WO2001018830A1 - Thin-film capacitor - Google Patents

Thin-film capacitor Download PDF

Info

Publication number
WO2001018830A1
WO2001018830A1 PCT/EP2000/008319 EP0008319W WO0118830A1 WO 2001018830 A1 WO2001018830 A1 WO 2001018830A1 EP 0008319 W EP0008319 W EP 0008319W WO 0118830 A1 WO0118830 A1 WO 0118830A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin
film capacitor
individual layers
substrate
layer
Prior art date
Application number
PCT/EP2000/008319
Other languages
German (de)
French (fr)
Inventor
Roland Slowak
Susanne Hoffmann
Ralf Liedtke
Rainer Waser
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2001018830A1 publication Critical patent/WO2001018830A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers

Definitions

  • the present invention relates to a thin film capacitor, in particular for use in electrical and microelectronic circuits.
  • Thin-film capacitors are very often required in electrical and microelectronic circuits as passive components for diverse applications. For example, they are used for filtering, decoupling, stabilizing DC voltage supplies, etc. In addition to high capacitance values and low losses, a low temperature dependence of the dielectric constant ⁇ r (T) is required for most applications.
  • Ceramic multilayer thin-film capacitors are currently used as discrete components for these fields of application, which have been generally known for many years. As shown in FIG. 6, for example, these capacitors have a ceramic composite 10 produced by lamination, in which metallic inner electrode layers 11 are embedded. These metallic inner electrode layers 11 are alternately connected to head contacts 12, so that n-1 plate capacitors are formed in the case of n inner electrode layers and are connected in parallel. In this way, extraordinarily high capacity densities achieved, due to a large number of individual capacitors, a small electrode spacing, which is currently around 10 ⁇ m, and dielectric ceramics with high dielectric constants, which depending on the type of capacitor can be over 10,000, but only in connection with poor temperature characteristics.
  • ceramics from the mixed crystal series Sr (Ti 3 Zr) 0 3 (STZ), tiger phases from the BaO-Ti0 2 system , phases of the material systems ZrO 2 - TiO 2 -Sn0 2 (ZTS) and materials from the system Nd 2 0 3 -BaO-Ti0 2 (NBT) are used.
  • the almost temperature-independent dielectric constant of these systems have values up to about 100.
  • BaTi0 3 has relatively high values of the dielectric constant in the ferroelectric range below the Curie point T c . Only in a very small temperature interval is there a relatively flat temperature profile. An expansion of the flat temperature characteristic is only possible if two or more ferroelectric phases exist side by side in the ceramic, which must not mix with one another.
  • Such multilayer capacitors are manufactured using powder-based dispersions, which are drawn out to form green foils, and by screen printing techniques for the metal electrodes.
  • the manufacturing temperatures for the standard pen are here above 1000 ° C.
  • the dimensions for multilayer capacitors are approximately 0.5 x 1.0 x 0.5 mm 3 .
  • the known discrete ceramic multilayer capacitors with a flat ⁇ r (T) characteristic have the disadvantage that the dielectric layer thickness cannot be easily reduced to less than 1 ⁇ m with the aid of powder-based ceramic techniques. Furthermore, the components cannot be integrated with the usual techniques of semiconductor manufacturing on semiconductor chips, since the films and screen printing technology are in no way compatible with the semiconductor technologies. Furthermore, the conventional powder-based processes with multiphase, ie heterogeneous ferroelectric materials in thin film technology cannot be used for integrated capacitors.
  • the object of the present invention is therefore to create a thin-film capacitor which has a flat ⁇ r (T) characteristic, ie a temperature-stable dielectric constant, and which can be produced using thin-film processes in semiconductor technology.
  • T flat ⁇ r
  • a thin-film capacitor with a substrate, an oxide ceramic layer arranged thereon, which consists of a plurality of function-graded individual layers made of at least two materials of high dielectric, and an electrode arrangement which is arranged on the substrate opposite side of the oxide ceramic layer is provided.
  • the object is achieved by a thin-film capacitor with a substrate which carries a bottom electrode, an oxide ceramic layer arranged thereon, which has a plurality of function-graded individual layers made of at least two materials of high dielectric and which contacts the bottom electrode, and an electrode which is on the substrate opposite side of the oxide ceramic layer is provided.
  • the invention is therefore based on the consideration of providing individual layers between the substrate and the electrodes which form a multiplicity of plate capacitors which are connected in parallel or in series by the selected electrode arrangement.
  • the parallel connection of the individual layers is realized by the deposition of interdigital electrodes on the oxide-ceramic layer, the oxide-ceramic layer being deposited on an electrically insulating substrate.
  • the series connection of the individual layers is achieved by the deposition of the oxide ceramic layer over a base electrode on a semiconductor substrate and the deposition of an electrode on the layer.
  • the bottom electrode serves as the back electrode of the capacitor structure.
  • the individual layers each consist of at least two materials with the desired high dielectric constant, the individual layers being functionally graded, ie the material composition of the individual layers changes.
  • the die- Electricity number ⁇ r of the individual layers each show different temperature dependency characteristics. Because the individual layers are connected in parallel or in series, their curves of dielectric are superimposed as a function of the temperature, with the result that the dielectric constant of the oxide-ceramic thin layer composed of the function-graded individual layers is not very temperature-dependent, ie the oxide-ceramic thin layer is a flat ⁇ r (T) characteristic.
  • Suitable materials for the individual layers of the oxide-ceramic thin layer are, for example, strontium titanate (SrTi0 3 ), barium strontium titanate (Ba 1 _ x Sr x Ti0 3 ) and lead titanate (PbTi0 3 ), the function-graded individual layers then each consisting of at least two of these materials with changing composition.
  • the individual layers of the oxide ceramic layer can also consist essentially of barium titanate zirconate (Ba (Ti 1 _ y Zr y ) 0 3 ) and lead zirconate titanate (Pb (Zr 1. Y Ti y ) 0 3 ).
  • the grading can take place in such a way that the phase transition temperature (Curie temperature) of the individual layers close to the substrate is lower than the phase transition temperature of the individual layers remote from the substrate, and in particular the individual layers are arranged such that a single layer close to the substrate has a low has a lower phase transition temperature than the adjacent single layer which is spaced further from the substrate.
  • the reverse layer sequence is also possible.
  • the individual layer close to the substrate can consist essentially, in particular 100%, of strontium titanate and the barium portion in the barium strontium titanate individual layers deposited above it with increasing Increase distance from the substrate, in which case the single layer furthest away from the substrate can consist of 100% barium titanate.
  • the grading can be done in such a way that the material composition changes in uniform steps from single layer to individual layer. A different, non-linear grading profile is also possible.
  • the individual layers of the oxide-ceramic thin layer can be produced by physical processes such as laser ablation, magnetron sputtering processes or also by chemical processes such as gas phase deposition or by wet chemical coating, ie. H. Manufacture techniques that are common in semiconductor manufacturing.
  • FIG. 1 shows a schematic representation of a thin-film capacitor with the parallel connection of the individual layers in accordance with the present invention together with the associated circuit diagram
  • FIG. 2 shows the thin-film capacitor from FIG. 1 in plan view
  • Figure 3 is a schematic representation of a thin film capacitor with a series connection of the individual layers according to the present invention together with the associated circuit diagram
  • FIG. 4 shows an enlarged representation of the layer structure of the thin-film capacitor according to FIGS. 1 and 3,
  • FIG. 5 is a diagram showing the temperature dependence of the relative dielectric ( ⁇ r ) of different materials.
  • Figure 6 is a diagram showing the temperature dependence of the relative change in capacitance with respect to room temperature of different materials and Figure 7 is a schematic view of a discrete ceramic multilayer capacitor according to the prior art.
  • This thin-film capacitor 1 has a substrate 2 which is made of an electrically insulating material such as Al 2 O 3 , sapphire or the like. there is an oxide ceramic thin layer 3 arranged thereon and an interdigital electrode arrangement 4 which is provided on the side of the oxide ceramic thin layer 3 opposite the substrate 2.
  • the oxide-ceramic thin layer 3 is formed from a multiplicity of individual layers 3a, 3b, 3c ... which each extend parallel to the substrate 2 and consist of high-dielectric materials, so that the individual layers 3a, 3b, 3c ... of the oxide-ceramic thin layer 3 Form plate capacitors, which, as indicated in Figure 1, are connected in parallel.
  • the individual layers 3a, 3b, 3c each consist of at least two materials of high dielectric and are function-graded, ie their composition changes with increasing distance from the substrate 2, as is shown by way of example in FIG. 3.
  • An oxide-ceramic thin-layer arrangement 3 consisting of 11 individual layers 3a, 3b ..., 31 is shown there, which consists of the material systems strontium titanate (SrTi0 3 ) and barium titanate (BaTi0 3 ) exist.
  • the oxide ceramic layers have total layer thicknesses of approximately 170 to 190 nm.
  • the individual layer 3a coming into contact with the substrate 2 consists entirely of stronium titanate, and the strontium portion in the barium strontium titanate layers decreases from layer to layer in favor of a correspondingly growing portion of barium, ie Strontium titanate is no longer contained in the 11th individual layer 31 coming into contact with the interdigital electrode arrangement 4.
  • Figure 4 shows the temperature dependence of the dielectric constant of pure Ba 0 _ 5 Sr 0 5 TiO 3 and Ba ⁇ i0 3 im
  • V rms 10 kHz
  • the curves of B o, 5 Sr o, 5 T '- 0 3 and BaTi0 3 have pronounced maxima, while the graded material has a flat course, ie a low temperature dependence.
  • the characteristic curve of the graded material can be set by appropriate selection of suitable material systems and by the composition of the individual layers.
  • the composition can also consist, for example, of the material systems strontium titanate, barium titanate, lead titanate with suitable doping.
  • a material system barium titanate zirconate (Ba (Ti y Zr y ) 0 3 ) lead zirconate titanate (Pb (Z ⁇ y i y JO j ) with suitable doping is also conceivable.
  • the individual layers of the oxide-ceramic thin layer 3 can be produced by conventional physical methods such as laser ablation, magnetron sputtering methods etc. or by chemical methods such as gas phase deposition or wet chemical coating, as are common in semiconductor technology.
  • the interdigital electrode arrangement can be applied to the oxide-ceramic thin layer, for example, by a combination of sputtering and the use of lift-off photolithography.
  • FIG. 3 shows a further embodiment of a thin-film capacitor 1 according to the present invention in a schematic, enlarged representation.
  • This thin-film capacitor 1 has a semiconductor substrate 2 which carries a bottom electrode 5.
  • An oxide-ceramic thin layer 3 is attached to the bottom electrode. orders, on which in turn an electrode 4 is provided.
  • the oxide ceramic thin layer 3 is formed in the manner described above from a multiplicity of individual layers 3a, 3b, 3c ...., each extending parallel to the substrate 2 and consisting of highly dielectric materials, so that the individual layers 3a, 3b, 3c ... of the oxide ceramic thin layer 3 form plate capacitors which, as indicated in FIG. 3, are connected in series with one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The invention relates to a thin-film capacitor, comprising an electrically insulating substrate (2), a ceramic-oxide layer (3) located on the latter which has a plurality of functionally graduated individual layers (3a, 3b, 3c...), consisting of at least two highly dielectric materials and an arrangement (4) of interdigital electrodes which is located on the opposite side of the ceramic-oxide layer (3) to the substrate (2).

