WO2001008849A1 - Reinforced abrasive wheels - Google Patents
Reinforced abrasive wheels Download PDFInfo
- Publication number
- WO2001008849A1 WO2001008849A1 PCT/IB2000/001021 IB0001021W WO0108849A1 WO 2001008849 A1 WO2001008849 A1 WO 2001008849A1 IB 0001021 W IB0001021 W IB 0001021W WO 0108849 A1 WO0108849 A1 WO 0108849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheel
- diameter
- polygon
- reinforcement layer
- abrasive
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D7/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
- B24D7/16—Bushings; Mountings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D5/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
- B24D5/16—Bushings; Mountings
Definitions
- Abrasive wheels are generally formed by bonding together abrasive grains or particles with a bonding material, typically a resin. Such wheels are employed in grinding operations. For example, "thin" wheels are used in cutoff and snagging operations and may be used without external cooling. Thin abrasive wheels may have no reinforcement or they may be fabric or filament reinforced. Thin abrasive wheels can have full or partial (zone) reinforcement.
- Flat (Type 1) wheels typically are held between two flanges of equal size and mounted on the rotating spindle of a machine.
- Depressed center abrasive wheels are characterized by a displacement of the central portion (or the hub) of the wheel with respect to the periphery of the wheel.
- One face of the wheel has a depressed central portion, while the other face exhibits a raised center.
- depressed center wheels are mounted on angle machines between two flanges: a rear flange, facing the raised central portion or the raised hub of the wheel, and a front flange. While the front flange fits entirely within the depressed center, the back flange typically covers the raised center and extends beyond it onto the flat portion of the wheel .
- Hub assemblies hold the wheel between the two flanges for mounting it onto the spindle of a grinding machine.
- a hub assembly has two parts, each generally corresponding to the rear and front flange, and are held together by a threaded nut.
- the two pieces are bonded to the wheel by using an epoxy resin.
- a one-piece hub assembly which is integrally molded to the wheel has also been developed.
- the mounting assemblies are sufficiently inexpensive to allow discarding the mounting hub along with the worn-out wheel.
- abrasive wheels are operated at high rotational speeds and used against hard materials such as steel and other metals, masonry or concrete, they must be capable of withstanding these conditions and of operating safely. Furthermore, since they wear out and need to be replaced, keeping their cost of manufacturing low is also important. Because maximum stress occurs at or near the center of the hub, the hub portion of the wheel usually contains additional reinforcing material, typically one or more circles of fiberglass cloth extending approximately to the juncture of the hub and the grinding face of the wheel. Typically, about one-third of the fiberglass cloth is wasted in cutting these circles.
- the present invention relates to an abrasive wheel assembly including a wheel having a rear face and a front face.
- the assembly also includes a rear flange at the rear face of the wheel and a front flange at the front face of the wheel.
- a reinforcement layer having a polygonal shape such as a hexagon. The largest diameter of the reinforcement layer is no greater than 75% of the outer diameter of the wheel.
- the present invention also relates to a depressed center abrasive wheel assembly.
- the assembly comprises an abrasive wheel having two faces.
- the rear face includes a raised hub and a flat rear wheel region while the front face includes a depressed center and a flat front wheel region.
- the assembly further comprises a rear flange covering the raised center and a front flange positioned at the depressed center.
- the present invention is also related to an abrasive wheel assembly comprising a flat wheel which is not internally reinforced and has a rear face and a front face.
- the assembly also includes a rear flange at the rear face of the wheel and a front flange at the front face of the wheel.
- a reinforcement layer having the shape of a triangle, square, pentagon, hexagon, octagon or other polygon. The largest diameter of the reinforcement layer is no greater than 75% of the outer diameter of the wheel.
- the wheel is a flat wheel.
- the present invention is also related to a reinforced abrasive flat wheel assembly comprising a wheel which is internally reinforced and has a rear face and a front face.
- the assembly also includes a rear flange at the rear face of the wheel and a front flange at the front face of the wheel. Between the front face of the wheel and the front flange, there is a reinforcement layer having the shape of a pentagon, hexagon or octagon. The largest diameter of the reinforcement layer is no greater than 75% of the outer diameter of the wheel.
- the reinforcement layer provides additional strength to the wheel assembly.
- the layer also forms a pad between the front flange and the depressed center of the wheel, thereby minimizing any empty space that might exist between the wheel front face and the front flange. Since the layer is 75% or less of the outer wheel diameter, savings in layer materials are obtained. Also, since the layer is typically cut from cloth, shapes such as, for example, hexagons provide significant reductions in the waste of cloth material, thereby significantly lowering the manufacturing cost of wheel assemblies.
- Figure 1 is a plan view of a wheel and a reinforcement layer of one embodiment of the invention.
- Figure 2 is a cross-sectional view of a rear flange, abrasive wheel and front flange of an embodiment of the invention.
- Figure 3 is a cross sectional view of the embodiment represented in Figure 2 and showing an assembled wheel arrangement.
- Figure 4 is a cross sectional view of one embodiment of the invention.
- Figure 5 is a cross sectional view of an unreinforced flat wheel.
- FIG. 6 is a cross-sectional view of a zone-reinforced wheel.
