WO2001004506A1 - Automatic clutch - Google Patents

Automatic clutch Download PDF

Info

Publication number
WO2001004506A1
WO2001004506A1 PCT/CN2000/000181 CN0000181W WO0104506A1 WO 2001004506 A1 WO2001004506 A1 WO 2001004506A1 CN 0000181 W CN0000181 W CN 0000181W WO 0104506 A1 WO0104506 A1 WO 0104506A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
inertia wheel
clutch
wheel
inertia
Prior art date
Application number
PCT/CN2000/000181
Other languages
French (fr)
Chinese (zh)
Inventor
Yue Wang
Original Assignee
Yue Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yue Wang filed Critical Yue Wang
Priority to AU56703/00A priority Critical patent/AU5670300A/en
Publication of WO2001004506A1 publication Critical patent/WO2001004506A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/02Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings
    • F16D27/025Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings and with a helical band or equivalent member co-operating with a cylindrical coupling surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/105Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with a helical band or equivalent member co-operating with a cylindrical coupling surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • F16D43/04Automatic clutches actuated entirely mechanically controlled by angular speed
    • F16D43/14Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members
    • F16D43/18Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members with friction clutching members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • F16D43/24Automatic clutches actuated entirely mechanically controlled by acceleration or deceleration of angular speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D2027/002Electric or electronic circuits relating to actuation of electromagnetic clutches

Definitions

  • the inertia wheel in the above scheme may also be a dozen oil tankers in closed operation.
  • the clutch is operated at a uniform speed.
  • the locking torque at the end of the spring is borne by the resistance torque caused by the oil tanker rotating against the oil.
  • Figure 15 Front view of the impeller.
  • ⁇ at dt — ⁇ S)
  • the number of blades is 6 ⁇ 10.
  • ⁇ value is between 0.1 ⁇ 0.13

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)

Abstract

An automatic clutch for simplifying engine clutch control system consists of a sleeve (1), a spring (2), a spindle (3) and an inertia wheel. The torque is transmitted by the friction force between the spring and the spindle. Since the engine speed variation is controlled by the rotation inertia of the inertia wheel and the clamping torque of one of the spring ends is controlled by the rotation moment which is caused by the angle speed variation of the inertia wheel relative to another of the spring ends, the automatic clutch may control the friction force and power output and be automatically engaged and disengaged.