Description

Beschreibung:Description:
Dünnschichtkondensatorthin film capacitor
Die vorliegende Erfindung betrifft einen Dünnschichtkondensator, insbesondere für den Einsatz in elektrischen und mikroelektronischen Schaltkreisen.The present invention relates to a thin film capacitor, in particular for use in electrical and microelectronic circuits.
Dünnschichtkondensatoren werden in elektrischen und mikroelektronischen Schaltkreisen sehr häufig als passive Bauelemente für vielfältige Anwendungen benötigt. So werden sie beispielsweise zum Filtern, Entkoppeln, Stabilisieren von Gleichspannungsversorgungen etc. eingesetzt. Neben hohen Kapazitätswerten und niedrigen Verlusten ist vor allem eine geringe Temperaturabhängigkeit der Dielek- trizitätszahl εr(T) für die meisten Anwendungen erforderlich.Thin-film capacitors are very often required in electrical and microelectronic circuits as passive components for diverse applications. For example, they are used for filtering, decoupling, stabilizing DC voltage supplies, etc. In addition to high capacitance values and low losses, a low temperature dependence of the dielectric constant ε r (T) is required for most applications.
Derzeit werden für diese Einsatzgebiete keramische Mehrlagen-Dünnschichtkondensatoren als diskrete Bauelemente verwendet, die seit vielen Jahren allgemein bekannt sind. Diese Kondensatoren weisen, wie beispielsweise in Figur 6 dargestellt ist, einen durch Laminierung erzeugten Keramikverbund 10 auf, in den metallische Innenelektrodenla- gen 11 eingebettet sind. Diese metallischen Innenelektro- denlagen 11 sind abwechselnd mit Kopfkontakten 12 verbunden, so daß sich bei n Innenelektrodenlagen n-1 Plattenkondensatoren bilden, die parallelgeschaltet sind. Auf diesem Weg werden außerordentlich hohe Kapazitätsdichten erreicht, und zwar aufgrund einer großen Anzahl von Einzelkondensatoren, eines geringen Elektrodenabstands, der heute bei etwa 10 μm liegt, und dielektrischen Keramiken mit hohen Dielektrizitätszahlen, die je nach Kondensatortyp über 10.000 liegen können, dies allerdings nur in Verbindung mit einer schlechten Temperaturcharakteristik.Ceramic multilayer thin-film capacitors are currently used as discrete components for these fields of application, which have been generally known for many years. As shown in FIG. 6, for example, these capacitors have a ceramic composite 10 produced by lamination, in which metallic inner electrode layers 11 are embedded. These metallic inner electrode layers 11 are alternately connected to head contacts 12, so that n-1 plate capacitors are formed in the case of n inner electrode layers and are connected in parallel. In this way, extraordinarily high capacity densities achieved, due to a large number of individual capacitors, a small electrode spacing, which is currently around 10 μm, and dielectric ceramics with high dielectric constants, which depending on the type of capacitor can be over 10,000, but only in connection with poor temperature characteristics.
Bei hohen Ansprüchen an die Temperaturstabilität der Die- lektrizitätszahl εr und niedrigen Verlusten werden u.a. Keramiken der Mischkristallreihe Sr (Ti3Zr )03(STZ ) , Ti- reiche Phasen aus dem System BaO-Ti02, Phasen der Materialsysteme ZrO2-TiO2-Sn02(ZTS) und Materialien aus dem System Nd203-BaO-Ti02(NBT) verwendet. Die nahezu temperaturunabhängigen Dielektrizitätszahlen dieser Systeme weisen Werte bis etwa 100 auf.In the case of high demands on the temperature stability of the dielectric constant ε r and low losses, ceramics from the mixed crystal series Sr (Ti 3 Zr) 0 3 (STZ), tiger phases from the BaO-Ti0 2 system , phases of the material systems ZrO 2 - TiO 2 -Sn0 2 (ZTS) and materials from the system Nd 2 0 3 -BaO-Ti0 2 (NBT) are used. The almost temperature-independent dielectric constant of these systems have values up to about 100.
Relativ hohe Werte der Dielektrizitätszahl weist BaTi03 im ferroelektrischen Bereich unterhalb des Curiepunktes Tc auf. Lediglich in einem sehr kleinen Temperaturintervall liegt ein relativ flacher Temperaturverlauf vor. Eine Ausweitung der flachen Temperaturcharakteristik ist lediglich möglich, wenn in der Keramik zwei oder mehrere ferroelektrische Phasen nebeneinander existieren, die sich untereinander nicht mischen dürfen.BaTi0 3 has relatively high values of the dielectric constant in the ferroelectric range below the Curie point T c . Only in a very small temperature interval is there a relatively flat temperature profile. An expansion of the flat temperature characteristic is only possible if two or more ferroelectric phases exist side by side in the ceramic, which must not mix with one another.
Solche Vielschichtkondensatoren werden über pulverbasierte Dispersionen, die zu grünen Folien ausgezogen werden, und durch Siebdrucktechniken für die Metallelektroden gefertigt. Die Herstellungstemperaturen für die Standardty- pen liegen hier über 1000 °C. Die Abmessungen für Viel- schichtkondensatoren liegen bei etwa 0,5 x 1,0 x 0,5 mm3.Such multilayer capacitors are manufactured using powder-based dispersions, which are drawn out to form green foils, and by screen printing techniques for the metal electrodes. The manufacturing temperatures for the standard pen are here above 1000 ° C. The dimensions for multilayer capacitors are approximately 0.5 x 1.0 x 0.5 mm 3 .
Die bekannten diskreten keramischen Vielschichtkondensa- toren mit flacher εr(T) -Charakteristik haben den Nachteil, daß sich die dielektrische Schichtdicke mit Hilfe der pulverbasierten Keramiktechniken nicht leicht unter 1 μm reduzieren läßt. Desweiteren lassen sich die Bauelemente nicht mit den üblichen Techniken der Halbleiterfertigung auf Halbleiterchips integrieren, da die Folien und Siebdrucktechnik in keiner Weise kompatibel zu den Halbleitertechnologien ist. Ferner sind die konventionellen pulverbasierten Prozesse mit mehrphasigen, d. h. heterogenen ferroelektrischen Materialien in der Dünnschichttechnologie für integrierte Kondensatoren nicht anwendbar.The known discrete ceramic multilayer capacitors with a flat ε r (T) characteristic have the disadvantage that the dielectric layer thickness cannot be easily reduced to less than 1 μm with the aid of powder-based ceramic techniques. Furthermore, the components cannot be integrated with the usual techniques of semiconductor manufacturing on semiconductor chips, since the films and screen printing technology are in no way compatible with the semiconductor technologies. Furthermore, the conventional powder-based processes with multiphase, ie heterogeneous ferroelectric materials in thin film technology cannot be used for integrated capacitors.
Aufgabe der vorliegenden Erfindung ist es daher, einen Dünnschichtkondensator zu schaffen, der eine flache εr(T)-Charakteristik, d. h. eine temperaturstabile Die- lektrizitätszahl besitzt, und der über Dünnschichtverfahren in der Halbleitertechnologie herstellbar ist.The object of the present invention is therefore to create a thin-film capacitor which has a flat ε r (T) characteristic, ie a temperature-stable dielectric constant, and which can be produced using thin-film processes in semiconductor technology.
Diese Aufgabe ist erfindungsgemäß zunächst gelöst durch einen Dünnschichtkondensator mit einem Substrat, einer darauf angeordneten oxidkeramischen Schicht, die aus einer Mehrzahl von funktionsgradierten Einzelschichten aus wenigstens zwei Materialien hoher Dielektrizität besteht, und einer Elektrodenanordnung, die auf der dem Substrat gegenüberliegenden Seite der oxidkeramischen Schicht vorgesehen ist. Außerdem ist die Aufgabe gelöst durch einen Dünnschichtkondensator mit einem Substrat, der eine Bodenelektrode trägt, einer darauf angeordneten oxidkeramischen Schicht, die eine Mehrzahl von funktionsgradierten Einzelschichten aus wenigstens zwei Materialien hoher Dielektrizität aufweist und die Bodenelektrode kontaktiert, und einer Elektrode, die auf der dem Substrat gegenüberliegenden Seite der oxidkeramischen Schicht vorgesehen ist.This object is first achieved according to the invention by a thin-film capacitor with a substrate, an oxide ceramic layer arranged thereon, which consists of a plurality of function-graded individual layers made of at least two materials of high dielectric, and an electrode arrangement which is arranged on the substrate opposite side of the oxide ceramic layer is provided. In addition, the object is achieved by a thin-film capacitor with a substrate which carries a bottom electrode, an oxide ceramic layer arranged thereon, which has a plurality of function-graded individual layers made of at least two materials of high dielectric and which contacts the bottom electrode, and an electrode which is on the substrate opposite side of the oxide ceramic layer is provided.
Der Erfindung liegt somit die Überlegung zugrunde, zwischen dem Substrat und den Elektroden Einzelschichten vorzusehen, die eine Vielzahl von Plattenkondensatoren bilden, welche durch die gewählte Elektrodenanordnung parallel bzw. in Reihe geschaltet sind. Die Parallelschaltung der Einzelschichten wird durch die Abscheidung interdigitaler Elektroden auf der oxidkeramischen Schicht realisiert, wobei die oxidkeramische Schicht auf einem elektrisch isolierendem Substrat abgeschieden wird. Die Reihenschaltung der Einzelschichten wird durch die Abscheidung der oxidkeramischen Schicht über einer Bodenelektrode auf einem Halbleitersubstrat und der Abscheidung einer Elektrode auf der Schicht erreicht. Die Bodenelektrode dient hierbei als Rückelektrode der Kondensatorstruktur. Die Einzelschichten bestehen dabei jeweils aus wenigstens zwei Materialien mit der gewünschten hohen Dielektrizitätszahl, wobei die Einzelschichten funktions- gradiert sind, d. h. sich die Materialzusammensetzung der Einzelschichten ändert. Dies hat zur Folge, daß die Die- lektrizitätszahl εr der Einzelschichten jeweils unterschiedliche Temperaturabhängigkeitscharakteristiken zeigen. Aufgrund der Parallelschaltung bzw. Reihenschaltung der Einzelschichten überlagern sich deren Kurven der Die- lektrizität in Abhängigkeit von der Temperatur mit der Folge, daß die Dielektrizitätszahl der aus den funktions- gradierten Einzelschichten zusammengesetzten oxidkeramischen Dünnschicht wenig temperaturabhängig ist, d. h. die oxidkeramische Dünnschicht eine flache εr(T) -Charakteristik besitzt.The invention is therefore based on the consideration of providing individual layers between the substrate and the electrodes which form a multiplicity of plate capacitors which are connected in parallel or in series by the selected electrode arrangement. The parallel connection of the individual layers is realized by the deposition of interdigital electrodes on the oxide-ceramic layer, the oxide-ceramic layer being deposited on an electrically insulating substrate. The series connection of the individual layers is achieved by the deposition of the oxide ceramic layer over a base electrode on a semiconductor substrate and the deposition of an electrode on the layer. The bottom electrode serves as the back electrode of the capacitor structure. The individual layers each consist of at least two materials with the desired high dielectric constant, the individual layers being functionally graded, ie the material composition of the individual layers changes. As a result, the die- Electricity number ε r of the individual layers each show different temperature dependency characteristics. Because the individual layers are connected in parallel or in series, their curves of dielectric are superimposed as a function of the temperature, with the result that the dielectric constant of the oxide-ceramic thin layer composed of the function-graded individual layers is not very temperature-dependent, ie the oxide-ceramic thin layer is a flat ε r (T) characteristic.
Als Materialien für die Einzelschichten der oxidkeramischen Dünnschicht sind beispielsweise Strontiumtitanat (SrTi03), Barium-Strontiumtitanat (Ba1_xSrxTi03) und Blei- titanat (PbTi03) geeignet, wobei die funktionsgradierten Einzelschichten dann jeweils aus wenigstens zwei dieser Materialien mit wechselnder Zusammensetzung bestehen.Suitable materials for the individual layers of the oxide-ceramic thin layer are, for example, strontium titanate (SrTi0 3 ), barium strontium titanate (Ba 1 _ x Sr x Ti0 3 ) and lead titanate (PbTi0 3 ), the function-graded individual layers then each consisting of at least two of these materials with changing composition.
Alternativ können die Einzelschichten der oxidkeramischen Schicht auch jeweils im wesentlichen aus Bariumtitanat- Zirkonat (Ba(Ti1_yZry)03) und Bleizirkonat-Titanat (Pb(Zr1.yTiy)03) bestehen.Alternatively, the individual layers of the oxide ceramic layer can also consist essentially of barium titanate zirconate (Ba (Ti 1 _ y Zr y ) 0 3 ) and lead zirconate titanate (Pb (Zr 1. Y Ti y ) 0 3 ).
Die Gradierung kann dabei jeweils so erfolgen, daß die Phasenübergangstemperatur (Curie-Temperatur) der sub- tratnahen Einzelschichten niedriger ist als die Phasenübergangstemperatur der substratfernen Einzelschichten, und insbesondere die Einzelschichten so angeordnet sind, daß eine substratnahe Einzelschicht jeweils eine niedri- gere Phasenübergangstemperatur als die angrenzende, weiter vom Substrat beabstandete Einzelschicht hat. Die umgekehrte Schichtfolge ist dabei auch möglich.The grading can take place in such a way that the phase transition temperature (Curie temperature) of the individual layers close to the substrate is lower than the phase transition temperature of the individual layers remote from the substrate, and in particular the individual layers are arranged such that a single layer close to the substrate has a low has a lower phase transition temperature than the adjacent single layer which is spaced further from the substrate. The reverse layer sequence is also possible.
Bestehen beispielsweise die Einzelschichten der oxidkeramischen Dünnschicht aus Materialien der Systeme Stronti- umtitanat und Bariumtitanat, so kann die substratnahe Einzelschicht im wesentlichen, insbesondere zu 100% aus Strontiumtitanat bestehen und der Bariumanteil in den darüber abgeschiedenen Barium-Strontium-titanat-Einzel- schichten mit zunehmendem Abstand von dem Substrat zunehmen, wobei dann die am weitesten vom Substrat entfernte Einzelschicht zu 100% aus Barium-Titanat bestehen kann. Die Gradierung kann dabei so erfolgen, daß sich die Materialzusammensetzung in gleichmäßigen Schritten von Einzelschicht zu Einzelschicht ändert. Ein anderes, nicht lineares Profil bezüglich der Gradierung ist auch möglich.If, for example, the individual layers of the oxide-ceramic thin layer consist of materials of the strontium titanate and barium titanate systems, the individual layer close to the substrate can consist essentially, in particular 100%, of strontium titanate and the barium portion in the barium strontium titanate individual layers deposited above it with increasing Increase distance from the substrate, in which case the single layer furthest away from the substrate can consist of 100% barium titanate. The grading can be done in such a way that the material composition changes in uniform steps from single layer to individual layer. A different, non-linear grading profile is also possible.
Die Einzelschichten der oxidkeramischen Dünnschicht lassen sich über physikalische Verfahren wie beispielsweise Laserablation, Magnetronsputterverfahren oder auch durch chemische Verfahren wie beispielsweise über Gasphasenab- scheidung oder durch naßchemische Beschichtung, d. h. Techniken, die in der Halbleiterfertigung üblich sind, herstellen.The individual layers of the oxide-ceramic thin layer can be produced by physical processes such as laser ablation, magnetron sputtering processes or also by chemical processes such as gas phase deposition or by wet chemical coating, ie. H. Manufacture techniques that are common in semiconductor manufacturing.
Hinsichtlich weiterer vorteilhafter Ausgestaltungen der Erfindung wird auf die Unteransprüche sowie die nachfolgende Beschreibung eines Ausführungsbeispiels unter Be- zugnahme auf die beiliegende Zeichnung verwiesen. In der Zeichnung zeigtWith regard to further advantageous embodiments of the invention, reference is made to the subclaims and the following description of an exemplary embodiment with reference to reference to the attached drawing. In the drawing shows
Figur 1 in schematischer Darstellung einen Dünnschichtkondensator mit der Parallelschaltung der Einzelschichten gemäß der vorliegenden Erfindung nebst zugehörigem Schaltbild,1 shows a schematic representation of a thin-film capacitor with the parallel connection of the individual layers in accordance with the present invention together with the associated circuit diagram,
Figur 2 den Dünnschichtkondensator aus Figur 1 in Draufsicht,FIG. 2 shows the thin-film capacitor from FIG. 1 in plan view,
Figur 3 in schematischer Darstellung einen Dünnschichtkondensator mit einer Reihenschaltung der Einzelschichten gemäß der vorliegenden Erfindung nebst zugehörigem SchaltbildFigure 3 is a schematic representation of a thin film capacitor with a series connection of the individual layers according to the present invention together with the associated circuit diagram
Figur 4 in vergrößerter Darstellung den Schichtaufbau des Dünnschichtkondensators gemäß Figur 1 bzw. 3,FIG. 4 shows an enlarged representation of the layer structure of the thin-film capacitor according to FIGS. 1 and 3,
Figur 5 ein Diagramm, das die Temperaturabhängigkeit der relativen Dielektrizität (εr) unterschiedlicher Werkstoffe zeigt,FIG. 5 is a diagram showing the temperature dependence of the relative dielectric (ε r ) of different materials.
Figur 6 ein Diagramm, das die Temperaturabhängigkeit der relativen Kapazitätsänderung bezogen auf Raumtemperatur verschiedener Materialien zeigt und Figur 7 in schematischer Ansicht einen diskreten keramischen Vielschichtkondensator nach dem Stand der Technik.Figure 6 is a diagram showing the temperature dependence of the relative change in capacitance with respect to room temperature of different materials and Figure 7 is a schematic view of a discrete ceramic multilayer capacitor according to the prior art.
In den Figuren 1 und 2 ist in schematischer, vergrößerter Darstellung der Aufbau eines Dünnschichtkondensators 1 gemäß der vorliegenden Erfindung dargestellt. Dieser Dünnschichtkondensator 1 besitzt ein Substrat 2, das aus einem elektrisch isolierenden Material wie beispielsweise Al203 , Saphir o. dgl . besteht, eine darauf angeordnete oxidkeramische Dünnschicht 3 und eine interdigitale Elektrodenanordnung 4 , die auf der dem Substrat 2 gegenüberliegenden Seite der oxidkeramischen Dünnschicht 3 vorgesehen ist. Die oxidkeramische Dünnschicht 3 ist aus einer Vielzahl von Einzelschichten 3a, 3b, 3c ... gebildet, die sich jeweils parallel zum Substrat 2 erstrecken und aus hochdielektrischen Materialien bestehen, so daß die Einzelschichten 3a, 3b, 3c... der oxidkeramischen Dünnschicht 3 Plattenkondensatoren bilden, die, wie in Figur 1 angedeutet ist, parallel zueinander geschaltet sind.1 and 2 show a schematic, enlarged representation of the structure of a thin-film capacitor 1 according to the present invention. This thin-film capacitor 1 has a substrate 2 which is made of an electrically insulating material such as Al 2 O 3 , sapphire or the like. there is an oxide ceramic thin layer 3 arranged thereon and an interdigital electrode arrangement 4 which is provided on the side of the oxide ceramic thin layer 3 opposite the substrate 2. The oxide-ceramic thin layer 3 is formed from a multiplicity of individual layers 3a, 3b, 3c ... which each extend parallel to the substrate 2 and consist of high-dielectric materials, so that the individual layers 3a, 3b, 3c ... of the oxide-ceramic thin layer 3 Form plate capacitors, which, as indicated in Figure 1, are connected in parallel.
Die Einzelschichten 3a, 3b, 3c bestehen jeweils aus wenigstens zwei Materialien hoher Dielektrizität und sind funktionsgradiert, d. h. ihre Zusammensetzung ändert sich mit zunehmendem Abstand vom Substrat 2, wie dies beispielhaft in Figur 3 dargestellt ist. Dort ist eine oxid- keramische Dünnschichtanordnung 3 bestehend aus 11 Einzelschichten 3a, 3b ... , 31 dargestellt, die aus den Materialsystemen Strontiumtitanat (SrTi03) und Barium- titanat (BaTi03) bestehen. Die gradierten Barium- Strontiumtitanat(Ba1_xSrxTi03)-Einzelschichten, die durch geeignete physikalische oder chemische Beschichtungsver- fahren hergestellt werden können, haben jeweils eine Dik- ke von etwa 9nm. Die oxidkeramischen Schichten weisen Gesamtschichtdicken von etwa 170 bis 190 nm auf.The individual layers 3a, 3b, 3c each consist of at least two materials of high dielectric and are function-graded, ie their composition changes with increasing distance from the substrate 2, as is shown by way of example in FIG. 3. An oxide-ceramic thin-layer arrangement 3 consisting of 11 individual layers 3a, 3b ..., 31 is shown there, which consists of the material systems strontium titanate (SrTi0 3 ) and barium titanate (BaTi0 3 ) exist. The graded barium strontium titanate (Ba 1 _ x Sr x Ti0 3) individual layers, which can be produced by suitable physical or chemical coating processes, each have a thickness of approximately 9 nm. The oxide ceramic layers have total layer thicknesses of approximately 170 to 190 nm.
Die Zusammensetzung der gradierten Einzelschichten (Ba1.xSrxTi03) 3a, 3b, 3c ... 31 der in Figur 3 dargestellten oxidkeramischen Dünnschicht 3 ist in Schritten von Δx = 0,1 verändert. Dabei besteht die mit dem Substrat 2 in Kontakt kommende Einzelschicht 3a vollständig aus Stron- tiumtitanat, und der Strontium-Anteil in den Barium- Strontiumtitanat-Schichten nimmt von Schicht zu Schicht zu Gunsten eines entsprechend wachsenden Anteils an Barium um jeweils 10% ab, d. h. in der 11., mit der interdigitalen Elektrodenanordnung 4 in Kontakt kommenden Einzelschicht 31 ist kein Strontiumtitanat mehr enthalten. Die auf diese Weise funktionsgradierten Einzelschichten 3a bis 31 haben aufgrund ihrer unterschiedlichen Zusammensetzung auch unterschiedliche Dielektrizitätszahlen εr und daraus resultierende Kapazitäten, und zeigen auch unterschiedliche Abhängigkeiten der Dielektrizitätszahl und der daraus resultierenden Kapazität von der Temperatur. Diese unterschiedlichen Werte bzw. Charakteristika überlagern sich aufgrund der Parallelschaltung der Einzelschichten, wodurch erreicht wird, daß die Dielektrizitätszahl der Gesamtschicht und die daraus resultierende Kapazität des Kondensators vergleichsweise wenig bei Tem- peraturänderungen schwanken, also die εr(T)- und C(T)- Charakteristika flach sind.The composition of the graded individual layers (Ba 1. X Sr x Ti0 3 ) 3a, 3b, 3c ... 31 of the oxide-ceramic thin layer 3 shown in FIG. 3 is changed in steps of Δx = 0.1. The individual layer 3a coming into contact with the substrate 2 consists entirely of stronium titanate, and the strontium portion in the barium strontium titanate layers decreases from layer to layer in favor of a correspondingly growing portion of barium, ie Strontium titanate is no longer contained in the 11th individual layer 31 coming into contact with the interdigital electrode arrangement 4. The individual layers 3a to 31, which are functionally graded in this way, also have different dielectric numbers ε r and the resulting capacities due to their different composition, and also show different dependencies of the dielectric number and the resulting capacitance on the temperature. These different values or characteristics overlap due to the parallel connection of the individual layers, which means that the dielectric constant of the entire layer and the resulting capacitance of the capacitor are comparatively little at temperature temperature changes fluctuate, i.e. the ε r (T) and C (T) characteristics are flat.
Exemplarisch ist dies in den Figuren 5 und 6 dargestellt. Figur 4 zeigt hierbei die Temperaturabhängigkeit der Dielektrizitätszahl von reinen Ba0_5Sr0 5TiO3 und Baτi03 imThis is shown by way of example in FIGS. 5 and 6. Figure 4 shows the temperature dependence of the dielectric constant of pure Ba 0 _ 5 Sr 0 5 TiO 3 and Baτi0 3 im
Vergleich zu einer gradierten Ba0/5Sr0;5TiO3→BaTiO3- Dünnschicht gemessen an einer Interdigital-Struktur bei einer Frequenz von 10 kHz (Vrms = 0,1V). Das Diagramm läßt gut erkennen, daß die Dielektrizitätszahl von Ba0 5Sr0;5TiO3 bei etwa 220 K ein ausgeprägtes Maximum hat, und die Kurve zu beiden Seiten des Maximums stark abfällt. Das gleiche gilt auch für das Temperaturverhalten der Dielektrizitätszahl von BaTi03, das bei etwa 380 K ein ausgeprägtes Maximum hat. Im Vergleich hierzu zeigt der gradierte Werkstoff eine geringe Temperaturabhängigkeit der Dielektrizitätszahl von der Temperatur, d. h. die Kurve verläuft zumindest im Bereich zwischen 200 und 350 K flach.Comparison to a graded Ba 0/5 Sr 0; 5 TiO 3 → BaTiO 3 - thin layer measured on an interdigital structure at a frequency of 10 kHz (V rms = 0.1V). The diagram clearly shows that the dielectric constant of Ba 0 5 Sr 0; 5 TiO 3 has a pronounced maximum at about 220 K, and the curve drops sharply on both sides of the maximum. The same also applies to the temperature behavior of the dielectric constant of BaTi0 3 , which has a pronounced maximum at about 380 K. In comparison, the graded material shows a low temperature dependence of the dielectric constant on the temperature, ie the curve runs flat at least in the range between 200 and 350 K.
In Figur 6 ist die relative Änderung der Kapazität bezogen auf Raumtemperatur in Abhängigkeit der Temperatur von reinem Ba05Sr0#5TiO3 und BaTi03 im Vergleich zu einer gradierten Ba0 5Sr0 5TiO3-»BaTiO3-Dünnschicht gemessen in einer Interdigital-Struktur bei einer Frequenz von 10 kHz (Vrms = 0,1V) dargestellt. Auch hier haben die Kurven von Bo,5Sro,5T'-0 3 und BaTi03 ausgeprägte Maxima, während der gradierte Werkstoff einen flachen Verlauf, d. h. eine geringe Temperaturabhängigkeit besitzt. Die Kennkurve des gradierten Werkstoffs läßt sich durch entsprechende Auswahl geeigneter Materialsysteme sowie durch die Zusammensetzung der Einzelschichten einstellen. Neben dem in Figur 3 dargestellten ZweistoffSystem aus den Materialien Strontiumtitanat und Bariumtitanat kann die Zusammensetzung beispielsweise auch aus den Materialsystemen Strontiumtitanat, Bariumtitanat, Bleititanat mit geeigneten Dotierungen bestehen. Auch ist ein Werkstoff- system Bariumtitanat-Zirkonat (Ba(Ti yZry)03)-Bleizir- konat-Titanat (Pb( Z^y iyJOj) mit geeigneten Dotierungen denkbar.FIG. 6 shows the relative change in capacitance relative to room temperature as a function of the temperature of pure Ba 05 Sr 0 # 5 TiO 3 and BaTi0 3 compared to a graded Ba 0 5 Sr 0 5 TiO 3 → BaTiO 3 thin layer measured in an interdigital structure at a frequency of 10 kHz (V rms = 0.1V). Here too, the curves of B o, 5 Sr o, 5 T '- 0 3 and BaTi0 3 have pronounced maxima, while the graded material has a flat course, ie a low temperature dependence. The characteristic curve of the graded material can be set by appropriate selection of suitable material systems and by the composition of the individual layers. In addition to the two-substance system shown in FIG. 3 made of the materials strontium titanate and barium titanate, the composition can also consist, for example, of the material systems strontium titanate, barium titanate, lead titanate with suitable doping. A material system barium titanate zirconate (Ba (Ti y Zr y ) 0 3 ) lead zirconate titanate (Pb (Z ^ y i y JO j ) with suitable doping is also conceivable.
Wie bereits ausgeführt, können die Einzelschichten der oxidkeramischen Dünnschicht 3 über herkömmliche physikalische Verfahren wie beispielsweise Laserablation, Magnetronsputterverfahren etc. oder durch chemische Verfahren wie beispielsweise Gasphasenabscheidung oder naßchemische Beschichtung, wie sie in Halbleitertechnik ohnehin üblich sind, hergestellt werden. Die Aufbringung der interdigitalen Elektrodenanordnung kann beispielsweise durch eine Kombination von Sputtern und Einsatz der Lift-Off- Photolithographie auf die oxidkeramische Dünnschicht aufgebracht werden.As already stated, the individual layers of the oxide-ceramic thin layer 3 can be produced by conventional physical methods such as laser ablation, magnetron sputtering methods etc. or by chemical methods such as gas phase deposition or wet chemical coating, as are common in semiconductor technology. The interdigital electrode arrangement can be applied to the oxide-ceramic thin layer, for example, by a combination of sputtering and the use of lift-off photolithography.
In Figur 3 ist in schematischer, vergrößerter Darstellung eine weitere Ausführungsform eines Dünnschichtkondensa- tors 1 gemäß der vorliegenden Erfindung dargestellt. Dieser Dünnschichtkondensator 1 besitzt ein Halbleitersubstrat 2, das eine Bodenelektrode 5 trägt. Auf der Bodenelektrode ist eine oxidkeramische Dünnschicht 3 ange- ordnet, auf der wiederum eine Elektrode 4 vorgesehen ist. Die oxidkeramische Dünnschicht 3 ist in der zuvor beschriebenen Weise aus einer Vielzahl von Einzelschichten 3a, 3b, 3c .... gebildet, die sich jeweils parallel zum Substrat 2 erstrecken und aus hoch dielektrischen Materialien bestehen, so daß die Einzelschichten 3a, 3b, 3c ... der oxidkeramischen Dünnschicht 3 Plattenkondensatoren bilden, die, wie in Figur 3 angedeutet ist, in Serie zueinander geschaltet sind. FIG. 3 shows a further embodiment of a thin-film capacitor 1 according to the present invention in a schematic, enlarged representation. This thin-film capacitor 1 has a semiconductor substrate 2 which carries a bottom electrode 5. An oxide-ceramic thin layer 3 is attached to the bottom electrode. orders, on which in turn an electrode 4 is provided. The oxide ceramic thin layer 3 is formed in the manner described above from a multiplicity of individual layers 3a, 3b, 3c ...., each extending parallel to the substrate 2 and consisting of highly dielectric materials, so that the individual layers 3a, 3b, 3c ... of the oxide ceramic thin layer 3 form plate capacitors which, as indicated in FIG. 3, are connected in series with one another.

Claims

Ansprüche:Dünnschichtkondensator Claims: thin film capacitor
1. Dünnschichtkondensator mit einem elektrisch isolierenden Substrat (2), einer darauf angeordneten oxidkeramischen Schicht (3), die eine Mehrzahl von funk- tionsgradierten Einzelschichten (3a, 3b, 3c ...) aus wenigstens zwei Materialien hoher Dielektrizität aufweist, und einer interdigitalen Elektrodenanordnung (4), die auf der dem Substrat (2) gegenüberliegenden Seite der oxidkeramischen Schicht (3) vorgesehen ist.1. Thin-film capacitor with an electrically insulating substrate (2), an oxide ceramic layer (3) arranged thereon, which has a plurality of function-graded individual layers (3a, 3b, 3c ...) made of at least two materials of high dielectric, and an interdigital one Electrode arrangement (4), which is provided on the side of the oxide ceramic layer (3) opposite the substrate (2).
2. Dünnschichtkondensator mit einem Substrat (2), das eine Bodenelektrode (5) trägt, einer darauf angeordneten oxidkeramischen Schicht (3), die eine Mehrzahl von funktionsgradierten Einzelschichten (3a, 3b, 3c...) aus wenigstens zwei Materialien hoher Dielektrizität aufweist und die Bodenelektrode (5) kontaktiert, und einer Elektrode (4), die auf der dem Substrat (2) gegenüberliegenden Seite der oxidkeramischen Schicht (3) vorgesehen ist.2. Thin-film capacitor with a substrate (2) which carries a bottom electrode (5), an oxide ceramic layer (3) arranged thereon, which has a plurality of function-graded individual layers (3a, 3b, 3c ...) made of at least two materials of high dielectric and contacts the bottom electrode (5) and an electrode (4) which is provided on the side of the oxide ceramic layer (3) opposite the substrate (2).
3. Dünnschichtkondensator nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Einzelschichten (3a, 3b, 3c ... ) der oxidkeramischen Dünnschicht jeweils im wesentlichen aus den Materialen der reinen Systeme und/oder Mischsysteme Strontiumtitanat (SrTi03) und/oder Bariumtitanat (BaTi03) und/oder Bleititanat (PbTi03) bestehen, die gegebenenfalls dotiert sein können.3. Thin-film capacitor according to claim 1 or 2, characterized in that the individual layers (3a, 3b, 3c ...) of the oxide-ceramic thin layer in each case essentially from the materials of the pure systems and / or mixed systems strontium titanate (SrTi0 3 ) and / or barium titanate (BaTi0 3 ) and / or lead titanate (PbTi0 3 ), which can optionally be doped.
4. Dünnschichtkondensator nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Einzelschichten (3a, 3b, 3c ...) der oxidkeramischen Schicht (3) jeweils im wesentlichen aus den reinen Systemen und/oder Mischsystemen Bariumtitanat-Zirkonat (Ba(Ti1_yZry)03) und/oder Bleizirkonat-Titanat (Pb( Zr^yTi^O-,) bestehen, die gegebenenfalls dotiert sein können.4. Thin-film capacitor according to claim 1 or 2, characterized in that the individual layers (3a, 3b, 3c ...) of the oxide ceramic layer (3) each consisting essentially of the pure systems and / or mixed systems barium titanate zirconate (Ba (Ti 1 _ y Zr y ) 0 3 ) and / or lead zirconate titanate (Pb (Zr ^ y Ti ^ O-)), which can optionally be doped.
5. Dünnschichtkondensator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Phasenübergangstemperatur der dem Substrat nahen Einzelschichten (3a, 3b, 3c....) niedriger oder höher ist als die Phasenübergangstemperatur der substratfernen Einzelschichten (....3f, 3g, 3h).5. Thin-film capacitor according to one of the preceding claims, characterized in that the phase transition temperature of the individual layers close to the substrate (3a, 3b, 3c ....) is lower or higher than the phase transition temperature of the individual layers remote from the substrate (.... 3f, 3g, 3h).
6. Dünnschichtkondensator nach Anspruch 5, dadurch gekennzeichnet, daß die Einzelschichten (3a, 3b, 3c ... ) so angeordnet sind, daß eine substratnahe Einzelschicht eine niedrigere oder höhere Phasenübergangstemperatur als die angrenzende, weiter vom Substrat (2) beabstandete Einzelschicht hat.6. Thin-film capacitor according to claim 5, characterized in that the individual layers (3a, 3b, 3c ...) are arranged such that a single layer close to the substrate has a lower or higher phase transition temperature than the adjacent single layer spaced further from the substrate (2).
7. Dünnschichtkondensator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Einzelschichten (3a, 3b, 3c....) Gesamtschichtdicken zwischen 0,01 und 2 μm aufweisen. 7. Thin-film capacitor according to one of the preceding claims, characterized in that the individual layers (3a, 3b, 3c ....) have total layer thicknesses between 0.01 and 2 microns.
8. Dünnschichtkondensator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Einzelschichten (3a, 3b, 3c....) der oxidkeramischen Dünnschicht (3) über physikalische Verfahren, insbesondere über Laserablation, Magnetronsputterverfahren hergestellt sind.8. Thin-film capacitor according to one of the preceding claims, characterized in that the individual layers (3a, 3b, 3c ....) of the oxide-ceramic thin layer (3) are produced by physical methods, in particular by laser ablation, magnetron sputtering.
9. Dünnschichtkondensator nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Einzelschichten (3a, 3b, 3c ...) der oxidkeramischen Dünnschicht (3) durch chemische Verfahren, insbesondere über Gasphasenabscheidung oder durch naßchemische Beschichtung sowie elektrolytische Abscheidung und Flüssigphasen-Epitoxie hergestellt sind.9. Thin-film capacitor according to one of claims 1 to 7, characterized in that the individual layers (3a, 3b, 3c ...) of the oxide-ceramic thin layer (3) by chemical processes, in particular by gas phase deposition or by wet chemical coating, as well as electrolytic deposition and liquid phase Epitoxia are produced.
10. Dünnschichtkondensator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Substrat (2) aus einem elektrisch isolierenden Material, insbesondere Al203, besteht.10. Thin-film capacitor according to one of the preceding claims, characterized in that the substrate (2) consists of an electrically insulating material, in particular Al 2 0 3 .
11. Dünnschichtkondensator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Bodenelektrode (5) und die Elektroden (4) aus einem Material aus der Gruppe Metalle und metallisch-leitender Nichtmetalle besteht. 11. Thin-film capacitor according to one of the preceding claims, characterized in that the bottom electrode (5) and the electrodes (4) consist of a material from the group consisting of metals and metallic-conductive non-metals.
PCT/EP2000/008319 1999-09-06 2000-08-26 Thin-film capacitor WO2001018830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19942341.5 1999-09-06
DE19942341 1999-09-06

Publications (1)

Publication Number Publication Date
WO2001018830A1 true WO2001018830A1 (en) 2001-03-15

Family

ID=7920877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/008319 WO2001018830A1 (en) 1999-09-06 2000-08-26 Thin-film capacitor

Country Status (1)

Country Link
WO (1) WO2001018830A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10313005A1 (en) * 2003-03-24 2004-10-14 Siemens Ag Reserve battery used as disposable energy supply e.g. for medical applications, emergency signaling lamp or torpedo drive, has thin-film cathode and anode electrodes applied to substrate
US20110210806A1 (en) * 2007-07-16 2011-09-01 Us Government As Represented By The Secretary Of The Army Thin film compositionally stratified multi-layer heterostructure for temperature insensitive low dielectric loss and enhanced tunablity otm communications devices and methods for fabrication thereof
US8101495B2 (en) 2008-03-13 2012-01-24 Infineon Technologies Ag MIM capacitors in semiconductor components
GB2504346A (en) * 2012-07-27 2014-01-29 Univ Barcelona Autonoma Magnetic flux concentrator with alternating ferromagnetic and diamagnetic or superconducting elements
US9506153B2 (en) 2014-09-17 2016-11-29 The United States Of America As Represented By The Secretary Of The Army Integrated composite perovskite oxide heterostructure
US10032853B2 (en) 2014-09-17 2018-07-24 The United States Of America As Represented By The Secretary Of The Army Microstructural architecture to enable strain relieved non-linear complex oxide thin films

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693429A (en) * 1995-01-20 1997-12-02 The United States Of America As Represented By The Secretary Of The Army Electronically graded multilayer ferroelectric composites
EP0814486A1 (en) * 1996-06-20 1997-12-29 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and monolithic ceramic capacitor using same
WO1998000872A1 (en) * 1996-06-28 1998-01-08 Lsi Logic Corporation Integrated circuit device and method of making the same
US5790367A (en) * 1995-12-12 1998-08-04 U.S. Philips Corporation Multilayer capacitor comprising a dielectric of modified barium strontium titanate
JPH10340900A (en) * 1997-06-03 1998-12-22 Applied Materials Inc High deposition ratio recipe for low permittivity film
DE19928280A1 (en) * 1998-07-07 2000-01-20 Samsung Electronics Co Ltd Ferroelectric memory device, especially a ferroelectric RAM for modern data processing systems, is produced by forming a capacitor with a multilayer ferroelectric layer of titanate content exceeding its zirconate content

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693429A (en) * 1995-01-20 1997-12-02 The United States Of America As Represented By The Secretary Of The Army Electronically graded multilayer ferroelectric composites
US5790367A (en) * 1995-12-12 1998-08-04 U.S. Philips Corporation Multilayer capacitor comprising a dielectric of modified barium strontium titanate
EP0814486A1 (en) * 1996-06-20 1997-12-29 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and monolithic ceramic capacitor using same
WO1998000872A1 (en) * 1996-06-28 1998-01-08 Lsi Logic Corporation Integrated circuit device and method of making the same
JPH10340900A (en) * 1997-06-03 1998-12-22 Applied Materials Inc High deposition ratio recipe for low permittivity film
DE19928280A1 (en) * 1998-07-07 2000-01-20 Samsung Electronics Co Ltd Ferroelectric memory device, especially a ferroelectric RAM for modern data processing systems, is produced by forming a capacitor with a multilayer ferroelectric layer of titanate content exceeding its zirconate content

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03 31 March 1999 (1999-03-31) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10313005A1 (en) * 2003-03-24 2004-10-14 Siemens Ag Reserve battery used as disposable energy supply e.g. for medical applications, emergency signaling lamp or torpedo drive, has thin-film cathode and anode electrodes applied to substrate
DE10313005B4 (en) * 2003-03-24 2007-05-03 Siemens Ag Backup battery and method for its manufacture
US20110210806A1 (en) * 2007-07-16 2011-09-01 Us Government As Represented By The Secretary Of The Army Thin film compositionally stratified multi-layer heterostructure for temperature insensitive low dielectric loss and enhanced tunablity otm communications devices and methods for fabrication thereof
US8053027B2 (en) 2007-07-16 2011-11-08 The United States of America as represented bt the Secretary of the Army Methods for fabrication of thin film compositionally stratified multi-layer heterostructures for temperature insensitive low dielectric loss and enhanced tunability OTM communications devices
US8216701B2 (en) 2007-07-16 2012-07-10 The United States Of America As Represented By The Secretary Of The Army Thin film compositionally stratified multi-layer heterostructure for temperature insensitive low dielectric loss and enhanced tunability OTM communications devices and methods for fabrication thereof
US8101495B2 (en) 2008-03-13 2012-01-24 Infineon Technologies Ag MIM capacitors in semiconductor components
US8314452B2 (en) 2008-03-13 2012-11-20 Infineon Technologies Ag MIM capacitors in semiconductor components
DE102009000627B4 (en) * 2008-03-13 2014-12-11 Infineon Technologies Ag MIM capacitors in semiconductor components and method of making a finger capacitor
GB2504346A (en) * 2012-07-27 2014-01-29 Univ Barcelona Autonoma Magnetic flux concentrator with alternating ferromagnetic and diamagnetic or superconducting elements
GB2504346B (en) * 2012-07-27 2015-01-14 Univ Barcelona Autonoma Device for concentrating or amplifying a magnetic flux, a method for concentrating or amplifying a magnetic flux, a magnetic operating apparatus, and use of a
US9506153B2 (en) 2014-09-17 2016-11-29 The United States Of America As Represented By The Secretary Of The Army Integrated composite perovskite oxide heterostructure
US10032853B2 (en) 2014-09-17 2018-07-24 The United States Of America As Represented By The Secretary Of The Army Microstructural architecture to enable strain relieved non-linear complex oxide thin films

Similar Documents

Publication Publication Date Title
DE102006000935B4 (en) Monolithic ceramic component and method of manufacture
DE69928873T2 (en) Dielectric ceramic composition and ceramic multilayer capacitor
EP0902954A1 (en) Thin-film multilayer condenser
DE10035612A1 (en) Dielectric ceramic composition and monolithic ceramic capacitor
EP1022768A2 (en) Voltage-stable thin film capacitor with inter-digital structure
EP0958620A1 (en) Piezo electric actuator with a new type of contacting and a method for the production thereof
DE10042909A1 (en) Multilayered ceramic substrate comprises substrate ceramic layers each containing a ceramic material that sinters at a low temperature, a shrinkage-preventing layer containing an inorganic material in the non-sintered state and wiring cable
EP2517218B1 (en) Varactor and method for manufacturing it
DE4017518A1 (en) METHOD FOR PRODUCING MONOLAYER CAPACITORS
DE102004001241A1 (en) Dielectric ceramics and monolithic ceramic capacitor that contains them
DE112018005239T5 (en) Tunable multi-layer capacitor with high capacitance and array
DE19903500A1 (en) Thin film circuit with component
DE10040414B4 (en) Dielectric ceramic material and electrical component
EP1263691B1 (en) Ceramic mass, method for the production of a ceramic mass and use of a ceramic mass
WO2001018830A1 (en) Thin-film capacitor
EP2529381B1 (en) Ceramic multilayer capacitor
DE2347649B2 (en) THIN FILM SWITCHING
DE19653792A1 (en) Flat temperature characteristic component, especially capacitor
EP1129493A1 (en) Piezoceramic multi-layer structure with regular polygon cross-sectional area
DE10161286A1 (en) Integrated semiconductor product with metal-insulator-metal capacitor
DE10324055A1 (en) Integrated stacked capacitor and method for its production
EP1024593B1 (en) Multi-component mounting part
EP3557633A1 (en) High voltage capacitor for integration into electrical power modules and method for the production thereof
DE10136545A1 (en) Electroceramic component used as a multiple layer capacitor comprises contact layers arranged on the surface of a base body containing a one-phase perovskite ceramic
DE102020118857B4 (en) Multilayer capacitor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP