WO2001007863A1 - Measuring system for determining a distance and a lateral deviation - Google Patents

Measuring system for determining a distance and a lateral deviation Download PDF

Info

Publication number
WO2001007863A1
WO2001007863A1 PCT/EP2000/005112 EP0005112W WO0107863A1 WO 2001007863 A1 WO2001007863 A1 WO 2001007863A1 EP 0005112 W EP0005112 W EP 0005112W WO 0107863 A1 WO0107863 A1 WO 0107863A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
reflector
distance
optical system
light source
Prior art date
Application number
PCT/EP2000/005112
Other languages
German (de)
French (fr)
Inventor
Joachim Tiedecke
Norbert Amann
Original Assignee
Idm Gmbh Infrarot Sensoren
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idm Gmbh Infrarot Sensoren filed Critical Idm Gmbh Infrarot Sensoren
Priority to AU54016/00A priority Critical patent/AU5401600A/en
Publication of WO2001007863A1 publication Critical patent/WO2001007863A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems

Definitions

  • the present invention relates to a measuring device with the features of the preamble of claim 1 and a method for determining the distance and the lateral placement of an object.
  • Such devices and methods are known from practice.
  • generic measuring devices are used to determine the position of gantry cranes on a crane runway. This measurement serves in particular to influence the drive control in two gantry cranes so that the cranes cannot collide with one another.
  • the control of the crane is intervened in such a way that it is gently braked at the end of its career and comes to a standstill.
  • Devices for measuring distance are known which measure the distance from the measuring device to the object on the basis of a transit time of a signal from the measuring device to the measuring object and back.
  • the measurement object is usually equipped with a reflector for accurate measurement of the distance.
  • measuring systems are known which detect the lateral placement of an object in relation to a measuring axis.
  • a sensor has a measuring beam divided into two beams.
  • the energy reflected by the reflector is recorded and measured separately in the two measuring beam halves.
  • the ratio of the energies m to the two measured, reflected measuring beams is proportional to the lateral displacement of the detector from the measuring axis.
  • the measuring system should sit on the moving crane if possible, so that the control signal for the drive motors is immediately available and does not have to be transferred from the fixed crane runway to the moving crane.
  • the reflector must be firmly attached at the end of the crane runway.
  • gantry cranes tend to yaw around the vertical axis, which leads to the measuring axis moving on the reflector. This problem is either solved by designing the measuring beam so large that the reflector is in the area of the measuring beam even with maximum misalignment, or by designing the reflector so large that the measuring beam always hits the reflector reliably.
  • This object is achieved by a device with the features of claim 1 and by a method with the features of claim 10.
  • the transmitting unit has tracking means for pivoting the measuring beam in at least one lateral direction transverse to the measuring beam, a light beam with a relatively small cross section can be directed onto an equally small reflector and upon rotation of the base of the measuring device by one certain greediness can be adjusted.
  • the measuring axis can also be tracked in the event of a lateral migration of the reflector and a stationary measuring device.
  • the reflector can be kept small without fear of significant losses in signal strength, which would lead to limited accuracy.
  • the lateral placement of the size can be easily determined.
  • the beam can be colimized at any distance can be varied so that the reflector is always illuminated over its entire surface, without a significant part of the measuring beam passing the reflector. This measure also leads to good accuracy, since a good measurement signal can be achieved with compact dimensions.
  • a simple mechanical solution results if the light source can be moved in the lateral direction with respect to the optical system and / or the optical system can be moved in the lateral direction with respect to the light source. Provision can also be made for the light source and the optical system to be arranged so as to be pivotable about a common axis. It is generally easy to reach and yet sufficient if the tracking means are set up to cover a swivel range of 1 ° to 5 °.
  • the tracking means are advantageously driven by electromechanical actuators, in particular by piezoelectric transducers or electric servomotors. Depending on the application, the tracking agent can be selected appropriately.
  • the beams can simply be discriminated spatially, temporally, according to their wavelength or according to their polarization. It can also be provided that the receiver receives light from a plurality of spatial regions which are arranged essentially symmetrically to the measuring axis. The solid angle ranges are then selected so that they are aligned essentially symmetrically on the reflector by the tracking means.
  • the receiver can advantageously have a two-quadrant photodiode or a four-quadrant photodiode. Hereby are a measurement of the lateral offset in one direction and, on the other hand, a measurement in two spatial directions are possible.
  • the focal length of the optical system is additionally varied such that the cross section of the measuring beam in the region of the reflector corresponds approximately to the area of the reflector, regardless of the distance. This can be achieved in a simple manner if the focal length is varied as a function of the distance.
  • the lateral placement can be m particularly effective from a control signal for pivoting of the measuring beam can be determined. Overall, it is advantageous for continuous measurements if the method steps are repeated several times, in particular with a high frequency.
  • Figure 1 An inventive device with several options for determining the distance and the lateral placement of a reflector in a schematic representation; such as
  • Figure 2 is a schematic plan view of a gantry crane with an inventive device for determining the distance from an end point of the track.
  • FIG. 1 shows a measuring device according to the invention in a schematic plan view, several embodiments being combined in one illustration.
  • a transmitting and receiving unit 1 comprises a light source 2 for emitting a light beam 3 m in the direction of a measuring axis 4 and a receiver 2 'for receiving reflected light along the measuring axis 4.
  • the light beam 3 passes through an optical system designated 5 overall and is applied to one Reflector 6, 6 ⁇ collimates.
  • the optical system 5 has a total of three lenses, the overall focal length of which can be varied, so that when the reflector 6 is relatively close, the light beam 3 is one Obtaining opening cti to illuminate the reflector 6 approximately m over its entire surface.
  • the light beam receives an opening angle ⁇ 2 which is smaller than the angle oti and illuminates the reflector 6 ⁇ of the greater distance.
  • the light reflected by the reflectors 6, 6 ⁇ is reflected by the same optical system 5 m, the transmitter and receiver unit. There it falls on the receiver 2.
  • the signal transit time is initially used in a manner known per se for determining the distance.
  • the sensor means 2 is set up to detect the position of the generated image on its sensitive surface. For example, two or four quadrant diodes are suitable for this. Suitable diodes are available, for example, under the type designation S3060-02 from the manufacturer Hamamatsu (Japan).
  • optical axes of the systems 5 and 5 which are closely adjacent spatially within the transmitting and receiving unit, practically coincide at real distances of a few meters and form the measuring axis 4.
  • the emitted and / or the reflected measuring beam is divided into two or more partial beams, the backscattered intensity of which is measured in each case.
  • the measuring beam 4 ⁇ migrates with its axis 4 from the center of the reflector 6, the ratio of the intensities changes in proportion to the lateral placement.
  • the total intensity which is available as a measurement signal, decreases when the measurement beam 4 emigrates from the reflector 6.6 ⁇ , so that the Accuracy of measurement suffers.
  • e emigration of the reflector 6 ⁇ in a direction denoted by I is compensated for by pivoting the measuring axis 4.
  • Various options can be implemented in the transmitter and receiver unit for this purpose.
  • a first embodiment consists of the displacement of the optical system 5 by an actuator 7 in a direction II transverse to the measuring axis 4.
  • the second possibility provides an actuator 7 for displacing the light source 2 and the sensor means in a direction III under the influence of an actuator 8 .
  • the entire transmitting and receiving unit 1 can be rotated about a vertical axis 10 via an actuator 9, which is symbolized by the directional arrows IV.
  • the lateral offset of the measurement axis 4 on the reflector 6, measured ⁇ 6 and recovered em control signal therefrom the one or more of the actuators 7, applied 8 or 9 with a control signal, such that the lateral Storage of the measuring beam 4 on the reflector 6, 6 ⁇ is regulated towards zero.
  • a measured value is obtained via the pivoting of the measuring axis 4. From this value and the already determined distance of the reflector 6, 6 ⁇ from the transmitting and receiving unit 1, the lateral placement can then be calculated in a simple manner, for example in length units.
  • the focal length of the optical system 5, 5 can be changed by varying the distance V as in a zoom lens known per se.
  • an actuator (not shown in more detail) with a control or control signal applied.
  • the control is carried out in such a way that the measuring beam illuminates the reflector 6, 6 over all areas.
  • the regulation can take place via a known, optionally calibrated dependency between the focal length of the optical system 5, 5 'and the distance from the reflector 6, 6 ⁇ , so that a suitable angle ⁇ i or ⁇ 2 is set inevitably.
  • a regulation can also be provided which initially selects a larger angle oti than would actually be required and then reduces the angle by increasing the focal length.
  • the scattered intensity increases, since a larger part of the measuring beam is reflected by the reflector 6, 6.
  • a maximum value is reached which does not increase any further. This maximum value is then maintained for the respective distance. This achieves the maximum signal intensity and at the same time the best possible measurement accuracy both for the lateral placement and for the distance.
  • variable focal length (V) which is described in this preferred embodiment, can also be dispensed with insofar as the angle differences oti - ⁇ 2 are small.
  • FIG. 2 shows a schematic top view of the use of a device according to the invention for controlling a gantry crane 20 along a track 21 that ends in the region of a wall 22.
  • a reflector 23 is attached to the wall 22 and corresponds to the reflectors 6, 6 ⁇ from FIG. 1. It is a retroreflector with dimensions of approximately 50 cm ⁇ 50 cm, for example of the Scotchlite type from the manufacturer 3M (USA).
  • the transmitting and receiving unit 1 is fixedly mounted on the portal crane 20 and emits a measuring beam 24 m in the direction of the reflector 23.
  • the distance of the reflector 23 from the transmitting and receiving unit 1 is determined from the transit time of the signal. If the gantry crane 20 is now moved in the direction of its running track 21 m, a yaw movement occurs in practice about a vertical axis 25 of the gantry crane 20, since the drives assigned to the two running tracks 21 cannot be driven absolutely synchronously.
  • the magnitude of this yaw movement can be approximately 1 °.
  • the measuring beam 24 is pivoted in the lateral direction by this angle, so that it migrates from the reflector 23.
  • the measuring beam 24 is then regulated with its measuring axis by one of the three possible acaching devices (actuators 7, 8, 9) back to the center of the reflector 23.
  • the control signal is a measure of the yaw curve of the gantry crane 20. It can be seen that with a track length of 250 m and a yaw curve of only ⁇ 0.25 °, the area of the wall 22 covered by the measuring beam 4 is over 2 m.
  • a transmitting and receiving device equipped without tracking the measuring beam 24 had to have a reflector in 01/07863 _] _] _ _ PCT / EP00 / 05112
  • the present invention thus enables the use of small reflectors 23 that are easy to assemble and require little space. Due to its tracking, the measuring beam always falling centrally on the reflector enables a particularly precise distance measurement due to its high reflected intensity. At the same time, a measure for the yaw angle of the gantry crane 20 is obtained from the tracking signal, which can optionally be used for the synchronous control of the drive motors of the gantry crane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

The invention relates to a measuring device designed for optically measuring the distance and lateral deviation of an object. The device comprises a transmitter (1) composed of a light source (2) for transmitting a measuring beam and an optical system (5) for collimating said measuring beam about a measuring axis (4), a reflector (6, 6', 23) associated with the object, and a receiver (2), whereby the light source (2) is provided with tracking means (7, 8, 9) for scanning the light beam in at least one lateral direction which is transversal to the measuring beam.

Description

Meßsystem zur Erfassung der Entfernung und der lateralen AblageMeasuring system for recording the distance and the lateral placement
Die vorliegende Erfindung betrifft eine Meßvorrichtung mit den Merkmalen des Oberbegriffs des Anspruchs 1 sowie ein Verfahren zur Bestimmung der Entfernung und der lateralen Ablage eines Objekts.The present invention relates to a measuring device with the features of the preamble of claim 1 and a method for determining the distance and the lateral placement of an object.
Derartige Vorrichtungen und Verfahren sind aus der Praxis bekannt. Beispielsweise werden gattungsgemaße Meßvorrichtungen eingesetzt, um die Position von Portalkranen auf einer Kranlaufbahn zu bestimmen. Diese Messung dient insbesondere dazu, bei zwei Portalkranen die Antriebssteuerung so zu beeinflussen, daß die Krane nicht miteinander kollidieren können. Außerdem wird m die Steuerung des Krans derart eingegriffen, daß dieser am Ende seiner Laufbahn sanft abgebremst wird und zum Stillstand kommt. Zur Entfernungsmessung sind Vorrichtungen bekannt, die auf Basis einer Laufzeit eines Signals vom Meßgerat zum Meßobjekt und zurück die Entfernung vom Meßgerat zu dem Objekt gemessen. Zur genauen Messung der Entfernung wird das Meßobjekt üblicherweise mit einem Reflektor ausgestattet. Desweiteren sind Meßsysteme bekannt, die die laterale Ablage eines Objekts zu einer Meßachse erfassen. Ein Sensor hat dabei einen m zwei Strahlen aufgeteilten Meßstrahl. Die von dem Reflektor zurückgeworfene Energie wird dabei m den beiden Meßstrahlhalften separat erfaßt und gemessen. Das Verhältnis der Energien m den beiden gemessenen, reflektierten Meßstrahlen ist dabei proportional zu der lateralen Ablage des Detektors von der Meßachse.Such devices and methods are known from practice. For example, generic measuring devices are used to determine the position of gantry cranes on a crane runway. This measurement serves in particular to influence the drive control in two gantry cranes so that the cranes cannot collide with one another. In addition, the control of the crane is intervened in such a way that it is gently braked at the end of its career and comes to a standstill. Devices for measuring distance are known which measure the distance from the measuring device to the object on the basis of a transit time of a signal from the measuring device to the measuring object and back. The measurement object is usually equipped with a reflector for accurate measurement of the distance. Furthermore, measuring systems are known which detect the lateral placement of an object in relation to a measuring axis. A sensor has a measuring beam divided into two beams. The energy reflected by the reflector is recorded and measured separately in the two measuring beam halves. The ratio of the energies m to the two measured, reflected measuring beams is proportional to the lateral displacement of the detector from the measuring axis.
Bei großen Distanzen, wie sie beispielsweise bei Kranlaufbahnen mit Langen von 250 m und mehr auftreten, soll das Meßsystem möglichst auf dem bewegten Kran sitzen, damit das Regelsignal für die Antriebsmotoren unmittelbar vorliegt und nicht von der festen Kranlaufbahn auf den beweglichen Kran übertragen werden muß. Zu diesem Zweck muß der Reflektor am Ende der Kranlaufbahn fest befestigt werden. Portalkrane neigen aber wie nahezu alle bewegten Systeme zu einer Gierbewegung um die Hochachse, was zu einem Auswandern der Meßachse auf dem Reflektor fuhrt. Dieses Problem wird entweder dadurch gelost, daß der Meßstrahl so groß ausgelegt wird, daß auch bei maximaler Dejustage der Reflektor im Bereich des Meßstrahls liegt, oder daß der Reflektor so groß ausgelegt wird, daß der Meßstrahl immer zuverlässig auf den Reflektor trifft. Beide Losungen fuhren zu Strahlquerschnitten bzw. Reflektorgroßen im Bereich von 1 bis 2 m bei einer angenommenen Lange einer Kranlaufbahn von 250 m und den üblichen Gierwmkeln. Dabei ist problematisch, daß ein stark aufgeweiteter Meßstrahl nur eine relativ geringe Energiemenge reflektiert, die zu Ungenauigkeiten im Meßvorgang auf der Empfangerseite fuhren kann, und daß zum anderen ein Reflektor der beschriebenen Große sehr unhandlich ist.For long distances, such as those occurring in crane runways with lengths of 250 m and more, the measuring system should sit on the moving crane if possible, so that the control signal for the drive motors is immediately available and does not have to be transferred from the fixed crane runway to the moving crane. For this purpose, the reflector must be firmly attached at the end of the crane runway. However, like almost all moving systems, gantry cranes tend to yaw around the vertical axis, which leads to the measuring axis moving on the reflector. This problem is either solved by designing the measuring beam so large that the reflector is in the area of the measuring beam even with maximum misalignment, or by designing the reflector so large that the measuring beam always hits the reflector reliably. Both solutions lead to beam cross-sections or reflector sizes in the range of 1 to 2 m with an assumed length of a crane runway of 250 m and the usual yaw angles. It is problematic that a greatly expanded measuring beam reflects only a relatively small amount of energy, which can lead to inaccuracies in the measuring process on the receiving side, and that, on the other hand, a reflector of the size described is very unwieldy.
Es ist deshalb Aufgabe der vorliegenden Erfindung, ein Meßsystem und ein Meßverfahren bereitzustellen, das auch bei Montage auf einer beweglichen Plattform bei kleinem Reflektor einen Meßstrahl mit einem geringen Offnungswmkel erlaubt, wobei das Verfahren dennoch dem Stand der Technik gleichwertige oder überlegene Ergebnisse liefern kann. Diese Aufgabe wird von einer Vorrichtung mit den Merkmalen des Anspruchs 1 und von einem Verfahren mit den Merkmalen des Anspruchs 10 gelost .It is therefore an object of the present invention to provide a measuring system and a measuring method which, even when mounted on a movable platform with a small reflector, allows a measuring beam with a small opening angle, the method nevertheless being able to provide results which are equivalent or superior to the prior art. This object is achieved by a device with the features of claim 1 and by a method with the features of claim 10.
Weil vorgesehen ist, daß die Sendeeinheit Nachf hrmittel zur Verschwenkung des Meßstrahls m wenigstens einer quer zu dem Meßstrahl liegenden lateralen Richtung aufweist, kann ein Lichtstrahl mit einem relativ kleinen Querschnitt auf einen ebenso kleinen Reflektor gerichtet werden und bei einer Drehung der Basis der Meßvorrichtung um einen bestimmten Gierwmkel nachgeregelt werden. Andererseits kann bei einer seitlichen Auswanderung des Reflektors und ruhender Meßvorrichtung ebenfalls die Meßachse nachgefuhrt werden. Der Reflektor kann dabei klein gehalten werden, ohne daß wesentliche Verluste m der Signalstarke zu befurchten sind, die zu einer eingeschränkten Genauigkeit fuhren wurden. Außerdem kann die laterale Ablage der Große nach leicht bestimmt werden. Wenn das optische System eine variable Brennweite sowie Mittel zur Brennweitenanderung aufweist, kann bei jedem beliebigen Abstand die Koliimierung des Meßstrahls so variiert werden, daß der Reflektor stets m seiner ganzen Flache ausgeleuchtet wird, ohne daß ein signifikanter Teil des Meßstrahls an dem Reflektor vorbeilauft. Auch diese Maßnahme fuhrt zu einer guten Genauigkeit, da bei kompakten Abmessungen ein gutes Meßsignal erreichbar ist.Because it is provided that the transmitting unit has tracking means for pivoting the measuring beam in at least one lateral direction transverse to the measuring beam, a light beam with a relatively small cross section can be directed onto an equally small reflector and upon rotation of the base of the measuring device by one certain greediness can be adjusted. On the other hand, the measuring axis can also be tracked in the event of a lateral migration of the reflector and a stationary measuring device. The reflector can be kept small without fear of significant losses in signal strength, which would lead to limited accuracy. In addition, the lateral placement of the size can be easily determined. If the optical system has a variable focal length and means for changing the focal length, the beam can be colimized at any distance can be varied so that the reflector is always illuminated over its entire surface, without a significant part of the measuring beam passing the reflector. This measure also leads to good accuracy, since a good measurement signal can be achieved with compact dimensions.
Eine einfache mechanische Losung ergibt sich, wenn die Lichtquelle gegenüber dem optischen System in der lateralen Richtung verfahrbar ist und/oder das optische System gegenüber der Lichtquelle m der lateralen Richtung verfahrbar ist. Es kann auch vorgesehen sein, die Lichtquelle und das optische System um eine gemeinsame Achse schwenkbar anzuordnen. Dabei ist es im allgemeinen leicht erreichbar und doch ausreichend, wenn die Nachfuhrmittel dazu eingerichtet sind, einen Schwenkbereich von 1° bis 5° abzudecken. Die Nachfuhrmittel sind vorteilhaft von elektromechanischen Aktoren, insbesondere von piezoelektrischen Wandlern oder elektrischen Stellmotoren angetrieben. Je nach Anwendungsfall kann das Nachfuhrmittel geeignet gewählt werden. Wenn die Lichtquelle einen wenigstens zweiteiligen Stahl emittiert, dessen Teilstrahlen symmetrisch zu der Meßachse angeordnet sind, können die Strahlen räumlich, zeitlich, nach ihrer Wellenlange oder nach ihrer Polarisierung einfach diskriminiert werden. Es kann auch vorgesehen sein, daß der Empfanger Licht aus mehreren Raumwmkelbereichen empfangt, die im wesentlichen symmetrisch zu der Meßachse angeordnet sind. Die Raumwinkelbereiche werden dann so ausgewählt, daß diese von den Nachfuhrmitteln im wesentlichen symmetrisch auf den Reflektor ausgerichtet werden. Vorteilhaft kann der Empfanger eine Zweiquadrantenphotodiode oder eine Vierquadrantenphotodiode aufweisen. Hiermit sind zum einen eine Messung der lateralen Ablage m einer Richtung und zum anderen eine Messung in zwei Raumrichtungen möglich .A simple mechanical solution results if the light source can be moved in the lateral direction with respect to the optical system and / or the optical system can be moved in the lateral direction with respect to the light source. Provision can also be made for the light source and the optical system to be arranged so as to be pivotable about a common axis. It is generally easy to reach and yet sufficient if the tracking means are set up to cover a swivel range of 1 ° to 5 °. The tracking means are advantageously driven by electromechanical actuators, in particular by piezoelectric transducers or electric servomotors. Depending on the application, the tracking agent can be selected appropriately. If the light source emits an at least two-part steel, the partial beams of which are arranged symmetrically to the measuring axis, the beams can simply be discriminated spatially, temporally, according to their wavelength or according to their polarization. It can also be provided that the receiver receives light from a plurality of spatial regions which are arranged essentially symmetrically to the measuring axis. The solid angle ranges are then selected so that they are aligned essentially symmetrically on the reflector by the tracking means. The receiver can advantageously have a two-quadrant photodiode or a four-quadrant photodiode. Hereby are a measurement of the lateral offset in one direction and, on the other hand, a measurement in two spatial directions are possible.
Weil bei dem erfmdungsgemaßen Verfahren folgende Schritte vorgesehen sind:Because the following steps are provided in the method according to the invention:
- Emittieren des Meßstrahls von der Lichtquelle zu dem Reflektor;- emitting the measuring beam from the light source to the reflector;
- Registrieren des reflektierten Anteils m dem Empfanger, vorzugsweise m einem bestimmten Entfernungsfenster;- Registering the reflected portion in the receiver, preferably in a certain distance window;
- Bestimmen der Lage der Meßachse des Meßstrahls auf dem Reflektor;- Determining the position of the measuring axis of the measuring beam on the reflector;
- Verschwenken der Meßachse um einen Winkel bis zum Erreichen einer naherungsweisen oder vollkommenen Übereinstimmung der Lage der Meßachse mit dem Mittelpunkt des Reflektors;- Swiveling the measuring axis through an angle until an approximate or perfect match of the position of the measuring axis with the center of the reflector is achieved;
- Ermitteln der Entfernung des Objekts- Determine the distance of the object
- Ermitteln der lateralen Ablage des Objekts aus der Entfernung und dem Winkel;- Determining the lateral placement of the object from the distance and the angle;
ist die Ausrichtung des Meßstrahls auf den Reflektor möglich, wodurch ein gutes Signal-zu-Rausch-Verhaltnis möglich ist und im übrigen eine Information über die laterale Ablage erreicht werden kann. Dabei ist von Vorteil, wenn zusatzlich die Brennweite des optischen Systems so variiert wird, daß der Querschnitt des Meßstrahls im Bereich des Reflektors etwa der Flache des Reflektors entspricht, und zwar unabhängig von der Entfernung. Dies kann m einfacher Weise erreicht werden, wenn die Brennweite m Abhängigkeit von der Entfernung variiert wird. Die laterale Ablage kann m besonders effektiver Weise aus einem Regelsignal zum Verschwenken des Meßstrahls ermittelt werden. Für kontinuierliche Messungen ist dabei insgesamt von Vorteil, wenn die Verfahrensschritte mehrfach, insbesondere mit hoher Frequenz wiederholt ablaufen.it is possible to align the measuring beam with the reflector, which enables a good signal-to-noise ratio and, moreover, information about the lateral placement can be achieved. It is advantageous if the focal length of the optical system is additionally varied such that the cross section of the measuring beam in the region of the reflector corresponds approximately to the area of the reflector, regardless of the distance. This can be achieved in a simple manner if the focal length is varied as a function of the distance. The lateral placement can be m particularly effective from a control signal for pivoting of the measuring beam can be determined. Overall, it is advantageous for continuous measurements if the method steps are repeated several times, in particular with a high frequency.
Im folgenden wird ein Ausfuhrungsbeispiel der vorliegenden Erfindung anhand der Zeichnung beschrieben.An exemplary embodiment of the present invention is described below with reference to the drawing.
Es zeigen:Show it:
Figur 1: Eine erfmdungsgemaße Vorrichtung mit mehreren Optionen zur Ermittlung der Entfernung und der lateralen Ablage eines Reflektors m einer schematischen Darstellung; sowieFigure 1: An inventive device with several options for determining the distance and the lateral placement of a reflector in a schematic representation; such as
Figur 2 : eine schematische Draufsicht auf einen Portalkran mit einer erfmdungsgemaßen Vorrichtung zur Bestimmung des Abstandes von einem Endpunkt der Laufbahn.Figure 2 is a schematic plan view of a gantry crane with an inventive device for determining the distance from an end point of the track.
In der Figur 1 ist eine erfmdungsgemaße Meßvorrichtung m einer schematischen Draufsicht dargestellt, wobei mehrere Ausfuhrungsformen in einer Darstellung zusammengefaßt sind.FIG. 1 shows a measuring device according to the invention in a schematic plan view, several embodiments being combined in one illustration.
Eine Sende- und Empfangseinheit 1 umfaßt eine Lichtquelle 2 zur Emission eines Lichtstrahls 3 m Richtung einer Meßachse 4 sowie einen Empfanger 2 ' zum Empfangen reflektierten Lichts entlang der Meßachse 4. Der Lichtstrahl 3 tritt durch ein insgesamt mit 5 bezeichnetes optisches System und wird auf einen Reflektor 6, 6λ kollimiert. Das optische System 5 weist bei dieser Ausfuhrungsform insgesamt drei Linsen auf, die insgesamt in ihrer Brennweite veränderlich sind, so daß bei relativ nahem Reflektor 6 der Lichtstrahl 3 einen Offnungswmkel cti erhalt, um den Reflektor 6 etwa m seiner gesamten Flache auszuleuchten. Bei großer Entfernung, die durch den Reflektor 6λ symbolisiert ist, erhalt der Lichtstrahl einen Offnungswmkel α2, der kleiner als der Winkel oti ist und den Reflektor 6 λ der größeren Entfernung ausleuchtet.A transmitting and receiving unit 1 comprises a light source 2 for emitting a light beam 3 m in the direction of a measuring axis 4 and a receiver 2 'for receiving reflected light along the measuring axis 4. The light beam 3 passes through an optical system designated 5 overall and is applied to one Reflector 6, 6 λ collimates. In this embodiment, the optical system 5 has a total of three lenses, the overall focal length of which can be varied, so that when the reflector 6 is relatively close, the light beam 3 is one Obtaining opening cti to illuminate the reflector 6 approximately m over its entire surface. At a large distance, which is symbolized by the reflector 6 λ , the light beam receives an opening angle α 2 which is smaller than the angle oti and illuminates the reflector 6 λ of the greater distance.
Das von den Reflektoren 6, 6λ zurückgeworfene Licht wird über ein gleiches optische System 5 m die Sende- und Empfangseinheit zurückgeworfen. Dort fallt es auf den Empfanger 2 . Die Signallaufzeit wird zunächst m an sich bekannter Weise zu einer Entfernungsbestimmung genutzt. Das Sensormittel 2 ist bei dieser Ausfuhrungsform der Erfindung dazu eingerichtet, die Lage des erzeugten Bildes auf seiner sensitiven Oberflache zu detektieren. Hierfür sind beispielsweise Zwei- oder Vier-Quadranten- Dioden geeignet. Geeignete Dioden sind beispielsweise unter der Typenbezeichnung S3060-02 von dem Hersteller Hamamatsu (Japan) erhältlich.The light reflected by the reflectors 6, 6 λ is reflected by the same optical system 5 m, the transmitter and receiver unit. There it falls on the receiver 2. The signal transit time is initially used in a manner known per se for determining the distance. In this embodiment of the invention, the sensor means 2 is set up to detect the position of the generated image on its sensitive surface. For example, two or four quadrant diodes are suitable for this. Suitable diodes are available, for example, under the type designation S3060-02 from the manufacturer Hamamatsu (Japan).
Die räumlich innerhalb der Sende- und Empfangseinheit eng benachbarten optischen Achsen der Systeme 5 und 5 fallen bei realen Abstanden von einigen Metern praktisch zusammen und bilden die Meßachse 4.The optical axes of the systems 5 and 5, which are closely adjacent spatially within the transmitting and receiving unit, practically coincide at real distances of a few meters and form the measuring axis 4.
Der emittierte und/oder der reflektierte Meßstrahl ist in zwei oder mehrere Teilstrahlen aufgeteilt, deren zuruckgestreute Intensität jeweils gemessen wird. Wenn der Meßstrahl mit seiner Achse 4 aus der Mitte des Reflektors 6λ auswandert, so ändert sich das Verhältnis der Intensitäten proportional zu der lateralen Ablage. Gleichzeitig nimmt die Gesamtmtensitat , die als Meßsignal zur Verfugung steht, bei einem Auswandern des Meßstrahls 4 von dem Reflektor 6,6λ ab, so daß die Meßgenauigkeit leidet. Bei der erfmdungsgemaßen Vorrichtung wird e Auswandern des Reflektors 6 Λ einer mit I bezeichneten Richtung durch eine Verschwenkung der Meßachse 4 kompensiert. Hierzu sind in der Sende- und Empfangseinheit verschiedene Möglichkeiten realisierbar. Eine erste Ausfuhrungsform besteht m der Verschiebung des optischen Systems 5 durch em Stellglied 7 in einer Richtung II quer zu der Meßachse 4. Die zweite Möglichkeit sieht em Stellglied 7 zur Verlagerung der Lichtquelle 2 und des Sensormittels in einer Richtung III unter Einfluß eines Stellgliedes 8 vor. Schließlich kann bei einer dritten Ausfuhrungsform über e Stellglied 9 die gesamte Sende- und Empfangseinheit 1 um eine Hochachse 10 verdreht werden, was durch die Richtungspfeile IV symbolisiert ist.The emitted and / or the reflected measuring beam is divided into two or more partial beams, the backscattered intensity of which is measured in each case. When the measuring beam 4 λ migrates with its axis 4 from the center of the reflector 6, the ratio of the intensities changes in proportion to the lateral placement. At the same time, the total intensity, which is available as a measurement signal, decreases when the measurement beam 4 emigrates from the reflector 6.6 λ , so that the Accuracy of measurement suffers. In the device according to the invention, e emigration of the reflector 6 Λ in a direction denoted by I is compensated for by pivoting the measuring axis 4. Various options can be implemented in the transmitter and receiver unit for this purpose. A first embodiment consists of the displacement of the optical system 5 by an actuator 7 in a direction II transverse to the measuring axis 4. The second possibility provides an actuator 7 for displacing the light source 2 and the sensor means in a direction III under the influence of an actuator 8 , Finally, in a third embodiment, the entire transmitting and receiving unit 1 can be rotated about a vertical axis 10 via an actuator 9, which is symbolized by the directional arrows IV.
Aus dem Verhältnis der Intensitäten den Teilstrahlen wird zunächst die laterale Ablage der Meßachse 4 auf dem Reflektor 6, 6λ gemessen und daraus em Regelsignal gewonnen, das einen oder mehrere der Stellantriebe 7, 8 oder 9 mit einem Stellsignal beaufschlagt, derart, daß die laterale Ablage des Meßstrahls 4 auf dem Reflektor 6, 6λ gegen null geregelt wird. Aus dem Regelsignal, mit dem die Stellglieder 7, 8, 9 beaufschlagt werden, wird em Meßwert über die Verschwenkung der Meßachse 4 gewonnen. Aus diesem Wert und der bereits ermittelten Entfernung des Reflektors 6, 6λ zu der Sende- und Empfangseinheit 1 laßt sich dann m einfacher Weise die laterale Ablage z.B. in Längeneinheiten berechnen.From the ratio of the intensities of the partial beams, first, the lateral offset of the measurement axis 4 on the reflector 6, measured λ 6 and recovered em control signal therefrom, the one or more of the actuators 7, applied 8 or 9 with a control signal, such that the lateral Storage of the measuring beam 4 on the reflector 6, 6 λ is regulated towards zero. From the control signal with which the actuators 7, 8, 9 are applied, a measured value is obtained via the pivoting of the measuring axis 4. From this value and the already determined distance of the reflector 6, 6 λ from the transmitting and receiving unit 1, the lateral placement can then be calculated in a simple manner, for example in length units.
Die Brennweite des optischen Systems 5, 5 kann durch eine Variation des Abstandes V wie bei einem an sich bekannten Zoom-Obj ektiv geändert werden. Hierfür wird em nicht naher dargestelltes Stellglied mit einem Steuer- oder Regelsignal beaufschlagt. Die Regelung erfolgt dabei derart, daß der Meßstrahl den Reflektor 6,6 bei allen möglichen Distanzen vollflachig ausleuchtet. Die Regelung kann dabei über eine bekannte, gegebenenfalls zu kalibrierende Abhängigkeit zwischen der Brennweite des optischen Systems 5, 5' und dem Abstand zum Reflektor 6, 6λ erfolgen, so daß zwangsweise em geeigneter Winkel αi bzw. α2 eingestellt wird. Es kann aber auch eine Regelung vorgesehen sein, die zunächst einen größeren Winkel oti wählt, als er eigentlich erforderlich wäre und dann den Winkel durch Vergrößerung der Brennweite verkleinert. Hierbei nimmt die ruckgestreute Intensität zu, da e größerer Teil des Meßstrahls von dem Reflektor 6, 6 zurückgeworfen wird. Sobald der Reflektor den gesamten Meßstrahl reflektiert, wird em Maximalwert erreicht, der nicht weiter zunimmt. Dieser Maximalwert wird dann für die jeweilige Entfernung beibehalten. Damit wird die maximale Signalmtensitat und gleichzeitig die bestmögliche Meßgenauigkeit sowohl für die laterale Ablage als auch für die Entfernung erreicht.The focal length of the optical system 5, 5 can be changed by varying the distance V as in a zoom lens known per se. For this purpose, an actuator (not shown in more detail) with a control or control signal applied. The control is carried out in such a way that the measuring beam illuminates the reflector 6, 6 over all areas. The regulation can take place via a known, optionally calibrated dependency between the focal length of the optical system 5, 5 'and the distance from the reflector 6, 6 λ , so that a suitable angle α i or α 2 is set inevitably. However, a regulation can also be provided which initially selects a larger angle oti than would actually be required and then reduces the angle by increasing the focal length. Here, the scattered intensity increases, since a larger part of the measuring beam is reflected by the reflector 6, 6. As soon as the reflector reflects the entire measuring beam, a maximum value is reached which does not increase any further. This maximum value is then maintained for the respective distance. This achieves the maximum signal intensity and at the same time the best possible measurement accuracy both for the lateral placement and for the distance.
In der Praxis ist es ausreichend, wenn eine der Verstellmoglichkeiten (Richtung II mittels Stellglied 7, Richtung III mittels Stellglied 8 oder Drehrichtung IV mittels Stellglied 9) realisiert ist. Die in der Praxis erforderlichen Winkel, um die die Meßachse 4 zu verschwenken ist, betragen üblicherweise wenige Grad.In practice it is sufficient if one of the adjustment possibilities (direction II by means of actuator 7, direction III by means of actuator 8 or direction of rotation IV by means of actuator 9) is realized. The angles required in practice by which the measuring axis 4 can be pivoted are usually a few degrees.
Auf die veränderliche Brennweite (V) , die bei dieser bevorzugten Ausfuhrungsform beschrieben ist, kann ebenfalls verzichtet werden, soweit die Winkelunterschiede oti - α2 gering sind. Em Anwendungsbeispiel der vorliegenden Erfindung ist m der Figur 2 dargestellt. Die Figur 2 veranschaulicht in einer schematischen Draufsicht die Anwendung einer erf dungsgemaßen Vorrichtung bei der Steuerung eines Portalkrans 20 entlang einer Laufbahn 21, die im Bereich einer Wand 22 endet. An der Wand 22 ist em Reflektor 23 angebracht, der den Reflektoren 6, 6 λ aus Figur 1 entspricht. Es handelt sich um einen Retroreflektor mit Abmessungen von etwa 50 cm x 50 cm, beispielsweise vom Typ Scotchlite des Herstellers 3M (USA). Die Sende- und Empfangseinheit 1 ist fest auf dem Portalkran 20 montiert und sendet einen Meßstrahl 24 m Richtung auf den Reflektor 23 aus. Aus der Laufzeit des Signals wird die Entfernung des Reflektors 23 von der Sende- und Empfangseinheit 1 ermittelt. Wird nun der Portalkran 20 in Richtung seiner Laufbahn 21 m Bewegung gesetzt, so tritt in der Praxis eine Gierbewegung um eine Hochachse 25 des Portalkrans 20 auf, da die den beiden Laufbahnen 21 zugeordneten Antriebe nicht absolut synchron antreibbar sind. Diese Gierbewegung kann von der Größenordnung her etwa 1° betragen. Um diesen Winkel wird der Meßstrahl 24 in seitlicher Richtung verschwenkt, so daß er von dem Reflektor 23 auswandert. Der Meßstrahl 24 wird dann mit seiner Meßachse von einer der drei möglichen aachfuhrvorπchtungen (Stellglieder 7, 8, 9) zurück auf die Mitte des Reflektors 23 geregelt. Das Regelsignal ist hierbei em Maß für den Gierwmkel des Portalkrans 20. Es ist ersichtlich, daß bei einer Laufbahnlange von 250 m und einem Gierwmkel von nur ± 0,25° der von dem Meßstrahl 4 uberstrichene Bereich der Wand 22 über 2 m betragt. Eine ohne Nachfuhrung des Meßstrahls 24 ausgestattete Sende- und Empfangsvorrichtung mußte also mit einem Reflektor in 01/07863 _ ]_ ]_ _ PCT/EP00/05112The variable focal length (V), which is described in this preferred embodiment, can also be dispensed with insofar as the angle differences oti - α 2 are small. An application example of the present invention is shown in FIG. 2. FIG. 2 shows a schematic top view of the use of a device according to the invention for controlling a gantry crane 20 along a track 21 that ends in the region of a wall 22. A reflector 23 is attached to the wall 22 and corresponds to the reflectors 6, 6 λ from FIG. 1. It is a retroreflector with dimensions of approximately 50 cm × 50 cm, for example of the Scotchlite type from the manufacturer 3M (USA). The transmitting and receiving unit 1 is fixedly mounted on the portal crane 20 and emits a measuring beam 24 m in the direction of the reflector 23. The distance of the reflector 23 from the transmitting and receiving unit 1 is determined from the transit time of the signal. If the gantry crane 20 is now moved in the direction of its running track 21 m, a yaw movement occurs in practice about a vertical axis 25 of the gantry crane 20, since the drives assigned to the two running tracks 21 cannot be driven absolutely synchronously. The magnitude of this yaw movement can be approximately 1 °. The measuring beam 24 is pivoted in the lateral direction by this angle, so that it migrates from the reflector 23. The measuring beam 24 is then regulated with its measuring axis by one of the three possible acaching devices (actuators 7, 8, 9) back to the center of the reflector 23. The control signal is a measure of the yaw curve of the gantry crane 20. It can be seen that with a track length of 250 m and a yaw curve of only ± 0.25 °, the area of the wall 22 covered by the measuring beam 4 is over 2 m. A transmitting and receiving device equipped without tracking the measuring beam 24 had to have a reflector in 01/07863 _] _] _ _ PCT / EP00 / 05112
einer Breite von über 2 m versehen werden. Dies ist m der Praxis unerwünscht.with a width of over 2 m. In practice, this is undesirable.
Die vorliegende Erfindung ermöglicht also die Benutzung kleiner Reflektoren 23, die einfach zu montieren sind und einen geringen Platzbedarf aufweisen. Der aufgrund seiner Nachfuhrung stets mittig auf den Reflektor fallende Meßstrahl ermöglicht aufgrund seiner hohen reflektierten Intensität eine besonders präzise Entfernungsmessung. Zugleich wird aus dem Nachfuhrsignal em Maß für den Gierwmkel des Portalkrans 20 gewonnen, was gegebenenfalls zur synchronen Steuerung der Antriebsmotoren des Portalkrans verwendet werden kann. The present invention thus enables the use of small reflectors 23 that are easy to assemble and require little space. Due to its tracking, the measuring beam always falling centrally on the reflector enables a particularly precise distance measurement due to its high reflected intensity. At the same time, a measure for the yaw angle of the gantry crane 20 is obtained from the tracking signal, which can optionally be used for the synchronous control of the drive motors of the gantry crane.

Claims

P a t e n t a n s p r ü c h eP a t e n t a n s r u c h e
1. Meßvorrichtung zur optischen Erfassung der Entfernung und der lateralen Ablage eines Objekts, mit einer Sendeeinheit (1), die eine Lichtquelle (2) zur Emission eines Meßstrahls sowie em optisches System1. Measuring device for the optical detection of the distance and the lateral placement of an object, with a transmitting unit (1) which has a light source (2) for emitting a measuring beam and an optical system
(5) zur Kollimierung des Meßstrahls um eine Meßachse(5) for collimating the measuring beam around a measuring axis
(4) umfaßt, und mit einem dem Objekt zugeordneten Reflektor (6, 6', 23) sowie mit einem Empfanger (2'), d a du r c h g e k e n n z e i c h n e t , daß die Sendeeinheit (1) Nachfuhrmittel (7,8,9) zur Verschwenkung des Meßstrahls (4) in wenigstens einer quer zu dem Meßstrahl (4) liegenden lateralen Richtung aufweist.(4), and with an object assigned reflector (6, 6 ' , 23) and with a receiver (2'), since you rchgek characterized that the transmitter unit (1) tracking means (7,8,9) for pivoting the Measuring beam (4) in at least one lateral direction transverse to the measuring beam (4).
2. Meßvorrichtung nach Anspruch 1, d a du r c h g e k e n n z e i c h n e t , daß das optische System2. Measuring device according to claim 1, d a du r c h g e k e n n z e i c h n e t that the optical system
(5) eine variable Brennweite sowie Mittel zur Brennweitenanderung aufweist.(5) has a variable focal length and means for changing the focal length.
3. Meßvorrichtung nach Anspruch 1 oder 2, d a du r c h g e k e n n z e i c h n e t , daß die Lichtquelle (2) gegenüber dem optischen System (5) m der lateralen Richtung (III) verfahrbar ist und/oder daß das optische System (5) gegenüber der Lichtquelle (2) m der lateralen Richtung (II) verfahrbar ist. 3. Measuring device according to claim 1 or 2, since you rchgek characterized that the light source (2) relative to the optical system (5) m of the lateral direction (III) is movable and / or that the optical system (5) relative to the light source (2nd ) m can be moved in the lateral direction (II).
4. MeßVorrichtung nach Anspruch 1 oder 2, da du r c h ge k e n n z e i c h n e t , daß die Lichtquelle (2) und das optische System (5) um eine gemeinsame Achse4. Measuring device according to claim 1 or 2, since you r c h ge k e n n z e i c h n e t that the light source (2) and the optical system (5) about a common axis
(10) schwenkbar angeordnet sind.(10) are arranged pivotably.
5. Meßvorrichtung nach einem der vorhergehenden Ansprüche, da du r ch ge k e n n z e i ch n e t , daß die Nachfuhrmittel (7,8,9) dazu eingerichtet sind, einen Schwenkbereich von 1° bis 5° abzudecken.5. Measuring device according to one of the preceding claims, since you r ch ge k e n n z e i ch n e t that the tracking means (7,8,9) are set up to cover a swivel range of 1 ° to 5 °.
6. Meßvorrichtung nach einem der vorhergehenden Ansprüche, da du r c h ge k e n n z e i c h n e t , daß die Nachfuhrmittel (7,8,9) von elektromechamschen Aktoren, insbesondere piezoelektrischen Wandlern oder elektrischen Stellmotoren angetrieben sind.6. Measuring device according to one of the preceding claims, since you r c h ge k e n n z e i c h n e t that the tracking means (7,8,9) are driven by electromechanical actuators, in particular piezoelectric transducers or electric servomotors.
7. Meßvorrichtung nach einem der vorhergehenden Ansprüche, da du r ch ge k e n n z e i ch n e t , daß die Lichtquelle (2) einen wenigstens zweiteiligen Strahl emittiert, dessen Teilstrahlen symmetrisch zu der Meßachse angeordnet sind.7. Measuring device according to one of the preceding claims, since you r ch ge k e n n z e i ch n e t that the light source (2) emits an at least two-part beam, the partial beams of which are arranged symmetrically to the measuring axis.
8. Meßvorrichtung nach einem der vorhergehenden Ansprüche, da du r ch ge k e n n z e i ch n e t , daß der Empfanger (2') Licht aus mehreren Raumwinkelbereichen empfangt, die im wesentlichen symmetrisch zu der Meßachse (4) angeordnet sind.8. Measuring device according to one of the preceding claims, since you r ch ge k e n n z e i ch n e t that the receiver (2 ') receives light from several solid angle ranges, which are arranged substantially symmetrically to the measuring axis (4).
9. Meßvorrichtung nach einem der vorhergehenden Ansprüche, da du r ch ge k e n n z e i ch n e t , daß der Empfanger (2 ) eine Zwei-Quadranten- Photodiode oder eine Vier-Quadranten-Photodiode aufweist . 9. Measuring device according to one of the preceding claims, since you r ch ge mark that the receiver (2) has a two-quadrant photodiode or a four-quadrant photodiode.
0. Verfahren zur Bestimmung der Entfernung und der lateralen Ablage eines Objekts, mittels einer Vorrichtung mit einer Sendeeinheit, die eine Lichtquelle zur Emission eines Meßstrahls sowie em optisches System zur Kollimierung des Meßstrahls um eine Meßachse umfaßt, und mit einem dem Objekt zugeordneten Reflektor sowie mit einem Empfanger, gekennzeichnet durch folgende Schritte:0. Method for determining the distance and the lateral placement of an object, by means of a device with a transmitter unit, which comprises a light source for emitting a measuring beam and an optical system for collimating the measuring beam about a measuring axis, and with a reflector assigned to the object and with a recipient, characterized by the following steps:
- Emittieren des Meßstrahls von der Lichtquelle zu dem Reflektor;- emitting the measuring beam from the light source to the reflector;
- Registrieren des reflektierten Anteils in dem Empfanger;- registering the reflected portion in the receiver;
- Bestimmen der Lage der Meßachse des Meßstrahls auf dem Reflektor;- Determining the position of the measuring axis of the measuring beam on the reflector;
- Verschwenken der Meßachse um einen Winkel bis zum Erreichen einer naherungsweisen oder vollkommenen Übereinstimmung der Lage der Meßachse mit dem Mittelpunkt des Reflektors;- Swiveling the measuring axis through an angle until an approximate or perfect match of the position of the measuring axis with the center of the reflector is achieved;
- Ermitteln der Entfernung des Objekts- Determine the distance of the object
- Ermitteln der lateralen Ablage des Objekts aus der Entfernung und dem Winkel.- Determine the lateral placement of the object from the distance and the angle.
11. Verfahren nach Anspruch 10, da du r ch gekenn z e i chne t , daß zusätzlich vorgesehen ist, die Brennweite des optischen Systems so zu variieren, daß der Querschnitt des Meßstrahls im Bereich des Reflektors etwa der Flache des Reflektors entspricht .11. The method according to claim 10, since you are characterized that additional provision is made to vary the focal length of the optical system so that the cross section of the measuring beam in the region of the reflector corresponds approximately to the area of the reflector.
12. Verfahren nach Anspruch 11, da du r ch ge k e nn z e i c hn e t , daß die Brennweite in Abhängigkeit von der Entfernung variiert wird. 12. The method of claim 11, since du r ch ge ke nn zeic hn et that the focal length is varied depending on the distance.
13. Verfahren nach einem der vorhergehenden Ansprüche, da du r c h ge k e nn z e i chn e t , daß die laterale Ablage aus einem Regelsignal zum Verschwenken des Meßstrahls ermittelt wird.13. The method according to any one of the preceding claims, since you r c h ge k e nn z e i chn e t that the lateral storage is determined from a control signal for pivoting the measuring beam.
14. Verfahren nach einem der vorhergehenden Ansprüche, da du r c h ge k e n n z e i ch n e t , daß die14. The method according to any one of the preceding claims, since you r c h ge k e n n z e i ch n e t that
Verfahrensschritte mehrfach wiederholt ablaufen. Repeat procedural steps several times.
PCT/EP2000/005112 1999-07-22 2000-06-05 Measuring system for determining a distance and a lateral deviation WO2001007863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU54016/00A AU5401600A (en) 1999-07-22 2000-06-05 Measuring system for determining a distance and a lateral deviation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19933877.9 1999-07-22
DE1999133877 DE19933877A1 (en) 1999-07-22 1999-07-22 Optical distance and position measuring device e.g. for portal crane, uses reflection of measuring light beam by reflector attached to measured object with lateral deflection of beam at optical transmitter

Publications (1)

Publication Number Publication Date
WO2001007863A1 true WO2001007863A1 (en) 2001-02-01

Family

ID=7915345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/005112 WO2001007863A1 (en) 1999-07-22 2000-06-05 Measuring system for determining a distance and a lateral deviation

Country Status (3)

Country Link
AU (1) AU5401600A (en)
DE (1) DE19933877A1 (en)
WO (1) WO2001007863A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0223512D0 (en) * 2002-10-10 2002-11-13 Qinetiq Ltd Bistatic laser radar apparatus
DE102005041475A1 (en) * 2005-09-01 2007-03-15 Robert Bosch Gmbh Distance measuring Equipment
DE102014009860A1 (en) * 2014-07-03 2016-01-07 Audi Ag Time-of-flight camera, motor vehicle and method for operating a time-of-flight camera in a motor vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2175706A (en) * 1985-05-02 1986-12-03 Messerschmitt Boelkow Blohm Laser guidance and tracking apparatus
US5098185A (en) * 1988-06-15 1992-03-24 Japan Industrial Land Development Co., Ltd. Automatic tracking type measuring apparatus
EP0490012A1 (en) * 1990-12-13 1992-06-17 ABUS Kransysteme GmbH & Co. KG. Sensor system for monitoring cranes
FR2729748A2 (en) * 1983-03-16 1996-07-26 Cilas Alcatel Laser guidance for missile/target homing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801201A (en) * 1984-12-31 1989-01-31 Precitronic Gesellschaft Fur Feinmechanik Und Electronic Mbh Method and device for laser-optical measurement of cooperative objects, more especially for the simulation of firing
DE3808972A1 (en) * 1988-03-17 1989-10-05 Hipp Johann F Device for continuous tracking and position measurement of an object
JPH02253116A (en) * 1989-03-27 1990-10-11 Mitsubishi Electric Corp Detector for distance between vehicles
DD295015A5 (en) * 1990-06-08 1991-10-17 Geotronics Ab,Se DEVICE FOR IMPLEMENTING POSITION PROVISIONS
DE19528465C2 (en) * 1995-08-03 2000-07-06 Leica Geosystems Ag Method and device for quickly detecting the position of a target
DE19623060C2 (en) * 1996-06-10 2002-08-08 Zsp Geodaetische Sys Gmbh Geodetic device for rough target search
DE19720832C2 (en) * 1997-05-17 2003-02-27 Diehl Stiftung & Co Target detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729748A2 (en) * 1983-03-16 1996-07-26 Cilas Alcatel Laser guidance for missile/target homing
GB2175706A (en) * 1985-05-02 1986-12-03 Messerschmitt Boelkow Blohm Laser guidance and tracking apparatus
US5098185A (en) * 1988-06-15 1992-03-24 Japan Industrial Land Development Co., Ltd. Automatic tracking type measuring apparatus
EP0490012A1 (en) * 1990-12-13 1992-06-17 ABUS Kransysteme GmbH & Co. KG. Sensor system for monitoring cranes

Also Published As

Publication number Publication date
AU5401600A (en) 2001-02-13
DE19933877A1 (en) 2001-01-25

Similar Documents

Publication Publication Date Title
EP2475953B1 (en) Devices and methods for determining positions and measuring surfaces
EP0596330B1 (en) Arrangement for measuring crane load oscillations
EP0565090B1 (en) Procedure and device to measure the dimensions of an object
DE10313191A1 (en) Method for contactless, dynamic detection of the profile of a solid
EP1200853A1 (en) Method and device for determining spatial positions and orientations
DE102015015112B4 (en) Device and method for monitoring a machining process for material machining using an optical measuring beam
DE102004037137A1 (en) Object`s distance measurement method, involves providing electrical reference signal to time-of-flight unit, mixing electromagnetic radiation falling on unit with reference signal and detecting delay time between signal and radiation
DE3445830A1 (en) Handling plant with positioning device
EP1728045A1 (en) Low-coherence interferometric method and appliance for scanning surfaces in a light-optical manner
DE102018113244B3 (en) Method and apparatus for measuring vibrations of an object using a drone
EP1421430B1 (en) Scanning device
CH656216A5 (en) METHOD AND ARRANGEMENT FOR CHECKING THE MATCHING OF SIGHTING AND TARGET LINES.
DE102021111949A1 (en) Device for scanning the distance to an object
DE3409522C2 (en) Device for measuring the area of the projection of a test object onto a plane
WO2001007863A1 (en) Measuring system for determining a distance and a lateral deviation
DE102019212856B4 (en) Method for tracking a beam
WO2009040162A1 (en) Probe and device for the optical testing of measurement objects
DE102010033951B4 (en) Arrangement and method for multi-dimensional measurement of vibrations of an object
DE102010041330A1 (en) Optical position measuring device
DE3400151C2 (en) Device for the optical measurement of the straightness of a movement
EP2227671B1 (en) Arrangement and method for determination of a position and/or orientation of two objects relative to one another
DE102020107308A1 (en) Method and device for determining the distance and position of a rail vehicle
DE69503813T2 (en) Method and device for measuring the relative change in position between two components
DE19614248A1 (en) Method for correcting the target path of a load carrier as well as target detection device and directional beam emitting unit for carrying out this method
EP0874215A2 (en) Method and device for measuring lengths and distances

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP