WO2001009936A1 - Passivierungsschichtstruktur - Google Patents

Passivierungsschichtstruktur Download PDF

Info

Publication number
WO2001009936A1
WO2001009936A1 PCT/DE2000/002404 DE0002404W WO0109936A1 WO 2001009936 A1 WO2001009936 A1 WO 2001009936A1 DE 0002404 W DE0002404 W DE 0002404W WO 0109936 A1 WO0109936 A1 WO 0109936A1
Authority
WO
WIPO (PCT)
Prior art keywords
passivation layer
layer
layer structure
passivation
cutouts
Prior art date
Application number
PCT/DE2000/002404
Other languages
English (en)
French (fr)
Inventor
Siegfried RÖHL
Paul-Werner Von Basse
Thomas Scheiter
Thorsten Sasse
Heinz Opolka
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to EP00960303A priority Critical patent/EP1200986B1/de
Priority to DE50013864T priority patent/DE50013864D1/de
Publication of WO2001009936A1 publication Critical patent/WO2001009936A1/de
Priority to US10/060,431 priority patent/US7054469B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1329Protecting the fingerprint sensor against damage caused by the finger

Definitions

  • the present invention relates to a passivation layer structure for semiconductor components, which is particularly suitable for capacitively measuring sensors.
  • the object of the present invention is to provide a passivation layer structure for semiconductor components which has sufficient scratch resistance, in particular for use with capacitively measuring sensors.
  • the passivation layer structure which is formed from a structured conductor layer (e.g. arrangement of the sensor surfaces of a capacitively measuring sensor) and the passivation layers applied thereon, is structured according to the invention in such a way that the conductor surfaces are fragmented in a lattice-like manner. In this way, the lowermost passivation layer rests through cutouts in the conductor layer on the layer underneath.
  • a structured conductor layer e.g. arrangement of the sensor surfaces of a capacitively measuring sensor
  • FIG. 1 shows a top view of a level of a semiconductor component, in which a conductor layer 2 is arranged, which is structured in portions with a two-dimensional extent.
  • the material of a passivation layer 1 is located between these portions.
  • the flat portions of the conductor layer 2 are provided with cutouts 3 which are filled with the material of the passivation layer 1.
  • the associated layer structure is shown in the cross section of FIG. It can be seen there how the material of the passivation layer 1 fills the recesses 3 of the flat portions of the conductor layer 2 and rests on a base layer 5 located underneath.
  • This base layer 5 can be an electrically insulating layer, for example, which electrically insulates the conductor layer 2 downwards.
  • FIG. 2 Further structuring of the component, for example a semiconductor substrate with a layer structure applied thereon, can be located below the base layer 5.
  • the lower portion of the semiconductor device 4 is shown in the diagram without structuring.
  • On the top of the passiv at least one further passivation layer 6 can be applied.
  • the interlaminar shear strength is increased in that the flat portions of the structured conductor layer 2 are fragmented by the cutouts 3, so that a type of grating or the like is formed.
  • the passivation layer 1 above it to the underlying base layer 5 (for example an oxide layer) in the area of the flat portions of the conductor layer 2.
  • the interlaminar shear strength can additionally be increased in that a corresponding fragmentation is also present in a metallization level below the base layer 5, so that the base layer 5 already has an improved shear strength.
  • the sensitivity of a sensor provided with a passivation layer structure according to the invention is the same or better than that of a conventionally structured and passivated capacitively measuring sensor. This is due to the coupling of indirect stray capacities on the side edges of the grille.
  • the flat portions of the conductor layer 2 are, for example, the conductors, which are each assigned to a pixel in a capacitively measuring fingerprint sensor.
  • the sensor areas are then, for example, square and have a side dimension of 40 to 50 ⁇ m.
  • the cutouts 3, which in this example are arranged in three parallel rows of five cutouts each, can have a side dimension of 3 ⁇ m, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Electrotherapy Devices (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

Eine in flächige Anteile strukturierte Leiterschicht (2) zum Beispiel eines kapazitiv messenden Fingerabdrucksensors wird mittels Aussparungen (3) gitterartig fragmentiert, so dass eine aufgebrachte Passivierungsschicht (1) auf einer unter der Leiterschicht (2) vorhandenen Basisschicht (5) ruht. Auf diese Weise wird die interlaminare Scherfestigkeit der Passivierung erhöht.

Description

Beschreibung
Passi ierungsschichtStruktur
Die vorliegende Erfindung betrifft eine Passivierungsschicht- struktur für Halbleiterbauelemente, die insbesondere für kapazitiv messende Sensoren geeignet ist.
Halbleiterbauelemente, die Umwelteinflüssen und insbesondere mechanischem Verschleiß ausgesetzt sind, benötigen eine besonders harte und kratzfeste Passivierung . Insbesondere bei Fingerabdrucksensoren tritt das Problem auf, daß die für die Auflage einer Fingerbeere vorgesehene Auflagefläche mechanischem Verschleiß ausgesetzt ist, der die Eigenschaften des Fingerabdrucksensors wesentlich verschlechtert. Bei Fingerabdrucksensoren, die nach dem kapazitiven Meßverfahren arbeiten, kommt es darauf an, daß der Abstand zwischen einer aufliegenden Fingerbeere und Leiterebenen m dem Halbleiterbau- element des Sensors auch nach längerem Gebrauch des Sensors innerhalb enger Toleranzen konstant gehalten wird. Herkömmliche Passivierungsschichten aus Siliziumoxid oder Siliziumni- tπd, wie sie üblicherweise m der Halbleitertechnologie verwendet werden, reichen bei einer stärkeren Beanspruchung der Oberfläche der Bauelemente nicht aus. Die Verwendung dickerer Passivierungsschichten oder üblicher Passivierungsmaterialien wie zum Beispiel Polyimid reichen nicht aus, da durch dickere Passivierungen die Empfindlichkeit des Sensors herabgesetzt wird.
Aufgabe der vorliegenden Erfindung ist es, eine Passivie- rungsschichtstruktur für Halbleiterbauelemente anzugeben, die insbesondere zum Einsatz bei kapazitiv messenden Sensoren eine ausreichende Kratzfestigkeit aufweist.
Diese Aufgabe wird mit der Passivierungsschichtstruktur mit den Merkmalen des Anspruches 1 gelost. Ausgestaltungen ergeben sich aus den abhangigen Ansprüchen. Die Erfindung beruht auf der Erkenntnis, daß mit der Scherfestigkeit die Kratzfestigkeit der Passivierungsschichten verbessert wird. Die Passivierungsschichtstruktur, die aus einer strukturierten Leiterschicht (z. B. Anordnung der Sensorflächen eines kapazitiv messenden Sensors) und den darauf aufgebrachten Passivierungsschichten gebildet wird, ist erfindungsgemäß so strukturiert, daß die Leiterflächen in gitterartiger Weise fragmentiert sind. Auf diese Weise ruht die un- terste Passivierungsschicht durch Aussparungen in der Leiterschicht hindurch auf der darunter befindlichen Schicht.
Es folgt eine genauere Erläuterung der erfindungsgemäßen Passivierungsschichtstruktur anhand des in den Figuren 1 und 2 in Aufsicht bzw. im Querschnitt dargestellten Ausfuhrungsbei- spiels .
In Figur 1 ist in Aufsicht eine Ebene eines Halbleiterbauelementes dargestellt, in der eine Leiterschicht 2 angeordnet ist, die in Anteile mit flächiger Ausdehnung strukturiert ist. Zwischen diesen Anteilen befindet sich das Material einer Passivierungsschicht 1. Die flächigen Anteile der Leiterschicht 2 sind mit Aussparungen 3 versehen, die mit dem Material der Passivierungsschicht 1 gefüllt sind. In dem Quer- schnitt der Figur 2 ist der zugehörige Schichtaufbau dargestellt. Es ist dort erkennbar, wie das Material der Passivierungsschicht 1 die Aussparungen 3 der flächigen Anteile der Leiterschicht 2 ausfüllt und auf einer darunter befindlichen Basisschicht 5 ruht. Diese Basisschicht 5 kann zum Beispiel eine elektrisch isolierende Schicht sein, die die Leiterschicht 2 nach unten elektrisch isoliert. Unterhalb der Basisschicht 5 können sich weitere Strukturierungen des Bauelementes, zum Beispiel ein Halbleitersubstrat mit einer darauf aufgebrachten Schichtstruktur, befinden. In Figur 2 ist der untere Anteil des Halbleiterbauelementes 4 ohne Strukturierung im Schema eingezeichnet. Auf der Oberseite der Passivie- rungsschicht 1 kann mindestens eine weitere Passivierungsschicht 6 aufgebracht sein.
Bei der erfindungsgemäßen Passivierungsschichtstruktur wird die interlaminare Scherfestigkeit dadurch erhöht, daß die flächigen Anteile der strukturierten Leiterschicht 2 durch die Aussparungen 3 fragmentiert werden, so daß eine Art Gitter oder dergleichen ausgebildet ist. Auf diese Weise ist es möglich, auch im Bereich der flächigen Anteile der Leiter- schicht 2 die darüber befindliche Passivierungsschicht 1 mit der darunterliegenden Basisschicht 5 (zum Beispiel einer Oxidschicht) zu verbinden. Die interlaminare Scherfestigkeit kann zusätzlich dadurch erhöht werden, daß eine entsprechende Fragmentierung auch in einer Metallisierungsebene unterhalb der Basisschicht 5 vorhanden ist, so daß bereits die Basisschicht 5 eine verbesserte Scherfestigkeit aufweist.
Trotz der auf diese Weise reduzierten Flächeninhalte der Leiterflächen, die für eine kapazitive Messung zur Verfügung stehen, ist die Empfindlichkeit eines mit einer erfindungsgemäßen Passivierungsschichtstruktur versehenen Sensors gleich oder besser als ein herkömmlich strukturierter und passivier- ter kapazitiv messender Sensor. Das ist bedingt durch die Einkopplung von indirekten Streukapazitäten an den Seitenkan- ten des Gitters.
Bei dem in Figur 1 in Aufsicht dargestellten Ausfuhrungsbei - spiel sind die flächigen Anteile der Leiterschicht 2 zum Beispiel die Leiter, die jeweils einem Bildpunkt bei einem kapa- zitiv messenden Fingerabdrucksensor zugeordnet sind. Die Sensorflächen sind dann zum Beispiel quadratisch und besitzen eine Seitenabmessung von 40 bis 50 μm. Die Aussparungen 3, die bei diesem Beispiel in drei parallelen Reihen zu jeweils fünf Aussparungen angeordnet sind, können zum Beispiel eine Seitenabmessung von 3 μm besitzen.

Claims

Patentansprüche
1. Passivierungsschichtstruktur für kapazitiv messende Sensoren mit einer Leiterschicht (2), die m Anteile mit flächiger Ausdehnung strukturiert ist und die zwischen einer Basis- schicht (5) und einer Passivierungsschicht (1) angeordnet ist, dadurch gekennzeichnet, daß die Anteile der Leiterschicht (2) Aussparungen (3) aufweisen und die Passivierungsschicht (1) auch m diesen Aussparungen (3) vorhanden ist und so mit der Basisschicht (5) verbun¬
2. Passivierungsschichtstruktur nach Anspruch 1, bei der die Anteile der Leiterschicht (2) Sensorfelder eines kapazitiv messenden Finderabdrucksensors sind.
3. Passivierungsschichtstruktur nach Anspruch 1 oder 2, bei der die Aussparungen (3) auf einem gitterartigen Raster angeordnet sind.
4. Passivierungsschichtstruktur nach einem der Ansprüche 1
bei der die Basisschicht (5) auf einer mit Aussparungen versehenen Metallisierungsebene aufgebracht ist und mit einer darunter befindlichen weiteren Schicht verbunden ist.
5. Passivierungsschichtstruktur nach einem der Ansprüche 1
bei der die Passivierungsschicht (1) Oxid oder Nitrid ist und die Basisschicht (5) Oxid ist.
PCT/DE2000/002404 1999-07-30 2000-07-24 Passivierungsschichtstruktur WO2001009936A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00960303A EP1200986B1 (de) 1999-07-30 2000-07-24 Passivierungsschichtstruktur
DE50013864T DE50013864D1 (de) 1999-07-30 2000-07-24 Passivierungsschichtstruktur
US10/060,431 US7054469B2 (en) 1999-07-30 2002-01-30 Passivation layer structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19935910A DE19935910A1 (de) 1999-07-30 1999-07-30 Passivierungsschichtstruktur
DE19935910.5 1999-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/060,431 Continuation US7054469B2 (en) 1999-07-30 2002-01-30 Passivation layer structure

Publications (1)

Publication Number Publication Date
WO2001009936A1 true WO2001009936A1 (de) 2001-02-08

Family

ID=7916638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002404 WO2001009936A1 (de) 1999-07-30 2000-07-24 Passivierungsschichtstruktur

Country Status (5)

Country Link
US (1) US7054469B2 (de)
EP (1) EP1200986B1 (de)
AT (1) ATE348403T1 (de)
DE (2) DE19935910A1 (de)
WO (1) WO2001009936A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697729B2 (en) 2004-01-29 2010-04-13 Authentec, Inc. System for and method of finger initiated actions
US7831070B1 (en) 2005-02-18 2010-11-09 Authentec, Inc. Dynamic finger detection mechanism for a fingerprint sensor
US8231056B2 (en) 2005-04-08 2012-07-31 Authentec, Inc. System for and method of protecting an integrated circuit from over currents
US8866347B2 (en) 2010-01-15 2014-10-21 Idex Asa Biometric image sensing
US9600704B2 (en) 2010-01-15 2017-03-21 Idex Asa Electronic imager using an impedance sensor grid array and method of making
US9798917B2 (en) 2012-04-10 2017-10-24 Idex Asa Biometric sensing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3980387B2 (ja) * 2002-03-20 2007-09-26 富士通株式会社 容量検出型センサ及びその製造方法
US8068821B2 (en) * 2007-03-29 2011-11-29 Alcatel Lucent Method and apparatus for providing content to users using unicast and broadcast wireless networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148485A (ja) * 1994-11-15 1996-06-07 Fujitsu Ltd 半導体装置の製造方法
US5907627A (en) * 1995-11-06 1999-05-25 Dew Engineering And Development Limited Contact imaging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290052A (en) * 1979-10-26 1981-09-15 General Electric Company Capacitive touch entry apparatus having high degree of personal safety
JPH0590255A (ja) 1991-09-30 1993-04-09 Sanyo Electric Co Ltd 半導体装置
US6423995B1 (en) * 1999-07-26 2002-07-23 Stmicroelectronics, Inc. Scratch protection for direct contact sensors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148485A (ja) * 1994-11-15 1996-06-07 Fujitsu Ltd 半導体装置の製造方法
US5907627A (en) * 1995-11-06 1999-05-25 Dew Engineering And Development Limited Contact imaging device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 10 31 October 1996 (1996-10-31) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697729B2 (en) 2004-01-29 2010-04-13 Authentec, Inc. System for and method of finger initiated actions
US7831070B1 (en) 2005-02-18 2010-11-09 Authentec, Inc. Dynamic finger detection mechanism for a fingerprint sensor
US8231056B2 (en) 2005-04-08 2012-07-31 Authentec, Inc. System for and method of protecting an integrated circuit from over currents
US9659208B2 (en) 2010-01-15 2017-05-23 Idex Asa Biometric image sensing
US9268988B2 (en) 2010-01-15 2016-02-23 Idex Asa Biometric image sensing
US9600704B2 (en) 2010-01-15 2017-03-21 Idex Asa Electronic imager using an impedance sensor grid array and method of making
US8866347B2 (en) 2010-01-15 2014-10-21 Idex Asa Biometric image sensing
US10115001B2 (en) 2010-01-15 2018-10-30 Idex Asa Biometric image sensing
US10592719B2 (en) 2010-01-15 2020-03-17 Idex Biometrics Asa Biometric image sensing
US11080504B2 (en) 2010-01-15 2021-08-03 Idex Biometrics Asa Biometric image sensing
US9798917B2 (en) 2012-04-10 2017-10-24 Idex Asa Biometric sensing
US10101851B2 (en) 2012-04-10 2018-10-16 Idex Asa Display with integrated touch screen and fingerprint sensor
US10114497B2 (en) 2012-04-10 2018-10-30 Idex Asa Biometric sensing

Also Published As

Publication number Publication date
DE19935910A1 (de) 2001-02-08
EP1200986A1 (de) 2002-05-02
ATE348403T1 (de) 2007-01-15
DE50013864D1 (de) 2007-01-25
US7054469B2 (en) 2006-05-30
US20020109209A1 (en) 2002-08-15
EP1200986B1 (de) 2006-12-13

Similar Documents

Publication Publication Date Title
DE19825761C2 (de) Vorrichtung zum Erfassen einer Dehnung und/oder einer Stauchung eines Körpers
DE60225407T2 (de) Kapazitiver Fingerbadrucksensor mit Leitsuspensionhaltiger Schutzbeschichtung
EP1103031A1 (de) Halbleiterbauelement mit passivierung
WO2001042776A1 (de) Kapazitiver sensor
DE102014113498B4 (de) Stromstärkesensor mit einem Messwiderstand in einer Umverteilungsschicht
WO2001009936A1 (de) Passivierungsschichtstruktur
DE19638666C1 (de) Schmelzsicherung mit einer Schutzschicht in einer integrierten Halbleiterschaltung sowie zugehöriges Herstellungsverfahren
DE102018215018A1 (de) Feuchtigkeitssensor
WO2013017531A1 (de) Verfahren zum herstellen eines elektrischen bauelements und elektrisches bauelement
EP1068501A1 (de) Dehnungsempfindlicher widerstand
EP0736907A1 (de) Feldeffekt steuerbares Halbleiterbauelement mit einem integrierten ohmischen Widerstand
EP3421981B1 (de) Sensorvorrichtung zur messung von feuchte und temperatur
DE102016217585B3 (de) Dehnungsmesstreifen sowie Verfahren zur Herstellung eines Dehnungsmessstreifens
AT504406B1 (de) Messvorrichtung
DE10042945A1 (de) Bauelement für Sensoren mit integrierter Elektronik und Verfahren zu seiner Herstellung, sowie Sensor mit integrierter Elektronik
DE102011105539B4 (de) Vorrichtung zum Wandeln einer Kraft in ein elektrisches Signal, insbesondere piezoresistiver Kraftsensor
DE102018128422B4 (de) Monolithische Lastzelle für Personenwaagen
DE19513921C2 (de) Halbleiterchip
EP4276434A1 (de) Drucksensor
DE102010025633B4 (de) Vorrichtung zur Messung kleiner und großer Kräfte
EP0967570A3 (de) Verfahren zur Herstellung von Transponderchips
DE102021103424A1 (de) Mikroelektronische Vorrichtungen
DE3106354A1 (de) Halbleitervorrichtung und verfahren zu ihrer herstellung
DE112020001474T5 (de) Mems-gassensor-trägerkörper
DE102022101511A1 (de) Leistung-Schalteinrichtung mit optimierter Druckplatte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN IN JP KR MX RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000960303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10060431

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000960303

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2000960303

Country of ref document: EP