明細 リン酸結合蛋白質共役型の受容体およびそれらの遺伝子、 Description Phosphate binding protein-coupled receptors and their genes,
ならびにそれらの製造および用途 And their manufacture and use
技術分野 Technical field
本発明は、 新規なグアノシン三リン酸結合蛋白質共役型の受容体およびそれら の遺伝子、 ならびにそれらの製造および用途に関する。 背景技術 The present invention relates to novel guanosine triphosphate binding protein-coupled receptors, their genes, and their production and use. Background art
G蛋白質共役型受容体(G protein-coupled receptors/GPCR)は、 三量体型 GTP 結合蛋白質の活性化を介して細胞内にシグナルを伝達する細胞膜受容体群の総称 である。 G蛋白質共役型受容体は、分子内に細胞膜貫通領域を 7回有する構造上の 特性から、 「7回膜貫通型受容体」 とも呼ばれる。 G蛋白質共役型受容体は様々な 生理活性物質の情報を、三量体型 GTP結合蛋白質の活性化、それにより引き起こさ れる細胞内セカンドメッセンジャーの変動を介して細胞膜から細胞内へと伝達す る。 三量体型 GTP結合蛋白質により制御される細胞内セカンドメッセンジャーは、 アデニレ一トシクラ一ゼを介する cAMP、 フォスフオリバ一ゼ Cを介する Ca2+などが よく知られているが、三量体型 GTP結合蛋白質を介したチャネルの制御、 リン酸ィ匕 酵素の活性化など多くの細胞蛋白がその標的となっていることが最近明らかとな つてきた (Annu. Rev. Neurosci . ( 97) 20 : 399) 。 G蛋白質共役型受容体に対する 基質 (リガンド) は、 大変多岐に渡っており、 タンパク性ホルモン、 ケモカイン 、 ペプチド、 ァミン、 脂質由来物質、 さらにはトロンビンの様なプロテア一ゼも その一例となる。現在、遺伝子が同定された G蛋白質共役型受容体の数は感覚器受 容体を除くと、 ヒトで 300個弱存在するが、 リガンドが同定された G蛋白質共役型 受容体の数は、 そのうち約 140種類に過ぎず、 リガンド未知な「ォ一ファン G蛋白
質共役型受容体」が 100種類以上存在している。 しかしながら実際のヒトゲノム中 には、 少なくとも 400種類、 場合によっては 1000種類もの G蛋白質共役型受容体が 存在する、 とも想定されている (Trends Pharmacol . Sci . (97) 18:430) 。 この 事は、今後のゲノム解析の飛躍的進展に伴って、機能未知なォーファン G蛋白質共 役型受容体の数も爆発的に増加する事を意味している。 G protein-coupled receptors (GPCRs) are a general term for a group of cell membrane receptors that transmit signals into cells through the activation of trimeric GTP-binding proteins. G protein-coupled receptors are also called “seven transmembrane receptors” because of their structural properties, which have seven transmembrane domains in the molecule. G protein-coupled receptors transmit information on various physiologically active substances from the cell membrane to the cell via the activation of the trimeric GTP-binding protein and the resulting change in intracellular second messengers. Intracellular second messengers controlled by the trimeric GTP-binding protein are well known, such as cAMP via adenylate cyclase and Ca 2+ via phosphoivase C. Recently, it has become clear that many cellular proteins are targets, such as channel-mediated control and phosphorylation enzyme activation (Annu. Rev. Neurosci. (97) 20: 399). Substrates (ligands) for G protein-coupled receptors are very diverse, including proteinaceous hormones, chemokines, peptides, amines, lipid-derived substances, and proteases such as thrombin. At present, the number of G protein-coupled receptors whose genes have been identified is less than 300 in humans excluding sensory organ receptors, but the number of G protein-coupled receptors whose ligands have been identified is about Only 140 types of unknown ligands There are more than 100 types of "quality coupled receptors". However, it is assumed that there are at least 400, and sometimes as many as 1000, G protein-coupled receptors in the actual human genome (Trends Pharmacol. Sci. (97) 18: 430). This means that the number of orphan G-protein co-receptors with unknown functions will explode with the rapid progress of genome analysis in the future.
これまでに世界の製薬企業により創られてきた薬剤は、 その 9割以上が細胞外 空間での相互作用を標的としており、その中でも G蛋白質共役型受容体に関連する 低分子薬は約半数を占めている。その根拠としては、 G蛋白質共役型受容体が関連 する疾患が、 遺伝的疾患を始めとして、 脳神経系、 循環器系、 消化器系、 免疫系 、 運動器系、 泌尿器生殖器系など、 非常に多くの領域に関連することにある。 そ のため、最近では多くの製薬企業がゲノム解析で明らかとなったォーファン G蛋白 質共役型受容体を所有し、 リガンド探索と生理機能の解明に鎬を削っている。 こ うした状況を背景として、最近では新規 G蛋白質共役型受容体の生理的リガンド探 索の成功例も報告され始めている。 例えば、 calcitonin gene-related peptide 受容体 (J. Biol . Chem. (96) 271 : 11325 )、 orexin (Cell ( 98) 92:573)そして pr olactin-releasing peptide (Nature (98) 393 :272)などの事例は、生命科学分野 での基礎研究としても大きな衝撃を持つ事例であった。 Over 90% of drugs created by global pharmaceutical companies so far target interactions in the extracellular space, of which about half of small molecule drugs related to G protein-coupled receptors is occupying. The reason is that G protein-coupled receptor-related diseases are extremely common, including genetic diseases, cranial nervous system, circulatory system, digestive system, immune system, motor system, urogenital system, etc. In the area of Therefore, recently many pharmaceutical companies own the orphan G protein-coupled receptor revealed by genome analysis, and are spending less time searching for ligands and elucidating physiological functions. Against the background of this situation, there have recently been reports of successful searches for physiological ligands for novel G protein-coupled receptors. For example, calcitonin gene-related peptide receptor (J. Biol. Chem. (96) 271: 11325), orexin (Cell (98) 92: 573) and propylactin-releasing peptide (Nature (98) 393: 272) The case mentioned above had a great impact as basic research in the life science field.
特に、ォーファン G蛋白質共役型受容体は新たな薬剤開発に繋がる可能性の高い 標的として、多大な注目を集めている。一般的にォーファン G蛋白質共役型受容体 には特異的なリガンドが見出されていないため、 そのァゴニスト、 アン夕ゴニス トを開発することは困難であった。 しかし、 近年、 充実された化合物ライブラリ 一とハイスループットスクリ一ニングとを組み合わせることで、才一ファン G蛋白 質共役型受容体を標的とした薬剤の創製が提唱されている (Trends Pharmacol . Sci . (97) 18:430, Br. J. Pharm. ( 98) 125 : 1387)。 すなわち、 遺伝子操作によ つて同定されたォ一ファン G蛋白質共役型受容体を、細胞内セカンドメッセンジャ 一である cAMP, Ca2+の変化を指標とした機能スクリ一ニングにより生理的ァゴニ
ストを発見し、 生体内機能解析を行うというものである。 この際、 化合物ライブ ラリーを利用して、 スクリーニングをハイスループット化することにより、 ォー ファン G蛋白質共役型受容体に対する特異的な代替 (surrogate) ァゴニスト及び アン夕ゴニス卜の発見、 ひいては特定の疾患治療薬の開発も理論的には可能とな る。 発明の開示 In particular, the orphan G protein-coupled receptor has received a great deal of attention as a potential target for new drug development. In general, since no specific ligand has been found for orphan G protein-coupled receptor, it has been difficult to develop its agonist, angonist. However, in recent years, it has been proposed to create a drug targeting the Saiichi-Fan G protein-coupled receptor by combining an enhanced compound library with high-throughput screening (Trends Pharmacol. Sci. (97) 18: 430, Br. J. Pharm. (98) 125: 1387). In other words, the receptor G protein-coupled receptor identified by genetic manipulation is converted into physiological agonies by functional screening using changes in intracellular second messenger cAMP and Ca 2+ as indices. This is to discover strikes and perform in vivo functional analysis. At this time, by using a compound library to increase the screening throughput, it was possible to discover specific surrogate agonists and orphan gonist for orphan G protein-coupled receptor, and eventually to identify specific diseases. Therapeutic drug development would also be theoretically possible. Disclosure of the invention
本発明の目的は、 新規な G蛋白質共役型受容体およびそれらの遺伝子、 ならび にそれらの製造および用途を提供することにある。 さらに当該分子を医薬品の開 発研究の標的として提供することを目的とする。 An object of the present invention is to provide novel G protein-coupled receptors and their genes, as well as their production and use. Furthermore, it aims to provide the molecule as a target for drug development research.
本発明者らは、 上記の課題を解決するために、 まず、 完全長 cDNAを単離するた めに独自に開発したオリゴキヤップ法により、ヒト胎盤組織 cDNAライブラリーか ら完全長 cDNAを複数単離した。 In order to solve the above-mentioned problems, the present inventors firstly used oligocap method, which was originally developed to isolate full-length cDNAs, by using multiple oligos from human placental tissue cDNA libraries to obtain multiple full-length cDNAs. Released.
単離した cDNAの一つにつき塩基配列を決定し、その構造解析を行なったところ 、 7個の膜貫通ドメインと考えられる疎水性領域を有していたため、 該 cDNAは G 蛋白質共役型受容体をコードしていることが判明した (このクローンを 「C-PLAC E1003238j と命名した) o The nucleotide sequence of one of the isolated cDNAs was determined, and its structural analysis revealed that the cDNA had a G protein-coupled receptor because it had seven hydrophobic regions, which are thought to be transmembrane domains. (This clone was named "C-PLAC E1003238j") o
C-PLACE1003238は、 レチノイン酸処理により分化誘導した神経細胞に対し阻害 剤を添加するとその発現が増加したことから神経疾患との関連が示唆される。 ま た、 紫外線照射によって発現が低下することから皮膚癌への関連も考えられる。 また、 C- PLACE1003238は、 正常組織においては肺、 胎盤、 皮膚などの組織にお いて高い発現を示した。 腫瘍組織での発現を正常組織での発現と比較すると、 結 腸癌及び滕臓癌では発現が増強していた。 他方、 精巣癌では正常と比較して発現 が減少していた。また、 アルツハイマー病患者の脳における C-PLACE1003238遺伝 子の発現量を正常成人における発現量と比較した結果、 アルツハイマー病患者の 前頭葉では発現が低下し、 海馬では増加していることが判明した。 これら事実か
ら、 C- PLACE1003238には、 癌やアルツハイマー病との関連が示唆された。 The expression of C-PLACE1003238 increased when an inhibitor was added to nerve cells that had been induced to differentiate by treatment with retinoic acid, suggesting a relationship with neurological diseases. In addition, since expression is reduced by ultraviolet irradiation, it may be related to skin cancer. In addition, C-PLACE1003238 showed high expression in tissues such as lung, placenta, and skin in normal tissues. When the expression in tumor tissue was compared with the expression in normal tissue, the expression was increased in colon cancer and Teng's carcinoma. On the other hand, expression was decreased in testicular cancer compared to normal. In addition, as a result of comparing the expression level of the C-PLACE1003238 gene in the brain of Alzheimer's disease patients with that in normal adults, it was found that the expression was decreased in the frontal lobe of Alzheimer's disease patients and increased in the hippocampus. These facts Thus, C-PLACE1003238 was suggested to be associated with cancer and Alzheimer's disease.
本発明は、新規な G蛋白質共役型受容体 C- PLACE1003238および該受容体をコ一 ドする DNA、 並びにそれらの製造および用途に関し、 より詳しくは、 The present invention relates to a novel G protein-coupled receptor C-PLACE1003238, DNA encoding the receptor, and their production and use.
(1) グアノシン三リン酸結合蛋白質共役型の受容体をコードする下記 (a ) から (d) のいずれかに記載の DNA、 (1) the DNA according to any one of the following (a) to (d), which encodes a guanosine triphosphate binding protein-coupled receptor;
(a)配列番号: 2に記載のアミノ酸配列からなる蛋白質をコードする DNA。 (a) DNA encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2.
(b)配列番号: 1に記載の塩基配列のコード領域を含む DNA。 (b) DNA containing the coding region of the nucleotide sequence of SEQ ID NO: 1.
(c)配列番号: 2に記載のアミノ酸配列において 1もしくは複数のアミノ酸が 置換、 欠失、 付加および/または挿入したアミノ酸配列からなる蛋白質をコード する DNA。 (c) a DNA encoding a protein comprising the amino acid sequence of SEQ ID NO: 2 with one or more amino acids substituted, deleted, added and / or inserted.
( d )配列番号: 1に記載の塩基配列からなる MAにストリンジェントな条件下で ハイブリダィズする DNA。 (d) a DNA consisting of the nucleotide sequence of SEQ ID NO: 1 that hybridizes under stringent conditions to MA.
(2) 配列番号: 2に記載のアミノ酸配列からなる蛋白質の部分ペプチドを コードする DNA、 (2) DNA encoding a partial peptide of a protein consisting of the amino acid sequence of SEQ ID NO: 2,
(3) (1) または (2) に記載の DNAを含有するベクター、 (3) a vector containing the DNA of (1) or (2),
(4) (1) または (2) に記載の DNAまたは (3) に記載のベクターを保持 する形質転換体、 (4) a transformant carrying the DNA of (1) or (2) or the vector of (3),
(5) (1) または (2)に記載の DNAによりコードされる蛋白質またはぺプ チド、 (5) a protein or peptide encoded by the DNA of (1) or (2),
(6) (4) に記載の形質転換体を用いて蛋白質またはペプチドを発現させ る工程、 および発現させた蛋白質またはペプチドを回収する工程を含む、 (5) に記載の蛋白質またはべプチドの製造方法、 (6) The production of the protein or peptide according to (5), comprising the steps of: expressing the protein or peptide using the transformant according to (4); and recovering the expressed protein or peptide. Method,
(7) (5) に記載の蛋白質に結合するリガンドのスクリーニング方法であ つて、 (7) A method for screening a ligand that binds to a protein according to (5),
(a) (5) に記載の蛋白質またはペプチドに被検試料を接触させる工程、 (a) contacting a test sample with the protein or peptide according to (5),
(b) 該蛋白質またはペプチドに結合する化合物を選択する工程、 を含む方法、
(8) (5) に記載の蛋白質とそのリガンドとの結合を阻害する活性を有す る化合物のスクリーニング方法であって、 (b) selecting a compound that binds to the protein or peptide; (8) A method for screening a compound having an activity of inhibiting the binding of the protein according to (5) to a ligand thereof,
(a) 被検試料の存在下で (5) に記載の蛋白質またはその部分ペプチドにリガ ンドを接触させ、 該蛋白質またはその部分べプチドとリガンドとの結合活性を検 出する工程、 (a) contacting a ligand with the protein or its partial peptide according to (5) in the presence of a test sample, and detecting the binding activity between the protein or its partial peptide and a ligand;
(b) 被検試料非存在下での結合活性と比較して、 工程 (a) で検出された結合 活性を低下させる化合物を選択する工程、 を含む方法、 (b) selecting a compound that reduces the binding activity detected in step (a) as compared to the binding activity in the absence of the test sample;
(9) (5) に記載の蛋白質の活性を阻害または促進する化合物をスクリー ニングする方法であって、 (9) A method for screening a compound that inhibits or promotes the activity of the protein according to (5),
(a) 被検試料の存在下で該蛋白質を発現する細胞に該蛋白質のリガンドを接触 させる工程、 (a) contacting a cell expressing the protein with a ligand for the protein in the presence of a test sample;
(b) 該リガンドの該蛋白質への結合による細胞における変化を検出する工程、 (b) detecting a change in a cell due to binding of the ligand to the protein,
(c) 被検試料非存在下での細胞における変化と比較して、 工程 (b) で検出さ れた細胞における変化を抑制または増強させる化合物を選択する工程、 を含む方 法、 (c) selecting a compound that suppresses or enhances the change in the cells detected in step (b), as compared to the change in the cells in the absence of the test sample,
(10) (5) に記載の蛋白質に結合する抗体、 (10) an antibody that binds to the protein according to (5),
(1 1) (7) から (9) のいずれかに記載のスクリーニングにより単離さ れる化合物、 (11) a compound isolated by the screening according to any of (7) to (9),
(12) ( 1 1) に記載の化合物を有効成分とする医薬組成物、 (12) A pharmaceutical composition comprising the compound according to (11) as an active ingredient,
( 13) 配列番号: 1に記載の塩基配列からなる DNAまたはその相補鎖に相 補的な、少なくとも 15ヌクレオチドの鎖長を有するヌクレオチド、 を提供するも のである。 (13) a nucleotide having a chain length of at least 15 nucleotides, which is complementary to the DNA consisting of the nucleotide sequence of SEQ ID NO: 1 or a complementary strand thereof.
なお、 本発明において「G蛋白質共役型受容体」 とは、 GTP結合蛋白質の活性化 を介して細胞内にシグナルを伝達する細胞膜受容体を意味する。 In the present invention, “G protein-coupled receptor” means a cell membrane receptor that transmits a signal into a cell through activation of a GTP-binding protein.
本発明において 「リガンド」 とは、 G蛋白質共役型受容体に結合し、 細胞内に シグナルを伝達する生理的物質を意味する。 ここで 「生理的物質」 とは、 生体内
で G蛋白質共役型受容体に結合している化合物を意味する。 In the present invention, "ligand" means a physiological substance that binds to a G protein-coupled receptor and transmits a signal into cells. Here, "physiological substance" means in vivo Means a compound that binds to a G protein-coupled receptor.
本発明において 「ァゴ二スト」 とは、 G蛋白質共役型受容体に結合し、 細胞内に シグナルを伝達しうる化合物を指し、 生理的物質、 人工的に合成した化合物、 天 然由来の化合物を含む。 In the present invention, “agonist” refers to a compound capable of transmitting a signal into a cell by binding to a G protein-coupled receptor, and is a physiological substance, an artificially synthesized compound, or a naturally-derived compound. including.
本発明において「アン夕ゴニスト」 とは、 リガンドが G蛋白質共役型受容体に結 合すること、 もしくは細胞内にシグナルを伝達することを阻害する化合物を指し 、 生理的物質、 人工的に合成した化合物、 天然由来の化合物を含む。 In the present invention, the term “angigonist” refers to a compound that inhibits binding of a ligand to a G protein-coupled receptor or transmission of a signal into a cell, and is a physiologically synthesized or artificially synthesized substance. Compounds, including naturally occurring compounds.
本発明は、 新規な G蛋白質共役型受容体および該蛋白質をコ一ドする DNAを提供 する。 本発明に含まれる、 本発明者らにより単離されたヒト由来の cDNAクローン を 「C- PLACE1003238」 と命名した。 当該 cDNAの塩基配列を配列番号: 1に、 当該 c D N Aによりコードされる蛋白質のアミノ酸配列を配列番号: 2に示す。 BLAS T検索の結果、 当該 cDNAがコードする蛋白質は、 既知の G蛋白質共役型受容体と有 意なアミノ酸配列上の相同性を示した。 具体的には、 「ヒト PAF (Platelet Acti vating Factor) 受容体」 に対して 25%の相同性を示した。 また、 本発明者等が単 離した C-PLACE1003238 cDNAがコードする蛋白質は、 いずれも G蛋白質共役型受容 体の特徴である 7個の膜貫通ドメインと考えられる疎水性領域を保持していた。こ れら事実から、 C-PLACE1003238 cDNAは、 G蛋白質共役型受容体ファミリ一に属す る蛋白質をコードしていると考えられる。 G蛋白質共役型受容体は、そのリガンド の作用により G蛋白質の活性化を通じて細胞内へシグナル伝達を行なう活性を有 しており、 上記したように遺伝的疾患を始めとして、 脳神経系、 循環器系、 消化 器系、 免疫系、 運動器系、 泌尿器生殖器系などの非常に多くの領域の疾患に関連 している。 特に C- PLACE1003238蛋白質は、 その発現特性から癌やアルツハイマー との関連が示唆される。 C- PLACE1003238蛋白質は、 C-PLACE1003238蛋白質の機能 を調節するァゴニストゃアン夕ゴニストなどのスクリーニングに利用することが でき、 これら分子は上記疾患に対する医薬品の開発の重要な標的となる。 The present invention provides a novel G protein-coupled receptor and a DNA encoding the protein. The human-derived cDNA clone included in the present invention and isolated by the present inventors was named "C-PLACE1003238". The nucleotide sequence of the cDNA is shown in SEQ ID NO: 1, and the amino acid sequence of the protein encoded by the cDNA is shown in SEQ ID NO: 2. As a result of the BLAST search, the protein encoded by the cDNA showed significant amino acid sequence homology with a known G protein-coupled receptor. Specifically, it showed 25% homology to “human Platelet Activating Factor (PAF) receptor”. In addition, the proteins encoded by the C-PLACE1003238 cDNA isolated by the present inventors all retained hydrophobic regions, which are considered to be seven transmembrane domains characteristic of G protein-coupled receptors. From these facts, it is considered that C-PLACE1003238 cDNA encodes a protein belonging to the G protein-coupled receptor family. G protein-coupled receptors have the activity of transmitting signals into cells through activation of G proteins by the action of their ligands, and as described above, include genetic diseases, cerebral nervous system, circulatory system It has been implicated in numerous areas of disease, including the digestive, immune, motor, and genitourinary systems. In particular, the expression characteristics of the C-PLACE1003238 protein suggest a link to cancer and Alzheimer's. The C-PLACE1003238 protein can be used for screening agonists and angiogonists that regulate the function of the C-PLACE1003238 protein, and these molecules are important targets for drug development for the above diseases.
本発明は、 また、 C- PLACE1003238蛋白質と機能的に同等な蛋白質を提供する。
ここで 「機能的に同等」 とは、 対象となる蛋白質が C-PLACE1003238蛋白質と同等 の生物学的特性を有していることを意味する。 C-PLACE1003238蛋白質が持つ生物 学的特性としては、三量体型 GTP結合蛋白質の活性化を介して細胞内へシグナル伝 達を行なう活性が挙げられる。三量体型 GTP結合蛋白質は、活性化する細胞内伝達 系の種類によって、 Ca2+を上昇させる Gq型、 cAMPを上昇させる Gs型、 そして cAMP を抑制する Gi型の 3種類のカテゴリーに分類される (Trends Pharmacol . Sci . (9 9) 20: 118)。 従って、 対象となる蛋白質が C-PLACE1003238蛋白質と同等の生物学 的特性を有しているか否かは、 例えば、 その活性化による細胞内の cAMP濃度もし くはカルシウム濃度の変化を検出することにより評価することが可能である。 The present invention also provides a protein functionally equivalent to the C-PLACE1003238 protein. Here, “functionally equivalent” means that the target protein has a biological property equivalent to that of the C-PLACE1003238 protein. Biological properties of the C-PLACE1003238 protein include an activity of transmitting a signal into a cell through activation of a trimeric GTP-binding protein. Trimeric GTP-binding proteins are classified into three categories, depending on the type of intracellular signaling system activated: Gq, which increases Ca2 + , Gs, which increases cAMP, and Gi, which suppresses cAMP. (Trends Pharmacol. Sci. (9 9) 20: 118). Therefore, whether the protein of interest has the same biological properties as the C-PLACE1003238 protein can be determined, for example, by detecting changes in intracellular cAMP concentration or calcium concentration due to its activation. It is possible to evaluate.
C-PLACE1003238蛋白質と機能的に同等な蛋白質を調製するための方法の 1つの 態様としては、 蛋白質中のアミノ酸配列に変異を導入する方法が挙げられる。 こ のような方法には、 例えば、 部位特異的変異誘発法 (Current Protocols in Mole cular Biology edit. Ausubel et al. ( 1987) Publish. Jhon Wily & Sons Sect ion 8. 1-8.5)) が含まれる。 また、 蛋白質中のアミノ酸の変異は、 自然界におい て生じることもある。 本発明には、 このように人工的か自然に生じたものかを問 わず、 C-PLACE1003238蛋白質のアミノ酸配列 (配列番号: 2 ) において 1もしく は複数のアミノ酸が置換、 欠失、 挿入および/もしくは付加などにより変異した 蛋白質であって、 C-PLACE1003238蛋白質と機能的に同等な蛋白質が含まれる。 こ れら蛋白質におけるアミノ酸の変異数や変異部位は、 C-PLACE1003238蛋白質の機 能が保持される限り制限はない。 変異数は、 典型的には、 全アミノ酸の 10%以内 であり、好ましくは全アミノ酸の 5%以内であり、 さらに好ましくは全アミノ酸の One embodiment of a method for preparing a protein functionally equivalent to the C-PLACE1003238 protein includes a method of introducing a mutation into an amino acid sequence in a protein. Such methods include, for example, site-directed mutagenesis (Current Protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. Jhon Wily & Sons Section 8.1-8.5). . Amino acid mutations in proteins can also occur in nature. In the present invention, one or more amino acids may be substituted, deleted, or inserted in the amino acid sequence (SEQ ID NO: 2) of the C-PLACE1003238 protein, whether artificial or natural. And / or a protein mutated by addition, etc., which is functionally equivalent to the C-PLACE1003238 protein. The number and location of amino acid mutations in these proteins are not limited as long as the function of the C-PLACE1003238 protein is maintained. The number of mutations is typically within 10% of all amino acids, preferably within 5% of all amino acids, more preferably all amino acids.
1%以内であると考えられる。 It is considered to be within 1%.
C - PLACE1003238蛋白質と機能的に同等な蛋白質を調製するための方法の他の態 様としては、 ハイプリダイゼーシヨン技術あるいは遺伝子増幅技術を利用する方 法が挙げられる。 即ち、 当業者であれば、 ハイプリダイゼ一シヨン技術 (Curren t Protocols in Molecular Biology edit. Ausubel et al . ( 1987) Publish. Jh
on Wily & Sons Section 6.3- 6.4)を利用して( -?1^ £1003238蛋白質をコ一ドす る DNA配列 (配列番号: 1 ) またはその一部をもとに同種または異種生物由来の D M試料から、 これと相同性の高い DNAを単離して、 該 DNAから C-PLACE1003238蛋白 質と機能的に同等な蛋白質を得ることは、通常行いうることである。このように C -PLACE1003238蛋白質をコードする DNAとハイプリダイズする DNAによりコードさ れる蛋白質であって、 C-PLACE1003238蛋白質と機能的に同等な蛋白質もまた本発 明の蛋白質に含まれる。 Another embodiment of the method for preparing a protein functionally equivalent to the C-PLACE1003238 protein includes a method utilizing a hybridization technique or a gene amplification technique. That is, if a person skilled in the art is familiar with the hybridization technology (Current Protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. Jh Based on the DNA sequence (-? 1 ^ £ 1003238) encoding the protein (SEQ ID NO: 1) or a part thereof, the DM originated from the same or heterologous organism was obtained using on Wily & Sons Section 6.3-6.4). It is usually possible to isolate a DNA highly homologous thereto from a sample and obtain a protein functionally equivalent to the C-PLACE1003238 protein from the DNA. A protein encoded by a DNA that hybridizes to the encoding DNA and that is functionally equivalent to the C-PLACE1003238 protein is also included in the protein of the present invention.
このような蛋白質を単離するための生物としては、 ヒト以外に、 例えば、 ラッ ト、 マウス、 ゥサギ、 ニヮトリ、 ブ夕、 ゥシ等が挙げられるが、 これらに制限さ れない。 Examples of organisms for isolating such proteins include, but are not limited to, rats, mice, egrets, chicks, birds, and sea lions, in addition to humans.
C-PLACE1003238蛋白質と機能的に同等な蛋白質をコードする DNAを単離するた めのストリンジェン卜なハイブリダィゼ一シヨン条件としては、 通常 「lxSSC、 0 .1% SDS、 37。C」 程度の条件であり、 より厳しい条件としては 「0.5xSSC、 0.1¾ S DS、 42°C」 程度の条件であり、 さらに厳しい条件としては 「0.2xSSC、 0.1¾ SDS 、 65°C」 程度の条件である。 このようにハイブリダィゼ一シヨンの条件が厳しく なるほどプローブ配列と高い相同性を有する DNAの単離を期待しうる。但し、上記 SSCs SDSおよび温度の条件の組み合わせは例示であり、 当業者であれば、 ハイブ リダィゼーシヨンのストリンジエンシーを決定する上記若しくは他の要素 (例え ば、 プローブ濃度、 プローブの長さ、 ハイブリダィゼ一シヨン反応時間など) を 適宜組み合わせることにより、 上記と同様のストリンジエンシーを実現すること が可能である。 As stringent hybridization conditions for isolating a DNA encoding a protein functionally equivalent to the C-PLACE1003238 protein, usually, conditions of about “lxSSC, 0.1% SDS, 37.C” are used. The more severe condition is a condition of “0.5xSSC, 0.1¾SDS, 42 ° C”, and the more severe condition is a condition of “0.2xSSC, 0.1¾SDS, 65 ° C”. Thus, as the hybridization conditions become more stringent, isolation of DNA having higher homology to the probe sequence can be expected. However, the combination of the above SSCs, SDS and temperature conditions is merely an example, and those skilled in the art will appreciate that the above or other factors that determine the stringency of hybridization (eg, probe concentration, probe length, hybridization, etc.). It is possible to realize the same stringency as above by appropriately combining the reaction times.
このようなハイブリダィゼーシヨン技術を利用して単離される DNAがコ一ドす る蛋白質は、 通常、 C-PLACE1003238蛋白質とアミノ酸配列において高い相同性を 有する。 高い相同性とは、 少なくとも 40%以上、 好ましくは 60%以上、 さらに好 ましくは 80%以上 (例えば、 90%以上や 95%以上) の配列の相同性を指す。 相同 性の特定は、 BLAST検索ァルゴリズムを用いて決定することができる。
また、 遺伝子増幅技術 (PCR) (Current protocols in Molecular Biology ed it. Ausubel et al. ( 1987) Publish. John Wiley & Sons Section 6.1-6.4) を 用いて C- PLACE1003238蛋白質をコードする DNA配列(配列番号: 1 )の一部を基に プライマーを設計し、 C- PLACE1003238蛋白質をコードする DNA配列と相同性の高い DNA断片を単離し、 該 DNAを基に C- PLACE1003238蛋白質と機能的に同等な蛋白質を 得ることも可能である。 A protein encoded by DNA isolated using such a hybridization technique usually has high homology in amino acid sequence with the C-PLACE1003238 protein. High homology refers to sequence homology of at least 40% or more, preferably 60% or more, and more preferably 80% or more (eg, 90% or more and 95% or more). Homology identification can be determined using the BLAST search algorithm. Also, using a gene amplification technique (PCR) (Current protocols in Molecular Biology edit it. Ausubel et al. (1987) Publish. John Wiley & Sons Section 6.1-6.4), a DNA sequence encoding the C-PLACE1003238 protein (SEQ ID NO: Primers were designed based on a part of 1), a DNA fragment having high homology to the DNA sequence encoding C-PLACE1003238 protein was isolated, and a protein functionally equivalent to C-PLACE1003238 protein was obtained based on the DNA. It is also possible to obtain
本発明は、 また、 本発明の蛋白質の部分ペプチドを含む。 この部分ペプチドに は、 リガンドに結合するがシグナル伝達を行なわないペプチドが含まれる。 この ようなベプチドを基に作製したァフィ二ティ一カラムは、 リガンドのスクリ一二 ングに好適に用いることができる。 また、 本発明の蛋白質の部分ペプチドは、 抗 体作製に用いることも可能である。 本発明の部分ペプチドは、 例えば、 遺伝子ェ 学的手法、 公知のペプチド合成法、 あるいは本発明の蛋白質を適当なぺプチダー ゼで切断することによって製造することができる。 本発明の部分ペプチドは、 通 常、 8アミノ酸残基以上、 好ましくは 12アミノ酸残基以上(例えば、 15アミノ酸残 基以上) である。 The present invention also includes a partial peptide of the protein of the present invention. This partial peptide includes a peptide that binds to a ligand but does not transmit a signal. An affinity column prepared based on such a peptide can be suitably used for screening of a ligand. Further, the partial peptide of the protein of the present invention can also be used for preparing an antibody. The partial peptide of the present invention can be produced, for example, by a genetic technique, a known peptide synthesis method, or by cleaving the protein of the present invention with an appropriate peptidase. The partial peptide of the present invention usually has 8 amino acid residues or more, preferably 12 amino acid residues or more (for example, 15 amino acid residues or more).
本発明の蛋白質は、 組換え蛋白質として、 また天然の蛋白質として調製するこ とが可能である。 組換え蛋白質は、 例えば、 後述するように本発明の蛋白質をコ 一ドする DNAを挿入したベクタ一を適当な宿主細胞に導入し、形質転換体内で発現 した蛋白質を精製することにより調製することが可能である。 一方、 天然の蛋白 質は、 例えば、 後述する本発明の蛋白質に対する抗体を結合したァフィ二ティー カラムを利用して調製することができる (Current Protocols in Molecular Bio logy edit. Ausubel et al. ( 1987) Publish. Jhon Wily & Sons Section 16.1- 16.19)。 ァフィ二ティー精製に用いる抗体は、 ポリクローナル抗体であってもモ ノクローナル抗体であってもよい。 また、 インビトロトランスレーシヨン (例え ば、 「0n the fidel ity of mRNA translation in the nuclease - treated rabbit reticulocyte lysate system. Dasso,M. C. , Jackson, R.J. ( 1989) 腿 17:3129-31
44」 参照) などにより本発明の蛋白質を調製することも可能である。 The protein of the present invention can be prepared as a recombinant protein or as a natural protein. The recombinant protein may be prepared, for example, by introducing a vector into which a DNA encoding the protein of the present invention has been inserted into an appropriate host cell and purifying the protein expressed in the transformant, as described later. Is possible. On the other hand, a natural protein can be prepared, for example, using an affinity column to which an antibody against the protein of the present invention described later is bound (Current Protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. Jhon Wily & Sons Section 16.1- 16.19). The antibody used for affinity purification may be a polyclonal antibody or a monoclonal antibody. In addition, in vitro translation (for example, “0n the fidelity of mRNA translation in the nuclease-treated rabbit reticulocyte lysate system. Dasso, MC, Jackson, RJ (1989) thigh 17: 3129-31 The protein of the present invention can also be prepared as described above.
また、 本発明は、 上記本発明の蛋白質をコードする DNAを提供する。 本発明の D NAとしては、 本発明の蛋白質をコードしうるものであれば、 その形態に特に制限 はなく、 cDNAの他、 ゲノム DNA、 化学合成 DNAなども含まれる。 また、 本発明の蛋 白質をコードしうる限り、 遺伝暗号の縮重に基づく任意の塩基配列を有する MA が含まれる。本発明の DNAは、 上記のように、 C- PLACE1003238蛋白質をコードする DNA配列(配列番号: 1 )あるいはその一部をプローブとしたハイブリダィゼ一シ ヨン法やこれら DNA配列をもとに合成したプライマ一を用いた PCR法等の常法によ り単離することが可能である。 The present invention also provides a DNA encoding the protein of the present invention. The form of the DNA of the present invention is not particularly limited as long as it can encode the protein of the present invention, and includes genomic DNA, chemically synthesized DNA, and the like in addition to cDNA. Further, as long as it can encode the protein of the present invention, MA having an arbitrary nucleotide sequence based on the degeneracy of the genetic code is included. As described above, the DNA of the present invention can be obtained by a hybridization method using a DNA sequence encoding the C-PLACE1003238 protein (SEQ ID NO: 1) or a part thereof as a probe, or a primer synthesized based on these DNA sequences. It can be isolated by a conventional method such as a PCR method using the above method.
また、 本発明は、 本発明の DNAが挿入されたベクターを提供する。本発明のべク 夕一としては、挿入した DNAを安定に保持するものであれば特に制限されず、例え ば宿主に大腸菌を用いるのであれば、 クローニング用べクタ一としては pBluescr iptベクター(Stratagene社製) などが好ましい。 本発明の蛋白質を生産する目的 においてベクターを用いる場合には、 特に発現べクタ一が有用である。 発現べク 夕一としては、 試験管内、 大腸菌内、 培養細胞内、 生物個体内で蛋白質を発現す るべクタ一であれば特に制限されないが、 例えば、 試験管内発現であれば pBEST ベクター (プロメガ社製)、 大腸菌であれば pETベクター (Invitrogen社製) 、 培 養細胞であれば!) ME18S-FL3ベクター (GenBank Accession No. AB009864) 、 pCEP 4ベクタ一 (Invitrogen社製) 、 生物個体であれば pME18Sベクター (Mol Cell Bi ol. 8:466-472(1988)) などが好ましい。 ぺク夕一への本発明の DNAの挿入は、 常 法により、 例えば、 制限酵素サイ トを用いたリガ一ゼ反応により行うことができ る (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 11.4-11.11) 。 The present invention also provides a vector into which the DNA of the present invention has been inserted. The vector of the present invention is not particularly limited as long as it stably retains the inserted DNA. For example, if Escherichia coli is used as a host, the pBluescript vector (Stratagene) may be used as a cloning vector. And the like are preferred. When a vector is used for the purpose of producing the protein of the present invention, an expression vector is particularly useful. The expression vector is not particularly limited as long as it is a vector that expresses the protein in a test tube, in E. coli, in a cultured cell, or in an individual organism. For example, a pBEST vector (Promega Escherichia coli, pET vector (Invitrogen), cultured cells!) ME18S-FL3 vector (GenBank Accession No. AB009864), pCEP 4 vector (Invitrogen), or a living organism For example, the pME18S vector (Mol Cell Biol. 8: 466-472 (1988)) is preferable. Insertion of the DNA of the present invention into a polynucleotide can be carried out by a conventional method, for example, by a ligase reaction using a restriction enzyme site (Current protocols in Molecular Biology edit.Ausubel et al. 1987) Publish. John Wiley & Sons. Section 11.4-11.11).
また、本発明は、本発明の DNAまたは本発明のベクタ一を保持する形質転換体を 提供する。 本発明のベクターが導入される宿主細胞としては特に制限はなく、 目 的に応じて種々の宿主細胞が用いられる。 蛋白質製造のための産生系は、 in vit
roおよび in vivo産生系がある。 蛋白質を高発現させるための真核細胞としては、 例えば、 COS細胞、 CH0細胞、 293細胞などを例示することができる。宿主細胞への ベクタ一導入は、 例えば、 リン酸カルシウム沈殿法、 電気パルス穿孔法 (Curren t protocols in Molecular Biology edit. Ausubel et al. ( 1987) Publish. J ohn Wiley & Sons. Section 9.1-9.9) 、 リボフェク夕ミン法 (GIBC0-BRL社製) 、 マイクロインジェクション法などの公知の方法で行うことが可能である。 The present invention also provides a transformant carrying the DNA of the present invention or the vector of the present invention. The host cell into which the vector of the present invention is introduced is not particularly limited, and various host cells may be used depending on the purpose. The production system for protein production is in vit There are ro and in vivo production systems. Examples of eukaryotic cells for highly expressing a protein include COS cells, CH0 cells, and 293 cells. Transduction of vectors into host cells can be performed, for example, by calcium phosphate precipitation, electropulse perforation (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9.1-9.9), ribofect It can be performed by a known method such as the Yumin method (GIBC0-BRL) or the microinjection method.
また、 本発明は、 本発明の蛋白質をコードする DNA (配列番号: 1に記載の塩基 配列からなる MAまたはその相補鎖)に相補的な、少なくとも 15ヌクレオチドの鎖 長を有するヌクレオチドを提供する。 ここで 「相補鎖」 とは、 A:T (ただし RNAの 場合は U) 、 G:Cの塩基対からなる 2本鎖核酸の一方の鎖に対する他方の鎖を指す 。 また、 「相補的」 とは、 少なくとも 15個の連続したヌクレオチド領域で完全に 相補配列である場合に限られず、 少なくとも 70%、 好ましくは少なくとも 80%、 よ り好ましくは 90%、 さらに好ましくは 95%以上の塩基配列上の相同性を有すればよ い。 相同性を決定するためのアルゴリズムは本明細書に記載したものを使用すれ ばよい。 このようなヌクレオチドは、 本発明の DNAを検出、 単離するためのプロ一 ブとして、 また、本発明の DNAを増幅するためのプライマ一として利用することが 可能である。 プライマ一として用いる場合には、 通常、 15bp〜; I00bp、 好ましくは 15bp〜35bpの鎖長を有する。 また、 プローブとして用いる場合には、 本発明の DN Aの少なくとも一部若しくは全部の配列を含む少なくとも 15bpの鎖長のヌクレオ チドが用いられる。 このようなヌクレオチドは、 好ましくは本発明の蛋白質をコ ―ドする DNAに特異的にハイプリダイズするものである。 「特異的にハイプリダイ ズする」 とは、 通常のハイブリダィゼ一シヨン条件下、 好ましくはストリンジェ ン卜な条件下で、 本発明の蛋白質をコードする DNA (配列番号: 1 ) とハイブリダ ィズし、 他の蛋白質をコードする DNAとはハイブリダイズしないことを意味する。 これらヌクレオチドは、 本発明の蛋白質の異常を検査 ·診断するために利用で きる。 例えば、 これらヌクレオチドをプローブやプライマ一として用いたノーザ
ンハイプリダイゼ一シヨンや RT-PCRにより、本発明の蛋白質をコードする DNAの発 現異常を検査することができる。 また、 これらヌクレオチドをプライマ一として 用いたポリメラ一ゼ連鎖反応 (PCR)により本発明の蛋白質をコードする DNAやその 発現制御領域を増幅し、 RFLP解析、 SSCP、 シークェンシング等の方法により、 DN A配列の異常を検査 ·診断することができる。 The present invention also provides nucleotides having a chain length of at least 15 nucleotides, which are complementary to DNA encoding the protein of the present invention (MA consisting of the nucleotide sequence of SEQ ID NO: 1 or a complementary strand thereof). Here, the “complementary strand” refers to one strand of the double-stranded nucleic acid consisting of A: T (U in the case of RNA) and G: C base pairs with respect to the other strand. The term "complementary" is not limited to a case where the sequence is completely complementary to at least 15 contiguous nucleotide regions, but is at least 70%, preferably at least 80%, more preferably 90%, and still more preferably 95%. It suffices that the homologous sequence has a homology of at least%. The algorithm for determining homology may use the algorithm described in this specification. Such nucleotides can be used as a probe for detecting and isolating the DNA of the present invention, and as a primer for amplifying the DNA of the present invention. When used as a primer, it usually has a chain length of 15 bp to 100 bp, preferably 15 bp to 35 bp. When used as a probe, a nucleotide having a chain length of at least 15 bp containing at least a part or the entire sequence of the DNA of the present invention is used. Such nucleotides preferably specifically hybridize to DNA encoding the protein of the present invention. The term "specifically hybridizes" means that it hybridizes with a DNA encoding the protein of the present invention (SEQ ID NO: 1) under ordinary hybridization conditions, preferably under stringent conditions, and other conditions. Means that it does not hybridize with DNA encoding the protein. These nucleotides can be used for testing and diagnosing abnormalities of the protein of the present invention. For example, a probe using these nucleotides as a probe or primer Abnormal expression of the DNA encoding the protein of the present invention can be examined by hybridization or RT-PCR. In addition, the DNA encoding the protein of the present invention and its expression control region are amplified by polymerase chain reaction (PCR) using these nucleotides as primers, and DNLP is analyzed by methods such as RFLP analysis, SSCP, and sequencing. Inspection and diagnosis of A sequence abnormalities.
また、 これらヌクレオチドには、 本発明の蛋白質の発現を抑制するためのアン チセンス DNAが含まれる。 アンチセンス DNAは、 アンチセンス効果を引き起こすた めに、 少なくとも 15bp以上、 好ましくは 100bp、 さらに好ましくは 500bp以上の鎖 長を有し、 通常、 3000bp以内、 好ましくは 2000bp以内の鎖長を有する。 このよう なアンチセンス DNAには、 本発明の蛋白質の異常(機能異常や発現異常)などに起 因した疾患の遺伝子治療への応用も考えられる。 該アンチセンス DNAは、 例えば、 本発明の蛋白質をコードする DNA (例えば、 配列番号: 1 ) の配列情報を基にホス ホロチォ不一卜法 (Stein, 1988 Physicochemical properties of phosphorothi oate oligodeoxynucleotides. Nucleic Acids Res 16, 3209-21 ( 1988)) などに より調製することが可能である。 In addition, these nucleotides include antisense DNA for suppressing the expression of the protein of the present invention. The antisense DNA has a chain length of at least 15 bp or more, preferably 100 bp, more preferably 500 bp or more, and usually has a chain length of 3000 bp or less, preferably 2000 bp or less in order to cause an antisense effect. Such antisense DNA may be applied to gene therapy of diseases caused by abnormalities (functional abnormality or abnormal expression) of the protein of the present invention. The antisense DNA is, for example, based on the sequence information of the DNA encoding the protein of the present invention (for example, SEQ ID NO: 1), based on the phosphorothioate method (Stein, 1988 Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 16, 3209-21 (1988)).
本発明のヌクレオチドは、 遺伝子治療に用いる場合には、 例えば、 レトロウイ ルスべクタ一、 アデノウイルスベクター、 アデノ随伴ウィルスベクターなどのゥ ィルスベクターやリボソームなどの非ウィルスベクタ一などを利用して、 ex viv o法や in vivo法などにより患者へ投与を行うことが考えられる。 When used for gene therapy, the nucleotides of the present invention can be used, for example, by utilizing viral vectors such as retrovirus vectors, adenovirus vectors, adeno-associated virus vectors, and non-viral vectors such as ribosomes, and the like. It may be possible to administer to patients by the in vivo method or the in vivo method.
また、 本発明は、 本発明の蛋白質に結合する抗体を提供する。 本発明の抗体の 形態には特に制限はなく、 ポリクローナル抗体やモノクローナル抗体または抗原 結合性を有するそれらの一部も含まれる。 また、 全てのクラスの抗体が含まれる 。 さらに、 本発明の抗体には、 ヒト化抗体などの特殊抗体も含まれる。 The present invention also provides an antibody that binds to the protein of the present invention. The form of the antibody of the present invention is not particularly limited, and includes a polyclonal antibody, a monoclonal antibody, and a part thereof having antigen-binding properties. It also includes all classes of antibodies. Furthermore, the antibodies of the present invention also include special antibodies such as humanized antibodies.
本発明の抗体は、 ポリクロ一ナル抗体の場合には、 常法に従い本発明の蛋白質 のァミノ酸配列に相当するオリゴぺプチドを合成し、 家兎に免疫することにより 得ることが可能である (Current protocols in Molecular Biology edit. Ausub
el et al . ( 1987) Publish. John Wiley & Sons. Section 11.12-11.13) 。 モノ クロ一ナル抗体の場合には、 常法に従い大腸菌で発現し精製した蛋白質を用いて マウスを免疫し、 その脾臓細胞と骨髄腫細胞を細胞融合させたハイプリ ドーマ細 胞を調製し、 該ハイブリ ドーマ細胞から得ることができる (Current protocols in Molecular Biology edit. Ausubel et al . (1987) Publish. John Wiley & S ons. Section 11.4-11.11) 。 In the case of a polyclonal antibody, the antibody of the present invention can be obtained by synthesizing an oligonucleotide corresponding to the amino acid sequence of the protein of the present invention according to a conventional method, and immunizing a rabbit ( Current protocols in Molecular Biology edit.Ausub el et al. (1987) Publish. John Wiley & Sons. Section 11.12-11.13). In the case of a monoclonal antibody, a mouse is immunized with a protein expressed and purified in Escherichia coli according to a conventional method, and a hybridoma cell obtained by fusing the spleen cell and myeloma cell thereof is prepared. It can be obtained from dorma cells (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 11.4-11.11).
本発明の蛋白質に結合する抗体は、 本発明の蛋白質の精製に加え、 例えば、 本 発明の蛋白質の発現異常や構造異常の検査 ·診断に利用することも考えられる。 具体的には、 例えば組織、 血液、 または細胞などから蛋白質を抽出し、 ウェス夕 ンブロッティング、免疫沈降、 ELISA等の方法による本発明の蛋白質の検出を通し て、 発現や構造の異常の有無を検査 ·診断することができる。 Antibodies that bind to the protein of the present invention may be used, for example, for the examination and diagnosis of abnormal expression or structural abnormality of the protein of the present invention, in addition to purification of the protein of the present invention. Specifically, for example, proteins are extracted from tissues, blood, cells, or the like, and the presence or absence of abnormalities in expression or structure is detected through detection of the proteins of the present invention by Western blotting, immunoprecipitation, or ELISA. Inspection · Can be diagnosed.
また、 本発明の蛋白質に結合する抗体を、 本発明の蛋白質に関連した疾患の治 療などの目的に利用することも考えられる。 本発明の抗体は、 本発明の蛋白質の ァゴニストゃアン夕ゴニストとして作用し得る。 抗体を患者の治療目的で用いる 場合には、 ヒト抗体またはヒト化抗体が免疫原性の少ない点で好ましい。 ヒト抗 体は、 免疫系をヒトのものと入れ換えたマウス (例えば、 functional transpl ant of megabase human immunoglobulin loci recapitulates human antibody r esponse in mice, Mendez, M. J. et al . ( 1997) Nat. Genet. 15 : 146- 156」参照)に 免疫することにより調製することができる。 また、 ヒト化抗体は、 モノクローナ ル抗体の超可変領域を用いた遺伝子組換えによって調製することができる(Metho ds in Enzymology 203, 99-121( 1991 ) )。 It is also conceivable to use an antibody that binds to the protein of the present invention for the purpose of treating a disease associated with the protein of the present invention. The antibody of the present invention can act as an agonist of the protein of the present invention. When the antibody is used for the purpose of treating a patient, a human antibody or a humanized antibody is preferred because of its low immunogenicity. Human antibodies include mice in which the immune system has been replaced by humans (for example, functional transplant of megabase human immunoglobulin loci recapitulates human antibody responses in mice, Mendez, MJ et al. (1997) Nat. Genet. 15: 146 -156 ”). In addition, a humanized antibody can be prepared by genetic recombination using the hypervariable region of a monoclonal antibody (Methods in Enzymology 203, 99-121 (1991)).
また、 本発明は、 本発明の蛋白質を利用した、 本発明の蛋白質に結合するリガ ンドのスクリーニング方法を提供する。 このスクリーニング方法は、 (a ) 本発 明の蛋白質またはその部分ペプチドに被検試料を接触させる工程、 (b ) 該蛋白 質またはその部分べプチドに結合する化合物を選択する工程を含む。 The present invention also provides a method for screening for a ligand that binds to the protein of the present invention, using the protein of the present invention. This screening method includes (a) a step of bringing a test sample into contact with a protein of the present invention or a partial peptide thereof, and (b) a step of selecting a compound that binds to the protein or a partial peptide thereof.
被検試料としては、 特に制限はなく、 例えば、 種々の G蛋白質共役型受容体のリ
ガンド活性については公知化合物やペプチド (例えば、 ケミカルファイルに登録 されているもの) あるいはファージ 'ディスプレイ法 (J. Mol . Biol . ( 1991 ) 2 22, 301-310)などを応用して作成されたランダム 'ぺプチド群を用いることがで きる。 また、 微生物の培養上清や、 植物、 海洋生物由来の天然成分などもスクリ 一二ングの対象となる。 その他、 脳をはじめとする生体組織抽出物、 細胞抽出液The test sample is not particularly limited. For example, various G protein-coupled receptor Gand activity was prepared by applying known compounds or peptides (for example, those registered in a chemical file) or phage display method (J. Mol. Biol. (1991) 222, 301-310). Random 'peptides can be used. In addition, culture supernatants of microorganisms, natural components derived from plants and marine organisms, etc. are also subject to screening. Other biological tissue extracts, including brain, cell extracts
、 遺伝子ライブラリーの発現産物などが挙げられるが、 これらに制限されない。 スクリーニングに用いる本発明の蛋白質は、 例えば、 細胞表面に発現した形態Examples include, but are not limited to, expression products of a gene library. The protein of the present invention used for screening is, for example, a form expressed on the cell surface.
、 該細胞の細胞膜画分としての形態、 ァフィ二ティ一カラムに結合した形態であ つてもよい。 Alternatively, the cells may be in the form of a cell membrane fraction or in the form of being bound to an affinity column.
具体的なスクリーニングの手法としては、 例えば、 本発明の蛋白質のァフィ二 ティーカラムに被検試料を接触させ本発明の蛋白質に結合する化合物を精製する 方法、 ウェストウエスタンプロッティング法など多くの公知の方法を利用するこ とができる。 これら方法を利用する場合には、 被検試料は適宜標識し、 この標識 を利用して本発明の蛋白質との結合を検出することができる。 また、 これら方法 の他に、 本発明の蛋白質を発現する細胞膜を調製して、 これをチップ上に固定し 、 リガンド結合時に三量体型 GTP結合蛋白質が解離する事を、表面プラズモン共鳴 (surface plasmon resonance; の変ィ匕で検出する方法 (Nature Biotechnology (99) 17: 1105) を用いることも可能である。 Specific screening techniques include, for example, a method of contacting a test sample with an affinity column for the protein of the present invention to purify a compound that binds to the protein of the present invention, and a number of known methods such as a West Western plotting method. Methods are available. When these methods are used, the test sample is appropriately labeled, and the binding to the protein of the present invention can be detected using the label. In addition to these methods, a cell membrane expressing the protein of the present invention is prepared and immobilized on a chip, and dissociation of the trimeric GTP-binding protein upon ligand binding is confirmed by surface plasmon resonance (surface plasmon resonance). It is also possible to use a method of detecting with resonance; (Nature Biotechnology (99) 17: 1105).
また、 被検試料と本発明の蛋白質との結合活性は、 被検試料が細胞表面に発現 させた本発明の蛋白質へ結合することにより生じる細胞における変化を指標に検 出することもできる。 このような変化としては、 例えば、 細胞内の Ca2+レベルの 変化や cAMPレベルの変化が挙げられるが、 これらに制限されない。具体的には、 G 蛋白質共役型受容体に対するァゴニスト活性は GTPァ S結合法により測定できる。 この方法の 1つの実施例として、 G蛋白質共役型受容体を発現させた細胞膜を 20 mM HEPES (pH 7.4) , 100 mM NaCl, 10 mM MgCl2, 50 〃M GDP溶液中で、35 Sで標識 された GTPァ S 400 pMと混合させ、被検試料存在下と非存在下でインキュベーショ
ン後、 濾過 (filtration) を行い、 結合した GTPy Sの放射活性を比較する手法を 用いることができる。 Further, the binding activity between the test sample and the protein of the present invention can be detected by using, as an index, a change in cells caused by binding of the test sample to the protein of the present invention expressed on the cell surface. Such changes include, but are not limited to, changes in intracellular Ca 2+ levels and changes in cAMP levels. Specifically, agonist activity for G protein-coupled receptors can be measured by the GTP-S binding method. As one example of this method, a cell membrane expressing a G protein-coupled receptor was labeled with 35 S in a solution of 20 mM HEPES (pH 7.4), 100 mM NaCl, 10 mM MgCl 2 , and 50 〃M GDP. Mixed with 400 pM GTPa S and incubated in the presence and absence of the test sample. After filtration, filtration can be used to compare the radioactivity of the bound GTPyS.
また G蛋白質共役型受容体は、 三量体型 GTP結合蛋白質の活性化を介して細胞内 にシグナルを伝達するシステムを共有している。三量体型 GTP結合蛋白質は、活性 化する細胞内伝達系の種類によって、 Ca2+を上昇させる Gq型、 cAMPを上昇させる G s型、 そして cAMPを抑制する Gi型の 3種類に分類される。 このことを応用して Gq蛋 白ひサブュニットと他の G蛋白ひサブュニットとをキメラ化し、リガンドスクリ一 ニングの際の陽性シグナルを Gqの細胞内伝達経路である、 Ca2+上昇に帰結させる ことが可能である。 上昇した Ca2+レベルは、 TRE (TP A responsive element) を上 流に有するレポ一夕一遺伝子系、 Fluor- 3などの染色指示薬そして蛍光蛋白 aequo rinなどの変化を指標として検出ができる。同様に、 Gs蛋白ひサブュニッ 卜と他の G蛋白ひサブュニットとをキメラ化し、陽性シグナルを Gsの細胞内伝達経路である 、 cAMP上昇に帰結させ、 CRE(cAMP- responsive element)を上流に有するレポ一夕 一遺伝子系での変化を指標とすることも可能である (Trends Pharmacol. Sci. ( 99) 20 : 118) 。 In addition, G protein-coupled receptors share a system that transduces signals into cells via activation of trimeric GTP-binding proteins. Trimeric GTP-binding proteins are classified into three types, Gq-type that increases Ca2 + , Gs-type that increases cAMP, and Gi-type that suppresses cAMP, depending on the type of intracellular signaling system that is activated. . Applying this fact, Gq protein subunit is chimerized with other G protein subunits, and a positive signal at the time of ligand screening is consequently increased to Ca2 + , which is a Gq intracellular transduction pathway. Is possible. Elevated Ca 2+ levels can be detected using as indicators the changes in the repo overnight gene system having TRE (TP A responsive element) upstream, a staining indicator such as Fluor-3, and the fluorescent protein aequorin. Similarly, Gs protein subunits are chimerized with other G protein subunits, and a positive signal results in an increase in cAMP, a Gs intracellular transduction pathway, and a reporter having a CRE (cAMP-responsive element) upstream. Changes in the overnight gene system can be used as an index (Trends Pharmacol. Sci. (99) 20: 118).
このスクリーニング系において本発明の蛋白質を発現させる宿主細胞としては 特に制限はなく、 目的に応じて種々の宿主細胞が用いられるが、 例えば、 COS細胞 、 CH0細胞、 HEK293細胞などを例示することができる。本発明の蛋白質を脊椎動物 細胞で発現させるためのぺクタ一としては、 本発明の蛋白質をコードする遺伝子 の上流に位置するプロモー夕一、 RNAのスプライス部位、ポリアデニル化部位およ び転写終結配列や複製起点等を有するものを好適に用いることができる。 例えば 、 SV40の初期プロモーターを有する pSV2dhfr (Mol . Cell . Biol . ( 1981 )1,854-864 ) や、 pEF-BOS (Nucleic Acids Res. ( 1990)18, 5322) 、 pC画 (Nature ( 1987)329 ,840-842) 、 pCEP4 ( Invitrogentt) などは、 G蛋白質共役型受容体を発現させる のに有用なベクタ一である。ベクターへの本発明の DNAの挿入は常法により制限酵 素サイ トを用いたリガ一ゼ反応により行うことができる(Current protocols in
Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Son s. Section Π.4〜; 11.11) 。 また、 宿主細胞へのベクタ一導入は、 例えば、 リン 酸カルシウム沈殿法、 電気パルス穿孔法 (Current protocols in Molecular Bio logy edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9. 1-9.9)、 リボフ工ク夕ミン法 (GIBC0-BRL社製) 、 FuGENE6試薬 (ベーリンガ一マ ンハイム社) 、 マイクロインジェクション法などの公知の方法で行うことが可能 である。 There are no particular restrictions on the host cells that express the protein of the present invention in this screening system, and various host cells may be used depending on the purpose.Examples include COS cells, CH0 cells, HEK293 cells, and the like. . Examples of vectors for expressing the protein of the present invention in vertebrate cells include a promoter located upstream of a gene encoding the protein of the present invention, a splice site, a polyadenylation site, and a transcription termination sequence of RNA. And those having a replication origin and the like can be suitably used. For example, pSV2dhfr (Mol. Cell. Biol. (1981) 1,854-864) having an early promoter of SV40, pEF-BOS (Nucleic Acids Res. (1990) 18, 5322), pC drawing (Nature (1987) 329, 840-842) and pCEP4 (Invitrogentt) are useful vectors for expressing G protein-coupled receptors. Insertion of the DNA of the present invention into a vector can be performed by a ligase reaction using a restriction enzyme site according to a conventional method (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section IV.4-- 11.11). In addition, the introduction of the vector into a host cell can be performed, for example, by the calcium phosphate precipitation method or the electric pulse perforation method (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9.1) -9.9), Lvov method (GIBC0-BRL), FuGENE6 reagent (Boehringer-Mannheim), microinjection, and other known methods.
上記の本発明の蛋白質に結合するリガンドのスクリーニング方法により、 リガ ンドが単離されれば、 本発明の蛋白質とリガンドの相互作用を阻害する化合物の スクリーニングが可能となる。 従って、 本発明は、 また、 本発明の蛋白質とその リガンドとの結合を阻害する活性を有する化合物のスクリーニング方法を提供す る。 このスクリーニング方法は、 (a ) 被検試料の存在下で本発明の蛋白質また はその部分べプチドにリガンドを接触させ、 該蛋白質またはその部分べプチドと リガンドとの結合活性を検出する工程、 (b ) 被検試料非存在下での結合活性と 比較して、 工程 (a ) で検出された結合活性を低下させる化合物を選択する工程 、 を含む。 If the ligand is isolated by the above-described method for screening a ligand that binds to the protein of the present invention, a compound that inhibits the interaction between the protein and the ligand of the present invention can be screened. Therefore, the present invention also provides a method for screening a compound having an activity of inhibiting the binding of the protein of the present invention to its ligand. This screening method comprises the steps of: (a) contacting a ligand of the protein or its partial peptide in the presence of a test sample with a ligand, and detecting the binding activity between the protein or its partial peptide and the ligand; b) selecting a compound that reduces the binding activity detected in step (a) as compared to the binding activity in the absence of the test sample.
被検試料としては、 特に制限はなく、 例えば、 コンビナトリアル 'ケミストリ —技術 (Tetrahedron (1995) 51, 8135-8137) によって得られた化合物群、 ある いはファージ 'ディスプレイ法(J. Mol . Biol. ( 1991 ) 222, 30卜 310)などを応 用して作成されたランダム ·ペプチド群を用いることができる。 また、 微生物の 培養上清や、 植物、 海洋生物由来の天然成分などもスクリーニングの対象となる 。 その他、 脳をはじめとする生体組織抽出物、 細胞抽出液、 遺伝子ライブラリ一 の発現産物、 合成低分子化合物、 合成ペプチド、 天然化合物などが挙げられるが 、 これらに制限されない。 The test sample is not particularly limited. For example, a compound group obtained by combinatorial 'chemistry—technology (Tetrahedron (1995) 51, 8135-8137), or a phage' display method (J. Mol. Biol. (1991) 222, 30-310) can be used. In addition, culture supernatants of microorganisms and natural components derived from plants and marine organisms are also targets for screening. Other examples include, but are not limited to, brain and other biological tissue extracts, cell extracts, expression products of gene libraries, synthetic low molecular weight compounds, synthetic peptides, natural compounds, and the like.
スクリーニングに用いる本発明の蛋白質は、 例えば、 細胞表面に発現した形態 The protein of the present invention used for screening is, for example, a form expressed on the cell surface.
、 該細胞の細胞膜画分としての形態、 あるいはァフィ二ティ一カラムに結合した
形態であってもよい。 Morphology of the cells as a cell membrane fraction or bound to an affinity column It may be in a form.
具体的なスクリーニングの手法としては、 例えば、 リガンドを放射性同位元素 などで標識して、 被検試料の存在下において本発明の蛋白質と接触させ、 被検試 料非存在下で検出した場合と比較して、 本発明の蛋白質とリガンドとの結合活性 を低下させる化合物を、 該リガンドに付された標識を基に検出する方法を用いる ことができる。 また、 上記の本発明の蛋白質に結合するリガンドのスクリーニン グの場合と同様に、 細胞内の変化を指標にスクリ一二ングすることも可能である 。 即ち、 本発明の蛋白質を発現する細胞に被検試料の存在下でリガンドを接触さ せ、 被検試料非存在下で検出した場合と比較して、 該細胞における変化を減少さ せる化合物を選択することにより、 本発明の蛋白質とリガンドとの結合を阻害す る化合物をスクリーニングすることが可能である。 本発明の蛋白質を発現する細 胞は、 上記した本発明の蛋白質に結合するリガンドのスクリーニングの場合と同 様に調製することができる。 このスクリーニングにより単離される化合物は、 本 発明の蛋白質のァゴニストゃアン夕ゴニス卜の候補となる。 As a specific screening method, for example, a method in which a ligand is labeled with a radioisotope or the like, and the ligand is contacted with the protein of the present invention in the presence of a test sample, and then compared with the case where detection is performed in the absence of a test sample Then, a method of detecting a compound that reduces the binding activity between the protein and the ligand of the present invention based on the label attached to the ligand can be used. In addition, similarly to the case of the screening of the ligand binding to the protein of the present invention, the screening can be performed using the intracellular change as an index. That is, a compound expressing the protein of the present invention is brought into contact with a ligand in the presence of a test sample, and a compound that reduces the change in the cell is selected as compared to the case where the ligand is detected in the absence of the test sample. By doing so, it is possible to screen for a compound that inhibits the binding between the protein of the present invention and a ligand. Cells expressing the protein of the present invention can be prepared in the same manner as in the above-described screening for a ligand that binds to the protein of the present invention. The compound isolated by this screening is a candidate for the agonist of the protein of the present invention.
また、 本発明は、 本発明の蛋白質の活性を阻害または促進する化合物をスクリ 一二ングする方法を提供する。 このスクリーニング方法は、 (a ) 被検試料の存 在下で本発明の蛋白質を発現する細胞に該蛋白質のリガンドを接触させる工程、 ( b ) 該リガンドの本発明の蛋白質への結合による細胞における変化を検出する 工程、 (c ) 被検試料非存在下での細胞における変化と比較して、 工程 (b ) で 検出された細胞における変化を抑制または増強させる化合物を選択する工程、 を 含む。 The present invention also provides a method for screening a compound that inhibits or promotes the activity of the protein of the present invention. This screening method comprises the steps of (a) contacting a cell expressing the protein of the present invention with a ligand of the protein in the presence of a test sample, and (b) a change in cells caused by binding of the ligand to the protein of the present invention. And (c) selecting a compound that suppresses or enhances the change in the cells detected in step (b) as compared to the change in the cells in the absence of the test sample.
被検試料としては、 上記の本発明の蛋白質とリガンドとの結合を阻害する化合 物のスリ一二ング方法と同様に、 コンビナトリアル 'ケミストリ一技術によって 得られた化合物群、 ファージ ·ディスプレイ法などを応用して作成されたランダ ム ·ぺプチド群、 微生物の培養上清や、 植物、 海洋生物由来の天然成分、 生体組 織抽出物、 細胞抽出液、 遺伝子ライブラリーの発現産物、 合成低分子化合物、 合
成ペプチド、 天然化合物などを用いることができる。 また、 上記の本発明の蛋白 質とリガンドとの結合を阻害する化合物のスリーニングにより単離された化合物 を被検試料として用いることも可能である。 本発明の蛋白質を発現する細胞は、 上記した本発明の蛋白質に結合するリガンドのスクリーニングの場合と同様に調 製することができる。 被検試料接触後の細胞における変化は、 上記のスクリ一二 ング方法と同様に、 細胞内の Ca2+レベルや cAMPレベルの変化を指標に検出するこ とができる。 また、 細胞内のシグナル伝達を検出する場合には、 ルシフェラ一ゼ などをレポーター遺伝子とするレポ一夕一アツセィ系等の測定系を利用して検出 することも可能である。 As the test sample, the compound group obtained by the combinatorial chemistry technique, the phage display method, etc. may be used in the same manner as the above-mentioned compound screening method of the present invention for inhibiting the binding of the protein to the ligand. Random peptides produced by application, culture supernatants of microorganisms, natural components derived from plants and marine organisms, biological tissue extracts, cell extracts, gene library expression products, synthetic low molecular weight compounds , Go Synthetic peptides, natural compounds and the like can be used. In addition, a compound isolated by screening a compound that inhibits the binding between the protein of the present invention and a ligand can be used as a test sample. Cells expressing the protein of the present invention can be prepared in the same manner as in the above-described screening for a ligand that binds to the protein of the present invention. Changes in the cells after contact with the test sample can be detected using changes in intracellular Ca 2+ levels and cAMP levels as indices, as in the above-described screening method. In addition, when detecting intracellular signal transduction, it is also possible to detect using a measurement system such as a repo overnight system using luciferase or the like as a reporter gene.
この検出の結果、 被検試料非存在下においてリガンドを接触させた場合の細胞 における変化と比較して、 被検試料を接触させた場合における細胞における変化 が抑制されていれば、 用いた被検試料は、 本発明の蛋白質の活性を阻害する化合 物であると判定される。 逆に、 被検試料が該細胞における変化を増強させれば、 該化合物は、 本発明の蛋白質の活性を促進する化合物であると判定される。 なお 、 ここでいう 「本発明の蛋白質の活性の促進または阻害する」 とは、 本発明の蛋 白質に対する直接的な作用であると、 間接的な作用であるとを問わず、 結果とし て本発明の蛋白質の活性が促進または阻害されることを指す。 従って、 このスク リーニングにより単離される化合物には、 本発明の蛋白質またはリガンドに作用 してこれらの結合を阻害または促進することにより本発明の蛋白質の活性を阻害 または促進する化合物の他、 これらの結合自体を阻害または促進しないが、 結果 として本発明の蛋白質の活性を阻害または促進する化合物も含まれる。 このよう な化合物には、 例えば、 本発明の蛋白質とリガンドとの結合を阻害しないが、 細 胞内のシグナル伝達経路を阻害若しくは促進する化合物が含まれる。 As a result of this detection, if the change in cells when the test sample is contacted is suppressed compared to the change in cells when the ligand is contacted in the absence of the test sample, The sample is determined to be a compound that inhibits the activity of the protein of the present invention. Conversely, if the test sample enhances the change in the cells, the compound is determined to be a compound that promotes the activity of the protein of the present invention. In addition, “promoting or inhibiting the activity of the protein of the present invention” as used herein refers to whether the action of the protein of the present invention is a direct action or an indirect action on the protein of the present invention. It means that the activity of the protein of the invention is promoted or inhibited. Therefore, compounds isolated by this screening include compounds that act on the protein or ligand of the present invention to inhibit or promote their binding to thereby inhibit or promote the activity of the protein of the present invention, Also included are compounds that do not inhibit or promote binding itself, but which, as a result, inhibit or promote the activity of the proteins of the invention. Such compounds include, for example, compounds that do not inhibit the binding of the protein of the present invention to the ligand, but inhibit or promote a signal transduction pathway in cells.
本発明のスクリーニング方法により単離される化合物を医薬品として用いる場 合には、 単離された化合物自体を直接患者に投与する以外に、 公知の製剤学的方 法により製剤化した医薬組成物として投与を行うことも可能である。 例えば、 薬
P When a compound isolated by the screening method of the present invention is used as a pharmaceutical, the isolated compound itself is administered directly to a patient or administered as a pharmaceutical composition formulated by a known pharmaceutical method. It is also possible to do. For example, medicine P
19 19
理学上許容される担体もしくは媒体、 具体的には、 滅菌水や生理食塩水、 植物油 、 乳化剤、 懸濁剤などと適宜組み合わせて製剤化して投与することが考えられる 。 患者への投与は、 一般的には、 例えば、 経口投与、 経鼻投与、 動脈内注射、 静 脈内注射、 皮下注射など当業者に公知の方法により行いうる。 投与量は、 患者の 体重や年齢、 投与方法などにより変動するが、 当業者であれば適当な投与量を適 宜選択することが可能である。また、該化合物が MAによりコードされうるもので あれば、該 DNAを遺伝子治療用ベクターに組込み、遺伝子治療を行うことも考えら れる。 図面の簡単な説明 It is conceivable to formulate and administer a suitable combination with a physiologically acceptable carrier or vehicle, specifically, sterile water, physiological saline, vegetable oil, emulsifier, suspending agent and the like. Administration to a patient can be generally performed by a method known to those skilled in the art, such as oral administration, nasal administration, intraarterial injection, intravenous injection, and subcutaneous injection. The dose varies depending on the weight and age of the patient, the administration method, and the like, but those skilled in the art can appropriately select an appropriate dose. If the compound can be encoded by MA, the DNA may be incorporated into a gene therapy vector to perform gene therapy. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 C- PLACE1003238と既報の G蛋白質共役型受容体との整列を示す図である 。 図中の TMnは、 n番目の膜貫通部位を示す。 FIG. 1 is a view showing alignment between C-PLACE1003238 and a previously reported G protein-coupled receptor. TMn in the figure indicates the n-th transmembrane site.
図 2は、 図 1の続きの図である。 FIG. 2 is a continuation of FIG.
図 3は、 図 2の続きの図である。 発明を実施するための最良の形態 FIG. 3 is a continuation of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明を実施例によりさらに具体的に説明するが、 本発明は下記実施例 に限定されるものではない。 なお、 特に断りがない場合は、 公知の方法 (Maniat is, T. at al. 982 ) : "Molecular Cloning - A Laboratory Manual" Cold Sp ring Harbor Laboratory, NY) に従って実施可能である。 Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples. Unless otherwise specified, it can be carried out according to a known method (Maniat is, T. at al. 982): "Molecular Cloning-A Laboratory Manual" Cold Spring Harbor Laboratory, NY.
[実施例 1 ] オリゴキヤップ法によるヒト胎盤組織からの cDNAラィブラリ一の 作製 [Example 1] Preparation of cDNA library from human placental tissue by oligocap method
ヒト胎盤組織より、 Molecular Cloning, A Laboratory Manual , Second Editi on, Cold Spring Harbor Laboratory Press ( 1989)記載の方法により mRNAを抽出 した。 さらに、 Molecular Cloning, A Laboratory Manual, Second Edition, Co Id Spring Harbor Laboratory Press ( 1989)記載の方法にしたがって、 オリゴ(d
P MRNA was extracted from human placental tissues by the method described in Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989). Further, oligo (d) was prepared according to the method described in Molecular Cloning, A Laboratory Manual, Second Edition, Co Id Spring Harbor Laboratory Press (1989). P
20 20
T)セルロースカラム (Collaborative labs) を用い、 poly(A)+ UNAを精製した。 該 poly(A)+ RNAより、オリゴキャップ法 [M. Maruyama and S. Sugano, Gene, 138: 171-174 ( 1994)]により cDNAライブラリーを作製した。 配列番号: 3で表さ れる配列からなるオリゴキヤップリン力一(合成 RNA)および配列番号: 4で表さ れる配列からなるオリゴ (dT)アダプタ一を用いて、 文献 [鈴木 '菅野, 蛋白質 核酸 酵素, 41 : 197-201 (1996)、 Y. Suzuki et al ., Gene, 200: 149-156 ( 19 97)]に記載してあるように BAP (Bacterial Alkaline Phosphatase)処理、 TAP (T obacco Acid Pyrophosphatase)処理、 RNAライゲ一シヨン、 第一鎖 cDNAの合成と R NAの除去を行った。 次いで、 配列番号: 5で表される 5'末端側および配列番号: 6で表される 3,末端側の PCRプライマ一を用い、 PCR (polymerase chain reactio n)により 2本鎖 cDNAに変換し、 得られた DNA断片を Sfi lで切断した。 次いで、 Dral I Iで切断したベクタ一 PME18SFL3 (GenBank AB009864)に cDNAの方向性を決めてク ローニングし、 cDNAラィブラリ一を作製した。 PME18SFL3のクロ一ン化部位は非対 称性の Dral l lサイ 卜となっており、 cDNA断片の末端にはこれと相補的な Sfil部位 を付加しているので、 クローン化した cDNA断片は SRひプロモー夕一の下流に一方 向性に挿入される。 T) Poly (A) + UNA was purified using a cellulose column (Collaborative labs). From the poly (A) + RNA, a cDNA library was prepared by an oligocap method [M. Maruyama and S. Sugano, Gene, 138: 171-174 (1994)]. Using an oligocaprin ligand (synthetic RNA) consisting of the sequence represented by SEQ ID NO: 3 and an oligo (dT) adapter consisting of the sequence represented by SEQ ID NO: 4, the literature [Suzuki 'Sugano, Protein Nucleic acid] Enzyme, 41: 197-201 (1996), Y. Suzuki et al., Gene, 200: 149-156 (1997)], BAP (Bacterial Alkaline Phosphatase) treatment, TAP (T obacco Acid Pyrophosphatase treatment, RNA ligation, synthesis of first-strand cDNA, and RNA removal were performed. Then, using a 5 ′ terminal side PCR primer represented by SEQ ID NO: 5 and a 3, terminal side PCR primer represented by SEQ ID NO: 6, it was converted into double-stranded cDNA by PCR (polymerase chain reaction). The obtained DNA fragment was cut with Sfil. Next, the vector was cut with Dral II and the vector PME18SFL3 (GenBank AB009864) was cloned by determining the direction of the cDNA to prepare a cDNA library. The cloned site of PME18SFL3 is an asymmetric Drall site, and a complementary Sfil site is added to the end of the cDNA fragment. It is inserted unidirectionally downstream of the promotion.
[実施例 2 ] ヒト胎盤組織から作製した cDNAライブラリ一由来の cDNAクローン の解析 [Example 2] Analysis of cDNA clone derived from cDNA library prepared from human placental tissue
( 1 ) cDNAクローンの単離 (1) Isolation of cDNA clone
実施例 1で作製した cDNAライブラリーの一部をジーンパルサ一 (Biorad社製) を用いてエレクトロポレーシヨン法で大腸菌 DH10B株に導入した。 形質転換体は、 アンピシリンを 50 g/mL含有する LB寒天培地上で培養して選択した。 これらの形 質転換体をアンピシリンを 50 g/mL含有する LB培地で一晩培養し、 プラスミ ド自 動抽出機 PI100 (クラボウ社製) を用いてプラスミ ドを抽出した。 A part of the cDNA library prepared in Example 1 was introduced into Escherichia coli DH10B by electroporation using Gene Pulser (Biorad). Transformants were selected by culturing on LB agar medium containing 50 g / mL of ampicillin. These transformants were cultured overnight in an LB medium containing 50 g / mL of ampicillin, and the plasmid was extracted using a plasmid automatic extractor PI100 (manufactured by Kurabo Industries, Ltd.).
( 2 ) 単離された cDNAクローンの塩基配列の解析 (2) Analysis of the nucleotide sequence of the isolated cDNA clone
これらの形質転換体より得たクローンのプラスミ ド DNAについて、 DNAシ一ケン
シング試薬 (BigDye Terminator Cycle Sequencing FS Ready Reaction Kit, PE Biosystems社製) を用い、 マニュアルに従ってシーケンシング反応後、 DNAシ一ケ ンサー(ABI PRISM 377, PE Biosystems社製)で各 cDNAクローンの 5,末端または 3 ,末端からの塩基配列を解析した。 The plasmid DNA of clones obtained from these transformants was subjected to DNA sequencing. Using a sequencing reagent (BigDye Terminator Cycle Sequencing FS Ready Reaction Kit, manufactured by PE Biosystems), perform the sequencing reaction according to the manual, and then use a DNA sequencer (ABI PRISM 377, manufactured by PE Biosystems) to determine the 5 and 5 Or 3, the base sequence from the end was analyzed.
5'末端側からの塩基配列の決定には配列番号: 7で表される ME761FWを、 3'末端 側からの塩基配列の決定には配列番号: 8で表される ME1250RVをシーケンス用プ ライマ一として用いた。 For determination of the base sequence from the 5 'end, ME761FW represented by SEQ ID NO: 7 is used. For determination of the base sequence from the 3' end, ME1250RV represented by SEQ ID NO: 8 is used for the sequencing primer. Used as
( 3 ) cDNAクローンの 5'末端配列と 3'末端配列のクラス夕一化 (3) Classification of 5 'and 3' end sequences of cDNA clones
( 2 ) で決定した cDNAクローンの 5'末端配列と 3'末端配列を、 それぞれ別々に クラス夕リングした。 すなわち、 cDNAクローンの決定した 5'末端及び 3'末端から のシングルパスシーケンスデータは、各配列デ一夕との間で BLAST解析を行い、 同 一遺伝子に由来すると思われるクローンのグループ化を行った。 5'末端配列では 相同性 95%以上のコンセンサス配列が 300塩基対以上、 3'末端配列では相同性 90% 以上のコンセンサス配列が 200塩基対以上の場合、同一グループとした 5'末端配列 グループ 3'末端配列グループはさらに、 同一クローンの 5'末端配列と 3'末端配列 が同一グループ (クラスター) に属するようグループ (クラスター) 化処理を行 つた。 The 5′-end sequence and the 3′-end sequence of the cDNA clone determined in (2) were separately classi? Ed. That is, the single-pass sequence data from the 5 'end and 3' end determined for the cDNA clones were subjected to BLAST analysis between each sequence, and clones considered to be derived from the same gene were grouped. Was. If the consensus sequence with a homology of 95% or more is 300 base pairs or more at the 5 'end sequence, and the consensus sequence with a homology of 90% or more is 200 base pairs or more at the 3' end sequence, the same group is considered. The 'terminal sequence group' was further subjected to grouping (clustering) so that the 5 'terminal sequence and 3' terminal sequence of the same clone belonged to the same group (cluster).
( 4 ) cDNAクローン配列の特徴付け (4) Characterization of cDNA clone sequence
クローン配列の 5'末端配列データは、 次の方法に基づいて特徴付けした。 5 ′ terminal sequence data of the clone sequence was characterized based on the following method.
(1 ) GenBankを対象にした BlastNによる相同性検索により、 ヒトゃ他生物の mRNA配 列 (権利化された配列を含む) ゃヒト EST配列に対して同一であるかを確認する。 (1) By homology search using GenBank with BlastN, confirm that the sequence is the same as the human {other mRNA sequence (including the licensed sequence)} / human EST sequence.
(2)ヒト雇配列ゃヒト EST配列より 5'末端端が長いかを確認する。 (2) Human sequence ヒ ト Confirm that the 5 'end is longer than the human EST sequence.
(3)全長性を予測する ATGprプログラム [A. Salajnov, T. Nishikawa, M. B. S in dells. Assessing protein coding region integrity in cDNA sequencing proj ects. Bioinformatics 14: 384-390 ( 1998)]により 5'末端配列中のすべての開始 コドンに由来する ATGprl、 ATGpr2値を決定する。
(4)GenBankを対象にした BlastNによる相同性検索により同一としたヒト EST配列 数を決定する。 (3) 5'-end sequence by ATGpr program [A. Salajnov, T. Nishikawa, MB S in dells. Assessing protein coding region integrity in cDNA sequencing projects. Bioinformatics 14: 384-390 (1998)] Determine ATGprl, ATGpr2 values from all start codons in. (4) Determine the number of identical human EST sequences by homology search using BlastN for GenBank.
また、 クローン配列の 3'末端配列デ一夕の特徴付けは前出の(1 )および (4)につ いて行った。 In addition, the characterization of the 3′-end sequence of the clone sequence was performed for (1) and (4) above.
これら特徴付けを行ったクローン配列のデ一夕をもとに新規でかつ全長である 可能性の高い cDNAクローンの選抜を行った。 Based on the data of the clone sequences thus characterized, a new and likely full-length cDNA clone was selected.
( 5 ) ヒト mRNA配列ゃヒト EST配列に対しての同一性 5'末端の長さの比較 ク口一ン配列の 5'末端、 および 3'末端配列の、 ヒトや他生物の mRNA配列に対す る同一性は、 各配列との比較配列部分の長さが 200塩基以上で、 94 以上一致の場 合に同一と見なした。ヒト EST配列に対する同一性は 5'末端配列との比較配列部分 の長さが 200塩基以上で、 90%以上で一致の場合に同一と見なした。 (5) Human mRNA sequence--identity to human EST sequence Comparison of 5'-end length Comparison of the 5'-end and 3'-end sequences of the clonal sequence to mRNA sequences of humans and other organisms When the length of the comparison sequence portion with each sequence was at least 200 bases and at least 94 matches, the sequences were regarded as identical. The identity to the human EST sequence was considered to be identical if the length of the comparison sequence portion with the 5 'terminal sequence was 200 bases or more and 90% or more matches.
ヒト mRNA配列を比較配列とし、 5'末端の長さを比較する際には 5'末端配列の長 さがヒト mRNA配列より長い場合、 または 5'末端配列が翻訳開始コドンを含む場合 、 全長とした。 比較対象配列が ESTの場合には、 デ一夕ベース中のヒト EST配列よ り長く 5'末端が伸びて tヽる場合、あるいは 5'末端が短いクローンでも両者の差が 5 0塩基以内である場合を便宜的に全長とし、 それ以上短い場合を非全長とした。 When comparing the length of the 5 'end with the human mRNA sequence as a comparison sequence, when the length of the 5' end sequence is longer than the human mRNA sequence, or when the 5 'end sequence contains a translation initiation codon, did. When the comparison target sequence is EST, if the 5 'end is longer and longer than the human EST sequence in the database, or if the clone with a shorter 5' end has a difference of 50 bases or less. In some cases, the entire length is referred to as the full length, and in cases where the length is shorter, the non-full length is used.
( 6 ) ATGprによる全長性の予測 (6) Prediction of full length by ATGpr
全長性の予測には ATGpr [A. Salamov, T. Nishika a, Μ. Β. Swindells. Asse ssing protein coding region integrity in cDNA sequencing projects. Bioin formatics 14: 384-390 ( 1998)] による解析結果を用いた。 ATGprl値は計算値か ら全長である可能性を予測する値であり、 ATGprl値が高いほど全長である可能性 が高い。 なお、 最大 ATGprl値及び最大 ATGpr2値とは、 クローン配列の 5'末端配列 に含まれるすべての開始コドンから予測される ATGprl値及び ATGpr2値の最大値を 示し、 特徴付けにはこの値を用いた。 ATGpr [A. Salamov, T. Nishika a, Μ. Β. Swindells. Asse ssing protein coding region integrity in cDNA sequencing projects.Bioin formatics 14: 384-390 (1998)] Was. The ATGprl value is a value that predicts the possibility of the full length from the calculated value. The higher the ATGprl value, the higher the possibility of the full length. The maximum ATGprl value and maximum ATGpr2 value indicate the maximum ATGprl value and ATGpr2 value predicted from all start codons contained in the 5 'end sequence of the clone sequence, and these values were used for characterization. .
( 7 ) 相同性検索による同一 EST配列数からの新規性の予測 (7) Prediction of novelty from the number of identical EST sequences by homology search
5'末端配列 3'末端配列それぞれに対して、 GenBankを用いた相同性検索から求め
た。 ヒト EST配列に対しては、 5'末端配列との比較配列部分の長さが 200塩基以上 にわたつて 90%以上で一致する場合に同一とした。 EST配列数はそのまま特徴付け に用い、新規性の指標とした。 mRNA配列ばかりでなく、 EST配列に対しても同一で ない 5'末端配列および 3'末端配列をもつクローンは、 新規な配列をコードする遺 伝子である。同様に、 同一の EST配列数が少ない 5'末端配列、 あるいは 3'末端配列 をもつクローンもまた、 新規な配列をコードする cDNAクローンであると判定した 5 'terminal sequence For each 3' terminal sequence, determined from homology search using GenBank Was. For the human EST sequence, the sequence was determined to be identical when the length of the comparison sequence portion with the 5 'terminal sequence was 90% or more over 200 bases or more. The number of EST sequences was used directly for characterization and used as an index of novelty. Clones having 5′-terminal sequences and 3′-terminal sequences that are not identical to not only mRNA sequences but also EST sequences are genes encoding novel sequences. Similarly, clones with a small number of 5'-terminal sequences or 3'-terminal sequences with a small number of identical EST sequences were also determined to be cDNA clones encoding the novel sequences.
( 8 ) クラス夕一の特徴付け (8) Characterization of class Yuichi
5'末端配列 3'末端配列をグループ化したクラス夕一を、 次の観点に基づいて特徴 付けした。 5'-end sequence The class of 3'-end sequences was characterized based on the following viewpoints.
( 1 ) GenBankを対象にした BlastNによる相同性検索により、 ヒトや他生物の mRNA配 列 (権利化された配列を含む) ゃヒト EST配列に対して同一であるか。 (1) By homology search using BlastN for GenBank, mRNA sequences of humans and other organisms (including licensed sequences) か Are they identical to human EST sequences?
クラス夕一に含まれるすべての 5'末端配列 3'末端配列のうち、 1配列でも mRNA 配列に対して同一であつた場合、 そのクラス夕一は mRNA配列に対して同一なクラ ス夕一とした。 All 5 'terminal sequences included in class 1 If at least one of the 3' terminal sequences is identical to the mRNA sequence, that class is identical to the class 1 that is identical to the mRNA sequence. did.
(2)ヒト mRNA配列ゃヒト EST配列より 5'末端が長いか。 (2) Is the 5 'end longer than the human mRNA sequence ゃ human EST sequence?
クラス夕一に含まれるすべての 5'末端配列が mRNA配列ゃヒト EST配列に対して 非全長であつた場合、そのクラス夕一は mMA配列やヒト EST配列に対して非全長で あるクラス夕一とした。 If all the 5 'terminal sequences included in the class 1 are non-full length with respect to the mRNA sequence ゃ human EST sequence, the class 1 is non-full length with respect to the mMA sequence or human EST sequence. And
(3)全長性を予測する ATGprプログラムによる 5'末端配列中のすべての開始コドン に由来する ATGprH直および ATGpr2値。 (3) ATGprH direct and ATGpr2 values derived from all start codons in the 5 'terminal sequence by the ATGpr program for predicting full length.
全長性を予測する ATGprプログラム [A. Salamov, T. Nishikawa, M. B. Swind ells. Assessing protein coding region integrity in cDNA sequencing proje cts. Bioinformatics 14: 384-390 ( 1998)] による 5'末端配列中のすべての開始 コドンに由来する ATGprl値は、クラス夕一に含まれる 5'末端配列すべてに対して A TGprl値の最大値を、 クラス夕一における ATGprl値とした。 ATGpr2値も同様にした
(4)GenBankを対象にした BlastNによる相同性検索により同一としたヒト EST配列 数。 The ATGpr program [A. Salamov, T. Nishikawa, MB Swindells. Assessing protein coding region integrity in cDNA sequencing projects. Bioinformatics 14: 384-390 (1998)] Regarding the ATGprl value derived from the start codon, the maximum value of the ATGprl value for all the 5 'terminal sequences contained in the class evening was defined as the ATGprl value in the class evening. ATGpr2 values were similar (4) The number of human EST sequences determined to be identical by homology search using BlastN in GenBank.
クラス夕一に含まれる 55末端配列 3'末端配列それぞれに対して EST配列数の最 大値を求め、 クラスターにおける 5'末端配列の同一 EST配列数 3'末端配列の同一 E ST配列数とした。 The maximum value of the number of EST sequences was calculated for each of the 5 5 terminal sequences and 3 'terminal sequences included in the class, and the number of identical EST sequences of the 5' terminal sequence and the number of identical EST sequences of the 3 'terminal sequence in the cluster were calculated. did.
( 9 ) 特徴付けからのクラス夕一の選抜方法 (9) Selection method of class evening from characterization
特徴付けにより得られたデータから、 まず、 ヒトゃ他生物の mRNA配列 (権利化 された配列を含む) と同一なクラスター、 及び非全長なクラスターを除いた。 そ れらクラスターの中から、 次の条件のいずれかを満たすものを選抜した。 From the data obtained by the characterization, first, clusters identical to the mRNA sequences of humans and other organisms (including the licensed sequences) and non-full-length clusters were excluded. From those clusters, those that met one of the following conditions were selected.
(a)クラス夕一における 5'末端配列の同一 EST配列数が 20以下で、 クラス夕一にお ける ATGprl値が 0.3を越えるクラス夕一。 (a) Classes in which the number of identical EST sequences in the 5'-end sequence in class is less than 20, and ATGprl value in class is more than 0.3.
(b)クラス夕一における ATGprl値が 0.3以下のクラス夕一であっても、 クラス夕一 における 5,末端配列の同一 EST配列数が 5以下で、 かつ、 クラス夕一における 3'末 端配列の同一 EST配列数も 5以下で、 かつ、 クラス夕一内に複数のクローンが含ま れるクラスター。 (b) Even if the ATGprl value in class I is less than 0.3, the number of identical EST sequences at the end sequence is 5 or less in class I, and the 3 'terminal sequence in class I is less than 5. Clusters with less than 5 identical EST sequences and multiple clones within the class.
(c )クラス夕一における ATGprl値が 0.3以下のクラス夕一であっても、 クラスター における 5,末端配列の同一 EST配列数が 0で、 かつ、 クラス夕一における 3'末端配 列の同一 EST配列数が 1以上であるクラス夕一。 (c) Even if the ATGprl value in the class is less than 0.3, the number of identical ESTs in the cluster 5 and the terminal sequence is 0, and the same EST in the 3 'terminal sequence is the same in the class. Class Yuichi with 1 or more arrays.
(d)クラスターにおける ATGprl値が 0.3以下のクラス夕一であっても、 クラス夕一 における 5'末端配列の同一 EST配列数が 1以上 5以下で、かつ、 クラス夕一における 3'末端配列の同一 EST配列数が 0であるクラス夕一。 (d) Even if the class has an ATGprl value of 0.3 or less in the class, the number of identical EST sequences in the 5 'end sequence in the class is 1 or more and 5 or less, and the 3' end sequence in the class is Class Yuichi with 0 identical EST sequences.
(a)で選抜されたクラス夕一には、 少なくとも 1クローンは新規性も、 全長性も 高いクローンが含まれている。(b) , ( c ) , (d)で選抜されたクラス夕一には、全長率 は低くなるものの、 依然として全長で、 新規なクローンが含まれている。 In the class selected in (a), at least one clone contains a clone with high novelty and full length. In the class selected in (b), (c), and (d), the full-length rate is low, but the full-length class still contains new clones.
( 1 0 ) クラス夕一からのクローンの選抜方法
同一クラス夕一内に 1クローンしか含まないものについては、そのクローンを選 抜した。同一クラスタ一内に複数のクローンを含む場合で、 ATGprl値が 0. 3より大 のクローンが複数ある場合は、 ATGprl値がより大きい方のクローンを選択した。 同一クラスター内に複数のクローンを含む場合で、 ATGprl値が 0.3以下のクローン が複数ある場合、 ATGpr2値が 0.3より大ならば、 ATGpr2値がより大きい方のクロ一 ンを選択した。 また、 同一クラス夕一内に複数のクローンを含む場合で、 ATGprl 値、 ATGpr2値ともに 0.3以下でも、 クラス夕一内で ATGprl値、 ATGpr2値がともに最 大値をとるクローンがあるならば、 そのクローンを選択した。 同一クラスター内 に複数のクローンを含む場合で、上記のような ATGpr値での選抜ができなかった場 合は、 5'末端配列 3'末端配列及びヒト EST配列を用いてアセンブルすることにより 、 より 5,末端側に長いクロ一ンを選抜した。 アセンブルには、 Sequencher (Gene Codes社製)等を利用し、 一部、 アセンブルすることによつても決められなかった 場合は、 対象クローンすべてを全長と判断した。 (10) How to select clones from class If the clone contained only one clone in the same class, the clone was selected. When a plurality of clones were included in the same cluster and there were a plurality of clones having an ATGprl value of more than 0.3, a clone having a larger ATGprl value was selected. When multiple clones were included in the same cluster, and there were multiple clones with an ATGprl value of 0.3 or less, if the ATGpr2 value was greater than 0.3, the clone with the larger ATGpr2 value was selected. In addition, when multiple clones are included in the same class, if the ATGprl value and ATGpr2 value are both 0.3 or less, and if there is a clone with the maximum ATGprl value and ATGpr2 value both in the class, A clone was selected. If multiple clones are included in the same cluster and selection cannot be performed based on the ATGpr value as described above, assembling using the 5 'terminal sequence and the 3' terminal sequence and the human EST sequence will improve 5. A long clone was selected on the terminal side. Sequencher (Gene Codes) was used for assembling, and if it could not be determined by assembling a part, all the target clones were judged to be full length.
( 1 1 ) cDNAクローンの全長配列の解析 (11) Analysis of full-length sequence of cDNA clone
( 1 ) 〜 ( 1 0 ) のようにして選抜した、 新規である可能性が高いと判断され たヒト胎盤組織由来の cDNAクローンについて、 全長 cDNAの塩基配列を決定した。 塩基配列は主に、カスタム合成 DNAプライマ一を用いたダイデォキシ夕一ミネ一夕 一法によるプライマーウォーキング (カスタム合成 DNAプライマ一を用い、 PE Bi osystem社製の DNAシ一ケンシング試薬でマニュアルに従ってシーケンシング反応 後、 同社製のシーケンサ一で DNA塩基配列を解析) によって決定した。全長塩基配 列は上記方法により決定された部分塩基配列を完全にオーバーラップさせ最終的 に確定した。 次に、 決定された全長の cDNAの塩基配列から推定アミノ酸配列を求 めた。 The nucleotide sequence of the full-length cDNA was determined for the cDNA clones selected from (1) to (10) and derived from human placental tissue, which were determined to be highly likely to be novel. Primer walking is performed mainly by primer walking according to the Diodexoxy-Mine-All-In-One method using a custom synthesized DNA primer (sequencing is performed according to the manual using a DNA sequencing reagent manufactured by PE Biosystems using a custom synthesized DNA primer). After the reaction, the DNA base sequence was analyzed using the company's sequencer). The full-length nucleotide sequence was finally determined by completely overlapping the partial nucleotide sequence determined by the above method. Next, a deduced amino acid sequence was determined from the determined nucleotide sequence of the full-length cDNA.
( 1 ) 〜 ( 1 0 ) のようにして選抜した、 新規でかつ完全長である可能性が高 いと判断されたヒ卜胎盤組織由来の cDNAクローンの一例として、 cDNAクローン C - PLACE1003238の塩基配列を配列番号: 1に示した。また塩基配列から推定された c
DNAクローン C-PLACE1003238がコ一ドする遺伝子産物のアミノ酸配列を配列番号 : 2に示した。 The nucleotide sequence of cDNA clone C-PLACE1003238 as an example of a cDNA clone derived from human placental tissue, which was selected as described in (1) to (10) and determined to be highly likely to be full-length, Is shown in SEQ ID NO: 1. C deduced from the base sequence The amino acid sequence of the gene product encoded by DNA clone C-PLACE1003238 is shown in SEQ ID NO: 2.
[実施例 2 ] ATGprと ESTiMateFLでの cDNAの 5' -末端の全長率の評価 [Example 2] Evaluation of the total length of the 5'-end of cDNA using ATGpr and ESTiMateFL
ATGpr は、 ATGコドンの周辺の配列の特徴から翻訳開始コドンであるかどうかを 予測するためにへリックス研究所の A. A. Salamov, T. Nishika a, M. B. Swind ellsにより開発されたプログラムである [A. A. Salamov, T. Nishikawa, M. B. Swindells, Bioinformatics, 14: 384-390 (1998) ; http: //www . hr i . co . jp/atg pr/]。結果は、 その ATGが真の開始コドンである期待値(以下 ATGprlと記載するこ ともある) で表した (0.05-0.94) 。 このプログラムを全長率 65%のオリゴキヤヅ プ法で作製したライブラリ一からの cDNAクローンの 5' -末端配列に適用して ATGpr 1値を 0.6以上でクローンを選択した場合、全長クローン(0RFの N-末端までもつク ローン)評価の感度と特異性はともに 82〜83 まで上昇した。 C-PLACE1003238の最 大 ATGprl値は 0.22であった。 ATGpr is a program developed by AA Salamov, T. Nishikaa, and MB Swindells of the Helix Institute to predict whether a translation initiation codon exists based on the characteristics of the sequence around the ATG codon [AA Salamov , T. Nishikawa, MB Swindells, Bioinformatics, 14: 384-390 (1998); http: //www.hri.co.jp/atgpr/]. The results were expressed as the expected value of the ATG being the true start codon (hereinafter sometimes referred to as ATGprl) (0.05-0.94). When this program was applied to the 5'-end sequence of a cDNA clone from a library prepared by an oligocap method with a total length of 65% and a clone was selected with an ATGpr 1 value of 0.6 or more, the full-length clone (0RF N- Both the sensitivity and the specificity of the evaluation (clone to the end) increased to 82-83. The maximum ATGprl value of C-PLACE1003238 was 0.22.
[実施例 3 ] 高密度 DNAフィル夕一を用いた、 ハイブリダィゼ一シヨンによる 遺伝子発現解析 [Example 3] Gene expression analysis by hybridization using high-density DNA filter
ナイロン膜スポット用の DNAは以下のように調製した。 すなわち、 大腸菌を 96 穴プレートの各ゥエルに培養し (LB培地で 37°C、 16時間) 、 その培養液の一部 を、 96穴プレー卜の ずつ分注した滅菌水中に懸濁し、 100°Cで 10分間処理 した後、 PCR反応のサンプルとして使用した。 PCRは TaKaRa PCR Amplification Kit (宝社製) を用い、 プロトコールに従って 1反応 20 〃Lの反応溶液で行った 。プラスミ ドのィンサ一ト cDNAを増幅するために、 プライマ一はシークェンシン グ用のブラィマ一 ME761FW (5' tacggaagtgttacttctgc3' /配列番号: 7 )と ME1250 RV (5,tgtgggaggttttttctcta3,/配列番号: 8 )のペア一、 または M13M4 (5' gttt tcccagtcacgac3' /配列番号: 9 )と M13RV ( 5' caggaaacagctatgac3' /配列番号: 1 0 )のペア一を使用した。 PCR反応は、 GeneAmp System9600 (PEバイオシステム ズ社製) で、 95°C 5分間処理後、 95°C10秒、 68°C1分間で 10サイクルし、 さらに
98°C20秒間、 60°C3分間で 20サイクル行い、 72°C10分間で行った。 PCR反応後、 2 j lの反応液を 1 %ァガロースゲル電気泳動して、臭化工チジゥムで DNAを染色 し、 増幅した cDNAを確認した。 増幅できなかったものは、 その cDNAインサート をもつプラスミ ドを、 アルカリ抽出法 (J Sambrook, EF Fritsh, T Maniatis , Μ olecular Cloning, A laboratory manual / 2nd edition, Cold Spring Harbor Laboratory Press, 1989) で調製した。 DNA for nylon membrane spots was prepared as follows. That is, E. coli is cultured in each well of a 96-well plate (37 ° C, 16 hours in LB medium), a part of the culture is suspended in sterilized water dispensed into 96-well plates, and the suspension is incubated at 100 ° C. After treatment with C for 10 minutes, it was used as a sample for the PCR reaction. PCR was performed using a TaKaRa PCR Amplification Kit (manufactured by Takarasha) with a reaction solution of 20 μL per reaction according to the protocol. In order to amplify the plasmid cDNA, the primer was paired with the sequencing primer ME761FW (5 'tacggaagtgttacttctgc3' / SEQ ID NO: 7) and ME1250 RV (5, tgtgggaggttttttctcta3, / SEQ ID NO: 8). One or a pair of M13M4 (5 ′ gttt tcccagtcacgac3 ′ / SEQ ID NO: 9) and M13RV (5 ′ caggaaacagctatgac3 ′ / SEQ ID NO: 10) was used. The PCR reaction was performed at 95 ° C for 5 minutes with GeneAmp System9600 (manufactured by PE Biosystems), followed by 10 cycles at 95 ° C for 10 seconds and 68 ° C for 1 minute. Twenty cycles were performed at 98 ° C for 20 seconds, 60 ° C for 3 minutes, and performed at 72 ° C for 10 minutes. After the PCR reaction, 2 jl of the reaction solution was subjected to 1% agarose gel electrophoresis, and the DNA was stained with a bromide reagent to confirm the amplified cDNA. For those that could not be amplified, a plasmid containing the cDNA insert was prepared by the alkali extraction method (J Sambrook, EF Fritsh, T Maniatis, oleolecular Cloning, A laboratory manual / 2nd edition, Cold Spring Harbor Laboratory Press, 1989). did.
DNAアレイの作製は以下のように行った。 384穴プレートの各ゥエルに DNAを分 注した。 ナイロン膜 (ベ一リンガー社製) への DNAのスポッティングは、 Biomek 2000ラボラトリ一オートメーションシステム (ベックマンコール夕一社製) の 3 84ビンツールを用いて行った。 すなわち、 DNAの入った 384穴プレートをセット した。 その DNA溶液に、 ピンツールの 384個の独立した針を同時に浸漬し、 DNA を針にまぶした。 その針を静かにナイロン膜に押し当てることによって、 針に付 着した DNAをナイロン膜にスポヅティングした。 スポヅトした DNAの変性および 、ナイロン膜への固定は定法(J Sambrook, EF Fritsh, T Maniatis , Molecular Cloning, A laboratory manual / 2nd edition, Cold Spring Harbor Laborator y Press, 1989) に従って行った。 Preparation of the DNA array was performed as follows. DNA was dispensed into each well of a 384-well plate. DNA spotting on the nylon membrane (manufactured by Behringer) was performed using a 384-bin tool of Biomek 2000 Laboratory Automation System (manufactured by Beckman Cole Yuichi). That is, a 384-well plate containing DNA was set. 384 independent pins of a pin tool were simultaneously immersed in the DNA solution, and the DNA was sprinkled on the needles. By gently pressing the needle against the nylon membrane, the DNA attached to the needle was spotted on the nylon membrane. Denaturation of the spotted DNA and immobilization on the nylon membrane were performed according to a conventional method (J Sambrook, EF Fritsh, T Maniatis, Molecular Cloning, A laboratory manual / 2nd edition, Cold Spring Harbor Laboratory Press, 1989).
ハイブリダイゼーシヨンのプローブとしては、 ラジオアイソト一プでラベリン グした 1st strand cDNAを使用した。 1st strand cDNAの合成は Thermoscript(TM ) RT-PCR System (GIBC0社製) を用いて行った。 すなわち、 ヒ卜の各組織由来 m RNA (Clontech社製) の 1. 5 jugと、 1 L 50 μ Ol igo (dT )20を用いて、 50 〃Ci [ ct 33P] dATPを添加して付属のプロトコ一ルに従って 1st strand cDNAを合 成した。 プローブの精製は、 ProbeQuant(TM) G-50 micro column (アマシャムファ ルマシアバイオテック社製) を用いて付属のプロトコールに従って行った。 次に 、 2 units E . col i RNase Hを添加して、 室温で 10分間インキュベートし、 さら に 100 〃gヒト COT- 1 DNA ( GIBC0社製) を添加して、 97°Cで 10分間ィンキュベ 一ト後、 氷上に静置してハイブリダイゼ一ション用のプローブとした。
ラジオアイソトープラベルしたプローブの、 DNA アレイへのハイブリダィゼ一 シヨンは、 定法 (J Sambrook, EF Fritsh, T Maniatis, Molecular Cloning, A laboratory manual / 2nd edition, Cold Spring Harbor Laboratory Press, 19 89) に従って行った。 洗浄は、 ナイロン膜を洗浄液 1 (2X SSC, 1% SDS) 中で、 室温 (約 26°C) で 20分間のインキュベートを 3回洗浄した後、 洗浄液 2 (0.1X SSC, 1% SDS) 中で、 65。Cで 20分間の洗浄を 3回行った。 オートラジオグラムは 、 BAS2000 (富士写真フィルム社製) のイメージプレートを用いて取得した。 すな わち、 ハイブリダィゼーシヨンしたナイロン膜をサランラップに包み、 イメージ プレートの感光面に密着させて、 ラジオアイソトープ感光用のカツセッ卜に入れ て、 暗所で 4時間静置した。 イメージプレートに記録したラジオアイソトープ活 性は、 BAS2000 を用いて解析し、 オートラジオグラムの画像ファイルとして電子 的に変換して記録した。 各 DNAスポッ卜のシグナル強度の解析は、 Visage High Density Grid Analysis Systems (ジエノミックソリュ一ソンズ社製)を用いて行 い、 シグナル強度を数値データ化した。 デ一夕は Duplicateで取得し、 その再現 性は 2つの DNAフィルタ一を 1つのプローブでハイブリダイゼ一シヨンして、 両 フィル夕一で対応するスポヅトのシグナル強度を比較した。 全スポヅ卜の 95%が 、 相当するスポッ 卜に対して 2 倍以内のシグナル値であり、 相関係数は Γ-0.97 である。 デ一夕の再現性は十分といえる。 As a hybridization probe, a 1st strand cDNA labeled with a radioisotope was used. The synthesis of 1st strand cDNA was performed using Thermoscript (TM ) RT-PCR System (GIBC0). That is, the 1. 5 jug of each tissue derived m RNA of human Bok (Clontech Co.), using a 1 L 50 μ Ol igo (dT ) 20, supplied with the addition of 50 〃Ci [ct 33 P] dATP 1st strand cDNA was synthesized according to the protocol described in The probe was purified using a ProbeQuant ( TM ) G-50 micro column (manufactured by Amersham Pharmacia Biotech) according to the attached protocol. Next, add 2 units E. coli RNase H, incubate at room temperature for 10 minutes, add 100 μg human COT-1 DNA (manufactured by GIBC0), and incubate at 97 ° C for 10 minutes. After one hour, the mixture was allowed to stand on ice to serve as a probe for hybridization. Hybridization of the radioisotope-labeled probe to the DNA array was carried out according to a conventional method (J Sambrook, EF Fritsh, T Maniatis, Molecular Cloning, A laboratory manual / 2nd edition, Cold Spring Harbor Laboratory Press, 1989). Washing is performed by washing the nylon membrane three times in a washing solution 1 (2X SSC, 1% SDS) at room temperature (about 26 ° C) for 20 minutes, and then in a washing solution 2 (0.1X SSC, 1% SDS). At 65. C was washed three times for 20 minutes. The autoradiogram was obtained using an image plate of BAS2000 (manufactured by Fuji Photo Film Co., Ltd.). That is, the hybridized nylon film was wrapped in Saran wrap, brought into close contact with the photosensitive surface of the image plate, placed in a radioisotope-sensitive cassette, and allowed to stand in a dark place for 4 hours. The radioisotope activity recorded on the image plate was analyzed using BAS2000, and converted and recorded as an autoradiogram image file electronically. Analysis of the signal intensity of each DNA spot was performed using Visage High Density Grid Analysis Systems (manufactured by Genomic Solutions), and the signal intensity was converted into numerical data. The data was obtained by Duplicate, and the reproducibility was determined by hybridizing two DNA filters with one probe and comparing the signal intensity of the corresponding spots in both filters. 95% of all spots have a signal value within 2 times that of the corresponding spot, and the correlation coefficient is -0.97. The reproducibility of the night is enough.
遺伝子発現解析の検出感度は、 ナイ口ン膜にスポットした DNAに相補的なプロ ーブを作製し、 ハイブリダィゼ一シヨンにおける、 プロ一ブ濃度依存的なスポッ 卜のシグナル強度の増加を検討して見積もった。 DNAとしては、 PLACE1008092 (G enBank Accession No.AF107253と同一) を使用した。 前述の方法で PLACE100809 2の DNAアレイを作製した。 プローブとしては、 PLACE1008092の mRNAを in vitr o合成し、 この RNAを錶型として、 前述のプローブ作製法と同様にして、 ラジオ アイソト一プでラベリングした 1st strand cDNAを合成して使用した。 PLACE100 8092の mRNAを in vitro合成するために、 pBluescript SK ( - )の T7プロモ一夕一
側に PLACE1008092の 5,末端が結合されるように組換えたプラスミ ドを造成した 。 すなわち、 PME18SFL3の制限酵素 Dralll認識部位に組み込まれた PLACE100809 2を、 制限酵素 Xholで切断して PLACE1008092を切り出した。 次に Xholで切断し てある pBluescript SK (-)と、 切り出した PLACE 1008092を DNA ligation kit ve r.2 (宝社製) を用いてライゲ一シヨンした。 pBluescript SK (-)に組換えた PLAC E1008092の mRNAの in vitro合成は、 Ampliscribe(TM) T7 high yield transcrip tion kit (Epicentre technologies社製) を用いて行った。 ハイブリダィゼーシ ヨンおよび各 DNAスポヅ 卜のシグナル値の解析は、 前述の方法と同様に行った。 プローブ濃度が lxl07 /g/mL以下では、 プローブ濃度に比例したシグナル増加が 無いことから、 この濃度域でのシグナルの比較は困難と考えられ、 シグナル強度 が 40以下のスポヅ トは一様に低レベルのシグナルとした。 lxl07〜0.1 zg/mLの 範囲でプローブ濃度依存的なシグナル値の増加があり、 検出感度としてはサンプ ルあたり発現量比が 1:100, 000の mRNAの検出感度である。 この解析の結果、 PLA CE1003238はこれらどの組織でも発現が低かった。 The detection sensitivity of gene expression analysis was determined by preparing a probe complementary to the DNA spotted on the membrane and examining the increase in probe signal intensity in the hybridization depending on the probe concentration. Estimated. PLACE1008092 (identical to GenBank Accession No. AF107253) was used as DNA. A DNA array of PLACE1008092 was prepared by the method described above. As a probe, mRNA of PLACE1008092 was synthesized in vitro, and this RNA was used as type III to synthesize and use a 1st strand cDNA labeled with a radioisotope in the same manner as in the probe preparation method described above. To synthesize PLACE100 8092 mRNA in vitro, use the pBluescript SK (-) A recombinant plasmid was constructed such that the 5 'end of PLACE1008092 was joined to the side. That is, PLACE1008092 integrated into the restriction site of Dralll of PME18SFL3 was cut with the restriction enzyme Xhol to cut out PLACE1008092. Next, pBluescript SK (-) cut with Xhol and PLACE 1008092 cut out were ligated using DNA ligation kit ver.2 (Takarasha). In vitro synthesis of PLAC E1008092 mRNA recombined with pBluescript SK (-) was performed using an Ampliscribe ( TM ) T7 high yield transcription kit (Epicentre technologies). Analysis of the signal values of the hybridization and each DNA spot was performed in the same manner as described above. Probe concentration is less than lxl0 7 / g / mL, since the signal increases in proportion to the probe concentration is no comparison of signal in this concentration range is considered difficult, the signal intensity 40 following Supodzu metropolitan uniformly A low level signal was used. Lxl0 7 there is an increase in probe concentration dependent signal value in the range of to 0.1 zg / mL, the expression level ratio per sample as the detection sensitivity is 1: Detection sensitivity of 100, 000 of the mRNA. As a result of this analysis, expression of PLA CE1003238 was low in all of these tissues.
[実施例 4] 神経細胞分化関連遺伝子の解析 [Example 4] Analysis of nerve cell differentiation-related genes
神経細胞の分化に関する遺伝子は、 神経疾患の治療に有用な遺伝子である。 神 経系の細胞を分化誘導して発現変化する遺伝子は、 神経疾患に関すると考えられ る。 Genes related to the differentiation of nerve cells are useful genes for treating neurological diseases. Genes whose expression is changed by inducing differentiation of cells of the nervous system are considered to be related to neurological diseases.
神経系の培養細胞 NT2を分化誘導(レチノイン酸 (RA)刺激) して発現変化する遺 伝子を探索した。 We searched for genes whose expression was altered by inducing differentiation (stimulation of retinoic acid (RA)) of cultured cells of the nervous system NT2.
NT2細胞の取扱いについては、基本的に付属の INSTRACTI0N MANUALに従った。未 分化 NT2細胞とは、 OPT I -MEM I (GIBC0 BRL社製、 カタログ No.31985)、 10¾(v/v) fetal bovine serum(GIBC0 BRL社製)、 l%(v/v) penicillin-streptomycin(GIBCO BRL社製)の培地で継代していた NT2細胞である。 レチノイン酸存在下で培養した N T2細胞とは、 未分化 NT2細胞を D- MEM(GIBC0 BRL社製、 カタログ No.11965)、 謂 v /v) fetal bovine serum、 1%(ν/ν) peni c i 11 in-streptomyc ins IOJUK Retinoic
acid(GIBC0 BRL社製)のレチノイン酸添加培地に移した後、 5週間継代後の細胞で ある。 HA存在下で培養してさらに阻害剤を添加して培養した NT2細胞とは、 レチノ ィン酸添力 05週間を経た NT2細胞を細胞分裂阻害剤を添加した培地 D-MEM(GIBC0 BR L社製、 カタログ Νο.11965)、 10¾(v/v) fetal bovine serun l¾(v/v) penicilli n - streptomyciiu 10 M Retinoic acids 10〃M FudR(5 - Fluoro - 2, -deoxyuridin e: GIBCO BRL社製)、 10 /M Urd(Uridine: GIBCO BRL社製)、 1〃M araC(Cytosine 5-D-Arabinofuranoside: GIBCO BRL社製)に移した後 2週間後の細胞である。 そ れそれの細胞はトリブシン処理して回収後、 total MAの抽出を、 S.N.A.P. (TM) to tal RNA isolation kit ( Invitrogen社製) を用いて行った。ハイブリダィゼ一シ ヨン用のプローブのラベリングは、 この total RNA 10 zgを用いて、 前記の方法 で同様にして行った。 The handling of NT2 cells basically followed the attached INSTRACTI0N MANUAL. Undifferentiated NT2 cells are OPT I-MEM I (GIBC0 BRL, Catalog No. 31985), 10¾ (v / v) fetal bovine serum (GIBC0 BRL), l% (v / v) penicillin-streptomycin (NTB cells) subcultured in a medium (GIBCO BRL). NT2 cells cultured in the presence of retinoic acid refer to undifferentiated NT2 cells as D-MEM (GIBC0 BRL, Catalog No. 11965), so-called v / v) fetal bovine serum, 1% (ν / ν) peni ci 11 in-streptomyc in s IOJUK Retinoic The cells were transferred to a retinoic acid-supplemented medium containing acid (GIBC0 BRL) and passaged for 5 weeks. NT2 cells cultured in the presence of HA and further cultured with an inhibitor are retinoic acid-added NT2 cells that have passed 05 weeks, a medium containing a cell division inhibitor D-MEM (GIBC0 BRL Catalog ¾ο.11965), 10¾ (v / v) fetal bovine serun l¾ (v / v) penicilli n-streptomyciiu 10 M Retinoic acids 10〃M FudR (5-Fluoro-2, -deoxyuridin e: GIBCO BRL ), 10 / M Urd (Uridine: GIBCO BRL), 1 、 MaraC (Cytosine 5-D-Arabinofuranoside: GIBCO BRL) Two weeks after transfer to cells. After the cells were collected by trypsin treatment, total MA was extracted using a SNAP (TM ) to total RNA isolation kit (Invitrogen). Probe labeling for hybridization was performed in the same manner as described above using 10 zg of the total RNA.
データは n = 3で取得し、分化誘導刺激ありの細胞のシグナルと、なしの細胞の シグナルを比較した。比較には二標本 t検定の統計処理を行って、 シグナル値の分 布に有意に差があるクローンを、 p く 0.05で選択した。 本解析は、 シグナル値の 低いクローンであっても差を統計的に検出できる。 したがって 40以下のシグナル 値のクロ一ンに対しても評価を行つた。 Data were acquired at n = 3, and the signals of cells with and without differentiation induction stimulus were compared. For comparison, statistical processing of a two-sample t-test was performed, and clones having a significant difference in the distribution of signal values were selected at p and 0.05. This analysis can detect differences statistically even in clones with low signal values. Therefore, a clone with a signal value of 40 or less was also evaluated.
未分化の NT2細胞、 RA存在下で培養した NT2細胞、 または RA存在下で培養してさ らに阻害剤を添加して培養した NT2細胞の、 各 cDNAの発現を測定した。 The expression of each cDNA was measured in undifferentiated NT2 cells, NT2 cells cultured in the presence of RA, or NT2 cells cultured in the presence of RA and further cultured with an inhibitor.
それぞれ細胞の各遺伝子についてシグナル値の平均 (M13 M2) と標本分散 (Sl 2 , s2 2) を求め、 比較する 2つの細胞の標本分散から合成標本分散 s2を求めた。 t = (Mj - M2)/s/( l/3+l/3)1/2を求めた。 自由度 4として t分布表の有意水準の確率 P である 0.05と 0.01の t値と比較して、 値が大きい場合にそれぞれ Pく 0.05、 または P く 0.01で両細胞の遺伝子の発現に差があると判定した。 PLACE1003238は RA/阻害剤 で発現が増加した。 このクローンは神経疾患に関するクローンである。 The average (M 13 M 2 ) and the sample variance ( Sl 2 , s 2 2 ) of the signal value were determined for each gene of the cell, and the composite sample variance s 2 was determined from the sample variance of the two cells to be compared. t = (Mj - M 2) / s / (l / 3 + l / 3) was determined 1/2. Compared to the t-values of 0.05 and 0.01, which are the probability P of the significance level in the t-distribution table with 4 degrees of freedom, when the value is large, the difference in gene expression between both cells is P-0.05 or P-0.01, respectively. It was determined that there was. PLACE1003238 increased expression with RA / inhibitor. This clone is a clone relating to a neurological disease.
[実施例 5 ] 紫外線傷害関連遺伝子の解析 [Example 5] Analysis of UV damage-related genes
紫外線は健康に少なからず影響を及ぼすことが知られている。 近年はォゾン層
破壊に伴つて紫外線傷害にさらされる機会が多くなつており、 皮膚癌などの危険 因子として認識されてきている (United States Environmental Protection Age ncy: Ozone Depletion Home Page、 http://www. epa.gov/ozone/) 0紫外線が皮膚 表皮細胞に作用して発現変化する遺伝子は、 皮膚の紫外線傷害に関すると考えら れる。 Ultraviolet rays are known to have considerable effects on health. In recent years the ozon layer The increased exposure to UV damage associated with destruction has been recognized as a risk factor for skin cancer (United States Environmental Protection Age ncy: Ozone Depletion Home Page, http://www.epa.gov / ozone /) 0 Genes whose expression changes when ultraviolet light acts on skin epidermal cells are considered to be related to skin ultraviolet damage.
紫外線照射した初代培養皮膚由来線維芽細胞を培養して、 発現変化する遺伝子 を探索した。初代培養皮膚由来線維芽細胞(Cell Applications社製) は、 培養皿 にコンフルェントに培養して、 254 nmの紫外線を 10, 000 〃J/cm2照射した。 Cultures of primary cultured skin-derived fibroblasts irradiated with ultraviolet light were searched for genes whose expression was altered. Primary cultured skin-derived fibroblasts (manufactured by Cell Applications) were confluently cultured in a culture dish and irradiated with 254 nm ultraviolet light at 10,000 10, J / cm 2 .
細胞からの mRNAの抽出は、 未照射の細胞、 照射後 4時間または 2 4時間培養した 細胞を対象に、 FastTrack™ 2.0 mRNA isolation kit ( Invitrogen社製) を用い て行った。ハイブリダィゼーシヨン用のプローブのラベリングは、 この mRNA 1.5 gを用いて、 前記の方法で同様にして行った。 デ一夕は n = 3で取得し、 紫外線 刺激ありの細胞のシグナル値と、 なしの細胞のシグナル値を比較した。 比較には 二標本 t検定の統計処理を行って、シグナル値の分布に有意に差があるクローンを 、 p < 0.05で選択した。 本解析は、 シグナル値の低いクローンであっても差を統 計的に検出できる。 したがって 40以下のシグナル値のクローンに対しても評価を 行った。 Extraction of mRNA from cells was performed using FastTrack ™ 2.0 mRNA isolation kit (Invitrogen) for unirradiated cells and cells cultured for 4 or 24 hours after irradiation. Hybridization probe labeling was performed in the same manner as described above using 1.5 g of this mRNA. Data were obtained at n = 3, and the signal values of cells with and without UV stimulation were compared. For comparison, statistical processing of a two-sample t-test was performed, and clones having a significant difference in signal value distribution were selected at p <0.05. This analysis can detect differences statistically even in clones with low signal values. Therefore, clones with signal values of 40 or less were also evaluated.
紫外線未照射の皮膚由来線維芽細胞、 および紫外線照射した皮膚由来線維芽細 胞の、 各 cDNAの発現を測定した。 The expression of each cDNA in skin-derived fibroblasts not irradiated with ultraviolet light and in skin-derived fibroblasts irradiated with ultraviolet light was measured.
それぞれ細胞の各遺伝子についてシグナル値の平均 (M M2) と標本分散 (Sl 2 , s2 2) を求め、 比較する 2つの細胞の標本分散から合成標本分散 s2を求めた。 t = ( , - M2)/s/( l/3+l/3)1/2を求めた。 自由度 4として t分布表の有意水準の確率 P である 0.05と 0.01の t値と比較して、 値が大きい場合にそれぞれ Pく 0.05、 または P く 0.01で両細胞の遺伝子の発現に差があると判定した。 この解析の結果、 PLACE10 03238は、 紫外線照射によって、 4時間後または 2 4時間後に発現が減少した。 The mean (MM 2 ) and the sample variance ( Sl 2 , s 2 2 ) of the signal values for each gene in each cell were determined, and the composite sample variance s 2 was determined from the sample variances of the two cells to be compared. t = (,-M 2 ) / s / (l / 3 + l / 3) 1/2 was determined. Compared to the t-values of 0.05 and 0.01, which are the probability P of the significance level in the t-distribution table with 4 degrees of freedom, when the value is large, the difference in gene expression between both cells is P-0.05 or P-0.01, respectively. It was determined that there was. As a result of this analysis, the expression of PLACE10 03238 was reduced by ultraviolet irradiation after 4 hours or 24 hours.
[実施例 6 ] 推定アミノ酸配列に対するシグナル配列、 膜貫通領域および機能
ドメインの検索 [Example 6] Signal sequence, transmembrane region and function for deduced amino acid sequence Search Domain
PLACE1003238の推定アミノ酸配列に対して、 ァミノ末端のシグナル配列の有無 と膜貫通領域の有無を予測、 さらに蛋白質の機能ドメイン (モチーフ) 検索を行 つた。 ァミノ末端のシグナル配列については PSORT [K. Nakai & M.Kanehisa, Ge nomics, 14: 897-911 (1992)]を、 膜貫通領域については SOSUI [T.Hiroka a et. al. Bioinformatics, 14: 378-379 ( 1998)] (三井情報開発株式会社販売)を用い て解析を行った。 機能ドメインの検索については Pfam (http://www. sanger.acu k/Software/Pf am/index, shtml) を用いた。 PSORTや SOSUIにより、 ァミノ末端のシ グナル配列や膜貫通領域が予測されたアミノ酸配列は分泌、 膜蛋白質であると予 測された。 また、 Pfamによる機能ドメイン検索において、 ある機能ドメインにヒ ッ卜したアミノ酸配列はヒットデ一夕をもとに、 例えば PROSITE(http:〃 www. exp asy.ch/cgi-bin/prosite-list.pl )にある機能カテゴリ一分類を参照にしてその 蛋白質の機能予測することができる。また、 PR0SITEでの機能ドメインの検索も可 能である。 For the deduced amino acid sequence of PLACE1003238, the presence or absence of an amino-terminal signal sequence and the presence or absence of a transmembrane region were predicted, and protein functional domains (motifs) were searched. PSORT [K. Nakai & M. Kanehisa, Genomics, 14: 897-911 (1992)] for the amino-terminal signal sequence, and SOSUI [T. Hiroka a et. Al. Bioinformatics, 14: 378-379 (1998)] (sold by Mitsui Information & Development Co., Ltd.). Pfam (http: //www.sanger.accu/Software/Pfam/index, shtml) was used to search for functional domains. By PSORT and SOSUI, the amino acid sequence whose amino-terminal signal sequence and transmembrane region were predicted was predicted to be secreted and membrane proteins. In the search of functional domains by Pfam, the amino acid sequence hit in a certain functional domain is based on the hit data, for example, PROSITE (http: 〃www.expasy.ch / cgi-bin / prosite-list.pl). The function of the protein can be predicted by referring to one of the functional categories in ()). It is also possible to search for functional domains in PR0SITE.
PLACE1003238は、 SOSUIにより推定アミノ酸配列に膜貫通領域が検出された。ま た Pfajiiにより PLACE1003238の推定アミノ酸配列には 7回膜貫通型受容態度メィン を検出した。 In PLACE1003238, a transmembrane region was detected in the deduced amino acid sequence by SOSUI. In addition, Pfajii detected seven transmembrane receptor attitudes in the deduced amino acid sequence of PLACE1003238.
[実施例 7 ] 全長配列による機能カテゴリ一分類 [Example 7] Classification of functional categories by full-length sequence
PLACE1003238について GenBank、 Swiss-Prot、 UniGeneの各データベースを対象 に行った相同性検索の結果や、 全長塩基配列から推定されたアミノ酸配列に対す るドメイン検索の結果から、 クローン中にコ一ドされるタンパク質の機能予測、 カテゴリー分類を行った。 PLACE1003238は、 分泌 '膜タンパク質、 および糖タン パク質関連夕ンパク質に分類された。 PLACE1003238 is encoded in the clone based on the results of a homology search performed on the GenBank, Swiss-Prot, and UniGene databases, and the results of a domain search for the amino acid sequence deduced from the full-length nucleotide sequence. Protein function prediction and category classification were performed. PLACE1003238 was classified as a secretory 'membrane protein and a glycoprotein-related protein.
[実施例 8 ] [Example 8]
前記実施例で閧示された、 本発明の cDNAクローン (C-PLACE1003238)の塩基配 列をサンガー法にて決定し、 再度の確認を行なつた。
試験方法 The nucleotide sequence of the cDNA clone of the present invention (C-PLACE1003238) shown in the above Examples was determined by the Sanger method, and confirmed again. Test method
( 1 ) 試薬 (1) Reagent
プラスミ ド抽出用試薬キヅト : QIAprep® Spin Miniprep Kit(QIAGEN) 塩基配列解析用試薬キッ ト : ABI PRISM® BigDye Terminator Cycle Sequencin g Kit (PE Biosys terns) Reagent kit for plasmid extraction: QIAprep® Spin Miniprep Kit (QIAGEN) Reagent kit for nucleotide sequence analysis: ABI PRISM® BigDye Terminator Cycle Sequence Kit (PE Biosysterns)
塩基配列解析用ォリゴヌクレオチドブラィマ一: CP38-1から CP38-6までが C-PL Oligonucleotide primer for nucleotide sequence analysis: CP-38 from CP38-1 to CP38-6
ACE1003238用のプライマーである。 また、 T7及び M13 Reverseはベクター上の、 共 通塩基配列解析用ォリゴヌクレオチドプライマ一である。 各プライマ一の塩記配 列を以下に示した。 Primer for ACE1003238. T7 and M13 Reverse are oligonucleotide primers for analyzing common nucleotide sequences on a vector. The salt sequence of each primer is shown below.
CP38-1 : GTGTTTCCTGACACGCATCT/配列番号 : 1 1 CP38-1: GTGTTTCCTGACACGCATCT / SEQ ID NO: 1 1
CP38-2 : CTCTGCAGATACACTTCAGT/配列番号 : 1 2 CP38-2: CTCTGCAGATACACTTCAGT / SEQ ID NO: 1 2
CP38-3 : CATMGTCAGTCAAGCCGAA/配列番号 : 1 3 CP38-3: CATMGTCAGTCAAGCCGAA / SEQ ID NO: 13
CP38-4: TCTGCACMGTGATATGGTA/配列番号 : 1 4 CP38-4: TCTGCACMGTGATATGGTA / SEQ ID NO: 14
CP38-5 : CAAATGGCTTGACCACCTTC/配列番号 : 1 5 CP38-5: CAAATGGCTTGACCACCTTC / SEQ ID NO: 15
CP38-6 : AGGGTGGTGTTCTTTCCTGG/配列番号 : 1 6 CP38-6: AGGGTGGTGTTCTTTCCTGG / SEQ ID NO: 16
T7: TAATACGACTCACTATAGGG/配列番号 : 1 7 T7: TAATACGACTCACTATAGGG / SEQ ID NO: 17
M13 Reverse : CAGGAAACAGCTATGAC /配列番号: 1 8 M13 Reverse: CAGGAAACAGCTATGAC / SEQ ID NO: 18
( 2 ) 組換えプラスミ ドによる大腸菌の形質転換 (2) Transformation of E. coli with recombinant plasmid
1 ) C- PLACE1003238クローンは、 実施例 1に示す方法によりクローニングされ た。 この組換えプラスミ ドを以下に記載する方法で大腸菌 DH5ひ株に導入した。 1) The C-PLACE1003238 clone was cloned by the method described in Example 1. This recombinant plasmid was introduced into E. coli DH5 strain by the method described below.
2 ) DH5ひ株のコンビテントセル (Competent high E. coli DH5ひ:東洋紡) を 1.5 mL用エツペンドルフチューブに 20〃L分注し、 プラスミ ド溶液を極微量 (約 O A j L) 添加して、 氷中に約 30分間静置した。 2) Dispense 20 µL of DH5 strain competent cells (Competent high E. coli DH5 strain: Toyobo) into a 1.5 mL eppendorf tube, and add a very small amount (about OA jL) of the plasmid solution. And placed on ice for about 30 minutes.
3 ) チューブを水浴に浸し、 42°Cにて 45秒間加温した。
4) チューブを氷中に約 2分間静置した。 3) The tube was immersed in a water bath and heated at 42 ° C for 45 seconds. 4) The tube was placed on ice for about 2 minutes.
5) 大腸菌液の 20 Lおよび 200〃Lをアンピシリン (終濃度 100〃g/mL) を含 む寒天培地プレート上にそれぞれ滴下し、 コンラージ棒で広げた。 この寒天培地 プレートを 37°Cにて一晩培養し、 アンビシリン耐性の形質転換株を得た。 5) 20 L and 200 L of the E. coli solution were dropped on agar plates containing ampicillin (final concentration: 100 g / mL), respectively, and spread with a conical rod. This agar medium plate was cultured overnight at 37 ° C. to obtain an ambicilin-resistant transformant.
(3) プラスミ ド抽出 (3) Plasmid extraction
1) 形質転換株を寒天培地プレート上の単離コロニーを採り、 Terrific Broth 培地に植菌して 37°Cにて一晩培養した。 1) An isolated colony on an agar medium plate was collected from the transformant, inoculated on a Terrific Broth medium, and cultured at 37 ° C overnight.
2)培養液を 2 mLエツペンドルフチューブに移し、 遠心分離して集菌した。沈 殿に 250 /Lの P1緩衝液 (キッ卜に添付: RNase Aを含む) を添加して再懸濁し た。 2) The culture was transferred to a 2 mL eppendorf tube and centrifuged to collect the cells. The pellet was resuspended by adding 250 / L P1 buffer (attached to the kit: containing RNase A).
3 ) の P2緩衝液 (キットに添付) を添加して溶菌させた後、 350〃Lの 3) Add P2 buffer solution (attached to the kit) to lyse the cells.
N3緩衝液 (キットに添付) を添加して中和した。 N3 buffer (attached to the kit) was added for neutralization.
4) チューブを 12,000回転にて 10分間遠心した後に、 上清をスピンカラム ( キットに添付) に上層して 12, 000回転にて 1分間遠心した。 4) After centrifuging the tube at 12,000 rpm for 10 minutes, the supernatant was put on a spin column (attached to the kit) and centrifuged at 12,000 rpm for 1 minute.
5) カラムを 750 /Lの PE緩衝液 (エタノールを含む:キッ トに添付) で洗浄 した後、 プラスミ ド MAを 100 /Lの TE緩衝液 (10醒 ol/L トリス塩酸、 1 腿 ol/ L EDTA、 pH 8.0) で溶出した。 5) After washing the column with 750 / L of PE buffer (containing ethanol: attached to the kit), add plasmid MA to 100 / L of TE buffer (10 ol / L Tris-HCl, 1 tmol / L). L EDTA, pH 8.0).
6) プラスミ ド DNA溶液の一部を TE緩衝液で 20倍希釈して (30〃L/570 /L ) 260腦での吸光度を測定し、 DNA濃度を算出した。 6) A portion of the plasmid DNA solution was diluted 20-fold with TE buffer (30 L / 570 / L), and the absorbance at 260 brains was measured to calculate the DNA concentration.
(4) 塩基配列の解析 (4) Analysis of nucleotide sequence
1 )プラスミ ド DNA約 500 n を Polymerase- Chain Reaction (PCR)チューブ内 で 8〃Lのブレミックス (キッ 卜に添付) 、 3.2 pmolの塩基配列決定用プライマ 一、 および精製水と混合して総量 20 Lとし、 PCRを行った。 PCR条件は、 96°C3 分間→96°C10秒間、 50°C5秒間、 60°C4分間を 25サイクル 4°Cに冷却、 とし た。 1) Approximately 500 n of plasmid DNA is mixed with 8 µL of Bremix (attached to the kit), 3.2 pmol of a base sequence determination primer, and purified water in a Polymerase-Chain Reaction (PCR) tube, and the total amount is mixed. 20 L and PCR was performed. The PCR conditions were as follows: 96 ° C for 3 minutes → 96 ° C for 10 seconds, 50 ° C for 5 seconds, 60 ° C for 4 minutes, 25 cycles of cooling to 4 ° C.
2) 0.2mL PCRチューブ上にセッ トした 96穴カラムに PCR産物を上層し、 2,000
回転で 5分間遠心して未反応の dNTPを除いた後、 陰圧下で乾燥させた。 96穴力 ラムは、 96穴フィル夕一プレート (マルチスクリーン- HVプレート : ミリポア) に一定量のカラム粒子 (Sephadex G-50 Medium:アマシャム · フアルマシア ·ノ ィォテク) をカラムローダ一 (マルチスクリーン 45〃Lカラムローダ一: ミリポ ァ) にて分取して充填し、 精製水 300 /Lを添加して約 2時間膨潤させた後、 2, 0 00回転で 5分間遠心したものを用いた。 2) Overlay the PCR product on a 96-well column set in a 0.2 mL PCR tube, and add 2,000 After spinning for 5 minutes to remove unreacted dNTPs, they were dried under negative pressure. The 96-well ram uses a 96-well fill plate (multi-screen-HV plate: Millipore) with a fixed amount of column particles (Sephadex G-50 Medium: Amersham / Pharmacia / Neotech) and a column loader (multi-screen 45〃L). A column loader was collected by fractionation using a millipore), packed with purified water (300 / L), swollen for about 2 hours, and then centrifuged at 2,000 rpm for 5 minutes.
3 )各 PCRチューブに 20〃Lの Template suppression reagent (PE Biosystem s)を添加して乾燥した PCR産物を溶解させた後、 96°Cにて約 2分間加熱し、氷中 で急冷した。 3) After adding 20 µL of Template suppression reagent (PE Biosystems) to each PCR tube to dissolve the dried PCR product, the mixture was heated at 96 ° C for about 2 minutes and rapidly cooled on ice.
4 ) 各チューブを塩基配列解析装置にセットした後、 塩基配列解読のための操 作を行った。 本機器の運転方法は、 製作会社により作成された使用マニュアルに 従った。 4) After setting each tube on the base sequence analyzer, the base sequence was analyzed. The operation method of this device followed the usage manual prepared by the manufacturing company.
塩基配列解析の結果、 C-PLACE1003238の塩基配列は前記の実施例の結果と一致 した。 As a result of the nucleotide sequence analysis, the nucleotide sequence of C-PLACE1003238 was consistent with the result of the above-mentioned Example.
同配列は 1077塩基の 0RF (配列番号: 1の第 362番目から第 1435番目) を持 つ。 0RFから予想されるアミノ酸配列 (358アミノ酸、 配列番号: 2 ) は、 G蛋白 質共役型受容体の特徴である 7個の膜貫通ドメインと思われる疎水性領域を有し ていた。 図 1から 3を参照のこと。 このことから、 本遺伝子が G蛋白質共役型受 容体をコードすることが示唆された。 This sequence has 1077 bases of 0RF (from 362 to 1435 of SEQ ID NO: 1). The amino acid sequence deduced from 0RF (358 amino acids, SEQ ID NO: 2) had a hydrophobic region thought to be seven transmembrane domains characteristic of a G protein-coupled receptor. See FIGS. 1-3. This suggested that this gene encodes a G protein-coupled receptor.
[実施例 9 ] [Example 9]
C-PLACE1003238の塩基配列から推定されるアミノ酸配列を、 GenBankに対して BLAST2.05 (Nucleic Acids Res. , 25, p3389— 3402, 1997) を用いて検索した 。 その結果を図 1から 3に示した。 また、 代表的な既知の G蛋白質共役型受容体 との結果を表 1に再掲した。
表 1 The amino acid sequence deduced from the nucleotide sequence of C-PLACE1003238 was searched against GenBank using BLAST2.05 (Nucleic Acids Res., 25, p3389-3402, 1997). The results are shown in Figs. Table 1 shows the results with typical known G protein-coupled receptors. table 1
C-PLACE1003238から推定されるァミノ酸配列は既知の G蛋 S質共役型受容体に 対して相同性がそれほど高くないことから、 本遺伝子によりコードされる蛋白質 は G蛋白質共役型受容体として新規なものであることが示唆された。 Since the amino acid sequence deduced from C-PLACE1003238 is not very high in homology to known G protein-coupled receptors, the protein encoded by this gene is a novel G protein-coupled receptor. Was suggested.
[実施例 1 0 ] [Example 10]
本発明の新規 G蛋白質共役型受容体の遺伝子である C-PLACE1003238のヒト正 常組織での発現部位を検討した。 The expression site of C-PLACE1003238, a novel G protein-coupled receptor gene of the present invention, in normal human tissues was examined.
試験方法 Test method
( 1 ) 試薬 (1) Reagent
C-PLACE1003238発現解析用 polymerase chain reaction (PCR)プライマ一:セ ンスプライマーおよびアンチセンスプライマ一は遺伝子解析ソフトウエア Vecto r NTI ver.5.2 (Informax) を用いて設計'製造した。 プライマーの塩基配列を以 下に示す。 このプライマ一は、 113塩基対の PCR産物を生成する。 マ一 : AGTCACCTATGTGMCAGCT/配列番号: 1 9 Polymerase chain reaction (PCR) primer for C-PLACE1003238 expression analysis: A sense primer and an antisense primer were designed and manufactured using gene analysis software Vector NTI ver.5.2 (Informax). The nucleotide sequences of the primers are shown below. This primer produces a 113 base pair PCR product. MA: AGTCACCTATGTGMCAGCT / SEQ ID NO: 19
ライマー: ACTGACTTATGAATTGCCTG/配列番号: 2 0 ヒト RAPID- SCAN™ GENE EXPRESSION PANEL: 24種のヒト組織 niRNAに由来す る cDNAを 4段階の濃度で 96ゥエルプレート中に調製したもの (OriGene Techn ologies Inc. ) を用いた。 DNA polymeraseは、 TaKaRa LA Taq™ (宝酒造) を使用
した Primer: ACTGACTTATGAATTGCCTG / SEQ ID NO: 20 Human RAPID-SCAN ™ GENE EXPRESSION PANEL: cDNA prepared from 24 types of human tissue niRNA at a 4-step concentration in a 96-well plate (OriGene Technologies Inc. ) Was used. DNA polymerase uses TaKaRa LA Taq ™ (Takara Shuzo) did
(2) PCR反応 (2) PCR reaction
1) RAPID- SCA プレートを 4°Cから室温に移し、 静置した。 1) The RAPID-SCA plate was moved from 4 ° C to room temperature and left still.
2) 以下の組成の反応溶液を 15 mLファルコンチューブ内に調製し、 氷中で保 冷した。 2) A reaction solution having the following composition was prepared in a 15 mL Falcon tube, and kept in ice.
10 LA Taq PCR緩衝液 * 300 zL 10 LA Taq PCR buffer * 300 zL
25mM MgCl2 300 iL 25mM MgCl 2 300 iL
dNTP (各 2 mM) * 300> L dNTP (2 mM each) * 300> L
センスフ。ライマ- (10 pmol/ /L) 120^ Sensev. Lima (10 pmol / / L) 120 ^
アンチセンスフ。ライマ- (10 pmol/ /L) 120 JLLL Antisense. Lima (10 pmol / / L) 120 JLLL
精製水 1848 /L Purified water 1848 / L
3000 zL 3000 zL
*酵素に添付された試薬を使用した < * Using the reagent attached to the enzyme <
3) RAPID- SCANプレートの 1ゥエルあたり、 調製した反応溶液を ずつ分 注し、 ミネラルオイルを 2,3滴 重層した。 3) The prepared reaction solution was dispensed per 1-well of the RAPID-SCAN plate, and a few drops of mineral oil were overlaid.
4) プレートをブラスティックカバーシートで被い、 15分間氷上で静置した。 4) The plate was covered with a plastic cover sheet and left on ice for 15 minutes.
5) プレートをサ一マルサイクラ一 (PCR Thermal Cycler MP:宝酒造) にセッ トし、 以下の運転プログラムで反応させた。 すなわち、 95°C2分間を 1サイクル →95°C15秒間、 55°C30秒間、 72°C 1分間を 35サイクル 72°C 5分間を 1サイク ル、 とした。
(3) ァガロースゲル電気泳動 5) The plate was set on a thermal cycler (PCR Thermal Cycler MP: Takara Shuzo) and reacted with the following operation program. That is, one cycle of 95 ° C for 2 minutes → 35 cycles of 95 ° C for 30 seconds, 55 ° C for 30 seconds, 35 cycles of 72 ° C for 1 minute, and one cycle of 72 ° C for 5 minutes. (3) Agarose gel electrophoresis
1) PCR産物 6 Lを 1〃Lの 6x泳動用色素液と混合し、 泳動装置 Mupid (コス モバイオ) にセヅトした 3%ァガロースゲル(Nusieve 3:1 agarose, FMC BioPr oducts) にアプライした。 1) 6 L of the PCR product was mixed with 1 L of 6x electrophoresis dye solution, and applied to a 3% agarose gel (Nusieve 3: 1 agarose, FMC BioProducts) set in an electrophoresis apparatus Mupid (Cosmo Bio).
2) 100 Vの定電圧で 40分間泳動した。 なお、 泳動用緩衝液にはトリス-ホウ 酸緩衝液を用いた。 2) Electrophoresed at a constant voltage of 100 V for 40 minutes. The electrophoresis buffer used was a tris-borate buffer.
3) 紫外線照射下で PCR産物の泳動像を撮影した。 3) Electrophoresis images of PCR products were taken under UV irradiation.
1 ngの cDNAを錶型に用いて PCR産物の電気泳動を行い、 本発明の C-PLACE100 3238のヒト正常組織での発現分布を確認した。その結果、 C-PLACE1003238クロー ンに相当する遺伝子の発現は、 以下の順であった (表 2) 。 表 2 Using 1 ng of the cDNA for type III, the PCR product was subjected to electrophoresis, and the expression distribution of C-PLACE100 3238 of the present invention in normal human tissues was confirmed. As a result, the expression of the gene corresponding to C-PLACE1003238 clone was in the following order (Table 2). Table 2
E実施例 1 1 ] E Example 11]
ヒト新規 cDNAクローン C- PLACE1003238の病態への関与を推定することを目的 として、 ヒト癌組織並びにアルツハイマー病脳組織における発現量を正常組織に おける発現量と比較検討した。 In order to estimate the involvement of the novel human cDNA clone C-PLACE1003238 in the pathological condition, the expression level in human cancer tissues and Alzheimer's disease brain tissues was compared with that in normal tissues.
試験方法 Test method
( 1) 試薬 (1) Reagent
Polymerase chain reaction (PCR)用プライマ一: C-PLACE1003238発現解析用
センスプライマ一およびアンチセンスブラィマ一は、 ともに前の実施例で設計し たものを用いた。 また、 内在性コントロールとしてヒト glyceraldehyde 3-phosp hate dehydrogenase (G3PDH) を用いた。その発現解析用に使ったプライマ一の配 列を以下に示す。 センスプライマ一 : ACCACAGTCCATGCCATCAC/配列番号: 2 1 アンチセンスプライマー: TCCACCACCCTGTTGCTGTAZ配列番号: 2 2 なお、 本プライマーセットは、 452塩基対の PCR産物を生成する。 Primer for Polymerase chain reaction (PCR): For expression analysis of C-PLACE1003238 Both the sense primer and the antisense primer used in the previous example were designed. In addition, human glyceraldehyde 3-phosphate dehydrogenase (G3PDH) was used as an endogenous control. The primer sequences used for the expression analysis are shown below. Sense primer: ACCACAGTCCATGCCATCAC / SEQ ID NO: 21 Antisense primer: TCCACCACCCTGTTGCTGTAZ SEQ ID NO: 22 This primer set generates a 452 base pair PCR product.
患者組織由来 cDNA :前立腺、 結腸、 胃、 滕臓、 精巣、 及び脳腫瘍由来の cDNA について、 正常人及び癌患者由来の対応する組織由来の cDNAを BioChain Insti tuteから購入して用いた。 アルツハイマー病患者由来の cDNAについて、 アルヅ ハイマ一病患者および正常成人の前頭葉及び海馬に由来する cDNAを BioChain In stituteから購入して用いた。 CDNA from patient tissues: For cDNAs from prostate, colon, stomach, ligament, testis, and brain tumor, cDNAs from the corresponding tissues from normal humans and cancer patients were purchased from BioChains Institute and used. Regarding cDNA derived from Alzheimer's disease patients, cDNAs derived from the frontal lobe and hippocampus of Alzheimer's disease patients and normal adults were purchased from BioChain Institute and used.
DNAポリメラ一ゼは、 TaKaRa LA Taq™ (宝酒造) を用いた。 The DNA polymerase used was TaKaRa LA Taq ™ (Takara Shuzo).
( 2 ) PCR反応 (2) PCR reaction
1 )以下の組成のマス夕一 mix反応溶液を 1.5 mLエツペンドルフチューブ内に 調製し、 氷中で保冷した。 1) A reaction mixture of the following composition was prepared in a 1.5 mL eppendorf tube and kept on ice.
10 XLA Taq PCR緩衝液 * 50〃L 10 XLA Taq PCR buffer * 50 〃L
25mM MgCl2 50 /L 25mM MgCl 2 50 / L
dNTP (各 2 mM) * 50//L dNTP (2 mM each) * 50 // L
センスフ。ライマ- (10 pmol/^L) 20 iL Sensev. Lima-(10 pmol / ^ L) 20 iL
アンチセンスフ。ライマ- (10 pmol/AiL) 20 μ.
精製水 288〃LAntisense. Lymer (10 pmol / AiL) 20 μ. Purified water 288〃L
総量 480 /L Total volume 480 / L
*酵素に添付された試薬を使用した。 * The reagent attached to the enzyme was used.
2 ) PCR用 8連チューブ 200 L入りに 24〃Lづっ分注後、 錶型 DNAを各々; l〃L 入れ、 キヤップを閉めサ一マルサイクラ一(PCR Thermal Cyc ler MP:宝酒造) に セットし、 以下の運転プログラムで反応させた。すなわち、 95°C 2分間を 1サイ クル 95°C15秒間、 55°C30秒間、 72°C1分間を 25サイクル (G3PDH) または 40 サイクル (C-PLACE1003238) →72°C5分間を 1サイクル、 とした。 2) After dispensing 24〃L into 200L of 8-tube tubes for PCR, add each of DNA-type DNA; add l 各 々 L, close the cap, set in a thermal cycler (PCR Thermal Cycler MP: Takara Shuzo), The reaction was performed by the following operation program. That is, 95 ° C for 2 minutes, 1 cycle 95 ° C for 15 seconds, 55 ° C for 30 seconds, 72 ° C for 1 minute, 25 cycles (G3PDH) or 40 cycles (C-PLACE1003238) → 72 ° C, 5 minutes for 1 cycle .
( 3 ) ァガロースゲル電気泳動 (3) Agarose gel electrophoresis
1 ) PCR産物 6〃Lを 1〃Lの 6 x泳動用色素液と混合し、 泳動装置 Mupid (コス モバイオ) にセヅ卜した 1 %または 3%ァガロースゲル (Nusieve 3 : 1 agarose, FMC BioProducts) にアプライした (それぞれ、 G3PDHと C-PLACE1003238) 。 1) 1% or 3% agarose gel (Nusieve 3: 1 agarose, FMC BioProducts) prepared by mixing 6 μL of PCR product with 1 μL of 6 × electrophoresis dye solution and setting in a electrophoresis apparatus Mupid (Cosmo Bio) (G3PDH and C-PLACE1003238, respectively).
2 ) 100 Vの定電圧で 40分間泳動した。 2) Electrophoresis was performed at a constant voltage of 100 V for 40 minutes.
3 ) 紫外線照射下で PCR産物の泳動像を撮影した。 内部標準である G3PDHの cDNA量を指標として、各サンプルの濃度を均一にした 。 G3PDHを PCR増幅し電気泳動を行ったのち、 目測で DNA量を判定し濃度の高い ものを希釈することにより濃度差を減少させた。 これを繰り返すことにより、 G 3PDHの cDNA量が電気泳動上ほとんど差がないところまで調整した。 3) Electrophoresis images of PCR products were taken under UV irradiation. The concentration of each sample was made uniform using the amount of cDNA of G3PDH as an internal standard as an index. After PCR amplification of G3PDH and electrophoresis, the amount of DNA was determined by visual inspection, and the concentration difference was reduced by diluting the higher concentration. By repeating this, the amount of G3PDH cDNA was adjusted to a level where there was almost no difference in electrophoresis.
次に、 C- PLACE1003238 遺伝子の病態での発現変化を検討するために、 上記の 標準化された錶型 cDNAを用いて、 C-PLACE1003238の PCR反応を行った。結果を 表 3に示す。
表 3 Next, in order to examine the change in expression of the C-PLACE1003238 gene in the pathological condition, a PCR reaction of C-PLACE1003238 was performed using the standardized type III cDNA described above. Table 3 shows the results. Table 3
腫瘍組織での C-PLACE1003238 の発現を正常人での発現と比較した結果、 正常 人では結腸及び膝臓においてほとんど発現していなかったが、 結腸癌及び滕臓癌 では強く発現していることが分かった。 また、 同様にアルツハイマー病患者の脳 (前頭葉及び海馬)における C-PLACE1003238遺伝子の発現量を正常成人における 発現量と比較した結果、 正常人では前頭葉及び海馬で発現が見られるが、 アルヅ ハイマー病患者の前頭葉では発現が減少し、 海馬では増加していることが分かつ た。 Comparison of the expression of C-PLACE1003238 in tumor tissue with that in normal subjects showed that the expression was almost nonexistent in colon and knee in normal subjects, but was strongly expressed in colon and Teng cancer. Do you get it. Similarly, when the expression level of the C-PLACE1003238 gene in the brain (frontal lobe and hippocampus) of Alzheimer's disease patients was compared with that in normal adults, the expression was found in the frontal lobe and hippocampus in normal subjects, but in the Alzheimer's disease patients It was found that expression decreased in the frontal lobe and increased in the hippocampus.
本発明の C-PLACE1003238は癌の診断(結腸癌、 滕臓癌、 精巣癌) ゃァルツハイ マ一病の診断、 さらには予防 ·治療薬のスクリーニングに応用できる可能性のあ ることが示唆された。 It has been suggested that the C-PLACE1003238 of the present invention may be applicable to the diagnosis of cancer (colon cancer, Tengler cancer, testis cancer), the diagnosis of Alzheimer's disease, and the screening of preventive and therapeutic drugs. .
[実施例 1 2 ] [Example 12]
本発明の cDNAを担持するべクタ一を構築した。 C-PLACE1003238の翻訳開始コド ン ATGの数塩基上流部から stopコドンを含む下流部分までを PCRにより増幅し、 発現べクタ一 pCEP4へのサブクローニングを行った。 産業上の利用の可能性 A vector carrying the cDNA of the present invention was constructed. From the base several nucleotides upstream of the translation initiation codon ATG of C-PLACE1003238 to the downstream containing the stop codon was amplified by PCR and subcloned into the expression vector pCEP4. Industrial applicability
本発明により、 新規な G蛋白質共役型受容体 (C- PLACE1003238) 、 当該蛋白質 をコードする遺伝子、 当該遺伝子を含むベクター、 当該ベクターを含む宿主細胞
、 当該蛋白質の製造方法が提供された。 さらに、 当該蛋白質の活性を修飾する化 合物のスクリーニング方法が提供された。 すなわち、 当該遺伝子やその翻訳産物 である蛋白質は、 リガンドのスクリーニングや医薬品として有用なァゴニストぁ るいはアン夕ゴニストのスクリーニングに使用できる。 本発明の蛋白質やその遺 伝子、 または蛋白質の活性を修飾する化合物は、 本発明の G蛋白質共役型受容体 蛋白質が関与する疾患の新しい予防または治療剤の開発への利用が期待される。
According to the present invention, a novel G protein-coupled receptor (C-PLACE1003238), a gene encoding the protein, a vector containing the gene, a host cell containing the vector And a method for producing the protein. Furthermore, a method for screening a compound that modifies the activity of the protein was provided. That is, the gene or a protein that is a translation product thereof can be used for screening for ligands or for screening agonists or angelic gonists useful as pharmaceuticals. The protein of the present invention, its gene, or a compound that modulates the activity of the protein is expected to be used for the development of a new preventive or therapeutic agent for a disease associated with the G protein-coupled receptor protein of the present invention.