Description

自动离合器  Automatic clutch
技术领域 Technical field
本发明涉及发动机动力传动的配套部件, 用于控制动力输出。 尤其涉及由护套、 弹簧、 轴体组成的自动离合器。  The invention relates to a matching component of an engine power transmission and is used for controlling power output. In particular, it relates to an automatic clutch composed of a sheath, a spring, and a shaft.
背景技术 Background technique
曾经在部分电动起动机中应用的弹簧离合器就是自动离合器中 的一种, 它的主要构造由护套、 弹簧、 主被动轴体组成, 运转原理 是: 用一个弹簧较紧的套在主动轴和被动轴外, 靠弹簧在主动轴和 被动轴外转动时产生的摩擦力传递转矩, 是应用绕性体摩擦力的形 式之一。 这种离合器处于常结合状态, 动力切不断, 只在发动机起 动后产生超越时, 弹簧在轴外打滑才分离, 打滑时, 弹簧内径于轴 面之间仍然处于摩擦状态, 所以这种结构的离合器不能应用于发动 机自动控制动力输出。  The spring clutch that was used in some electric starters is one of the automatic clutches. Its main structure is composed of a sheath, a spring, and an active and passive shaft. The operating principle is: a spring with a tight sleeve is placed on the active shaft and Outside the passive shaft, the frictional force generated by the spring when it rotates outside the active shaft and the passive shaft is one of the forms of applying the friction force of the winding body. This clutch is in a normally engaged state, and the power is cut continuously. Only when the engine is overrun after the engine starts, the spring slips off the shaft and then separates. When slipping, the inner diameter of the spring is still in a friction state between the shaft surface, so this type of clutch It cannot be applied to engine automatic control power output.
发明内容 Summary of the Invention
本发明的任务就是解决弹簧离合器应用于发动机自动控制动力 输出的控制问题, 最终为发动机动力传动提供一种自动离合器。  The task of the present invention is to solve the control problem of the spring clutch applied to the automatic control power output of the engine, and finally to provide an automatic clutch for the engine power transmission.
为了达到上述目的, 本发明的自动离合器包括: 一中空的护套, 该护套的首端与动力传动的输入端固定连接; 一装在护套中的弹簧 件, 该弹簧件的首端与动力传动的输入端固定连接, 该弹簧件的外 径与护套的内径相互配合; 一惯性轮, 弹簧件末端连接在该惯性轮 上; 一装在弹簧件内部的轴体, 该轴体的一端与动力传动的输出端 相连接; 其中, 在离合器处于分离的状态下, 所述弹簧件的内径与 轴体外径之间留有径向间隙, 在离合器处于结合的状态下, 通过上 述惯性轮的作用, 使上述径向间隙消失, 弹簧件与轴体结合锁紧以 传递动力。 In order to achieve the above object, the automatic clutch of the present invention includes: a hollow sheath, a head end of the sheath is fixedly connected to an input end of a power transmission; a spring member installed in the sheath, and the head end of the spring member is in contact with The input end of the power transmission is fixedly connected, the outer diameter of the spring member and the inner diameter of the sheath mutually cooperate; an inertia wheel, the end of the spring member is connected to the inertia wheel; a shaft body installed inside the spring member, One end is connected to the output end of the power transmission; wherein, when the clutch is in a disengaged state, an inner diameter of the spring member is equal to There is a radial gap between the outer diameters of the shafts. When the clutch is engaged, the radial gap disappears through the action of the inertia wheel, and the spring member and the shaft are locked to transmit power.
在离合器中通过弹簧件与轴体间的结合锁紧应用绕性体摩擦原 理传递动力, 根据相应的公式 ^ = μ °, 当摩数系数 μ确定后, 适当 增大包角 α可以增大 的比值, 这样就可以用较小的转矩功率控 制较大的转矩功率输出。 做法是: 设置一个惯性轮, 并改变原离合 器中弹簧对轴体的常结合状态为常分离状态, 把护套和弹簧首端固 定在动力输入端上 (如大飞轮) , 并套在被动轴外, 留有间隙, 弹 簧末端于惯性轮连接, 惯性轮由轴承支承在被动轴上。 运转过程的 原理是: 通过油门控制发动机转速变化, 应用惯性轮的转动惯量: I = mi2, 由惯性轮相对弹簧首端角速度的变化所形成的转动矩: M c = 1 ^ , 控制弹簧末端的锁紧力矩: F2rQ, 实施对绕性体摩擦力 的形成进行控制, 即自动离合。 发动机在均匀转速或在较小负角加 速度转速下运转时, 惯性轮的转动矩趋向零或负值, 这时弹簧末端 的松边锁紧力矩由惯性轮相对某种媒质转动所形成的阻力矩: Mz F2rQ来承担, 保证离合器可靠运转。 当 (挂好档) 起步加速或在均 匀转速下运转时, 发动机克服惯性轮的惯性矩和阻力矩做功, 即 是: Me+Mz F2rQ〉 Μτ, 弹簧在 Fp F2的作用下锁紧被动轴体, 并产 生了绕性体摩擦力, 离合器即结合。 当 (欲换档) 减油门, 发动机 转速突然下降时, 惯性轮在高转速下的转矩储备能量又释放出来, 其动量矩作用在弹簧末端, 同时惯性轮相对媒介转动的阻力矩减 弱, 这时: Me + MZ<MT即转动矩 (负值) 大于或等于阻力矩, 其总和 小于弹簧扭转结合应力力矩 Μτ, 弹簧在相反力矩作用下松脱, 绕性 体摩擦力消失, 离合器切断。 In the clutch, the power is transmitted through the combination of the spring member and the shaft body, and the winding body friction principle is used to transmit power. According to the corresponding formula ^ = μ °, when the coefficient of friction μ is determined, the angle α can be increased appropriately. Ratio, so you can control a larger torque power output with less torque power. The method is: set an inertia wheel, and change the normal coupling state of the spring to the shaft body in the original clutch to the normally separated state, fix the sheath and the spring head to the power input end (such as a large flywheel), and cover the passive shaft In addition, a gap is left, the spring end is connected to the inertia wheel, and the inertia wheel is supported on the driven shaft by a bearing. The principle of the running process is: control the change of engine speed through the throttle, apply the moment of inertia of the inertia wheel: I = mi 2 , the rotation moment formed by the change of the angular velocity of the inertia wheel relative to the spring end: M c = 1 ^, control the end of the spring The locking torque of F 2 r Q is to control the formation of the frictional force of the winding body, that is, the automatic clutch. When the engine is running at a uniform speed or a small negative angular acceleration speed, the rotation moment of the inertia wheel tends to zero or negative value. At this time, the loose side locking torque at the end of the spring is a resistance torque formed by the rotation of the inertia wheel against a certain medium : M z F 2 r Q to ensure reliable clutch operation. When (starting in gear) acceleration at start or running at a uniform speed, the engine overcomes the moment of inertia and resistance moment of the inertia wheel to do work, that is: M e + M z F 2 r Q 〉 Μ τ , the spring is at Fp F 2 Under the action, the passive shaft body is locked, and a winding body friction force is generated, and the clutch is engaged. When (then shifting) the throttle, the engine speed suddenly drops, the torque reserve energy of the inertia wheel at high speed is released again, its momentum moment acts on the spring end, and at the same time the resistance moment of the inertia wheel relative to the medium is reduced. Weak, at this time: M e + M Z <M T , that is, the rotational moment (negative value) is greater than or equal to the resistance moment, and the sum is less than the spring torsion combined stress moment M τ , the spring looses under the action of the opposite torque, and the frictional force of the winding body Disappears and the clutch is switched off.
上述方案中的惯性轮是一交流发电机的转子, 离合器在均匀转 速下运转, 弹簧末端的锁紧力矩由转子相对定子转动的电磁转矩来 承担。  The inertia wheel in the above solution is the rotor of an alternator. The clutch runs at a uniform speed. The locking torque at the end of the spring is borne by the electromagnetic torque of the rotor relative to the stator.
上述方案中的惯性轮可以是一风机中的叶轮, 离合器在均匀转 速下运转, 弹簧末端的锁紧力矩由叶轮相对空气转动形成的阻力矩 来承担。  The inertia wheel in the above scheme may be an impeller in a fan, the clutch is operated at a uniform speed, and the locking torque at the end of the spring is borne by the resistance torque formed by the impeller rotating with respect to the air.
上述方案中的惯性轮也可以是闭式运转中的一打油轮, 离合器 在均匀转速下运转, 弹簧末端的锁紧力矩由打油轮相对油液转动形 成的阻力矩来承担。  The inertia wheel in the above scheme may also be a dozen oil tankers in closed operation. The clutch is operated at a uniform speed. The locking torque at the end of the spring is borne by the resistance torque caused by the oil tanker rotating against the oil.
上述方案中的惯性轮还可以是一镶有离心块的十字轮, 离合器 在均匀转速下运转, 弹簧末端的锁紧力矩由十字轮转动时, 离心块 相对制动彭转动产生摩擦形砀阻力来承担。  The inertia wheel in the above solution may also be a cross wheel with a centrifugal block. The clutch is operated at a uniform speed. When the locking torque at the end of the spring is rotated by the cross wheel, the centrifugal block generates frictional friction resistance against the rotation of the brake bear.
由于本方案采用常分离的结构, 配合应用惯性轮的特性, 通过 油门控制发动机转速变化, 由角加速度控制惯性轮的转动矩, 能即 时的控制绕性体摩擦力的形成, 也就控制了动力输出, 并用惯性轮 相对媒介转动所形成的阻力矩锁紧弹簧末端, 能保证离合器在均匀 转速下可靠的工作, 这就为弹簧离合器应用于发动机自动控制力输 出提供了技术依据, 它的应用将简化现代通用离合器的操纵系统, 减轻驾驶操作强度, 并且没有非金属摩损、 污染, 使用寿命相对要 长。 Because this solution adopts a normally separated structure, in conjunction with the application of the characteristics of the inertia wheel, the change of the engine speed is controlled by the throttle, and the rotational moment of the inertia wheel is controlled by the angular acceleration, which can control the formation of the frictional force of the winding body in real time, which also controls the power. Output, and lock the spring end with the resistance torque formed by the rotation of the inertia wheel relative to the medium, which can ensure that the clutch works reliably at a uniform speed. This provides a technical basis for the application of the spring clutch to the automatic control force output of the engine. Simplify the operating system of modern universal clutches, reduce driving operation intensity, and have no non-metal abrasion, pollution, and relatively long service life Long.
附图概述 Overview of the drawings
下面结合附图就本发明的四个实施方案做详细介绍。 图 1: 护套主视图。  The four embodiments of the present invention will be described in detail below with reference to the drawings. Figure 1: Front view of the sheath.
图 2: 过电流电路图。  Figure 2: Overcurrent circuit diagram.
图 3: 轴体主视图。  Figure 3: Front view of shaft body.
图 4: 弹簧主视图。  Figure 4: Front view of the spring.
图 5: 弹簧俯视图。  Figure 5: Top view of the spring.
图 6: 发电机转子主视图。  Figure 6: Front view of the generator rotor.
图 7: 发电机转子右视图。  Figure 7: Right side view of the generator rotor.
图 8: 绕组接线示意图。  Figure 8: Winding wiring diagram.
图 9: 定子冲片形式。  Figure 9: Stator blank form.
图 10: 转子冲片形式。  Figure 10: Rotor punching form.
图 11: 发电机转子控制方案离合器纵剖面图。  Figure 11: Longitudinal cross-section view of the generator rotor control scheme clutch.
图 12: 风机叶轮控制方案离合器纵剖面图。  Figure 12: Longitudinal sectional view of the clutch for the fan impeller control scheme.
图 13: 打油轮控制方案离合器纵剖面图。  Figure 13: Vertical section view of a clutch control scheme for a tanker.
图 14: 离心块制动控制方案离合器纵剖面图。  Figure 14: Longitudinal section view of a clutch with a centrifugal block brake control scheme.
图 15: 叶轮主视图。  Figure 15: Front view of the impeller.
图 16: 叶轮右视图。  Figure 16: Right view of the impeller.
图 17: 打油轮主视图。  Figure 17: Front view of the tanker.
图 18: 打油轮右视图。  Figure 18: Right side view of the tanker.
图 19: 十字轮主视图。 图 20: 十字轮左视图。 图 21 : 离心块主视图。 图 22: 离心块 A— A剖视图 图 23: 制动鼓主视图。 图 24: 板簧视图。 Figure 19: Front view of the cross wheel. Figure 20: Left view of the cross wheel. Figure 21: Front view of the centrifuge block. Figure 22: Sectional view of centrifugal block A—A Figure 23: Front view of the brake drum. Figure 24: View of the leaf spring.
 See
图 25: 棘轮轴体现图图。 图 26: 棘轮 ¾ 图 27: 棘爪视图。 图 28: 棘爪弹簧视图。 图 29: 棘爪在飞轮上的位置图。 图 30: 装有棘轮, 棘爪的风机叶轮控制方案离合器纵剖面图。 本发明的最佳实施方式 在四个实施方案中, 就共同部分先做说明, 在离合器纵剖面附图 11- 1 中: 标号 1 代表中空的护套, 2代表弹簧, 3代表轴体, 其 形式如附图 1、 4、 5、 3。 护套和弹簧首端用螺栓固定在动力动输入 端, 弹簧装在护套内, 该弹簧的外径与护套的内径相互配合, 弹簧 的末端于惯性轮键接, 弹簧内径于轴体之间留有间隙, 轴体装在弹 簧内部, 该轴体的一端与动力传动的输出端 (变速器) 相连接。 通过上述惯性轮的作用, 使离合器处于结合的状态, 于是间隙消 失, 弹簧件与轴体结合锁紧以传递动力。 运转过程的原理是: 通过 油门控制发动机转速变化, 应用惯性轮的转动惯量: I =mi2, 由惯 性轮相对弹簧首端角速度的变化所形成的转动矩: M G = 1 , 控 制弹簧末端的锁紧力矩: F2rQ, 实施对绕性体摩擦力的形成进行控 制, 即自动离合。 发动机在均匀转速或在较小负角加速度转速下运 转时, 惯性轮的转动矩趋向零或负值, 这时弹簧末端的松边锁紧力 矩由惯性轮相对某种媒质转动所形成的阻力矩: Mz F2r()来承担, 保 证离合器可靠运转。 当 (挂好档) 起步加速或在均匀转速下运转 时, 发动机克服惯性轮的惯性矩和阻力矩做功, 即是: Me + Mz F2r0) Μτ, 弹簧在 F2的作用下锁紧被动轴体, 并产生了绕性体摩 擦力, 离合器即结合。 当 (欲换档) 减油门, 发动机转速突然下降 时, 惯性轮在高转速下的转矩储备能量又释放出来, 其动量矩作用 在弹簧末端, 同时惯性轮相对媒介转动的阻力矩减弱, 这时: Mc + 2^了 即转动矩 (负值) 大于或等于阻力矩, 其总和小于弹簧扭转结 合应力力矩 MT, 弹簧在相反力矩作用下松脱, 绕性体摩擦力消失, 离合器切断。 Figure 25: Illustration of a ratchet shaft. Figure 26: Ratchet ¾ Figure 27: Pawl view. Figure 28: View of the pawl spring. Figure 29: Position of the pawl on the flywheel. Figure 30: Longitudinal sectional view of a clutch of a fan impeller control scheme with ratchet and pawl. In the four embodiments of the present invention, common parts will be described first. In the longitudinal section of the clutch, FIG. 11-1: Reference numeral 1 represents a hollow sheath, 2 represents a spring, and 3 represents a shaft body. The form is as shown in Figures 1, 4, 5, and 3. The sheath and the spring end are bolted to the power input end. The spring is installed in the sheath. The outer diameter of the spring and the inner diameter of the sheath are matched with each other. The end of the spring is keyed to the inertia wheel. The inner diameter of the spring is connected to the shaft. There is a gap between them, and the shaft body is installed inside the spring, and one end of the shaft body is connected to the output end (transmission) of the power transmission. By the action of the inertia wheel, the clutch is in a coupled state, so the gap disappears, and the spring member is locked with the shaft to transmit power. The principle of the running process is: control the change of engine speed through the throttle, apply the moment of inertia of the inertia wheel: I = mi 2 , the rotation moment formed by the change of the angular velocity of the inertia wheel relative to the spring end: M G = 1, control The locking torque at the end of the spring: F 2 r Q , which controls the formation of the frictional force of the winding body, that is, the automatic clutch. When the engine is running at a uniform speed or a small negative angular acceleration speed, the rotation moment of the inertia wheel tends to zero or negative value. At this time, the loose side locking torque at the end of the spring is a resistance torque formed by the rotation of the inertia wheel against a certain medium. : M z F 2 r () to ensure reliable clutch operation. When (in gear) acceleration at start or running at uniform speed, the engine overcomes the moment of inertia and resistance moment of the inertia wheel to perform work, that is: M e + M z F 2 r 0 ) M τ , the role of the spring in F 2 The passive shaft is locked down, and a winding body friction is generated, and the clutch is engaged. When the throttle is reduced and the engine speed suddenly drops, the torque reserve energy of the inertia wheel at high speed is released again, and its momentum moment acts on the end of the spring, and at the same time the resistance moment of the inertia wheel relative to the medium weakens. Time: Mc + 2 ^ means that the rotation moment (negative value) is greater than or equal to the resistance moment, and the sum is smaller than the spring torsional combined stress moment M T , the spring looses under the action of the opposite moment, the friction of the winding body disappears, and the clutch is cut off.
