WO2001019391A1 - Topical treatment of streptococcal infections - Google Patents
Topical treatment of streptococcal infections Download PDFInfo
- Publication number
- WO2001019391A1 WO2001019391A1 PCT/US2000/001237 US0001237W WO0119391A1 WO 2001019391 A1 WO2001019391 A1 WO 2001019391A1 US 0001237 W US0001237 W US 0001237W WO 0119391 A1 WO0119391 A1 WO 0119391A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition according
- composition
- therapeutic agent
- enzyme
- lysin enzyme
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/4886—Metalloendopeptidases (3.4.24), e.g. collagenase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/429—Thiazoles condensed with heterocyclic ring systems
- A61K31/43—Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/47—Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
- A61K47/183—Amino acids, e.g. glycine, EDTA or aspartame
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/20—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/32—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
Definitions
- the present invention discloses a method and composition for the topical treatment of streptococcal infections by the use of a lysin enzyme blended with a carrier suitable for topical application to dermal tissues.
- Streptococcus is comprised of a wide variety of both pathogenic and commensal gram-positive bacteria which are found to inhabit a wide range of hosts, including humans, horses, pigs, and cows. Within the host, streptococci are often found to colonize the mucosa surfaces of the mouth, nares and pharynx. However, in certain circumstances, they may also inhabit the skin, heart or muscle tissue.
- Pathogenic streptococci of man include S. pyogenes, S. pneumoniae, and S. faecalis. While Group A streptococci can be present in the throat or on the skin and cause no symptoms of disease, they may also cause infections that range from mild to sever and even life-threatening. Among the pathogenic hemolytic streptococci, S. pyogenes, or group A streptococci have been implicated as the etiologic agent of acute pharyngitis "(strep throat”), impetigo, rheumatic fever, scarlet fever, glomerulonephritis, and invasive fasciitis.
- strep throat acute pharyngitis
- Necrotizing fasciitis (sometimes described by the media as "the flesh-eating bacteria") is a destructive infection of muscle and fat tissue. Invasive group A streptococcal infections occur when the bacteria get past the defenses of the person who is infected. About 10,000 to 15,000 cases of invasive GAS disease occur in the United States each year resulting in over 2,000 deaths. CDC estimates that 500 to 1,500 cases of necrotizing fasciitis and 2,000 to 3,000 cases of streptococcal toxic shock syndrome occur each year in the United States. Approximately 20% of patients with necrotizing fasciitis die, and 60%> of patients with streptococcal toxic shock syndrome die. About 10 to 15%> of patients with other forms of invasive group A streptococcal disease die.
- Group C Streptococcus can cause cellulitis from skin breaks, although cellulitis is normally associated with Staphylococcus aureus. Cellulitis can result in death, particularly in older individuals or in individuals who are already weakened.
- the first individual to identify the serological and immunological groups of streptococci was Dr. Rebecca Lancefield, (Lancefield, R. C, "A Serological Differentiation of Human and other Groups of Hemolytic Streptococci," J. Exp. Med., Vol. 57, pp 571-595 1933), after whom the grouping system was named.
- the group A streptococcus was identified on the basis of B-l, 4 N-acetylglucosamine terminal sugar moieties on a repeating rhamnose sugar backbone found as part of the structure of the organism's cell wall.
- Antiserum raised against group A streptococci and subsequent absorptions to remove cross-reactions were shown to specifically react with the cell wall component of these organisms and became the grouping antisera for group A streptococci.
- a number of methods have been devised to fragment the group A streptococcal cell wall carbohydrate. These methods include heating by boiling at pH 2.0, autoclaving, trichloroacetic acid extraction, hot formamide digestion, nitrous acid extraction and enzyme digestion by enzymes derived from the soil microorganisms of species streptomyces, and the phage-associated enzyme lysin. Each of these methods have various advantages and disadvantages.
- group A streptococcal pharyngitis has become more readily available to both physicians and clinical laboratories by replacing time consuming culturing methods requiring a minimum of 24 to 72 hours to identify the presence of group A streptococci with a rapid antigen-antibody test capable of being performed and read in less than one hour.
- Culturing methods vary in the degree of sensitivity of detection. In one case, a simple 5% sheep blood agar plate may be used in conjunction with a Bacitracin disc and culturing 24 hours at 37 degree(s) C. aerobically to identify group A streptococci. Alternatively, selective media and anaerobic conditions may be used to inhibit overgrowth by other organisms and incubation at 35 degree(s) C.
- U.S. Patent No. 5,260,292 discloses the topical treatment of acne with aminopenicillins.
- the mouth and composition for topically treating acne and acneiform dermal disorders includes applying an amount of an antibiotic selected from the group consisting of ampicillin, amoxicillin, other aminopenicillins, and cephalosporins, and derivatives and analogs thereof, effective to treat the acne and acneiform dermal disorders.
- U.S. Patent No. 5,409,917 discloses the topical treatment of acne with cephalosporins.
- the failure to use this enzyme for a clinical diagnostic test was due to a number of problems associated with the enzyme such as: the difficulty in growing large amounts of bacteriophage in the group C streptococci, the time delays in inactivating the residual enzyme when trying to obtain phage stocks, the instability of the enzyme itself to oxidative conditions and heat, and nonspecific reactions in immunoassays performed in the presence of other organisms and the biological components in the sample.
- U.S. Patent No. 5,604,109 (Fischetti et al.) teaches the rapid and sensitive detection of group A streptococcal antigens by a diagnostic test kit which utilizes a sampling device consisting of a throat swab made of synthetic or natural fibers such as Dacron or rayon and some type of shaft which holds the fibers, is long enough to place the fibers in the tonsillar area and is capable of being used to swab the area to remove sufficient numbers of colonizing or infecting organisms. The swab can then be placed in the enzyme extraction reagent and subsequently used in an immunoassay.
- a diagnostic test kit which utilizes a sampling device consisting of a throat swab made of synthetic or natural fibers such as Dacron or rayon and some type of shaft which holds the fibers, is long enough to place the fibers in the tonsillar area and is capable of being used to swab the area to remove sufficient numbers of colonizing or infecting organisms.
- the invention can comprise a test kit for detecting Group A streptococci, containing the lysin enzyme for releasing Group A streptococcal components, and a ligand capable of binding with a component of the Group A streptococcus.
- Patent No. 09/257,026 (Fischetti et al.) disclose the use of an oral delivery mode, such as a candy, chewing gum, lozenge, troche, tablet, a powder, an aerosol, a liquid or a liquid spray, containing a lysin enzyme produced by group C streptococcal bacteria infected with a Cl bacteriophage for the prophylactic and therapeutic treatment of Streptococcal A throat infections, commonly known as strep throat.
- an oral delivery mode such as a candy, chewing gum, lozenge, troche, tablet, a powder, an aerosol, a liquid or a liquid spray, containing a lysin enzyme produced by group C streptococcal bacteria infected with a Cl bacteriophage for the prophylactic and therapeutic treatment of Streptococcal A throat infections, commonly known as strep throat.
- the present invention (which incorporates U.S. Patent No. 5,604,109, and U.S. Patent Application No. 09/257,026 (Fischetti et al.) and U.S. Patent Application No. 08/962,523 (Fischetti) in their entirety by reference) is a composition containing uses a therapeutic agent which comprises the lysin enzyme produced by the group C streptococcal organism after being infected with a particular bacteriophage (identified as Cl) for application to the streptococcal infected dermatological part of the body as a method to fight a streptococcal infection, particularly those infections, such as impetigo, which result in invasive fasciitis, necrotizing fasciitis, and the streptococcal form of cellulitis.
- a therapeutic agent which comprises the lysin enzyme produced by the group C streptococcal organism after being infected with a particular bacteriophage (identified as Cl) for application to the streptococcal in
- the composition is particularly useful as a therapeutic treatment of Streptococcal dermatological infections.
- the semipurified enzyme lacks proteolytic enzymatic activity and therefore is non-destructive to specific antibodies when present during the digestion of the bacterial cell wall.
- Treatment of group A streptococci with dilute samples of lysin results in the removal of the organism's protective cell wall by the enzyme, thereby killing the strep organism.
- the treatment of streptococci in biological fluids in vivo has the same effect.
- the lysin enzyme would be administered in the form of a topical ointment or cream. In another embodiment of the invention, the lysin enzyme would be administered in an aqueous form.
- lysostaphin the enzyme which lyses Staphylococcus aureus
- conventional antibiotics may be included in the therapeutic agent with the lysin enzyme, and with or without the presence of lysostaphin.
- Other bacterial lysing enzymes may also be included in the therapeutic agent.
- amidase muralytic (lysin) enzyme produced by the group C streptococcal organism after being infected with a particular bacteriophage (identified as Cl) is isolated and harvested as is described in U.S. Patent Application No. 5,604,109.
- This Group C streptococcal enzyme (also known as a lysin enzyme) which has unique specificity for the cell wall of groups A, C, and E Streptococci, may alternatively be isolated and harvested by any other known means.
- composition which may be used for the therapeutic treatment of a strep dermatological infection includes the lysin enzyme and, preferably, a mode of application (such as a carrier), to the skin or tissue, such that the enzyme is put in the carrier system which holds the enzyme on the skin.
- a mode of application such as a carrier
- the enzyme Prior to, or at the time the enzyme is put in the carrier system, it is preferred that the enzyme be in a stabilizing buffer environment for maintaining a pH range between about 4.0 and about 8.0, more preferably between about 5.5 and about 7.5 and most preferably at about 6.1.
- the stabilizing buffer should allow for the optimum activity of the lysin enzyme.
- the buffer may be a reducing reagent, such as dithiothreitol.
- the stabilizing buffer may also be or include a metal chelating reagent, such as ethylenediaminetetracetic acid disodium salt, or it may also contain a phosphate or citrate-phosphate buffer.
- the stabilizing buffer may further contain a bactericidal or bacteriostatic reagent as a preservative, such as a small amount of sodium benzoate
- the mode of application for the lysin enzyme includes a number of different types and combinations of carriers which include, but are not limited to an aqueous liquid, an alcohol base liquid, , a water soluble gel, a lotion, an ointment, a nonaqueous liquid base, a mineral oil base, a blend of mineral oil and petrolatum, lanolin, liposomes, protein carriers such as serum albumin or gelatin, powdered cellulose carmel, and combinations thereof.
- a mode of delivery of the carrier containing the therapeutic agent includes but is not limited to a smear, spray, a time-release patch, a liquid absorbed wipe, and combinations thereof.
- the carriers of the compositions of the present invention may comprise semi-solid and gel-like vehicles that include a polymer thickener, water, preservatives, active surfactants or emulsifiers, antioxidants, sun screens, and a solvent or mixed solvent system.
- a polymer thickener such as water, preservatives, active surfactants or emulsifiers, antioxidants, sun screens, and a solvent or mixed solvent system.
- U.S. Patent No. 5,863,560 discusses a number of different carrier combinations which can aid in the exposure of the skin to a medicament.
- Polymer thickeners that may be used include those known to one skilled in the art, such as hydrophilic and hydroalcoholic gelling agents frequently used in the cosmetic and pharmaceutical industries.
- the hydrophilic or hydroalcoholic gelling agent comprises "CARBOPOL.RTM.” (B. F.
- the gelling agent comprises between about 0.2% to about 4% by weight of the composition. More particularly, the preferred compositional weight percent range for "CARBOPOL.RTM.” is between about 0.5% to about 2%, while the preferred weight percent range for "NATROSOL.RTM.” and “KLUCEL.RTM.” is between about 0.5% to about 4%.
- compositional weight percent range for both "HYPAN.RTM.” and “STABILEZE.RTM.” is between about 0.5% to about 4%.
- CARBOPOL.RTM.” is one of numerous cross-linked acrylic acid polymers that are given the general adopted name carbomer. These polymers dissolve in water and form a clear or slightly hazy gel upon neutralization with a caustic material such as sodium hydroxide, potassium hydroxide, triethanolamine, or other amine bases.
- KLUCEL.RTM is a cellulose polymer that is dispersed in water and forms a uniform gel upon complete hydration.
- Preservatives may also be used in this invention and preferably comprise about 0.05%) to 0.5% by weight of the total composition. The use of preservatives assures that if the product is microbially contaminated, the formulation will prevent or diminish microorganism growth.
- Some preservatives useful in this invention include methylparaben, propylparaben, butylparaben, chloroxylenol, sodium benzoate, DMDM Hydantoin, 3-Iodo-2-Propylbutyl carbamate, potassium sorbate, chlorhexidine digluconate, or a combination thereof.
- Titanium dioxide may be used as a sunscreen to serve as prophylaxis against photosensitization.
- Alternative sun screens include methyl cinnamate.
- BHA may be used as an antioxidant, as well as to protect ethoxydiglycol and/or dapsone from discoloration due to oxidation.
- An alternate antioxidant is BHT.
- Pharmaceuticals for use in all embodiments of the invention include antimicrobial agents, anti-inflammatory agents, antiviral agents, local anesthetic agents, corticosteroids, destructive therapy agents, antifungals, and antiandrogens.
- active pharmaceuticals that may be used include antimicrobial agents, especially those having anti-inflammatory properties such as dapsone, erythromycin, minocycline, tetracycline, clindamycin, and other antimicrobials.
- the preferred weight percentages for the antimicrobials are 0.5% to 10%.
- Local anesthetics include tetracaine, tetracaine hydrochloride, lidocaine, lidocaine hydrochloride, dyclonine, dyclonine hydrochloride, dimethisoquin hydrochloride, dibucaine, dibucaine hydrochloride, butambenpicrate, and pramoxine hydrochloride.
- a preferred concentration for local anesthetics is about 0.025% to 5% by weight of the total composition.
- Anesthetics such as benzocaine may also be used at a preferred concentration of about 2% to 25% by weight.
- Corticosteroids that may be used include betamethasone dipropionate, fluocinolone acetonide, betamethasone valerate, triamcinolone acetonide, clobetasol propionate, desoximetasone, diflorasone diacetate, amcinonide, flurandrenolide, hydrocortisone valerate, hydrocortisone butyrate, and desonide are recommended at concentrations of about 0.01% to 1.0% by weight. Preferred concentrations for corticosteroids such as hydrocortisone or methylprednisolone acetate are from about 0.2% to about 5.0%> by weight.
- Destructive therapy agents such as salicylic acid or lactic acid may also be used.
- a concentration of about 2% to about 40% by weight is preferred.
- Cantharidin is preferably utilized in a concentration of about 5% to about 30% by weight.
- Typical antifungals that may be used in this invention and their preferred weight concentrations include: oxiconazole nitrate (0.1% to 5.0%), ciclopirox olamine (0.1 % to 5.0%)), ketoconazole (0.1%) to 5.0%), miconazole nitrate (0.1% to 5.0%), and butoconazole nitrate (0.1% to 5.0%).
- the active pharmaceutical may include an antiandrogen such as flutamide or finasteride in preferred weight percentages of about 0.5%> to 10%.
- treatments using a combination of drugs include antibiotics in combination with local anesthetics such as polymycin B sulfate and neomycin sulfate in combination with tetracaine for topical antibiotic gels to provide prophylaxis against infection and relief of pain.
- minoxidil in combination with a corticosteroid such as betamethasone diproprionate for the treatment of alopecia ereata.
- the invention comprises a dermatological composition having about 0.5% to 10% carbomer and about 0.5% to 10% of a pharmaceutical that exists in both a dissolved state and a microparticulate state.
- the dissolved pharmaceutical has the capacity to cross the stratum corneum, whereas the microparticulate pharmaceutical does not.
- Addition of an amine base, potassium, hydroxide solution, or sodium hydroxide solution completes the formation of the gel.
- the pharmaceutical may include dapsone, an antimicrobial agent having anti-inflammatory properties.
- a preferred ratio of micro particulate to dissolved dapsone is five or less.
- the invention comprises about 1% carbomer, about 80-90% water, about 10% ethoxydiglycol, about 0.2% methylparaben, about 0.3% to 3.0% dapsone including both micro particulate dapsone and dissolved dapsone, and about 2% caustic material.
- the carbomer may include "CARBOPOL.RTM. 980" and the caustic material may include sodium hydroxide solution.
- the composition comprises dapsone and ethoxydiglycol, which allows for an optimized ratio of micro particulate drug to dissolved drug. This ratio determines the amount of drug delivered, compared to the amount of drug retained in or above the stratum corneum to function in the supracorneum domain.
- the system of dapsone and ethoxydiglycol may include purified water combined with "CARBOPOL.RTM.” gelling polymer, methylparaben, propylparaben, titanium dioxide, BHA, and a caustic material to neutralize the "CARBOPOL.RTM..”
- any of the carriers for the lysin enzyme may be manufactured by conventional means. However, if alcohol is used in the carrier, the enzyme should be in a micelle, liposome, or a "reverse" liposome, to prevent denaturing of the enzyme. Similarly, when the lysin enzyme is being placed in the carrier, and the carrier is, or has been heated, such placement should be made after the carrier has cooled somewhat, to avoid heat denaturation of the enzyme.
- the carrier is sterile.
- the enzyme may be added to these substances in a liquid form or in a lyophilized state, whereupon it will be solubilized when it meets a liquid body.
- the effective dosage rates or amounts of the lysin enzyme to treat the infection, and the duration of treatment will depend in part on the seriousness of the infection, the duration of exposure of the recipient to the Streptococci, the number of square centimeters of skin or tissue which are infected, the depth of the infection, the seriousness of the infection, and a variety of a number of other variables.
- the composition may be applied anywhere from once to several times a day, and may be applied for a short or long term period. The usage may last for days or weeks. Any dosage form employed should provide for a minimum number of units for a minimum amount of time.
- the concentration of the active units of enzyme believed to provide for an effective amount or dosage of enzyme may be in the range of about 100 units/ml to about 500,000 units/ml of composition, preferably in the range of about 1000 units/ml to about 100,000 units/ml, and most preferably from about 10,000 to 100,000 units/ml.
- the amount of active units per ml and the duration of time of exposure depends on the nature of infection, and the amount of contact the carrier allows the lysin enzyme to have. It is to be remembered that the enzyme works best when in a fluid environment. Hence, effectiveness of the enzyme is in part related to the amount of moisture trapped by the carrier. In another preferred embodiment, a mild surfactant in an amount effective to potentiate the therapeutic effect of the lysin enzyme.
- Suitable mild surfactants include, inter alia, esters of polyoxyethylene sorbitan and fatty acids (Tween series), octylphenoxy polyethoxy ethanol (Triton-X series), n-Octyl-.beta.-D-glucopyranoside, n-Octyl-.beta.-D-thioglucopyranoside, n-Decyl-.beta.-D-glucopyranoside, n-Dodecyl-.beta.-D-glucopyranoside, and biologically occurring surfactants, e.g., fatty acids, glycerides, monoglycerides, deoxycholate and esters of deoxycholate.
- surfactants e.g., fatty acids, glycerides, monoglycerides, deoxycholate and esters of deoxycholate.
- the therapeutic agent may further include at least one complementary agent which can also potentiate the bactericidal activity of the lysin enzyme.
- the complementary agent can be penicillin, synthetic penicillins bacitracin, methicillin, cephalosporin, polymyxin, cefaclor.
- the therapeutic agent may further comprise the enzyme lysostaphin for the treatment of any Staphylococcus aureus bacteria.
- Mucolytic peptides such as lysostaphin, have been suggested to be efficacious in the treatment of S. aureus infections of humans (Schaffner et al., Yale J. Biol. & Med., 39:230 (1967) and bovine mastitis caused by S. aureus (Sears et al., J. Dairy Science, 71 (Suppl. 1): 244(1988)).
- Lysostaphin a gene product of Staphylococcus simulans, exerts a bacteriostatic and bactericidal effect upon S.
- the recombinant mucolytic bactericidal protein such as r-lysostaphin
- r-lysostaphin can potentially circumvent problems associated with current antibiotic therapy because of its targeted specificity, low toxicity and possible reduction of biologically active residues.
- lysostaphin is also active against non-dividing cells, while most antibiotics require actively dividing cells to mediate their effects (Dixon et al., Yale J. Biology and Medicine, 41 : 62-68 (1968)).
- Lysostaphin in combination with the lysin enzyme, can be used in the presence or absence of the listed antibiotics. There is a degree of added importance in using both lysostaphin and the lysin enzyme in the same therapeutic agent.
- the infection by one genus of bacteria weakens the body or changes the bacterial flora of the body, allowing other potentially pathogenic bacteria to infect the body.
- One of the bacteria that sometimes co-infects a body is Staphylococcus aureus. Many strains of Staphylococcus aureus produce penicillinase, such that both the Staphylococcus and the Streptococcus strains will not be killed by standard antibiotics. Consequently, the use of the lysin and lysostaphin, possibly in combination with antibiotics, can serve as the most rapid and effective treatment of bacterial infections.
- the invention may include mutanolysin, and lysozyme
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Gastroenterology & Hepatology (AREA)
- Dermatology (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002383038A CA2383038A1 (en) | 1999-09-14 | 2000-01-20 | Topical treatment of streptococcal infections |
EP00904412A EP1212079A1 (en) | 1999-09-14 | 2000-01-20 | Topical treatment of streptococcal infections |
MXPA02002895A MXPA02002895A (en) | 1999-09-14 | 2000-01-20 | Topical treatment of streptococcal infections. |
JP2001523023A JP2003509379A (en) | 1999-09-14 | 2000-01-20 | Topical treatment of streptococcal infection |
BR0014512-2A BR0014512A (en) | 1999-09-14 | 2000-01-20 | Topical treatment for streptococcal infections |
NZ518059A NZ518059A (en) | 1999-09-14 | 2000-01-20 | Topical treatment of streptococcal infections using a lysin enzyme coded for by a C1 bacteriophage |
AU26175/00A AU2617500A (en) | 1999-09-14 | 2000-01-20 | Topical treatment of streptococcal infections |
IL14864100A IL148641A0 (en) | 1999-09-14 | 2000-01-20 | Topical treatment of streptococcal infections |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/395,637 | 1999-09-14 | ||
US09/395,637 US6056955A (en) | 1999-09-14 | 1999-09-14 | Topical treatment of streptococcal infections |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001019391A1 true WO2001019391A1 (en) | 2001-03-22 |
Family
ID=23563869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/001237 WO2001019391A1 (en) | 1999-09-14 | 2000-01-20 | Topical treatment of streptococcal infections |
Country Status (12)
Country | Link |
---|---|
US (1) | US6056955A (en) |
EP (1) | EP1212079A1 (en) |
JP (1) | JP2003509379A (en) |
CN (1) | CN1390135A (en) |
AU (1) | AU2617500A (en) |
BR (1) | BR0014512A (en) |
CA (1) | CA2383038A1 (en) |
IL (1) | IL148641A0 (en) |
MX (1) | MXPA02002895A (en) |
NZ (1) | NZ518059A (en) |
WO (1) | WO2001019391A1 (en) |
ZA (1) | ZA200202306B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005528372A (en) * | 2002-03-26 | 2005-09-22 | バイオシネクサス インコーポレイテッド | Antibacterial polymer composite |
US7582729B2 (en) * | 2003-05-15 | 2009-09-01 | The Rockefeller University | Nucleic acids and polypeptides of C1 bacteriophage and uses thereof |
Families Citing this family (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030157036A1 (en) * | 2002-02-20 | 2003-08-21 | Osborne David W. | Topical dapsone for the treatment of acne |
US6399097B1 (en) | 1997-10-31 | 2002-06-04 | New Horizons Diagnostics Corporation | Composition for treatment of a bacterial infection of the digestive tract |
US6423299B1 (en) | 1997-10-31 | 2002-07-23 | Vincent Fischetti | Composition for treatment of a bacterial infection of an upper respiratory tract |
US6277399B1 (en) * | 1997-10-31 | 2001-08-21 | New Horizon Diagnostics Corporation | Composition incorporating bacterial phage associated lysing enzymes for treating dermatological infections |
US20030082110A1 (en) * | 1997-10-31 | 2003-05-01 | Vincent Fischetti | Use of bacterial phage associated lysing proteins for treating bacterial dental caries |
US6428784B1 (en) * | 1997-10-31 | 2002-08-06 | New Horizons Diagnostics Corp | Vaginal suppository for treating group B Streptococcus infection |
US6399098B1 (en) | 1997-10-31 | 2002-06-04 | New Horizons Diagnostics Corp | Composition for treating dental caries caused by streptococcus mutans |
US6326002B1 (en) | 1997-10-31 | 2001-12-04 | New Horizons Diagnostics Corporation | Use of bacterial phage associated lysing enzymes for treating streptococcal infections of the upper respiratory tract |
US20020136712A1 (en) * | 1997-10-31 | 2002-09-26 | Fischetti Vincent | Bacterial phage associated lysing enzymes for the prophylactic and therapeutic treatment of colonization and infections caused by streptococcus pneumoniae |
US20030129147A1 (en) * | 1997-10-31 | 2003-07-10 | Vincent Fischetti | Use of bacterial phage associated lysing proteins for treating bacterial dental caries |
US6248324B1 (en) | 1997-10-31 | 2001-06-19 | Vincent Fischetti | Bacterial phage associated lysing enzymes for treating dermatological infections |
US20030129146A1 (en) * | 1997-10-31 | 2003-07-10 | Vincent Fischetti | The use of bacterial phage associated lysing proteins for treating bacterial dental caries |
US6264945B1 (en) | 1997-10-31 | 2001-07-24 | Vincent A Fischetti | Parenteral use of bacterial phage associated lysing enzymes for the therapeutic treatment of bacterial infections |
US6432444B1 (en) * | 1997-10-31 | 2002-08-13 | New Horizons Diagnostics Corp | Use of bacterial phage associated lysing enzymes for treating dermatological infections |
US6406692B1 (en) | 1997-10-31 | 2002-06-18 | New Horizons Diagnostics Corp | Composition for treatment of an ocular bacterial infection |
US7232576B2 (en) | 1997-10-31 | 2007-06-19 | New Horizons Diagnostics Corp | Throat lozenge for the treatment of Streptococcus Group A |
US6056954A (en) * | 1997-10-31 | 2000-05-02 | New Horizons Diagnostics Corp | Use of bacterial phage associated lysing enzymers for the prophylactic and therapeutic treatment of various illnesses |
US6752988B1 (en) * | 2000-04-28 | 2004-06-22 | New Horizons Diagnostic Corp | Method of treating upper resiratory illnesses |
US6335012B1 (en) | 1997-10-31 | 2002-01-01 | Vincent Fischetti | Use of bacterial phage associated lysing enzymes for treating bacterial infections of the mouth and teeth |
US20020127215A1 (en) * | 1999-09-14 | 2002-09-12 | Lawrence Loomis | Parenteral use of bacterial phage associated lysing enzymes for the therapeutic treatment of bacterial infections |
US7063837B2 (en) * | 1999-09-14 | 2006-06-20 | New Horizons Diagnostics Corp | Syrup composition containing phage associated lytic enzymes |
AU2001259205A1 (en) * | 2000-04-28 | 2001-11-12 | New Horizons Diagnostic Corporation | The use of bacterial phage associated lysing enzymes for treating various illnesses |
US6395504B1 (en) | 2000-09-01 | 2002-05-28 | New Horizons Diagnostics Corp. | Use of phage associated lytic enzymes for the rapid detection of bacterial contaminants |
CA2427928A1 (en) * | 2000-11-02 | 2002-12-27 | New Horizons Diagnostics Corporation | The use of bacterial phage associated lytic enzymes to prevent food poisoning |
US20030018009A1 (en) * | 2001-06-20 | 2003-01-23 | Collins Douglas A. | Adenosyl-cobalamin fortified compositions |
US20040213765A1 (en) * | 2001-07-13 | 2004-10-28 | Vincent Fischetti | Use of bacterial phage associated lytic enzymes to prevent food poisoning |
CA2461647C (en) * | 2001-09-27 | 2012-01-24 | Gangagen, Inc. | Lysin-deficient bacteriophages having reduced immunogenicity |
US6759229B2 (en) * | 2001-12-18 | 2004-07-06 | President & Fellows Of Harvard College | Toxin-phage bacteriocide antibiotic and uses thereof |
CA2495295A1 (en) * | 2002-08-29 | 2004-03-11 | The Uab Research Foundation | Group b streptococcal phage lysin |
US20050129711A1 (en) * | 2002-11-14 | 2005-06-16 | Janakiraman Ramachandran | Incapacitated whole-cell immunogenic bacterial compositions produced by recombinant expression |
CA2508796A1 (en) * | 2002-12-10 | 2004-06-24 | Biosynexus Incorporated | Topical anti-infective formulations |
CA2513571A1 (en) * | 2003-01-16 | 2004-08-05 | New Horizons Diagnostics Corporation | The use of bacterial phage-associated lysing proteins for preventing and treating bacterial infections in humans, animals and fowl |
JP2007533606A (en) * | 2003-08-13 | 2007-11-22 | キューエルティー・ユーエスエイ・インコーポレーテッド | Emulsifying composition containing dapsone |
US20060204526A1 (en) * | 2003-08-13 | 2006-09-14 | Lathrop Robert W | Emulsive composition containing Dapsone |
US7569223B2 (en) * | 2004-03-22 | 2009-08-04 | The Rockefeller University | Phage-associated lytic enzymes for treatment of Streptococcus pneumoniae and related conditions |
CN1315532C (en) * | 2004-10-19 | 2007-05-16 | 上海新药研究开发中心 | Compound lysoamidase spray agent and preparing method |
RU2407751C2 (en) | 2004-10-27 | 2010-12-27 | Юниверсити Оф Денвер | Adrenocorticotropic hormone analogues and related methods |
US20060271262A1 (en) * | 2005-05-24 | 2006-11-30 | Mclain Harry P Iii | Wireless agricultural network |
US8389469B2 (en) * | 2005-06-06 | 2013-03-05 | The Rockefeller University | Bacteriophage lysins for Bacillus anthracis |
US7582291B2 (en) * | 2005-06-30 | 2009-09-01 | The Rockefeller University | Bacteriophage lysins for Enterococcus faecalis, Enterococcus faecium and other bacteria |
US8105585B2 (en) * | 2005-08-24 | 2012-01-31 | The Rockefeller Universtiy | Ply-GBS mutant lysins |
US20070116749A1 (en) * | 2005-11-21 | 2007-05-24 | Grossman Leonard D | Method for treatment of cellulitis |
KR100781669B1 (en) * | 2006-06-20 | 2007-12-03 | 주식회사 인트론바이오테크놀로지 | Bacteriophage having killing activity specific to staphylococcus aureus |
KR100759988B1 (en) * | 2006-08-04 | 2007-09-19 | 주식회사 인트론바이오테크놀로지 | Antimicrobial protein specific to staphylococcus aureus |
KR100910961B1 (en) * | 2007-09-13 | 2009-08-05 | 주식회사 인트론바이오테크놀로지 | Bacteriophage or Lytic Protein Derived From the Bacteriophage Which Effective For Treatment of Staphylococcus aureus Biofilm |
EP2249765B1 (en) | 2008-02-27 | 2019-11-13 | Allergan, Inc. | Dapsone to treat rosacea |
WO2009114520A2 (en) * | 2008-03-10 | 2009-09-17 | Pharmain Corporation | Compositions for treatment with metallopeptidases, methods of making and using the same |
US20100029781A1 (en) * | 2008-06-04 | 2010-02-04 | Morris Jerome A | Methods for preparation of anti-acne formulation and compositions prepared thereby |
WO2009150171A1 (en) * | 2008-06-10 | 2009-12-17 | Profos Ag | Method of treatment of inflammatory diseases |
US8043613B2 (en) * | 2009-02-12 | 2011-10-25 | Intron Biotechnology, Inc. | Podoviriedae bacteriophage having killing activity specific to Staphylococcus aureus |
US8377866B2 (en) * | 2009-02-12 | 2013-02-19 | Intron Biotechnology, Inc. | Antimicrobial protein derived from Podoviridae bacteriophage specific to Staphylococcus aureus |
CN102198265B (en) * | 2011-03-22 | 2013-08-28 | 上海交通大学 | Method for degrading streptococcus suis biofilm by applying phage lyase |
JP6139509B2 (en) | 2011-04-21 | 2017-05-31 | ザ ロックフェラー ユニバーシティ | Streptococcus bacteriophage lysine for detecting and treating gram positive bacteria |
EP2764093B1 (en) | 2011-10-05 | 2018-04-18 | The Rockefeller University | Dimeric bacteriophage lysins |
US9757328B2 (en) * | 2012-03-29 | 2017-09-12 | Murami Pharma, Inc. | Lysozyme gel formulations |
CA3187222A1 (en) | 2012-05-09 | 2013-11-14 | Contrafect Corporation | Biofilm prevention, disruption and treatment with bacteriophage lysin |
IL235527B2 (en) | 2012-05-09 | 2023-10-01 | Contrafect Corp | Bacteriophage lysin and antibiotic combinations against gram positive bacteria |
CN102961324B (en) * | 2012-11-16 | 2014-06-25 | 沈阳药科大学 | Gel for lysozyme eye and preparation method thereof |
US11446236B2 (en) | 2015-08-05 | 2022-09-20 | Cmpd Licensing, Llc | Topical antimicrobial compositions and methods of formulating the same |
US11793783B2 (en) | 2015-08-05 | 2023-10-24 | Cmpd Licensing, Llc | Compositions and methods for treating an infection |
US11173163B2 (en) * | 2015-08-05 | 2021-11-16 | Cmpd Licensing, Llc | Topical antimicrobial compositions and methods of formulating the same |
US11684567B2 (en) | 2015-08-05 | 2023-06-27 | Cmpd Licensing, Llc | Compositions and methods for treating an infection |
CA3023730A1 (en) | 2016-05-12 | 2017-11-16 | Contrafect Corporation | Broth microdilution method for evaluating and determining minimal inhibitory concentration of antibacterial polypeptides |
US20210161870A1 (en) | 2017-06-07 | 2021-06-03 | Arcutis Biotherapeutics, Inc. | Roflumilast formulations with an improved pharmacokinetic profile |
US20200155524A1 (en) | 2018-11-16 | 2020-05-21 | Arcutis, Inc. | Method for reducing side effects from administration of phosphodiesterase-4 inhibitors |
US11129818B2 (en) | 2017-06-07 | 2021-09-28 | Arcutis Biotherapeutics, Inc. | Topical roflumilast formulation having improved delivery and plasma half life |
US12011437B1 (en) | 2017-06-07 | 2024-06-18 | Arcutis Biotherapeutics, Inc. | Roflumilast formulations with an improved pharmacokinetic profile |
US12042487B2 (en) | 2018-11-16 | 2024-07-23 | Arcutis Biotherapeutics, Inc. | Method for reducing side effects from administration of phosphodiesterase-4 inhibitors |
AU2019281888B2 (en) | 2018-06-04 | 2024-05-02 | Arcutis Biotherapeutics, Inc. | Method and formulation for improving roflumilast skin penetration lag time |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4062941A (en) * | 1975-06-11 | 1977-12-13 | G. D. Searle & Co. Ltd. | Method for treating fungal infections using cell lytic enzymes |
FR2357246A1 (en) * | 1976-07-09 | 1978-02-03 | Martinez Gerard | Antiinflammatory and analgesic medicaments - contg. hydrolase, thyroxine and adrenalin and applied topically |
RU2064299C1 (en) * | 1993-12-13 | 1996-07-27 | Всероссийский научно-исследовательский институт ветеринарной санитарии, гигиены и экологии | Preparation for medical treatment of mastitis of horned cattle |
US5604109A (en) * | 1986-10-08 | 1997-02-18 | New Horizons Diagnostics Corporation | Method for exposing Group A streptococcal antigens and an improved diagnostic test for the identification of Group A streptococci |
RU2103991C1 (en) * | 1995-08-14 | 1998-02-10 | Научно-производственное объединение "Иммунопрепарат" | Agent for treatment of streptococcal illness |
US5997862A (en) * | 1997-10-31 | 1999-12-07 | New Horizons Diagnostics Corporation | Therapeutic treatment of group A streptococcal infections |
-
1999
- 1999-09-14 US US09/395,637 patent/US6056955A/en not_active Expired - Fee Related
-
2000
- 2000-01-20 CA CA002383038A patent/CA2383038A1/en not_active Abandoned
- 2000-01-20 EP EP00904412A patent/EP1212079A1/en not_active Withdrawn
- 2000-01-20 IL IL14864100A patent/IL148641A0/en unknown
- 2000-01-20 AU AU26175/00A patent/AU2617500A/en not_active Abandoned
- 2000-01-20 JP JP2001523023A patent/JP2003509379A/en active Pending
- 2000-01-20 WO PCT/US2000/001237 patent/WO2001019391A1/en not_active Application Discontinuation
- 2000-01-20 CN CN00815668A patent/CN1390135A/en active Pending
- 2000-01-20 BR BR0014512-2A patent/BR0014512A/en not_active IP Right Cessation
- 2000-01-20 MX MXPA02002895A patent/MXPA02002895A/en not_active IP Right Cessation
- 2000-01-20 NZ NZ518059A patent/NZ518059A/en unknown
-
2002
- 2002-03-22 ZA ZA200202306A patent/ZA200202306B/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4062941A (en) * | 1975-06-11 | 1977-12-13 | G. D. Searle & Co. Ltd. | Method for treating fungal infections using cell lytic enzymes |
FR2357246A1 (en) * | 1976-07-09 | 1978-02-03 | Martinez Gerard | Antiinflammatory and analgesic medicaments - contg. hydrolase, thyroxine and adrenalin and applied topically |
US5604109A (en) * | 1986-10-08 | 1997-02-18 | New Horizons Diagnostics Corporation | Method for exposing Group A streptococcal antigens and an improved diagnostic test for the identification of Group A streptococci |
RU2064299C1 (en) * | 1993-12-13 | 1996-07-27 | Всероссийский научно-исследовательский институт ветеринарной санитарии, гигиены и экологии | Preparation for medical treatment of mastitis of horned cattle |
RU2103991C1 (en) * | 1995-08-14 | 1998-02-10 | Научно-производственное объединение "Иммунопрепарат" | Agent for treatment of streptococcal illness |
US5997862A (en) * | 1997-10-31 | 1999-12-07 | New Horizons Diagnostics Corporation | Therapeutic treatment of group A streptococcal infections |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Week 9715, Derwent World Patents Index; AN 1997-163380, XP002141111 * |
DATABASE WPI Week 9838, Derwent World Patents Index; AN 1988-444917, XP002141110 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005528372A (en) * | 2002-03-26 | 2005-09-22 | バイオシネクサス インコーポレイテッド | Antibacterial polymer composite |
US7582729B2 (en) * | 2003-05-15 | 2009-09-01 | The Rockefeller University | Nucleic acids and polypeptides of C1 bacteriophage and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
CA2383038A1 (en) | 2001-03-22 |
IL148641A0 (en) | 2002-09-12 |
ZA200202306B (en) | 2002-12-24 |
US6056955A (en) | 2000-05-02 |
CN1390135A (en) | 2003-01-08 |
EP1212079A1 (en) | 2002-06-12 |
AU2617500A (en) | 2001-04-17 |
NZ518059A (en) | 2003-09-26 |
MXPA02002895A (en) | 2003-10-14 |
JP2003509379A (en) | 2003-03-11 |
BR0014512A (en) | 2002-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6056955A (en) | Topical treatment of streptococcal infections | |
US6238661B1 (en) | Use of bacterial phage associated lysing enzymes for treating various illnesses | |
US6254866B1 (en) | Use of phage associated lytic enzymes for treating bacterial infections of the digestive tract | |
US6277399B1 (en) | Composition incorporating bacterial phage associated lysing enzymes for treating dermatological infections | |
US6248324B1 (en) | Bacterial phage associated lysing enzymes for treating dermatological infections | |
US6335012B1 (en) | Use of bacterial phage associated lysing enzymes for treating bacterial infections of the mouth and teeth | |
US6432444B1 (en) | Use of bacterial phage associated lysing enzymes for treating dermatological infections | |
US6326002B1 (en) | Use of bacterial phage associated lysing enzymes for treating streptococcal infections of the upper respiratory tract | |
US6428784B1 (en) | Vaginal suppository for treating group B Streptococcus infection | |
US7014850B2 (en) | Nasal spray for treating streptococcal infections | |
US6423299B1 (en) | Composition for treatment of a bacterial infection of an upper respiratory tract | |
US6399097B1 (en) | Composition for treatment of a bacterial infection of the digestive tract | |
US6399098B1 (en) | Composition for treating dental caries caused by streptococcus mutans | |
US7232576B2 (en) | Throat lozenge for the treatment of Streptococcus Group A | |
AU2005232261A1 (en) | Topical treatment of streptococcal infections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 148641 Country of ref document: IL Ref document number: 2000904412 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2383038 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2001 523023 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2002/002895 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 26175/00 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002/02306 Country of ref document: ZA Ref document number: 200202306 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 518059 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 008156689 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2000904412 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 518059 Country of ref document: NZ |
|
WWG | Wipo information: grant in national office |
Ref document number: 518059 Country of ref document: NZ |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000904412 Country of ref document: EP |