- Figure 1 is a plan view of one embodiment of the invention.
- abrasive wheel 10 includes front face 20.
- Abrasive wheel 10 can be of a flat or depressed-center type.
- Reinforcement layer 14 overlays front face 20 of abrasive wheel 10.
- Reinforcement layer 14 is concentric with abrasive wheel 10.
- Both abrasive wheel 10 and reinforcement layer 14 have orifice or arbor hole 16 which generally allows mounting abrasive wheel 10 and reinforcement layer 14 onto the rotating spindle of a machine.
- Reinforcement layer 14 has the shape of a hexagon.
- the hexagonal shape minimizes wasted material.
- Other polygonal shapes can also be employed. Among them, shapes such as triangles and squares also minimize wasted material when cut from cloth.
- a hexagonal shape is preferred.
- polygons such as pentagons, octagons, can be employed. Because a small amount of fabric waste occurs while cutting polygons such as, for example, pentagons or octagons, these shapes are less desirable than the shapes discussed above, but are more desirable than circular shapes.
- the reinforcement layer has a polygon largest diameter and a polygon smallest diameter.
- the largest polygon diameter is the diameter of a circle circumscribing the polygon, while the smallest diameter is the diameter of a circle inscribed or circumscribed within the polygon.
- reinforcement layer 14 only partially covers front face 20 of abrasive wheel 10, and is dimensioned so that its largest diameter is smaller than outer wheel diameter 18.
- reinforcement layer 14 has a polygon largest diameter no greater than about 75% of outer wheel diameter 18. In another embodiment, the polygon largest diameter is no greater than about 66% of outer wheel diameter 18. In yet another embodiment, reinforcement layer 14 has a polygon smallest diameter that is at least about 50% of outer wheel diameter 18. In still another embodiment of the invention, the polygon smallest diameter is at least about 25% of outer wheel diameter 18.
- Reinforcement layer 14 typically is in the form of a pad or mat. In one embodiment, reinforcement layer 14 is fabricated from cloth or from other suitable materials. In a preferred embodiment, reinforcement layer 14 includes fiberglass cloth.
- One or more polygonal reinforcement layers can be employed in the abrasive wheel assembly of the invention.
- the polygonal reinforcement layer of the invention is external to the body of the wheel and is applied onto front surface 20 (grinding face surface) of abrasive wheel 10.
- a second reinforcement layer also external to the body of the wheel, can be applied between a rear face of abrasive wheel 10 and a rear flange.
- This second reinforcement layer, at the rear face of the wheel can be circular or can have one of the polygonal shapes discussed above. It can be of a suitable material, which can be the same or different from the material used to fabricate reinforcement layer 14 between front face 20 of abrasive wheel 10 and a front flange (not shown).
- the body of abrasive wheel 10 itself can contain one or more discs of fiber reinforcement which are embedded within the wheel.
- such wheels are referred to as reinforced wheels, internally reinforced wheels or wheels having internal reinforcement.
- Methods for incorporating internal reinforcements within the body of abrasive wheels are known in the art. For example, embedding cloth discs within the body of the wheel is disclosed in U.S. Patent No. 3,838,543, issued on October 1, 1974 to H. G. Lakhani, the contents of which are incorporated by reference herein in their entirety.
- One embodiment of the invention is related to depressed-center abrasive wheels, which are also known as raised hub (or raised center) wheels. This embodiment is illustrated in Figures 2 and 3.
- FIG. 2 is a cross sectional view of an abrasive wheel 10, rear flange 40 and front flanges 50.
- Abrasive wheel 12 is a depressed-center abrasive wheel and, optionally, can be internally reinforced.
- Abrasive wheel 10 includes rear face 12 and front face 20.
- Rear face 12 includes raised hub 24 and outer flat rear wheel region 26.
- Raised hub 24 further includes a raised hub flat surface 28 and raised hub tapering surface 30 which tapers outwardly to outer flat rear wheel region 26.
- Front face 20 includes depressed center 32 and outer flat front wheel region 34.
- Depressed center 32 further includes depressed center flat surface 36 and a depressed center tapering surface 38 which tapers outwardly to outer flat front wheel region 34.
- raised hub flat surface 28 is parallel to depressed center flat surface 36 and raised hub tapering surface 30 is parallel to depressed center tapering surface 38.
- Reinforcement layer 14 is at depressed center 32.
- Reinforcement layer 14 can have any polygonal shape. Preferred shapes include, but are not limited to triangles, squares, pentagons, hexagons and octagons.
- reinforcement layer 14 is cut from fiberglass cloth material.
- a second reinforcement layer (not shown) can be employed at raised hub 24.
- Rear flange 40 generally conforms to raised hub 24 and partially extends onto outer flat rear wheel region 26. Accordingly, rear flange 40 has a recessed region 42 corresponding to raised hub 24 and is dimensioned to fit over raised hub 24. Recessed region 42 has first rear flange flat portion 44, designed to fit over raised hub flat surface 28, and rear flange tapering portion 46, designed to fit over raised hub tapering surface 30. Rear flange 40 further includes second rear flange flat portion 48 partially extending onto outer flat rear wheel region 26.
- Front flange 50 includes flat member 52 and front flange body 54. Front flange 50 fits entirely within depressed center 32. Front flange body 54 includes threads 56 for engaging onto a machine rotating spindle (not shown).
- Figure 3 is a cross sectional view of depressed-center wheel assembly 58 and reinforcement layer 14, which is positioned between front face 20 of abrasive wheel 10 and front flange 50.
- Means 60 for holding together rear flange 40, abrasive wheel 10 and front flange 50 and for mounting them onto a machine rotating spindle, are known in the art, such as is described in U.S. Patent No. 3,136,100 issued to Robertson on June 9, 1964, the teachings of which are incorporated herein by reference in their entirety.
- rear flange 40 and front flange 50 can be manufactured in one piece or from several pieces, as is known in the art.
- the materials used to make abrasive wheel 10, rear flange 40 and front flange 50 are also known in the art.
- depressed-center 32 preferably is entirely covered by reinforcement layer 14.
- depressed-center flat surface 36 and depressed-center tapering surface 38 are both covered with reinforcement material.
- tips of the polygonal reinforcement layer lie on outer flat front wheel region 34.
- reinforcement layer 14 has a polygon largest diameter which is 75% or less than the abrasive wheel 10 diameter. In still another embodiment of the invention, the polygon largest diameter is 66% or less of the abrasive wheel 10 diameter.
- the reinforcement layer also has a polygon smallest diameter.
- the polygon smallest diameter is more than 50% of the abrasive wheel 10 diameter. In another embodiment, the polygon smallest dimension is 25% or more of the abrasive wheel 10 diameter.
- reinforcement layer 14 can be smaller.
- reinforcement layer 14 can cover only flat surface 36 of depressed center 32 of a machine-mounted wheel used for flat grinding.
- reinforcement layer 14 covers about 5% of the abrasive wheel 10 diameter.
- reinforcement layer 14 employed in such operations covers about 5% to about 20% of abrasive wheel 10 diameter.
- reinforcement layer 14 has a polygon smallest diameter between about 5% and about 25% of abrasive wheel 10 diameter.
- the arbor is the central axis of the abrasive wheel assembly such as, for example, the rotating spindle on which the abrasive wheel assembly is mounted.
- the invention is also related to hexagonal and other polygonal reinforcement layers used between the front face and the front flange in flat wheel assemblies.
- flat wheels include wheels of Type 1 configuration, such as, for example, Gemini® cut-off wheels available from Norton Company, Worcester, MA. Their size can range, for example, from about 0.75 inches to 72 inches in diameter and they typically are 0.25 inches thick or less.
- Figure 4 is a cross sectional view of flat wheel assembly 62 and reinforcement layer
- Second reinforcement layer 64 is positioned between rear flange 40 and rear face 12 of abrasive wheel 10.
- Second reinforcement layer 64 can have a circular or non-circular shape. It can be, for example, a hexagon or another polygon. It can include any suitable reinforcement material typically used in conjunction with abrasive wheels, such as, for example, fiberglass cloth.
- Abrasive wheel 10 can be of the imreinforced kind, having no internal reinforcement.
- Figure 5 is a cross sectional view of unreinforced flat abrasive wheel 10.
- the body of unreinforced wheel 10 is fabricated by methods and from materials known to those skilled in the art.
- wheel 10 can be reinforced.
- Reinforced wheels can have (internal) fiber (cloth or oriented fiber) reinforcement throughout the full wheel diameter, plus partial (hub) reinforcement.
- Another flat wheel is known as Type W. It is "zone reinforced” with (internal) fiber reinforcement around the arbor hole and flange areas of the wheel (about 50% of wheel diameter).
- Figure 6 is a cross sectional view of zone reinforced wheel 10 having one internal reinforcement disc 64 around arbor hole 16.
- flat wheel assembly 62 includes abrasive wheel 10 which has no internal reinforcement.
- Reinforcement layer 14 can be a triangle, square, pentagon, hexagon, octagon or can have another polygonal shape.
- reinforcement layer 14 includes fiberglass cloth.
- reinforcement layer 14 has a polygonal largest diameter no greater than about 75% of the abrasive wheel diameter. In one embodiment, the polygon largest diameter is no greater than about 66% of the abrasive wheel diameter. In another embodiment of the invention, the polygon smallest diameter is at least about 50% of the abrasive wheel diameter. In still another embodiment of the invention the polygon smallest diameter is about 25% or more of said outer wheel diameter.
- flat wheel assembly 62 includes flat reinforced abrasive wheel 10 which has internal reinforcement.
- Flat wheel assembly 62 includes reinforcement layer 14 between front face 20 of abrasive wheel 10 and front flange 50.
- reinforcement layer 14 has a hexagonal shape and a hexagon largest diameter no greater than about 75% of the abrasive wheel diameter.
- the largest diameter of reinforcement layer 14 is no greater than about 66% of the abrasive wheel diameter.
- Reinforcement layer 14 also has a hexagon smallest diameter. In one embodiment of the invention, the smallest diameter of hexagonal reinforcement layer 14 is at least about 50% of the abrasive wheel diameter.
- the smallest diameter is at least 25% of the abrasive wheel diameter.
- the reinforcement layer includes fiberglass cloth material.
- reinforcement layer 14, positioned between front face 20 of flat reinforced abrasive wheel 10 and front flange 50, can have a pentagonal or octagonal shape.
- the pentagon or octagon largest diameter is no greater than about 75% of the abrasive wheel diameter.
- the performance of the wheel employing a round fiberglass cloth reinforcement layer of 125 mm in diameter was compared with the performance of the wheel employing a hexagonal fiberglass cloth reinforcement layer of 125 mm diagonal length.
- the bursting speed obtained with the round reinforcement layer was between 160 meter/second and 168 meter/second, with an average of 164 meter/second.
- the bursting speed obtained with the hexagonal reinforcement layer was between 157 meter/second and 166 meter/second with an average of 162 meter/second.
- the results indicate that the hexagonal reinforcement layer compares well with a circular reinforcement layer and performs within bursting speed industry standards which, for this type of wheel are set at around 153 meter/second.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
Claims
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001513555A JP2003505263A (en) | 1999-07-29 | 2000-07-24 | Reinforced grinding wheel |
HU0202467A HU226229B1 (en) | 1999-07-29 | 2000-07-24 | Abrasive wheel unit |
MXPA02001084A MXPA02001084A (en) | 1999-07-29 | 2000-07-24 | Reinforced abrasive wheels. |
AU58389/00A AU751602B2 (en) | 1999-07-29 | 2000-07-24 | Reinforced abrasive wheels |
DE60011781T DE60011781T2 (en) | 1999-07-29 | 2000-07-24 | REINFORCED GRINDING WHEELS |
EP00944157A EP1204509B1 (en) | 1999-07-29 | 2000-07-24 | Reinforced abrasive wheels |
CA002379899A CA2379899C (en) | 1999-07-29 | 2000-07-24 | Reinforced abrasive wheels |
AT00944157T ATE269780T1 (en) | 1999-07-29 | 2000-07-24 | REINFORCED GRINDING DISCS |
SK142-2002A SK287268B6 (en) | 1999-07-29 | 2000-07-24 | Reinforced abrasive wheels |
ROA200200081A RO121416B1 (en) | 1999-07-29 | 2000-07-24 | Abrasive wheel |
DK00944157T DK1204509T3 (en) | 1999-07-29 | 2000-07-24 | Reinforced grinding wheels |
BRPI0012835-0A BR0012835B1 (en) | 1999-07-29 | 2000-07-24 | Abrasive wheel assembly. |
NZ516854A NZ516854A (en) | 1999-07-29 | 2000-07-24 | Reinforced abrasive wheels |
NO20020427A NO320742B1 (en) | 1999-07-29 | 2002-01-28 | Reinforced grinding wheels |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36423599A | 1999-07-29 | 1999-07-29 | |
US09/364,235 | 1999-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001008849A1 true WO2001008849A1 (en) | 2001-02-08 |
Family
ID=23433633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2000/001021 WO2001008849A1 (en) | 1999-07-29 | 2000-07-24 | Reinforced abrasive wheels |
Country Status (25)
Country | Link |
---|---|
US (2) | US6749496B2 (en) |
EP (1) | EP1204509B1 (en) |
JP (1) | JP2003505263A (en) |
KR (1) | KR100451686B1 (en) |
CN (1) | CN1156354C (en) |
AR (1) | AR020570A1 (en) |
AT (1) | ATE269780T1 (en) |
AU (1) | AU751602B2 (en) |
BR (1) | BR0012835B1 (en) |
CA (1) | CA2379899C (en) |
CZ (1) | CZ2002349A3 (en) |
DE (1) | DE60011781T2 (en) |
DK (1) | DK1204509T3 (en) |
ES (1) | ES2223542T3 (en) |
HU (1) | HU226229B1 (en) |
MX (1) | MXPA02001084A (en) |
NO (1) | NO320742B1 (en) |
NZ (1) | NZ516854A (en) |
PL (1) | PL204805B1 (en) |
PT (1) | PT1204509E (en) |
RO (1) | RO121416B1 (en) |
SK (1) | SK287268B6 (en) |
TW (1) | TW550141B (en) |
WO (1) | WO2001008849A1 (en) |
ZA (1) | ZA200200705B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6743085B2 (en) | 2001-11-20 | 2004-06-01 | 3M Innovative Properties Company | Rotating back up abrasive disc assembly |
US6863596B2 (en) | 2001-05-25 | 2005-03-08 | 3M Innovative Properties Company | Abrasive article |
WO2015040083A1 (en) * | 2013-09-17 | 2015-03-26 | Rhodius Schleifwerkzeuge Gmbh & Co. Kg | Resin-bonded grinding disk |
US11059148B2 (en) | 2016-09-09 | 2021-07-13 | Saint-Gobain Abrasives, Inc. | Abrasive articles having a plurality of portions and methods for forming same |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW550141B (en) * | 1999-07-29 | 2003-09-01 | Saint Gobain Abrasives Inc | Depressed center abrasive wheel assembly and abrasive wheel assembly |
SI1332834T1 (en) * | 2002-01-24 | 2004-02-29 | Tyrolit Schleifmittelwerke Swarovski Kg | Cut-off wheel with lateral steel plates |
AT502285B1 (en) * | 2004-10-19 | 2008-12-15 | Gissing Gerhard | CIRCUIT RING WITH DOUBLE BOLTING DEVICE |
KR100614913B1 (en) * | 2004-12-17 | 2006-08-25 | (주)넥스컴스 | Membrane housing and its manufacturing method endurable for high pressure using the fiber mixed composition |
US20060185492A1 (en) * | 2005-02-18 | 2006-08-24 | Francois Chianese | Shoulder bushing for saw blades |
US8808412B2 (en) | 2006-09-15 | 2014-08-19 | Saint-Gobain Abrasives, Inc. | Microfiber reinforcement for abrasive tools |
US20120100784A1 (en) | 2006-09-15 | 2012-04-26 | Saint-Gobain Abrasifs | Microfiber Reinforcement for Abrasive Tools |
CA2620706C (en) * | 2007-02-09 | 2012-01-17 | Saint-Gobain Abrasives, Inc. | Universal bushing for abrasive wheels |
DE102008023946B3 (en) * | 2008-05-16 | 2009-04-02 | August Rüggeberg Gmbh & Co. Kg | Rough-grinding wheel |
US8641481B2 (en) | 2008-12-30 | 2014-02-04 | Saint-Gobain Abrasives, Inc. | Reinforced bonded abrasive tools |
EP2177318B1 (en) * | 2009-04-30 | 2014-03-26 | Saint-Gobain Abrasives, Inc. | Abrasive article with improved grain retention and performance |
US8323076B1 (en) * | 2009-06-16 | 2012-12-04 | Bort Tracey A | Backing plate for cut-off discs |
US8408974B2 (en) * | 2009-07-14 | 2013-04-02 | Black & Decker Inc. | Adapter for abrasive cutting wheels |
US8272445B2 (en) * | 2009-07-15 | 2012-09-25 | Baker Hughes Incorporated | Tubular valve system and method |
CN102497959B (en) * | 2009-08-03 | 2015-07-15 | 圣戈班磨料磨具有限公司 | Abrasive tool having controlled porosity distribution |
BR112012002456A2 (en) * | 2009-08-03 | 2016-03-08 | Saint Gobain Abrasifs Sa | abrasive tool that has a particular porosity variation |
CN102107397B (en) * | 2009-12-25 | 2015-02-04 | 3M新设资产公司 | Grinding wheel and method for manufacturing grinding wheel |
WO2012092610A1 (en) * | 2010-12-30 | 2012-07-05 | Saint-Gobain Abrasives, Inc. | Abrasive wheels and methods for making and using same |
EP2658680B1 (en) | 2010-12-31 | 2020-12-09 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles comprising abrasive particles having particular shapes and methods of forming such articles |
US8986409B2 (en) | 2011-06-30 | 2015-03-24 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles including abrasive particles of silicon nitride |
EP2726248B1 (en) | 2011-06-30 | 2019-06-19 | Saint-Gobain Ceramics & Plastics, Inc. | Liquid phase sintered silicon carbide abrasive particles |
BR112014007089A2 (en) | 2011-09-26 | 2017-03-28 | Saint-Gobain Ceram & Plastics Inc | abrasive articles including abrasive particulate materials, abrasives coated using abrasive particle materials and forming methods |
EP2797715A4 (en) | 2011-12-30 | 2016-04-20 | Saint Gobain Ceramics | Shaped abrasive particle and method of forming same |
AU2012362173B2 (en) | 2011-12-30 | 2016-02-25 | Saint-Gobain Ceramics & Plastics, Inc. | Forming shaped abrasive particles |
JP5903502B2 (en) | 2011-12-30 | 2016-04-13 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Particle material with shaped abrasive particles |
US8840696B2 (en) | 2012-01-10 | 2014-09-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
JP5966019B2 (en) | 2012-01-10 | 2016-08-10 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Abrasive particles having complex shape and method for forming the same |
WO2013131009A1 (en) * | 2012-03-02 | 2013-09-06 | Saint-Gobain Abrasives, Inc. | Abrasive wheels and methods for making and using same |
US9242346B2 (en) | 2012-03-30 | 2016-01-26 | Saint-Gobain Abrasives, Inc. | Abrasive products having fibrillated fibers |
CN110013795A (en) | 2012-05-23 | 2019-07-16 | 圣戈本陶瓷及塑料股份有限公司 | Shape abrasive grain and forming method thereof |
US9486896B2 (en) | 2012-06-28 | 2016-11-08 | Saint-Gobain Abrasives, Inc. | Abrasive article and coating |
IN2015DN00343A (en) | 2012-06-29 | 2015-06-12 | Saint Gobain Ceramics | |
US9440332B2 (en) | 2012-10-15 | 2016-09-13 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
CN104994995B (en) | 2012-12-31 | 2018-12-14 | 圣戈本陶瓷及塑料股份有限公司 | Granular materials and forming method thereof |
CA2907372C (en) | 2013-03-29 | 2017-12-12 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US9321184B2 (en) * | 2013-05-09 | 2016-04-26 | Lawrence E Baker | Blade sharpening system for a log saw machine |
EP3013527B1 (en) | 2013-06-28 | 2023-03-01 | Saint-Gobain Abrasives, Inc. | Abrasive article reinforced by discontinuous fibers |
TW201502263A (en) | 2013-06-28 | 2015-01-16 | Saint Gobain Ceramics | Abrasive article including shaped abrasive particles |
CN104249309A (en) | 2013-06-28 | 2014-12-31 | 圣戈班磨料磨具有限公司 | Discontinuous fiber reinforced thin wheel |
EP4159371A1 (en) | 2013-06-28 | 2023-04-05 | Saint-Gobain Abrasives, Inc. | Abrasive article |
AU2014324453B2 (en) | 2013-09-30 | 2017-08-03 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
BR112016015029B1 (en) | 2013-12-31 | 2021-12-14 | Saint-Gobain Abrasifs | ABRASIVE ARTICLE INCLUDING MOLDED ABRASIVE PARTICLES |
US9771507B2 (en) | 2014-01-31 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
MX2016013465A (en) | 2014-04-14 | 2017-02-15 | Saint-Gobain Ceram & Plastics Inc | Abrasive article including shaped abrasive particles. |
WO2015160855A1 (en) | 2014-04-14 | 2015-10-22 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
WO2015184355A1 (en) | 2014-05-30 | 2015-12-03 | Saint-Gobain Abrasives, Inc. | Method of using an abrasive article including shaped abrasive particles |
US9707529B2 (en) | 2014-12-23 | 2017-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
US9914864B2 (en) | 2014-12-23 | 2018-03-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US9676981B2 (en) | 2014-12-24 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle fractions and method of forming same |
US9844853B2 (en) | 2014-12-30 | 2017-12-19 | Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs | Abrasive tools and methods for forming same |
CN107530865A (en) | 2015-03-21 | 2018-01-02 | 圣戈班磨料磨具有限公司 | Milling tool and forming method thereof |
CN107636109A (en) | 2015-03-31 | 2018-01-26 | 圣戈班磨料磨具有限公司 | Fixed abrasive articles and its forming method |
TWI634200B (en) | 2015-03-31 | 2018-09-01 | 聖高拜磨料有限公司 | Fixed abrasive articles and methods of forming same |
EP3307483B1 (en) | 2015-06-11 | 2020-06-17 | Saint-Gobain Ceramics&Plastics, Inc. | Abrasive article including shaped abrasive particles |
RU2709311C2 (en) * | 2015-07-24 | 2019-12-17 | Терри Э. ЛЬЮИС | Thread repair tools and methods for their production and use |
US10189145B2 (en) | 2015-12-30 | 2019-01-29 | Saint-Gobain Abrasives, Inc. | Abrasive tools and methods for forming same |
CN109415615A (en) | 2016-05-10 | 2019-03-01 | 圣戈本陶瓷及塑料股份有限公司 | Abrasive grain and forming method thereof |
WO2017197002A1 (en) | 2016-05-10 | 2017-11-16 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
EP4349896A3 (en) | 2016-09-29 | 2024-06-12 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
EP3642293A4 (en) | 2017-06-21 | 2021-03-17 | Saint-Gobain Ceramics&Plastics, Inc. | Particulate materials and methods of forming same |
EP3421178A1 (en) * | 2017-06-26 | 2019-01-02 | Dronco GmbH | Method of manufacturing an abrasive member, in particular rotary abrasive disc and abrasive member, in particular rotary abrasive disc |
CN114867582B (en) | 2019-12-27 | 2024-10-18 | 圣戈本陶瓷及塑料股份有限公司 | Abrasive article and method of forming the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR880000144B1 (en) * | 1984-10-17 | 1988-03-12 | 신창공업 주식회사 | Holder for grinder and it's manufacturing method |
WO1992000163A1 (en) * | 1990-06-25 | 1992-01-09 | Mackay Joseph H | Disposable finishing article having an integral mounting hub including an improved metal pressure cap |
US5287659A (en) * | 1991-05-17 | 1994-02-22 | Black & Decker Inc. | Tool element subassembly and method of manufacturing same |
JPH1128668A (en) * | 1997-07-04 | 1999-02-02 | Toyoda Mach Works Ltd | Grinding wheel for high speed grinding and its installing method |
DE29908618U1 (en) * | 1999-05-15 | 1999-07-29 | August Rüggeberg GmbH & Co., 51709 Marienheide | Rotatable grinding, cleaning or polishing tool |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1944489A (en) | 1932-07-22 | 1934-01-23 | Bockshe Ely | Grinder |
US2540793A (en) | 1950-04-21 | 1951-02-06 | Super Cut | Rotary saw |
US2726493A (en) | 1953-12-15 | 1955-12-13 | Us Rubber Co | Grinding wheel manufacture |
US3040485A (en) | 1959-07-16 | 1962-06-26 | Tocci-Guilbert Berne | Resilient coupling |
US3146560A (en) | 1960-06-14 | 1964-09-01 | Rexall Drug Chemical | Abrasive products |
US3136100A (en) | 1962-07-11 | 1964-06-09 | Norton Co | Grinding wheel |
US3353306A (en) | 1964-01-31 | 1967-11-21 | Norton Co | Hub mounting for grinding wheels |
US3262230A (en) | 1964-02-10 | 1966-07-26 | Norton Co | Reinforcement of molded abrasive articles |
US3477180A (en) | 1965-06-14 | 1969-11-11 | Norton Co | Reinforced grinding wheels and reinforcement network therefor |
US3528203A (en) | 1968-05-02 | 1970-09-15 | Bendix Corp | Grinding wheel |
US3838543A (en) | 1970-05-25 | 1974-10-01 | Norton Co | High speed cut-off wheel |
US3685215A (en) | 1970-12-04 | 1972-08-22 | Pacific Grinding Wheel Co Inc | Reinforced grinding wheel |
US3939612A (en) | 1971-06-02 | 1976-02-24 | Dresser Industries, Inc. | Reinforced grinding wheel |
US3828485A (en) | 1971-10-12 | 1974-08-13 | Clure C Mc | Reinforced abrasive wheels |
US4069622A (en) | 1972-05-15 | 1978-01-24 | Tyrolit-Schleifmittelwerke Swarovski K.G. | Improvements in or relating to an abrasive wheel |
AT318424B (en) | 1973-04-02 | 1974-10-25 | Swarovski Tyrolit Schleif | Segment grinding wheel |
SE401472B (en) | 1975-07-23 | 1978-05-16 | Slipmaterial Naxos Ab | GRINDING WHEEL CONSISTING OF TWO OR SEVERAL ASSEMBLED GRINDING ELEMENTS |
US4015371A (en) | 1976-04-08 | 1977-04-05 | Machinery Brokers, Inc. | Grinding wheel assembly |
JPS5632293Y2 (en) | 1976-09-13 | 1981-07-31 | ||
US4230461A (en) | 1977-09-29 | 1980-10-28 | Eli Sandman Company | Abrasive wheels |
US4240230A (en) | 1979-01-24 | 1980-12-23 | The Carborundum Company | Throw-away adaptors for grinding wheels |
DE3003666A1 (en) | 1980-02-01 | 1981-08-06 | Richard 4937 Lage Pott | Mechanically laying reinforcements for laminated components - using machine which winds unidirectional layers of filaments for subsequent bonding and cure |
US4350497A (en) | 1980-09-08 | 1982-09-21 | Abraham Ogman | Reinforced grinding device |
US4541205A (en) | 1983-04-08 | 1985-09-17 | United Abrasives, Inc. | Abrasive wheel assembly |
US4774788A (en) | 1986-05-06 | 1988-10-04 | Camel Grinding Wheel Works, Sarid Ltd. | Grinding wheel with a single-piece hub |
KR880000144A (en) | 1986-06-03 | 1988-03-23 | 이행복 | Electrostatic acid resistant vibration damper |
US4729193A (en) | 1986-12-22 | 1988-03-08 | Eugene Gant | Cutting disk mounting assembly |
DE3819199A1 (en) | 1988-06-06 | 1989-12-07 | Leurop Leutheusser Kg | Process for producing round glass fibre blanks for grinding or cutting-off wheels and apparatus for carrying out the process |
US5343656A (en) * | 1989-08-01 | 1994-09-06 | Hurth Maschinen Und Werkzeuge G.M.B.H. | Grinding tool and the like made of a ceramic material coated with extremely hard abrasive granules |
WO1991005636A1 (en) | 1989-10-10 | 1991-05-02 | Tyrolit Schleifmittelwerke Swarovski K.G. | Abrasive cutting disc |
DE4234083A1 (en) | 1992-10-09 | 1994-04-14 | Olbo Textilwerke Gmbh | Method and device for laying threads |
US5431596A (en) | 1993-04-28 | 1995-07-11 | Akita; Hiroshi | Grinding wheel and a method for manufacturing the same |
FR2718380B3 (en) | 1994-04-12 | 1996-05-24 | Norton Sa | Abrasive wheels. |
JP3070474B2 (en) * | 1996-03-28 | 2000-07-31 | 日本電気株式会社 | Electric double layer capacitor and method of manufacturing the same |
US5913994A (en) | 1996-08-30 | 1999-06-22 | Norton Company | Method for fabricating abrasive discs |
US5895317A (en) | 1996-12-18 | 1999-04-20 | Norton Company | Wheel hub for longer wheel life |
TW550141B (en) * | 1999-07-29 | 2003-09-01 | Saint Gobain Abrasives Inc | Depressed center abrasive wheel assembly and abrasive wheel assembly |
-
2000
- 2000-05-11 TW TW089109025A patent/TW550141B/en active
- 2000-06-14 AR ARP000102945A patent/AR020570A1/en active IP Right Grant
- 2000-07-24 RO ROA200200081A patent/RO121416B1/en unknown
- 2000-07-24 MX MXPA02001084A patent/MXPA02001084A/en active IP Right Grant
- 2000-07-24 BR BRPI0012835-0A patent/BR0012835B1/en not_active IP Right Cessation
- 2000-07-24 PL PL364831A patent/PL204805B1/en not_active IP Right Cessation
- 2000-07-24 WO PCT/IB2000/001021 patent/WO2001008849A1/en active IP Right Grant
- 2000-07-24 CN CNB008124639A patent/CN1156354C/en not_active Expired - Fee Related
- 2000-07-24 CZ CZ2002349A patent/CZ2002349A3/en unknown
- 2000-07-24 AU AU58389/00A patent/AU751602B2/en not_active Ceased
- 2000-07-24 SK SK142-2002A patent/SK287268B6/en not_active IP Right Cessation
- 2000-07-24 PT PT00944157T patent/PT1204509E/en unknown
- 2000-07-24 ES ES00944157T patent/ES2223542T3/en not_active Expired - Lifetime
- 2000-07-24 NZ NZ516854A patent/NZ516854A/en not_active IP Right Cessation
- 2000-07-24 DK DK00944157T patent/DK1204509T3/en active
- 2000-07-24 CA CA002379899A patent/CA2379899C/en not_active Expired - Fee Related
- 2000-07-24 EP EP00944157A patent/EP1204509B1/en not_active Expired - Lifetime
- 2000-07-24 AT AT00944157T patent/ATE269780T1/en not_active IP Right Cessation
- 2000-07-24 HU HU0202467A patent/HU226229B1/en not_active IP Right Cessation
- 2000-07-24 JP JP2001513555A patent/JP2003505263A/en active Pending
- 2000-07-24 KR KR10-2002-7001145A patent/KR100451686B1/en not_active IP Right Cessation
- 2000-07-24 DE DE60011781T patent/DE60011781T2/en not_active Expired - Lifetime
-
2002
- 2002-01-25 ZA ZA200200705A patent/ZA200200705B/en unknown
- 2002-01-28 NO NO20020427A patent/NO320742B1/en not_active IP Right Cessation
-
2003
- 2003-03-20 US US10/260,014 patent/US6749496B2/en not_active Expired - Fee Related
-
2004
- 2004-04-01 US US10/816,053 patent/US6942561B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR880000144B1 (en) * | 1984-10-17 | 1988-03-12 | 신창공업 주식회사 | Holder for grinder and it's manufacturing method |
WO1992000163A1 (en) * | 1990-06-25 | 1992-01-09 | Mackay Joseph H | Disposable finishing article having an integral mounting hub including an improved metal pressure cap |
US5287659A (en) * | 1991-05-17 | 1994-02-22 | Black & Decker Inc. | Tool element subassembly and method of manufacturing same |
JPH1128668A (en) * | 1997-07-04 | 1999-02-02 | Toyoda Mach Works Ltd | Grinding wheel for high speed grinding and its installing method |
DE29908618U1 (en) * | 1999-05-15 | 1999-07-29 | August Rüggeberg GmbH & Co., 51709 Marienheide | Rotatable grinding, cleaning or polishing tool |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Section PQ Week 199829, Derwent World Patents Index; Class P61, AN 1988-203272, XP002150248 * |
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 05 31 May 1999 (1999-05-31) * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6863596B2 (en) | 2001-05-25 | 2005-03-08 | 3M Innovative Properties Company | Abrasive article |
US6743085B2 (en) | 2001-11-20 | 2004-06-01 | 3M Innovative Properties Company | Rotating back up abrasive disc assembly |
WO2015040083A1 (en) * | 2013-09-17 | 2015-03-26 | Rhodius Schleifwerkzeuge Gmbh & Co. Kg | Resin-bonded grinding disk |
US11059148B2 (en) | 2016-09-09 | 2021-07-13 | Saint-Gobain Abrasives, Inc. | Abrasive articles having a plurality of portions and methods for forming same |
US11583977B2 (en) | 2016-09-09 | 2023-02-21 | Saint-Gobain Abrasives, Inc. | Abrasive articles having a plurality of portions and methods for forming same |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1204509B1 (en) | Reinforced abrasive wheels | |
KR100540863B1 (en) | Abrasive wheels with workpiece vision feature | |
US20120190279A1 (en) | Ventilating insert for abrasive tools | |
AU2002216693A1 (en) | Abrasive wheels with workpiece vision feature | |
EP2363241A1 (en) | Ventilating insert for abrasive tools | |
CA2197796A1 (en) | Electrodeposited diamond wheel | |
EP1797793A2 (en) | Disc brush | |
EP0826462A1 (en) | Flap wheel | |
JP7517769B2 (en) | Abrasive discs and uses of such discs | |
JPS601980Y2 (en) | diamond grinding wheel | |
ZA200304352B (en) | Abrasive wheels with workpiece vision feature. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR CA CN CZ HU ID IN JP KR MX NO NZ PL RO SK ZA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
ENP | Entry into the national phase |
Ref document number: 2002 200200081 Country of ref document: RO Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 58389/00 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1422002 Country of ref document: SK Ref document number: PV2002-349 Country of ref document: CZ Ref document number: IN/PCT/2002/155/CHE Country of ref document: IN Ref document number: 516854 Country of ref document: NZ Ref document number: 1020027001145 Country of ref document: KR Ref document number: 2379899 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2002/001084 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000944157 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 008124639 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020027001145 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2000944157 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: PV2002-349 Country of ref document: CZ |
|
WWG | Wipo information: grant in national office |
Ref document number: 58389/00 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 516854 Country of ref document: NZ |
|
WWG | Wipo information: grant in national office |
Ref document number: 516854 Country of ref document: NZ |
|
WWG | Wipo information: grant in national office |
Ref document number: 2000944157 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1020027001145 Country of ref document: KR |