其中, 弹簧采用整体切割的双头形式, 其作用是降低摩擦副的 热应力, 延长其使用寿命, 并能均衡的传递转矩, 弹簧也可以采用 钢丝、 钢丝绳制做的其它形式。 惯性轮由轻型轴承支承在轴体后 端, 也可以支承在护套上, 可以縮短轴向距离。 弹簧截面边长: a = 2^(mm) , 切向拉力: 式中 Fb: 发动机扭矩 ( kg - mm) , r0: 弹簧中径半径 (mm)。 [ ]: 变载荷下材料许用抗拉 强度 (kg/mm2 ) 。 缠绕比: ^ « 18。 弹簧圈数由 ^= 。q 包角: α (rad)求出。 式中: = , μ: 0. 15, e : 2. 718 , F2 : 松边拉力在 2kg 以下为宜。 惯性轮质量: m = D (应减掉支承 承的外圈质 量) 。 i: 惯性轮质量中心半径 (m)。 惯性轮转动惯量: I=^kg-m2). 离合器瞬间结合、 分离时, 惯性轮的转动矩: = 2F2rD (Ν · m)。 2F2r0: 两个弹簧末端的锁紧力矩。 ^:角加速度 (rad) , 由最低运 转转速衰减至怠速转速确定。 Among them, the spring adopts a double-cut form of integral cutting, and its function is to reduce the thermal stress of the friction pair, prolong its service life, and to transmit torque in a balanced manner. The spring can also be made of other forms made of steel wire and wire rope. The inertia wheel is supported at the rear end of the shaft by a light bearing, or it can be supported on the sheath, which can shorten the axial distance. Spring section side length: a = 2 ^ (mm), tangential tensile force: where F b : engine torque (kg-mm), r 0 : spring mid-diameter radius (mm). []: Allowable tensile strength of material under variable load (kg / mm 2 ). Winding ratio: ^ «18. The number of spring turns is given by ^ =. q wrap angle: α (rad). Where: =, μ: 0. 15, e: 2. 718, F 2: loose side tension is appropriate 2kg or less. Mass of inertia wheel: m = D (the outer ring mass of the bearing should be deducted the amount) . i: radius of the center of mass of the inertia wheel (m). Moment of inertia of the inertia wheel: I = ^ kg-m 2 ). When the clutch is momentarily engaged and disengaged, the moment of inertia of the inertia wheel: = 2F 2 r D (N · m). 2F 2 r 0 : Locking torque at the ends of both springs. ^: Angular acceleration (rad), determined from the decay of the minimum operating speed to the idle speed.
弹簧于轴体之间间隙确定: 发动机怠速时, 由发动机旋转不均 匀系数 S引起的转动矩 MOT与惯性轮相对某种媒质转动的阻力矩 MZD 之和小于弹簧扭转结合 (角度为 β ) 时的应力力矩 MT, gp: McD + MZD〈MT。 Μ^-Ι ω^ δ (N.m) 。 式中 "D: 怠速时平均角速度 ^, δ=^^; omax、 c min: 发动机怠速时最大角速度、 最小角速度。 惯性轮在怠速时的阻力矩, 各实施方案中有介绍。 轴体半径: r2=¾ , 式中 r1 : 弹簧内半径(m) , n : 单个弹簧圈数, The clearance between the spring and the shaft is determined: When the engine is idling, the sum of the rotation moment M OT caused by the engine rotation unevenness coefficient S and the resistance moment M ZD of the inertia wheel relative to a certain medium is less than the spring torsion combination (the angle is β) The stress moment M T at time , gp : Mc D + M ZD <M T. M ^ -1 ω ^ δ (Nm). " D: average angular velocity at idle ^, δ = ^^; o max , c min : maximum angular velocity and minimum angular velocity of the engine at idle. The resistance moment of the inertia wheel at idle is described in each embodiment. The radius of the shaft body : R 2 = ¾, where r 1: spring inner radius (m), n : number of single spring turns,
57.„ <^<^(度)。 弹簧刚度: =3¾(NM/ ),式中 d: 弹 簧丝直径 (m), E: 弹簧材料的弹性模量 (Pa/m2) 。 57. „<^ <^ (Degrees). Spring stiffness: = 3¾ (NM /), where d: diameter of spring wire (m), E: elastic modulus of spring material (Pa / m 2 ).
发电机转子控制方案: 在离合器纵剖面附图 11中: 标号 4代表 定子; 5 代表转子。 本方案采用无碳刷感应子式交流发电机形式, 可以避免因维修碳刷影响离合器正常运转。 保证离合器在最低均匀 转速下运转的松边销紧力矩由发电机最低电磁功率保证, 其功率 为: =υ/=^^ (w)。 式中 F2r。: (Nmm) ; U: 输出电压 (V) ; I: 电流 (A) 。 在 nrain转速下, 发电机发出额定电压, 向外电路供电, 形成制动电矩, 为了保证离合器可靠工作, 电路中可设置过电流继 电器 J, 保障发电机在轻负载时经 (动断) 常闭点, 接通替代负载 R, 保证消耗电流, 如附图 2。 发电机每齿绕组感应电动势为: E=-^(V) 式中: N 匝数, ΔΦ: 磁通变化量, Wb: 4)=BS, B: 齿磁通密度, Wb/m2S: 截面积 (m2) , S = bL, b: 齿宽, L: 叠厚, △ t:每齿绕组感应时间, Δ = κ^),Μ为 2、 3、 4 ······。 发电机子形 式如附图 6、 7。 冲片形式如附图 10, 齿数为 5M。 定子形式如附图 9, 齿数为 10M— 2M (减掉励磁绕组所占齿位) 。 定子 8齿 8绕组为 一对磁极下的感应组, 其感应电势方向和两励磁绕组 WB 接线示意 图, 如附图 8, 根据电路电压和电流要求, 绕组可串可并, 电枢绕 组线径根据 cK.13^求出。 J: 电流密度 (A/mm2)'。 考虑线槽利用 率, 和降低内阻, 要采用双线并绕的形式。 定子内径: D=^ m) o 定子: 齿高 =轭高 =l. lb。 槽有效宽 = 0.65b。 定子外 径:
Figure imgf000010_0001
。 转子: 齿宽 = 1.3b。 齿高=(1.8〜2)1)。 气隙 磁势 FS =1.6Bs Ak (AN) 。 Βδ : 气隙磁通密度, (高斯 /cm2) 。 δ: 气隙 0.025〜0.03(cm), K: 1.5〜2.3。 励磁电流: ΙΒ =ψ。 匝 数: 线径计算同上。 离合器在怠速转速下, 定子绕组感应电动 势低, 远小于蓄电池端电压。 没有输出电流, 不构成电磁转矩。 弹 簧所受总力矩的构成中, 主要是由发动机旋转不均匀性形成的转动 矩 McD。 发电机定子固定在离合器外壳内, 不影响变速箱于壳体连 接。 发电机配用的电压调节器工作时不会造成对离合器的影响, 因 调节器能控制发电机在低转速下有较大的励磁电流, 使发电机提高 输出电压, 于本案不矛盾。 利用转子相对定子电磁, 或者磁电作用 控制松边锁紧力矩的方案较多, 不限于此。
Generator rotor control scheme: In Figure 11 of the clutch longitudinal section: Reference numeral 4 represents the stator; 5 represents the rotor. This solution adopts the form of a carbon brushless induction sub-alternator, which can avoid affecting the normal operation of the clutch due to maintenance of the carbon brush. The loose side pinning torque to ensure the clutch operates at the lowest uniform speed is guaranteed by the generator's lowest electromagnetic power, whose power is: = υ / = ^^ (w ). Where F 2 r. : (Nmm); U: output voltage (V); I: current (A). At n rain speed, the generator sends the rated voltage and supplies power to the circuit to form a braking torque. In order to ensure the reliable operation of the clutch, an over-current relay J can be set in the circuit to ensure that the generator will run (break) at light load. Normally closed point, the alternative load R is switched on to ensure current consumption, as shown in Figure 2. The induced electromotive force of each tooth winding of the generator is: E =-^ (V) where: N turns, ΔΦ: magnetic flux change, Wb: 4) = BS, B: tooth magnetic flux density, Wb / m 2 S: cross-sectional area (m 2 ), S = bL, b: tooth width, L: stack thickness, △ t: winding induction time per tooth, Δ = κ ^), M is 2, 3, 4 ······. The form of the generator is shown in Figures 6 and 7. The punching form is shown in Figure 10, and the number of teeth is 5M. The form of the stator is shown in Fig. 9 and the number of teeth is 10M-2M (minus the tooth position occupied by the field winding). The stator 8 teeth and 8 windings are an induction group under a pair of magnetic poles. The direction of the induced potential and the wiring diagram of the two field windings WB are shown in Figure 8. According to the circuit voltage and current requirements, the windings can be connected in series or in parallel. cK.13 ^ Find it. J: current density (A / mm 2 ) '. Considering the utilization of the trunking and reducing the internal resistance, a two-wire parallel winding form should be adopted. Stator inner diameter: D = ^ m) o Stator: Tooth height = yoke height = l. Lb. Slot effective width = 0.65b. Stator outer diameter:
Figure imgf000010_0001
. Rotor: Tooth width = 1.3b. Tooth height = (1.8 ~ 2) 1). Air gap magnetic potential FS = 1.6B s Ak (AN). Β δ: Air gap magnetic flux density, (Gauss / cm 2 ). δ: Air gap 0.025 ~ 0.03 (cm), K: 1.5 ~ 2.3. Excitation current: Ι Β = ψ. Number of turns: The calculation of wire diameter is the same as above. At the idle speed of the clutch, the stator winding induced electromotive force is low, which is much smaller than the battery terminal voltage. There is no output current and it does not constitute electromagnetic torque. In the composition of the total torque received by the spring, the rotational moment Mc D is mainly caused by the uneven rotation of the engine. The generator stator is fixed in the clutch housing and does not affect the connection of the gearbox to the housing. The voltage regulator used with the generator will not cause an impact on the clutch when it is working. Because the regulator can control the generator to have a large excitation current at low speeds, the generator will increase the output voltage, which is not inconsistent with this case. There are many schemes to control the loose side locking torque by using the rotor's electromagnetic relative to the stator or the magnetoelectric effect, and it is not limited to this.
风机叶轮控制方案: 在离合器纵剖面附图 12中: 标号 6代表叶 轮。 保证离合器在最低均匀转速下运转, 叶轮最小功率为: Fan impeller control scheme: In the clutch longitudinal section, FIG. 12: Reference numeral 6 represents the blade Round. To ensure that the clutch runs at the lowest uniform speed, the minimum power of the impeller is:
/ /
Figure imgf000011_0001
。 式 中 : h=^ (mmH20) 0 ψ: 0.8〜1.3。 η : 0·5〜0.7。 r: 空气密度
Figure imgf000011_0001
. In the formula: h = ^ (mm H 2 0) 0 ψ: 0.8 ~ 1.3. η: 0.5 to 0.7. r: air density
(kg/m3) o G : 9. 81 c 叶轮圈周速度: U=^ mlS、。 叶轮内径: D 3.63/I(w) , 叶轮外径:
Figure imgf000011_0002
。 K: 0.4〜0.9 (风压高取小 值) , 叶片: 高; ζ = ^。 间距; t=Z。 数量; N=手。 宽度: b =—— ¾=r^r(w)。 式中, 5 ·· 叶片厚 (m) 。 空气进入速度- Ci=警。 S: 空气入口截面积 (m2) 。 Φ系数 0.3〜0.5。 叶轮内径园 周速度:
Figure imgf000011_0003
叶轮采用前向叶片较好, 在低转速下相对其 它种叶片压头高, 排量大, 形成阻力矩相应要大些, 叶轮形式如附 图 15、 16。 离合器在怠速时, 弹簧所受总力矩中, 除转动矩 McB 外 , 还有 叶轮相对空气转动做功形成 的 阻力 矩 :
Figure imgf000011_0004
。 nD: 怠速转 速。
(kg / m 3 ) o G: 9. 81 c Impeller perimeter speed: U = ^ ml S. Impeller inner diameter: D 3. 63 / I (w) , impeller outer diameter:
Figure imgf000011_0002
. K: 0.4 ~ 0.9 (small value for high wind pressure), blade: high; ζ = ^. Spacing; t = Z. Quantity; N = hand. Width: b = —— ¾ = r ^ r (w). In the formula, 5 ·· blade thickness (m). Air entry speed- Ci = police. S: cross section of air inlet (m 2 ). Φ coefficient 0.3 ~ 0.5. Impeller inner diameter circle speed:
Figure imgf000011_0003
The impellers are better with forward blades. At low speeds, they have higher pressure heads and larger displacements than other types of blades. The drag torque is correspondingly larger. The form of the impeller is shown in Figures 15 and 16. When the clutch is idling, in addition to the rotating torque Mc B , the total torque received by the spring is also the resistance torque formed by the impeller performing work relative to air rotation:
Figure imgf000011_0004
. n D: idle speed.
打油轮控制方案: 在离合器纵剖面附图 13中: 标号 7代表打油 轮。 保证离合器在最低均匀转速下运转的松边锁紧力矩 Mz=2F2r kg. O。 打油轮的阻力矩 M p = Fr p。 即 Fr p = 2F2r0。 =2^o.x9.8j (N)...(i) = 。 = 字… (2)。 (1) 、 (2) 联立, r0 dt Fuel tanker control scheme: In the clutch longitudinal section in FIG. 13: Reference numeral 7 represents a fuel tanker. The loose side locking torque M z = 2F 2r kg. O to ensure the clutch operates at the lowest uniform speed. The resistance moment of the tanker M p = Fr p . That is, Fr p = 2F 2 r 0 . = 2 ^ o. X9 . 8j (N) ... (i) =. = Word ... (2). (1), (2) Simultaneous, r 0 dt
^=2 2ro x9.8 2 2r x9.8 β ) : 叶轮排出弓型体积质 p dt r p άω ^ = 2 2 r o x9.8 2 2 r x9.8 β ) : The impeller discharges the arch-shaped volume p dt r p άω
p rn ― p r n ―
p dt  p dt
量。 F: 打油轮在 1"2处的总作用力。 rp : 打油轮按 弧长浸入油液, 平均半径, rp=0.75r2(m)。 打油轮宽: 6 = ^ )。 浸油部份弓形面 积: S = 0.614r2 2。 r2 : 打油轮外径。 p: 油密度 (kg/m3 ) , r1 : 打油 轮内径。 丄 2。 : 油液由 ω。 增至 nmin 的角加速度。 the amount. F: total force of the oil tanker at 1 " 2. r p: oil tanker is immersed in oil according to the arc length, average radius, r p = 0.75r 2 (m). Oil tanker width: 6 = ^). Oil immersion Partial arcuate surface Product: S = 0.614r 2 2 . r 2: outer diameter of oil tanker. p: oil density (kg / m 3 ), r 1: inner diameter of oil tanker.丄 2. : Oil is made up of ω. Angular acceleration increased to n min .
η at dt =—{S) , 叶片数量 6〜10 个。 闭式运行中, μ值在 0.1〜0.13, η at dt = — {S), the number of blades is 6 ~ 10. In closed operation, μ value is between 0.1 ~ 0.13,
"min 打油轮形式如附图 17、 18。 The form of the "min" tanker is shown in Figures 17 and 18.
离合器在怠速状态时, 计算打油轮的转动矩 MQD中: 1 = mG\2+ O 2, 阻力矩: M1D = Fr = 0.345/7 br2 4 ^ (Nm) 0 -^ : 油液由 at at When the clutch is idling, calculate the rotation moment M QD of the fueler : 1 = m G \ 2 + O 2 , drag torque: M 1D = Fr = 0.345 / 7 br 2 4 ^ (Nm) 0- ^: oil By at at
ω。增至 ω。的角加速度。 ω. To ω. Angular acceleration.
利用离心力部件制动控制方案: 在离合器纵剖面附图 14中: 标 号 8代表离心块, 9代表制动鼓, 10代表板簧, 11代表十字轮。 最 低均匀转速下运转的松边锁紧力矩: Mz=2F2F。 kgm) 。 离心块切向 摩擦力: Ft = Q w。 切向力矩: M = Ftri=Q y ri, 即 SF^-Q y r^ The braking control scheme using a centrifugal force component: In the clutch longitudinal section, FIG. 14: Reference numeral 8 represents a centrifugal block, 9 represents a brake drum, 10 represents a leaf spring, and 11 represents a cross wheel. Loosening torque at the lowest uniform speed: M z = 2F 2 F. kgm). Centrifugal friction force: F t = Q w. Tangential moment: M = F tri = Q y ri , ie SF ^ -Q yr ^
Q = ^ 离心块摩擦面半径。 r2 : 离心块质量中心。 z: 离心块数 量 3〜4 个, 板簧压力: Ρ= 。 离心块由板簧压在十字轮空档间, 制动鼓固定在轴体后端面上。 十字轮, 离心块、 外径于制动鼓内径 间留有间隙 0.5mm左右。 十字轮、 离心块、 制动鼓、 板簧的形式如 附图 19〜24。 利用离心力部件制动, 形式不限于此, 也可由离心部 件控制轴向作用的片、 盘等。 离合器在怠速时, 弹簧所受总力矩 中, 只有转动矩 ΜQ = ^ radius of friction surface of centrifugal block. r 2: center of mass of the centrifuge block. z: the number of centrifugal blocks is 3 ~ 4, the pressure of the leaf spring is: P =. The centrifugal block is pressed between the cross gear neutral by a plate spring, and the brake drum is fixed on the rear surface of the shaft body. The cross wheel, the centrifugal block, and the outer diameter leave a gap of about 0.5mm between the inner diameter of the brake drum. The form of the cross wheel, the centrifugal block, the brake drum, and the leaf spring are as shown in FIGS. 19 to 24. The braking is performed by the centrifugal force component, and the form is not limited to this. The centrifugal component can also control the axially acting plate, disc, and the like. When the clutch is idling, only the rotation moment M ∞ is the total torque received by the spring.
本发明的自动离合器也具有超越离合器的性能, 如若适应动力 制动要求可以在轴体前端设置棘轮 12, 和在飞轮上设置棘爪 13, (见附图 30) 。 棘轮轴体、 棘爪、 棘爪弹簧及棘爪在飞轮上的位置 如附图 25〜29。 The automatic clutch of the present invention also has the performance of overrunning the clutch. If it meets the requirements of dynamic braking, a ratchet wheel 12 and a pawl 13 may be provided on the front end of the shaft body (see FIG. 30). Position of ratchet shaft, pawl, pawl spring and pawl on flywheel As shown in Figure 25 ~ 29.
棘轮模数: m 。 棘轮所受扭矩 (Nmm) ,
Figure imgf000013_0001
Ratchet modulus: m. Torque to ratchet (Nmm),
Figure imgf000013_0001
Z: 齿数 16〜30, Ψ: 齿型系数 1〜2, [o F]: 材料许用弯曲应力 (N/mm2) , 外径: D=mz, 齿宽: b=m¾r, 齿高 h=0.75m, 棘爪 长: 1=2P, 周节: P= itm, 棘爪危险断面: S= (1.8〜2m) 2Z: Number of teeth 16 ~ 30, Ψ: Tooth shape coefficient 1 ~ 2, [o F ] : Allowable bending stress of material (N / mm 2 ), outer diameter: D = mz, tooth width: b = m¾r, tooth height h = 0.75m, length of pawl: 1 = 2P, weekly section: P = it m , dangerous section of pawl: S = (1.8 ~ 2m) 2 .

Claims

权 利 要 求 Rights request
1、 一种用于发动机动力传动的自动离合器, 其特征在于, 包 括: 1. An automatic clutch for engine power transmission, comprising:
一中空的护套 (1 ) , 该护套的首端与动力传动的输入端固定连 接;  A hollow sheath (1), the head of the sheath is fixedly connected to the input end of the power transmission;
一装在护套 (1 ) 中的弹簧件 (2 ) , 该弹簧件的首端与动力传动 的输入端固定连接, 该弹簧件的外径与护套的内径相互配合;  A spring part (2) installed in the sheath (1), the head end of the spring part is fixedly connected with the input end of the power transmission, and the outer diameter of the spring part and the inner diameter of the sheath are matched with each other;
一惯性轮, 弹簧件 (2 ) 末端连接在该惯性轮上;  An inertia wheel, the end of the spring member (2) is connected to the inertia wheel;
一装在弹簧件 (2 ) 内部的轴体 (3 ) , 该轴体的一端与动力传动 的输出端相连接;  A shaft body (3) installed inside the spring member (2), one end of the shaft body is connected with the output end of the power transmission;
其中, 在离合器处于分离的状态下, 所述弹簧件 (2 ) 的内径与 轴体 (3) 外径之间留有径向间隙, 在离合器处于结合的状态下, 通 过上述惯性轮的作用, 使上述径向间隙消失, 弹簧件 (2 ) 与轴体 ( 3 ) 结合锁紧以传递动力。  Wherein, when the clutch is in a disengaged state, a radial gap is left between the inner diameter of the spring member (2) and the outer diameter of the shaft body (3). When the clutch is in a coupled state, through the action of the inertia wheel, The radial clearance is eliminated, and the spring member (2) and the shaft body (3) are locked together to transmit power.
2、 由权利要求 1所述自动离合器, 其特征在于: 惯性轮是一相 对定子 (4) 的电磁感应作用的转子 (5) 。  2. The automatic clutch according to claim 1, characterized in that: the inertia wheel is a rotor (5) which is electromagnetically opposed to the stator (4).
3、 由权利要求 1所述自动离合器, 其特征在于: 惯性轮是一相 对空气转动的叶轮 (6) 。  3. The automatic clutch according to claim 1, characterized in that: the inertia wheel is an impeller (6) rotating relative to air.
4、 由权利要求 1所述自动离合器, 其特征在于: 惯性轮是一相 对油液转动的泵轮 (7) 。  4. The automatic clutch according to claim 1, characterized in that: the inertia wheel is a pump wheel (7) rotating relative to oil.
5、 由权利要求 1所述自动离合器, 其特征在于: 惯性轮是一装 有离心部件 (8) 的摩擦轮。  5. The automatic clutch according to claim 1, wherein the inertia wheel is a friction wheel equipped with a centrifugal member (8).
PCT/CN2000/000181 1999-07-13 2000-06-28 Automatic clutch WO2001004506A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU56703/00A AU5670300A (en) 1999-07-13 2000-06-28 Automatic clutch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN99109763.7 1999-07-13
CN99109763A CN1107819C (en) 1999-07-13 1999-07-13 Automatic clutch

Publications (1)

Publication Number Publication Date
WO2001004506A1 true WO2001004506A1 (en) 2001-01-18

Family

ID=5274138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000181 WO2001004506A1 (en) 1999-07-13 2000-06-28 Automatic clutch

Country Status (3)

Country Link
CN (1) CN1107819C (en)
AU (1) AU5670300A (en)
WO (1) WO2001004506A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2394070B1 (en) * 2009-02-03 2014-10-01 Robert Bosch GmbH Load torque lock and apparatus having load torque lock
FR3016860B1 (en) * 2014-01-27 2018-03-02 Safran Electronics & Defense ROTATION BLOCKING DEVICE WITH SIMPLIFIED STRUCTURE AND ACTUATOR INCLUDING SUCH A DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0012815A1 (en) * 1978-12-13 1980-07-09 Ford-Werke Aktiengesellschaft Acceleration responsive clutch
EP0153079A1 (en) * 1984-02-13 1985-08-28 Pacific Scientific Company Capstan spring centrifugal clutch
US4673073A (en) * 1984-07-05 1987-06-16 Warner Electric Brake & Clutch Company Centrifugal spring clutch

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2066091U (en) * 1989-02-28 1990-11-21 王东来 Gas spring intermittent automatic clutch
CN1021121C (en) * 1991-08-05 1993-06-09 北京海淀龙苑化工机电技术公司 Thermal sensitive automatic clutch of automobile fan

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0012815A1 (en) * 1978-12-13 1980-07-09 Ford-Werke Aktiengesellschaft Acceleration responsive clutch
EP0153079A1 (en) * 1984-02-13 1985-08-28 Pacific Scientific Company Capstan spring centrifugal clutch
US4673073A (en) * 1984-07-05 1987-06-16 Warner Electric Brake & Clutch Company Centrifugal spring clutch

Also Published As

Publication number Publication date
CN1107819C (en) 2003-05-07
AU5670300A (en) 2001-01-30
CN1259628A (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US9079485B2 (en) Hybrid electric vehicle
US5931271A (en) Hybrid drive with one-way drive connections
JP3855249B2 (en) Power transmission device for vehicle
JP4491490B2 (en) Supercharger for vehicle
US9127589B2 (en) Turbo compound transmission and a method for controlling a turbo compound transmission
SE1250710A1 (en) Process for controlling a vehicle&#39;s drive system, drive system, computer program, computer software product and vehicle
US20210001702A1 (en) Hybrid vehicle counter-rotating motor adapted driveline and retro-fit system
US6936933B2 (en) Hybrid propulsion system for a motor vehicle
WO2014003661A1 (en) Method for starting a combustion engine in a hybrid vehicle
WO2013091669A1 (en) A turbo compound transmission and a method for controlling a turbo compound transmission
JP4669172B2 (en) Variable mass flywheel
WO2001004506A1 (en) Automatic clutch
JP6180454B2 (en) Starting system for vehicle engine
JP3559889B2 (en) Hybrid vehicle control device
JP7417401B2 (en) drive system
CN210404990U (en) Kinetic energy recovery device of electric motorcycle
JP2012092708A (en) Electrically-assisted turbocharger
CN214590984U (en) Motor with brake
JP2618282B2 (en) Control device for electric braking device
JP5886498B2 (en) In-vehicle power transmission device
JPH11332014A (en) Driver for vehicle
EP1712809B1 (en) Unidirectional transmission for an alternator assembly
JP2002327678A (en) Wind power generation device
SU912492A1 (en) Circular-saw machine sawing mechanism
JPH11164517A (en) Alternator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase