様の部分の説明は省略し、 相違点のみ説明 する。  An example in which the graphite powder is used in a larger amount than the phenolic resin will be described. When the phenolic resin is used as the binder as described above, there is an advantage that the hardness is improved. Except for the raw materials to be used, it is completely the same as the first embodiment, so the description of the same parts will be omitted, and only the differences will be described.
フヱノール系樹脂 2 0重量部と、 グラフアイ ト粉末 (固定炭素 9 9 . 5 %, 平均粒径 4 imのもの) 7 0重量部と、 タングステン粉末 (平均 粒径 1. 0 11程度, 純度9 9. 9 %以上) 1 0重量部とを混合する。 なお、 フヱノール系樹脂の代わりに、 ポリジビニルベンゼン樹脂を用い てもよい。 また、 グラフアイ ト粉末は、 力一ボンブラック粉, コ一クス, 備長炭等の木炭の微粉, アクリル繊維, 動植物繊維, 又はこれらのうち の 2種以上の混合物でもよい。 さらに、 タングステン粉末は、 チタン粉 末、 又は前記夕ングステン粉末と前記チタン粉末との混合物でもよい。 フヱノール系樹脂, グラフアイ ト粉末, 及びタングステン粉末の混合 物に第四実施形態と同様の操作を施して、 高密度で細孔が少ない不浸透 性黒鉛からなる球形の発光発熱体用球体を製造した。 20 parts by weight of phenolic resin and graphite powder (fixed carbon 99. 70% by weight of tungsten powder (average particle size: about 1.011, purity: 99.9% or more) and 10 parts by weight are mixed. Note that a polydivinylbenzene resin may be used instead of the phenol resin. The graphite powder may be charcoal black powder, coke, fine powder of charcoal such as bincho charcoal, acrylic fiber, animal or plant fiber, or a mixture of two or more of these. Further, the tungsten powder may be a titanium powder or a mixture of the tungsten powder and the titanium powder. A mixture of phenolic resin, graphite powder, and tungsten powder is subjected to the same operation as in the fourth embodiment to produce a spherical luminescent heating element sphere made of high-density, small-pore, impervious graphite. did.
このようにして得られた発光発熱体用球体は、 第四実施形態の発光発 熱体用球体と同様の優れた特性を有していて、 その比重は 1. 5〜 1. 8であった。 ただし、 比重 9. O gZ cm3 のタングステン粉末 ( 9 8 MP aの圧力によりプレスしたもの) を使用すると、 発光発熱体用球体 の比重は 2. 6 6〜 2. 7となる。 発光発熱体用球体に不浸透性を保持 させるため、 及び圧力をかけて高密度化するためには、 比重 9. 0 gZ c m3 の夕ングステン粉末を使用することはより好ましい。 The sphere for a luminous element thus obtained has the same excellent properties as the sphere for a luminous element of the fourth embodiment, and the specific gravity was 1.5 to 1.8. . However, when tungsten powder with a specific gravity of 9. O gZ cm 3 (pressed with a pressure of 98 MPa) is used, the specific gravity of the luminescent heating element sphere is 2.66 to 2.7. In order to maintain the impermeability of the luminescent heating element sphere and to increase the density by applying pressure, it is more preferable to use evening stainless powder having a specific gravity of 9.0 gZ cm 3 .
なお、 本実施形態の発光発熱体用球体に関しても、 第一実施形態の発 光発熱体用球体と同様に、 発光発熱体を構成して光及び熱を発生させる ことができる。 その方法は、 第一実施形態の発光発熱体用球体の場合 (発光発熱体の実施形態の項に記載) と同様であるので、 その説明は省 略する。  Note that, similarly to the light emitting heating element sphere of the first embodiment, the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat. The method is the same as in the case of the light emitting heating element sphere of the first embodiment (described in the section of the light emitting heating element embodiment), and the description thereof will be omitted.
(発光発熱体用球体の第六実施形態)  (Sixth Embodiment of Light-Emitting Heating Element Sphere)
使用する原料以外は第一実施形態とほぼ同様であるので、 同様の部分 の説明は省略し、 相違点のみ説明する。  Except for the raw materials to be used, it is almost the same as the first embodiment, so the description of the same parts is omitted, and only the differences will be described.
フエノール系樹脂 2 0重量部と、 ジルコニウム粉末 1 0〜2 0重量部 と、 グラフアイ ト粉末 (固定炭素 9 9 . 5 % , 平均粒径 4 mのもの) 6 0〜 7 0重量部とを混合する。 なお、 フヱノール系樹脂の代わりに、 ポリジビニルベンゼン樹脂を用いてもよい。 また、 グラフアイ ト粉末は、 カーボンブラック粉, コ一クス, 備長炭等の木炭の微粉, アクリル繊維, 動植物繊維, 又はこれらのうちの 2種以上の混合物でもよい。 20 parts by weight of phenolic resin and 10 to 20 parts by weight of zirconium powder And graphite powder (fixed carbon 99.5%, average particle size 4 m) of 60 to 70 parts by weight are mixed. Note that a polydivinylbenzene resin may be used instead of the phenol resin. The graphite powder may be carbon black powder, coke, fine powder of charcoal such as Bincho charcoal, acrylic fiber, animal or plant fiber, or a mixture of two or more of these.
フエノール系樹脂, グラフアイ 卜粉末, ジルコニウム粉末の混合物を、 まず 2 5 0 ~ 3 0 0 °Cに加熱してフヱノール系樹脂を硬化させ、 次に 1 9 0 0 °C (ジルコニウムの融点 1 8 5 7 °C以上) で H I P焼成して、 炭 素とジルコニウムとを反応させ炭化ジルコニウム Z r C (融点 3 5 4 0 °C、 沸点 5 1 0 0 °C、 モース硬度 8〜 9以上) とし、 高密度で細孔の少 ない炭素材とした。 そして、 さらに 3 0 0 0 °Cで H I P焼成して、 不浸 透性黒鉛からなる球形の発光発熱体用球体を製造した。 なお、 添加した 金属がジルコニウムの場合はその融点が 1 8 5 7 °Cであるので、 その融 点以上の 1 9 0 0 °Cで H I P焼成したが、 後述のような他の金属の場合 には炭素と反応させて金属炭化物とするため、 その金属の融点以上の温 度で H 1 P焼成することが好ましい。  The mixture of the phenolic resin, the graphite powder, and the zirconium powder is first heated to 250 to 300 ° C. to cure the phenolic resin, and then heated to 190 ° C. (the melting point of zirconium 18 HIP at 57 ° C or higher) to react carbon and zirconium to form zirconium carbide ZrC (melting point 350 ° C, boiling point 5100 ° C, Mohs hardness 8-9 or more). A carbon material with high density and few pores was used. Then, HIP firing was further performed at 300 ° C. to produce a spherical luminescent heating element sphere made of impervious graphite. If the added metal is zirconium, its melting point is 1857 ° C, so HIP baking was performed at 190 ° C above its melting point. Since H is reacted with carbon to form a metal carbide, it is preferable to perform H 1 P firing at a temperature equal to or higher than the melting point of the metal.
こうして得られた発光発熱体用球体は、 第一実施形態の発光発熱体用 球体と同様の優れた特性を有することに加えて、 ジルコニウム粉末の添 加により発光発熱体用球体の耐熱性がより優れている。  The luminescent heating element sphere thus obtained has the same excellent properties as the luminescent heating element sphere of the first embodiment, and the heat resistance of the luminescent heating element sphere is further enhanced by the addition of zirconium powder. Are better.
なお、 ジルコニウム粉末の添加量が 1 0重量部未満であると、 耐熱性 の大きな向上が期待できず、 また、 2 0重量部を越えると、 第四及び第 五実施形態と同様にクラックが生じやすくなるという問題がある。  If the amount of the zirconium powder is less than 10 parts by weight, a large improvement in heat resistance cannot be expected. If the amount exceeds 20 parts by weight, cracks occur as in the fourth and fifth embodiments. There is a problem that it becomes easier.
また、 ジルコニウム粉末をニオブ粉末 (N b ) , ホウ素粉末 (B ) , タンタル粉末 (T a ) , 又はモリブデン粉末 (M o ) としてもよいし、 これらのうち 2種以上を混合して用いてもよい。 さらに、 これらにタン グステン粉末及びチタン粉末の少なく とも一方を添加してもよい。 それ ぞれの添加量は 1 0〜2 0重量部とし、 これら金属成分は合計 4 0重量 部を越えないものとする。 なお、 グラフアイ ト粉末 (カーボンブラック 粉末) は 4 0重量部以上とし、 バインダーであるフヱノール系樹脂は 2 0重量部程度が好ましい。 The zirconium powder may be niobium powder (Nb), boron powder (B), tantalum powder (T a), or molybdenum powder (Mo), or a mixture of two or more of these. Good. Further, at least one of tungsten powder and titanium powder may be added to these. It The amount of each addition should be 10 to 20 parts by weight, and the total amount of these metal components should not exceed 40 parts by weight. The graphite powder (carbon black powder) is preferably at least 40 parts by weight, and the phenolic resin as a binder is preferably about 20 parts by weight.
なお、 ジルコニウム粉末とニオブ粉末とを併せて使用した場合は、 こ れらが高温で反応し、 その反応生成物は超電導性を有する。 また、 ニォ ブはグラフアイ 卜粉末 (力一ボンブラック粉末) と反応して炭化ニオブ となり、 発光発熱体用球体の耐熱性, 硬度, 及び導電性を向上させる効 果がある。  When zirconium powder and niobium powder are used together, they react at a high temperature, and the reaction product has superconductivity. Niob reacts with graphite powder (Ribbon black powder) to form niobium carbide, which has the effect of improving the heat resistance, hardness, and conductivity of the luminescent heating element sphere.
このような本実施形態の発光発熱体用球体に関しても、 第一実施形態 の発光発熱体用球体と同様に、 発光発熱体を構成して光及び熱を発生さ せることができる。 その方法は、 第一実施形態の発光発熱体用球体の場 合 (発光発熱体の実施形態の項に記載) と同様であるので、 その説明は ¾略" 5 。 o  With regard to the light emitting heating element sphere of the present embodiment, similarly to the light emitting heating element sphere of the first embodiment, the light emitting heating element can be configured to generate light and heat. The method is the same as that of the case of the sphere for the light emitting heating element of the first embodiment (described in the section of the embodiment of the light emitting heating element).
また、 これまで説明してきた各実施形態においては、 原料を金型に入 れて加熱, 加圧し球形に成形した例を説明したが、 原料をカプセルに入 れて加熱, 加圧し棒状に成形した後に、 切削加工して球形としてもよい.: その際には、 原料をカプセルに入れた後、 カプセル内を真空に脱気し加 熱してフヱノール系樹脂を硬化させる。 そして、 温度を 1 9 0 0 °C以上 に上げ、 4 9〜 2 9 4 M P aの圧力で H I P焼成し、 さらに 3 0 0 0 °C で H I P焼成する。  Also, in each of the embodiments described so far, an example was described in which the raw material was placed in a mold and heated and pressed to form a spherical shape. However, the raw material was placed in a capsule and heated and pressed to form a rod shape. Later, it may be cut into a spherical shape. In this case, after the raw materials are put in a capsule, the inside of the capsule is evacuated to vacuum and heated to cure the phenolic resin. Then, the temperature is raised to 900 ° C. or higher, HIP firing is performed at a pressure of 49 to 294 MPa, and HIP firing is performed at 300 ° C.
なお、 3 0 0 0 °Cでの H I P焼成を行う前の段階でも、 非常に高密度 化された炭素材 (炭素の理論密度の 9 0 . 0 %以上の密度を有する炭素 材) となっているので、 この棒状の炭素材を研削加工して球形とすれば、 細孔の少ない発光発熱体用球体として好適に使用することができる。 金型を用いた方法の場合は、 球形への成形工程及び H I P焼成工程の 全く異なる 2つの工程を行う必要があるが、 このようなカプセルを用い た方法であれば、 H I P焼成工程の 1工程のみでよいので、 経済的であ る。 Even before the HIP baking at 300 ° C., the carbon material becomes extremely densified (a carbon material having a density of 90.0% or more of the theoretical density of carbon). Therefore, if the rod-like carbon material is ground into a spherical shape, it can be suitably used as a sphere for a light-emitting heating element having few pores. In the case of a method using a mold, the process of forming into a spherical shape and the HIP firing process Although it is necessary to perform two completely different steps, a method using such a capsule is economical because only one HIP firing step is required.
なお、 カプセルの材質としては、 原料と高温下で反応を起こさないよ うなものであれば特に限定されないが、 通常、 ステンレス、 アルミニゥ ム、 鉄等があげられる。  The material of the capsule is not particularly limited as long as it does not react with the raw materials at high temperatures, but usually, stainless steel, aluminum, iron and the like are used.
(発光発熱体用球体の第七実施形態)  (Seventh Embodiment of Light-Emitting Heating Sphere)
バインダーとしてピッチ (石油ピッチ、 コールタールピッチ、 松根ピ ツチ等) を用いた例を説明する。  An example using pitch (petroleum pitch, coal tar pitch, pine pitch, etc.) as the binder will be described.
グラフアイ ト粉末 (力一ボンブラック粉末でもよい) , ピッチ, 金属 粉末, 及び少量の (最小限の) 溶剤を混合し、 ステンレス、 アルミニゥ ム、 鉄等からなる円柱形のカプセルに装入する (装入量はカプセル容量 の 8 0 V o 1 %程度) 。 該カプセル内を脱気し真空として 1 0 0 0でで 焼成後、 4 9〜 2 9 4 M P aの圧力下 1 9 0 0 °C以上で焼成し、 炭化さ せる。 そしてさらに 3 0 0 0 °Cで黒鉛化し、 球形に加工して、 高密度で 細孔の少な L、不浸透性黒鉛からなる発光発熱体用球体を製造した。 なお、 グラフアイ 卜粉末は 4 0重量部以上である。 そして、 金属粉末 はタングステン粉末, チタン粉末, ジルコニウム粉末, ニオブ粉末, ホ ゥ素粉末, タンタル粉末, 及びモリブデン粉末から選ばれた 1種以上で あり、 合計 1 0〜2 0重量部である。  Mix graphite powder (Ribbon black powder), pitch, metal powder, and a small amount of (minimum) solvent, and charge into a cylindrical capsule made of stainless steel, aluminum, iron, etc. ( The charging amount is about 80 V o 1% of the capsule capacity). The inside of the capsule is evacuated, baked at 1000 in vacuum, and then baked at 190 ° C. or more under a pressure of 49 to 2994 MPa to carbonize. Then, it was further graphitized at 300 ° C. and processed into a sphere to produce a luminescent heating element sphere made of high-density, small-pore L, impervious graphite. The graphite powder is 40 parts by weight or more. The metal powder is at least one selected from tungsten powder, titanium powder, zirconium powder, niobium powder, boron powder, tantalum powder, and molybdenum powder, for a total of 10 to 20 parts by weight.
また、 3 0 0 0 °Cでの黒鉛化を行う前の段階でも、 非常に高密度化さ れた炭素材となっているので、 これを研削加工して球形とすれば、 細孔 の少ない発光発熱体用球体として好適に使用することができる。  Also, even before the graphitization at 300 ° C, the carbon material is extremely densified, so if it is ground to a spherical shape, it will have fewer pores. It can be suitably used as a sphere for a light emitting heating element.
なお、 本実施形態の発光発熱体用球体に関しても、 第一実施形態の発 光発熱体用球体と同様に、 発光発熱体を構成して光及び熱を発生させる ことができる。 その方法は、 第一実施形態の発光発熱体用球体の場合 (発光発熱体の実施形態の項に記載) と同様であるので、 その説明は省 略する。 Note that, similarly to the light emitting heating element sphere of the first embodiment, the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat. The method is based on the case of the luminescent heating element sphere of the first embodiment. Since it is the same as (described in the section of the embodiment of the light emitting heating element), the description thereof is omitted.
(発光発熱体用球体の第八実施形態)  (Eighth Embodiment of Light-Emitting Heating Element Sphere)
上記の第一〜第六実施形態においては、 加圧及び焼成の工程は不活性 ガス中で行ったが、 この不活性ガスを窒素とすれば、 チタンやニオブ等 の添加した金属成分等が窒化するため、 発光発熱体用球体の強度, 硬度, 及び放電に対する耐性をさらに高めることが可能である。  In the above-described first to sixth embodiments, the pressurizing and firing steps are performed in an inert gas. However, if the inert gas is nitrogen, the added metal components such as titanium and niobium are nitrided. Therefore, it is possible to further enhance the strength, hardness, and discharge resistance of the luminescent heating element sphere.
また、 第一〜第七実施形態において製造された発光発熱体用球体を、 窒素雰囲気下 1 9 0 0 ~ 2 0 0 0 °Cで再度焼成することによつても、 同 様の効果を得ることができる。  Further, the same effect can be obtained by firing the sphere for a light emitting heating element manufactured in the first to seventh embodiments again at 900 to 200 ° C. in a nitrogen atmosphere. be able to.
なお、 本実施形態の発光発熱体用球体に関しても、 第一実施形態の発 光発熱体用球体と同様に、 発光発熱体を構成して光及び熱を発生させる ことができる。 その方法は、 第一実施形態の発光発熱体用球体の場合 (発光発熱体の実施形態の項に記載) と同様であるので、 その説明は省 略する。  Note that, similarly to the light emitting heating element sphere of the first embodiment, the light emitting heating element of the present embodiment can also constitute a light emitting heating element to generate light and heat. The method is the same as in the case of the light emitting heating element sphere of the first embodiment (described in the section of the light emitting heating element embodiment), and the description thereof will be omitted.
(使用例)  (Example of use)
本発明に係る発光発熱体用球体、 及び該発光発熱体用球体からなる発 光発熱体を、 焼却炉から排出される排ガスを高温に加熱して、 該排ガス に含有されるダイォキシン等の前記有害物質を熱分解し無害化する排ガ ス用熱分解炉に使用した例を、 図面を参照しながら詳細に説明する。 第 3図は、 排ガス用熱分解炉 6の外観を示す斜視図、 第 4図はその縦 断面図、 第 5図は第 4図の A - A線水平断面図である。 以下の説明にお ける 「上」 、 「下」 、 「前」 、 「後」 、 「左」 、 「右」 等の方向を示す 用語は、 説明の便宜上、 各図面におけるそれぞれの方向を意味するもの める。  The luminous body for a luminous heating element according to the present invention, and the luminous heating element composed of the sphere for a luminous heating element, heat the exhaust gas discharged from an incinerator to a high temperature, and remove the harmful substances such as dioxin contained in the exhaust gas. An example in which the substance is used in an exhaust gas pyrolysis furnace that decomposes and detoxifies substances will be described in detail with reference to the drawings. FIG. 3 is a perspective view showing the appearance of the exhaust gas pyrolysis furnace 6, FIG. 4 is a longitudinal sectional view thereof, and FIG. 5 is a horizontal sectional view taken along line AA of FIG. In the following description, terms indicating directions such as “up”, “down”, “front”, “rear”, “left”, “right” mean respective directions in each drawing for convenience of explanation. I can do it.
なお、 本発明の発光発熱体用球体、 及びその発光発熱体用球体からな る発光発熱体の適用例は、 以下に説明する使用例のみに限定されるもの ではない。 It should be noted that the light emitting heating element sphere of the present invention, and the light emitting heating element sphere. The application examples of the luminescent heating element are not limited to the use examples described below.
内部に加熱室 1 0を備えた排ガス用熱分解炉 6は、 排ガスを加熱室 1 0内に導入する導入口 2 0をその一側面に備えており、 そして、 排ガス が熱分解された分解ガスを加熱室 1 0外に排出する排気口 2 1をその上 面に備えている。 なお、 導入口 2 0は、 セラミ ック製の外管 2 0 aと、 炭素製の内管 2 0 bとからなる 2重構造を有する管から構成されており、 排気口 2 1 も同様に、 セラミ ック製の外管 2 1 aと、 炭素製の内管 2 1 bとからなる 2重構造を有する管から構成されている。  The exhaust gas pyrolysis furnace 6 having a heating chamber 10 therein has an inlet 20 for introducing exhaust gas into the heating chamber 10 on one side thereof, and the decomposition gas into which the exhaust gas is thermally decomposed. An exhaust port 21 is provided on an upper surface of the heating chamber 10 for discharging the gas to the outside of the heating chamber 10. The inlet 20 is composed of a pipe having a double structure consisting of an outer pipe 20a made of ceramic and an inner pipe 20b made of carbon. It is composed of a pipe having a double structure composed of an outer pipe 21a made of ceramic and an inner pipe 21b made of carbon.
排ガス用熱分解炉 6の外壁 1 1は 2層構造となつており、 外層の耐熱 塗料を被覆した鉄板 1 2 と、 内層の耐熱耐火レンガ 1 4とで構成されて いる。 加熱室 1 0内は後述のように 3 0 0 0 °C程度の高温となる力 無 酸素状態又は真空状態であるために熱伝導が少ないので、 外壁 1 1の構 成はこのような簡易なものでも十分である。  The outer wall 11 of the exhaust gas pyrolysis furnace 6 has a two-layer structure, and is composed of an iron plate 12 coated with an outer layer heat-resistant paint and an inner layer heat-resistant refractory brick 14. As described later, the inside of the heating chamber 10 is at a high temperature of about 300 ° C. Since it is in an anoxic state or a vacuum state, heat conduction is low, so the configuration of the outer wall 11 is such a simple structure. Things are enough.
耐熱耐火レンガ 1 4で囲まれた直方体状の空間は、 気密性の加熱室 1 0を形成していて、 導入口 2 0から導入された排ガスが該加熱室 1 0内 において加熱, 熱分解され、 その分解ガスが排気口 2 1から排出される ような構造となっている。 なお、 耐熱耐火レンガ 1 4の目地の部分には 耐火コンクリート等の不定形耐火物が充塡されていて (図示せず) 、 加 熱室 1 0の気密性が高められている。  The rectangular parallelepiped space surrounded by the heat-resistant refractory bricks 14 forms an airtight heating chamber 10, and the exhaust gas introduced from the inlet 20 is heated and thermally decomposed in the heating chamber 10. However, the structure is such that the decomposition gas is exhausted from the exhaust port 21. The joints of the heat-resistant refractory bricks 14 are filled with irregular-shaped refractories such as refractory concrete (not shown), so that the airtightness of the heating chamber 10 is enhanced.
加熱室 1 0の内部には、 導入口 2 0 と排気口 1 1 とを連結する炭素製 の耐熱管 2 2が備えられている。 なお、 この耐熱管 2 2は、 3 0 0 0 °C 程度の高温に耐えるものであれば、 アルミナ等の他の材質で構成されて いてもよい。 その材質によっては、 耐熱管 2 2の耐熱性や強度を向上さ せるため、 その構造を二重構造にしてもよい。  Inside the heating chamber 10, there is provided a carbon heat-resistant tube 22 for connecting the inlet 20 and the outlet 11. The heat-resistant tube 22 may be made of another material such as alumina as long as it can withstand a high temperature of about 300 ° C. Depending on the material, the structure may be a double structure in order to improve the heat resistance and strength of the heat-resistant tube 22.
耐熱管 2 2は、 水平な部分と、 加熱室 1 0の側面に沿った垂直な部分 と力 <、 交互に組み合わされて構成されていて、 蛇行しながら上下方向に 延びた形態を有している。 そしてさらに、 前記水平な部分は途中で複数The heat-resistant tube 2 2 has a horizontal portion and a vertical portion along the side of the heating chamber 10. And force <, are alternately combined, and have a form that extends vertically while meandering. And furthermore, the horizontal portion
(第 5図の例では 3本) の管に分岐して、 その後 1つに合流する構造と なっている。 すなわち、 耐熱管 2 2は、 分流, 合流, 蛇行を繰り返す形 態を有している。 (3 tubes in the example in Fig. 5), and then merge into one. That is, the heat-resistant tube 22 has a form in which branching, merging, and meandering are repeated.
耐熱管 2 2の内部以外の加熱室 1 0内には、 前記第四実施形態の発光 発熱体用球体 4が多数充塡されていて、 該発光発熱体用球体 4が耐熱管 2 2の周りを囲うと共に、 発光発熱体を構成している。 発光発熱体用球 体 4は球形であるので、 隣接する発光発熱体用球体 4とは点接触してい る。 また、 耐熱管 2 2とも点接触している。  The heating chamber 10 other than the inside of the heat-resistant tube 22 is filled with a large number of the light-emitting heating element spheres 4 of the fourth embodiment. And constitute a luminous heating element. Since the luminescent heating element sphere 4 is spherical, it is in point contact with an adjacent luminescent heating element sphere 4. In addition, it is in point contact with the heat-resistant tube 22.
加熱室 1 0の上面と底面とには、 一対の電極を構成する 2枚の板状の 力一ボン電極 3 0 , 3 0が配設され、 発光発熱体用球体 4が 2枚の力一 ボン電極 3 0, 3 0の間に介装された構造となっている。 該カ一ボン電 極 3 0, 3 0には炭素棒 3 1, 3 1が取り付けられ、 炭素棒 3 1は外壁 1 1を貫通して排ガス用熱分解炉 6の外部に突出している。 なお、 炭素 棒 3 1は耐熱耐火ステンレス製の棒でもよい。 ただし、 耐熱耐火ステン レス製の棒がカーボン電極 3 0を貫通して発光発熱体用球体 4と接触す るような構造となっている場合には、 劣化防止のため該接触部分を炭素 製のカバー材で覆う必要がある。  On the top and bottom surfaces of the heating chamber 10, two plate-like pressure electrodes 30 and 30 constituting a pair of electrodes are disposed, and the luminescent heating element sphere 4 is provided with two force electrodes. It has a structure interposed between the bon electrodes 30 and 30. Carbon rods 31 and 31 are attached to the carbon electrodes 30 and 30, and the carbon rods 31 protrude outside the exhaust gas pyrolysis furnace 6 through the outer wall 11. The carbon rod 31 may be a rod made of heat-resistant and fire-resistant stainless steel. However, if the rod made of a heat-resistant and fire-resistant stainless steel penetrates the carbon electrode 30 and comes into contact with the luminescent heating element sphere 4, the contact part is made of carbon to prevent deterioration. It is necessary to cover with cover material.
また、 加熱室 1 0 と排気口 2 1 との間には、 繊維状の活性炭フィルタ - 5 0が装着されている。 活性炭の表面には無数の細孔 (この細孔には、 直径 2 0 A以下のミ ク口細孔、 2 0 A超過 1 0 0 0 A未満の中間細孔、 1 0 0 0 A以上のマクロ細孔がある。 ) があり、 その比表面積は 5 0 0 〜 1 7 0 O m 2 Z gと大きいため、 活性炭は強い吸着性を有していて、 選択的に比較的大きい分子を物理的に吸着することができる。 なお、 繊 維状の活性炭フィルター 5 0の代わりに、 粒状の活性炭を使用してもよ い。 Further, a fibrous activated carbon filter-50 is provided between the heating chamber 10 and the exhaust port 21. Innumerable pores on the surface of activated carbon (micropores with a diameter of 20 A or less, intermediate pores with a diameter of more than 20 A and less than 100 A, There are macro pores.) There is, therefore a specific surface area as large as 5 0 0 ~ 1 7 0 O m 2 Z g, the activated carbon have a strong adsorption properties, physical selectively larger molecules Can be adsorbed. Note that granular activated carbon may be used instead of the fibrous activated carbon filter 50. No.
排気口 2 1には、 導入口 2 0から排気ガスを吸引して加熱室 1 0内に 導入するブロワ一 5 1が取り付けられている。 なお、 ブロワ一 5 1は真 空ポンプでもよい。  The exhaust port 21 is provided with a blower 51 that sucks exhaust gas from the inlet port 20 and introduces the exhaust gas into the heating chamber 10. The blower 51 may be a vacuum pump.
また、 排ガス用熱分解炉 6の上面及び底面の力一ボン電極 3 0が設け られている部分には、 開口部 5 2が設けられていて、 排ガス用熱分解炉 6の内部の点検やメ ンテナンス (発光発熱体用球体 4、 カーボン電極 3 0、 耐熱耐火レンガ 1 4等の劣化の程度の点検や、 発光発熱体用球体 4、 カーボン電極 3 0の交換) が行えるようになつている。 なお、 鉄製の板 5 3で開口部 5 を覆った上、 該板 5 3を複数のボル卜 5 4で外壁 1 1 に固定し、 さらに、 板 5 3と外壁 1 1の鉄板 1 2の表面との間には図示 しない耐火シ一卜 (シール材) が介装されているので、 排ガス用熱分解 炉 6内の気密性は十分に保たれている。 さらにまた、 カーボン電極 3 0 と板 5 3との間には耐火コンクリート 5 5が備えられているので、 排ガ ス用熱分解炉 6内の保温性は十分に保たれている。 なお、 耐火コンクリ 一卜 5 5は、 耐熱耐火レンガでもよい。  An opening 52 is provided at the top and bottom of the exhaust gas pyrolysis furnace 6 where the pressure electrode 30 is provided, so that the inside of the exhaust gas pyrolysis furnace 6 can be inspected or inspected. Maintenance (inspection of the degree of deterioration of the luminescent heating element sphere 4, the carbon electrode 30, the heat-resistant refractory brick 14 and the like, and replacement of the luminescent heating element sphere 4, the carbon electrode 30) can be performed. In addition, after covering the opening 5 with an iron plate 53, the plate 53 is fixed to the outer wall 11 with a plurality of bolts 54, and further, the surface of the iron plate 12 of the plate 53 and the outer wall 11 is fixed. Since a refractory sheet (seal material) (not shown) is interposed between the furnace and the furnace, the airtightness in the exhaust gas pyrolysis furnace 6 is sufficiently maintained. Furthermore, since the refractory concrete 55 is provided between the carbon electrode 30 and the plate 53, the heat retention in the exhaust gas pyrolysis furnace 6 is sufficiently maintained. The refractory concrete 55 may be a refractory brick.
次に、 このような排ガス用熱分解炉 6を使用して、 排ガス中の有害物 質を熱分解する方法を説明する。  Next, a method for thermally decomposing harmful substances in exhaust gas using such an exhaust gas pyrolysis furnace 6 will be described.
加熱室 1 0は図示しない真空ポンプと連結していて、 該真空ポンプに より加熱室 1 0内は真空状態 (例えば、 6 . 7 X 1 0— 2 P a程度の高真 空としてもよいし、 0 . 0 2〜 0 6 M P a程度の低真空としてもよ い) となっている。 したがって、 加熱室 1 0内に充塡されている発光発 熱体用球体 4 も、 真空状態下に置かれている。 Heating chamber 1 0 is not connected to a vacuum pump (not shown), vacuum more heating chamber 1 within 0 to vacuum pump (e.g., 6. 7 X 1 0- 2 may be used as the high vacuum of the order of P a , And a low vacuum of about 0.02 to 0.6 MPa may be used). Therefore, the light emitting / heating element sphere 4 filled in the heating chamber 10 is also placed in a vacuum state.
炭素棒 3 1, 3 1には図示しない電源が接続されている。 そして、 力 一ボン電極 3 0, 3 0に約 2 0 0 Vの電圧を印加すると、 発光発熱体用 球体 4の間に放電が生じ、 該放電は加熱室 1 0内の全ての発光発熱体用 球体 4において行われるようになる。 また、 発光発熱体用球体 4と耐熱 管 2 との間にも、 放電が行われるようになる。 A power source (not shown) is connected to the carbon rods 31 and 31. When a voltage of about 200 V is applied to the pressure electrodes 30 and 30, a discharge is generated between the light emitting heating element spheres 4, and the discharge is caused by all the light emitting heating elements in the heating chamber 10. for It will be done on sphere 4. In addition, a discharge is also performed between the luminous body 4 and the heat-resistant tube 2.
この放電部分は約 3 0 0 0 °Cであり、 電圧を印加してから数十秒とい う短時間で加熱室 1 0内が約 3 0 0 0 °Cの高温となる。 発光発熱体用球 体 4と耐熱管 2 2との間においても放電が生じているので、 耐熱管 2 2 も約 3 0 0 0 °Cの高温となる。 この高温により、 耐熱管 2 2内に導入さ れた排ガスは、 2 0 0 0 °Cを越える高温となる。 なお、 発光発熱体用球 体 4と耐熱管 2 2との間において放電が生じていない場合は、 耐熱管 2 2内の排ガスの温度は、 1 6 0 0〜2 0 0 0 °Cである。 このときの排ガ ス用熱分解炉 6の外壁 1 1 (鉄板 1 2 ) の温度は、 室温程度である。 放 電が安定して生じるようになれば、 印加する電圧は 3 0 V程度の低電圧 (電流は 3 0 0 - 4 0 O A ) で十分である。 なお、 印加する電圧の程度 により、 得られる温度を調節することが可能であるので、 所望により印 加する電圧の程度を変化させてもよい。  This discharge portion is at about 300 ° C., and the inside of the heating chamber 10 is heated to about 300 ° C. in a short time of several tens of seconds after applying the voltage. Since a discharge is also generated between the luminescent heating element sphere 4 and the heat-resistant tube 22, the heat-resistant tube 22 also has a high temperature of about 300 ° C. Due to this high temperature, the exhaust gas introduced into the heat-resistant tube 22 has a high temperature exceeding 2000 ° C. When no discharge occurs between the luminous element sphere 4 and the heat-resistant tube 22, the temperature of the exhaust gas in the heat-resistant tube 22 is 160 to 200 ° C. . At this time, the temperature of the outer wall 11 (iron plate 12) of the exhaust gas pyrolysis furnace 6 is about room temperature. If the discharge becomes stable, a low voltage of about 30 V (current of 300-40 O A) is sufficient. Note that the temperature to be obtained can be adjusted by the degree of the applied voltage. Therefore, the degree of the applied voltage may be changed as desired.
図示しな L、焼却炉の煙突を導入口 2 0に接続すると、 前記焼却炉から 排出された排ガスが耐熱管 2 2内に導入される。 ブロワ一 5 1により耐 熱管 2 2内の排ガスを吸引するので、 排ガスが逆流したり耐熱管 2 2内 に滞留したりすることはない。 耐熱管 2 2に導入された排ガスは、 2 0 0 o °cを越える高温に晒されるため、 排ガス中に含まれる煤塵, 二酸化 炭素, 塩素化合物, 窒素化合物, ダイォキシン等の有害物質は燃焼する ことなく熱分解されて、 無害な分解ガスとなる。  When the chimney of the incinerator is connected to the inlet 20 as shown in the figure, the exhaust gas discharged from the incinerator is introduced into the heat-resistant tube 22. Since the exhaust gas in the heat-resistant tube 22 is sucked by the blower 51, the exhaust gas does not flow backward or stay in the heat-resistant tube 22. Since the exhaust gas introduced into the heat-resistant pipe 22 is exposed to a high temperature exceeding 200 ° C, harmful substances such as dust, carbon dioxide, chlorine compounds, nitrogen compounds, and dioxin contained in the exhaust gas may burn. It is decomposed without heat and becomes harmless decomposition gas.
なお、 前記放電により、 発熱と共に発光も生じる。 この発光は、 有害 物質の熱分解において、 その分解反応を促進する効果があると考えられ る。 特に、 ダイォキシンの熱分解においては、 その効果が高いと考えら れる。  It should be noted that the discharge generates light as well as heat. This luminescence is considered to have the effect of accelerating the decomposition reaction of the harmful substance during thermal decomposition. In particular, its effect is considered to be high in the thermal decomposition of dioxin.
この分解ガスには、 無害な低分子量物質の他に、 炭化水素や重金属等 が含まれている場合があるが、 これらは活性炭フィルタ一 5 0により吸 着されるので、 排気口 2 1から排ガス用熱分解炉 6の外部に排出される ことはない。 また、 微量の有害物質が残存している可能性もあるが、 こ れも活性炭フィルタ一 5 0により吸着されるので、 排気口 2 1から排ガ ス用熱分解炉 6の外部に排出されることはない。 This cracked gas contains harmless low molecular weight substances, hydrocarbons, heavy metals, etc. However, since these are absorbed by the activated carbon filter 150, they are not discharged to the outside of the exhaust gas pyrolysis furnace 6 from the exhaust port 21. There is also a possibility that a small amount of harmful substances may remain, but this is also adsorbed by the activated carbon filter 150, and is discharged from the exhaust port 21 to the outside of the exhaust gas pyrolysis furnace 6. Never.
この活性炭フィルタ一 5 0は 1 2 0〜 2 0 0 °Cの水蒸気を吹き付ける ことにより、 再生して、 繰り返し使用することが可能である。 このため、 経済性及び二次公害防止上の面から優れている。 また、 吸着されている 重金属の比率が高まった活性炭フィルタ一 5 0からは、 工業用ミル等で 粉砕し、 その比重で篩分けすることにより、 重金属を回収することも可 '目 める o  The activated carbon filter 150 can be regenerated by spraying steam at 120 to 200 ° C. and used repeatedly. For this reason, it is excellent in terms of economy and prevention of secondary pollution. It is also possible to recover heavy metals from an activated carbon filter 50 with an increased ratio of adsorbed heavy metals by crushing with an industrial mill or the like and sieving at the specific gravity o
なお、 導入口 2 0, 排気口 2 1, ブロワ _ 5 1等の排ガス用熱分解炉 6における位置は、 本発明の目的を達成することができるならば、 本使 用例に限定されるものではない。 例えば、 ブロワ一 5 1は、 本使用例で は排気口 2 1に取り付けたが、 排ガスを排出する焼却炉と導入口 2 0と の間に取り付けてもよい。  The positions of the inlet 20, the outlet 21, and the blower _ 51 in the exhaust gas pyrolysis furnace 6 are not limited to the use example as long as the object of the present invention can be achieved. Absent. For example, the blower 51 is attached to the exhaust port 21 in this usage example, but may be attached between the incinerator for discharging exhaust gas and the inlet port 20.
また、 焼却炉が排出する排ガスが多量である場合には、 複数の排ガス 用熱分解炉 6を前記焼却炉に取り付けてもよい。 その場合には、 前記焼 却炉の煙突と複数の排ガス用熱分解炉 6の導入口 2 0とを接続するため のアダプターを用いて、 前記焼却炉からの排ガスを分岐させて、 各排ガ ス用熱分解炉 6に供給する。  When the incinerator emits a large amount of exhaust gas, a plurality of exhaust gas pyrolysis furnaces 6 may be attached to the incinerator. In that case, the exhaust gas from the incinerator is branched using an adapter for connecting the chimney of the incinerator to the inlets 20 of the plurality of exhaust gas pyrolysis furnaces 6, and each exhaust gas is separated. To the thermal decomposition furnace 6
さらに、 本使用例においては、 排ガスが加熱される時間を十分に取る ために、 耐熱管 2 2の形態には蛇行した形態を採用したが、 排ガスに含 まれる有害物質の種類, 濃度や分解処理する排ガスの量等の条件に応じ て、 耐熱管 2 2の形態は自由に設計可能であり、 例えば、 直線状の形態 等であっても差し支えない。 また、 本使用例においては、 耐熱管 2 2は 上下に延びた形態であつたが、 水平方向に延びた形態であつてもよいこ とは勿論である。 水平方向に延びた形態とすると、 発光発熱体用球体 4 の使用量、 及び消費電力を少なくすることができる。 Furthermore, in this use example, in order to allow sufficient time for the exhaust gas to be heated, the heat-resistant pipe 22 is formed in a meandering form, but the type, concentration, and decomposition of harmful substances contained in the exhaust gas are used. The shape of the heat-resistant tube 22 can be freely designed according to conditions such as the amount of exhaust gas to be treated, and may be, for example, a linear shape. In this example, the heat-resistant tube 22 is Although the configuration has been described as extending vertically, it is a matter of course that the configuration may extend horizontally. When it is configured to extend in the horizontal direction, it is possible to reduce the usage amount and the power consumption of the light emitting heating element sphere 4.
なお、 本使用例においては、 本発明の発光発熱体用球体及び発光発熱 体を排ガス熱分解炉に適用した場合を例示して説明したが、 本発明の発 光発熱体用球体及び発光発熱体の発光及び発熱を利用するものであれば、 廃棄物の熱分解装置等の他の装置にも適用可能であることは勿論である c 産業上の利用可能性 In this use example, the case where the sphere for a light emitting heating element and the light emitting heating element of the present invention are applied to an exhaust gas pyrolysis furnace has been described. in the case of using a light-emitting and heat generation, the availability of the c industry is a matter of course it is also applicable to other devices such as a thermal cracker waste
以上のように、 本発明の発光発熱体は、 空気中においても約 3 0 0 0 °C以上の高温を得ることができ、 煤塵, 塩化水素等の塩素化合物, N O X等の窒素化合物, ダイォキシン等の有害物質を生成することなく、 前 記廃棄物等を効率よぐ熱分解することが可能である。 また、 本発明の発 光発熱体用球体は、 前記発光発熱体を構成すると共に、 前記有害物質等 の化学物質による腐食や酸化を受けにく く、 さらに、 二酸化炭素等の気 体や前記有害物質等を吸着しにくい。  As described above, the luminous heating element of the present invention can obtain a high temperature of about 300 ° C. or more even in the air, dust compounds, chlorine compounds such as hydrogen chloride, nitrogen compounds such as NOX, dioxin, etc. It is possible to efficiently decompose the wastes mentioned above without generating harmful substances. In addition, the sphere for a light-emitting heating element of the present invention constitutes the light-emitting heating element and is not easily susceptible to corrosion or oxidation by a chemical substance such as the harmful substance. It is difficult to adsorb substances.

Claims

請 求 の 範 囲 The scope of the claims
1 . 高密度化した炭素材を主成分とし、 形状を球形としたことを特徴 とする発光発熱体用球体。 1. A sphere for a light-emitting heating element, characterized by having a high-density carbon material as a main component and a spherical shape.
2 . 前記炭素材を不浸透性黒鉛としたことを特徴とする請求の範囲第 1項記載の発光発熱体用球体。 2. The sphere for a light emitting heating element according to claim 1, wherein said carbon material is impermeable graphite.
3 . チタン及びタングステンのうち少なくとも一方を含有することを 特徴とする請求の範囲第 1項又は第 2項記載の発光発熱体用球体。 3. The luminescent heating element sphere according to claim 1 or 2, wherein the sphere contains at least one of titanium and tungsten.
4 . ジルコニウム, ニオブ, ホウ素, タンタル, 及びモリ ブデンのう ち少なくとも 1種を含有することを特徴とする請求の範囲第 1項〜第 3 項のいずれかに記載の発光発熱体用球体。 4. The sphere for a light emitting heating element according to any one of claims 1 to 3, wherein the sphere contains at least one of zirconium, niobium, boron, tantalum, and molybdenum.
5 . 窒化チタン及び窒化ニオブのうち少なく とも一方を含有すること を特徴とする請求の範囲第 1項〜第 4項のいずれかに記載の発光発熱体 用球体。  5. The luminescent heating element sphere according to any one of claims 1 to 4, wherein the sphere contains at least one of titanium nitride and niobium nitride.
6 . グラフアイ ト, カーボンブラック, コークス, 及び木炭のうち少 なく とも 1種を含有することを特徴とする請求の範囲第 1項〜第 5項の いずれかに記載の発光発熱体用球体。  6. The luminescent heating element sphere according to any one of claims 1 to 5, wherein the sphere contains at least one of graphite, carbon black, coke, and charcoal.
7 . 炭素繊維, 酸化物系繊維, 炭化物系繊維, 窒化物系繊維, 及びホ ゥ素系繊維のうち少なく とも 1種を含有することを特徴とする請求の範 囲第 1項〜第 6項のいずれかに記載の発光発熱体用球体。  7. Claims 1 to 6 characterized by containing at least one of carbon fibers, oxide fibers, carbide fibers, nitride fibers, and boron fibers. The sphere for a light emitting heating element according to any one of the above.
8 . 請求の範囲第 1項〜第 7項のいずれかに記載の発光発熱体用球体 の複数を集合させてなることを特徵とする発光発熱体。 補正書の請求の範囲 8. A luminescent heating element comprising a plurality of luminescent heating element spheres according to any one of claims 1 to 7 assembled. Claims of amendment
[ 2 0 0 0年 9月 1 9日 (1 9 . 0 9 . 0 0 ) 国際事務局受理:新しい請求の範囲 9及び 1 0 が加えられた:他の請求の範囲は変更なし。 ( 2頁) ]  [September 19, 2000 (19.0 9.00) Accepted by the International Bureau: New claims 9 and 10 have been added: other claims remain unchanged. (Page 2)]
1 . 高密度化した炭素材を主成分とし、 形状を球形としたことを特徴 とする発光発熱体用球体。 1. A sphere for a light-emitting heating element, characterized by having a high-density carbon material as a main component and a spherical shape.
2 . 前記炭素材を不浸透性黒鉛としたことを特徴とする請求の範囲第  2. The carbon material is made of impervious graphite.
1項記載の発光発熱体用球体。  A sphere for a luminescent heating element according to claim 1.
3 . チタン及びタングステンのうち少なくとも一方を含有することを 特徴とする請求の範囲第 1項又は第 2項に記載の発光発熱体用球体。  3. The luminescent heating element sphere according to claim 1, wherein the sphere contains at least one of titanium and tungsten.
4 . ジルコニウム, ニオブ, ホウ素, タンタル, 及びモリブデンのう ち少なくとも 1種を含有することを特徴とする請求の範囲第 1項〜第 3  4. Claims 1 to 3 characterized in that they contain at least one of zirconium, niobium, boron, tantalum and molybdenum.
項のいずれかに記載の発光発熱体用球体。 Item 6. A sphere for a light emitting heating element according to any one of the above items.
5 . 窒化チタン及び窒化ニオブのうち少なくとも一方を含有すること を特徴とする請求の範囲第 1項〜第 4項のいずれかに記載の発光発熱体 用球体。  5. The sphere for a light emitting heating element according to any one of claims 1 to 4, wherein the sphere contains at least one of titanium nitride and niobium nitride.
6 . グラフアイ ト, カーボンブラック, コークス, 及び木炭のうち少 なくとも 1種を含有することを特徴とする請求の範囲第 1項〜第 5項の いずれかに記載の発光発熱体用球体。  6. The sphere for a luminous heating element according to any one of claims 1 to 5, wherein the sphere contains at least one of graphite, carbon black, coke, and charcoal.
7 . 炭素繊維, 酸化物系繊維, 炭化物系繊維, 窒化物系繊維, 及びホ ゥ素系繊維のうち少なくとも 1種を含有することを特徴とする請求の範 囲第 1項〜第 6項のいずれかに記載の発光発熱体用球体。  7. Claims 1 to 6 characterized by containing at least one of carbon fibers, oxide fibers, carbide fibers, nitride fibers, and boron fibers. The sphere for a light emitting heating element according to any one of the above.
8 . 請求の範囲第 1項〜第 7項のいずれかに記載の発光発熱体用球体 の複数を集合させてなることを特徴とする発光発熱体。  8. A light emitting heating element comprising a plurality of the light emitting heating element spheres according to any one of claims 1 to 7 assembled.
9 . (補正後) 前記炭素材は、 炭素の理論密度の 9 0 . 0 %以上の密 度を有することを特徴とする請求の範囲第 1項〜第 7項のいずれかに記 載の発光発熱体用球体。  9. The emission according to any one of claims 1 to 7, wherein the carbon material has a density of 90.0% or more of the theoretical density of carbon. Sphere for heating element.
1 0 . (補正後) 前記不浸透性黒鉛は、 その表面及び内部に存在する  10 (after correction) The impervious graphite is present on its surface and inside
36 補正された用紙 (条約第 19条) 細孔の表面積が全表面積の 1 0 %以下であることを特徴とする請求の範 囲第 2項〜第 7項及び第 9項のいずれかに記載の発光発熱体用球体。 36 Amended paper (Article 19 of the Convention) 10. The sphere for a light emitting heating element according to any one of claims 2 to 7, wherein the surface area of the pores is 10% or less of the total surface area.
37  37
補正された用紙 (条約第 19条) 条約 1 9条に基づく説明書 条約 1 9条 ( 1 ) の規定に基づく説明書 新請求の範囲第 9項及び第 1 0項を、 補正により新たに追加した。 Amended paper (Article 19 of the Convention) Statement based on Article 19 of the Convention Statement based on the provisions of Article 19 (1) of the Convention Articles 9 and 10 of the New Claims have been newly added by amendment.
以上  that's all
PCT/JP2000/001240 1999-09-14 2000-03-02 Light-emitting/heat-generating spherical body and light-emitting/heat-generating body WO2001020951A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU28261/00A AU2826100A (en) 1999-09-14 2000-03-02 Light-emitting/heat-generating spherical body and light-emitting/heat-generatingbody
JP2001524397A JP3866104B2 (en) 1999-09-14 2000-03-02 Sphere for luminescent heating element and luminescent heating element
HK03103733A HK1051622A1 (en) 1999-09-14 2003-05-27 Light-emitting/heat-generating spherical body and light-emitting/heat-generating body.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/260962 1999-09-14
JP26096299 1999-09-14

Publications (1)

Publication Number Publication Date
WO2001020951A1 true WO2001020951A1 (en) 2001-03-22

Family

ID=17355190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001240 WO2001020951A1 (en) 1999-09-14 2000-03-02 Light-emitting/heat-generating spherical body and light-emitting/heat-generating body

Country Status (5)

Country Link
JP (1) JP3866104B2 (en)
CN (1) CN1171504C (en)
AU (1) AU2826100A (en)
HK (1) HK1051622A1 (en)
WO (1) WO2001020951A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470848B1 (en) * 2013-04-30 2014-12-09 주식회사 이엔에프테크놀로지 Compound carbon ball and fabrication thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214249A (en) * 1975-07-23 1977-02-03 Showa Denki Kogyo Kk Electric heating method for heating fluid
JPS5232596A (en) * 1975-09-09 1977-03-11 Tdk Corp Conductive composite ceramics
JPS6424383A (en) * 1987-07-20 1989-01-26 Tokai Konetsu Kogyo Kk Graphite heat emitting body
JPH0594863A (en) * 1991-09-30 1993-04-16 Nippon Zeon Co Ltd Self temperature control exothermic composition
JPH07282961A (en) * 1994-04-07 1995-10-27 Kazuo Ozawa Heater
JPH0819876A (en) * 1994-07-04 1996-01-23 Shigeo Mori Lap joining equipment for dissimilar metal tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214249A (en) * 1975-07-23 1977-02-03 Showa Denki Kogyo Kk Electric heating method for heating fluid
JPS5232596A (en) * 1975-09-09 1977-03-11 Tdk Corp Conductive composite ceramics
JPS6424383A (en) * 1987-07-20 1989-01-26 Tokai Konetsu Kogyo Kk Graphite heat emitting body
JPH0594863A (en) * 1991-09-30 1993-04-16 Nippon Zeon Co Ltd Self temperature control exothermic composition
JPH07282961A (en) * 1994-04-07 1995-10-27 Kazuo Ozawa Heater
JPH0819876A (en) * 1994-07-04 1996-01-23 Shigeo Mori Lap joining equipment for dissimilar metal tube

Also Published As

Publication number Publication date
CN1171504C (en) 2004-10-13
HK1051622A1 (en) 2003-08-08
JP3866104B2 (en) 2007-01-10
CN1391783A (en) 2003-01-15
AU2826100A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP3687737B2 (en) Waste pyrolyzer
WO2001020951A1 (en) Light-emitting/heat-generating spherical body and light-emitting/heat-generating body
JP3738894B2 (en) Pyrolysis furnace for exhaust gas
JP4131417B2 (en) Method for reducing organochlorine compounds in exhaust gas from cement production facilities
JP2001322809A (en) Method and device for manufacturing activated carbide
JP2007045648A5 (en)
JP3946474B2 (en) Heating device
EP1671928B1 (en) Durable graphite bodies and method for their production
KR101918620B1 (en) Recovery method of high purity MMA and alumina from crude marble
JP2007063027A (en) Method for reducing organic chlorinated compound in exhaust gas of cement manufacture plant
CN217303579U (en) Environment-friendly roasting furnace for carbonizing carbon products and special carbon products
JP4160065B2 (en) Soil treatment equipment
KR101614498B1 (en) Manufacturing method for a oxidation resistant carbon heating element generating heat by a microwave
JP3057859B2 (en) Production method and furnace wall structure of silica brick for coke oven.
JP2721535B2 (en) Method for producing high thermal conductivity AlN sintered body
CN108036376A (en) A kind of heat-resisting ventilator cowling against corrosion
JP2008161844A (en) Structure of discharge cracking furnace
KR20080060014A (en) A method of post-heat treatment of carbon material and a carbon material for electrode of capacitor prepared by the same
KR100471356B1 (en) carbon for refractories &amp; refractories with carbon
CN110496606A (en) A kind of synthesis preparation method of novel removal of mercury material
JPH07280226A (en) Method and apparatus for manufacturing carbide
JP2004238458A (en) Carbonization apparatus
JP2001286747A (en) Energy generator
KR20090037779A (en) Making process for carbonized sinter clay tube
DD269983A3 (en) INTERNAL PROTECTION OF REACTORS FOR CARBON GASIFICATION

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 524397

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 008149011

Country of ref document: CN

122 Ep: pct application non-entry in european phase