WO2001005633A1 - Gas generator - Google Patents
Gas generator Download PDFInfo
- Publication number
- WO2001005633A1 WO2001005633A1 PCT/JP2000/004812 JP0004812W WO0105633A1 WO 2001005633 A1 WO2001005633 A1 WO 2001005633A1 JP 0004812 W JP0004812 W JP 0004812W WO 0105633 A1 WO0105633 A1 WO 0105633A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas generator
- igniter
- cup
- holder
- connector
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R22/00—Safety belts or body harnesses in vehicles
- B60R22/34—Belt retractors, e.g. reels
- B60R22/46—Reels with means to tension the belt in an emergency by forced winding up
- B60R22/4628—Reels with means to tension the belt in an emergency by forced winding up characterised by fluid actuators, e.g. pyrotechnic gas generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
- F42B3/10—Initiators therefor
- F42B3/12—Bridge initiators
- F42B3/125—Bridge initiators characterised by the configuration of the bridge initiator case
- F42B3/127—Bridge initiators characterised by the configuration of the bridge initiator case the case having burst direction defining elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/26—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
- B60R2021/26029—Ignitors
Definitions
- the present invention relates to an electric small gas generator mainly used for a gas generator for a seat belt pretensioner.
- Landscape technology mainly used for a gas generator for a seat belt pretensioner.
- the seatbelt pretensioner plays a role of safely restraining the occupant (seatbelt wearer) with a seatbelt when receiving an abnormal impact such as a vehicle collision.
- the gas generator (gas generator) used in this seatbelt pretensioner is designed to quickly and securely pull and fix the seatbelt in the event of an impact such as a vehicle collision as described above. It is important how quickly and surely the combustion gas for igniting the (gas generating agent) and driving the seat belt is generated.
- this gas generator receives the electric signal of the electric sensor of the collision detection system, first converts the electric energy into heat energy, and causes a igniting reaction from the heating part (squib or initiator); It is composed of components such as a body that couples with the igniter and holds the igniter, and a cup and the like that contains a driving agent that ignites in response to the ignition reaction of the igniter and generates combustion gas.
- the pressure of the combustion gas of the driving agent contained in the power supply of the gas generator drives the winding device incorporated in the seat belt pretensioner, and the seat belt suspended on the winding device is wound. It is taken and restrains the body safely.
- this gas generator is used for a seat belt pretensioner, but can be used for igniting a gas generating agent of a gas generator for an air bag as another use.
- Japanese Patent Application Laid-Open No. Hei 10-210,900 describes that the ignition (igniter body) is A gas generator fixed to a body via a gas generator is disclosed.
- the igniter (igniter main body 5) is mounted on a 0-ring seal 6 placed at the bottom of a neck 4 formed on a body (igniter support 2).
- One side (free end) of 4 is fixed to the body by caulking the enlarged central part of the igneous evening.
- the body (igniter support 2) has a circumferential groove (border lip 32) in the circumferential direction close to the neck 4 of the body.
- the flange of the cup (breakable case 13) in which the driving agent (ignition powder 14) is stored is placed in the groove, and the groove is crimped inward.
- Japanese Patent Application Laid-Open No. Hei 4-270988 discloses a gas generator having a configuration that does not use an O-ring seal.
- This gas generator contains a driving agent (ignition agent 44) in a cup (container 42), and further arranges a sheet 46 that covers the driving agent and separates the inside of the power supply from the ignition port. are doing.
- a disc-shaped plate 48 is provided on the connector side of the igniter (ignition member 50), and the flange (ring flange 36) of the cup (vessel 42) is placed thereon and welded to the plate. Further, the flange portion (ring flange 56) of the cup-shaped distribution casing 52 is superposed on the flange portion 36, and tightened and fixed by the body (holding body 62) and the pin 68. .
- Japanese Patent Application Laid-Open No. 61-41667 discloses a gas having a body forming an ignition receiver for holding the connector side of the ignition and holding the flange portion of the cup containing the driving agent. A generator is disclosed.
- the body (igniter carrier 4) has an axially projecting igniter receiving portion (igniter carrier portion 26), an expanded central portion (expanded central brim 28)
- An annular edge groove (annular groove 30) is formed on one side (end face) of the center in the outer direction, and a cup (propellant container 10) for accommodating a driving agent (propellant 54) is formed in the annular edge groove.
- the flange (container edge) is inserted, and it is caulked and fixed by the caulked portion (lip 32) together with the ring.
- Japanese Patent Application Laid-Open No. 8-184314 discloses that an electric signal of an electric sensor is received.
- An igniter for an air bag gas generator is disclosed in which a flame of an igniter is released from a fragile portion of a breakable tubular member by a gas pressure generated when the igniter is activated.
- the igniter of this gas generator for airbags is composed of a squib (igniter) and an enhansa (powder) that are integrated into one, and the igniter (squib enhansa 14) is destroyed so as to cover the igniter.
- the cup is provided with a possible cup (destructible tubular agent 12), a flange 19 is formed on this cup, and this flange is placed on a collar 15 integrally formed with the squib enhanzer. It is fixed by the swaged part together with the 0 ring.
- the closed end 20 of the cup 12 is provided with a rupture portion (fragile portion).
- This break has a relatively thin closed end, for example 0.1 to 0.5 mm thick.
- Gas generators especially gas generators for seatbelt pretensioners (gas generators) have a limited number of places for accommodating the pretensioner (equipment) because they hold the body of the vehicle occupant with a belt, and depending on the manufacturer, The structure and installation of the pretensioner (device) are different.
- the driving agent contained in the cup is close to the constriction on the heating portion side of the igniter (igniter).
- the space between the header outer diameter and the cup inner diameter (blind space) or the amount of driving agent that enters the blind space varies depending on the installation direction of the gas generator, and the pressure characteristics during combustion of the driving agent may change. is there.
- a driving powder enters the blind space, it is mixed with the driving powder and ignited by the flame from the igniting evening. Ignition at the same time) but tends to ignite with a time delay compared to the explosive on the top of the header in the igneous evening, which has a considerable effect on the pressure characteristics o
- This phenomenon occurs because the driving agent located in the blind space does not receive the flame propagation of the powdered ignition powder, so that combustion starts with a delay due to the flame propagation of the ignition powder that has ignited normally, and the pressure is delayed. And decline. Also, in order to fix the igniter, it is fixed by caulking with a neck extending from the body in a hollow cylindrical shape and an O-ring, and the flange portion of the cup containing the driving agent is placed in the annular edge groove of the body. It is necessary to perform caulking twice, caulking and fixing.
- the body is held in the shape of a step (taper shape) on the connector side of the igniter.
- a step tapeer shape
- the required output of the seatbelt pretensioner is not constant, and the required pressure varies depending on the vehicle type, module type, etc.
- gas generator manufacturers need to cope with the various outputs required, and may adjust the amount of driving chemical for that purpose.
- thermodynamic energy required by the pretensioner is constant, there are modules that require a fast rising pressure and vice versa. And the ratio of the ignition charge.
- Driving agents usually consist of propellant and igniter.
- An object of the present invention is to provide a gas generator that prevents a driving agent from entering a blind space.
- Another object of the present invention is to provide a gas generator that can be easily assembled and securely fixed.
- Still another object of the present invention is to provide a gas generator which can easily ensure a predetermined filling rate of a driving agent.
- Still another object of the present invention is to provide a gas generator in which broken fragments are not released at a combustion gas pressure.
- a gas generator comprises: a igniter having a header portion and a connector portion, wherein a header portion and a connector portion are connected via a bulge portion; and a connector of the bulge portion of the ignite portion.
- a body having an opening on the bottom surface through which the flame from the igniter passes, and a bottomed cylindrical member arranged to cover the outer periphery of the header and bulge of the igniter It has a holder, a bottomed cylindrical power cup having an inner peripheral side surface overlapping with the outer peripheral side face of the holder and having a closed portion on the bottom surface, and a driving agent accommodated in the power cup.
- the open end of the holder and the open end of the cup are overlapped on the body and fixed by caulking, so that the sign is held between the holder and the body via the bulging portion.
- the outer peripheral side surface of the holder and the inner peripheral side surface of the cup are in close contact with each other without any gap, and a driving medicine accommodating portion is formed between the opening side of the holder and the closed portion of the cup.
- the body includes, for example, a lignae receiving portion formed of a wall surface in contact with a wall surface on the connector portion side of the bulging portion of the lignay, a flange provided outside the opening end of the holder, and the force transmitting member.
- An annular edge groove portion having an edge portion which can be fixed by caulking and fixing a flange portion provided outside the opening end portion of the opening is integrally formed.
- the flange portion of the flange portion provided outside the opening end portion of the holder includes, for example, Silicone sealant is applied.
- a silicone sealant is applied to the igniter receiving portion of the body.
- the filling rate of the driving medicine can be set to 80% to 90%, for example, by replacing the holder.
- Another gas generator according to the present invention includes an igniter having a header portion and a connector portion, a body attached to the connector portion side of the igniter portion, a closing portion on the bottom surface, and a rupture line provided on the bottom surface, It has a bottomed cylindrical forceps attached to the igniter and a driving agent contained in the forceps.
- the rupture line forms, for example, 30% to 50% of the remaining plate thickness with respect to the bottom plate thickness.
- Another gas generator according to the present invention includes: a igniter having a header portion and a connector portion and having a rupture line in a header portion; a body attached to the connector portion side of the igniter portion; It has a closed-end portion, a bottomed cylindrical cup attached to the igniter, and a driving agent contained in the cup.
- Another gas generator according to the present invention includes: a igniter having a header portion and a connector portion, wherein the header portion and the connector portion are connected via a bulge portion; and a bulge portion of the igniter.
- Another gas generator according to the present invention includes: a igniter having a header portion and a connector portion and having a rupture line in a header portion; a body attached to the connector portion side of the igniter portion; It has a closed part, has a rupture line on the bottom surface, and has a bottomed cylindrical cup attached to the igniter, and a driving agent contained in the cup.
- Another gas generator according to the present invention includes: a igniter having a header portion and a connector portion, wherein the header portion and the connector portion are connected via a bulging portion; and a connector portion side of the igniter.
- a body attached to the A rupture line is provided on the bottom surface, and it has a bottomed cylindrical cup that is attached to the igniter, and a driving agent that is housed in the forceps.
- Another gas generator includes: a igniter having a header portion and a connector portion and having a rupture line in a header portion; a body attached to the connector portion side of the igniter portion; A bottomed cylindrical holder arranged to cover the outer periphery of the header portion and the bulging portion of the igniter and having an opening at the bottom surface for allowing the flame from the evening to pass, and a closed portion at the bottom surface; It has a bottomed cylindrical zipper that is attached in the evening, and a driving agent that is housed in this zipper.
- the opening of the holder is constituted by, for example, a hole which is reduced in diameter toward the cup.
- the rupture line is arranged, for example, such that its peripheral edge is covered by the bottom of the holder and its center is exposed from the opening.
- the holder is fixed to the body by, for example, overlapping the cup with the cup.
- Another gas generator includes: a igniter having a header portion and a connector portion and having a rupture line in a header portion; a body attached to the connector portion side of the igniter portion; It has a bottomed tubular holder that has an opening on the bottom surface to allow the flame from the evening to pass and covers the outer periphery of the header of the igniter, and has a closed part on the bottom and is attached to the igniter. It has a bottomed cylindrical cup and a driving agent contained in the forceps.
- FIG. 1 is an overall sectional view showing a gas generator according to an embodiment of the present invention.
- Figure 2 shows a cross section of the igniter in Figure 1.
- FIG. 3 is a cross-sectional view of the cup in FIG.
- FIG. 4 is a top view of the cup in FIG.
- FIG. 5 is a side view of the cup in FIG.
- FIG. 6 is a top view of a break (rupture line (tea line)) formed in the cup in FIG.
- FIG. 7 is a cross-sectional view taken along line BB of FIG.
- FIG. 8 is a cross-sectional view of the holder of FIG.
- FIG. 9 is a view sequentially showing the assembly of the gas generator shown in FIG.
- FIG. 10 is a cross-sectional view relating to the pressure resistance of the body in FIG.
- FIG. 11 is a cross-sectional view related to the pressure resistance of a conventional body.
- FIG. 12 is an explanatory diagram showing an outline of the tank pressure test device.
- FIG. 13 is a cross-sectional view showing a state where the gas generator according to the embodiment of the present invention is turned in each direction.
- FIG. 14 is a cross-sectional view showing a state in which the conventional gas generator is turned in each direction.
- FIG. 15 is a graph showing the results obtained from FIG. 13 and FIG.
- FIG. 16 is a graph showing the results of an experiment in which the gas generator according to the present embodiment and the conventional gas generator were operated five times under a certain condition to determine whether output variation occurred.
- FIG. 17 is an explanatory diagram showing a state in which a tear line (tea line) of the cup is subjected to a breaking pressure.
- Figure 18 is a graph showing the relationship between the tear line rupture of the cup (the tear line) and the breakthrough.
- FIG. 19 is an explanatory view showing a broken state of a tear line (tea line) of the cup.
- FIG. 20 is an enlarged explanatory view showing a rupture state of a tear line of the cup of FIG.
- Figure 21 is a graph showing the relationship between the tear line thickness of the cup and the burst pressure.
- FIG. 22 is a sectional view showing an example of the igniter in FIG.
- FIG. 23 is an explanatory view showing the ultrasonic welding process of the igniter shown in FIG.
- FIG. 24 is a sectional view of the holder in FIG.
- FIG. 25 is a cross-sectional view of the holder in FIG.
- FIG. 26 is a cross-sectional view of the holder in FIG.
- FIG. 27 is a cross-sectional view of the holder in FIG.
- FIG. 28 is an overall sectional view showing a gas generator according to another embodiment of the present invention.
- FIG. 29 is a cross-sectional view showing an insertion type holder used for the gas generator in FIG.
- FIG. 30 is an overall sectional view showing a gas generator according to another embodiment of the present invention.
- FIG. 31 is a graph showing the relationship between the withstand pressure cross-sectional area and the body burst pressure.
- FIG. 32 is a front view and a cross-sectional view showing a test device having a withstand pressure cross-sectional area.
- FIG. 33 is a graph showing the pressure waveform of the burst test.
- FIG. 1 is an overall view of a gas generator according to the present embodiment.
- the gas generator 1 includes a igniter 10 serving as the first ignition means, a cup 20 containing the driving agent 50, and a header portion of the igniter 10 arranged in the cup 20.
- 1 Holder 30 fitted to 1 side, body 40 that receives and holds connector 13 side of igniter 10, and holder 30 into annular edge groove 42 of body 40
- the flange portion 34 of the cup 20 and the flange portion 23 of the cup 20 are overlapped and inserted, and caulked and fixed by the edge portion 43 of the annular edge groove portion 42.
- the igniter 10 generates heat from two lead pins 15 and 16 molded with a resin plug 14 and a bridge wire electrically connected to one side of these pins.
- a part 17, an igniter 18 charged on the heating part 17, and the igniter 18 are accommodated and placed on the step part 14 a of the resin plug 14, and the resin plug 14 is placed.
- a cap 19 to be fitted and fixed.
- the outer shape of the igniter 10 is, through a bulging portion 12, a header portion 11 having a heating portion 17 and an igniter 18, and a connector portion 13 electrically connected to the header portion 11. It has a connected shape.
- the bulging portion 12 has tapered wall surfaces 12a and 12b respectively toward the header portion 11 and the connector portion 13 side.
- the cup 20 has an aluminum alloy bottomed cylindrical shape having a closed portion 21 on the bottom surface closed on one side and an open end 22 opened on the other side. Body.
- a flange portion 23 is formed on the outer periphery of the open end portion 22 so as to be turned up to approximately 90 degrees.
- the cup 20 is provided with two chamfered portions 25 which are narrower than the body portion 24 on the closed portion 21 side of the body portion 24. I have. Further, a break 26 is formed in the closed part 21. As shown in Fig. 6, the fractured portion 26 has a length radially from the central axis of the cup 20 in the circumferential direction, a length of 60 to 70% of the inner diameter of the bottom surface, and a remaining thickness of the bottom plate. Eight 50% burst lines (tear lines) 26a are provided.
- the number of rupture lines (tea lines) 26a is eight in the present embodiment, but preferably six to eight lines are suitable from the viewpoint of preventing separation of fragments.
- the remaining plate thickness of the rupture line (tear line) 26a is 0.3 mm in the present embodiment, but preferably 0.2 to 0.3 mm from the viewpoint of strength (the thickness with respect to the closed plate thickness).
- Rupture line (Tear line) The thickness is 30-50%.
- the holder 30 has an opening 31 on one side through which the flame of the igniter 10 passes, and an opening 3 on the other side into which the igniter 10 fits.
- 2 is a bottomed cylindrical body made of aluminum.
- a flange portion 34 is formed on the outer periphery of the end portion 33 of the opening portion 32 into which the signature 10 is fitted so as to be turned up to approximately 90 degrees.
- the interior of the holder 30 is continuous with the opening 31 and has a concave portion 35 for accommodating the header portion 11 of the igniter 10, and the inner portion of the holder 30 is connected to the concave portion 35 and has a It has a tapered wall surface 36 that abuts the tapered wall surface 12a.
- the wall surface 36 is continuous with the opening 32. From the boundary between the wall surface 36 and the opening portion 32 to the opening portion 32, the bulging portion 12 of the igniter 10 is accommodated.
- the wall surface on the peripheral edge side of the opening 31 constitutes the pressing portion 3la.
- the body 40 has an opening 41 on one side into which the igniter 10 can be inserted, and an opening 45 on the other side into which the connector of the electric sensor can be fitted. It is a cylindrical body made of aluminum alloy.
- the outer periphery of the opening 41 into which the signature 10 can be inserted is provided with a holder 30 holder.
- An annular edge groove portion 42 having an edge portion 3 which can fix the flange portion 23 of the cup portion 20 by overlapping the flange portion 24 with the flange portion 34 is formed.
- the body 40 has a wall surface 1 on the connector side of the bulge 12
- a igniter receiving portion 44 composed of a wall surface in contact with 2a is formed.
- the driving medicine 50 is filled in a driving medicine accommodation part 28 formed between the cup 20 and the holder 30.
- the driving agent 50 is a mixture of a powder ignition agent and a granular propellant.
- a mixture of boron and potassium nitrate (powder) was used as the igniting agent, and nitrocellulose (granular) was used as the propellant.
- the amount and the composition ratio are determined in order to conform to a predetermined pressure characteristic, and the driving agent filling rate in the cup 50 is determined.
- the driving agent filling rate is set to 88%.
- the driving agent 50 receives the flame from the igniter 10 and is ignited and burned by the powdered ignition agent, and ignites and burns the granular propellant, and this combustion gas is used in the drive unit (in the module). Released to
- the powdered and granular mixture was loaded in the cup 20 as it was, but this mixture was mixed with a gas generating agent in a pellet (tablet) having a thickness of 3 mm x 3 mm. Can also be used.
- the gas generating agent is a mixture of a gas generating base composed of guanidine of 5,5,1-bis-1H tetrazolamine salt and a nitrate of an inorganic metal salt as an oxidizing agent.
- This rupture line (tea line) 26 a ruptures the inner surface of the cup 20 (tea line)
- the notch is formed on the inner surface of the cup as shown in Figs. Therefore, the remaining thickness of the cup is 0.3 mm.
- a predetermined amount of a driving agent 50 that is a mixture of a powder ignition powder and a granular propellant is filled with the closed part 21 of the cup 20 facing downward.
- a silicone sealant 37 is applied on the circumference of the flange portion 34 of the holder 30 where the flange portion 23 of the cup 20 overlaps.
- the axial length of the holder 30 is determined in relation to a predetermined filling rate of the driving agent 50 in the cup 20.
- the outer peripheral side surface 38 of the holder 30 and the inner peripheral side surface 27 of the cup 20 are in close contact with each other without any gap.
- the tapered wall surface 12a of the igniter 10 and the tapered wall surface 36 inside the holder 30 maintain both of them at the center axis.
- the joining surface between the resin plug 14 and the cap 19 is ultrasonically welded w in the signature 10.
- Figure 23 shows the ultrasonic welding process.
- the cap 19 is set on the receiving jig 60, and the ignition charge 18 is charged into the cap 19.
- the ignition charge 18 is temporarily pressurized by the temporary pressurizing jig 61.
- the two lead pins 15 and 16 are molded, the resin plug 14 to which the heating part 17 is connected is placed on the cap 19, and inserted into the cap 19 while being vibrated by the horn 62.
- Assembly process 1 As described above, the igniter 10 shown in FIG. 22 is manufactured. Assembly process 1:
- a silicone sealant 39 is applied to the tapered wall surface 12 b of the igniter 10.
- the silicone sealant 39 enters the gap between the tapered wall surface 12b and the holder 30 extending to the bulging portion 12 of the igniter 10 and stops in the bulging portion 12 and is further applied. You.
- Container 1 is assembled.
- the amount and component ratio of the driving agent 50 in the cup 20 are determined in order to match a predetermined pressure characteristic.
- the space between the opening 31 and the upper surface of the circumference (the driving medicine container 28) is set at a predetermined interval.
- the electrical signal from the connector 13 generates heat in the heat generating portion 17 of the igniter 10, igniting the igniter 18 in contact with the heat generating portion 17, and causing the flame to ignite.
- the igniting agent of the driving agent 50 burns the propellant and the initial pressure (1
- the reaction of the combustion gas pressure causes the igniter 10 to produce a stress on the body 40 side.
- the shearing surface has an angle with respect to the direction of the pressure load, and Compressive stress acts on the surface, and this compressive stress increases the frictional resistance inside the material of the body 40 (aluminum alloy) and acts as a reaction force against the shear stress caused by the pressure (internal pressure) of the combustion gas.
- FIG. 11 shows a conventional gas generator 100.
- Fig. 12 shows the outline of the tank pressure test equipment for the tank pressure test. With this device, the gas generator A and the pressure sensor B can be attached. Volume 10 c c Tank C was used to measure the internal pressure.
- Pressure sensor B is connected to measuring instrument (analyzing recorder) D
- gas generator A is connected to ignition power supply E
- measuring instrument D is connected to ignition power supply E.
- the gas generator A When a voltage is applied from the ignition power supply E, the gas generator A is ignited and the pressure in the lOcc tank C increases. At this time, the measuring device D senses the voltage from the ignition power source E and starts measuring the pressure in the 10 cc tank C.
- the measured data is expressed as a time-pressure curve.
- FIG. 13 shows a case where the gas generator 1 according to the present embodiment, which has a sufficient filling rate because there is no blind space, is arranged in the horizontal, upward and downward directions.
- FIG. 14 shows a conventional gas generator 100 in which a sufficient filling rate cannot be secured due to the presence of a blind space, in which the respective gas generators are arranged in the horizontal, upward and downward directions.
- Figure 15 shows the results of installing and operating gas generators 1 and 100 in each direction. You. As is evident from Figure 15, there was a large difference between the tank pressure beak and the pressure peak time.
- the rising pressure at the time of ignition was fast, and the pressure peaked at 9 ms. There was no problem with the horizontal, upward and downward sunset pressure differences.
- the pressure at the start of the initial operation is slow, and the peak pressure of the tank is as slow as 14 ms.
- the difference between the horizontal, downward, and upward directions shows large fluctuations, indicating an unstable output.
- the propellant in the driving agent 50 has a significantly different burning rate depending on the pressure at the time of combustion.Therefore, the magnitude of the initial pressure causes a difference in the amount of gas generated per hour during the combustion. Even if the same, the tank pressure (absolute pressure) will change.
- the combustion pressure varies depending on the presence or absence of the driving agent located in the blind space.
- the distance between the ignition surface of the ignition and the charging surface of the drive from the upper surface of the header of the ignition causes a delay in ignition. For this reason, if a sufficient filling rate cannot be ensured, the distance between the flame surface and the filling surface increases, which causes ignition delay.
- Fig. 16 shows the results of an experiment in which the gas generator 1 according to the present embodiment and the conventional gas generator 100 were operated five times under certain conditions to determine whether output variations occurred. .
- the time at the peak of the tank pressure varies, and the maximum pressure also varies, so that the combustion pressure is unstable.
- the amount of the driving agent in the cup is determined in order to meet a predetermined pressure characteristic, and the amount and the component ratio are determined, and the filling ratio of the driving agent in the cup is determined.
- the outer diameter and length of the cup 20 are almost standard among manufacturers, so to obtain the required high-output and low-output pressure characteristics, change the cup shape (length, etc.). Instead, the volume of the drug can be adjusted to the optimum filling rate (80% to 90%) by replacing the holder 30.
- the length of the holder 30 is adjusted so as to achieve a predetermined filling rate of the driving agent 50, and the pressure is adjusted to a predetermined pressure characteristic.
- the pressure is adjusted to a predetermined pressure characteristic.
- annular edge groove 42 is formed in the body 40 that holds the connector 13 side of the bulging portion 12 of the signature 10, and the flange edge 3 4 of the holder 30 is formed in the annular edge groove 42.
- the flange 23 of the cup 20 are placed on top of each other, and the edge 43 of the annular edge groove 42 is bent inward so that it is fixed by caulking. By this caulking process, the body 40, the igniter 10 and the holder 30 can be securely fixed and held physically.
- the igniter 10 is positioned at the axial and radial positions of the body 40, and the dimensional accuracy can be increased.
- the lignae 10 and the body 40 are in direct surface contact, and when the lignae 10 is fixed, no local stress is applied to the lignae 10.
- a rupture portion 26 ruptured by the combustion pressure of the driving agent 50 in the cup 20 has a predetermined depth of 6 to 8 in a circumferential direction (radially) from the center axis of the closing surface 21 of the cup 20.
- a rupture line (tear line) 26 a having a predetermined length, so that when the rupture portion 26 ruptures due to internal pressure with the combustion of the driving agent 50 and releases gas into the module, The rupture line (tear line) 26a of the slab is sheared from the central axis, and fragmentation by the rupture line (tear line) 26a does not occur.
- the rupture line (tea line) 26 a that does not separate from the fragments is related to the thickness of the closed surface 21 of the cup 20 and the remaining thickness of the rupture line (tea line) 26 a, and the thickness of the closed surface 21
- the thickness of the tear line 26a is more preferably in the range of 30 to 50%.
- the corner of the closed portion 21 of the cup 20 is not sheared (opened out), and the rupture line (tea line) 26 a formed in the closed portion 21 is broken. It has a feature in that it has an open portion without shards of the broken portion at the time of breaking. That is, the object is to prevent foreign matter from scattering from the broken portion during operation.
- the measures for preventing the scattering of foreign matters are not perfect, and there is a risk that rarely, parts fragments may be released.
- the processing method of the aluminum cup is generally forging or drawing.
- the thickness of the bottom of the cup becomes thicker than the thickness of the side cylinder surface, and the boundary between the bottom surface and the side cylinder surface (R portion at the bottom of the cup) is the weakest point.
- the pressure is a dynamic pressure having directivity, and Because it is constrained by the inner wall of the joule, breakage from the R section is inevitable.
- a rupture line (tear line) is carved as a countermeasure for this, but it has been confirmed that the bottom surface swells immediately before the rupture line (tear line) is released, and that considerable stress is applied to the R section. . Therefore, even if the rupture line (tear line) is opened, the R section is torn by the movement of the rupture line (tear line) (reaction to open). Therefore, it is important to strengthen the R part, and increasing the R as a method is highly effective. This is because the larger the value of R, the smaller the local stress, and the smaller the gap between the bottom surface and the side cylinder surface.
- the outside radius R of the bottom surface is secured to 0.8 mm or more. At this dimension, the bottom will not scatter as long as the tear line design is appropriate.
- the rupture line may be scattered.
- the relationship between the rupture line (tear line) depth and the opening pressure and the relationship between the rupture line (tear line) depth and the presence or absence of scattering were investigated, and the optimum depth was set. As a result, it was found that the optimum thickness was 50% or less.
- the length of the rupture line (the tear line) (diameter of the circumcircle of the rupture line (the tear line)) has an optimum diameter with respect to the diameter of the bottom surface that receives the internal pressure. It turned out to be optimal.
- the length of the rupture line (tea line) 26a is set to 8 mm. This is 65% of the bottom inner diameter of 0.12.4 mm.
- the corner of the closed portion 21 of the cup 20 is not sheared (opened out), and the rupture line (the tear line) 26 a formed in the closed portion 21 is broken.
- the open part where there is no debris scattering at the broken part will be further described.
- the closed part 21 of the cup 20 deforms into a sphere when subjected to internal pressure, as shown in FIG.
- the elongation reaches the limit of the material, it starts to break from the center of the bottom (the center of the tear line) where the deflection is greatest.
- the dimensions and elongation are determined as follows.
- Equation (5) is obtained from equations (2) to (4), and 0 can be calculated.
- the deformation amount (deflection amount) h at the limit of material elongation can be obtained.
- the rupture pressure at the rupture line (tea line) can be obtained.
- Equation (7) which is the shear load equation for the disk, determine the pressure when the cup bottoms out.
- Table 18 shows the values of equations (6) and (7) as shown in Table 1, and Fig. 18 shows a graph with the rupture line (tear line) remaining thickness on the X axis.
- the bottom line in the graph is the value when the cup bottom plate thickness is 0.5 mm.
- the point where the two lines intersect is the boundary between whether the rupture line (tear line) 26a breaks or the bottom comes off.
- Rupture line (Tear line) In a region where the rupture pressure is lower than the bottom pressure, when pressure is applied, the rupture line (Tear line) 26a breaks first.
- the rupture line (tear line) 26a is broken by internal pressure, dividing the bottom of the cup 20 into a plurality of sectors.
- Figs. 19 and 20 show the state when the tear line 26a is torn and the closed surface 21 of the cup 20 is unfolded.
- the fan-shaped bent portion is considered to be at an intermediate position between the R portions of the closing surface 21 of the cup 20.
- the expansion length d / 2 at that time is as shown in the following equation (8).
- Break rate: B (l-0, / 0) x l O O (%) ⁇ ⁇ ⁇ (1 2)
- the aluminum alloy cup 20 (material: A1500H24, elongation: 9.5%) of the present embodiment shows a rupture line (tea) when the breaking ratio exceeds 75%.
- (Line) 26 a may be scattered. At that time, the number of tear lines 26 a was four.
- the number of tear lines (tea lines) 26a exceeds 8, lines that do not break will be generated, so increasing the number further will not only be meaningless, but will also result in uneven distribution of breaks. Not preferred.
- the number of rupture lines (tear lines) 26a should be 4 to 8 in order to prevent foreign matter scattering.
- this number is based on the case of using the aluminum cup material of the present embodiment, and when the material changes and elongation changes, the breaking ratio is reduced to 75% or less based on the concept of the previous section 1-1). Should be set.
- Table 2 shows the difference depending on the material used when the minimum number is the limit of the breaking ratio (around 75%) and the maximum number is eight.
- the rupture line (tear line)
- the scattering condition changes when the depth of 26a is between 0.3 mm and 0.4 mm. At 0.4 mm and 0.5 mm, the bottom is scattered, and the bottom R is broken despite the provision of a rupture line (tear line) 26a. This suggests the need to optimize the depth of the tear line 26a.
- the basic technical concept is the same as the tear line 26a of the cup 20.
- the rupture line of the cap 19 (tear line) 19 The condition in which the fragments of the broken part of the 19a are scattered Changes. Without the holder 30 that exerts the function of holding down the cap 19, the tear line (tea line) 19a may be scattered.
- the rupture line (tear line) 26 a of the cup 20 does not include a member corresponding to the holder 30 that exerts the function of pressing the cap 19.
- Cup 20 alone does not scatter foreign matter. It is considered that the difference between the cup 20 and the cap 19 is due to the difference in the gas to be opened and the material of the parts. Combustion of the igniting charge (tricinate) 18 and the driving charge (single-base propellant) 50 produces different impacts on the tear lines 19a and 26a. Also, aluminum and resin have different tensile strengths, even if they have the same elongation. Considering these two factors, the burden on the tear lines 19a and 26a is clearly greater for the cap 19.
- the resin used in the igniter 10 is selected in consideration of heat resistance, strength, and weather resistance.
- polyfuramide is used as a pace polymer.
- a cap 19 with a rupture line (tear line) 19a needs the optimal material strength and elongation. did.
- Optimizing the dimensions and material of the rupture line (tear line) 19a of the cap 19 of the igniter 10 is an effective measure to prevent the rupture line (tear line) 19a from scattering.
- a stronger impact such as an increase in the amount of igniting charge or a change in igniting charge, is applied to the tear line 19a, it may be scattered.
- a holder 31 was added with a holding part 31a to take measures to prevent scattering.
- the relationship between the tear line (the tear line) 19 a of the cap 19 and the holder 30 holding the cap 19 is as follows: the diameter of the opening 31 formed in the end face of the holder 30, and the diameter of the opening 3 1 It depends on the shape of the holding portion 31a.
- the holding portion 31a is deformed by the impact of the rupture line (tea line) 19a.
- the movement at this time backs up the rupture line (tear line) 19a, but if the strength is strong, the rupture line (tear line) 19a will break, and if the hardness is high or there is no elongation, the holding part 31a will Causes scattering. Therefore, the holder 30 functions only when the mechanical properties of the material are balanced.
- the rupture line (tear line) 19 is broken by impact. Also, when the shape of the holding portion 31a is sharp (small chamfer), the rupture line (tea line) 19a is sheared.
- the shape of the holding portion 31a effectively suppresses the scattering of the tear line 19a.
- the shape of the pressing portion 31a includes, for example, those shown in FIGS. 24, 25, 26, and 27.
- hole diameter ⁇ 4 to 5 mm
- corner shape C or R 0.3 to 0.5
- plate thickness 0.5 mn! 1 mm
- Material A5052, A6601.
- Fig. 25 shows a case where the chamfer inside the hole is larger than that in Fig. 24.
- FIG. 26 shows an example in which the hole is formed into a tapered hole whose diameter is reduced toward the tip as compared to FIG.
- FIG. 27 shows an example in which the hole is formed into an R chamfered hole whose diameter is reduced toward the tip as compared to FIG.
- a comparative test was performed for the rupture line (tea line) 19a with a length of 6 mm and 4 mm, and it was confirmed that there was a significant difference.
- a rupture line (tea line) 19 a is generated.
- FIG. 28 shows a gas generator 1A according to another embodiment of the present invention (corresponding to claim 17).
- Gas generator 1 A according to the present embodiment, however c are crimped to the body 4 0 through Igunai evening 1 0 A 0-ring as in the conventional gas generator 1 0 0 1 1
- a rupture line (tea line) 19a is provided on the cap 19, as in the case of the ignay 10.
- an insertion type holder 30A shown in FIG. 29 is provided on the head side of the igniter 10A.
- the insertion-type holder 3OA comes in contact with the step of the chamfered portion 25 where the outer peripheral wall is in contact with the inner peripheral wall of the cup and the tip is narrower than the body of the wrench. It is held and fixed by caulking and fixing the lip flange and the body edge.
- the holder 3OA prevents the tear line 19a of the cap 19 from scattering.
- the holding portion 31 A of the holder 3OA have the same hole diameter and hole shape as the holding portion 31a of the holder 30.
- cup 2OA is provided with a rupture line (tea line) 2la similarly to the gas generator 1 according to the present embodiment.
- FIG. 30 shows a gas generator 1B according to another embodiment of the present invention (corresponding to claims 8 and 9).
- the present embodiment relates to a gas generator of the conventional gas generator 100 shown in FIG. 11 in which an o-ring is removed.
- the use of the bulging portion of the signature 10B is used. Therefore, it is possible to securely hold.
- rupture lines (tea lines) 19a and 2la are provided in the igniter 10B and the cup 20 as in the gas generator 1 shown in Fig. 1.
- FIG. 11 Conventional gas generator 100 (standard igniter fixed with ⁇ ring) as shown in Figure 11
- the hole diameter X is ⁇ 10 mm for the single lock type and 11.1 mm for the double single lock type.
- the width of the inner seat Y of the opening is limited to a maximum of 1.4 mm.
- the present invention has taken the following solution.
- sealant is filled instead of the O-ring, but this sealant-filled type has good sealing performance and does not impair the function of the ignition.
- the groove in the body is where the cup is inserted and buried.
- the cup is swaged so as to sandwich a holder (a component for fixing the igniter together with the body).
- the corner of the groove can be made a large C or R shape.
- an angle can be provided in the breakdown voltage section. That is, in the conventional gas generator 100 shown in FIG. 11, the pressure-resistant surface angle is 0 ° so as to be displayed as a shear plane.
- a pressure-resistant surface angle can be given so as to be displayed as a shear plane.
- the 1.7-fold increase in the burst pressure is lower than the 1.8-fold increase in the pressure-resistant area, because about 300 MPa is close to the break strength of the igniter itself. Seems to be at the limit.
- the calculated values here take into account the component force due to the angle, but do not take into account the frictional resistance inside the material. Therefore, near the angle of 0 °, the calculated and measured values match.
- the compressive strength of the igniter is around 300 MPa, so when the burst pressure exceeds about 16 °, which reaches 300 MPa, the burst pressure reaches a plateau.
- the structural strength is about twice that of the conventional ignai evening.
- the gas generator 1 according to the present embodiment uses an aluminum alloy for the body 30, a destructive test is performed to confirm the structural strength.
- a knockout pin 93 operated by a butterfly nut 95 is attached to the tank 90 via a collar 94. Further, a cap 96 for fixing the gas generator G to the tank 90 is screwed to the tank 90.
- ZDC2 is the material code of JIS (two types of zinc alloys).
- A5056 is the JIS material code (aluminum alloy).
- the conventional gas generator 100 can withstand pressure Expected fracture cross section under igniter load due to pressure) is 44.0 mm 2 , whereas that of gas generator 1 according to the present embodiment is 80.5 mm 2 , which is about twice as large. The area was secured.
- the gas generator 1 according to the present embodiment was able to obtain a burst pressure commensurate with the increase in the pressure-resistant cross-sectional area.
- the pressure-resistant cross-sectional angle was changed by changing the shorting clamp diameter (specifically, by changing X in Figs. 10 and 11). To change the cross-sectional angle with respect to the axis).
- the present invention has the following effects.
- the holder can hold the header side of the bulging portion of the signboard and can eliminate the blind space.
- a rupture line (tear line) is provided on the bottom of the cup closure, so that the broken fragments do not come off due to the combustion gas pressure.
- the rupture line is provided on the bottom of the cap closure at the igneous evening, so the broken fragments do not come off due to the combustion gas pressure.
- the igniter is covered with a holder and a rupture line (tear line) is provided at the bottom of the cap closure.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air Bags (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Abstract
An electric small gas generator used mainly as a seat belt pretensioner gas generator, comprising an ignitor (10), a body (40) disposed in contact with a connector part (13) side of a swelling part (12) of the ignitor (10), a bottomed tubular holder (30) having, in a bottom surface thereof, an opening part (31) allowing a flame from the ignitor (10) to be passed and disposed so as to cover the outer periphery of a header part (11) and the swelling part (12) of the ignitor (10), a bottomed tubular cup (20) having an inner peripheral side surface overlapped with the outer peripheral side surface of the holder (30) and also having a closed part (21) on the bottom surface thereof, and drive medicine (50) stored in the cup (20), wherein an opening end part (33) of the holder (30) and the opening end part (22) of the cup (20) are fixed by caulking after overlapped on the body (40) so as to hold the ignitor (10) by the holder (30) and the body (40) through the swelling part (12), closely fit the outer peripheral side surface of the holder (30) to the inner peripheral side surface of the cup (20) with no clearance, and form a drive medicine storage part (28) between the opening part (41) side of the holder (30) and the closed part (21) of the cup (20).
Description
ガス発生器 技術分野 Gas generator technical field
本発明は、 主にシートベルトプリテンショナ用ガス発生器に用いる電気式の小 型ガス発生器に関する。 景技術 The present invention relates to an electric small gas generator mainly used for a gas generator for a seat belt pretensioner. Landscape technology
シートベルトプリテンショナは、車両衝突等の異常衝撃を受けた際に搭乗者(シ ートベルト装着者) の身体をシートベルトで安全に拘束する役割を果たすもので ある。 The seatbelt pretensioner plays a role of safely restraining the occupant (seatbelt wearer) with a seatbelt when receiving an abnormal impact such as a vehicle collision.
このシートベルトプリテンショナに用いられるガス発生器(ガスジヱネレー夕) は、 前述の車両衝突等の衝撃の際、 迅速かつ確実にシートベルトを引張り固定す るために、 ガス発生器に収容される駆動薬 (ガス発生剤) を着火させシートベル トを駆動させるための燃焼ガスをいかに迅速かつ確実に発生させるかが重要とな る。 The gas generator (gas generator) used in this seatbelt pretensioner is designed to quickly and securely pull and fix the seatbelt in the event of an impact such as a vehicle collision as described above. It is important how quickly and surely the combustion gas for igniting the (gas generating agent) and driving the seat belt is generated.
そこで、 このガス発生器は、 衝突検出システムの電気的センサの電気的信号を 受け、 最初に電気エネルギを熱エネルギに変換し発熱部から発火反応を引き起こ すィグナイ夕 (スクイブまたはイニシエータ) と、 このィグナイ夕と結合しィグ ナイ夕を保持するボディおよびィグナイ夕の発火反応を受けて着火し燃焼ガスを 生起する駆動薬を収容するカップ等の構成部品から成っている。 Therefore, this gas generator receives the electric signal of the electric sensor of the collision detection system, first converts the electric energy into heat energy, and causes a igniting reaction from the heating part (squib or initiator); It is composed of components such as a body that couples with the igniter and holds the igniter, and a cup and the like that contains a driving agent that ignites in response to the ignition reaction of the igniter and generates combustion gas.
これにより、 ガス発生器の力ップ内に収容される駆動薬の燃焼ガスの圧力が、 シートベルトプリテンショナに組み込まれる巻き取り装置を駆動させ巻き取り装 置に懸着するシートベルトが卷き取られ身体を安全に拘束する。 As a result, the pressure of the combustion gas of the driving agent contained in the power supply of the gas generator drives the winding device incorporated in the seat belt pretensioner, and the seat belt suspended on the winding device is wound. It is taken and restrains the body safely.
また、 このガス発生器は、 シートベルトプリテンショナに用いられるが、 他の 用途としてエアバッグ用ガス発生器のガス発生剤を点火させる場合にも用いるこ とは可能である。 Further, this gas generator is used for a seat belt pretensioner, but can be used for igniting a gas generating agent of a gas generator for an air bag as another use.
特開平 1 0— 2 1 7 9 0 0号公報には、 ィグナイ夕 (点火器本体) を〇リング
を介してボディに固定したガス発生器 (ガスジヱネレ一夕) が開示されている。 このガス発生器は、 ィグナイ夕 (点火器本体 5 ) を、 ボディ (点火器支持体 2 ) に形成される頸部 4の底に置かれた 0リングのシール 6上に載置し、 頸部 4の一 側 (自由端) をィグナイ夕の拡大中央部分にかしめることにより、 ボディに締め 付け固定している。 Japanese Patent Application Laid-Open No. Hei 10-210,900 describes that the ignition (igniter body) is A gas generator fixed to a body via a gas generator is disclosed. In this gas generator, the igniter (igniter main body 5) is mounted on a 0-ring seal 6 placed at the bottom of a neck 4 formed on a body (igniter support 2). One side (free end) of 4 is fixed to the body by caulking the enlarged central part of the igneous evening.
さらに、 ボディ (点火器支持体 2 ) には、 このボディの頸部 4に近接し周方向 に縁溝部 (縁唇部 3 2 ) が形成されている。 そして、 この縁溝部に、 駆動薬 (点 火粉末 1 4 ) が収容されるカップ (破壊可能なケース 1 3 ) のフランジ部を載置 し、 縁溝部を内側へ曲げるようにかしめている。 Further, the body (igniter support 2) has a circumferential groove (border lip 32) in the circumferential direction close to the neck 4 of the body. The flange of the cup (breakable case 13) in which the driving agent (ignition powder 14) is stored is placed in the groove, and the groove is crimped inward.
また、 特開平 4一 2 7 0 8 9 8号公報には、 0リングのシールを使わない構成 のガス発生器が開示されている。 In addition, Japanese Patent Application Laid-Open No. Hei 4-270988 discloses a gas generator having a configuration that does not use an O-ring seal.
このガス発生器は、 カップ (容器 4 2 ) 内に駆動薬 (点火薬 4 4 ) を収容し、 さらにこの駆動薬を覆うとともに力ップ内とィグナイ夕を仕切るシ一ト 4 6を配 置している。 This gas generator contains a driving agent (ignition agent 44) in a cup (container 42), and further arranges a sheet 46 that covers the driving agent and separates the inside of the power supply from the ignition port. are doing.
また、 ィグナイ夕 (点火部材 5 0 ) のコネクタ側に円盤状のプレート 4 8を設 け、 その上にカップ (容器 4 2 ) のフランジ部 (リングフランジ 3 6 ) を載置し プレートと溶接し、 さらにこのフランジ部 3 6の上にカップ状の分配ケーシング 5 2のフランジ部 (リングフランジ 5 6 ) を重合載置しボディ (保持体 6 2 ) と 山付ピン 6 8により締め付け固定している。 Also, a disc-shaped plate 48 is provided on the connector side of the igniter (ignition member 50), and the flange (ring flange 36) of the cup (vessel 42) is placed thereon and welded to the plate. Further, the flange portion (ring flange 56) of the cup-shaped distribution casing 52 is superposed on the flange portion 36, and tightened and fixed by the body (holding body 62) and the pin 68. .
また、 特開昭 6 1—4 1 6 4 7号公報には、 ィグナイ夕のコネクタ側を保持し 駆動薬を収容するカップのフランジ部を保持するィグナイ夕受け部を形成するボ ディを有するガス発生器が開示されている。 Also, Japanese Patent Application Laid-Open No. 61-41667 discloses a gas having a body forming an ignition receiver for holding the connector side of the ignition and holding the flange portion of the cup containing the driving agent. A generator is disclosed.
このガス発生器は、 ボディ (点火器担体 4 ) が、 軸方向に突出したィグナイ夕 受け部 (点火器担体部分 2 6 ) と、 拡張した中央部 (拡大した中央のつば 2 8 ) と、 この中央部の外側方向の一側 (端面) に環状縁溝部 (環状溝 3 0 ) を形成し、 この環状縁溝部に、 駆動薬 (推進薬 5 4 ) を収容するカップ (推進薬容器 1 0 ) のフランジ部 (容器縁部) を挿入し、 〇リングとともにかしめ部 (縁唇部 3 2 ) によりかしめ固定されている。 In this gas generator, the body (igniter carrier 4) has an axially projecting igniter receiving portion (igniter carrier portion 26), an expanded central portion (expanded central brim 28) An annular edge groove (annular groove 30) is formed on one side (end face) of the center in the outer direction, and a cup (propellant container 10) for accommodating a driving agent (propellant 54) is formed in the annular edge groove. The flange (container edge) is inserted, and it is caulked and fixed by the caulked portion (lip 32) together with the ring.
また、 特開平 8— 1 8 3 4 1 8号公報には、 電気的センサの電気的信号を受け
ィグナイ夕が作動した時に発生するガス圧により、 破壊可能な筒状部材の脆弱部 から点火薬の火炎が放出されるエアバッグ用ガス発生器のィグナイ夕が開示され ている。 Also, Japanese Patent Application Laid-Open No. 8-184314 discloses that an electric signal of an electric sensor is received. An igniter for an air bag gas generator is disclosed in which a flame of an igniter is released from a fragile portion of a breakable tubular member by a gas pressure generated when the igniter is activated.
このエアバッグ用ガス発生器のィグナイ夕は、 スクイブ (点火器) とェンハン サ (伝火薬) を一体的に構成するィグナイ夕 (スクイブ ·ェンハンサ 1 4 ) と、 このィグナイ夕を覆うようにして破壊可能なカツプ (破壊可能な筒状部剤 1 2 ) を具備し、 このカップにフランジ 1 9を形成し、 このフランジを、 スクイブ 'ェ ンハンザと一体的に構成されるカラ 1 5上に載置し 0リングとともにかしめ部に より固定している。 The igniter of this gas generator for airbags is composed of a squib (igniter) and an enhansa (powder) that are integrated into one, and the igniter (squib enhansa 14) is destroyed so as to cover the igniter. The cup is provided with a possible cup (destructible tubular agent 12), a flange 19 is formed on this cup, and this flange is placed on a collar 15 integrally formed with the squib enhanzer. It is fixed by the swaged part together with the 0 ring.
また、 カップ 1 2の閉鎖端 2 0には、 破断部 (脆弱部) が設けられている。 こ の破断部は、 閉鎖端を相対的に薄肉にし、 例えばこの肉厚を 0 . 1〜0 . 5 mm としている。 Further, the closed end 20 of the cup 12 is provided with a rupture portion (fragile portion). This break has a relatively thin closed end, for example 0.1 to 0.5 mm thick.
ガス発生器、 特にシートベルトプリテンショナ用ガス発生器 (ガスジエネレー 夕) は、 車両搭乗員の身体をベルトで保持する構成上、 プリテンショナ (装置) を収容する場所も限られ、 また、 メーカによってはプリテンショナ (装置) の構 造および取り付け方が異なる。 Gas generators, especially gas generators for seatbelt pretensioners (gas generators) have a limited number of places for accommodating the pretensioner (equipment) because they hold the body of the vehicle occupant with a belt, and depending on the manufacturer, The structure and installation of the pretensioner (device) are different.
そこで、 特開平 1 0— 2 1 7 9 0 0号公報記載のガス発生器では、 カップ内に おいて、 カップに収容される駆動薬がィグナイ夕の発熱部側のくびれ付近 (ィグ ナイ夕ヘッダ外径とカップ内径との空間: ブラインドスペース) に入り込むか、 あるいはガス発生器の設置方向によって、 ブラインドスペースに入り込む駆動薬 の量が異なり、 駆動薬の燃焼の際の圧力特性が変わる虞がある。 Therefore, in the gas generator described in Japanese Patent Application Laid-Open No. H10-217900, in the cup, the driving agent contained in the cup is close to the constriction on the heating portion side of the igniter (igniter). The space between the header outer diameter and the cup inner diameter (blind space) or the amount of driving agent that enters the blind space varies depending on the installation direction of the gas generator, and the pressure characteristics during combustion of the driving agent may change. is there.
ブラインドスペースに駆動薬が入り込んだ場合は、 駆動薬に混合されィグナイ 夕からの火炎を受けて着火する粉状の着火薬 (この粉状の着火薬の火炎で混合す る粒状の発射薬がほぼ同時に着火する) が、 ィグナイ夕のヘッダ上面部にある着 火薬より時間的に遅れて着火する傾向となり、 圧力特性に少なからず影響を与え る o If a driving powder enters the blind space, it is mixed with the driving powder and ignited by the flame from the igniting evening. Ignition at the same time) but tends to ignite with a time delay compared to the explosive on the top of the header in the igneous evening, which has a considerable effect on the pressure characteristics o
この現象は、 ブラインドスペースに位置する駆動薬が、 粉状の着火薬の火炎伝 播を受けないため、 正常に着火した着火薬の火炎伝播により遅れて燃焼を開始す ることとなり、 圧力の遅延や低下が生じるために起こる。
また、 ィグナイ夕を固定するために、 ボディから中空円筒状に延在する頸部と 0リングによりかしめ固定し、 駆動薬を収容するカツプのフランジ部をボディの 環状縁溝部へ載置し、 これをかしめ固定するという 2回のかしめ加工が必要とな る。 This phenomenon occurs because the driving agent located in the blind space does not receive the flame propagation of the powdered ignition powder, so that combustion starts with a delay due to the flame propagation of the ignition powder that has ignited normally, and the pressure is delayed. And decline. Also, in order to fix the igniter, it is fixed by caulking with a neck extending from the body in a hollow cylindrical shape and an O-ring, and the flange portion of the cup containing the driving agent is placed in the annular edge groove of the body. It is necessary to perform caulking twice, caulking and fixing.
また、 特開平 4一 2 7 0 8 9 8号公報記載のガス発生器では、 点火薬 4 4の保 持と防湿のために、 カップ内のプレス体の点火薬をシート 4 6で覆わなければな らない。 In addition, in the gas generator described in Japanese Patent Application Laid-Open No. Hei 4-270988, in order to maintain the igniting charge 44 and prevent moisture, the igniting charge of the press body in the cup must be covered with a sheet 46. No.
また、 カップとィグナイ夕を保持するために、 プレート 4 8を用いたりネジに より固定したりする必要があり、 工数がかかる。 In addition, it is necessary to use a plate 48 or fix it with screws to hold the cup and the igniter, which requires a lot of man-hours.
また、 特開昭 6 1—4 1 6 4 7号公報記載のガス発生器では、 ボディでィグナ イタのコネクタ側の段部の形状 (テ一パ形状) で保持しているため、 0リングを 必要とすることと、 ィグナイ夕自体の駆動薬側への保持に難点がある。 Further, in the gas generator described in Japanese Patent Application Laid-Open No. 61-41667, the body is held in the shape of a step (taper shape) on the connector side of the igniter. There are difficulties with the necessity and retention of the sign itself on the driving drug side.
また、 特開平 8— 1 8 3 4 1 8号公報記載のエアバッグ用ガス発生器のィグナ イタでは、 カップの閉鎖端 2 0に薄肉の破断部が形成されているが、 駆動薬 (伝 火薬) の燃焼圧力で破断片が離脱する虞がある。 Further, in the igniter of the gas generator for an air bag described in Japanese Patent Application Laid-Open No. 8-183418, a thin cut portion is formed at the closed end 20 of the cup. There is a risk that broken fragments may be detached at the combustion pressure of 1).
なお、 シートベルトプリテンショナに要求される出力は一定ではなく、 車種、 モジュールの種類等によって要求される圧力が違っている。 Note that the required output of the seatbelt pretensioner is not constant, and the required pressure varies depending on the vehicle type, module type, etc.
そこで、 ガスジェネレータメーカは、 要求される様々な出力に対応する必要が あり、 そのために駆動薬量を調整することがある。 Therefore, gas generator manufacturers need to cope with the various outputs required, and may adjust the amount of driving chemical for that purpose.
また、 仮に、 プリテンショナが必要とする熱力学的エネルギが一定であつたと しても、 速い立ち上がり圧力を必要とするモジュールやその逆のモジュールがあ るため、ガス発生量を一定にしつつ発射薬と着火薬の比率で対応する必要がある。 駆動薬は、 通常、 発射薬と着火薬で構成されている。 Also, even if the thermodynamic energy required by the pretensioner is constant, there are modules that require a fast rising pressure and vice versa. And the ratio of the ignition charge. Driving agents usually consist of propellant and igniter.
速い立ち上がり圧力が求められた場合には、着火薬を多く入れる必要があるが、 着火薬は発射薬に比べてガス量が少ないため、 発射薬の量はさほど減らすことは できない。 If a fast start-up pressure is required, it is necessary to add a large amount of priming charge, but since the priming charge has a smaller gas volume than the propellant charge, the amount of the propellant charge cannot be reduced so much.
そのため、 駆動藥全体としての薬量、 充填容積が変化する。 As a result, the amount of drug and the filling volume of the driving drug as a whole change.
以上の理由から、 客先の要求に合わせた場合には、 複数の仕様を用意しなけれ ばならない。
そのため、 充填率調整構造を持たない従来のタイプでは、 最適充填率で作るた めに複数の力ップを用意しなければならなかった。 発明の開示 For these reasons, multiple specifications must be prepared to meet customer requirements. For this reason, in the conventional type without the filling rate adjustment structure, it was necessary to prepare multiple forceps to make the optimum filling rate. Disclosure of the invention
本発明の目的は、 プラインドスペースに駆動薬が入り込まないようにしたガス 発生器を提供することにある。 An object of the present invention is to provide a gas generator that prevents a driving agent from entering a blind space.
本発明の別の目的は、 組立が容易でかつ確実に固定できるガス発生器を提供す ることにある。 Another object of the present invention is to provide a gas generator that can be easily assembled and securely fixed.
本発明のまた別の目的は、 駆動薬の所定の充填率を確保することが容易なガス 発生器を提供することにある。 Still another object of the present invention is to provide a gas generator which can easily ensure a predetermined filling rate of a driving agent.
本発明のさらに別の目的は、 燃焼ガス圧で破断片が離脱しないガス発生器を提 供することにある。 Still another object of the present invention is to provide a gas generator in which broken fragments are not released at a combustion gas pressure.
本発明に係るガス発生器は、 ヘッダ部とコネクタ部とを有するとともにへッダ 部とコネクタ部とが膨出部を介して連結して成るィグナイ夕と、 このィグナイ夕 の膨出部のコネクタ部側に当接して配置されるボディと、 ィグナイ夕からの火炎 を通過させる開口部を底面に有するとともにィグナイ夕のヘッダ部および膨出部 の外周を覆うように配置される有底筒状のホルダと、 このホルダの外周側面と重 なる内周側面を有するとともに底面に閉鎖部を有する有底筒状の力ップと、 この 力ップ内に収容される駆動薬とを備えている。 A gas generator according to the present invention comprises: a igniter having a header portion and a connector portion, wherein a header portion and a connector portion are connected via a bulge portion; and a connector of the bulge portion of the ignite portion. A body having an opening on the bottom surface through which the flame from the igniter passes, and a bottomed cylindrical member arranged to cover the outer periphery of the header and bulge of the igniter It has a holder, a bottomed cylindrical power cup having an inner peripheral side surface overlapping with the outer peripheral side face of the holder and having a closed portion on the bottom surface, and a driving agent accommodated in the power cup.
そして、 このガス発生器は、 ホルダの開口端部とカップの開口端部とを、 ボデ ィに重ねてかしめ固定することにより、 ィグナイ夕を、 膨出部を介してホルダと ボディとで挟持し、 ホルダの外周側面とカップの内周側面とを、 隙間のないよう に密着し、 ホルダの開口部側とカップの閉鎖部との間に、 駆動薬収容部を形成し ている。 In this gas generator, the open end of the holder and the open end of the cup are overlapped on the body and fixed by caulking, so that the sign is held between the holder and the body via the bulging portion. The outer peripheral side surface of the holder and the inner peripheral side surface of the cup are in close contact with each other without any gap, and a driving medicine accommodating portion is formed between the opening side of the holder and the closed portion of the cup.
ここで、 ボディは、 例えば、 ィグナイ夕の膨出部のコネクタ部側の壁面に面接 触する壁面から成るィグナイ夕受け部と、 ホルダの開口端部の外側に設けられた フランジ部と前記力ップの開口端部の外側に設けられたフランジ部とを重合して かしめ固定できる縁部を有する環状縁溝部とを一体的に形成している。 Here, the body includes, for example, a lignae receiving portion formed of a wall surface in contact with a wall surface on the connector portion side of the bulging portion of the lignay, a flange provided outside the opening end of the holder, and the force transmitting member. An annular edge groove portion having an edge portion which can be fixed by caulking and fixing a flange portion provided outside the opening end portion of the opening is integrally formed.
また、 ホルダの開口端部の外側に設けられたフランジ部の鍔部には、 例えば、
シリコーンシール剤が塗布されている。 In addition, the flange portion of the flange portion provided outside the opening end portion of the holder includes, for example, Silicone sealant is applied.
また、 ボディのィグナイ夕受け部には、 例えば、 シリコーンシール剤が塗布さ れている。 Further, for example, a silicone sealant is applied to the igniter receiving portion of the body.
また、 駆動薬収容部は、 例えば、 ホルダを取り替えることによって、 駆動薬の 充填率を 8 0 %〜9 0 %にすることができる。 In the driving medicine container, the filling rate of the driving medicine can be set to 80% to 90%, for example, by replacing the holder.
本発明に係る別のガス発生器は、 ヘッダ部とコネクタ部とを有するィグナイ夕 と、 このィグナイ夕のコネクタ部側に取り付けられるボディと、 底面に閉鎖部を 有するとともに底面に破裂線を設け、 ィグナイ夕に取り付けられる有底筒状の力 ップと、 この力ップ内に収容される駆動薬とを備えている。 Another gas generator according to the present invention includes an igniter having a header portion and a connector portion, a body attached to the connector portion side of the igniter portion, a closing portion on the bottom surface, and a rupture line provided on the bottom surface, It has a bottomed cylindrical forceps attached to the igniter and a driving agent contained in the forceps.
ここで、 破裂線は、 例えば、 底面の板厚に対し 3 0 %〜5 0 %の残り板厚を形 成する。 Here, the rupture line forms, for example, 30% to 50% of the remaining plate thickness with respect to the bottom plate thickness.
本発明に係る別のガス発生器は、 ヘッダ部とコネクタ部とを有するとともにへ ッダ部に破裂線を設けたィグナイ夕と、 このィグナイ夕のコネクタ部側に取り付 けられるボディと、 底面に閉鎖部を有し、 ィグナイ夕に取り付けられる有底筒状 のカップと、 このカップ内に収容される駆動薬とを備えている。 Another gas generator according to the present invention includes: a igniter having a header portion and a connector portion and having a rupture line in a header portion; a body attached to the connector portion side of the igniter portion; It has a closed-end portion, a bottomed cylindrical cup attached to the igniter, and a driving agent contained in the cup.
ここで、 破裂線は、 底面の板厚に対し 3 0 %〜5 0 %の残り板厚を形成する。 本発明に係る別のガス発生器は、 ヘッダ部とコネクタ部とを有するとともにへ ッダ部とコネクタ部とが膨出部を介して連結して成るィグナイ夕と、 このィグナ イタの膨出部のコネクタ部側に当接して配置されるボディと、 底面に閉鎖部を有 し、 ィグナイ夕に取り付けられる有底筒状のカップと、 このカップ内に収容され る駆動薬とを備えている。 Here, the rupture line forms a remaining thickness of 30% to 50% with respect to the thickness of the bottom surface. Another gas generator according to the present invention includes: a igniter having a header portion and a connector portion, wherein the header portion and the connector portion are connected via a bulge portion; and a bulge portion of the igniter. A body disposed in contact with the connector portion side of the connector, a closed-bottomed cup having a closed portion on the bottom surface and attached to the igniter, and a driving agent accommodated in the cup.
本発明に係る別のガス発生器は、 ヘッダ部とコネクタ部とを有するとともにへ ッダ部に破裂線を設けたィグナイ夕と、 このィグナイ夕のコネクタ部側に取り付 けられるボディと、 底面に閉鎖部を有するとともに底面に破裂線を設け、 ィグナ イタに取り付けられる有底筒状のカップと、 このカップ内に収容される駆動薬と を備えている。 Another gas generator according to the present invention includes: a igniter having a header portion and a connector portion and having a rupture line in a header portion; a body attached to the connector portion side of the igniter portion; It has a closed part, has a rupture line on the bottom surface, and has a bottomed cylindrical cup attached to the igniter, and a driving agent contained in the cup.
本発明に係る別のガス発生器は、 ヘッダ部とコネクタ部とを有するとともにへ ッダ部とコネクタ部とが膨出部を介して連結して成るィグナイ夕と、 このィグナ イタのコネクタ部側に取り付けられるボディと、 底面に閉鎖部を有するとともに
底面に破裂線を設け、 ィグナイ夕に取り付けられる有底筒状のカップと、 この力 ップ内に収容される駆動薬とを備えている。 Another gas generator according to the present invention includes: a igniter having a header portion and a connector portion, wherein the header portion and the connector portion are connected via a bulging portion; and a connector portion side of the igniter. With a body attached to the A rupture line is provided on the bottom surface, and it has a bottomed cylindrical cup that is attached to the igniter, and a driving agent that is housed in the forceps.
本発明に係る別のガス発生器は、 ヘッダ部とコネクタ部とを有するとともにへ ッダ部に破裂線を設けたィグナイ夕と、 このィグナイ夕のコネクタ部側に取り付 けられるボディと、 ィグナイ夕からの火炎を通過させる開口部を底面に有すると ともにィグナイ夕のヘッダ部および膨出部の外周を覆うように配置される有底筒 状のホルダと、 底面に閉鎖部を有し、 ィグナイ夕に取り付けられる有底筒状の力 ップと、 この力ップ内に収容される駆動薬とを備えている。 Another gas generator according to the present invention includes: a igniter having a header portion and a connector portion and having a rupture line in a header portion; a body attached to the connector portion side of the igniter portion; A bottomed cylindrical holder arranged to cover the outer periphery of the header portion and the bulging portion of the igniter and having an opening at the bottom surface for allowing the flame from the evening to pass, and a closed portion at the bottom surface; It has a bottomed cylindrical zipper that is attached in the evening, and a driving agent that is housed in this zipper.
ここで、 ホルダの開口部は、 例えば、 カップに向かって縮径する穴部によって 構成されている。 Here, the opening of the holder is constituted by, for example, a hole which is reduced in diameter toward the cup.
また、 破裂線は、 例えば、 その周縁部がホルダの底部で覆われるとともにその 中央部が開口部より露出するように配置されている。 Further, the rupture line is arranged, for example, such that its peripheral edge is covered by the bottom of the holder and its center is exposed from the opening.
また、 ホルダは、 例えば、 カップとともにボディに重ねてかしめ固定されてい る。 In addition, the holder is fixed to the body by, for example, overlapping the cup with the cup.
本発明に係る別のガス発生器は、 ヘッダ部とコネクタ部とを有するとともにへ ッダ部に破裂線を設けたィグナイ夕と、 このィグナイ夕のコネクタ部側に取り付 けられるボディと、 ィグナイ夕からの火炎を通過させる開口部を底面に有すると ともにィグナイ夕のヘッダ部の外周を覆うように配置される有底筒状のホルダと、 底面に閉鎖部を有し、 ィグナイ夕に取り付けられる有底筒状のカップと、 この力 ップ内に収容される駆動薬とを備えている。 図面の簡単な説明 Another gas generator according to the present invention includes: a igniter having a header portion and a connector portion and having a rupture line in a header portion; a body attached to the connector portion side of the igniter portion; It has a bottomed tubular holder that has an opening on the bottom surface to allow the flame from the evening to pass and covers the outer periphery of the header of the igniter, and has a closed part on the bottom and is attached to the igniter. It has a bottomed cylindrical cup and a driving agent contained in the forceps. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態に係るガス発生器を示す全体の断面図である。 FIG. 1 is an overall sectional view showing a gas generator according to an embodiment of the present invention.
図 2は、 図 1におけるィグナイ夕の断面を示すものである。 Figure 2 shows a cross section of the igniter in Figure 1.
図 3は、 図 1におけるカップの断面図である。 FIG. 3 is a cross-sectional view of the cup in FIG.
図 4は、 図 1におけるカップの上面図である。 FIG. 4 is a top view of the cup in FIG.
図 5は、 図 1におけるカップの側面図である。 FIG. 5 is a side view of the cup in FIG.
図 6は、 図 1におけるカップに形成される破断部 (破裂線 (テアライン) ) の 上面図である。
図 7は、 図 6の B— B, 線に沿った断面図である。 FIG. 6 is a top view of a break (rupture line (tea line)) formed in the cup in FIG. FIG. 7 is a cross-sectional view taken along line BB of FIG.
図 8は、 図 1のホルダの断面図である。 FIG. 8 is a cross-sectional view of the holder of FIG.
図 9は、 図 1に示すガス発生器の組立を順に示す図である。 FIG. 9 is a view sequentially showing the assembly of the gas generator shown in FIG.
図 1 0は、 図 1におけるボディの耐圧強度に関する断面図である。 FIG. 10 is a cross-sectional view relating to the pressure resistance of the body in FIG.
図 1 1は、 従来のボディの耐圧強度に関する断面図である。 FIG. 11 is a cross-sectional view related to the pressure resistance of a conventional body.
図 1 2は、 タンク圧試験装置の概要を示す説明図である。 FIG. 12 is an explanatory diagram showing an outline of the tank pressure test device.
図 1 3は、 本発明の実施形態に係るガス発生器を各方向に向きを変えた状態を 示す断面図である。 FIG. 13 is a cross-sectional view showing a state where the gas generator according to the embodiment of the present invention is turned in each direction.
図 1 4は、従来のガス発生器を各方向に向きを変えた状態を示す断面図である。 図 1 5は、 図 1 3, 図 1 4によって得られた結果を示すグラフである。 FIG. 14 is a cross-sectional view showing a state in which the conventional gas generator is turned in each direction. FIG. 15 is a graph showing the results obtained from FIG. 13 and FIG.
図 1 6は、 一定条件下における本実施形態に係るガス発生器と従来のガス発生 器を、 それそれ 5回作動させて、 出力バラツキが生じるかを試みた結果を示すグ ラフである。 FIG. 16 is a graph showing the results of an experiment in which the gas generator according to the present embodiment and the conventional gas generator were operated five times under a certain condition to determine whether output variation occurred.
図 1 7は、 カップの破裂線 (テアライン) が破断圧力を受けた時の状態を示す 説明図である。 FIG. 17 is an explanatory diagram showing a state in which a tear line (tea line) of the cup is subjected to a breaking pressure.
図 1 8は、 カップの破裂線 (テアライン) 破断と底抜けとの関係を示すグラフ である。 Figure 18 is a graph showing the relationship between the tear line rupture of the cup (the tear line) and the breakthrough.
図 1 9は、 カップの破裂線 (テアライン) の破断状態を示す説明図である。 図 2 0は、 図 1 9のカップの破裂線 (テアライン) の破断状態を示す拡大説明 図である。 FIG. 19 is an explanatory view showing a broken state of a tear line (tea line) of the cup. FIG. 20 is an enlarged explanatory view showing a rupture state of a tear line of the cup of FIG.
図 2 1は、 カップの破裂線 (テアライン) の板厚と破壊圧力との関係を示すグ ラフである。 Figure 21 is a graph showing the relationship between the tear line thickness of the cup and the burst pressure.
図 2 2は、 図 1におけるィグナイ夕の一例を示す断面図である。 FIG. 22 is a sectional view showing an example of the igniter in FIG.
図 2 3は、 図 2 2に示すィグナイ夕の超音波溶着工程を示す説明図である。 図 2 4は、 図 1におけるホルダの断面図である。 FIG. 23 is an explanatory view showing the ultrasonic welding process of the igniter shown in FIG. FIG. 24 is a sectional view of the holder in FIG.
図 2 5は、 図 1におけるホルダの断面図である。 FIG. 25 is a cross-sectional view of the holder in FIG.
図 2 6は、 図 1におけるホルダの断面図である。 FIG. 26 is a cross-sectional view of the holder in FIG.
図 2 7は、 図 1におけるホルダの断面図である。 FIG. 27 is a cross-sectional view of the holder in FIG.
図 2 8は、本発明の別の実施形態に係るガス発生器を示す全体の断面図である。
図 2 9は、 図 2 8におけるガス発生器に使用する挿入タイプのホルダを示す断 面図である。 FIG. 28 is an overall sectional view showing a gas generator according to another embodiment of the present invention. FIG. 29 is a cross-sectional view showing an insertion type holder used for the gas generator in FIG.
図 3 0は、本発明の別の実施形態に係るガス発生器を示す全体の断面図である。 図 3 1は、 耐圧断面積とボディ破壊圧力との関係を示すグラフである。 FIG. 30 is an overall sectional view showing a gas generator according to another embodiment of the present invention. FIG. 31 is a graph showing the relationship between the withstand pressure cross-sectional area and the body burst pressure.
図 3 2は、 耐圧断面積の試験機器を示す正面図および断面図である。 FIG. 32 is a front view and a cross-sectional view showing a test device having a withstand pressure cross-sectional area.
図 3 3は、 破壊試験圧力波形を示すグラフである。 発明を実施するための最良の形態 FIG. 33 is a graph showing the pressure waveform of the burst test. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を図面に示す実施形態に基づいて説明する。 Hereinafter, the present invention will be described based on embodiments shown in the drawings.
図 1は、 本実施形態に係るガス発生器の全体図である。 FIG. 1 is an overall view of a gas generator according to the present embodiment.
本実施形態に係るガス発生器 1は、 最初の点火手段であるィグナイ夕 1 0と、 駆動薬 5 0を収容するカップ 2 0と、 カップ 2 0内に配置されてィグナイ夕 1 0 のヘッダ部 1 1側に嵌合されるホルダ 3 0と、 ィグナイ夕 1 0のコネクタ部 1 3 側を受けるようにして保持するボディ 4 0と、 このボディ 4 0の環状縁溝部 4 2 に、 ホルダ 3 0のフランジ部 3 4とカップ 2 0のフランジ部 2 3とを重ね合わせ 挿入し、 環状縁溝部 4 2の縁部 4 3によりかしめ固定することによって構成され ている。 The gas generator 1 according to the present embodiment includes a igniter 10 serving as the first ignition means, a cup 20 containing the driving agent 50, and a header portion of the igniter 10 arranged in the cup 20. 1 Holder 30 fitted to 1 side, body 40 that receives and holds connector 13 side of igniter 10, and holder 30 into annular edge groove 42 of body 40 The flange portion 34 of the cup 20 and the flange portion 23 of the cup 20 are overlapped and inserted, and caulked and fixed by the edge portion 43 of the annular edge groove portion 42.
ィグナイ夕 1 0は、 図 2に示すように、 樹脂プラグ 1 4でモールドされた 2本 のリードピン 1 5 , 1 6と、 これらの一側部に電気的に接続されるブリッジワイ ャなどの発熱部 1 7と、 この発熱部 1 7上に装薬される点火薬 1 8と、 この点火 薬 1 8を収容するとともに樹脂プラグ 1 4の段部 1 4 aに載置して樹脂プラグ 1 4と嵌合および固定するキヤップ 1 9とで構成されている。 As shown in Fig. 2, the igniter 10 generates heat from two lead pins 15 and 16 molded with a resin plug 14 and a bridge wire electrically connected to one side of these pins. A part 17, an igniter 18 charged on the heating part 17, and the igniter 18 are accommodated and placed on the step part 14 a of the resin plug 14, and the resin plug 14 is placed. And a cap 19 to be fitted and fixed.
ィグナイ夕 1 0の外形は、 膨出部 1 2を介して、 発熱部 1 7および点火薬 1 8 を有するヘッダ部 1 1とこのヘッダ部 1 1と電気的に導通するコネクタ部 1 3と を連結した形状をなしている。 The outer shape of the igniter 10 is, through a bulging portion 12, a header portion 11 having a heating portion 17 and an igniter 18, and a connector portion 13 electrically connected to the header portion 11. It has a connected shape.
膨出部 1 2は、 ヘッダ部 1 1側とコネクタ部 1 3側とに向かってそれぞれテー パ形状の壁面 1 2 a , 1 2 bを有する。 The bulging portion 12 has tapered wall surfaces 12a and 12b respectively toward the header portion 11 and the connector portion 13 side.
カップ 2 0は、 図 1〜図 7に示すように、 一側が閉じられている底面に閉鎖部 2 1を有し他側が開口する開口端部 2 2を有するアルミニウム合金製の有底筒状
体である。 As shown in FIGS. 1 to 7, the cup 20 has an aluminum alloy bottomed cylindrical shape having a closed portion 21 on the bottom surface closed on one side and an open end 22 opened on the other side. Body.
開口端部 2 2の外周には略 9 0度にめくれるようにフランジ部 2 3が形成され ている。 A flange portion 23 is formed on the outer periphery of the open end portion 22 so as to be turned up to approximately 90 degrees.
また、 このカップ 2 0には、 図 3〜図 6に示すように、 胴体部 2 4の閉鎖部 2 1側に胴体部 2 4より狭くなる面取り部 2 5が 2個対向して設けられている。 また、 閉鎖部 2 1には破断部 2 6が形成される。 この破断部 2 6には、 図 6に 示すように、 カップ 2 0の中心軸から円周方向に向かって放射状に、 長さが底面 内径の 6 0〜7 0 %、 残り板厚が底面板厚の 5 0 %の破裂線 (テアライン) 2 6 aを 8本設けている。 As shown in FIGS. 3 to 6, the cup 20 is provided with two chamfered portions 25 which are narrower than the body portion 24 on the closed portion 21 side of the body portion 24. I have. Further, a break 26 is formed in the closed part 21. As shown in Fig. 6, the fractured portion 26 has a length radially from the central axis of the cup 20 in the circumferential direction, a length of 60 to 70% of the inner diameter of the bottom surface, and a remaining thickness of the bottom plate. Eight 50% burst lines (tear lines) 26a are provided.
この破裂線 (テアライン) 2 6 aは本実施形態では 8本であるが、 破片離脱を 防止する面から好ましくは 6本〜 8本が適当である。 The number of rupture lines (tea lines) 26a is eight in the present embodiment, but preferably six to eight lines are suitable from the viewpoint of preventing separation of fragments.
さらに、 破裂線 (テアライン) 2 6 aの残り板厚は本実施形態では 0 . 3 mm であるが、 強度の面から好ましくは 0 . 2〜0 . 3 mmが適当である (閉鎖面板 厚に対する破裂線 (テアライン) 板厚は 3 0〜5 0 % ) 。 Further, the remaining plate thickness of the rupture line (tear line) 26a is 0.3 mm in the present embodiment, but preferably 0.2 to 0.3 mm from the viewpoint of strength (the thickness with respect to the closed plate thickness). Rupture line (Tear line) The thickness is 30-50%.
ホルダ 3 0は、 図 1 , 図 2, 図 8に示すように、 一側がィグナイ夕 1 0の火炎 が通過する開口部 3 1を有し、 他側がィグナイ夕 1 0を嵌合する開口部 3 2を有 するアルミニウム製の有底筒状体である。 As shown in FIGS. 1, 2, and 8, the holder 30 has an opening 31 on one side through which the flame of the igniter 10 passes, and an opening 3 on the other side into which the igniter 10 fits. 2 is a bottomed cylindrical body made of aluminum.
ィグナイ夕 1 0を嵌合する開口部 3 2の端部 3 3の外周には略 9 0度にめくれ るようにフランジ部 3 4が形成されている。 A flange portion 34 is formed on the outer periphery of the end portion 33 of the opening portion 32 into which the signature 10 is fitted so as to be turned up to approximately 90 degrees.
また、 このホルダ 3 0の内部は、 開口部 3 1に連続するとともにィグナイ夕 1 0のヘッダ部 1 1を収容する凹部 3 5と、 この凹部 3 5に連続するとともにィグ ナイ夕 1 0のテーパ形状の壁面 1 2 aを当接するテ一パ形状の壁面 3 6とを有す る。 そして、 壁面 3 6は開口部 3 2と連続している。 壁面 3 6と開口部 3 2との 境界から開口部 3 2にかけてィグナイ夕 1 0の膨出部 1 2が収容されることとな る。 また、 開口部 3 1の周縁側の壁面が押さえ部 3 l aを構成する。 The interior of the holder 30 is continuous with the opening 31 and has a concave portion 35 for accommodating the header portion 11 of the igniter 10, and the inner portion of the holder 30 is connected to the concave portion 35 and has a It has a tapered wall surface 36 that abuts the tapered wall surface 12a. The wall surface 36 is continuous with the opening 32. From the boundary between the wall surface 36 and the opening portion 32 to the opening portion 32, the bulging portion 12 of the igniter 10 is accommodated. In addition, the wall surface on the peripheral edge side of the opening 31 constitutes the pressing portion 3la.
ボディ 4 0は、 図 1 , 図 2に示すように、 一側がィグナイ夕 1 0を挿入できる 開口部 4 1を有し、 他側は電気センサのコネクタ部が嵌合できる開口部 4 5を有 するアルミニゥム合金製の筒状体である。 As shown in FIGS. 1 and 2, the body 40 has an opening 41 on one side into which the igniter 10 can be inserted, and an opening 45 on the other side into which the connector of the electric sensor can be fitted. It is a cylindrical body made of aluminum alloy.
また、 ィグナイ夕 1 0を挿入できる開口部 4 1側の外周には、 ホルダ 3 0のフ
ランジ部 3 4とカップ 2 0のフランジ部 2 3とを重合してかしめ固定できる縁部 3を有する環状の縁溝部 4 2が形成されている。 The outer periphery of the opening 41 into which the signature 10 can be inserted is provided with a holder 30 holder. An annular edge groove portion 42 having an edge portion 3 which can fix the flange portion 23 of the cup portion 20 by overlapping the flange portion 24 with the flange portion 34 is formed.
また、 ボディ 4 0には、 ィグナイ夕 1 0の膨出部 1 2のコネクタ部側の壁面 1 Also, the body 40 has a wall surface 1 on the connector side of the bulge 12
2 aに面接触する壁面から成るィグナイ夕受け部 4 4が形成されている。 A igniter receiving portion 44 composed of a wall surface in contact with 2a is formed.
駆動薬 5 0は、 カップ 2 0とホルダ 3 0との間に形成される駆動薬収容部 2 8 内に充填される。 駆動薬 5 0は、 粉状の着火薬と粒状の発射薬との混合である。 着火薬としては、 ボロン—硝酸カリウムとの混合薬 (粉状) 、 発射薬としては ニトロセルロース (粒状) を用いた。 The driving medicine 50 is filled in a driving medicine accommodation part 28 formed between the cup 20 and the holder 30. The driving agent 50 is a mixture of a powder ignition agent and a granular propellant. A mixture of boron and potassium nitrate (powder) was used as the igniting agent, and nitrocellulose (granular) was used as the propellant.
また、 カップ内の駆動薬 5 0は、 所定の圧力特性に合わせるため薬量および成 分比率を決め、 カップ 5 0内の駆動薬充填率を決定する。 本実施形態では、 駆動 薬充填率を 8 8 %とした。 Further, for the driving agent 50 in the cup, the amount and the composition ratio are determined in order to conform to a predetermined pressure characteristic, and the driving agent filling rate in the cup 50 is determined. In the present embodiment, the driving agent filling rate is set to 88%.
この駆動薬 5 0は、 ィグナイ夕 1 0からの火炎を粉状の着火薬が受けて着火し 燃焼し、 粒状の発射薬に着火し燃焼し、 この燃焼ガスが駆動装置部分 (モジユー ル内) へ放出される。 The driving agent 50 receives the flame from the igniter 10 and is ignited and burned by the powdered ignition agent, and ignites and burns the granular propellant, and this combustion gas is used in the drive unit (in the module). Released to
また、 本実施形態では粉状と粒状の混合薬をそのままの形態でカップ 2 0内に 装填したが、 この混合薬と 3 m m x厚み 3 m mのペレッ ト状 (錠剤) にしたガ ス発生剤とを混合しても使用可能である。 Further, in the present embodiment, the powdered and granular mixture was loaded in the cup 20 as it was, but this mixture was mixed with a gas generating agent in a pellet (tablet) having a thickness of 3 mm x 3 mm. Can also be used.
また、 ガス発生剤としては、 5 , 5, 一ビス一 1 Hテトラゾールァミン塩のグ ァニジンからなるガス発生基剤と酸化剤として無機金属塩の硝酸塩とを混合して いるものである。 The gas generating agent is a mixture of a gas generating base composed of guanidine of 5,5,1-bis-1H tetrazolamine salt and a nitrate of an inorganic metal salt as an oxidizing agent.
次に、 図 9により本実施形態に係るガス発生器の組立方法を説明する。 Next, a method for assembling the gas generator according to the present embodiment will be described with reference to FIG.
なお、 本実施形態の組立に使用する治工具等の説明および図は省き、 組立の要 点について述べる。 Note that explanations and drawings of jigs and the like used for assembling of the present embodiment are omitted, and essential points of assembling will be described.
組立行程①: Assembly process ①:
カップ 2 0の閉鎖部 2 1の内面に、その内面の中心軸から円周上に残り板厚 0 . On the inner surface of the closed part 21 of the cup 20, the remaining plate thickness is 0.
3 m m X長さ 8 m mを 8本、 破裂線 (テアライン) 2 6 aを形成しておく。 Eight pieces of 3 mm x 8 mm in length and rupture lines (tea lines) 26 a are formed.
この破裂線 (テアライン) 2 6 aは、 カップ 2 0の内面を破裂線 (テアライン) This rupture line (tea line) 26 a ruptures the inner surface of the cup 20 (tea line)
2 6 aを形成する型に被せて一定厚さに加工する。 It is processed to a certain thickness by covering over the mold for forming 26a.
これにより、 切り込みは、 図 6, 図 7に示すように、 カップの内側面に形成さ
れるので、 カップの残り板厚が 0 . 3 mmとなる。 As a result, the notch is formed on the inner surface of the cup as shown in Figs. Therefore, the remaining thickness of the cup is 0.3 mm.
次に、 カップ 2 0の閉鎖部 2 1を下に向け粉状の着火薬と粒状の発射薬とを混 合した駆動薬 5 0を所定量充填する。 Next, a predetermined amount of a driving agent 50 that is a mixture of a powder ignition powder and a granular propellant is filled with the closed part 21 of the cup 20 facing downward.
組立工程②: Assembly process ①:
ホルダ 3 0をカップ 2 0の開口部 2 2から挿入し、 カップ 2 0のフランジ部 2 3とホルダ 3 0のフランジ部 3 4が重なるところで挿入停止する。 Insert the holder 30 through the opening 22 of the cup 20 and stop the insertion when the flange 23 of the cup 20 and the flange 34 of the holder 30 overlap.
その際、 図 8に示すように、 カップ 2 0のフランジ部 2 3が重なる部分のホル ダ 3 0のフランジ部 3 4の円周上にシリコーンシール剤 3 7を塗布する。 At that time, as shown in FIG. 8, a silicone sealant 37 is applied on the circumference of the flange portion 34 of the holder 30 where the flange portion 23 of the cup 20 overlaps.
また、 このホルダ 3 0の軸長上の長さは、 カップ 2 0内の駆動薬 5 0の所定充 填率と関係して決められる。 The axial length of the holder 30 is determined in relation to a predetermined filling rate of the driving agent 50 in the cup 20.
また、 このホルダ 3 0の外周側面 3 8とカップ 2 0の内周側面 2 7は密接に隙 間がないように接触している。 The outer peripheral side surface 38 of the holder 30 and the inner peripheral side surface 27 of the cup 20 are in close contact with each other without any gap.
組立工程③: Assembly process ③:
ィグナイ夕 1 0をヘッダ部 1 1側を先にしてホルダ 3 0の開口端部 3 2から挿 入し、 ホルダ 3 0の凹部 3 5内にヘッダ部 1 1を装着する。 Insert the header 10 into the opening 30 of the holder 30 with the header 11 side first, and mount the header 11 in the recess 35 of the holder 30.
その際、 ィグナイ夕 1 0のテ一パ形状の壁面 1 2 aとホルダ 3 0内部のテーパ 形状の壁面 3 6とによって、 双方が中心軸で維持される。 At that time, the tapered wall surface 12a of the igniter 10 and the tapered wall surface 36 inside the holder 30 maintain both of them at the center axis.
なお、 ィグナイ夕 1 0は、 例えば、 図 2 2に示すように、 樹脂プラグ 1 4とキ ヤップ 1 9との接合面が超音波溶着 wされている。 For example, as shown in FIG. 22, the joining surface between the resin plug 14 and the cap 19 is ultrasonically welded w in the signature 10.
その超音波溶着工程を図 2 3に示す。 Figure 23 shows the ultrasonic welding process.
先ず、 受け治具 6 0にキャップ 1 9をセッ トし、 キャップ 1 9に点火薬 1 8を 填薬する。 First, the cap 19 is set on the receiving jig 60, and the ignition charge 18 is charged into the cap 19.
次に、 仮圧填治具 6 1により点火薬 1 8を仮圧填する。 Next, the ignition charge 18 is temporarily pressurized by the temporary pressurizing jig 61.
その後、 2本のリードピン 1 5 , 1 6をモールドし、 発熱部 1 7を接続した樹 脂プラグ 1 4をキャップ 1 9に載せ、 ホーン 6 2で加振させながらキャップ 1 9 に挿入する。 Then, the two lead pins 15 and 16 are molded, the resin plug 14 to which the heating part 17 is connected is placed on the cap 19, and inserted into the cap 19 while being vibrated by the horn 62.
そして、 キャップ 1 9と樹脂プラグ 1 4が密着したところで、 ホーン 6 2によ る加振を停止する。 Then, when the cap 19 and the resin plug 14 are in close contact with each other, the vibration by the horn 62 is stopped.
以上によって、 図 2 2に示すィグナイ夕 1 0を製造する。
組立工程④: As described above, the igniter 10 shown in FIG. 22 is manufactured. Assembly process ①:
ィグナイ夕 1 0のテーパ形状の壁面 1 2 bにシリコ一ンシール剤 3 9を塗布す る。 A silicone sealant 39 is applied to the tapered wall surface 12 b of the igniter 10.
その際、 シリコーンシール剤 3 9はテーパ形状の壁面 1 2 bからィグナイ夕 1 0の膨出部 1 2に亘るホルダ 3 0との隙間へ入り込み、 膨出部 1 2内で止まり、 さらに塗布される。 At that time, the silicone sealant 39 enters the gap between the tapered wall surface 12b and the holder 30 extending to the bulging portion 12 of the igniter 10 and stops in the bulging portion 12 and is further applied. You.
組立工程⑤: Assembly process ①:
ボディ 4 0を、 ィグナイ夕 1 0のコネクタ部 1 3側から挿入し、 ィグナイ夕 1 0の膨出部 1 2のコネクタ部 1 3側の壁面 1 2 aにィグナイ夕受け部 4 4を面接 触する。 Insert the body 40 from the connector 13 of the igniter 10 into the connector 13 of the igniter 10. I do.
その際、 ボディ 4 0の環状縁溝部 4 2に、 ホルダ 3 0のフランジ部 3 4とカツ プ 2 0のフランジ部 2 3が挿入される。 At this time, the flange portion 34 of the holder 30 and the flange portion 23 of the cup 20 are inserted into the annular edge groove portion 42 of the body 40.
組立工程⑥: Assembly process ①:
そして、 環状縁溝部 4 2の縁部 4 3を内側へ曲げるようにかしめることによつ て、 カップ 2 0およびホルダ 3 0を固定するとともに、 ィグナイ夕 1 0が同時に 保持固定され、 ガス発生器 1が組み上がる。 Then, by crimping the edge 43 of the annular edge groove 42 so as to bend inward, the cup 20 and the holder 30 are fixed, and the igniter 10 is simultaneously held and fixed, thereby generating gas. Container 1 is assembled.
ここで、 カップ 2 0内の駆動薬 5 0の充填率については、 所定の圧力特性に合 わせるために薬量および成分比率を決め、 カップ 2 0内の駆動薬 5 0とホルダ 3 0の開口部 3 1側の円周上面との空間 (駆動薬収容部 2 8 ) を所定の間隔に設定 し決まる。 Here, regarding the filling rate of the driving agent 50 in the cup 20, the amount and component ratio of the driving agent 50 in the cup 20 are determined in order to match a predetermined pressure characteristic. The space between the opening 31 and the upper surface of the circumference (the driving medicine container 28) is set at a predetermined interval.
次に、 本実施形態に係るガス発生器 1の作動に従って機能(作用) を説明する。 先ず、 コネクタ 1 3側からの電気信号により、 ィグナイ夕 1 0の発熱部 1 7が 発熱し、 発熱部 1 7に接触する点火薬 1 8が発火し、 その火炎が、 ィグナイ夕 1 Next, the function (action) according to the operation of the gas generator 1 according to the present embodiment will be described. First, the electrical signal from the connector 13 generates heat in the heat generating portion 17 of the igniter 10, igniting the igniter 18 in contact with the heat generating portion 17, and causing the flame to ignite.
0のヘッダ部 1 1の上部面の破裂線 (テアライン) 1 9 aを破断させるとともに 軸方向へ進みホルダ 3 0の開口部 3 1を通過してカップ 2 0内に収容される駆動 薬 5 0に着火する。 その際、 最初に駆動薬 5 0の粉状の着火薬に着火しほぼ同時 に粒状の発射薬に着火する。 0 rupture line (tear line) on the upper surface of the header part 1 1 1 9 a Breaking the a and proceeding in the axial direction, passing through the opening 3 1 of the holder 30 and the driving medicine contained in the cup 20 50 To ignite. At that time, first, the powdery ignition powder of the driving powder 50 is ignited, and almost simultaneously, the granular propellant is ignited.
なお、 この駆動薬 5 0の着火薬は発射薬を燃焼させるとともに初期の圧力 ( 1 In addition, the igniting agent of the driving agent 50 burns the propellant and the initial pressure (1
〜2 m s ) を出力している。
そして、 駆動薬 5 0の燃焼ガスがカップ 2 0内で一定の圧力に高まると、 カツ プ 2 0の閉鎖部 2 1の上面に形成される破断部 2 6の破裂線 (テアライン) 2 6 aが破断しモジュール内へ燃焼ガスが放出される。 ~ 2 ms). Then, when the combustion gas of the driving agent 50 rises to a certain pressure in the cup 20, a rupture line (tea line) 26 of a break 26 formed on the upper surface of the closed portion 21 of the cup 20 26 a Is broken and the combustion gas is released into the module.
また、 燃焼ガスの圧力 (内圧) の反作用でィグナイ夕 1 0がボディ 4 0側へ応 力を生じる。 Also, the reaction of the combustion gas pressure (internal pressure) causes the igniter 10 to produce a stress on the body 40 side.
その際、 ボディ 4 0のィグナイ夕受け部 4 4がテ一パ形状となっているので、 図 1 0に示すように、 剪断面を圧力荷重の方向に対して角度をつけた形となり、 剪断面に圧縮応力が作用し、 この圧縮応力がボディ 4 0の材料 (アルミニウム合 金) 内部の摩擦抵抗を増加させ、 燃焼ガスの圧力 (内圧) による剪断応力に対し て反作用の力となる。 At this time, since the igniter receiving portion 44 of the body 40 has a tapered shape, as shown in Fig. 10, the shearing surface has an angle with respect to the direction of the pressure load, and Compressive stress acts on the surface, and this compressive stress increases the frictional resistance inside the material of the body 40 (aluminum alloy) and acts as a reaction force against the shear stress caused by the pressure (internal pressure) of the combustion gas.
そのため、 図 1 1で示すような単純な剪断応力より強くなり、 ボディの耐圧強 度が増加する。 図 1 1には、 従来のガス発生器 1 0 0が示されている。 Therefore, it becomes stronger than the simple shear stress as shown in Fig. 11, and the pressure strength of the body increases. FIG. 11 shows a conventional gas generator 100.
なお、 耐圧強度に関する実験結果は、 後述する 「実験例」 に示す。 The experimental results regarding the compressive strength are shown in “Experimental examples” below.
また、 タンク圧の試験については、 図 1 2にタンク圧試験装置の概要を示す。 この装置により、 ガス発生器 Aと圧力センサ Bを取り付けることができる内容 積 1 0 c cタンク Cを使用して、 内部の圧力を計測した。 Fig. 12 shows the outline of the tank pressure test equipment for the tank pressure test. With this device, the gas generator A and the pressure sensor B can be attached. Volume 10 c c Tank C was used to measure the internal pressure.
1 . ガス発生器 Aと圧力センサ Bを 1 0 c cタンク Cに取り付ける。 1. Install gas generator A and pressure sensor B in 10 cc tank C.
2 . 圧力センサ Bは計測器 (アナライジングレコーダ) Dと接続し、 ガス発生 器 Aは発火電源 Eと接続し、 さらに計測器 Dと発火電源 Eを接続する。 2. Pressure sensor B is connected to measuring instrument (analyzing recorder) D, gas generator A is connected to ignition power supply E, and measuring instrument D is connected to ignition power supply E.
3 . 発火電源 Eより電圧がかかると、 ガス発生器 Aが発火し、 l O c cタンク C内の圧力が上昇する。 この際に、 計測器 Dは発火電源 Eからの電圧を感知し、 1 0 c cタンク C内の圧力計測を開始する。 3. When a voltage is applied from the ignition power supply E, the gas generator A is ignited and the pressure in the lOcc tank C increases. At this time, the measuring device D senses the voltage from the ignition power source E and starts measuring the pressure in the 10 cc tank C.
4 . 計測されたデータは、 時間一圧力カーブとして表される。 4. The measured data is expressed as a time-pressure curve.
図 1 3は、 ブラインドスペースが無いため充分な充填率を確保した本実施形態 に係るガス発生器 1を横方向、 上方向および下方向にした場合を示している。 図 1 4は、 プラインドスペースが有るため充分な充填率を確保できない従来の ガス発生器 1 0 0を、 それぞれのガス発生器を横方向、 上方向および下方向にし た場合を示している。 FIG. 13 shows a case where the gas generator 1 according to the present embodiment, which has a sufficient filling rate because there is no blind space, is arranged in the horizontal, upward and downward directions. FIG. 14 shows a conventional gas generator 100 in which a sufficient filling rate cannot be secured due to the presence of a blind space, in which the respective gas generators are arranged in the horizontal, upward and downward directions.
そして、 ガス発生器 1 , 1 0 0を各方向に設置し作動させた結果を図 1 5に示
す。 図 1 5から明らかなように、 タンク圧力のビークおよび圧力のピークタイム に大きな差がでた。 Figure 15 shows the results of installing and operating gas generators 1 and 100 in each direction. You. As is evident from Figure 15, there was a large difference between the tank pressure beak and the pressure peak time.
本実施形態に係るガス発生器 1では、 着火の際の立ち上がりの圧力が速く、 さ らに 9 m sで圧力のピーク時を迎えた。 また、 横向き、 上向きおよび下向きの夕 ンク圧力差も問題ないものであった。 In the gas generator 1 according to the present embodiment, the rising pressure at the time of ignition was fast, and the pressure peaked at 9 ms. There was no problem with the horizontal, upward and downward sunset pressure differences.
しかし、 従来のガス発生器 1 0 0では、 初期作動の立ち上がりの圧力が遅く、 タンク圧のピーク時 1 4 m sと遅くなつている。 また、 5 m sのタンク圧を見る と、 横向き、 下向きおよび上向きの差のバラツキが大きく不安定な出力を示して いる。 駆動薬 5 0内の発射薬は燃焼時の圧力により燃焼速度が大きく変わってくるた め、 初期圧力の大小は、 燃焼中の時間当たり発生ガス量が異なる原因となり、 例 えば総ガス発生量が同じであっても、 タンク圧力 (絶対圧力) が変化する要因と なる。 However, in the conventional gas generator 100, the pressure at the start of the initial operation is slow, and the peak pressure of the tank is as slow as 14 ms. Also, when looking at the tank pressure of 5 ms, the difference between the horizontal, downward, and upward directions shows large fluctuations, indicating an unstable output. The propellant in the driving agent 50 has a significantly different burning rate depending on the pressure at the time of combustion.Therefore, the magnitude of the initial pressure causes a difference in the amount of gas generated per hour during the combustion. Even if the same, the tank pressure (absolute pressure) will change.
また、 従来のガス発生器 1 0 0では、 ①横向きの場合、 ブラインドスペースに 位置する駆動薬の有無にも左右されるように燃焼圧力のバラツキが生じる。 また、 ②上向きの場合、 ィグナイ夕のヘッダ上面からのィグナイ夕火炎面と駆 動薬の填薬面との距離が着火遅れの大小を生じる。 そのため、 充分な充填率が確 保できていない場合は火炎面と填薬面の距離が大きくなり、 着火遅れを生じるこ ととなる。 In addition, in the conventional gas generator 100, (1) in the case of the horizontal orientation, the combustion pressure varies depending on the presence or absence of the driving agent located in the blind space. In addition, when facing upward, the distance between the ignition surface of the ignition and the charging surface of the drive from the upper surface of the header of the ignition causes a delay in ignition. For this reason, if a sufficient filling rate cannot be ensured, the distance between the flame surface and the filling surface increases, which causes ignition delay.
さらに、 ③下向きの場合、 本実施形態に係るガス発生器 1、 従来のガス発生器 1 0 0ともにィグナイ夕の火炎面に填薬面が接しているため、 着火遅れは発生し ない。 従来のガス発生器 1 0 0では、 横向き状態よりさらに多くプラインドスべ —スに駆動薬が入り込むため燃焼圧力のバラツキが生じる。 Furthermore, in the case of (3) downward, ignition delay does not occur because both the gas generator 1 according to the present embodiment and the conventional gas generator 100 have the charging surface in contact with the flame surface of the ignition. In the conventional gas generator 100, the driving pressure penetrates more into the blind space than in the horizontal state, so that the combustion pressure varies.
また、 図 1 6は、 一定条件下における本実施形態に係るガス発生器 1と従来の ガス発生器 1 0 0を、 それそれ 5回作動させて、 出力バラツキが生じるかを試み たものである。 Fig. 16 shows the results of an experiment in which the gas generator 1 according to the present embodiment and the conventional gas generator 100 were operated five times under certain conditions to determine whether output variations occurred. .
なお、 一定条件下とは薬種、 薬量、 その充填率やその他部品 (ィグナイ夕、 ボ ディ) を同一にした仕様である。
考察 2 : The certain conditions are specifications in which the drug type, drug quantity, filling rate, and other parts (ignite, body) are the same. Consideration 2:
本実施形態に係るガス発生器 1では、 5回とも、 タンク圧のピーク時における 最大圧力に差はなく燃焼圧力は安定している。 In the gas generator 1 according to the present embodiment, there is no difference in the maximum pressure at the peak of the tank pressure for all five times, and the combustion pressure is stable.
しかし、 従来のガス発生器 1 0 0では、 タンク圧のピーク時の時間にバラツキ が有り、 また最大圧力にもバラツキが生じており、 燃焼圧力は不安定である。 また、 カップ内の駆動薬は、 所定の圧力特性に合わせるため薬量および成分比 率を決め、 カップ内の駆動薬充填率を決定する。 However, in the conventional gas generator 100, the time at the peak of the tank pressure varies, and the maximum pressure also varies, so that the combustion pressure is unstable. In addition, the amount of the driving agent in the cup is determined in order to meet a predetermined pressure characteristic, and the amount and the component ratio are determined, and the filling ratio of the driving agent in the cup is determined.
なお、 カップ 2 0の外径および長さは、 メーカ間ではほぼ標準サイズ化されて いるので、 高出力、 低出力の要求圧力特性を得る場合には、 カップ形状 (長さ等) を変更せずに、 ホルダ 3 0を取り替えることによって、 薬量の容積部を最適充填 率 (8 0 %〜9 0 % ) に調整することができる。 Note that the outer diameter and length of the cup 20 are almost standard among manufacturers, so to obtain the required high-output and low-output pressure characteristics, change the cup shape (length, etc.). Instead, the volume of the drug can be adjusted to the optimum filling rate (80% to 90%) by replacing the holder 30.
すなわち、 駆動薬 5 0の所定の充填率と成るようにホルダ 3 0の長さを調整し 所定の圧力特性に合わせる。 これにより、 カップ 2 0内の駆動薬量の変化にカツ プの外径および長さを替えずホルダ 3 0による調整で圧力特性を維持することが 可能となるとともに、 ィグナイ夕 1 0をボディ 4 0とともに耐圧的に保持するこ とがさらに可能となる。 That is, the length of the holder 30 is adjusted so as to achieve a predetermined filling rate of the driving agent 50, and the pressure is adjusted to a predetermined pressure characteristic. As a result, it is possible to maintain the pressure characteristics by adjusting the holder 30 without changing the outer diameter and length of the cup in response to changes in the amount of the driving agent in the cup 20, and to replace the igniter 10 with the body 4. Further, it is possible to hold the pressure resistance together with 0.
また、 ィグナイ夕 1 0の膨出部 1 2のコネクタ部 1 3側を保持するボディ 4 0 に、 環状縁溝部 4 2を形成し、 この環状縁溝部 4 2にホルダ 3 0のフランジ部 3 4とカップ 2 0のフランジ部 2 3とを重ね合わせるように載置し、 環状縁溝部 4 2の縁部 4 3を内側へ折り曲げるようにしてかしめ固定するようにしたので、 か しめが 1回で済み、 このかしめ工程によりボディ 4 0、 ィグナイ夕 1 0およびホ ルダ 3 0がー体的に確実に固定および保持することができる。 In addition, an annular edge groove 42 is formed in the body 40 that holds the connector 13 side of the bulging portion 12 of the signature 10, and the flange edge 3 4 of the holder 30 is formed in the annular edge groove 42. And the flange 23 of the cup 20 are placed on top of each other, and the edge 43 of the annular edge groove 42 is bent inward so that it is fixed by caulking. By this caulking process, the body 40, the igniter 10 and the holder 30 can be securely fixed and held physically.
これにより、 ィグナイ夕 1 0がボディ 4 0の軸方向および径方向の位置に決ま り寸法精度を高められる。 As a result, the igniter 10 is positioned at the axial and radial positions of the body 40, and the dimensional accuracy can be increased.
また、 0リングを使用しないので、 ィグナイ夕 1 0とボディ 4 0が直接的に面 接触し、 ィグナイ夕 1 0を固定する際にィグナイ夕 1 0に局部的な応力がかから ない。 Also, since the o-ring is not used, the lignae 10 and the body 40 are in direct surface contact, and when the lignae 10 is fixed, no local stress is applied to the lignae 10.
さらに、 ィグナイ夕 1 0の作動時によるボディ 4 0への圧力荷重に対して、 ボ ディ 4 0の耐圧強度を増加することが可能となる。
また、 カップ 2 0内の駆動薬 5 0の燃焼圧力で破断する破断部 2 6が、 カップ 2 0の閉鎖面 2 1の中心軸から円周方向 (放射状) に 6本〜 8本の所定深さおよ び所定長さを有する破裂線 (テアライン) 2 6 aによって構成されているので、 破断部 2 6が駆動薬 5 0の燃焼とともに内圧で破断しモジュール内へガスを放出 する際、 放射状の破裂線 (テアライン) 2 6 aが中心軸から剪断し破裂線 (テア ライン) 2 6 aによる破片離脱は生起しない。 この破片離脱しない破裂線 (テア ライン) 2 6 aは、 カップ 2 0の閉鎖面 2 1の板厚と破裂線 (テアライン) 2 6 aの残り板厚に関係し、 閉鎖面 2 1の板厚に対する破裂線 (テアライン) 2 6 a の板厚は 3 0〜5 0 %の範囲がより好ましい。 Further, the pressure resistance of the body 40 can be increased with respect to the pressure load on the body 40 due to the operation of the ignition unit 10. In addition, a rupture portion 26 ruptured by the combustion pressure of the driving agent 50 in the cup 20 has a predetermined depth of 6 to 8 in a circumferential direction (radially) from the center axis of the closing surface 21 of the cup 20. And a rupture line (tear line) 26 a having a predetermined length, so that when the rupture portion 26 ruptures due to internal pressure with the combustion of the driving agent 50 and releases gas into the module, The rupture line (tear line) 26a of the slab is sheared from the central axis, and fragmentation by the rupture line (tear line) 26a does not occur. The rupture line (tea line) 26 a that does not separate from the fragments is related to the thickness of the closed surface 21 of the cup 20 and the remaining thickness of the rupture line (tea line) 26 a, and the thickness of the closed surface 21 The thickness of the tear line 26a is more preferably in the range of 30 to 50%.
ここで、 破裂線 (テアライン) 2 6 aについて詳述する。 Here, the rupture line (tea line) 26a will be described in detail.
本発明においては、ガス圧により、カップ 2 0の閉鎖部 2 1の角部から剪断(底 抜け) することがなく、 また、 閉鎖部 2 1に形成する破裂線 (テアライン) 2 6 aから破断する際の破断部の破片飛散がない、開放部を有する点に特徴を有する。 すなわち、 作動時に破断部からの異物飛散を防止することにある。 In the present invention, due to the gas pressure, the corner of the closed portion 21 of the cup 20 is not sheared (opened out), and the rupture line (tea line) 26 a formed in the closed portion 21 is broken. It has a feature in that it has an open portion without shards of the broken portion at the time of breaking. That is, the object is to prevent foreign matter from scattering from the broken portion during operation.
従来のガス発生器では、 下記の理由により異物飛散の防止が十分とはいえなか つ 1乙。 With conventional gas generators, it is not sufficient to prevent foreign matter scattering for the following reasons.
1 ) アルミ力ップの加工方法に見合った寸法設定がなされていない。 1) The dimensions are not set according to the processing method of aluminum lip.
2 ) アルミカップの側筒面、 底面の板厚に見合った破裂線 (テアライン) 深さ が確保されていない。 2) The rupture line (tear line) depth that matches the thickness of the side cylinder surface and bottom surface of the aluminum cup is not secured.
従って、 従来のガス発生器では、 異物飛散の防止対策が完全ではなく、 まれに 部品破片を放出してしまうことの虞があった。 Therefore, in the conventional gas generator, the measures for preventing the scattering of foreign matters are not perfect, and there is a risk that rarely, parts fragments may be released.
そこで、 本発明では、 この問題を下記の解決策を講ずることにより解消した。 1 ) アルミカップの底部形状 In the present invention, this problem has been solved by taking the following solution. 1) Bottom shape of aluminum cup
アルミカツプの加工方法は、鍛造もしくは絞り加工が一般的である。その場合、 カップ底面の板厚が側筒面板厚よりも厚くなり、 底面と側筒面の境界 (カップ底 の R部) が最も弱い箇所となる。 The processing method of the aluminum cup is generally forging or drawing. In this case, the thickness of the bottom of the cup becomes thicker than the thickness of the side cylinder surface, and the boundary between the bottom surface and the side cylinder surface (R portion at the bottom of the cup) is the weakest point.
静的な圧力であれば、 底面と側筒面が変形 (膨れる) し、 その後側筒面に亀裂 が入り容器が破壊する。 If the pressure is static, the bottom surface and the side cylinder surface will deform (swell), and then the side cylinder surface will crack and the container will break.
本発明のガス発生器においては、 指向性を持つ動的な圧力であり、 側筒面はモ
ジュール内壁によって拘束されているため、 R部からの破断は免れない。 In the gas generator of the present invention, the pressure is a dynamic pressure having directivity, and Because it is constrained by the inner wall of the joule, breakage from the R section is inevitable.
この対処法として破裂線 (テアライン) が刻まれているが、 破裂線 (テアライ ン) が解放される直前は底面が、 膨れ上がり R部にかなりのス トレスがかかって いることが確認できている。 そのため、 破裂線 (テアライン) が開放しても破裂 線 (テアライン) 部の動き (開放する反動) によって、 R部がちぎれてしまう。 従って、 この R部を強化することが大切であり、 その手法として Rを大きくと ることは効果が高い。 Rが大きいほど局部ストレスは低減され、 また底面と側筒 面の板厚のギヤップが小さくなるからである。 A rupture line (tear line) is carved as a countermeasure for this, but it has been confirmed that the bottom surface swells immediately before the rupture line (tear line) is released, and that considerable stress is applied to the R section. . Therefore, even if the rupture line (tear line) is opened, the R section is torn by the movement of the rupture line (tear line) (reaction to open). Therefore, it is important to strengthen the R part, and increasing the R as a method is highly effective. This is because the larger the value of R, the smaller the local stress, and the smaller the gap between the bottom surface and the side cylinder surface.
本実施形態では、 素材板厚 t : 0 . 6 mm, 外径 0 1 3 . 6 mmのカップ絞り 加工において、 底面部外 Rを 0 . 8 mm以上確保している。 この寸法においては、 破裂線 (テアライン) の設計が適切である限り、 底面部の飛散は発生しない。 In the present embodiment, in the cup drawing process of the material plate thickness t: 0.6 mm and the outer diameter of 0.13.6 mm, the outside radius R of the bottom surface is secured to 0.8 mm or more. At this dimension, the bottom will not scatter as long as the tear line design is appropriate.
2 ) 破裂線 (テアライン) の深さ (残り板厚) 設定 2) Depth of burst line (tea line) (remaining thickness)
前項と同じ理由で、 破裂線(テアライン) の深さ及び長さを最適化しなければ、 破裂線 (テアライン) 部の飛散が発生する場合がある。 For the same reason as in the previous section, if the depth and length of the rupture line (tear line) are not optimized, the rupture line (tear line) may be scattered.
破裂線 (テアライン) 深さと開放圧力、 破裂線 (テアライン) 深さと飛散有無 の関係を調査し、 最適な深さを設定した。 その結果、 板厚の 5 0 %以下が最適で あることが判った。 The relationship between the rupture line (tear line) depth and the opening pressure and the relationship between the rupture line (tear line) depth and the presence or absence of scattering were investigated, and the optimum depth was set. As a result, it was found that the optimum thickness was 50% or less.
また、 破裂線 (テアライン) の長さ (破裂線 (テアライン) の外接円の径) も、 内圧を受ける底面の径に対して最適な径が存在し、 底面内径の 6 0 ~ 7 0 %が最 適であることが判った。 Also, the length of the rupture line (the tear line) (diameter of the circumcircle of the rupture line (the tear line)) has an optimum diameter with respect to the diameter of the bottom surface that receives the internal pressure. It turned out to be optimal.
本実施形態では、 破裂線 (テアライン) 2 6 aの長さを 8 mmとしている。 こ れは、 底面内径 0 1 2 . 4 mmの 6 5 %である。 In the present embodiment, the length of the rupture line (tea line) 26a is set to 8 mm. This is 65% of the bottom inner diameter of 0.12.4 mm.
次に、 ガス圧により、 カップ 2 0の閉鎖部 2 1の角部から剪断 (底抜け) する ことがなく、 また、 閉鎖部 2 1に形成する破裂線 (テアライン) 2 6 aから破断 する際の破断部の破片飛散がない、 開放部について、 さらに説明する。 Next, due to the gas pressure, the corner of the closed portion 21 of the cup 20 is not sheared (opened out), and the rupture line (the tear line) 26 a formed in the closed portion 21 is broken. The open part where there is no debris scattering at the broken part will be further described.
1 ) 破裂線 (テアライン) 破断圧力計算 1) Burst line (Tear line) Break pressure calculation
カップ 2 0の閉鎖部 2 1は、 図 1 7に示すように、 内圧を受けると球状に変形 する。 そして、 伸びが材料の限界まで達すると、 最もたわみが大きい底部の中心 (破裂線 (テアライン) の中心) 部から破断し始める。
ここで、 伸びが材料の限界まで達したときの最大たわみを求める。 各寸法及び 伸びを次のように定める。 The closed part 21 of the cup 20 deforms into a sphere when subjected to internal pressure, as shown in FIG. When the elongation reaches the limit of the material, it starts to break from the center of the bottom (the center of the tear line) where the deflection is greatest. Here, find the maximum deflection when the elongation reaches the limit of the material. The dimensions and elongation are determined as follows.
底部内径: s Bottom inner diameter: s
変形時曲率半径: r Curvature radius during deformation: r
変形時円弧長さ : L Deformed arc length: L
変形時円弧内角 : Θ Inner angle of arc during deformation: Θ
変形量: h Deformation amount: h
材料伸び: £ Material elongation: £
円弧の式、 材料の伸びより、 次式が成り立つ。 From the arc formula and material elongation, the following formula is established.
h= S/2 - t a n 0/4 · · · ( 1 ) (円弧の式) h = S / 2-t a n 0/4 · · · (1) (arc formula)
S = r · s 1 τιθ/2 · · · ( 2 ) (円弧の式) S = r · s 1 τιθ / 2 · · · (2) (arc formula)
L = r 6 · · · (3) (円弧の式) L = r 6 · · · (3) (arc formula)
L = S ( 1 +£) · · · (4) (伸びの式) L = S (1 + £) · · · (4) (Elongation formula)
式 ( 2) 〜 (4) より次式 ( 5) が得られ、 0が算出できる。 The following equation (5) is obtained from equations (2) to (4), and 0 can be calculated.
s i = { 1/ ( 1 +£) } - Θ/2 · · · ( 5 ) s i = {1 / (1 + £)}-Θ / 2 · · · (5)
式 ( 5 ) により得られた 0を式 ( 1 ) に代入すれば、 材料伸びの限界時の変形 量 (たわみ量) hが求められる。 By substituting 0 obtained by equation (5) into equation (1), the deformation amount (deflection amount) h at the limit of material elongation can be obtained.
求めた hを、 次式 ( 6 ) の円板のたわみの式に代入すれば、 破裂線 (テアライ ン) の破断圧力が求められる。 By substituting the obtained h into the equation for the deflection of the disk in the following equation (6), the rupture pressure at the rupture line (tea line) can be obtained.
P = 64 D h/a4 · · · ( 6 ) P = 64 D h / a 4 (6)
ここで、 レ :ポアソン比 Where: Re: Poisson's ratio
a : 円板の半径 a: radius of the disk
D : 円板の剛性 (D = E t 3 ( l— レ 2) /1 2 ) D: Rigidity of the disk (D = E t 3 (l— 2 2 ) / 1 2)
E :弹性係数 E: Coefficient of sex
t =円板の板厚 t = disk thickness
2) 底部抜け (円板抜け) の計算 2) Calculating the bottom dropout (disk dropout)
次式 (7) の円板の剪断荷重の式により、 カップ底抜け時の圧力を求める。 Using the following equation (7), which is the shear load equation for the disk, determine the pressure when the cup bottoms out.
Ρ = 4 τ t/d · · · (7) Ρ = 4 τ t / d (7)
ここで、 各記号は次の通りである。
て :剪断応力 Here, each symbol is as follows. T: Shear stress
d : 円板の直径 d: diameter of the disk
t : 円板の板厚 t: Thickness of the disk
3 ) 破裂線 (テアライン) 破断と底抜けの関係 3) Rupture line (Tear line)
前項 1 ) 、 2 ) で計算した内容についての例を示す。 Here is an example of the contents calculated in 1) and 2).
式 ( 6 ) 、 ( 7 ) に各値を表 1のようにとり、 破裂線 (テアライン) 残り板厚 を X軸にしたグラフを図 1 8に示す。 Table 18 shows the values of equations (6) and (7) as shown in Table 1, and Fig. 18 shows a graph with the rupture line (tear line) remaining thickness on the X axis.
グラフ上の底抜けのラインは、 カップ底部板厚を 0 . 5 mmにした場合の値で ある。 2本のラインが交差するポイントが、 破裂線 (テアライン) 2 6 aが破断 するか、 底部が抜けるかの境界である。 破裂線 (テアライン) 破断圧力が底部抜 け圧力よりも低い領域では、 圧力がかかった場合、 先に破裂線 (テアライン) 2 6 aが破断する。 The bottom line in the graph is the value when the cup bottom plate thickness is 0.5 mm. The point where the two lines intersect is the boundary between whether the rupture line (tear line) 26a breaks or the bottom comes off. Rupture line (Tear line) In a region where the rupture pressure is lower than the bottom pressure, when pressure is applied, the rupture line (Tear line) 26a breaks first.
次に、 破裂線 (テアライン) 2 6 aが破断する際の破断部の破片飛散がないこ とについて説明する。 Next, a description will be given of the absence of scattered fragments at the fractured portion when the rupture line (tea line) 26a fractures.
1 ) 破裂線 (テアライン) 2 6 aの本数 1) Rupture line (tea line) 2 6 a
破裂線 (テアライン) 2 6 aの本数と、 作動時の破片 (破裂線 (テアライン) ) 飛散について考える。 Consider the number of rupture lines (tear line) 26 a and the fragments (rupture line (tear line)) scattering during operation.
ガス発生器作動時に、 破裂線 (テアライン) 2 6 aは内圧によって破れ、 カツ プ 2 0の底部を複数の扇型に分割する。 When the gas generator is activated, the rupture line (tear line) 26a is broken by internal pressure, dividing the bottom of the cup 20 into a plurality of sectors.
この扇形の内角が大きいと、 展開時に材料の伸びが限界となり、 折れ曲がりの 部分で破断する領域が大きくなる。 また、 小さすぎると全部のラインが破けなく なり、 不均等な展開をするため好ましくない。 If the internal angle of this sector is large, the elongation of the material at the time of unfolding becomes the limit, and the area of breakage at the bend increases. On the other hand, if it is too small, all the lines cannot be broken, and uneven development is not preferable.
従って、 展開時の扇形の内角、 すなわち破裂線 (テアライン) 2 6 aの本数は、 異物飛散防止のために最適な本数が存在する。
1一 1 ) 破裂線 (テアライ ン) 2 6 aの破断割合の計算 Therefore, there is an optimum number of the inner corners of the fan shape when deployed, that is, the number of rupture lines (tea lines) 26a for preventing foreign matter scattering. 1) 1) Rupture line (Tearline) 26: Calculation of the fracture rate of 6a
破裂線 (テアライン) 2 6 aが破れ、 カップ 2 0の閉鎖面 2 1が展開した場合 の状態を図 1 9, 図 2 0に示す。 Figs. 19 and 20 show the state when the tear line 26a is torn and the closed surface 21 of the cup 20 is unfolded.
破裂線 (テアライン) 2 6 aが破れ、 カップ 2 0の閉鎖面 2 1が展開する場合 には、 扇形の折れ曲がり部は、 カップ 2 0の閉鎖面 2 1の R部の中間位置と考え る。 そのときの展開長さ d/2は、 次式 ( 8) の通りである。 If the tear line 26a breaks and the closing surface 21 of the cup 20 unfolds, the fan-shaped bent portion is considered to be at an intermediate position between the R portions of the closing surface 21 of the cup 20. The expansion length d / 2 at that time is as shown in the following equation (8).
dZ2 = d, /2— R c o s 4 5。 = 6. 5 6 6 (mm) · · · ( 8 ) 力ヅプ外径: d ' = 1 3. 6 (mm) dZ2 = d, / 2—R cos 45. = 6.5 6 6 (mm) · · · (8) Outer diameter of force loop: d '= 1 3.6 (mm)
R部 : : = 0. 8 (mm) R part:: = 0.8 (mm)
また、 折れ曲がり部の展開距離 は、 次式 ( 9 ) の通りである。 The deployment distance of the bend is given by the following equation (9).
A = (d/2 ) . ( 1 - c o s Θ/2 ) (mm) · · · ( 9 ) ここで、 カップ 2 0の閉鎖面 2 1が展開し、 折れ曲がった場合に、 曲げによつ て伸びる部分を R部のみと考えると、 伸びる部分の元長さ Lは、 A = (d / 2). (1-cos Θ / 2) (mm) (9) Here, when the closed surface 21 of the cup 20 is expanded and bent, Assuming that the extending part is only the R part, the original length L of the extending part is
TTR/2 = 1 . 2 5 7 (mm) となる。 TTR / 2 = 1.257 (mm).
従って、 折れ曲がり部分の伸び εは、 次式 ( 1 0) で表される。 Therefore, the elongation ε of the bent portion is expressed by the following equation (10).
£ =Δ L/L= (d/7rR) . ( 1— c o s 0/2 ) . ■ . ( 1 0) 式 ( 1 0 ) を Θについて変形すると、 次式 ( 1 1 ) になる。 £ = Δ L / L = (d / 7rR). (1-cos 0/2). ■. (10) By transforming equation (10) with respect to Θ, the following equation (11) is obtained.
伸びが £の内角 : 0 = 2 c o s— — £ 7rR/d) (° ) · ■ · ( 1 1 ) 式 ( 1 1 ) に、 使用している材料の伸びを代入すれば、 展開時に破断しないで つながつている扇形の内角が求められる。 Inner angle of elongation of £: 0 = 2 cos— — £ 7rR / d) (°) · ■ · (1 1) Substituting the elongation of the material used in equation (1 1) does not break the material The interior angle of the sector connected by is required.
つながつている扇形の内角 : θ' —式 ( 1 1 ) に εを代入したもの Inner angle of connected sector: θ '— Eq. (1 1) with ε substituted
材料の伸び: ε ' Material elongation: ε '
従って、 展開時の円弧部分の破断割合は次式 ( 1 2 ) の通りである。 Therefore, the breaking ratio of the circular arc part at the time of unfolding is as shown in the following formula (12).
破断割合: B= ( l— 0, /0) x l O O (%) · · · ( 1 2) Break rate: B = (l-0, / 0) x l O O (%) · · · (1 2)
1 - 2 ) 破裂線 (テアライン) の破断割合と異物飛散 1-2) Rupture rate of rupture line (tear line) and foreign matter scattering
実験によると、 本実施形態のアルミニウム合金製のカップ 2 0 (材料: A 1 0 5 0 H 2 4、 伸び: 9 . 5 %) は、 破断割合が 7 5 %を超えると、 破裂線 (テア ライン) 2 6 aが飛散する場合がある。 そのときの破裂線 (テアライン) 2 6 a の本数は 4本である。
また、 破裂線 (テアライン) 2 6 aの本数が 8本を超えると、 破断しないライ ンが発生するため、 これ以上本数を増やしても無意味であるばかりか、 不均等に 破断が偏る結果となり好ましくない。 According to the experiment, the aluminum alloy cup 20 (material: A1500H24, elongation: 9.5%) of the present embodiment shows a rupture line (tea) when the breaking ratio exceeds 75%. (Line) 26 a may be scattered. At that time, the number of tear lines 26 a was four. In addition, if the number of tear lines (tea lines) 26a exceeds 8, lines that do not break will be generated, so increasing the number further will not only be meaningless, but will also result in uneven distribution of breaks. Not preferred.
従って、 異物飛散の防止をする場合、 破裂線 (テアライン) 2 6 aの本数は 4 〜 8にすべきである。 Therefore, the number of rupture lines (tear lines) 26a should be 4 to 8 in order to prevent foreign matter scattering.
ただし、 この本数は本実施形態のアルミカップ材料を用いた場合であり、 材料 が変わり伸びが変化した場合には、 前項 1— 1 ) の考え方に基づき破断割合が 7 5 %以下になるように設定すべきである。 However, this number is based on the case of using the aluminum cup material of the present embodiment, and when the material changes and elongation changes, the breaking ratio is reduced to 75% or less based on the concept of the previous section 1-1). Should be set.
ここに、 最小本数を破断割合の限界 ( 7 5 %付近) 、 最大本数を 8本とした場 合の、 使用材料による違いを表 2に示す。 Table 2 shows the difference depending on the material used when the minimum number is the limit of the breaking ratio (around 75%) and the maximum number is eight.
表 2 Table 2
次に、 破裂線 (テアライン) 板厚と破断圧力との関係を図 2 1に示す。 Next, the relationship between the rupture line (tea line) plate thickness and the rupture pressure is shown in Fig. 21.
破裂線 (テアライン) 2 6 aの深さが◦ . 3 mmと 0 . 4 mmの間を境に、 飛 散状況が変化する。 0 . 4 mmや 0 . 5 mmでは底部が飛散が飛散しており、 破 裂線 (テアライン) 2 6 aという脆弱部を設けたにも関わらず底面 R部が破断し ている。 このことからも、 破裂線 (テアライン) 2 6 aの深さを最適化する必要 性がうかがえる。 The rupture line (tear line) The scattering condition changes when the depth of 26a is between 0.3 mm and 0.4 mm. At 0.4 mm and 0.5 mm, the bottom is scattered, and the bottom R is broken despite the provision of a rupture line (tear line) 26a. This suggests the need to optimize the depth of the tear line 26a.
次に、 ィグナイ夕 1 0のキヤップ 1 9の破裂線 (テアライン) 1 9 aについて 詳述する。 Next, the rupture line (tea line) 19a of the cap 19 of SIGNAY 10 will be described in detail.
基本的な技術思想は、 カップ 2 0の破裂線(テアライ ン) 2 6 aと同じである。 ィグナイ夕 1 0のキャップ 1 9を押さえ保持するホルダ 3 0がある場合と、 ホ ルダ 3 0が無い場合では、 キャップ 1 9の破裂線 (テアライン) 1 9 aの破断部 の破片が飛散する条件は変化する。
キャップ 1 9の押さえの機能を発揮するホルダ 3 0がないと、 破裂線 (テアラ イン) 1 9 aが飛散する場合があり得る。 The basic technical concept is the same as the tear line 26a of the cup 20. In the case where there is a holder 30 that holds and holds the cap 19 of the igniter 10 and the case where there is no holder 30, the rupture line of the cap 19 (tear line) 19 The condition in which the fragments of the broken part of the 19a are scattered Changes. Without the holder 30 that exerts the function of holding down the cap 19, the tear line (tea line) 19a may be scattered.
これに対し、 カップ 2 0の破裂線 (テアライン) 2 6 aは、 キャップ 1 9の押 さえの機能を発揮するホルダ 3 0に相当する部材が存在しない。 On the other hand, the rupture line (tear line) 26 a of the cup 20 does not include a member corresponding to the holder 30 that exerts the function of pressing the cap 19.
カップ 2 0は単独でも異物飛散はない。 カップ 2 0とキャップ 1 9の違いは、 開放するガスと部品材質の差によるものと考えられる。 点火薬 (トリシネート) 1 8と駆動薬 (シングルベース発射薬) 5 0の燃焼では、 破裂線 (テアライン) 1 9 a、 2 6 aに与える衝撃が相違する。 また、 同じ伸びのある材質でもアルミ 二ゥムと樹脂では引っ張り強度に差がある。 これら二つの要因から考えると、 破 裂線 (テアライン) 1 9 a、 2 6 aにかかる負担は明らかにキャップ 1 9の方が 大きい。 Cup 20 alone does not scatter foreign matter. It is considered that the difference between the cup 20 and the cap 19 is due to the difference in the gas to be opened and the material of the parts. Combustion of the igniting charge (tricinate) 18 and the driving charge (single-base propellant) 50 produces different impacts on the tear lines 19a and 26a. Also, aluminum and resin have different tensile strengths, even if they have the same elongation. Considering these two factors, the burden on the tear lines 19a and 26a is clearly greater for the cap 19.
そこで、 キャップ 1 9の破裂線 (テアライン) 1 9 aの飛散防止について説明 する。 Therefore, the prevention of the rupture line (tea line) 19a of the cap 19 from scattering will be described.
ィグナイ夕 1 0に使用する樹脂は、 耐熱性、 強度、 耐候性を考慮して選定され ており、本実施形態ではポリフ夕ルアミ ドをペースポリマーとして採用している。 しかし、 破裂線 (テアライン) 1 9 aを有するキヤップ 1 9には最適な材料強 度や伸びが必要であり、 ィグナイ夕 1 0とベースポリマーが同じで材料強度や伸 びを考慮した材質を選定した。 The resin used in the igniter 10 is selected in consideration of heat resistance, strength, and weather resistance. In this embodiment, polyfuramide is used as a pace polymer. However, a cap 19 with a rupture line (tear line) 19a needs the optimal material strength and elongation. did.
それを表 3に示す。 It is shown in Table 3.
表 3 Table 3
ィグナイ夕 1 0のキャップ 1 9の破裂線 (テアライン) 1 9 aの寸法や材質を 最適化するのは、 破裂線(テアライン) 1 9 aの飛散の防止策として有効である。
しかし、 点火薬量増量や点火薬変更など、 より強い衝撃が破裂線(テアライン) 1 9 aに加わるときには飛散してしまう場合がある。 Optimizing the dimensions and material of the rupture line (tear line) 19a of the cap 19 of the igniter 10 is an effective measure to prevent the rupture line (tear line) 19a from scattering. However, when a stronger impact, such as an increase in the amount of igniting charge or a change in igniting charge, is applied to the tear line 19a, it may be scattered.
そのため、 破裂線 (テアライン) 1 9 aの衝撃緩衝をするために、 ホルダ 3 0 に押さえ部 3 1 aを追加し飛散防止策を採った。 Therefore, in order to buffer the rupture line (tear line) 19a, a holder 31 was added with a holding part 31a to take measures to prevent scattering.
次に、 ホルダ 3 0についてさらに説明する。 Next, the holder 30 will be further described.
キャップ 1 9の破裂線 (テアライン) 1 9 aとキャップ 1 9を保持するホルダ 3 0との関係は、 ホルダ 3 0の端面に形成される開口部 3 1の穴径と、 この開口 部 3 1の押さえ部 3 1 aの形状に依存する。 The relationship between the tear line (the tear line) 19 a of the cap 19 and the holder 30 holding the cap 19 is as follows: the diameter of the opening 31 formed in the end face of the holder 30, and the diameter of the opening 3 1 It depends on the shape of the holding portion 31a.
ホルダ 3 0の材質の強度、 硬度、 伸びが適切であるならば、 破裂線 (テアライ ン) 1 9 aの衝撃によって押さえ部 3 1 aが変形する。 このときの動きによって 破裂線 (テアライン) 1 9 aをバックアップするが、 強度が強いと破裂線 (テア ライン) 1 9 aの破断が起こり、 硬度が高いもしくは伸びがないと押さえ部 3 1 aの飛散を招く。 従って、 ホルダ 3 0は材料の機械的性質のバランスが整って、 はじめて機能する。 If the strength, hardness, and elongation of the material of the holder 30 are appropriate, the holding portion 31a is deformed by the impact of the rupture line (tea line) 19a. The movement at this time backs up the rupture line (tear line) 19a, but if the strength is strong, the rupture line (tear line) 19a will break, and if the hardness is high or there is no elongation, the holding part 31a will Causes scattering. Therefore, the holder 30 functions only when the mechanical properties of the material are balanced.
押さえ部 3 1 aが強過ぎ (穴径小) や弱過ぎ (穴径大) のときは、 破裂線 (テ ァライン) 1 9が衝撃でちぎれる。 また、 押さえ部 3 1 aの形状が鋭い (面取り 小) のときは、 破裂線 (テアライン) 1 9 aが剪断される。 If the holding part 31a is too strong (small hole diameter) or too weak (large hole diameter), the rupture line (tear line) 19 is broken by impact. Also, when the shape of the holding portion 31a is sharp (small chamfer), the rupture line (tea line) 19a is sheared.
つまり、 押さえ部 3 1 aの形状によって、 破裂線 (テアライン) 1 9 aの飛散 が効果的に抑えられている。 In other words, the shape of the holding portion 31a effectively suppresses the scattering of the tear line 19a.
なお、 押さえ部 3 1 aの形状は、 例えば、 図 2 4、 図 2 5、 図 2 6、 図 2 7に 示すものがある。 The shape of the pressing portion 31a includes, for example, those shown in FIGS. 24, 25, 26, and 27.
図 2 4に示す例は、 穴径: ø 4〜 5 mm、 角部形状: Cまたは R 0 . 3〜 0 . 5、 板厚: 0 . 5 mn!〜 1 mm、 材質 : A 5 0 5 2、 A 6 0 6 1の場合である。 図 2 5に示す例は、 図 2 4に比し、 穴部の内側の面取りを大きく した場合を示 す。 In the example shown in Fig. 24, hole diameter: ø4 to 5 mm, corner shape: C or R 0.3 to 0.5, plate thickness: 0.5 mn! 1 mm, Material: A5052, A6601. The example shown in Fig. 25 shows a case where the chamfer inside the hole is larger than that in Fig. 24.
図 2 6に示す例は、 図 2 4に比し、 穴部を先端に向かって縮径するテーパ穴に した例を示す。 The example shown in FIG. 26 shows an example in which the hole is formed into a tapered hole whose diameter is reduced toward the tip as compared to FIG.
図 2 7に示す例は、 図 2 4に比し、 穴部を先端に向かって縮径する R面取り穴 にした例を示す。
次に、 破裂線 (テアライン) 1 9 aの長さ 6 mmと 4 mmの比較試験を行い、 有意差があることを確認した。 長さ 6 m mでは、 破裂線 (テアライン) 1 9 aの 飛散が発生する。 The example shown in FIG. 27 shows an example in which the hole is formed into an R chamfered hole whose diameter is reduced toward the tip as compared to FIG. Next, a comparative test was performed for the rupture line (tea line) 19a with a length of 6 mm and 4 mm, and it was confirmed that there was a significant difference. At a length of 6 mm, a rupture line (tea line) 19 a is generated.
ィグナイ夕本体用の樹脂と比較試験を行い、 有意差があることを確認した。 本 体樹脂 (A— 1 1 4 5 H S ) では、 破裂線 (テアライン) 1 9 aの飛散が発生す る。 A comparative test was conducted with the resin for the igneous body, and it was confirmed that there was a significant difference. In the case of the main resin (A-1145HS), burst lines (tea lines) 19a are scattered.
図 2 8は、 本発明の別の実施形態に係るガス発生器 1 Aを示す (請求の範囲 1 7に対応する) 。 FIG. 28 shows a gas generator 1A according to another embodiment of the present invention (corresponding to claim 17).
本実施形態に係るガス発生器 1 Aは、 図 1 1に示す従来のガス発生器 1 0 0の ようにィグナイ夕 1 0 Aが 0リングを介してボディ 4 0にかしめ付けられている c しかし、 ィグナイ夕 1 0 Aには、 ィグナイ夕 1 0と同様に、 キャップ 1 9に破 裂線 (テアライン) 1 9 aが設けられている。 Gas generator 1 A according to the present embodiment, however c are crimped to the body 4 0 through Igunai evening 1 0 A 0-ring as in the conventional gas generator 1 0 0 1 1 In the case of ignay 10A, a rupture line (tea line) 19a is provided on the cap 19, as in the case of the ignay 10.
そして、 ィグナイタ 1 0 Aのヘッ ド部側には、 図 2 9に示す挿入タイプのホル ダ 3 0 Aが配設されている。 On the head side of the igniter 10A, an insertion type holder 30A shown in FIG. 29 is provided.
挿入タイプのホルダ 3 O Aは、 図 2 8に示すように、 外周壁面がカップの内周 壁面に接するとともに先端部が、 力ップの胴部より狭くなる面取り部 2 5の段部 に当接し、 力ップフランジ部とボディ縁部とのかしめ固定により保持固定されて いる。 As shown in Fig. 28, the insertion-type holder 3OA comes in contact with the step of the chamfered portion 25 where the outer peripheral wall is in contact with the inner peripheral wall of the cup and the tip is narrower than the body of the wrench. It is held and fixed by caulking and fixing the lip flange and the body edge.
この場合にも、 ホルダ 3 O Aによって、 キャップ 1 9の破裂線 (テアライン) 1 9 aの飛散が防止される。 Also in this case, the holder 3OA prevents the tear line 19a of the cap 19 from scattering.
勿論、 ホルダ 3 O Aの押さえ部 3 1 Aは、 ホルダ 3 0の押さえ部 3 1 aと同様 な穴径、 穴形状とすることが望ましい。 Of course, it is desirable that the holding portion 31 A of the holder 3OA have the same hole diameter and hole shape as the holding portion 31a of the holder 30.
さらに、 カップ 2 O Aには、 本実施形態に係るガス発生器 1と同様に、 破裂線 (テアライン) 2 l aが設けられている。 Further, the cup 2OA is provided with a rupture line (tea line) 2la similarly to the gas generator 1 according to the present embodiment.
図 3 0は、本発明の別の実施形態に係るガス発生器 1 Bを示す(請求の範囲 8、 9に対応する) 。 FIG. 30 shows a gas generator 1B according to another embodiment of the present invention (corresponding to claims 8 and 9).
本実施形態では、 図 1 1に示す従来のガス発生器 1 0 0における〇リングを取 り除いたタイプのガス発生器に関する。 The present embodiment relates to a gas generator of the conventional gas generator 100 shown in FIG. 11 in which an o-ring is removed.
この本実施形態においても、 ィグナイ夕 1 0 Bの膨出部を利用することによつ
て、 確実に保持することが可能となる。 Also in the present embodiment, the use of the bulging portion of the signature 10B is used. Therefore, it is possible to securely hold.
そして、 耐圧性においても問題がない。 There is no problem in the pressure resistance.
また、 ィグナイ夕 1 0 Bおよびカップ 2 0には、 図 1に示すガス発生器 1と同 様に破裂線 (テアライン) 1 9 a、 2 l aが設けられている。 In addition, the rupture lines (tea lines) 19a and 2la are provided in the igniter 10B and the cup 20 as in the gas generator 1 shown in Fig. 1.
これらの作用効果は、 ガス発生器 1と同様である。 These functions and effects are the same as those of the gas generator 1.
[実験例] (高い構造強度の確保) [Experimental example] (Ensuring high structural strength)
1 . 従来の問題点 1. Conventional problems
図 1 1に示すような従来のガス発生器 1 0 0 (標準形状ィグナイ夕を◦リング で固定する方式) について Fig. 11 Conventional gas generator 100 (standard igniter fixed with ◦ ring) as shown in Figure 11
1 ) ボディ寸法が制限されるため、 耐圧断面積の増加が難しい。 1) It is difficult to increase the withstand pressure cross-sectional area due to limited body dimensions.
2 ) 限られた寸法範囲内で強度を増すためには、 材質を高強度の物に変更する しかない。 2) The only way to increase the strength within a limited range is to change the material to a high-strength material.
3 ) 2重ロックタイプ (ショーティングクリンプ径が大きい) では、 現在より も構造強度が低下する。 3) The structural strength of the double lock type (with a large shorting crimp) is lower than at present.
ここで、 穴径 Xは、 シングルロックタイプで ø 1 0 mm、 2重シングルロック タイプで 1 1 . 1 mmである。 また、 開口部の内側座 Yの幅は最大で 1 . 4 m mに制限されている。 Here, the hole diameter X is ø10 mm for the single lock type and 11.1 mm for the double single lock type. The width of the inner seat Y of the opening is limited to a maximum of 1.4 mm.
従って、従来のガス発生器 1 0 0の場合には構造強度を増加させるのは難しく、 市場要求として構造強度アツプが望まれた場合や、 2重ロックタイプでは強度低 下が避けられない。 Therefore, in the case of the conventional gas generator 100, it is difficult to increase the structural strength, and when the structural strength is required to increase as a market requirement, or in the case of a double lock type, a decrease in strength is inevitable.
これに対し、 本発明では、 下記のような解決策を講じた。 In contrast, the present invention has taken the following solution.
1 ) 耐圧断面積の増加 1) Increase in withstand pressure cross section
0リングを削除することにより、 耐圧断面積を増加した。 By eliminating the O-ring, the withstand voltage cross-sectional area was increased.
従来のガス発生器 1 0 0では耐圧断面積 (内圧によるィグナイ夕荷重を受けた ときの予想破壊断面) は 4 4 . 0 m m 2であるのに対して、 本実施形態に係るガ ス発生器 1のそれは 8 0 . 5 mm 2となり、 約 2倍の面積を確保できた。 Conventional gas generator 1 0 0 At withstand sectional area (anticipated fracture sections when subjected to Igunai evening load due to internal pressure) is 4 4.0 a mm 2 is whereas, gas generator according to this embodiment 1 was 80.5 mm 2 , which was about twice as large.
また、 0リングの替わりにシール剤を充填しているが、 このシール剤充填式は、 密閉性も良好でありィグナイ夕の機能を損なうものではない。 In addition, a sealant is filled instead of the O-ring, but this sealant-filled type has good sealing performance and does not impair the function of the ignition.
2 ) 耐圧断面の角度付与
ボディのかしめ溝部の形状を工夫し、 耐圧断面が圧力荷重の方向に対して、 角 度が付くように設計した。 2) Angle of pressure section The shape of the caulking groove in the body was devised so that the pressure-resistant cross section was angled with respect to the direction of the pressure load.
ボディの溝部は、 カップを挿入しかしめ加工を施す部位である。 本実施形態に おいては、 直接カップを溝部にあてがうのではなく、 ホルダ (ィグナイ夕をボデ ィとともに固定する部品) を挟み込むようにしてかしめ加工される。 The groove in the body is where the cup is inserted and buried. In the present embodiment, instead of directly applying the cup to the groove portion, the cup is swaged so as to sandwich a holder (a component for fixing the igniter together with the body).
このホルダのフランジ形状は比較的自由にとれるため、 溝の角部を大きな Cま たは R形状にすることができる。 この溝部形状によって、 耐圧断面に角度を設け ることができる。 つまり、 図 1 1に示す従来のガス発生器 1 0 0では、 剪断面と して表示するように、 耐圧面角度が 0 ° である。 これに対し、 本実施形態では、 図 1 0に示すように、 剪断面として表示するように、 耐圧面角度を付与すること ができる。 Since the flange shape of this holder can be made relatively freely, the corner of the groove can be made a large C or R shape. With this groove shape, an angle can be provided in the breakdown voltage section. That is, in the conventional gas generator 100 shown in FIG. 11, the pressure-resistant surface angle is 0 ° so as to be displayed as a shear plane. On the other hand, in the present embodiment, as shown in FIG. 10, a pressure-resistant surface angle can be given so as to be displayed as a shear plane.
角度をつけることにより、 破断面には圧縮応力が作用する。 この圧縮応力が材 料内部の摩擦抵抗を増加させ、 内圧による剪断応力に対して反作用の力となる。 そのため、 単純剪断応力より強くなり、 耐圧強度が増加する。 By making an angle, compressive stress acts on the fracture surface. This compressive stress increases the frictional resistance inside the material and acts as a reaction force against shear stress caused by internal pressure. Therefore, it becomes stronger than the simple shear stress, and the compressive strength increases.
1 ) 耐圧断面積の増加 1) Increase in withstand pressure cross section
従来のガス発生器 1 0 0と本実施形態に係るガス発生器 1の破壊テス トを行つ た結果、 耐圧断面積の増加分に見合う破壊圧力を得ることができた。 As a result of performing a destruction test of the conventional gas generator 100 and the gas generator 1 according to the present embodiment, it was possible to obtain a destruction pressure commensurate with the increase in the withstand pressure cross-sectional area.
その結果を表 4に示す。 The results are shown in Table 4.
表 4 Table 4
耐圧面積の増加分 1 . 8倍に対して、 破壊圧力の増加分 1 . 7倍が低いのは、 約 3 0 0 M P aがィグナイ夕自体の破壊強度に近いため、 ボディの耐圧強度とし ては限界になっていると思われる。 The 1.7-fold increase in the burst pressure is lower than the 1.8-fold increase in the pressure-resistant area, because about 300 MPa is close to the break strength of the igniter itself. Seems to be at the limit.
2 ) 耐圧断面の角度付与 2) Angle of pressure section
耐圧断面の受圧方向に対する角度を変化させ破壊テストを行った結果、 耐圧断
面角度が大きい方ほど破壊圧力が増加することが分かった As a result of performing a destructive test by changing the angle of the pressure-resistant section with respect to the pressure receiving direction, It was found that the larger the surface angle, the higher the burst pressure
その結果を表 5、 図 3 1に示す。 The results are shown in Table 5 and Figure 31.
表 5 Table 5
ここでの計算値は角度による分力を考慮したものではあるが、 材料内部の摩擦 抵抗は考慮していない。 従って、 角度 0 ° 付近では、 計算値と実測値が一致して いる。 The calculated values here take into account the component force due to the angle, but do not take into account the frictional resistance inside the material. Therefore, near the angle of 0 °, the calculated and measured values match.
一方、 ィグナイ夕の耐圧強度は 3 0 0 M P a付近のため、 破壊圧力が 3 0 0 M P aに達してしまう約 1 6 ° を超えてしまうと、 破壊圧力は頭打ちになる。 On the other hand, the compressive strength of the igniter is around 300 MPa, so when the burst pressure exceeds about 16 °, which reaches 300 MPa, the burst pressure reaches a plateau.
また、 2重ロックタイプ (ショーティンゲクリンブ径: ø 1 1 . l mm→断面 角度: 3 . 1 ° ) でも、 2 0 O M P aを実現することができる。 In addition, even with a double lock type (Shorting crimper diameter: ø11. Lmm → cross-sectional angle: 3.1 °), it is possible to realize 20 OMPa.
以上の結果から、 次のような利点が奏される。 From the above results, the following advantages are achieved.
①標準サイズのィゲナイ夕を使用する場合、 従来のィグナイ夕よりも約 2倍の 構造強度になる。 (1) When a standard-sized ignai evening is used, the structural strength is about twice that of the conventional ignai evening.
②形状 (耐圧断面積、 角度) による強度アップが図られているため、 ボディ材 質選択の自由度が高い。 (2) Since the strength is enhanced by the shape (pressure-resistant cross-sectional area and angle), the degree of freedom in selecting the body material is high.
③ 2重ロックタイプでも従来のィグナイ夕 (シングルロックタイプ) の構造強 度を上回る。 (3) Even with the double lock type, the structural strength of the conventional igniter (single lock type) is exceeded.
次に、 耐圧断面積について詳述する。 Next, the withstand voltage cross-sectional area will be described in detail.
1-1 試験目的 1-1 Purpose of test
耐圧断面積を変化させた場合に、破壊圧力がどのように変化するかを確認する。 1-2 試験手法 Check how the breaking pressure changes when the withstand pressure cross section is changed. 1-2 Test method
( 1 )断面積増加による構造強度ァップの確認 (1) Confirmation of structural strength gap by increasing cross-sectional area
従来のガス発生器 1 0 0と本実施形態に係るガス発生器 1の構造で、 同一材料 を用いた本実施形態に係るガス発生器 1のボディ 3 0で破壊試験を実施し、 断面 積増加による構造強度アップを確認する。
(2 )材質を変更した場合の実力確認 With the structure of the conventional gas generator 100 and the gas generator 1 according to the present embodiment, a destructive test was performed on the body 30 of the gas generator 1 according to the present embodiment using the same material to increase the cross-sectional area. Confirm that structural strength is increased by (2) Confirmation of ability when material is changed
本実施形態に係るガス発生器 1はボディ 3 0にアルミニウム合金を用いている ため、 破壊試験を実施し、 構造強度を確認している。 Since the gas generator 1 according to the present embodiment uses an aluminum alloy for the body 30, a destructive test is performed to confirm the structural strength.
1-3 試験方法 1-3 Test method
図 3 2に示す機器を用いて行った。 This was performed using the equipment shown in FIG.
1 . タンク 9 0内を任意の容積にするために、 スぺーサ 9 1を取り付ける (本 試験は全てタンク内容積は 2 c cである) 。 1. Attach a spacer 91 to make the inside of the tank 90 an arbitrary volume. (All tanks in this test have a volume of 2 cc.)
2 . ガス発生器 Gと圧力センサ (図示せず) を取り付け、 ガス発生器 Gは発火 母線へ、 圧力センサは計測器へと結線する。 圧力センサは、 圧力取付穴 9 2に取 り付けられる。 2. Attach the gas generator G and a pressure sensor (not shown), and connect the gas generator G to the ignition bus and the pressure sensor to the measuring instrument. The pressure sensor is attached to the pressure mounting hole 92.
3 . ガス発生器 Gへ発火電流を流し発火させ、 そのときのタンク 9 0内圧力を 計測する。 3. Apply an ignition current to the gas generator G to ignite and measure the pressure in the tank 90 at that time.
4 . 圧力が上昇するとガス発生器 G (ボディ 3 0、 ィグナイタ 1 0 ) が破壊し、 燃焼ガスはタンク外へと放出される。 4. When the pressure rises, the gas generator G (body 30 and igniter 10) is destroyed, and the combustion gas is discharged out of the tank.
5 . 計測した圧力波形は、 破壊した時点で最大値を示しているため、 これを破 壊圧 (構造強度) とする。 この圧力波形は図 3 3に示されている。 5. Since the measured pressure waveform shows the maximum value at the time of rupture, this is defined as the crush pressure (structural strength). This pressure waveform is shown in FIG.
補足:本試験タンク内容積を 2 c cに設定し、 本ガス発生器をタンク本体に配 置して通電させ、 本ガス発生器の駆動薬のガス燃焼圧力 (内圧) の上昇で、 本ガ ス発生器のボディがィグナイ夕を保持できなくなり、 ィグナイ夕及びボディが破 壊され、 発火母線側 (コネクタ側) のタンク外へ放出される。 Supplement: Set the internal volume of the test tank to 2 cc, place the gas generator in the tank body, turn on the power, and raise the gas combustion pressure (internal pressure) of the driving agent of the gas generator to increase the gas volume. The generator body is unable to hold the ignition, the ignition and the body are broken, and discharged to the outside of the tank on the ignition bus side (connector side).
なお、 図 3 2において、 タンク 9 0には、 蝶ナッ ト 9 5によって操作されるノ ックアウトピン 9 3がカラー 9 4を介して取り付けられている。 また、 タンク 9 0には、 ガス発生器 Gをタンク 9 0に固定するキヤップ 9 6が螺着されるように なっている。 In FIG. 32, a knockout pin 93 operated by a butterfly nut 95 is attached to the tank 90 via a collar 94. Further, a cap 96 for fixing the gas generator G to the tank 90 is screwed to the tank 90.
1-4 試験結果 1-4 Test results
表 4に示す通りである。 As shown in Table 4.
表 4において、 ZDC2とは J I Sの材料記号 (亜鉛合金 2種) 。 A5056とは J I Sの材料記号 (アルミニウム合金) 。 In Table 4, ZDC2 is the material code of JIS (two types of zinc alloys). A5056 is the JIS material code (aluminum alloy).
0リングを削除することにより、 従来のガス発生器 1 0 0では耐圧断面積 (内
圧によるィグナイ夕荷重を受けたときの予想破壊断面) は、 44. 0mm2であ るのに対して、 本実施形態に係るガス発生器 1のそれは、 80. 5mm2となり、 約 2倍の面積を確保できた。 By removing the O-ring, the conventional gas generator 100 can withstand pressure Expected fracture cross section under igniter load due to pressure) is 44.0 mm 2 , whereas that of gas generator 1 according to the present embodiment is 80.5 mm 2 , which is about twice as large. The area was secured.
その結果、 本実施形態に係るガス発生器 1は、 耐圧断面積の増加分に見合う破 壊圧力を得ることができた。 As a result, the gas generator 1 according to the present embodiment was able to obtain a burst pressure commensurate with the increase in the pressure-resistant cross-sectional area.
耐圧面積の増加分 1. 8倍に対して、 破壊圧力の増加分 1. 7倍と低いのは、 約 300 MP aがィグナイ夕自体の破壊強度に近いため、 ボディの耐圧強度とし ては限界になっていると思われる。 The increase in burst pressure, 1.7 times the increase in pressure-resistant area, 1.7 times lower, is about 300 MPa close to the breaking strength of the igniter itself. It seems to be.
次に、 耐圧断面積角度について詳述する。 Next, the withstand pressure sectional area angle will be described in detail.
2-1 試験目的 2-1 Test purpose
耐圧断面積角度を変化させた場合に、 破壊圧力がどのように変化するかを確認 する。 Check how the burst pressure changes when the withstand pressure cross-sectional area angle is changed.
2-2 試験手法 2-2 Test method
耐圧断面積角度以外の要素をなるベく一定にするために、 ショーティングクリ ンプ径を変化させて耐圧断面角度を変化させた (具体的には図 1 0, 図 1 1の X を変化させて、 軸に対する断面角度を変化させる) 。 In order to make elements other than the pressure-resistant cross-sectional area angle as constant as possible, the pressure-resistant cross-sectional angle was changed by changing the shorting clamp diameter (specifically, by changing X in Figs. 10 and 11). To change the cross-sectional angle with respect to the axis).
この手法をとれば、 耐圧面積 (剪断面積) の変化を極力抑えられ、 純粋に耐圧 面積角度の影響を調査することができる。 With this method, changes in the pressure-resistant area (shear area) can be minimized, and the effect of the pressure-resistant area angle can be investigated purely.
2-3 試験方法 2-3 Test method
耐圧断面積と同じく して破壊試験を行い、 破壊時の圧力を計測する。 Perform a destructive test in the same way as the withstand pressure cross section, and measure the pressure at the time of destruction.
2-4 試験結果 2-4 Test results
耐圧断面の受圧方向に対する角度を変化させ破壊テス トを行った結果、 耐圧断 面角度が大きい方ほど破壊圧力が増加することが分かった。 As a result of performing a fracture test by changing the angle of the pressure-resistant cross section with respect to the pressure receiving direction, it was found that the larger the angle of the pressure-resistant cross section, the greater the fracture pressure.
結果を表 5に示す。 Table 5 shows the results.
表 5において、 ボディ材質は A 505 6を使用した。 In Table 5, A5056 was used for the body material.
ィグナイ夕の耐圧強度は 30 OMP a付近のため、 破壊圧力が 30 OMP aに 達してしまう約 16° を超えてしまうと、 破壊圧力は頭打ちになる。 Since the compressive strength of the igniter is around 30 OMPa, when the burst pressure exceeds about 16 °, which reaches 30 OMPa, the burst pressure reaches a plateau.
試験結果から、 角度が大きい方が破壊圧力は高くなるため、 角度が小さい場合 の破壊圧力低下が懸念される。 しかし、 角度 0° 付近においても約 1 8 OMP a
程度の破壊圧力を有しており、 実用上問題ない。 According to the test results, the larger the angle, the higher the burst pressure, so there is a concern that the burst pressure decreases when the angle is small. However, even at around 0 °, about 18 OMP a It has a burst pressure of the order of magnitude, so there is no practical problem.
従って、 2重ロックタイプ (ショーティングクリンプ径: ø 1 1. 1mm、 断 面角度 (9 : 3. 1° ) でも、 破壊圧力は 20 OMP a以上を確保することができ る ( 2重ロックタイプが充分な構造強度を持っていることに関しては、 耐圧面積 の角度付与よりも、 前項の耐圧面積増加による恩恵が強い。 ) 。 産業上の利用の可能性 Therefore, even with a double lock type (shortening crimp diameter: ø11.1 mm, cross section angle (9: 3.1 °)), a burst pressure of 20 OMPa or more can be secured (double lock type As regards the fact that the steel has sufficient structural strength, the benefits of the increase in the pressure-resistant area described in the preceding paragraph are stronger than the provision of the angle of the pressure-resistant area.)
本発明では、 次のような効果を有する。 The present invention has the following effects.
( 1 )ホルダにより、 ィグナイ夕の膨出部のヘッダ部側を保持できるとともに、 ブラインドスペースを無くすことができる。 (1) The holder can hold the header side of the bulging portion of the signboard and can eliminate the blind space.
(2 ) このホルダの軸方向の長さ調整で、 カップ内の駆動薬の、 所定の充填率 を確保し圧力特性を安定させることができる。 (2) By adjusting the axial length of the holder, it is possible to secure a predetermined filling rate of the driving agent in the cup and to stabilize the pressure characteristics.
(3) ィグナイ夕の膨出部のコネクタ部側と、 このコネクタ部側を受けるボデ ィのィグナイ夕受け部とを同形状にしているので、 ガス発生器の作動の際、 ィグ ナイ夕の作動圧力の充分耐える耐圧構造となる。 (3) Since the connector side of the bulging part of the igniter and the igniter receiving part of the body that receives this connector part have the same shape, when the gas generator operates, the igniter A pressure-resistant structure that can sufficiently withstand the operating pressure is obtained.
(4) カップ閉鎖部の底面に破裂線 (テアライン) を設けたので、 燃焼ガス圧 で破断片が離脱しない。 (4) A rupture line (tear line) is provided on the bottom of the cup closure, so that the broken fragments do not come off due to the combustion gas pressure.
( 5) ィグナイ夕のキャップ閉鎖部の底面に破裂線 (テアライン) を設けたの で、 燃焼ガス圧で破断片が離脱しない。 (5) The rupture line (tear line) is provided on the bottom of the cap closure at the igneous evening, so the broken fragments do not come off due to the combustion gas pressure.
( 6) ィグナイ夕をホルダで覆うとともにキャップ閉鎖部の底面に破裂線 (テ ァライン) を設けたので、 燃焼ガス圧をホルダの押さえ部によって緩和し破裂線 (6) The igniter is covered with a holder and a rupture line (tear line) is provided at the bottom of the cap closure.
(テアライン) の離脱が防止できる。
(Tea line) can be prevented from being detached.
Claims
( 1 ) ヘッダ部とコネクタ部とを有するとともに前記へッダ部と前記コネク 夕部とが膨出部を介して連結して成るィグナイ夕と、 (1) an igniter having a header portion and a connector portion, wherein the header portion and the connector portion are connected via a bulging portion;
このィグナイ夕の膨出部のコネクタ部側に当接して配置されるボディと、 前記ィグナイ夕からの火炎を通過させる開口部を底面に有するとともに前記ィ グナイ夕のヘッダ部および膨出部の外周を覆うように配置される有底筒状のホル ダと、 A body disposed in contact with the connector side of the bulging portion of the igniter, an opening on the bottom surface through which the flame from the igniter passes, and an outer periphery of the header portion and the bulging portion of the igniter A cylindrical holder with a bottom placed so as to cover the
このホルダの外周側面と重なる内周側面を有するとともに底面に閉鎖部を有す る有底筒状のカップと、 A bottomed cylindrical cup having an inner peripheral side surface overlapping the outer peripheral side surface of the holder and having a closed portion on the bottom surface;
この力ップ内に収容される駆動薬とを備え、 And a driving agent accommodated in the force switch,
前記ホルダの開口端部と前記力ップの開口端部とを、 前記ボディに重ねてかし め固定することにより、 By fixing the opening end of the holder and the opening end of the force lap on the body by overlapping and caulking,
前記ィグナイ夕を、 前記膨出部を介して前記ホルダと前記ボディとで挟持し、 前記ホルダの外周側面と前記力ッブの内周側面とを、隙間のないように密着し、 前記ホルダの開口部側と前記カップの閉鎖部との間に、 駆動薬収容部を形成し て成る The igniter is sandwiched between the holder and the body via the bulging portion, and an outer peripheral side surface of the holder and an inner peripheral side surface of the force tub are brought into close contact with no gap, and A driving medicine container is formed between the opening side and the closed part of the cup.
ことを特徴とするガス発生器。 A gas generator characterized in that:
( 2 ) 請求の範囲 1記載のガス発生器において、 (2) In the gas generator according to claim 1,
前記ボディは、 前記ィグナイ夕の膨出部のコネクタ部側の壁面に面接触する壁 面から成るィグナイ夕受け部と、 前記ホルダの開口端部の外側に設けられたフラ ンジ部と前記力ップの開口端部の外側に設けられたフランジ部とを重合してかし め固定できる縁部を有する環状縁溝部とを一体的に形成して成ることを特徴とす るガス発生器。 The body includes an igniter receiving portion formed of a wall surface in contact with a wall surface of the bulging portion of the igniter on the connector side, a flange portion provided outside an opening end of the holder, and the force-receiving portion. A gas generator characterized by being integrally formed with an annular edge groove portion having an edge portion which can be fixed by caulking a flange portion provided outside an opening end portion of an opening.
( 3 ) 請求の範囲 2記載のガス発生器において、 (3) In the gas generator according to claim 2,
前記ホルダの開口端部の外側に設けられたフランジ部の鍔部には、 シリコーン シール剤が塗布されていることを特徴とするガス発生器。 A gas generator, wherein a silicone sealant is applied to a flange of a flange provided outside an opening end of the holder.
( 4 ) 請求の範囲 2記載のガス発生器において、 (4) In the gas generator according to claim 2,
前記ボディのィグナイ夕受け部には、 シリコーンシール剤が塗布されているこ
とを特徴とするガス発生器。 A silicone sealant is applied to the igniter receiver of the body. And a gas generator characterized by the above.
( 5 ) 請求の範囲 1記載のガス発生器において、 (5) In the gas generator according to claim 1,
前記駆動薬収容部は、 前記ホルダを取り替えることによって、 前記駆動薬の充 填率を 8 0 %〜9 0 %にすることができることを特徴とするガス発生器。 The gas generator according to claim 1, wherein the driving agent container can change the filling ratio of the driving agent to 80% to 90% by replacing the holder.
( 6 ) ヘッダ部とコネクタ部とを有するィグナイ夕と、 (6) an igniter having a header portion and a connector portion;
このィグナイ夕のコネクタ部側に取り付けられるボディと、 A body attached to the connector side of this igneous evening,
底面に閉鎖部を有するとともに前記底面に破裂線を設け、 前記ィグナイ夕に取 り付けられる有底筒状のカップと、 A bottomed cylindrical cup having a closed portion on the bottom surface, providing a rupture line on the bottom surface, and being attached to the igniter;
このカツプ内に収容される駆動薬と The driving medicine contained in this cup and
を備えたことを特徴とするガス発生器。 A gas generator comprising:
( 7 ) 請求の範囲 6記載のガス発生器において、 (7) In the gas generator according to claim 6,
前記破裂線は、 前記底面の板厚に対し 3 0 %〜5 0 %の残り板厚を形成する ことを特徴とするガス発生器。 The gas generator, wherein the burst line forms a remaining plate thickness of 30% to 50% with respect to the plate thickness of the bottom surface.
( 8 ) ヘッダ部とコネクタ部とを有するとともにヘッダ部に破裂線を設けた ィグナイ夕と、 (8) a signature having a header portion and a connector portion and having a rupture line in the header portion;
このィグナイ夕のコネクタ部側に取り付けられるボディと、 A body attached to the connector side of this igneous evening,
底面に閉鎖部を有し、 前記ィグナイ夕に取り付けられる有底筒状の力ップと、 この力ップ内に収容される駆動薬と A bottomed cylindrical forcep having a closed portion on the bottom surface and attached to the igniter; a driving agent accommodated in the forcep;
を備えたことを特徴とするガス発生器。 A gas generator comprising:
( 9 ) 請求の範囲 8記載のガス発生器において、 (9) In the gas generator according to claim 8,
前記破裂線は、 前記底面の板厚に対し 3 0 %〜5 0 %の残り板厚を形成する ことを特徴とするガス発生器。 The gas generator, wherein the rupture line forms a remaining plate thickness of 30% to 50% with respect to the plate thickness of the bottom surface.
( 10) ヘッダ部とコネクタ部とを有するとともに前記へッダ部と前記コネク 夕部とが膨出部を介して連結して成るィグナイ夕と、 (10) an igniter having a header portion and a connector portion, wherein the header portion and the connector portion are connected via a bulging portion;
このィグナイ夕の膨出部のコネクタ部側に当接して配置されるボディと、 底面に閉鎖部を有し、 前記ィグナイ夕に取り付けられる有底筒状の力ップと、 この力ップ内に収容される駆動薬と A body disposed in contact with the connector portion side of the bulging portion of the igniter, a closed-end portion having a closed bottom surface, and a bottomed cylindrical force tub attached to the igniter; The driving drug contained in
を備えたことを特徴とするガス発生器。 A gas generator comprising:
( 11) ヘッダ部とコネクタ部とを有するとともにヘッダ部に破裂線を設けた
ィグナイ夕と、 (11) Having a header part and a connector part and providing a rupture line in the header part Ignai evening
このィグナイ夕のコネクタ部側に取り付けられるボディと、 A body attached to the connector side of this igneous evening,
底面に閉鎖部を有するとともに前記底面に破裂線を設け、 前記ィグナイ夕に取 り付けられる有底筒状の力ップと、 A bottomed cylindrical force bar having a closed portion on the bottom surface, providing a rupture line on the bottom surface, and being attached to the igniter;
このカップ内に収容される駆動薬と The driving medicine contained in this cup
を備えたことを特徴とするガス発生器。 A gas generator comprising:
( 12) ヘッダ部とコネクタ部とを有するとともに前記へッダ部と前記コネク 夕部とが膨出部を介して連結して成るィグナイ夕と、 (12) an igniter having a header portion and a connector portion, wherein the header portion and the connector portion are connected via a bulging portion;
このィグナイ夕のコネクタ部側に取り付けられるボディと、 A body attached to the connector side of this igneous evening,
底面に閉鎖部を有するとともに前記底面に破裂線を設け、 前記ィグナイ夕に取 り付けられる有底筒状のカップと、 A bottomed tubular cup having a closed portion on the bottom surface and providing a rupture line on the bottom surface, and being attached to the igniter;
この力ップ内に収容される駆動薬と The driving medicine contained in this force
を備えたことを特徴とするガス発生器。 A gas generator comprising:
( 13) ヘッダ部とコネクタ部とを有するとともにヘッダ部に破裂線を設けた ィグナイ夕と、 (13) A signal having a header portion and a connector portion and having a rupture line in the header portion,
このィグナイ夕のコネクタ部側に取り付けられるボディと、 A body attached to the connector side of this igneous evening,
前記ィグナイ夕からの火炎を通過させる開口部を底面に有するとともに前記ィ グナイ夕のヘッダ部および膨出部の外周を覆うように配置される有底筒状のホル ダと、 A bottomed cylindrical holder having an opening at the bottom surface through which the flame from the igniter passes and covering the outer periphery of the header and the bulging portion of the igniter;
底面に閉鎖部を有し、 前記ィグナイ夕に取り付けられる有底筒状のカップと、 このカップ内に収容される駆動薬と A bottomed cylindrical cup having a closed portion on the bottom surface and attached to the igniter, and a driving medicine contained in the cup
を備えたことを特徴とするガス発生器。 A gas generator comprising:
( 14) 請求の範囲 1 3記載のガス発生器において、 (14) In the gas generator according to claim 13,
前記ホルダの開口部は、 前記力ップに向かって縮径する穴部によって構成され ている The opening of the holder is formed by a hole that decreases in diameter toward the force nip.
ことを特徴とするガス発生器。 A gas generator characterized in that:
( 15) 請求の範囲 1 3記載のガス発生器において、 (15) In the gas generator according to claim 13,
前記破裂線は、 その周縁部が前記ホルダの底部で覆われるとともにその中央部 が前記開口部より露出するように配置されている
ことを特徴とするガス発生器。 The rupture line is disposed such that a peripheral portion thereof is covered with a bottom portion of the holder and a central portion thereof is exposed from the opening. A gas generator characterized in that:
( 16) 請求の範囲 1 3記載のガス発生器において、 (16) In the gas generator according to claim 13,
前記ホルダは、 前記力ップとともに前記ボディに重ねてかしめ固定されている ことを特徴とするガス発生器。 The gas generator, wherein the holder is fixed to the body by overlapping with the nip.
(17) ヘッダ部とコネクタ部とを有するとともにヘッダ部に破裂線を設けた ィグナイ夕と、 (17) a signature having a header portion and a connector portion and having a rupture line in the header portion;
このィグナイ夕のコネクタ部側に取り付けられるボディと、 A body attached to the connector side of this igneous evening,
前記ィグナイ夕からの火炎を通過させる開口部を底面に有するとともに前記ィ グナイ夕のヘッダ部の外周を覆うように配置される有底筒状のホルダと、 底面に閉鎖部を有し、 前記ィグナイ夕に取り付けられる有底筒状の力ップと、 この力ップ内に収容される駆動薬と A bottomed cylindrical holder having an opening on the bottom surface through which the flame from the igniter passes and covering an outer periphery of a header portion of the igniter; a closing portion on the bottom surface; A cylindrical tub with a bottom attached in the evening,
を備えたことを特徴とするガス発生器。
A gas generator comprising:
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11/206681 | 1999-07-21 | ||
JP20668199 | 1999-07-21 | ||
JP2000022857A JP2001088653A (en) | 1999-07-21 | 2000-01-31 | Gas generator |
JP2000/22857 | 2000-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001005633A1 true WO2001005633A1 (en) | 2001-01-25 |
Family
ID=26515790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/004812 WO2001005633A1 (en) | 1999-07-21 | 2000-07-18 | Gas generator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2001088653A (en) |
WO (1) | WO2001005633A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1633610A2 (en) * | 2003-06-16 | 2006-03-15 | Automotive Systems Laboratory Inc. | Micro gas generator including an initiator blast shield |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1509240A (en) * | 2001-05-15 | 2004-06-30 | 日本化药株式会社 | Gas generator |
JP4629265B2 (en) * | 2001-05-15 | 2011-02-09 | 日本化薬株式会社 | Gas generator |
US20040232679A1 (en) * | 2001-08-09 | 2004-11-25 | Dairi Kubo | Gas generator |
CN101370575B (en) * | 2006-01-18 | 2011-09-07 | 日本化药株式会社 | Small gas-generating device for gas actuator and pretensioner system |
JP4953838B2 (en) * | 2007-01-26 | 2012-06-13 | 日本化薬株式会社 | Gas generator |
JP4821654B2 (en) * | 2007-02-28 | 2011-11-24 | 豊田合成株式会社 | Inflator |
KR100863094B1 (en) * | 2007-08-21 | 2008-10-13 | 현대자동차주식회사 | Airbag resistance overprevention system with self cleaning |
US7845278B2 (en) * | 2008-01-14 | 2010-12-07 | Autoliv Asp, Inc. | Pyrotechnic cup |
JP5208890B2 (en) * | 2009-08-31 | 2013-06-12 | 豊田合成株式会社 | Actuator |
JP5136527B2 (en) * | 2009-08-31 | 2013-02-06 | 豊田合成株式会社 | Actuator |
JP5381932B2 (en) * | 2010-03-02 | 2014-01-08 | 豊田合成株式会社 | Gas generator |
DE102010045641A1 (en) * | 2010-09-17 | 2012-03-22 | Schott Ag | Process for producing a ring-shaped or plate-shaped element |
JP6835315B2 (en) * | 2017-05-18 | 2021-02-24 | 株式会社ダイセル | Gas generator and storage container |
JP6943052B2 (en) * | 2017-07-19 | 2021-09-29 | 日本製鉄株式会社 | Burst test method for steel pipes for airbags |
JP7240943B2 (en) * | 2019-04-23 | 2023-03-16 | 日本化薬株式会社 | gas generator |
JP7219193B2 (en) * | 2019-09-04 | 2023-02-07 | 日本化薬株式会社 | gas generator |
JP2023081139A (en) * | 2021-11-30 | 2023-06-09 | 株式会社ダイセル | gas generator |
JP2023081137A (en) * | 2021-11-30 | 2023-06-09 | 株式会社ダイセル | gas generator |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6141647A (en) * | 1984-07-13 | 1986-02-28 | バイエルン−ヘミ−・ゲゼルシヤフト・フユ−ル・フル−クヘミ−シエ・アントリ−ベ・ミト・ベシユレンクテル・ハフツング | Gas generator |
JPS6168384A (en) * | 1984-09-05 | 1986-04-08 | ソシエテ ナシオナル デ プードル エ エクスプロジフ | Super high speed gas generator |
JPH01301435A (en) * | 1987-11-12 | 1989-12-05 | Bayern Chem Ges Flugchem Anteriebe Mbh | Electric igniter |
JPH0460754U (en) * | 1990-10-04 | 1992-05-25 | ||
JPH05178160A (en) * | 1992-01-07 | 1993-07-20 | Daicel Chem Ind Ltd | Igniter fixing means in gas generator for air bag |
JP3049048U (en) * | 1996-11-20 | 1998-05-29 | オートリブ エーエスピー,インコーポレイティド | Airbag inflator |
JPH11240412A (en) * | 1998-02-25 | 1999-09-07 | Nippon Kayaku Co Ltd | Gas generator for activation of passenger restraint system |
-
2000
- 2000-01-31 JP JP2000022857A patent/JP2001088653A/en active Pending
- 2000-07-18 WO PCT/JP2000/004812 patent/WO2001005633A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6141647A (en) * | 1984-07-13 | 1986-02-28 | バイエルン−ヘミ−・ゲゼルシヤフト・フユ−ル・フル−クヘミ−シエ・アントリ−ベ・ミト・ベシユレンクテル・ハフツング | Gas generator |
JPS6168384A (en) * | 1984-09-05 | 1986-04-08 | ソシエテ ナシオナル デ プードル エ エクスプロジフ | Super high speed gas generator |
JPH01301435A (en) * | 1987-11-12 | 1989-12-05 | Bayern Chem Ges Flugchem Anteriebe Mbh | Electric igniter |
JPH0460754U (en) * | 1990-10-04 | 1992-05-25 | ||
JPH05178160A (en) * | 1992-01-07 | 1993-07-20 | Daicel Chem Ind Ltd | Igniter fixing means in gas generator for air bag |
JP3049048U (en) * | 1996-11-20 | 1998-05-29 | オートリブ エーエスピー,インコーポレイティド | Airbag inflator |
JPH11240412A (en) * | 1998-02-25 | 1999-09-07 | Nippon Kayaku Co Ltd | Gas generator for activation of passenger restraint system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1633610A2 (en) * | 2003-06-16 | 2006-03-15 | Automotive Systems Laboratory Inc. | Micro gas generator including an initiator blast shield |
EP1633610A4 (en) * | 2003-06-16 | 2008-03-26 | Automotive Systems Lab | Micro gas generator including an initiator blast shield |
US7407184B2 (en) | 2003-06-16 | 2008-08-05 | Automotive Systems Laboratory, Inc. | Micro gas generator including an initiator blast shield |
Also Published As
Publication number | Publication date |
---|---|
JP2001088653A (en) | 2001-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001005633A1 (en) | Gas generator | |
JP3038714U (en) | Built-in charge detonator for inflators | |
JP2909007B2 (en) | Airbag inflator with pressure sensor | |
US5803493A (en) | Hybrid blowdown inflator with reduced pressure buildup | |
US6338500B1 (en) | Hybrid gas generator provided with an initiator with shaped explosive charge | |
US5615912A (en) | Inflator for air bag | |
JP3183910B2 (en) | Liquid propellant inflator for occupant restraint | |
US5542702A (en) | Pressurized gas inflator for vehicle occupant protection systems | |
CN100497048C (en) | Gas generator | |
JPH02169345A (en) | Light weight and non-weld expander | |
US9463767B2 (en) | Bursting diaphragm, especially for an inflator, inflator, airbag module and vehicle safety system | |
US20040245753A1 (en) | Gas generator | |
EP0812740B1 (en) | Directional compressed gas inflator | |
JPH0459451A (en) | Automatic igniter | |
GB2279441A (en) | Gas generator for an airbag | |
US6979021B2 (en) | Integral initiator assembly for use in inflator devices | |
WO2001031282A1 (en) | Electric type initiator and pretensioner | |
US5879025A (en) | Inflator for an inflatable vehicle occupant protection device | |
JP2620054B2 (en) | Vehicle occupant restraint | |
JP2003285712A (en) | Initiator | |
WO2004062787A1 (en) | Gas producer | |
US20030116052A1 (en) | Electrically actuatable initiator with output charge | |
US6273462B1 (en) | Air bag inflator | |
TW482889B (en) | Squib and method of manufacture thereof | |
US5893583A (en) | Inflator for an inflatable vehicle occupant protection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR GB SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |