WO2001016645A1 - Normally-black mode tn liquid crystal display - Google Patents

Normally-black mode tn liquid crystal display Download PDF

Info

Publication number
WO2001016645A1
WO2001016645A1 PCT/JP2000/005438 JP0005438W WO0116645A1 WO 2001016645 A1 WO2001016645 A1 WO 2001016645A1 JP 0005438 W JP0005438 W JP 0005438W WO 0116645 A1 WO0116645 A1 WO 0116645A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
crystal display
optical compensation
crystal cell
Prior art date
Application number
PCT/JP2000/005438
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiro Toyooka
Original Assignee
Nippon Mitsubishi Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP24534099A external-priority patent/JP2001066597A/en
Application filed by Nippon Mitsubishi Oil Corporation filed Critical Nippon Mitsubishi Oil Corporation
Publication of WO2001016645A1 publication Critical patent/WO2001016645A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133636Birefringent elements, e.g. for optical compensation with twisted orientation, e.g. comprising helically oriented LC-molecules or a plurality of twisted birefringent sublayers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/64Normally black display, i.e. the off state being black

Definitions

  • the present invention relates to a normally black mode twisted nematic (TN) liquid crystal display device having improved display contrast, gradation characteristics, and viewing angle characteristics of display colors.
  • TN twisted nematic
  • Twisted nematic liquid crystal display elements (hereinafter abbreviated as TN-LCDs) driven by active elements using TFT elements or MIM elements are thin, light, and have low power consumption.
  • TN-LCDs Twisted nematic liquid crystal display elements
  • MIM elements are thin, light, and have low power consumption.
  • it is widely used as a display device for notebook computers, portable televisions, portable information terminals and the like.
  • a normally-black mode type TN-LCD (hereinafter abbreviated as NB-TN-LCD), in which black display is performed when no voltage is applied and the liquid crystal alignment state in the cell during the black display forms a twisted structure, is referred to as an NB-TN-LCD.
  • NW-TN-LCD normally white TN-LCD
  • the NB—TN—LCD cannot twist light completely over the entire visible region because the liquid crystal alignment state in the cell during black display is twisted, and the black display is colored.
  • the present invention has been made in view of the above problems, and has a wider viewing angle characteristic, has less left-right asymmetry during halftone display, and is capable of displaying a high-quality image in a normally black mode.
  • the present invention provides a type TN liquid crystal display device. That is, the present invention provides a driving liquid crystal cell in which a liquid crystal layer having a twisted nematic alignment is provided between a pair of transparent substrates provided with electrodes when no voltage is applied, and an optical compensation film holding a twisted nematic alignment.
  • the present invention relates to a normally black mode TN liquid crystal display device.
  • the present invention also provides a driving liquid crystal cell having a liquid crystal layer having a twisted nematic alignment between a pair of transparent substrates provided with electrodes when no voltage is applied, and an optical compensation film having a twisted nematic alignment. And a film exhibiting optically negative anisotropy sandwiched between two polarizing plates, wherein the absolute value of the twist angle of the optical compensation film is equal to that of the driving liquid cell.
  • the present invention relates to a normally black mode TN liquid crystal display device characterized by being smaller than the absolute value of the twist ⁇ when no voltage is applied.
  • a normally-black mode TN liquid crystal display element according to the first invention comprises a driving liquid crystal cell having a liquid crystal layer which is twisted and nematic aligned when no voltage is applied between a pair of transparent substrates provided with electrodes.
  • An optical compensatory film holding the nematic alignment is sandwiched between two polarizing plates, and the absolute value of the twist angle of the optical compensatory film is measured when no voltage is applied to the driving liquid crystal cell. It is characterized by being smaller than the absolute value of the torsion angle of.
  • the product of the refractive index anisotropy ⁇ of the liquid crystal layer in the driving liquid crystal cell and the thickness d of the liquid crystal layer that is, the value of And is 200 nm or more. It is in the range of 60 Onm, the torsion angle of the driving liquid crystal cell when no voltage is applied is in the range of 80 ° to 100 °, and the twisting direction of the optical compensation film is opposite to that of the driving liquid crystal cell. More preferably, the absolute value of the twist angle is smaller than the absolute value of the torsion angle of the driving liquid crystal cell, and the difference is at least 15 degrees.
  • a normally-black mode TN liquid crystal display element includes a driving liquid crystal cell having a liquid crystal layer that is twisted and nematic aligned when no voltage is applied between a pair of transparent substrates provided with electrodes;
  • the optical compensation film has a configuration in which an optical compensation film that maintains a twisted nematic orientation and a film that exhibits optically negative anisotropy are sandwiched between two polarizing plates. Is smaller than the absolute value of the torsion angle of the driving liquid crystal cell when no voltage is applied.
  • the product (And) of the refractive index anisotropy ⁇ of the liquid crystal layer and the thickness d of the liquid crystal layer in the driving liquid crystal cell is: It is in the range of 200 nm to 600 nm, the torsion angle of the driving liquid crystal cell when no voltage is applied is in the range of 80 ° to 100 °, and the refractive index anisotropy An, and the thickness d, of the optical compensation film are
  • the product ( ⁇ ⁇ d) is in the range of 150 to 600 nm, and the absolute value of the twist angle of the optical compensation film is smaller than the absolute value of the twist angle of the driving liquid product cell when no voltage is applied.
  • the optical compensation film suitable for being incorporated in the normally black mode TN liquid crystal display device of the present invention is a twisted film formed of a thin film of a polymer liquid crystal having optically positive uniaxiality in a liquid crystal state.
  • the liquid crystal film is preferably a liquid crystal film in which the nematic alignment is fixed to the glass by cooling the thin film.
  • a thin film of a photocurable low-molecular liquid crystal exhibiting optically positive uniaxiality is formed in a liquid crystal state. It is preferable that the liquid crystal film has a twisted nematic alignment fixed by irradiating the thin film with light.
  • a normally-black mode TN liquid crystal display device (hereinafter abbreviated as NB-TN-LCD) of the first invention includes a driving liquid crystal cell, two polarizing plates, and an optical compensation film. .
  • the NB-TN-LCD of the second invention has a structure in which a driving liquid crystal cell, an optical compensation film, and a film exhibiting optically negative anisotropy are sandwiched between two polarizing plates.
  • the driving liquid crystal cell basically has a configuration in which a nematic liquid crystal layer which forms a twisted alignment when no voltage is applied is provided between a pair of transparent substrates provided with electrodes.
  • electrodes, transparent substrates, and nematic liquid crystals used in the liquid crystal cell as long as the liquid crystal cell has the basic configuration, and the method of manufacturing the liquid crystal cell is not particularly limited.
  • the liquid cell for driving used in the present invention is obtained by multiplying the refractive index anisotropy ⁇ of the nematic liquid crystal layer by the thickness d of the nematic liquid layer of the driving liquid cell (And value). It is always desirable to be in the range from 200 to 600 nm, preferably from 300 to 500 nm. If the And value is larger than 600 nm, coloring may increase when combined with an optical compensation film described later. If the And value is smaller than 20 O nm, the front luminance and contrast may be reduced when combined with an optical compensation film.
  • the twist angle of the nematic liquid crystal layer when no voltage is applied to the driving liquid crystal cell is usually in the range of 80 ° to 100 °, preferably in the range of 85 ° to 95 °. If the twist angle is out of the above range, the optical rotation effect cannot be sufficiently obtained, and the display characteristics as NB—TN—LCD may be significantly reduced.
  • the twist direction of the twist angle may be either the left or right direction.
  • the twist direction of the twist angle of the optical compensation film installed thereon and the twist angle of the nematic liquid crystal layer when no voltage is applied to the driving liquid crystal cell are opposite to each other. preferable. It is desirable that the absolute value of the twist angle of the optical compensation film is smaller than the absolute value of the twist angle of the driving liquid crystal cell when no voltage is applied.
  • the absolute value of the twist angle of the optical compensation film is too small, the compensation effect of the film is reduced, and there is a possibility that the contrast of a displayed image may be reduced.
  • the absolute value of the torsion angle of the optical compensation film is set smaller than the absolute value of the torsion angle of the driving liquid crystal cell when no voltage is applied, if the difference between the two angles is small, sufficient visual field can be obtained. There is a possibility that the effect of increasing the angle and the effect of reducing the asymmetry cannot be obtained.
  • the absolute value of the twist angle of the compensation film is usually at least 5 degrees or more, preferably. Is preferably at least 10 degrees.
  • the absolute value of the twist angle of the compensation film is at most smaller than the absolute value of the twist angle of the driving liquid crystal cell when no voltage is applied, and the difference is usually 15 degrees or more, preferably 20 degrees or more. Is desirable.
  • ⁇ ( ⁇ , d,) between the refractive index anisotropy ⁇ of the film and the thickness d ⁇ of the film is particularly limited as long as the effects of the present invention are not impaired. It's not something, but usually 200 nrr! In the range of ⁇ 700 nm, preferably 3 0 0 nn! It is desirably in the range of ⁇ 600 nm.
  • 200 nrr! In the range of ⁇ 700 nm, preferably 3 0 0 nn! It is desirably in the range of ⁇ 600 nm.
  • the value of ⁇ ⁇ is smaller than 200 nm, the front brightness and contrast of the LCD may be reduced.
  • the value is larger than 700 nm, unnecessary coloring may be seen on the LCD. There is.
  • the optical compensatory film of the present invention can be produced from any liquid crystal material giving the above-mentioned values of twist angle and ⁇ .
  • a polymer liquid crystal or an optical liquid having optically positive uniaxiality is preferred. It is preferable to use a curable low-molecular liquid crystal as a liquid crystal material and to prepare it from its thin film.
  • This liquid crystal material must contain a compound having an optically active group so that twisted nematic alignment can be exhibited.
  • the polymer liquid crystal or the photo-curable low-molecular liquid crystal itself contains an optically active group, it is not necessary to separately add an optically active group-containing compound to the liquid crystal material. Is added to the liquid crystal material.
  • the amount of optically active groups contained in the liquid crystal material varies depending on the type of polymer liquid crystal or photocurable low-molecular liquid crystal actually used and the degree of twist angle desired for the optical compensation film. Although it cannot be said, it is usually 0.01 to 50% by weight, preferably 0.05 to 40% by weight, more preferably 0.1 to 30% by weight, and most preferably 0.1 to 50% by weight based on the liquid crystal material. It is in the range of 2 to 20% by weight. When the content is out of the above range, the twist angle of the finally obtained optical compensation film may deviate from the desired range.
  • the type of polymer liquid crystal used for the liquid crystal material is not limited as long as the desired twisted nematic alignment can be fixed, and any type of main-chain or side-chain polymer liquid crystal can be used. It is. Specifically, main-chain liquid crystal polymers such as polyester, polyamide, polycarbonate, and polyesterimide, or side-chain liquid polymers such as polyacrylate, polymethacrylate, polymalonate, and polysiloxane are used. it can. Above all, it is desirable to use a liquid crystalline polyester which has good orientation for forming twisted nematic orientation and is relatively easy to synthesize.
  • the constituent units of the polymer include, for example, aromatic or aliphatic diol units, aromatic or Examples of preferred examples thereof include an aliphatic dicarboxylic acid unit and an aromatic or aliphatic hydroxycarboxylic acid unit.
  • Photo-curable low-molecular liquid crystals can also be used as the liquid crystal material.
  • examples include a biphenyl derivative, a phenylbenzoate derivative, and a stilbene derivative having a functional group such as an acryloyl group, a vinyl group, or an epoxy group. Any of the above-mentioned photocurable low-molecular liquid crystals can be used. These low-molecular liquid crystals may have either lyotropic orpicotropic properties, but those exhibiting orotropic properties are more preferable from the viewpoint of workability, process and the like.
  • a cross-linking agent such as a bis azide compound and glycidyl methacrylate is added to the liquid crystal material as long as the twisted nematic phase is not hindered. You can also. By adding these cross-linking agents, liquid crystal molecules can be bridged in a state where a twisted nematic phase is developed.
  • the optical compensation film of the present invention is obtained by forming the above liquid crystal material into a thin film, subjecting the thin film to heat treatment to form a desired twisted nematic alignment, and then fixing the alignment state. Obtainable.
  • a thin film of a liquid crystal material is spread on an alignment substrate having an alignment regulating force.
  • a liquid crystal material is coated on an alignment substrate.
  • the upper and lower interfaces of the coating film of the film material are sandwiched between the alignment substrates to orient the film, and the coating film of the film material is applied to one of the alignment substrates and the other to a non-alignment substrate having no alignment regulating force.
  • a method of sandwiching and orienting can also be adopted.
  • polyphenylene sulfide polyphenylene oxide
  • polyethylene terephthalate polybutylene terephthalate
  • polyethylene naphthate polyacetal
  • polycarbonate polyarylate
  • polyvinyl alcohol polypropylene
  • cellulose plastics acrylic Plastic film substrates such as resin, epoxy resin, phenol resin, etc. and uniaxially stretched plastic film substrates, aluminum, iron
  • metal substrate such as copper
  • glass substrate such as alkali glass, borosilicate glass, and flint glass whose surface is etched into a slit shape.
  • a substrate provided with an evaporation film can also be used.
  • the alignment substrates suitable for producing the optical compensation film of the present invention are listed below: various substrates having a rubbing polyimide film, a rubbing polyimide substrate, a rubbing polyether ether ketone substrate, A rubbing polyester skeleton substrate, a rubbing polyester sulfone substrate, a rubbing polyphenylene sulfate phthalate substrate, a rubbing polyarylate substrate, and a rubbing cellulose-based plastic substrate can be exemplified.
  • the application of the liquid material onto the alignment substrate can be performed in a state where the liquid crystal material is melted, but a solution application performed in a state where the liquid crystal material is dissolved in an appropriate solvent is preferable.
  • the solvent for the liquid crystal material is selected according to the type of the liquid crystal material, and is generally a hydrocarbon-based solvent such as toluene, xylene, butylbenzene, tetrahydronaphthylene, decahydronaphthalene, or the like.
  • Ethers such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol dimethyl ether, and tetrahydrofuran; ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, and ethylene glycol monomethyl ether Ester such as acetate, propylene glycol monomethyl ether acetate, ethyl lactate, and abutyrolactone, amide such as N-methyl_2-pyrrolidone, dimethylformamide, dimethylacetamide, dichloromethanone, Halogenated hydrocarbons such as carbon chloride, tetrachloroethane, and chlorobenzene, butyl alcohol, triethylene glycol, diacetone alcohol, hexylene glycol, etc.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone
  • the solution concentration of the liquid crystal material varies depending on the solubility of the dissolved liquid crystal material, the thickness of the coating film, and the like, and cannot be unconditionally determined, but is usually 1 to 60% by weight, preferably 3 to 40% by weight. %, More preferably in the range of 7 to 30% by weight.
  • a surfactant or the like can be added to the liquid crystal material solution to facilitate application.
  • surfactants examples include cationic surfactants such as imidazoline, quaternary ammonium salts, alkylamine oxides, and polyamine derivatives; polyoxyethylene-polyoxypropylene condensates; Or secondary alcohol ethoxylate, alkylphenol ethoxylate, polyethylene glycol and its ester, sodium lauryl sulfate, ammonium lauryl sulfate, lauryl sulfate amines, alkyl-substituted aromatic sulfonate, alkyl phosphate, aliphatic acid Or anionic surfactants such as aromatic sulfonic acid formalin condensates; amphoteric surfactants such as lauryl propyl betaine and lauryl amino sulphate; poly (ethylene glycol) fatty acid esters; Shetyrenal Nonionic surfactants such as luminin, perfluoroalkyl sulfonate, perfluoroalkyl carboxylate, per
  • the amount of surfactant added depends on the type of surfactant, the solvent, and the substrate to be coated. Depending on the weight of the liquid crystal material, however, it is usually in the range of 10 ppm to 10%, preferably 50111 to 5%, more preferably 0.01% to 1%.
  • a roll coating method for example, a roll coating method, a die coating method, a bar coating method, a gravure roll coating method, a spray coating method, a dip coating method, a spin coating method, or the like can be employed.
  • the coating film of the liquid crystal material solution formed on the alignment substrate is then dried, and the solvent is removed from the coating film.
  • the degree of solvent removal is not particularly limited, as long as the solvent can be substantially removed and the coating film does not flow or even falls off.
  • the solvent can be removed by drying at room temperature, drying in a drying oven, or blowing hot or hot air.
  • the coated film from which the solvent has been removed is subjected to a heat treatment at a temperature at which the liquid crystal molecules in the coated film exhibit a twisted nematic phase for a predetermined time to complete the twisted nematic alignment of the coated film.
  • the twist angle in twisted nematic alignment can be adjusted by the concentration of the optically active group contained in the liquid crystal material as described above.
  • twist angle in the oriented nematic orientation may vary depending on heat treatment conditions and the like. In the case of using such a liquid crystal material, a method of appropriately controlling the heat treatment conditions to obtain a desired twist angle can be adopted in the present invention.
  • the heat treatment temperature is 40 to 300 ° C, preferably 50 to 280 ° C, more preferably 60 to 260 ° C, and most preferably 70 to 250 ° C.
  • the range of C is adopted, and the time of heat treatment is usually 5 seconds to 2 hours, preferably 10 seconds to 1 hour, and more preferably 20 seconds to 30 minutes. Is merely an example and does not limit the present invention in any way.
  • a magnetic field or an electric field can be used.
  • the twisted nematic alignment formed on the coating film on the alignment substrate by the above heat treatment is fixed by an appropriate method.
  • the liquid crystal material forming the coating film is a polymer liquid crystal
  • the coating film in which the twisted nematic alignment is formed by heat treatment is quenched in that state to change the alignment to glass. Fix it.
  • the liquid crystal material forming the coating film is a photocurable low molecular weight liquid crystal
  • the light, heat or heat is applied to the coating film forming the twisted nematic alignment as it is.
  • the orientation is fixed by irradiation with an electron beam or the like.
  • a coating film in which twisted nematic alignment is formed and fixed on an alignment substrate that is, a liquid crystal film that maintains stable twisted nematic alignment is an optical compensation film with an alignment substrate.
  • an alignment substrate is not optically isotropic or is opaque in the visible light wavelength region, only the liquid crystal film holding the twisted nematic alignment is optically substantially transparent, It can be transferred to an isotropic film or substrate (hereinafter, referred to as a second substrate film) and used together with the second substrate film as an optical compensation film.
  • a method is generally used in which an adhesive is applied to a liquid crystal film on an alignment substrate, a second substrate film is laminated thereon, the adhesive is cured, and the alignment substrate is separated from the liquid crystal film. Adopted.
  • the second substrate film examples include a triacetyl cell opening film such as Fujitac (manufactured by Fuji Photo Film Co., Ltd.) and Tsunacatac (manufactured by Koniki), TPX film (manufactured by Mitsui Chemicals), Arton film (manufactured by Nihon Gosei) Rubber), ZONEX Film (Zeon Corporation), Acryprene Film (Mitsubishi Rayon), etc.
  • the liquid crystal film on the alignment substrate can be directly transferred to an appropriate glass substrate, for example, a glass substrate used for a driving liquid crystal cell. Further, transfer to a film exhibiting optically anisotropic ⁇ described later is also possible.
  • the above-described transfer operation is not necessarily required, but the optical characteristics required for the optical compensation film or the reliability of the film are required. Suitable transfer can be performed in consideration of such factors.
  • the liquid crystal film itself has an excellent self-supporting property, peel off the substrate for ffi. Then, the liquid crystal film can be used alone as an optical compensation film.
  • the film exhibiting optically negative anisotropy used in the present invention other than exhibiting optically negative anisotropy. Therefore, any film having birefringence (An 2) in the film thickness direction, such as a negative uniaxial film, a negative biaxial film, etc., can be used.
  • polyimide polyamide imide, polyamide, polyether imide, polyether ether ketone, polyether ketone, polyketone sulfide, polyether sulfone, polysulfone, polyphenylene sulfide, and polyphenylene oxide.
  • the film include a plastic film made of a resin, a phenol resin and the like, and a film made of a discotic compound such as a discotic liquid crystal.
  • the film having optically negative anisotropy used in the present invention has a product of the birefringence ⁇ 2 in the film thickness direction and the thickness d 2 , that is, the value of An 2 d 2 is usually ⁇ 20 to ⁇ 30. It is desirable to be in the range of On m, preferably in the range of 30 to -250 nm.
  • the optical compensation film is provided between the driving liquid crystal cell and the viewing-side polarizing plate.
  • the angle formed by the direction is usually 70 to 110 °, preferably 75 to: L05 °, more preferably 80 to 100 ° or usually 120 to 20 °, preferably 1 to 15 to 15 °, more preferably 1 to 15 °. It is desirable to arrange them so as to be in the range of 10 to 10 °.
  • the optical compensation film and the film exhibiting optically negative anisotropy, the force s, and the driving liquid product cell are sandwiched between the two polarizing plates. These two types of films are installed between the viewing side polarizing plate and the driving liquid crystal cell.
  • Optically supplementary if! Films and films with optically negative anisotropy are not necessarily laminated You don't have to.
  • a film exhibiting optically negative anisotropy may be placed between the driving liquid crystal cell and the polarizing plate on the viewing side, or between the driving liquid crystal cell and the polarizing plate on the light source side. No problem. However, the optical compensation film is necessarily provided between the driving liquid crystal cell and the viewing-side polarizing plate.
  • the angle formed by the slow axis of the liquid crystal molecules on the surface in contact with the cell is usually 70 to; L10 °, preferably 75 to: 105 °, more preferably 80 to 100 °.
  • the optical compensation film is installed so that the angle is usually in the range of 120 to 20 °, preferably in the range of 115 to 15 °, and more preferably in the range of 110 to 10 °.
  • the viewing-side polarizing plate and the light-source-side polarizing plate in the NB-TN-LCD of the present invention are polarizing plates generally used in the field, and are not particularly limited.
  • a polarizing plate with a uniaxially stretched polyvinyl alcohol film in which iodine molecules with a high degree of polarization are arranged in a fixed direction and a polyvinyl alcohol film dyed with a direct dye, etc., sandwiched between other support films Can be used.
  • the polarizing plates are disposed above and below the driving liquid crystal cell, respectively.
  • the axial arrangement of the polarizing plate is not particularly limited, and may be any arrangement within L and range where the effect of the present invention may not be impaired.
  • the NB-TN-LCD of the present invention exerts its function simply by stacking two polarizing plates, a driving liquid crystal cell, and an optical compensation film so as to satisfy the above-described arrangement condition. However, it is also possible to bond the components with an adhesive or a bonding agent as necessary. Further, the NB-TN-LCD of the present invention includes, as necessary, other components as well as a driving liquid crystal cell, two upper and lower polarizing plates, and an optical compensation film provided as essential components. Is also good. Specifically, a retardation film, a light diffusion layer, and the like can be provided to improve the characteristics. Examples of the retardation film generally include polycarbonate and polymethacrylate, and are not particularly limited as long as they exhibit optical anisotropy.
  • the light diffusion layer is not particularly limited as long as it has a property of diffusing incident light isotropically or anisotropically. Further, by providing a color filter or the like, an NB-TN-LCD capable of performing multicolor or full-color display with high color purity can be obtained.
  • Reference Example 1 Manufacture of optical compensation film 1
  • the logarithmic viscosity of this liquid crystalline polyester was 0.17, the liquid crystal phase had a nematic phase, the isotropic phase-liquid crystal phase transition temperature was 250 ° C or higher, and the glass transition point was 115 ° C. .
  • biphenyldicarbonyl chloride 9 Ommo 1 and terefu-yuko chloride 1 Ommo 1, 2 R, 3 R-dimethoxybutanediol 105 The reaction was allowed to proceed for an hour, and the reaction solution was poured into methanol and reprecipitated to obtain 12.3 g of a liquid crystalline polyester (polymer B).
  • the logarithmic viscosity of the polymer B was 0.11, a chiral smectic phase was exhibited at room temperature, and the isotropic transition temperature was 40 to 50 ° C.
  • T g was thought to be around room temperature and could not be observed by DSC measurement.
  • a solution was prepared by dissolving 0.7 g of 19.3 of polymer A prepared above and polymer; 6 in 80 g of a mixed solvent of phenol / tetrachlorobenzene (6/4 weight ratio). did.
  • This solution was applied on a polyimide substrate (Kapton, manufactured by DuPont) rubbed with rayon cloth by a bar coating method, dried, and heat-treated at 240 ° C for 30 minutes.
  • a liquid crystal film with an average actual film thickness of 2.34 ⁇ m was obtained on a polyimide substrate (Sample A). The actual film thickness of the liquid crystal film was measured using a stylus fl gauge.
  • the refractive index of the liquid crystal film was measured by arranging the polyimide substrate surface of sample A in contact with the prism surface of the Abbe refractometer (Type 4 manufactured by Ayago Co.). Anisotropy was observed, and the refractive index (no) in the direction perpendicular to the rubbing direction of the polyimide substrate was 1.55, and the refractive index (ne) in the direction parallel to the rubbing direction was 1.75. Has a constant refractive index of 1.55. From this fact, the liquid crystal film has planar liquid crystal molecules aligned in parallel with the substrate and rubbing direction on the polyimide substrate interface side, and no and ne of the liquid crystal are 1.55 and 1. It turned out to be 75.
  • the liquid crystal film of Sample A was placed so that the liquid crystal film surface of sample A was in contact with the prism surface of the refractometer, and the refractive index of the liquid crystal film was measured in the same manner as above. 55, 1.75 in the vertical direction, and the refractive index in the enormous direction was constant at 1.55. Therefore, in Sample A, the liquid crystal film in the liquid crystal film was largely homogenous aligned at both the substrate interface and the air interface, and the rod-shaped liquid crystal molecules were twisted at almost 90 degrees at both the interface between the substrate interface and the air interface. I was able to confirm that I was there.
  • sample A contains an opaque and optically anisotropic polyimide substrate
  • Reference example 2
  • One optical compensation film (film C) obtained in Reference Example 2 was used for the cell, and as shown in FIG. 1, the polarizing plate (1) / optical compensation film (3) / TN cell (2) / A liquid crystal display panel was prepared by arranging a polarizing plate ( ⁇ ) in this order.
  • a 300 Hz rectangular wave was applied to the liquid crystal cell, the black display was set to 0 V, the white display was set to 6 V, and the drive voltage was set so that the transmittance on the front surface was equally divided by eight.
  • the omnidirectional transmittance of the liquid crystal cell was measured, and the viewing angle dependence of the isocontrast curve and gradation characteristics of the liquid crystal display panel was determined. The results are shown in Figs.
  • FIG. 3 is a graph showing the relationship between the gradation (Y) of the liquid crystal display panel and the viewing angle. As is evident from the results, the area showing a contrast of 10 or more was expanded as compared with Comparative Example 1, and the asymmetry of the left and right gradations was reduced.
  • Example 2
  • a liquid crystal display panel was produced in the same manner as in Example 1 except that the film D produced in Reference Example 2 was used as the optical compensation film, and the viewing angle dependence of the isocontrast curve and gradation characteristics was determined. The results are shown in FIGS.
  • FIG. 5 is a graph showing the relationship between the gradation of the liquid crystal display panel and the viewing angle.
  • a liquid crystal display panel was manufactured in the same manner as in Example 1 except that the compensation film (film A) manufactured in Reference Example 1 was used as the compensation film, and the viewing angle dependence of the isocontrast curve and the gradation characteristics was determined. I asked. The results are shown in FIGS.
  • FIG. 7 is a graph showing the relationship between the gradation of the liquid crystal display panel and the viewing angle.
  • a liquid crystal display panel was produced in the same manner as in Example 1 except that the film B produced in Reference Example 2 was used as the optical compensation film, and the viewing angle dependence of the isocontrast curve and gradation characteristics was determined. The results are shown in Fig. 18 and Fig. 9.
  • FIG. 9 is a graph showing the relationship between the gradation of the liquid crystal display cell and the viewing angle.
  • a liquid crystal display panel was produced in the same manner as in Example 1 except that the film E produced in Reference Example 2 was used as the optical compensation film, and the viewing angle dependence of the isocontrast curve and gradation characteristics was determined. The results are shown in FIG. 10 and FIG.
  • FIG. 11 is a graph showing the relationship between the gradation of the liquid crystal display panel and the viewing angle.
  • a solution was prepared by dissolving 9.81 g of polymer A and 0.19 g of polymer: 8 prepared in Reference Example 1 in 40 g of a mixed solvent of phenol / tetrachlorobenzene (6/4 weight ratio). .
  • This solution was applied to a polyimide substrate (Kapton, trade name, manufactured by Dubon) rubbed with rayon cloth by a vacuum coating method, dried, heat-treated at 240 ° C for 30 minutes, and then cooled to room temperature.
  • a liquid crystal film with an average actual film thickness of 2.34 m was obtained on a polyimide substrate by cooling and fixing (Sample B). The actual film thickness of the liquid crystal film was measured using a stylus type film thickness meter.
  • the refractive index of the liquid crystal film was measured by placing it on the prism surface of an Abbe refractometer (Type-4 manufactured by Ayago) so that the polyimide substrate surface of sample B was in contact with it.
  • the refractive index (no) in the direction perpendicular to the rubbing direction of the polyimide substrate was 1.55, and the refractive index (ne) in the parallel direction was 1.75.
  • the refractive index was constant at 1.55.
  • the liquid crystal film is a rod-shaped liquid crystal on the polyimide substrate interface side with respect to the substrate and the rubbing direction. Molecules are aligned in parallel and plane, and liquid crystal no and ne are found to be 1.55 and 1.75 respectively.
  • the liquid crystal film surface of sample B was placed so that the liquid crystal film surface of sample B was in contact with the prism surface of the refractometer, and the refractive index of the liquid crystal film was measured in the same manner as above. 55, — 1.75 in the 45-degree direction, and the refractive index in the g-thick direction was constant at 1.55. Therefore, in Sample B, the liquid crystal film in the sample B had a substantially homogeneous alignment of the liquid crystal molecules at both the substrate interface and the air interface, and the rod-like liquid crystal molecules at the interface between the substrate interface and the air interface were almost 1450 degrees at both interfaces. The appearance of twisting was confirmed.
  • Sample B contains an opaque and optically anisotropic polyimide substrate, a UV curable adhesive (UV_3400, manufactured by Toagosei Co., Ltd.) Then, a white glass substrate (1.1 mm in thickness) manufactured by Corning Co., Ltd. was laminated thereon as a transfer substrate, and then the adhesive was cured by UV irradiation of about 60 OmJ. By peeling off, an optical compensation film 2 with a white glass substrate was obtained.
  • UV curable adhesive UV_3400, manufactured by Toagosei Co., Ltd.
  • a drive liquid crystal cell (TN) with a cell gap of 4.8 ⁇ m, And 470 nm, a twist angle of 90 ° (left-handed twist), and a pretilt angle of 2 ° using Merck's ZLI-4792 as the liquid crystal material of the drive liquid crystal cell. Cell) was prepared.
  • An optical compensation film 2 obtained in Reference Example 3 in the cell, eight] 2 3 2 - a T AC film is 150 nm, as shown in FIG. 12, the polarizing plate from the viewing side (1) / optical compensation off A liquid crystal display panel was prepared by arranging the film (3) / TAC film (4) / TN cell (2) / polarizing plate ( ⁇ ) in this order.
  • a rectangular wave of 300 mm was applied to the liquid crystal cell, the black display was set to 0 V, the white display was set to 6 V, and the drive voltage was set so that the transmittance on the front surface was equally divided by eight.
  • the viewing angle of the transmittance of the liquid crystal cell was measured using a color luminance meter ⁇ -5 manufactured by Topcon Corporation, and the viewing angle dependence of the gradation characteristics of the liquid crystal display panel was determined.
  • Figure 13 shows the relationship between the gradation of the liquid crystal display panel and the viewing angle.
  • the optical compensator obtained in Reference Example 4 was used as the optical compensator, and as shown in FIG. 14, the polarizing plate (1) / optical compensator (3 ′) / ⁇ cell (2) / polarizer ( ⁇ ), A liquid crystal display panel was prepared, and the viewing angle dependence of the gradation characteristics of the liquid crystal display panel was determined in the same manner as in Example 3.
  • FIG. 15 shows the relationship between the gradation of the liquid crystal display panel and the viewing angle. Comparative Example 4
  • the normally black mode TN liquid crystal display element of the present invention has a wide viewing angle characteristic and has small left-right asymmetry during halftone display, so that high-quality image display is possible.
  • FIG. 1 is a layout diagram of the liquid crystal display panel created in the first embodiment.
  • FIG. 2 is an isocontrast curve of the liquid crystal display panel created in Example 1.
  • FIG. 3 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Example 1.
  • FIG. 4 is an isocontrast curve of the liquid crystal display panel created in Example 2.
  • FIG. 5 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Example 2.
  • FIG. 6 is an isocontrast curve of the liquid crystal display panel prepared in Comparative Example 1.
  • FIG. 7 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Comparative Example 1.
  • FIG. 8 is an isocontrast curve of the liquid crystal display panel created in Comparative Example 2.
  • FIG. 9 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Comparative Example 2.
  • FIG. 10 is an isocontrast curve of the liquid crystal display panel created in Comparative Example 3.
  • FIG. 11 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Comparative Example 3.
  • FIG. 12 is a layout diagram of the liquid crystal display panel created in the third embodiment.
  • Fig. 13 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Example 3. It is.
  • FIG. 14 is a layout diagram of the liquid crystal display panel created in the fourth embodiment.
  • FIG. 15 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Example 4.
  • FIG. 16 is a layout diagram of the liquid crystal display panel created in Comparative Example 4.
  • FIG. 17 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Comparative Example 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

A normally-black mode TN liquid crystal display in which a drive liquid crystal cell having a pair of transparent substrates with electrodes and a liquid crystal layer having twisted nematic orientation during voltage nonapplication and provided between the pair of transparent substrates and an optical compensating film holding twisted nematic orientation and interposed between two polarizing plates, characterized in that the absolute value of the angle of twist of the optical compensating film is smaller than that of the angle of twist of the drive liquid crystal cell during voltage nonapplication.

Description

明 細 書 ノ一マリーブラックモード型 T N液晶表示素子  Specification No. Mary black mode type TN liquid crystal display
[技術分野] [Technical field]
本発明は、 表示コントラスト、 階調特性および表示色の視野角特性の改良された ノーマリ一ブラックモード型ッイステツドネマチック (TN) 液晶表示素子に関す る。  The present invention relates to a normally black mode twisted nematic (TN) liquid crystal display device having improved display contrast, gradation characteristics, and viewing angle characteristics of display colors.
[背景技術] [Background technology]
T F T素子あるいは M I M素子などを用いたァクティブ駆動のツイステヅドネマ チック型液晶表示素子 (以下、 TN— LCDと略す。 )は、 薄型、 軽量、 低消費電力 という LCD本来の特長に加えて、 正面から見た場合 CRTに匹敵する画質を有す るために、 ノートパソコン、 携帯用テレビ、 携帯用情報端末などの表示装置として 広く普及している。  Twisted nematic liquid crystal display elements (hereinafter abbreviated as TN-LCDs) driven by active elements using TFT elements or MIM elements are thin, light, and have low power consumption. In the case of having a picture quality comparable to that of a CRT, it is widely used as a display device for notebook computers, portable televisions, portable information terminals and the like.
電圧無印加時に黒表示となり、 黒表示時のセル中の液晶配向状態がねじれ構造を 形成するノーマリ一ブラックモード型の TN—LCD (以下、 NB— TN— LCD と略す。) は、 光学的な異方性が平均化されているために電圧無印加時に白表示と なるノ一マリーホワイ ト型の TN— L CD (以下、 NW— TN— L CDと略す。) と比較して視野角特性が良好である。 ただし NB— TN— LCDは、 黒表示時のセ ル中の液晶配向状態がねじれ構造であるが故に可視領域全体にわたつて完全に光を 遮光することができず、 黒表示が着色してしまい、 表示のコントラストが低下して しまうことから、 NW— TN— L C Dでは課題となり得ない色補償を行わなければ ならないという課題が残されている。 この課題を解決するために様々な色補償方法 が近年報告されており、 例えば LCDパネルの各色 (R、 G、 B) の画素毎にセル ギヤヅプを最適値に設定する方法 (マルチギヤヅプ法: Hatta et al.、 SID 1986 Digest, p296)、 複数の延仲フィルムを用いて色補償を行う方法 (Sergan etal., Jpn. J. Appl. Phys., 37(3A)、 p889)、 補償用の液晶セルにて色補償を行う方法 (吉田ら、 第 16回液晶討論会予稿渠 (1990)、 2L307, p222) 等が提案されている。 しかしながら、 マルチギャップ方法では、 セル全面にわたって表示画素毎に基板 に段差を設けるなどの微細加工が必要であり、 結果としてセルの歩留り低下および コスト上昇を招いてしまう。 また複数の延伸フィルムを用いて色補償を行う方法で は、 コントラス ト確保のために 4枚以上のフィルムを用いる必要があり、 フィル ムのばらつき、貼合加工時の精度などにより安定した特性を得ることが困難である。 また補償用の液晶セルにて色補償を行う方法では、 セルを積層することから重量や 厚み増加の問題がある。 さらには補償用液晶セルのパネル間のばらつきにより表示 特性が変化し、 かつ補償用液晶セルの面内ムラが表示ムラとなって現れるため、 高 精度かつ高均一な補償用液晶セルが必要であり、 セルの歩留まり低下およびコス卜 上昇を招いてしまうものであった。 A normally-black mode type TN-LCD (hereinafter abbreviated as NB-TN-LCD), in which black display is performed when no voltage is applied and the liquid crystal alignment state in the cell during the black display forms a twisted structure, is referred to as an NB-TN-LCD. Viewing angle characteristics compared to a normally white TN-LCD (hereinafter abbreviated as NW-TN-LCD), which displays white when no voltage is applied because the anisotropy is averaged. Is good. However, the NB—TN—LCD cannot twist light completely over the entire visible region because the liquid crystal alignment state in the cell during black display is twisted, and the black display is colored. However, since the contrast of the display is reduced, there remains a problem that color compensation must be performed which cannot be a problem with NW-TN-LCD. Various color compensation methods have been recently reported to solve this problem. For example, a method of setting the cell gap to an optimum value for each pixel of each color (R, G, B) of the LCD panel (multi-gap method: Hatta et al. al., SID 1986 Digest, p296), Method of performing color compensation using multiple Yannaka films (Sergan et al., Jpn. J. Appl. Phys., 37 (3A), p889), Liquid crystal cell for compensation (Yoshida et al., Proceedings of the 16th Liquid Crystal Symposium, 1990), 2L307, p222). However, in the multi-gap method, fine processing such as providing a step on the substrate for each display pixel over the entire surface of the cell is required, resulting in a decrease in cell yield and an increase in cost. Also, in the method of performing color compensation using multiple stretched films, it is necessary to use four or more films in order to secure contrast, and stable characteristics are obtained due to film variations, accuracy during laminating, etc. Difficult to obtain. Also, in the method of performing color compensation using a compensating liquid crystal cell, there is a problem that the weight and thickness increase because the cells are stacked. Furthermore, since the display characteristics change due to the dispersion of the compensating liquid crystal cells between the panels, and the in-plane unevenness of the compensating liquid crystal cells appears as display unevenness, a highly accurate and highly uniform compensating liquid crystal cell is required. However, this leads to a decrease in cell yield and an increase in cost.
[発明の開示] [Disclosure of the Invention]
本発明は、 上記課題を鑑みて成されたものであり、 より広い視野角特性を有する と共に、 中間調表示時の左右の非対称性も少なく、 高品位な画像表示が可能なノー マリ一ブラックモード型 T N液晶表示素子を提供するものである。 すなわち本発明は、 電極を備えた一対の透明基板の間に電圧無印加時にねじれネ マチック配向を有する液晶層を設けた駆動用液晶セルと、 ッイステツ ドネマチック 配向を保持した光学補償フィルムとを、 2枚の偏光板にて挟持させた液晶表示素子 であって、 光学補償フィルムのねじれ角の絶対値が駆動用液晶セルの電圧無印加時 のねじれ角の絶対値より小であることを特徴とするノ一マリーブラックモ一ド型 T N液晶表示素子に関する。 また本発明は、 電極を備えた一対の透明基板の間に電圧無印加時にねじれネマチ ック配向を有する液晶層を設けた駆動用液晶セルと、 ッイステツドネマチック配向 を保持した光学補償フィルムと、 光学的に負の異方性を示すフィルムとを、 2枚の 偏光板にて挟持させた液品表示素子であって、 光学補償フィルムのねじれ角の絶対 値が駆動用液品セルの 'Ηί 無印加時のねじれ^の絶対値より小であることを特徴と するノーマリーブラックモ一ド型 T N液晶表示素子に関する。 第 1の発明に係るノ一マリ一ブラックモード型 T N液晶表示素子は、 電極を備え た一対の透明基板の間に電圧無印加時にねじれネマチック配向する液晶層を設けた 駆動用液晶セルと、 ッイステツドネマチック配向を保持している光学補償フィルム とを、 2枚の偏光板の間に挟持させた構成からなり、 前記光学補償フィルムのねじ れ角の絶対値が駆動用液晶セルの電圧無印加時のねじれ角の絶対値よりも小である ことを特徴とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a wider viewing angle characteristic, has less left-right asymmetry during halftone display, and is capable of displaying a high-quality image in a normally black mode. The present invention provides a type TN liquid crystal display device. That is, the present invention provides a driving liquid crystal cell in which a liquid crystal layer having a twisted nematic alignment is provided between a pair of transparent substrates provided with electrodes when no voltage is applied, and an optical compensation film holding a twisted nematic alignment. A liquid crystal display device sandwiched between two polarizing plates, wherein the absolute value of the twist angle of the optical compensation film is smaller than the absolute value of the twist angle of the driving liquid crystal cell when no voltage is applied. The present invention relates to a normally black mode TN liquid crystal display device. The present invention also provides a driving liquid crystal cell having a liquid crystal layer having a twisted nematic alignment between a pair of transparent substrates provided with electrodes when no voltage is applied, and an optical compensation film having a twisted nematic alignment. And a film exhibiting optically negative anisotropy sandwiched between two polarizing plates, wherein the absolute value of the twist angle of the optical compensation film is equal to that of the driving liquid cell. The present invention relates to a normally black mode TN liquid crystal display device characterized by being smaller than the absolute value of the twist ^ when no voltage is applied. A normally-black mode TN liquid crystal display element according to the first invention comprises a driving liquid crystal cell having a liquid crystal layer which is twisted and nematic aligned when no voltage is applied between a pair of transparent substrates provided with electrodes. An optical compensatory film holding the nematic alignment is sandwiched between two polarizing plates, and the absolute value of the twist angle of the optical compensatory film is measured when no voltage is applied to the driving liquid crystal cell. It is characterized by being smaller than the absolute value of the torsion angle of.
そして、 前記第 1の発明の液晶表示素子にあっては、 駆動用液晶セルにおける液 晶層の屈折率異方性 Δηと液晶層の厚み dとの積、 すなわち、 Andの値が 200 nm〜60 Onmの範囲にあり、 駆動用液晶セルの電圧無印加時のねじれ角が 8 0° 〜100° の範囲にあり、 かつ、 光学補償フィルムのねじれ方向が駆動用液晶 セルのねじれ方向と逆方向であって、 そのねじれ角の絶対値が駆動用液晶セルのね じれ角の絶対値より小さく、 その差が 15度以上であることがさらに好ましい。 第 2の発明に係るノ一マリ一ブラックモ一ド型 T N液晶表示素子は、 電極を備え た一対の透明基板の間に電圧無印加時にねじれネマチック配向する液晶層を設けた 駆動用液晶セルと、 ッイステツドネマチック配向を保持している光学補償フィルム と、 光学的に負の異方性を示すフィルムとを、 2枚の偏光板の間に挟持させた構成 からなり、 前記光学補償フィルムのねじれ角の絶対値が駆動用液晶セルの電圧無印 加時のねじれ角の絶対値よりも小であることを特徴とする。  In the liquid crystal display element of the first invention, the product of the refractive index anisotropy Δη of the liquid crystal layer in the driving liquid crystal cell and the thickness d of the liquid crystal layer, that is, the value of And is 200 nm or more. It is in the range of 60 Onm, the torsion angle of the driving liquid crystal cell when no voltage is applied is in the range of 80 ° to 100 °, and the twisting direction of the optical compensation film is opposite to that of the driving liquid crystal cell. More preferably, the absolute value of the twist angle is smaller than the absolute value of the torsion angle of the driving liquid crystal cell, and the difference is at least 15 degrees. A normally-black mode TN liquid crystal display element according to a second aspect of the present invention includes a driving liquid crystal cell having a liquid crystal layer that is twisted and nematic aligned when no voltage is applied between a pair of transparent substrates provided with electrodes; The optical compensation film has a configuration in which an optical compensation film that maintains a twisted nematic orientation and a film that exhibits optically negative anisotropy are sandwiched between two polarizing plates. Is smaller than the absolute value of the torsion angle of the driving liquid crystal cell when no voltage is applied.
そして、 前記第 2の発明のノーマリ一ブラックモード型 T N液晶表示素子にあつ ては、 前記駆動用液晶セルにおける液晶層の屈折率異方性 Δηと液晶層の厚み dと の積 (And) が 200 nm〜600 nmの範囲にあり、 駆動用液晶セルの電圧無 印加時のねじれ角が 80° 〜100° の範囲にあり、 光学補償フィルムの屈折率異 方性 An,と厚み d,との積 (ΔΓ^ d ) が 150〜600 nmの範囲にあり、 光学 補償フィルムのねじれ角の絶対値が、 駆動用液品セルの電圧無印加時のねじれ角の 絶対値より小さく、 その差が 15度以上であり、 光学的に負の '方性を示すフィル ムの膜厚方向の ¾ί屈折 Δη 2と厚み d 2との積 (Δη2 d 2) が _ 20〜一 300 n mの範 fflにあることが好ましい。 また本発明のノ一マリーブラックモード型 T N液晶表示素子に組み込むのに適し た光学補償フィルムとしては、 光学的に正の一軸性を示す高分子液晶の薄膜が液晶 状態において形成するッイステツドネマチック配向を、 薄膜の冷却によってガラス 固定化した液晶フィルムであることが好ましい。 And, in the normally black mode TN liquid crystal display element of the second invention, the product (And) of the refractive index anisotropy Δη of the liquid crystal layer and the thickness d of the liquid crystal layer in the driving liquid crystal cell is: It is in the range of 200 nm to 600 nm, the torsion angle of the driving liquid crystal cell when no voltage is applied is in the range of 80 ° to 100 °, and the refractive index anisotropy An, and the thickness d, of the optical compensation film are The product (ΔΓ ^ d) is in the range of 150 to 600 nm, and the absolute value of the twist angle of the optical compensation film is smaller than the absolute value of the twist angle of the driving liquid product cell when no voltage is applied. Degrees, and the product (Δη 2 d 2 ) of ¾ί refraction Δη 2 and thickness d 2 in the film thickness direction of a film exhibiting an optically negative anisotropy is in the range of の20 to 1300 nm ffl. Preferably, there is. The optical compensation film suitable for being incorporated in the normally black mode TN liquid crystal display device of the present invention is a twisted film formed of a thin film of a polymer liquid crystal having optically positive uniaxiality in a liquid crystal state. The liquid crystal film is preferably a liquid crystal film in which the nematic alignment is fixed to the glass by cooling the thin film.
また本発明のノ一マリ一ブラックモード型 T N液晶表示素子に組み込むのに適し た光学補償フィルムとしては、 光学的に正の一軸性を示す光硬化型低分子液晶の薄 膜が液晶状態において形成するッイステツドネマチック配向を、 薄膜への光照射に よって固定化した液晶フィルムであることが好ましい。 以下、 本発明について詳しく説明する。  As an optical compensation film suitable for being incorporated into the normally-black mode TN liquid crystal display device of the present invention, a thin film of a photocurable low-molecular liquid crystal exhibiting optically positive uniaxiality is formed in a liquid crystal state. It is preferable that the liquid crystal film has a twisted nematic alignment fixed by irradiating the thin film with light. Hereinafter, the present invention will be described in detail.
第 1の発明のノ一マリ一ブラックモード型 T N液晶表示素子 (以下、 N B— T N 一 LCDと略す。) は、 駆動用液晶セルと、 2枚の偏光板と、 光学補償フィルムを 備えている。  A normally-black mode TN liquid crystal display device (hereinafter abbreviated as NB-TN-LCD) of the first invention includes a driving liquid crystal cell, two polarizing plates, and an optical compensation film. .
第 2の発明の NB— TN— LCDは、 駆動用液晶セルと、 光学補償フィルムと、 光学的に負の異方性を示すフィルムとを、 2枚の偏光板の間に挟持させた構造にあ る。 駆動用液晶セルは、 基本的には、 電極を備えた一対の透明基板の間に、 電圧無印 加時にねじれ配向を形成するネマチック液晶層を設けた構成にある。 この基本構成 を備えているものであれば、 当該液晶セルに用いられる電極、 透明基板、 ネマチッ ク液晶の種類に格別な限定はなく、 また当該液晶セルの製法も特に制限されるもの ではない。  The NB-TN-LCD of the second invention has a structure in which a driving liquid crystal cell, an optical compensation film, and a film exhibiting optically negative anisotropy are sandwiched between two polarizing plates. . The driving liquid crystal cell basically has a configuration in which a nematic liquid crystal layer which forms a twisted alignment when no voltage is applied is provided between a pair of transparent substrates provided with electrodes. There is no particular limitation on the types of electrodes, transparent substrates, and nematic liquid crystals used in the liquid crystal cell as long as the liquid crystal cell has the basic configuration, and the method of manufacturing the liquid crystal cell is not particularly limited.
駆動用液晶セルの駆動方式には、 単純マトリクス方式と、 能動素子を電極として 用いるアクティブマトリクス方式とがあり、 後者の方式は T FT (Thin F i lm Tras i s t o r) 電極を能動素子に用いるものと、 MI M (Me t a 1 I nsu l at o r M e t a 1 ) 電極又は T F D ( T h i n F i lm D i o d e ) 電極を能動素子に用 t、るものに細分化できるが、 いずれの駆動方式の駆動川 液晶セルでも、 本発叨の液品表示素子に使用可能である。  There are two types of driving methods for driving liquid crystal cells: a simple matrix type and an active matrix type that uses active elements as electrodes.The latter type uses TFT (Thin Film Transistor) electrodes as active elements. , MIM (Meta 1 Insul at or Meta 1) electrode or TFD (Thin Film Diode) electrode can be subdivided into active elements. Kawa This liquid crystal cell can also be used for the liquid product display device of the present invention.
しかし、 本発明に用いる駆 ®用液品セルは、 そのネマチック液晶層の屈折率異方 性 Δηと、 駆動川液品セルのネマチック液品層の厚み dとの積 (And値) せ、 通 常 2 0 0〜6 0 0 nm、 好ましくは 3 0 0〜 5 0 0 nmの範囲にあることが望まし い。 An d値が 6 0 0 nmより大きい場合は、 後述する光学補償フィルムと組み合 わせた際に着色が大きくなる恐れがある。 また、 An d値が 2 0 O nmより小さい 場合には、 光学補償フィルムと組み合わせた際に正面の輝度やコントラス卜が低下 する恐れがある。 However, the liquid cell for driving used in the present invention is obtained by multiplying the refractive index anisotropy Δη of the nematic liquid crystal layer by the thickness d of the nematic liquid layer of the driving liquid cell (And value). It is always desirable to be in the range from 200 to 600 nm, preferably from 300 to 500 nm. If the And value is larger than 600 nm, coloring may increase when combined with an optical compensation film described later. If the And value is smaller than 20 O nm, the front luminance and contrast may be reduced when combined with an optical compensation film.
また、 駆動用液晶セルの電圧無印加時におけるネマチック液晶層のねじれ角は、 通常 8 0 ° 〜 1 0 0 ° 、 好ましくは 8 5 ° 〜9 5 ° の範囲にあることが望ましい。 このねじれ角が上記範囲から外れた場合、 旋光効果を十分に得ることができず、 N B— T N— L C Dとしての表示特性が著しく低下する恐れがある。 なお、 ねじれ角 のねじれ方向は、 左右どちらの方向であってもよい。 本発明の液晶表示素子においては、 これに設置される光学補償フィルムのねじれ 角のねじれ方向と、 駆動用液晶セルの電圧無印加時におけるネマチック液晶層のね じれ角とが逆向きであるとが好ましい。 そして、 光学補償フィルムのねじれ角の絶 対値は、 駆動用液晶セルの電圧無印加時のねじれ角の絶対値よりも小さいことが望 ましい。  The twist angle of the nematic liquid crystal layer when no voltage is applied to the driving liquid crystal cell is usually in the range of 80 ° to 100 °, preferably in the range of 85 ° to 95 °. If the twist angle is out of the above range, the optical rotation effect cannot be sufficiently obtained, and the display characteristics as NB—TN—LCD may be significantly reduced. The twist direction of the twist angle may be either the left or right direction. In the liquid crystal display element of the present invention, the twist direction of the twist angle of the optical compensation film installed thereon and the twist angle of the nematic liquid crystal layer when no voltage is applied to the driving liquid crystal cell are opposite to each other. preferable. It is desirable that the absolute value of the twist angle of the optical compensation film is smaller than the absolute value of the twist angle of the driving liquid crystal cell when no voltage is applied.
しかし、 光学補償フィルムのねじれ角の絶対値が小さ過ぎる場合には、 このフィ ルムが奏する補償効果が低減し、表示画像のコントラスト低下を生じる恐れがある。 また、 光学補償フィルムのねじれ角の絶対値を駆動用液晶セルの電圧無印加時のね じれ角の絶対値よりも小さく設定した場合でも、 両角度の差が少ない場合には、 十 分な視野角拡大効果と非対称性低減効果を得ることができな t、恐れがある。  However, when the absolute value of the twist angle of the optical compensation film is too small, the compensation effect of the film is reduced, and there is a possibility that the contrast of a displayed image may be reduced. Even when the absolute value of the torsion angle of the optical compensation film is set smaller than the absolute value of the torsion angle of the driving liquid crystal cell when no voltage is applied, if the difference between the two angles is small, sufficient visual field can be obtained. There is a possibility that the effect of increasing the angle and the effect of reducing the asymmetry cannot be obtained.
こうしたことから、 表示画像の高いコントラストと、 十分な視野角拡大効果およ び非対称性低減効果を実現するためには、 補償フィルムのねじれ角の絶対値は、 最 少でも通常 5度以上、 好ましくは 1 0度以上であることが望ましい。 そして、 補償 フィルムのねじれ角の絶対値は、 最大でも駆動用液晶セルの電圧無印加時のねじれ 角の絶対値より小さく、 その差が通常 1 5度以上、 好ましくは 2 0度以上であるこ とが望ましい。  For this reason, in order to achieve high contrast of the displayed image and a sufficient viewing angle enlarging effect and an asymmetry reducing effect, the absolute value of the twist angle of the compensation film is usually at least 5 degrees or more, preferably. Is preferably at least 10 degrees. The absolute value of the twist angle of the compensation film is at most smaller than the absolute value of the twist angle of the driving liquid crystal cell when no voltage is applied, and the difference is usually 15 degrees or more, preferably 20 degrees or more. Is desirable.
本発明の光学補 i フィルムにおいて、 当該フィルムの屈折率異方性 Δη ,と、 フ イルムの厚み d〗 との秸 (Δη , d ,) は、 本発明の効果を損なわない範囲において 特に制限されるものではないが、 通常 2 0 0 nrr!〜 7 0 0 nmの範囲、 好ましくは 3 0 0 n n!〜 6 0 0 n mの範囲にあることが望ましい。 Δ η , の値が 2 0 0 n mより小さい場合は、 L C Dの正面輝度やコントラストが低下する恐れがあり、 7 0 0 nmより大きい場合は、 L C Dに不必要な着色が見られるようになる恐れがあ る。 本発明の光学補償フィルムは、 上記の如きねじれ角および Δ η の値を与え る任意の液晶材料から製造することができるが、 なかでも光学的に正の一軸性を示 す高分子液晶又は光硬化型低分子液晶を液晶材料として、 その薄膜から調製するこ とが好ましい。 In the optical complementary film of the present invention, 秸 (Δη, d,) between the refractive index anisotropy Δη of the film and the thickness d〗 of the film is particularly limited as long as the effects of the present invention are not impaired. It's not something, but usually 200 nrr! In the range of ~ 700 nm, preferably 3 0 0 nn! It is desirably in the range of ~ 600 nm. When the value of Δ η, is smaller than 200 nm, the front brightness and contrast of the LCD may be reduced. When the value is larger than 700 nm, unnecessary coloring may be seen on the LCD. There is. The optical compensatory film of the present invention can be produced from any liquid crystal material giving the above-mentioned values of twist angle and Δη. Among them, a polymer liquid crystal or an optical liquid having optically positive uniaxiality is preferred. It is preferable to use a curable low-molecular liquid crystal as a liquid crystal material and to prepare it from its thin film.
この液晶材料はッイステツドネマチック配向を発現できるよう、 光学活性基を含 有する化合物を含んでいなければならない。 ちなみに、 高分子液晶又は光硬化型低 分子液晶自体が、 光学活性基を含有していれば、 光学活性基含有化合物を液晶材料 に別途添加する必要は無いが、 そうでない場合は、 非液晶性の光学活性基含有高分 子化合物又は低分子化合物を液晶材料に添加する。  This liquid crystal material must contain a compound having an optically active group so that twisted nematic alignment can be exhibited. Incidentally, if the polymer liquid crystal or the photo-curable low-molecular liquid crystal itself contains an optically active group, it is not necessary to separately add an optically active group-containing compound to the liquid crystal material. Is added to the liquid crystal material.
何れの場合とも、 液晶材料に含まれる光学活性基の量は、 実際に使用する高分子 液晶又は光硬化型低分子液晶の種類、 光学補償フィルムに所望するねじれ角の程度 によって異なるため一概には言えないが、 液晶材料に対して通常 0 . 0 1〜5 0重 量%、 好ましくは 0 . 0 5〜4 0重量%、 さらに好ましくは 0 . 1〜3 0重量%、 最も好ましくは 0 . 2〜2 0重量%の範囲にある。 含有量が上記範囲から外れた場 合には、 最終的に得られる光学補償フィルムのねじれ角が所望範囲から逸脱する恐 れがある。 液晶材料に使用する高分子液晶は、 所望のッイステツドネマチック配向が固定化 できるものであればその種類に限定はなく、 主鎖型又は側鎖型の高分子液晶がいず れでも使用可能である。 具体的には、 ポリエステル、 ポリアミ ド、 ポリ力一ボネ一 ト、 ポリエステルイミ ドなどの主鎖型液晶ポリマー、 あるいはポリアクリレート、 ポリメタクリレート、 ポリマロネート、 ポリシロキサンなどの側鎖型液品ポリマー などが使用できる。 なかでも、 ッイステツドネマチック配向を形成する上で配向性 が良く、 合成も比較的容易である液晶性ポリエステルの採用が望ましい。 ポリマ一 の構成単位としては、 例えば、 芳香族あるいは脂肪族ジオール単位、 芳香族あるい は脂肪族ジカルボン酸単位、 芳香族あるいは脂肪族ヒドロキシカルボン酸単位を好 適な例として挙げられる。 液晶材料にはまた光硬化型低分子液晶も使用可能であって、 例えば、 ァクリロイ ル基、 ビニル基やエポキシ基等の官能基を導入したビフエニル誘導体、 フヱニルべ ンゾエート誘導体、 スチルベン誘導体などを基本骨格とした光硬化型低分子液晶が 何れも使用できる。 これらの低分子液晶は、 ライオト口ピック性、 サ一モトロピッ ク性のどちらであってもよいが、 サ一モト口ピック性を示すものが作業性、 プロセ ス等の観点からより好適である。 In any case, the amount of optically active groups contained in the liquid crystal material varies depending on the type of polymer liquid crystal or photocurable low-molecular liquid crystal actually used and the degree of twist angle desired for the optical compensation film. Although it cannot be said, it is usually 0.01 to 50% by weight, preferably 0.05 to 40% by weight, more preferably 0.1 to 30% by weight, and most preferably 0.1 to 50% by weight based on the liquid crystal material. It is in the range of 2 to 20% by weight. When the content is out of the above range, the twist angle of the finally obtained optical compensation film may deviate from the desired range. The type of polymer liquid crystal used for the liquid crystal material is not limited as long as the desired twisted nematic alignment can be fixed, and any type of main-chain or side-chain polymer liquid crystal can be used. It is. Specifically, main-chain liquid crystal polymers such as polyester, polyamide, polycarbonate, and polyesterimide, or side-chain liquid polymers such as polyacrylate, polymethacrylate, polymalonate, and polysiloxane are used. it can. Above all, it is desirable to use a liquid crystalline polyester which has good orientation for forming twisted nematic orientation and is relatively easy to synthesize. The constituent units of the polymer include, for example, aromatic or aliphatic diol units, aromatic or Examples of preferred examples thereof include an aliphatic dicarboxylic acid unit and an aromatic or aliphatic hydroxycarboxylic acid unit. Photo-curable low-molecular liquid crystals can also be used as the liquid crystal material.Examples include a biphenyl derivative, a phenylbenzoate derivative, and a stilbene derivative having a functional group such as an acryloyl group, a vinyl group, or an epoxy group. Any of the above-mentioned photocurable low-molecular liquid crystals can be used. These low-molecular liquid crystals may have either lyotropic orpicotropic properties, but those exhibiting orotropic properties are more preferable from the viewpoint of workability, process and the like.
上記した液晶材料には、 最終的に得られる光学補償フィルムの耐熱性を向上させ るために、 ッイステツドネマチック相の発現を妨げない範囲で、 ビスアジド化合物 ゃグリシジルメタクリレート等の架橋剤を添加することもできる。 これら架橋剤を 添加することにより、 ッイステツドネマチック相を発現させた状態で液晶分子を架 橋させることができる。  In order to improve the heat resistance of the finally obtained optical compensation film, a cross-linking agent such as a bis azide compound and glycidyl methacrylate is added to the liquid crystal material as long as the twisted nematic phase is not hindered. You can also. By adding these cross-linking agents, liquid crystal molecules can be bridged in a state where a twisted nematic phase is developed.
さらに言えば、 液晶材料には、 二色性色素、 染料、 顔料、 酸化防止剤、 紫外線吸 収剤、 ハードコート剤等の各種添加剤を、 本発明の効果を損なわない範囲において 適宜添加することもできる。 本発明の光学補償フィルムは、 上記の如き液晶材料を薄膜状とし、 その薄膜に 熱処理を施して所望のッイステツドネマチック配向を形成させ、 しかる後、 その配 向状態を固定化することによって得ることができる。  Furthermore, various additives such as dichroic dyes, dyes, pigments, antioxidants, ultraviolet absorbers, and hard coat agents are appropriately added to the liquid crystal material as long as the effects of the present invention are not impaired. Can also. The optical compensation film of the present invention is obtained by forming the above liquid crystal material into a thin film, subjecting the thin film to heat treatment to form a desired twisted nematic alignment, and then fixing the alignment state. Obtainable.
所望のッイステツドネマチック配向を得るためには、 配向規制力を有する配向基 板上に液晶材料の薄膜を展延させること、 具体的には、 配向基板上に液晶材料の塗 布することが好ましい。 ここでフィルム材料の塗布膜の上下界面とも配向基板に挟 み込んで配向させる方法、 また一方を配向基板とし、 他方を配向規制力を有しない 非配向基板との問にフィルム材料の塗布膜を挟む込んで配向させる方法も採用する ことができる。  In order to obtain a desired twisted nematic alignment, a thin film of a liquid crystal material is spread on an alignment substrate having an alignment regulating force.Specifically, a liquid crystal material is coated on an alignment substrate. Is preferred. Here, the upper and lower interfaces of the coating film of the film material are sandwiched between the alignment substrates to orient the film, and the coating film of the film material is applied to one of the alignment substrates and the other to a non-alignment substrate having no alignment regulating force. A method of sandwiching and orienting can also be adopted.
配向基板としては、 液晶分子の基板界面でのダイレクターを規制できるように異 方性を有しているを使用するのが望ましく、 基板材料にはガラスやプラスチック力 s 使用できる。 液品材料を塗布する基板が、 全く液晶分子のダイレク夕一を規制でき ない場合には、 所望するヅイステツドネマチック配向を得ることができない恐れが ある。 光学補償フィルムの作成に使用可能な配向基板を例示すると、 ポリイミ ド、 ポリ アミ ドイミ ド、 ポリアミ ド、 ポリエーテルイミ ド、 ポリエーテルエーテルケトン、 ポリエーテルケトン、 ポリケトンサルファイ ド、 ポリエーテルスルフォン、 ポリス ルフォン、 ポリフエ二レンサルファイ ド、 ポリフエ二レンオキサイ ド、 ポリエチレ ンテレフ夕レート、 ポリブチレンテレフ夕レート、 ポリエチレンナフ夕レート、 ポ リアセタール、 ポリカーボネート、 ポリアリレート、 ポリビニルアルコール、 ポリ プロピレン、 セルロース系プラスチックス、 アクリル樹脂、 エポキシ樹脂、 フエノ ール樹脂などのプラスチックフィルム基板および一軸延伸プラスチックフィルム基 板、 表面にスリット状の溝を付けたアルミニウム、 鉄、 銅などの金属基板、 表面を スリット状にエッチング加工したアルカリガラス、 ホウ珪酸ガラス、 フリントガラ スなどのガラス基板を挙げることができる。 As the alignment substrate, it is desirable to use has anisotropic so that it can regulate the director at the substrate interface of the liquid crystal molecules, the substrate material can be used as glass or plastic power s. The substrate on which the liquid material is applied can completely control the liquid crystal molecules. If not, there is a possibility that the desired twisted nematic alignment cannot be obtained. Examples of an alignment substrate that can be used for producing the optical compensation film include polyimide, polyamide imide, polyamide, polyether imide, polyether ether ketone, polyether ketone, polyketone sulfide, polyether sulfone, and polys. Lefon, polyphenylene sulfide, polyphenylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthate, polyacetal, polycarbonate, polyarylate, polyvinyl alcohol, polypropylene, cellulose plastics, acrylic Plastic film substrates such as resin, epoxy resin, phenol resin, etc. and uniaxially stretched plastic film substrates, aluminum, iron, Examples include a metal substrate such as copper, and a glass substrate such as alkali glass, borosilicate glass, and flint glass whose surface is etched into a slit shape.
また、 上記プラスチックフィルム基板にラビング処理を施したラビングプラスチ ヅクフィルム基板、 またはラビング処理を施したプラスチック薄膜、 例えば、 ラビ ングポリイミ ド膜、 ラビングポリビニルアルコール膜などを備えた上記各種基板、 さらに酸化珪素の斜め蒸着膜を設けた基板なども用いることができる。  Also, a rubbing plastic film substrate obtained by subjecting the above plastic film substrate to rubbing treatment, or a plastic thin film subjected to rubbing treatment, such as the above various substrates provided with a rubbing polyimide film, a rubbing polyvinyl alcohol film, etc. A substrate provided with an evaporation film can also be used.
上記した各種配向基板のなかにあって、 本発明の光学補償フィルムの作成に好適 な配向基板を列記すると、 ラビングポリイミ ド膜を有する各種基板、 ラビングポリ イミ ド基板、 ラビングポリエーテルエ一テルケトン基板、 ラビングポリエ一テルケ トン基板、 ラビングポリエ一テルスルフォン基板、 ラビングポリフエ二レンサルフ フタレート基板、 ラビングポリアリレート基板、 ラビングセルロース系プラスチヅ ク基板を挙げることができる。 配向基板上への液^』材料の塗布は、 液晶材料を溶融した状態で行うこともできる が、 液晶材料を適当な溶媒に溶解した状態で行う溶液塗布が好ましい。 液晶材料の 溶媒は、 液晶材料の種類によって選定するされ、 一般的には、 トルエン、 キシレン、 ブチルベンゼン、テトラヒドロナフ夕レン、デカヒドロナフタレン等の炭化水素系、 エチレングリコ一ルジメチルエーテル、 ジエチレングリコールジメチルェ一テル、 プロピレングリコールジメチルエーテル、 テトラヒドロフラン等のエーテル系、 メ チルェチルケトン、 メチルイソブチルケトン、 シクロへキサノン等のケトン系、 酢 酸ェチル、 酢酸ブチル、 エチレングリコールモノメチルェ一テルアセテート、 プロ ピレングリコ一ルモノメチルエーテルアセテート、 乳酸ェチル、 ァ一ブチロラクト ン等のエステル系、 N—メチル _ 2 _ピロリ ドン、 ジメチルホルムアミ ド、 ジメチ ルァセトアミ ド等のアミ ド系、 ジクロロメ夕ン、 四塩化炭素、 テトラクロロェタン、 クロ口ベンゼン等のハロゲン化炭化水素系、 ブチルアルコール、 トリエチレングリ コール、 ジアセトンアルコール、 へキシレングリコール等のアルコール系等から選 ばれる。これらの溶媒は必要により 2種以上を適宜混合して使用することもできる。 液晶材料の溶液濃度は、 溶解している液晶材料の溶解性、 塗膜の厚さ等により異 なるため一概には言えないが、通常は 1〜6 0重量%、好ましくは 3〜4 0重量%、 さらに好ましくは 7〜3 0重量%の範囲にある。 液晶材料の溶液には、 塗布を容易にするために界面活性剤等を加えることができ る。 添加可能な界面活性剤としては、 例えば、 イミダゾリン、 第四級アンモニゥム 塩、 アルキルアミンオキサイ ド、 ポリアミン誘導体等の陽イオン系界面活性剤、 ポ リオキシエチレン一ポリオキシプロピレン縮合物、 第一級あるいは第二級アルコー ルエトキシレート、 アルキルフエノールエトキシレート、 ポリエチレングリコール 及びそのエステル、 ラウリル硫酸ナトリウム、 ラウリル硫酸アンモニゥム、 ラウリ ル硫酸アミン類、 アルキル置換芳香族スルホン酸塩、 アルキルリン酸塩、 脂肪族あ るいは芳香族スルホン酸ホルマリン縮合物等の陰イオン系界面活性剤、 ラウリルァ ミ ドプロピルべタイン、 ラウリルアミノ醉酸べ夕ィン等の両性系界面活性剤、 ポリ エチレングリコール脂肪酸エステル類、 ポリォキシェチレンアルキルァミン等の非 イオン系界面活性剤、 パーフルォロアルキルスルホン酸塩、 パーフルォロアルキル カルボン酸塩、 パーフルォロアルキルエチレンォキシド付加物、 パーフルォロアル キルトリメチルアンモニゥム塩、 パ一フルォロアルキル基 ·親水性基含有ォリゴマ ―、 パーフルォロアルキル '親油基含有オリゴマー、 パーフルォロアルキル基含有 ウレタン等のフッ素系界面活性剤などが例示できる。 Among the various alignment substrates described above, the alignment substrates suitable for producing the optical compensation film of the present invention are listed below: various substrates having a rubbing polyimide film, a rubbing polyimide substrate, a rubbing polyether ether ketone substrate, A rubbing polyester skeleton substrate, a rubbing polyester sulfone substrate, a rubbing polyphenylene sulfate phthalate substrate, a rubbing polyarylate substrate, and a rubbing cellulose-based plastic substrate can be exemplified. The application of the liquid material onto the alignment substrate can be performed in a state where the liquid crystal material is melted, but a solution application performed in a state where the liquid crystal material is dissolved in an appropriate solvent is preferable. The solvent for the liquid crystal material is selected according to the type of the liquid crystal material, and is generally a hydrocarbon-based solvent such as toluene, xylene, butylbenzene, tetrahydronaphthylene, decahydronaphthalene, or the like. Ethers such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol dimethyl ether, and tetrahydrofuran; ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, and ethylene glycol monomethyl ether Ester such as acetate, propylene glycol monomethyl ether acetate, ethyl lactate, and abutyrolactone, amide such as N-methyl_2-pyrrolidone, dimethylformamide, dimethylacetamide, dichloromethanone, Halogenated hydrocarbons such as carbon chloride, tetrachloroethane, and chlorobenzene, butyl alcohol, triethylene glycol, diacetone alcohol, hexylene glycol, etc. It is selected from alcoholic and others. If necessary, two or more of these solvents can be used as an appropriate mixture. The solution concentration of the liquid crystal material varies depending on the solubility of the dissolved liquid crystal material, the thickness of the coating film, and the like, and cannot be unconditionally determined, but is usually 1 to 60% by weight, preferably 3 to 40% by weight. %, More preferably in the range of 7 to 30% by weight. A surfactant or the like can be added to the liquid crystal material solution to facilitate application. Examples of surfactants that can be added include cationic surfactants such as imidazoline, quaternary ammonium salts, alkylamine oxides, and polyamine derivatives; polyoxyethylene-polyoxypropylene condensates; Or secondary alcohol ethoxylate, alkylphenol ethoxylate, polyethylene glycol and its ester, sodium lauryl sulfate, ammonium lauryl sulfate, lauryl sulfate amines, alkyl-substituted aromatic sulfonate, alkyl phosphate, aliphatic acid Or anionic surfactants such as aromatic sulfonic acid formalin condensates; amphoteric surfactants such as lauryl propyl betaine and lauryl amino sulphate; poly (ethylene glycol) fatty acid esters; Shetyrenal Nonionic surfactants such as luminin, perfluoroalkyl sulfonate, perfluoroalkyl carboxylate, perfluoroalkyl ethylene oxide adduct, perfluoroalkyltrimethylammonium salt, perfluoroalkyl Groups / Hydrophilic group-containing oligomers, perfluoroalkyl 'oleophilic group-containing oligomers, perfluoroalkyl group-containing urethanes and other fluorinated surfactants.
界面活性剤の添加量は、 界面活性剤の !類や溶剤、 あるいは塗布する ϋ向基板に もよるが、 通常、 液晶材料の重量に対する比率で、 1 0 p p m〜 1 0 %、 好ましく は5 0 111〜5 %、 さらに好ましくは 0 . 0 1 %〜 1 %の範囲である。 The amount of surfactant added depends on the type of surfactant, the solvent, and the substrate to be coated. Depending on the weight of the liquid crystal material, however, it is usually in the range of 10 ppm to 10%, preferably 50111 to 5%, more preferably 0.01% to 1%.
液晶材料の溶液の塗布には、 例えば、 ロールコート法、 ダイコート法、 バーコ一 ト法、 グラビアロールコート法、 スプレーコート法、 ディップコート法、 スピンコ 一ト法等を採用することができる。 配向基板上に形成された液晶材料の溶液の塗布膜は、 次いで乾燥され、 塗布膜か ら溶媒が除去される。溶媒除去の程度は特に限定されず、溶媒がおおむね除去でき、 塗布膜が流動したり、 流れ落ちたりさえしなければよい。 通常、 室温での乾燥、 乾 燥炉での乾燥、温風や熱風の吹き付けなどを利用して溶媒を除去することができる。 溶媒が除去された塗布膜には、 塗布膜中の液晶分子がッイステツドネマチック相 を呈する温度で所定時間で、 熱処理を施して塗布膜にツイステツドネマチック配向 を完成させる。 通常、 ッイステツドネマチック配向におけるねじれ角は、 上述した ように液晶材料に含まれる光学活性基の濃度によって調節することができるが、 液 晶材料である高分子液晶や光硬化型低分子液晶の種類によっては、 ヅイステツドネ マチック配向におけるねじれ角が、 熱処理条件等によって異なることがある。 この ような液晶材料を用いた場合には、 所望するねじれ角を得るために熱処理条件を適 宜制御する方法も本発明では採 fflすることができる。 例えば、 所望するねじれ角の ッイステツドネマチック配向を得るためには、 比較的低い温度での熱処理を必要と するが、 低い温度では液晶材料の粘性が高く、 所望の配向を実現するには長時間を 要する場合がある。 このような場合には、 一旦高温で熱処理してモノ ドメインな配 向を得た後に、 所望するねじれ角のツイステツドネマチック配向が形成される温度 まで、 段階的または連続的に徐冷する方法が有効である。 以上のように本発明の光学補償フィルムを得るには、 用いる液晶材料の特性にし たがって熱処理条件を決めることが必要である。 通常、 熱処理温度としては 4 0〜 3 0 0 °C、 好ましくは 5 0〜 2 8 0 °C、 さらに好ましくは 6 0〜 2 6 0 °C、 最も好 ましくは 7 0〜 2 5 0 °Cの範囲が採用され、 熱処理時問としては、 通常、 5秒〜 2 時間、 好ましくは 1 0秒〜 1時問、 さらに好ましくは 2 0秒〜 3 0分の範囲が採用 されるが、 これらはあくまでも例示であり、 本発明を何ら制限するものではない。 なお、 塗布膜の熱処理に際しては、 磁場や電場を利用することもできる。 For the application of the liquid crystal material solution, for example, a roll coating method, a die coating method, a bar coating method, a gravure roll coating method, a spray coating method, a dip coating method, a spin coating method, or the like can be employed. The coating film of the liquid crystal material solution formed on the alignment substrate is then dried, and the solvent is removed from the coating film. The degree of solvent removal is not particularly limited, as long as the solvent can be substantially removed and the coating film does not flow or even falls off. Usually, the solvent can be removed by drying at room temperature, drying in a drying oven, or blowing hot or hot air. The coated film from which the solvent has been removed is subjected to a heat treatment at a temperature at which the liquid crystal molecules in the coated film exhibit a twisted nematic phase for a predetermined time to complete the twisted nematic alignment of the coated film. Usually, the twist angle in twisted nematic alignment can be adjusted by the concentration of the optically active group contained in the liquid crystal material as described above. Depending on the type, twist angle in the oriented nematic orientation may vary depending on heat treatment conditions and the like. In the case of using such a liquid crystal material, a method of appropriately controlling the heat treatment conditions to obtain a desired twist angle can be adopted in the present invention. For example, in order to obtain a twisted nematic alignment with a desired twist angle, heat treatment at a relatively low temperature is required, but at low temperatures, the viscosity of the liquid crystal material is high, and to achieve the desired alignment, May take a long time. In such a case, a method of once heat-treating at a high temperature to obtain a mono-domain orientation, and then gradually or continuously cooling to a temperature at which a twisted nematic orientation having a desired twist angle is formed. Is valid. As described above, in order to obtain the optical compensation film of the present invention, it is necessary to determine heat treatment conditions according to the characteristics of the liquid crystal material used. Usually, the heat treatment temperature is 40 to 300 ° C, preferably 50 to 280 ° C, more preferably 60 to 260 ° C, and most preferably 70 to 250 ° C. The range of C is adopted, and the time of heat treatment is usually 5 seconds to 2 hours, preferably 10 seconds to 1 hour, and more preferably 20 seconds to 30 minutes. Is merely an example and does not limit the present invention in any way. In the heat treatment of the coating film, a magnetic field or an electric field can be used.
上記の熱処理によって、 配向基板上の塗布膜に形成されたッイステツドネマチッ ク配向は、 適宜な方法で固定化される。 例えば、 塗布膜を形成している液晶材料が 高分子液晶である場合には、 熱処理によってッイステツドネマチック配向を形成し た塗布膜を、 その状態のまま、 急冷することによって当該配向をガラス固定化させ る。 また、 塗布膜を形成している液晶材料が光硬化型低分子液晶である場合には、 ッイステツドネマチック配向を形成している塗布膜に、 その状態のまま、 光、 熱ま たは電子線等を照射して当該配向を固定化させる。 配向基板上において、 ッイステツドネマチック配向を形成してこれが固定化され ている塗布膜、 すなわち、 安定なッイステツドネマチック配向を保持している液晶 フィルムは、 配向基板付きで光学補償フィルムとして用いることができる。 また、 配向基板が光学的に等方ではな 、場合や、可視光波長域において不透明な場合には、 ッイステツドネマチック配向を保持している液晶フィルムのみを、 光学的に実質上 透明、 等方なフィルムや基板 (以下、 第二の基板フィルムという。) に転写し、 第 二の基板フィルムと共に光学補償フィルムとして用いることもできる。 転写に際し ては、 例えば、 配向基板上の液晶フィルムに接着剤を塗布し、 これに第二の基板フ イルムをラミネートした後、 接着剤を硬化させ、 液晶フィルムから配向基板を剥離 する方法が一般に採用される。  The twisted nematic alignment formed on the coating film on the alignment substrate by the above heat treatment is fixed by an appropriate method. For example, when the liquid crystal material forming the coating film is a polymer liquid crystal, the coating film in which the twisted nematic alignment is formed by heat treatment is quenched in that state to change the alignment to glass. Fix it. When the liquid crystal material forming the coating film is a photocurable low molecular weight liquid crystal, the light, heat or heat is applied to the coating film forming the twisted nematic alignment as it is. The orientation is fixed by irradiation with an electron beam or the like. A coating film in which twisted nematic alignment is formed and fixed on an alignment substrate, that is, a liquid crystal film that maintains stable twisted nematic alignment is an optical compensation film with an alignment substrate. Can be used as In addition, when the alignment substrate is not optically isotropic or is opaque in the visible light wavelength region, only the liquid crystal film holding the twisted nematic alignment is optically substantially transparent, It can be transferred to an isotropic film or substrate (hereinafter, referred to as a second substrate film) and used together with the second substrate film as an optical compensation film. When transferring, for example, a method is generally used in which an adhesive is applied to a liquid crystal film on an alignment substrate, a second substrate film is laminated thereon, the adhesive is cured, and the alignment substrate is separated from the liquid crystal film. Adopted.
第二の基板フィルムとしては、 例えば、 フジタック (富士写真フィルム社製)、 つ二カタック (コニ力社製) 等のトリァセチルセル口一スフイルム、 T P Xフィル ム (三井化学社製)、 アートンフィルム (日本合成ゴム社製)、 ゼォネックスフィル ム (日本ゼオン社製)、 ァクリプレンフィルム (三菱レーヨン社製) 等が使用可能 である。 また、 配向基板上の液晶フィルムは、 適当なガラス基板、 例えば、 駆動用 液晶セルに使用されている構成するガラス基板等に直接転写することもできる。 さ らには後述する光学的に负の異方性を示すフィルムへの転写も可能である。  Examples of the second substrate film include a triacetyl cell opening film such as Fujitac (manufactured by Fuji Photo Film Co., Ltd.) and Tsunacatac (manufactured by Koniki), TPX film (manufactured by Mitsui Chemicals), Arton film (manufactured by Nihon Gosei) Rubber), ZONEX Film (Zeon Corporation), Acryprene Film (Mitsubishi Rayon), etc. can be used. In addition, the liquid crystal film on the alignment substrate can be directly transferred to an appropriate glass substrate, for example, a glass substrate used for a driving liquid crystal cell. Further, transfer to a film exhibiting optically anisotropic 负 described later is also possible.
配向基板として実質的に透明で、 等方なフィルムや基板を用いた場合には、 上記 のような転写操作は必ずしも必要ではないが、 光学補償フィルムに要求される光学 特性、 あるいはフィルムの信頼性等を考慮して適 転写を行うことができる。 しか し、 液晶フィルム自体が卜分な 己支持性を有する場合には、 ffi向基板を剥離除去 して液晶フィルムを、 それ単独で光学補償フィルムとして使用することができる。 本発明で使用される光学的に負の異方性を示すフィルムには、 光学的に負の異方 性を示すこと以外に格別の要件はない。 従って、 負の一軸性フィルム、 負の二軸性 フィルム等のようにフィルム膜厚方向に複屈折 (An 2) を有するものが何れも使 用可能である。 その具体例としては、 ポリイミ ド、 ポリアミ ドイミ ド、 ポリアミ ド、 ポリエーテルイミ ド、 ポリエーテルエーテルケトン、 ポリエーテルケトン、 ポリケ トンサルファイ ド、 ポリエーテルスルフォン、 ポリスルフォン、 ポリフエ二レンサ ルファイ ド、 ポリフエ二レンオキサイ ド、 ポリエチレンテレフ夕レート、 ポリプチ レンテレフ夕レート、 ポリエチレンナフ夕レート、 ポリアセタール、 ポリ力一ボネ —ト、 ポリアリレート、 ポリビニルアルコール、 ポリプロピレン、 セルロース、 ト リアセチルセルロースおよびその部分鹼化物、 アクリル樹脂、 エポキシ樹脂、 フエ ノール†射脂等からなるプラスチックフィルムや、 ディスコティック液晶などの円盤 状化合物からなるフィルム等を挙げることができる。 When a substantially transparent and isotropic film or substrate is used as the alignment substrate, the above-described transfer operation is not necessarily required, but the optical characteristics required for the optical compensation film or the reliability of the film are required. Suitable transfer can be performed in consideration of such factors. However, if the liquid crystal film itself has an excellent self-supporting property, peel off the substrate for ffi. Then, the liquid crystal film can be used alone as an optical compensation film. There is no special requirement for the film exhibiting optically negative anisotropy used in the present invention, other than exhibiting optically negative anisotropy. Therefore, any film having birefringence (An 2) in the film thickness direction, such as a negative uniaxial film, a negative biaxial film, etc., can be used. Specific examples thereof include polyimide, polyamide imide, polyamide, polyether imide, polyether ether ketone, polyether ketone, polyketone sulfide, polyether sulfone, polysulfone, polyphenylene sulfide, and polyphenylene oxide. Polyethylene terephthalate, polyethylene terephthalate, polyethylene naphthate, polyacetal, polycarbonate, polyarylate, polyvinyl alcohol, polypropylene, cellulose, triacetylcellulose and its partially modified products, acrylic resin, epoxy Examples of the film include a plastic film made of a resin, a phenol resin and the like, and a film made of a discotic compound such as a discotic liquid crystal.
本発明で使用する光学的に負の異方性を示すフィルムは、 フィルム膜厚方向の複 屈折 Δη2と厚み d2との積、 すなわち、 An2d2の値が通常— 20〜― 30 On mの範囲に、 好ましくは一 30~- 250 nmの範囲にあることが望ましい。 第 1の発明の NB— TN— L CDでは、 光学補償フィルムが、 駆動用液晶セルと 視認側偏光板との間に設置される。 光学補償フィルムの設置に当っては、 その光学 補償フィルム(液晶層)における駆動用液晶セルが接する面の液晶分子の遅相軸と、 駆動用液晶セルの液晶層が接する視認側透明基板のラビング方向とが成す角度が、 通常 70〜1 10° 、好ましくは 75〜: L 05° 、さらに好ましくは 80〜100° または通常一 20〜20° 、 好ましくは一 15〜15° 、 さらに好ましくは一 10 〜10° の範囲となるように配置することが望ましい。 第 2の発明の N B _ T N— L C Dでは、 光学補償フィルムと光学的に負の異方性 を示すフィルムと力 s、 駆動用液品セルと共に 2枚の偏光板の間に挟持されるが、 通 常は、 これら 2觀類のフィルムは、 視認側偏光版と駆動用液晶セルとの問に設置さ れる。 光学補 if!フィルムと光学的に負の異方性を示すフィルムとは、 必ずしも積層 させなくてもよい。 両者を積層させない場合、 光学的に負の異方性を示すフィルム は、 駆動用液晶セルと視認側偏光板との間に設置してもよく、 また駆動用液晶セル と光源側偏光板の間に設置しても差し支えない。 しかし、 光学補償フィルムは、 必 ず駆動用液晶セルと視認側偏光板との間に設置される。 The film having optically negative anisotropy used in the present invention has a product of the birefringence Δη 2 in the film thickness direction and the thickness d 2 , that is, the value of An 2 d 2 is usually −20 to −30. It is desirable to be in the range of On m, preferably in the range of 30 to -250 nm. In the NB-TN-LCD of the first invention, the optical compensation film is provided between the driving liquid crystal cell and the viewing-side polarizing plate. When installing the optical compensation film, rubbing the slow axis of liquid crystal molecules on the surface of the optical compensation film (liquid crystal layer) where the liquid crystal cell for driving contacts and the rubbing of the viewing side transparent substrate where the liquid crystal layer of the liquid crystal cell for driving contacts. The angle formed by the direction is usually 70 to 110 °, preferably 75 to: L05 °, more preferably 80 to 100 ° or usually 120 to 20 °, preferably 1 to 15 to 15 °, more preferably 1 to 15 °. It is desirable to arrange them so as to be in the range of 10 to 10 °. In the NB_TN-LCD of the second invention, the optical compensation film and the film exhibiting optically negative anisotropy, the force s, and the driving liquid product cell are sandwiched between the two polarizing plates. These two types of films are installed between the viewing side polarizing plate and the driving liquid crystal cell. Optically supplementary if! Films and films with optically negative anisotropy are not necessarily laminated You don't have to. If both are not laminated, a film exhibiting optically negative anisotropy may be placed between the driving liquid crystal cell and the polarizing plate on the viewing side, or between the driving liquid crystal cell and the polarizing plate on the light source side. No problem. However, the optical compensation film is necessarily provided between the driving liquid crystal cell and the viewing-side polarizing plate.
光学補償フィルムと光学的に負の異方性を示すフィルムを積層させて用いる場合 には、 これらは駆動用液晶セルと視認側偏光板との間に設置されるが、 どちらのフ イルムが視認側偏光板に面しているかは、 これを問わない。  When an optical compensatory film and a film exhibiting optically negative anisotropy are laminated and used, they are installed between the driving liquid crystal cell and the viewing-side polarizing plate. It does not matter whether it faces the side polarizing plate.
しかしながら、 何れも場合でも、 本発明の N B— T N— L C Dにおいては、 駆動 用液晶セルの液晶層と接する透明基板 (視認側) 界面のラビング方向と、 光学補償 フィルム (液晶層) の駆動用液晶セルと接する面の液晶分子の遅相軸との成す角度 が、 通常 7 0〜; L 1 0 ° 、 好ましくは 7 5〜: 1 0 5 ° 、 さらに好ましくは 8 0〜 1 0 0 ° の範囲になるように、 光学補償フィルムを設置するか、 あるいは、 その角度 がは通常一 2 0〜2 0 ° 、 好ましくは一 1 5〜1 5 ° 、 さらに好ましくは一 1 0〜 1 0 ° の範囲になるように、 光学補償フィルムを設置することが望ましい。 本発明の N B— T N— L C Dにおける視認側偏光板と光源側偏光板は、 当該分野 において通常使用されている偏光板であって、 これには特に制限はない。 例えば、 一軸延伸ポリビニルアルコールフィルムに、 偏光度の高いヨウ素分子を一定方向に 配列させてなるハロゲン偏光フィルムや、 直接染料で染色したポリビニルアルコ一 ルフィルム等を他の支持フィルムに挟んたタイプの偏光板が使用可能である。 本発明の N B— T N— L C Dにおいて、 上記偏光板は駆動用液晶セルの上下にそ れそれ配置されるものである。 具体的には、 当該液晶セル上の一方の面上に直接設 ける、 また光学補償フィルム等の他の構成部材を介して設けることもできる。 また偏光板の軸配置は、 特に制限されるものではなく、 本発明の効果を損なう恐れ がな L、範囲にお 、て如何なる籼配置であつてもよい。  However, in any case, in the NB-TN-LCD of the present invention, the rubbing direction of the transparent substrate (viewing side) interface in contact with the liquid crystal layer of the driving liquid crystal cell, and the driving liquid crystal of the optical compensation film (liquid crystal layer) The angle formed by the slow axis of the liquid crystal molecules on the surface in contact with the cell is usually 70 to; L10 °, preferably 75 to: 105 °, more preferably 80 to 100 °. The optical compensation film is installed so that the angle is usually in the range of 120 to 20 °, preferably in the range of 115 to 15 °, and more preferably in the range of 110 to 10 °. It is desirable to provide an optical compensation film so that The viewing-side polarizing plate and the light-source-side polarizing plate in the NB-TN-LCD of the present invention are polarizing plates generally used in the field, and are not particularly limited. For example, a polarizing plate with a uniaxially stretched polyvinyl alcohol film in which iodine molecules with a high degree of polarization are arranged in a fixed direction and a polyvinyl alcohol film dyed with a direct dye, etc., sandwiched between other support films Can be used. In the NB-TN-LCD of the present invention, the polarizing plates are disposed above and below the driving liquid crystal cell, respectively. Specifically, it can be provided directly on one surface of the liquid crystal cell, or provided via another component such as an optical compensation film. Further, the axial arrangement of the polarizing plate is not particularly limited, and may be any arrangement within L and range where the effect of the present invention may not be impaired.
本発明の N B— T N— L C Dは、 2枚の偏光板と駆動用液晶セルと光学補償フィ ルムを、 上に説明した配置条件が満足されるように、 そのまま積み重ねただけでも その機能を発揮するが、 各構成部材問を、 必要に粘着剤や接若剂等で貼り合わせる こともできる。 また、 本発明の NB— TN— L CDは、 必須の構成要素として備える駆動用液晶 セル、 上下 2枚の偏光板および光学補償フィルムの他に、 必要に応じて他の構成要 素を備えてもよい。 具体的には、 特性を向上させるために位相差フィルム、 光拡散 層、 等を備えることもできる。 前記位相差フィルムとしては、 一般的にポリカーボ ネート、 ポリメタクリレート等を挙げることができ、 光学的異方性を発現するもの であれば特に限定されるものではない。 また前記光拡散層とは、 入射光を等方的あ るいは異方的に拡散させる性質を有するものであれば特に限定されるものではない。 さらにはカラーフィルターを備えることに等により、 色純度の高いマルチカラー又 はフルカラ一表示を行うことができる NB— TN— L CDとすることができる。 The NB-TN-LCD of the present invention exerts its function simply by stacking two polarizing plates, a driving liquid crystal cell, and an optical compensation film so as to satisfy the above-described arrangement condition. However, it is also possible to bond the components with an adhesive or a bonding agent as necessary. Further, the NB-TN-LCD of the present invention includes, as necessary, other components as well as a driving liquid crystal cell, two upper and lower polarizing plates, and an optical compensation film provided as essential components. Is also good. Specifically, a retardation film, a light diffusion layer, and the like can be provided to improve the characteristics. Examples of the retardation film generally include polycarbonate and polymethacrylate, and are not particularly limited as long as they exhibit optical anisotropy. The light diffusion layer is not particularly limited as long as it has a property of diffusing incident light isotropically or anisotropically. Further, by providing a color filter or the like, an NB-TN-LCD capable of performing multicolor or full-color display with high color purity can be obtained.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下に実施例により本発明をさらに詳細に説明するが、 本発明はこれらに制限さ れるものではない。 参考例 1 (光学補償フィルム 1の製造)  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. Reference Example 1 (Manufacture of optical compensation film 1)
テレフタル酸 5 Ommo 1、 2 , 6—ナフ夕レンジカルボン酸 5 0 mm o 1、 メ チルヒドロキノンジァセテ一ト 40 mmo 1、 カテコールジァセテート 6 2 mmo 1および N—メチルイミダゾール 6 Omgを用いて窒素雰囲気下、 2 70°Cで 1 2 時間重合を行った。次に得られた反応生成物をテトラクロロェタンに溶解したのち、 メタノールで再沈殿を行って精製し、 液晶性ポリエステル 14. 7 gを得た (ポリ マー A)。 この液晶性ポリエステルの対数粘度は 0. 1 7、 液晶相としてネマチヅ ク相を持ち、 等方相—液晶相転移温度は 2 5 0°C以上、 ガラス転移点は 1 1 5°Cで あった。  Terephthalic acid 5 Ommo 1, 2, 6-Naphthylene dicarboxylic acid 50 mmo 1, methylhydroquinone diacetate 40 mmo 1, catechol diacetate 62 mmo 1 and N-methylimidazole 6 Omg The polymerization was performed at 270 ° C. for 12 hours under a nitrogen atmosphere. Next, the obtained reaction product was dissolved in tetrachloroethane, followed by purification by reprecipitation with methanol to obtain 14.7 g of a liquid crystalline polyester (polymer A). The logarithmic viscosity of this liquid crystalline polyester was 0.17, the liquid crystal phase had a nematic phase, the isotropic phase-liquid crystal phase transition temperature was 250 ° C or higher, and the glass transition point was 115 ° C. .
また、 ビフエ二ルジカルボニルクロリ ド 9 Ommo 1、 テレフ夕口イルクロリ ド 1 Ommo 1, 2 R, 3 R—ジメ トキシブタンジオール 1 0 5 mm o 1をジクロ口 メ夕ン中で室温にて 2 0時間反応させ、 反応液をメタノール中に投入し再沈殿させ ることにより液晶性ポリエステル 1 2. 3 gを得た (ポリマー B)。 ポリマー Bの 対数粘度は 0. 1 1、 室温でキラルスメクチック相を示し、 ァイソトロピック転移 温度は 40~5 0°Cの^であった。 また T gは室温付近と思われ、 D S Cによる測 定では観測できなかった。 上で調製したポリマ一 Aの 19. 3 とポリマ一;6の0. 7 gを、 80 gのフエ ノール/テトラクロ口ェ夕ン混合溶媒 (6/4重量比) に溶解させて溶液を調製し た。 この溶液を、 レーヨン布にてラビング処理したポリイミ ド基板(デュポン社製、 商品名カプトン) 上に、 バーコ一ト法により塗布し、 乾燥し、 240°Cで 30分熱 処理した後、 室温下で冷却 ·固定化し、 平均実膜厚 2. 34〃mの均一に配向した 液晶フィルムをポリイミ ド基板上に得た (サンプル A)。 液晶フィルムの実膜厚は 触針式 fl莫厚計を用いて測定した。 次いでアッベ屈折計 (ァ夕ゴ社製 T y p e _ 4) のプリズム面に、 サンプル Aの ポリイミ ド基板面が接するように配置して液晶フィルムの屈折率を測定したところ、 液晶フィルムには屈折率異方性が認められ、 ポリイミ ド基板のラビング方向に垂直 な方向の屈折率 (no) は 1. 55であり、 平行な方向の屈折率 (ne) は 1. 7 5であり、 膜厚方向の屈折率は 1. 55で一定であった。 このことから、 液晶フィ ルムはポリイミ ド基板界面側おいて、 基板並びにラビング方向に対して棒状の液晶 分子が平行に平面配向しており、 液晶の no、 neはそれそれ 1. 55、 1. 75 であることが分かった。 In addition, biphenyldicarbonyl chloride 9 Ommo 1 and terefu-yuko chloride 1 Ommo 1, 2 R, 3 R-dimethoxybutanediol 105 The reaction was allowed to proceed for an hour, and the reaction solution was poured into methanol and reprecipitated to obtain 12.3 g of a liquid crystalline polyester (polymer B). The logarithmic viscosity of the polymer B was 0.11, a chiral smectic phase was exhibited at room temperature, and the isotropic transition temperature was 40 to 50 ° C. In addition, T g was thought to be around room temperature and could not be observed by DSC measurement. A solution was prepared by dissolving 0.7 g of 19.3 of polymer A prepared above and polymer; 6 in 80 g of a mixed solvent of phenol / tetrachlorobenzene (6/4 weight ratio). did. This solution was applied on a polyimide substrate (Kapton, manufactured by DuPont) rubbed with rayon cloth by a bar coating method, dried, and heat-treated at 240 ° C for 30 minutes. A liquid crystal film with an average actual film thickness of 2.34 µm was obtained on a polyimide substrate (Sample A). The actual film thickness of the liquid crystal film was measured using a stylus fl gauge. Next, the refractive index of the liquid crystal film was measured by arranging the polyimide substrate surface of sample A in contact with the prism surface of the Abbe refractometer (Type 4 manufactured by Ayago Co.). Anisotropy was observed, and the refractive index (no) in the direction perpendicular to the rubbing direction of the polyimide substrate was 1.55, and the refractive index (ne) in the direction parallel to the rubbing direction was 1.75. Has a constant refractive index of 1.55. From this fact, the liquid crystal film has planar liquid crystal molecules aligned in parallel with the substrate and rubbing direction on the polyimide substrate interface side, and no and ne of the liquid crystal are 1.55 and 1. It turned out to be 75.
また、 屈折計のプリズム面にサンプル Aの液晶フィルム面が接するよう配置して 上と同様に、 液晶フィルムの屈折率を測定したところ、 その屈折率は基板のラビン グ方向に平行な方向で 1. 55、 垂直な方向で 1. 75であり、 莫厚方向の屈折率 は 1. 55で一定であった。 このことから、 サンプル Aに液晶フィルムは、 基板界 面、 空気界面とも液晶分子がおおかたホモジニァス配向しており、 かつ基板界面側 と空気界面側では棒状の液晶分子が両界面でほぼ 90度ねじれている様子が確認で きた。 サンプル Aは、 不透明でかつ光学的に異方性のポリイミ ド基板を含んでいること から、 サンプル Aの空気界面側に UV硬化型接着剤 (UV_3400、 東亞合成社 製) を約 5〃mの厚みに塗布し、 この上に透明基板 (トリァセチルセルロースフィ ルム) をラミネートした後、 約 60 OmJの UV照射により該接着剤を硬化させ、 次いでポリイミ ド基板を剥離することにより、 液晶フィルムを透明基板上に転写し て光学補償フィルム 1を得た。 得られた光学補償フィルム 1 (フィルム A) の偏光解析をおこなって、 このフィ ルム Aの Δη, ο^と、 ねじれ角 (右ねじれ) を測定したところ、 Ar^ d!^A T S nm、 ねじれ角 =— 9 0° であることが確認できた。 参考例 2 The liquid crystal film of Sample A was placed so that the liquid crystal film surface of sample A was in contact with the prism surface of the refractometer, and the refractive index of the liquid crystal film was measured in the same manner as above. 55, 1.75 in the vertical direction, and the refractive index in the enormous direction was constant at 1.55. Therefore, in Sample A, the liquid crystal film in the liquid crystal film was largely homogenous aligned at both the substrate interface and the air interface, and the rod-shaped liquid crystal molecules were twisted at almost 90 degrees at both the interface between the substrate interface and the air interface. I was able to confirm that I was there. Since sample A contains an opaque and optically anisotropic polyimide substrate, a UV curable adhesive (UV_3400, manufactured by Toagosei Co., Ltd.) After applying a thickness, laminating a transparent substrate (triacetyl cellulose film) thereon, curing the adhesive by UV irradiation of about 60 OmJ, and then peeling off the polyimide substrate, the liquid crystal film becomes transparent. This was transferred onto a substrate to obtain an optical compensation film 1. The polarization of the obtained optical compensation film 1 (film A) was analyzed, and Δη, ο ^ and twist angle (right twist) of this film A were measured. Ar ^ d! ^ ATS nm, twist angle = — 90 °. Reference example 2
ポリマ一 Aとポリマー Bの比率およびフィルム膜厚を変更した以外は、 全て参考 例 1と同様にして 4種類の光学補償フィルムを得た (フィルム B〜E)。 それそれ のフィルムの Δη, d!およびねじれ角を、 フィルム Aの測定値と共に表 1に示す。 表 1  Four types of optical compensation films were obtained in the same manner as in Reference Example 1 except that the ratio of polymer A to polymer B and the film thickness were changed (films B to E). Each film's Δη, d! And the torsion angle are shown in Table 1 together with the measured values of Film A. table 1
Figure imgf000018_0001
実施例 1
Figure imgf000018_0001
Example 1
駆動用液晶セルの液晶材料として Merck社製 ZLI-4792 を用い、 セルギャップ 4. 8〃m、 And = 47 0 nm, ねじれ角 9 0° (左ねじれ)、 プレチルト角 2 ° の駆動用液晶セル (TNセル) を作製した。  A drive liquid crystal cell with a cell gap of 4.8〃m, And = 470 nm, a twist angle of 90 ° (left-handed twist), and a pretilt angle of 2 ° using Merck's ZLI-4792 as the liquid crystal material of the drive liquid crystal cell. (TN cell) was prepared.
当該セルに参考例 2で得た光学補償フィルム (フィルム C) 1枚を用い、 図 1に 示すように、 視認側から偏光板 (1)/光学補償フィルム (3)/T Nセル (2)/偏光板 (Γ) の順に配置して液晶表示パネルを作成した。  One optical compensation film (film C) obtained in Reference Example 2 was used for the cell, and as shown in FIG. 1, the polarizing plate (1) / optical compensation film (3) / TN cell (2) / A liquid crystal display panel was prepared by arranging a polarizing plate (Γ) in this order.
液晶セルに 3 00 H zの矩形波を印加し、 黒表示を 0V、 白表示を 6 Vとし、 正 面での透過率が 8等分されるように駆動電圧を設定した。 浜松ホトニクス社製 F F P光学系 DVS— 3 000を用いて液晶セルの全方位の透過率測定を行い、 当該液 晶表示パネルの等コントラスト曲線および階調特性の視野角依存性を求めた。 結果 を図 2および図 3に示す。  A 300 Hz rectangular wave was applied to the liquid crystal cell, the black display was set to 0 V, the white display was set to 6 V, and the drive voltage was set so that the transmittance on the front surface was equally divided by eight. Using a Hamamatsu Photonics FFP optical system DVS-3000, the omnidirectional transmittance of the liquid crystal cell was measured, and the viewing angle dependence of the isocontrast curve and gradation characteristics of the liquid crystal display panel was determined. The results are shown in Figs.
図 2は、 液品表示パネルの等コントラスト曲線 (視野角 6 0度:内側よりコント ラス ト = 1 00 , 3 0, 1 0) である。 図 3は、 液晶表示パネルの階調 (Y) と視野角との関係を示すグラフである。 この結果から明らかなように、 比較例 1と比べてコントラス ト 10以上を示す領 域が拡大し、 かつ左右の階調の非対称性が低減した。 実施例 2 Figure 2 shows the isocontrast curves of the liquid product display panel (viewing angle 60 degrees: contrast = 100, 30 and 10 from the inside). FIG. 3 is a graph showing the relationship between the gradation (Y) of the liquid crystal display panel and the viewing angle. As is evident from the results, the area showing a contrast of 10 or more was expanded as compared with Comparative Example 1, and the asymmetry of the left and right gradations was reduced. Example 2
光学補償フィルムとして参考例 2で作製したフィルム Dを用いた以外は、 実施例 1と同様にして液晶表示パネルを作製し、 等コントラスト曲線および階調特性の視 野角依存性を求めた。 結果を図 4および図 5に示す。  A liquid crystal display panel was produced in the same manner as in Example 1 except that the film D produced in Reference Example 2 was used as the optical compensation film, and the viewing angle dependence of the isocontrast curve and gradation characteristics was determined. The results are shown in FIGS.
図 4は、 液晶表示パネルの等コントラス ト曲線 (視野角 60度:内側よりコント ラスト = 100, 30, 10) である。  Figure 4 shows the isocontrast curve of the liquid crystal display panel (viewing angle 60 degrees: contrast from inside = 100, 30, 10).
図 5は、 液晶表示パネルの階調と視野角との関係を示すグラフである。  FIG. 5 is a graph showing the relationship between the gradation of the liquid crystal display panel and the viewing angle.
この結果から明らかなように、 比較例 1と比べてコントラスト 10以上を示す領 域が拡大し、 かつ左右の階調の非対称性が低減した。 比較例 1  As is clear from these results, the area showing a contrast of 10 or more was expanded and the asymmetry of the left and right gradations was reduced as compared with Comparative Example 1. Comparative Example 1
補償フィルムとして参考例 1で作製した補償フィルム (フィルム A) を用いた以 外は、 実施例 1と同様にして液晶表示パネルを作製し、 等コントラス ト曲線および 階調特性の視野角依存性を求めた。 結果を図 6および図 7に示す。  A liquid crystal display panel was manufactured in the same manner as in Example 1 except that the compensation film (film A) manufactured in Reference Example 1 was used as the compensation film, and the viewing angle dependence of the isocontrast curve and the gradation characteristics was determined. I asked. The results are shown in FIGS.
図 6は、 液晶表示パネルの等コントラス ト曲線 (視野角 60度:内側よりコント ラスト = 100, 30, 10) である。  Figure 6 shows the isocontrast curve of the liquid crystal display panel (viewing angle 60 degrees: contrast from inside = 100, 30, 10).
図 7は、 液晶表示パネルの階調と視野角との関係を示すグラフである。  FIG. 7 is a graph showing the relationship between the gradation of the liquid crystal display panel and the viewing angle.
この液晶表示パネルは、電圧無印加時での駆動用液晶セルのねじれ角の絶対値と、 フィルム Aのねじれ角の絶対値が等しい。 比較例 2  In this liquid crystal display panel, the absolute value of the twist angle of the driving liquid crystal cell when no voltage is applied is equal to the absolute value of the twist angle of the film A. Comparative Example 2
光学補償フィルムとして参考例 2で作製したフィルム Bを用いた以外は、 実施例 1と同様にして液晶表示パネルを作製し、 等コントラスト曲線および階調特性の視 野角依存性を求めた。 結 ¾を 18および図 9に示す。  A liquid crystal display panel was produced in the same manner as in Example 1 except that the film B produced in Reference Example 2 was used as the optical compensation film, and the viewing angle dependence of the isocontrast curve and gradation characteristics was determined. The results are shown in Fig. 18 and Fig. 9.
図 8は、 液晶表示パネルの等コントラス ト曲線 (視野角 60度:内側よりコン ト ラス ト = 100, 30, 10) である。 図 9は、 液晶表示ノ ^ネルの階調と視野角との関係を示すグラフである。 Figure 8 shows the isocontrast curve of the liquid crystal display panel (viewing angle 60 degrees: contrast from the inside = 100, 30, 10). FIG. 9 is a graph showing the relationship between the gradation of the liquid crystal display cell and the viewing angle.
比較例 1と比べて、 コントラス ト 10以上を示す領域、 左右の階調の非対称性と もに改善されなかった。 比較例 3  Compared with Comparative Example 1, no improvement was observed in the region showing a contrast of 10 or more and the asymmetry of the left and right gradations. Comparative Example 3
光学補償フイルムとして参考例 2で作製したフィルム Eを用いた以外は、 実施例 1と同様にして液晶表示パネルを作製し、 等コントラスト曲線および階調特性の視 野角依存性を求めた。 結果を図 10および図 1 1に示す。  A liquid crystal display panel was produced in the same manner as in Example 1 except that the film E produced in Reference Example 2 was used as the optical compensation film, and the viewing angle dependence of the isocontrast curve and gradation characteristics was determined. The results are shown in FIG. 10 and FIG.
図 10は、 液晶表示パネルの等コントラスト曲線 (視野角 60度:内側よりコン トラスト = 1◦ 0, 30, 10) である。  Figure 10 shows the isocontrast curve of the liquid crystal display panel (viewing angle 60 °: contrast from inside = 1◦0, 30, 10).
図 1 1は、 液晶表示パネルの階調と視野角との関係を示すグラフである。  FIG. 11 is a graph showing the relationship between the gradation of the liquid crystal display panel and the viewing angle.
比較例 1と比べて、 コントラスト 10以上を示す領域および左右の階調の非対称 性は改善されたものの、 正面でのコントラストが低下し、 コントラスト 100以上 を示す領域が消滅してしまった。 参考例 3 (光学補償フィルム 2の製造)  Compared with Comparative Example 1, although the area showing the contrast of 10 or more and the asymmetry of the left and right gradations were improved, the contrast at the front was reduced, and the area showing the contrast of 100 or more disappeared. Reference Example 3 (Production of optical compensation film 2)
参考例 1で調製したポリマー Aの 9. 81 とポリマー:8の0. 19 gを、 40 gのフヱノール/テトラクロ口ェ夕ン混合溶媒 (6/4重量比) に溶解させて溶液 を調製した。 この溶液を、 レーヨン布にてラビング処理したポリイミ ド基板 (デュ ボン社製、 商品名カプトン) 上に、 バ一コート法により塗布し、 乾燥し、 240°C で 30分熱処理した後、 室温下で冷却 ·固定化し、 平均実膜厚 2. 34 mの均一 に配向した液晶フィルムをポリイミ ド基板上に得た (サンプル B)。 液晶フィルム の実膜厚は触針式膜厚計を用いて測定した。 次いでアッベ屈折計 (ァ夕ゴ社製 Type— 4) のプリズム面に、 サンプル Bの ポリイミ ド基板面が接するように配置して液晶フィルムの屈折率を測定したところ、 液晶フィルムには屈折率異方性が認められ、 ポリイミ ド基板のラビング方向に垂直 な方向の屈折率 (no) は 1. 55であり、 平行な方向の屈折率 (ne) は 1. 7 5であり、 膜厚方向の屈折率は 1. 55で一定であった。 このことから、 液晶フィ ルムはポリイミ ド基板界面側おいて、 基板並びにラビング方向に対して棒状の液晶 分子が平行に平面配向しており、 液晶の no、 neはそれそれ 1. 55、 1. 75 であることが分かった。 A solution was prepared by dissolving 9.81 g of polymer A and 0.19 g of polymer: 8 prepared in Reference Example 1 in 40 g of a mixed solvent of phenol / tetrachlorobenzene (6/4 weight ratio). . This solution was applied to a polyimide substrate (Kapton, trade name, manufactured by Dubon) rubbed with rayon cloth by a vacuum coating method, dried, heat-treated at 240 ° C for 30 minutes, and then cooled to room temperature. A liquid crystal film with an average actual film thickness of 2.34 m was obtained on a polyimide substrate by cooling and fixing (Sample B). The actual film thickness of the liquid crystal film was measured using a stylus type film thickness meter. Next, the refractive index of the liquid crystal film was measured by placing it on the prism surface of an Abbe refractometer (Type-4 manufactured by Ayago) so that the polyimide substrate surface of sample B was in contact with it. The refractive index (no) in the direction perpendicular to the rubbing direction of the polyimide substrate was 1.55, and the refractive index (ne) in the parallel direction was 1.75. The refractive index was constant at 1.55. From this, the liquid crystal film is a rod-shaped liquid crystal on the polyimide substrate interface side with respect to the substrate and the rubbing direction. Molecules are aligned in parallel and plane, and liquid crystal no and ne are found to be 1.55 and 1.75 respectively.
また、 屈折計のプリズム面にサンプル Bの液晶フィルム面が接するよう配置して 上と同様に、 液晶フィルムの屈折率を測定したところ、 その屈折率は基板のラビン グ方向から 45度方向で 1. 55、 — 45度方向で 1. 75であり、 g莫厚方向の屈 折率は 1. 55で一定であった。 このことから、 サンプル Bに液晶フィルムは、 基 板界面、 空気界面とも液晶分子がおおかたホモジニァス配向しており、 かつ基板界 面側と空気界面側では棒状の液晶分子が両界面でほぼ一 45度ねじれている様子が 確認できた。 サンプル Bは、 不透明でかつ光学的に異方性のポリイミ ド基板を含んでいること から、 サンプル Bの空気界面側に UV硬化型接着剤 (UV_3400、 東亞合成社 製) を約 5〃mの厚みに塗布し、 この上に転写用基板としてコーニング社製白板ガ ラス基板 (厚さ 1. 1mm) をラミネートした後、 約 60 OmJの UV照射により 該接着剤を硬化させ、 次いでポリイミ ド基板を剥離することにより、 白板ガラス基 板付き光学補償フイルム 2を得た。  In addition, the liquid crystal film surface of sample B was placed so that the liquid crystal film surface of sample B was in contact with the prism surface of the refractometer, and the refractive index of the liquid crystal film was measured in the same manner as above. 55, — 1.75 in the 45-degree direction, and the refractive index in the g-thick direction was constant at 1.55. Therefore, in Sample B, the liquid crystal film in the sample B had a substantially homogeneous alignment of the liquid crystal molecules at both the substrate interface and the air interface, and the rod-like liquid crystal molecules at the interface between the substrate interface and the air interface were almost 1450 degrees at both interfaces. The appearance of twisting was confirmed. Since Sample B contains an opaque and optically anisotropic polyimide substrate, a UV curable adhesive (UV_3400, manufactured by Toagosei Co., Ltd.) Then, a white glass substrate (1.1 mm in thickness) manufactured by Corning Co., Ltd. was laminated thereon as a transfer substrate, and then the adhesive was cured by UV irradiation of about 60 OmJ. By peeling off, an optical compensation film 2 with a white glass substrate was obtained.
得られた光学補償フィルム 2
Figure imgf000021_0001
と、 ねじれ角 (右ねじれ) を測定した ところ、 △n1d】=430 nm、 ねじれ角 =_45° であることが確認できた。 参考例 4
Obtained optical compensation film 2
Figure imgf000021_0001
And the torsion angle (right-handed torsion), it was confirmed that Δn 1 d] = 430 nm and the torsion angle = _45 °. Reference example 4
転写用基板として、 An2d2がー 150 nmであるトリアセチルセルロース (T AC) フィルムを用いた以外は参考例 3と同様にして光学補償フィルム 2/TAC フィルムからなる光学補償素子を得た。 実施例 3 As the transfer substrate, An is 2 d 2 except for using a triacetyl cellulose (T AC) film is Gar 0.99 nm to obtain an optical compensation element composed of an optical compensation film 2 / TAC film in the same manner as in Reference Example 3 . Example 3
駆動用液晶セルの液晶材料として Merck社製 ZLI-4792 を用い、 セルギャップ 4. 8〃m、 And = 470 nm, ねじれ角 90° (左ねじれ)、 プレチルト角 2 ° の駆動用液晶セル (TNセル) を作製した。  A drive liquid crystal cell (TN) with a cell gap of 4.8〃m, And = 470 nm, a twist angle of 90 ° (left-handed twist), and a pretilt angle of 2 ° using Merck's ZLI-4792 as the liquid crystal material of the drive liquid crystal cell. Cell) was prepared.
当該セルに参考例 3で得た光学補償フィルム 2と、 八] 232が— 150nmで ある T ACフィルムを、 図 12に示すように、 視認側から偏光板 (1)/光学補償フ ィルム (3)/T A Cフィルム (4)/ T Nセル (2)/偏光板 (Γ)の順に配置して液晶表示 パネルを作成した。 An optical compensation film 2 obtained in Reference Example 3 in the cell, eight] 2 3 2 - a T AC film is 150 nm, as shown in FIG. 12, the polarizing plate from the viewing side (1) / optical compensation off A liquid crystal display panel was prepared by arranging the film (3) / TAC film (4) / TN cell (2) / polarizing plate (Γ) in this order.
液晶セルに 300 Η ζの矩形波を印加し、 黒表示を 0 V、 白表示を 6 Vとし、 正 面での透過率が 8等分されるように駆動電圧を設定した。 トプコン社製色彩輝度計 ΒΜ- 5を用いて液晶セルの透過率の視野角測定を行い、 当該液晶表示パネルの階 調特性の視野角依存性を求めた。 図 13に液晶表示パネルの階調と視野角との関係 を示す。 実施例 4  A rectangular wave of 300 mm was applied to the liquid crystal cell, the black display was set to 0 V, the white display was set to 6 V, and the drive voltage was set so that the transmittance on the front surface was equally divided by eight. The viewing angle of the transmittance of the liquid crystal cell was measured using a color luminance meter ΒΜ-5 manufactured by Topcon Corporation, and the viewing angle dependence of the gradation characteristics of the liquid crystal display panel was determined. Figure 13 shows the relationship between the gradation of the liquid crystal display panel and the viewing angle. Example 4
光学補償素子として参考例 4で得た光学補償素子を用い、 図 14に示すように、 視認側から偏光板 (1)/光学補償素子 (3')/ΤΝセル (2)/偏光板 (Γ)の順に配置して 液晶表示パネルを作成し、 実施例 3と同様に当該液晶表示パネルの階調特性の視野 角依存性を求めた。 図 15に液晶表示パネルの階調と視野角との関係を示す。 比較例 4  The optical compensator obtained in Reference Example 4 was used as the optical compensator, and as shown in FIG. 14, the polarizing plate (1) / optical compensator (3 ′) / ΤΝcell (2) / polarizer (Γ ), A liquid crystal display panel was prepared, and the viewing angle dependence of the gradation characteristics of the liquid crystal display panel was determined in the same manner as in Example 3. FIG. 15 shows the relationship between the gradation of the liquid crystal display panel and the viewing angle. Comparative Example 4
△ n2d2が一 150 nmである T ACフィルムに代えて、 厶]12(12が_200 nmである TACフィルム 2枚を用いた以外は実施例 3と同様な TNセルを作成し、 図 16に示すように、 視認側から偏光板 (1)/光学補償フィルム (3)/T A Cフィル ム (4)/T A Cフィルム (4')/T Nセル (2)/偏光板 (Γ)の順に配置して液晶表示パネ ルを作成した。 次に、 実施例 3と同様に当該液晶表示パネルの階調特性の視野角依 存性を求めた。 図 17に液晶表示パネルの階調と視野角との関係を示す。 上記した実施例 3、 4および比較例 4での各 ΤΝセルについて、 中間調表示時の 左右の非対称性を対比した。 その結果を表 2に示す。 比較例に比較して、 実施例の ΤΝセルは、 コントラスト特性を損ねることなく、 中間調表示時の左右の非対称性 を低減できることが分かる。 表 2 △ instead of T AC film n 2 d 2 is an 0.99 nm,厶] create the same TN cell and 1 2 (1 2 Example 3 except for using the two TAC films are _200 nm Then, as shown in Fig. 16, from the viewing side, the polarizing plate (1) / optical compensation film (3) / TAC film (4) / TAC film (4 ') / TN cell (2) / polarizing plate (Γ) Next, the viewing angle dependence of the gradation characteristics of the liquid crystal display panel was determined in the same manner as in Example 3. Fig. 17 shows the relationship between the gradation and the liquid crystal display panel. The relationship with the viewing angle is shown for each cell in Examples 3 and 4 and Comparative Example 4. The asymmetry of the left and right sides during halftone display is compared, and the results are shown in Table 2. In comparison, it can be seen that the @cell of the example can reduce left-right asymmetry during halftone display without impairing contrast characteristics. Table 2
Figure imgf000023_0001
Figure imgf000023_0001
(注) 非対称性度: 1 0 · 1 n [透過率 (— 40° ) /透過率 ( + 40° ;)] [産業上の利用可能性]  (Note) Degree of asymmetry: 10 1n [Transmittance (-40 °) / Transmittance (+ 40 °;)] [Industrial applicability]
本発明のノーマリーブラックモ一ド型 T N液晶表示素子は、 広い視野角特性を有 し、 中間調表示時の左右の非対称性が小さいため、高品位な画像表示が可能となる。  The normally black mode TN liquid crystal display element of the present invention has a wide viewing angle characteristic and has small left-right asymmetry during halftone display, so that high-quality image display is possible.
[図面の簡単な説明] [Brief description of drawings]
図 1は実施例 1で作成した液晶表示パネルの配置図である。  FIG. 1 is a layout diagram of the liquid crystal display panel created in the first embodiment.
図 2は実施例 1で作成した液晶表示パネルの等コントラスト曲線である。  FIG. 2 is an isocontrast curve of the liquid crystal display panel created in Example 1.
図 3は実施例 1で作成した液晶表示パネルの階調と視野角の関係を示すグラフで ある。  FIG. 3 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Example 1.
図 4は実施例 2で作成した液晶表示パネルの等コントラスト曲線である。  FIG. 4 is an isocontrast curve of the liquid crystal display panel created in Example 2.
図 5は実施例 2で作成した液晶表示パネルの階調と視野角の関係を示すグラフで ある。  FIG. 5 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Example 2.
図 6はで比較例 1作成した液晶表示パネルの等コントラスト曲線である。  FIG. 6 is an isocontrast curve of the liquid crystal display panel prepared in Comparative Example 1.
図 7は比較例 1で作成した液晶表示パネルの階調と視野角の関係を示すグラフで ある。  FIG. 7 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Comparative Example 1.
図 8は比較例 2で作成した液晶表示パネルの等コントラスト曲線である。  FIG. 8 is an isocontrast curve of the liquid crystal display panel created in Comparative Example 2.
図 9は比較例 2で作成した液晶表示パネルの階調と視野角の関係を示すグラフで ある。  FIG. 9 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Comparative Example 2.
図 1 0は比較例 3で作成した液晶表示パネルの等コントラスト曲線である。  FIG. 10 is an isocontrast curve of the liquid crystal display panel created in Comparative Example 3.
図 1 1は比較例 3で作成した液晶表示パネルの階調と視野角の関係を示すグラフ である。  FIG. 11 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Comparative Example 3.
図 1 2は実施例 3で作成した液晶表示パネルの配置図である。  FIG. 12 is a layout diagram of the liquid crystal display panel created in the third embodiment.
図 1 3は実施例 3で作成した液晶表示パネルの階調と視野角の関係を示すグラフ である。 Fig. 13 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Example 3. It is.
図 1 4は実施例 4で作成した液晶表示ノ ネルの配置図である。  FIG. 14 is a layout diagram of the liquid crystal display panel created in the fourth embodiment.
図 1 5は実施例 4で作成した液晶表示パネルの階調と視野角の関係を示すグラフ である。  FIG. 15 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Example 4.
図 1 6は比較例 4で作成した液晶表示パネルの配置図である。  FIG. 16 is a layout diagram of the liquid crystal display panel created in Comparative Example 4.
図 1 7は比較例 4で作成した液晶表示パネルの階調と視野角の関係を示すグラフ である。  FIG. 17 is a graph showing the relationship between the gradation and the viewing angle of the liquid crystal display panel created in Comparative Example 4.

Claims

請 求 の 範 囲 The scope of the claims
1. 電極を備えた一対の透明基板の間に電圧無印加時にねじれネマチック 配向を有する液晶層を設けた駆動用液晶セルと、 ッイステツドネマチック配向を保 持した光学補償フィルムとを、 2枚の偏光板にて挟持させた液晶表示素子であって、 光学補償フィルムのねじれ角の絶対値が駆動用液晶セルの電圧無印加時のねじれ角 の絶対値より小であることを特徴とするノーマリーブラックモード型 TN液晶表示 素子。 1. A driving liquid crystal cell having a liquid crystal layer having a twisted nematic alignment between a pair of transparent substrates having electrodes when no voltage is applied, and an optical compensation film having a twisted nematic alignment. A liquid crystal display device sandwiched between two polarizing plates, wherein the absolute value of the twist angle of the optical compensation film is smaller than the absolute value of the twist angle of the driving liquid crystal cell when no voltage is applied. Normally black mode type TN liquid crystal display.
2. 駆動用液晶セルにおける液晶層の屈折率異方性△ nと液晶層の厚み d との積 (And) が 200 nm〜600 nmの範囲にあり、 駆動用液晶セルの電圧 無印加時のねじれ角が 80° 〜100° の範囲にあり、 光学補償フィルムのねじれ 方向が、駆動用液晶セルのとねじれ方向逆方向であって、そのねじれ角の絶対値が、 駆動用液晶セルのねじれ角の絶対値より小さく、 その差が 15度以上である請求項 1記載のノーマリーブラックモード型 T N液晶表示素子。 2. The product (And) of the refractive index anisotropy 液晶 n of the liquid crystal layer and the thickness d of the liquid crystal layer in the driving liquid crystal cell is in the range of 200 nm to 600 nm, and the voltage of the driving liquid crystal cell when no voltage is applied The twist angle is in the range of 80 ° to 100 °, and the twist direction of the optical compensation film is opposite to the twist direction of the driving liquid crystal cell, and the absolute value of the twist angle is the twist angle of the driving liquid crystal cell. 2. The normally black mode TN liquid crystal display element according to claim 1, wherein the absolute value of the TN liquid crystal display element is smaller than 15 degrees, and the difference is 15 degrees or more.
3. 電極を備えた一対の透明基板の間に電圧無印加時にねじれネマチック 配向を有する液晶層を設けた駆動用液晶セルと、 ッイステツドネマチック配向を保 持した光学補償フィルムと、 光学的に負の異方性を示すフィルムとを、 2枚の偏光 板にて挟持させた液晶表示素子であって、 光学補償フィルムのねじれ角の絶対値が 駆動用液晶セルの電圧無印加時のねじれ角の絶対値より小であることを特徴とする ノ一マリーブラックモード型 T N液晶表示素子。 3. A driving liquid crystal cell having a liquid crystal layer having a twisted nematic alignment between a pair of transparent substrates having electrodes when no voltage is applied, an optical compensation film having a twisted nematic alignment, and an optical compensating film. A liquid crystal display device in which a film showing negative anisotropy is sandwiched between two polarizing plates, and the absolute value of the twist angle of the optical compensation film is the twist of the driving liquid crystal cell when no voltage is applied. A normally black mode TN liquid crystal display device characterized by being smaller than the absolute value of the angle.
4. 駆動用液晶セルにおける液晶層の屈折率異方性 Δηと液晶層の厚み d との積 (And) が 200 nm〜600 nmの範囲にあり、 駆動用液晶セルの電圧 無印加時のねじれ角が 80° ~100° の範囲にあり、 光学補償フィルムの屈折率 異方性 An】と厚み との積 (An, d3) が 150〜600 nmの範囲にあり、 光 学補償フィルムのねじれ角の絶対値が、 駆動用液晶セルの電圧無印加時のねじれ角 の絶対値より小さく、 その差が 15度以上であり、 光学的に負の異方性を示すフィ ルムの膜厚方向の複屈折 Δη2と厚み d2との積 (Z n2d2) が— 20〜― 300 n mの範囲であることを特徴とする請求項 3記載のノ一マリ一ブラックモード型 T4. The product (And) of the refractive index anisotropy Δη of the liquid crystal layer and the thickness d of the liquid crystal layer in the driving liquid crystal cell is in the range of 200 nm to 600 nm, and the driving liquid crystal cell twists when no voltage is applied. angle is in the range of 80 ° ~ 100 °, the product of the refractive index anisotropy an] and the thickness of the optical compensation film (an, d 3) is in the range of 150 to 600 nm, twist of optical science compensation film The absolute value of the angle is smaller than the absolute value of the torsion angle of the driving liquid crystal cell when no voltage is applied, and the difference is 15 degrees or more. The product of the birefringence Δη 2 and the thickness d 2 (Z n 2 d 2 ) is-20 to-300 4. The normally black mode type T according to claim 3, wherein the wavelength is in the range of nm.
N液晶表示素子。 N liquid crystal display element.
5 . 光学的に正の一軸性を示す高分子液晶の薄膜が液晶状態において形成 するツイステツドネマチック配向を、 薄膜の冷却によってガラス固定化した液晶フ イルムを、 光学補償フィルムとして使用することを特徴とする請求項 1、 2、 3又 4記載のノーマリ一ブラックモード型 T N液晶表示素子。 5. The use of a twisted nematic alignment formed by a thin film of polymer liquid crystal exhibiting optically positive uniaxiality in the liquid crystal state, and fixing the glass film by cooling the thin film to use as an optical compensation film. 5. The normally black mode TN liquid crystal display device according to claim 1, 2, 3, or 4.
6 . 光学的に正の一軸性を示す光硬化型低分子液晶の薄膜が液晶状態にお いて形成するッイステツドネマチック配向を、 薄膜への光照射によって固定化した 液晶フィルムを、光学補償フィルムとして使用することを特徴とする請求項 1、 2、 3又 4記載のノ一マリーブラックモード型 T N液晶表示素子。 6. Optical compensation of a liquid crystal film in which the twisted nematic alignment formed by a photocurable low-molecular liquid crystal thin film that exhibits optically positive uniaxiality in the liquid crystal state is fixed by irradiating the thin film with light. 5. The normally black mode TN liquid crystal display device according to claim 1, wherein the TN liquid crystal display device is used as a film.
PCT/JP2000/005438 1999-08-31 2000-08-14 Normally-black mode tn liquid crystal display WO2001016645A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP24534099A JP2001066597A (en) 1999-08-31 1999-08-31 Normally black mode tn liquid crystal display device
JP11/245341 1999-08-31
JP24534199 1999-08-31
JP11/245340 1999-08-31

Publications (1)

Publication Number Publication Date
WO2001016645A1 true WO2001016645A1 (en) 2001-03-08

Family

ID=26537189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005438 WO2001016645A1 (en) 1999-08-31 2000-08-14 Normally-black mode tn liquid crystal display

Country Status (1)

Country Link
WO (1) WO2001016645A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181478A (en) * 1993-12-24 1995-07-21 Toshiba Corp Liquid crystal display element
JPH09258214A (en) * 1996-03-26 1997-10-03 Casio Comput Co Ltd Color liquid crystal display device
JPH09292611A (en) * 1996-04-30 1997-11-11 Nec Corp Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181478A (en) * 1993-12-24 1995-07-21 Toshiba Corp Liquid crystal display element
JPH09258214A (en) * 1996-03-26 1997-10-03 Casio Comput Co Ltd Color liquid crystal display device
JPH09292611A (en) * 1996-04-30 1997-11-11 Nec Corp Liquid crystal display device

Similar Documents

Publication Publication Date Title
US7515231B2 (en) Low temperature nematic liquid crystal alignment material and LCD compensator incorporating the liquid crystal alignment material
JP4502218B2 (en) Liquid crystal panel and liquid crystal display device
EP0854376B1 (en) Optical film
US20060193975A1 (en) Multilayer optical compensator, liquid crystal display, and process
WO2006090617A1 (en) Polarizing element, liquid crystal panel, liquid crystal television and liquid crystal display device
KR100631752B1 (en) Optical film
JP2006268018A (en) Polarizing element, liquid crystal panel, liquid crystal television, and liquid crystal display device
JPH10186356A (en) Optical compensation film for liquid crystal display element
Lin et al. IPS-LCD using a glass substrate and an anisotropic polymer film
JP3670786B2 (en) Film for optical elements
JPH10332933A (en) Optical anisotropic element
JP4731269B2 (en) Polarizing element, liquid crystal panel, and liquid crystal display device
JP4260912B2 (en) Liquid crystal display
JP3872583B2 (en) Liquid crystal display
KR19980703694A (en) Liquid crystalline optical film and its use
JP2004133171A (en) Optical compensation sheet and liquid crystal display device
JP2008076706A (en) Liquid crystal panel and liquid crystal display device
JPH11119211A (en) Optical anisotropic element
WO1999049359A1 (en) Liquid crystal display
JPH095524A (en) Compensation film for liquid crystal display element and liquid crystal display device formed by building the compensation film therein
JP2001042325A (en) Optical compensation device
WO2001016645A1 (en) Normally-black mode tn liquid crystal display
JP2001142072A (en) Normally black mode type tn liquid crystal display device
JP2001066597A (en) Normally black mode tn liquid crystal display device
JP2001051273A (en) Normally black mode type tn liquid crystal display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase