WO2001002943A1 - Acoustic touch sensor - Google Patents

Acoustic touch sensor Download PDF

Info

Publication number
WO2001002943A1
WO2001002943A1 PCT/JP2000/004294 JP0004294W WO0102943A1 WO 2001002943 A1 WO2001002943 A1 WO 2001002943A1 JP 0004294 W JP0004294 W JP 0004294W WO 0102943 A1 WO0102943 A1 WO 0102943A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
acoustic wave
acoustic
transducer
substrate
Prior art date
Application number
PCT/JP2000/004294
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeki Kanbara
Hiroshi Kaneda
Original Assignee
Touch Panel Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Touch Panel Systems Corporation filed Critical Touch Panel Systems Corporation
Priority to AU57058/00A priority Critical patent/AU5705800A/en
Publication of WO2001002943A1 publication Critical patent/WO2001002943A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0436Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which generating transducers and detecting transducers are attached to a single acoustic waves transmission substrate

Definitions

  • the present invention relates to an acoustic contact detection device for detecting a contact position acoustically, such as an ultrasonic touch panel, or a touch coordinate input device, and a substrate therefor.
  • a contact position acoustically such as an ultrasonic touch panel, or a touch coordinate input device, and a substrate therefor.
  • the evening touch panel is widely used as an input device for an interactive convenience viewing system, such as a kiosk information terminal and an order input method for restaurants.
  • a resistive touch panel As the main touch panel, a resistive touch panel, a capacitive touch panel, and an acoustic touch panel are known.
  • Acoustic touch panels, especially ultrasonic touch panels, are particularly advantageous when very tough touch-sensitive surfaces and improved transmission of display images are required.
  • transducers especially ⁇ ⁇ ⁇ ⁇ edge transducers
  • a transducer is one or a series of physical elements that convert energy from one form to another, including conversion between acoustic wave modes and between electrical energy and acoustic energy. Contains element.
  • a typical piezoelectric transducer is formed of a prismatic piezoelectric vibrator with a conductor on the surface, and the elements on the substrate surface
  • a metal electrode that comes into contact with the substrate (eg, a wedge material) or by arranging the piezoelectric element surface on the substrate surface.
  • the edge transducer uses a phenomenon in which a sound wave is refracted when a sound wave is obliquely incident on a boundary surface between different media.
  • a typical edge transducer is composed of a piezoelectric vibrator attached to one side and a plastic wedge whose hypotenuse is bonded to a substrate (such as glass). Coupling with bulk waves through wedge material. Bulk waves are refracted at a critical angle, or “wedge angle”, and propagate in the plane direction of the glass, and surface waves are refracted at the critical angle and propagate as bulk waves.
  • edge transducers can be used to both transmit and receive surface waves, such as Rayleigh and Love waves, and plate waves, such as Lamb waves.
  • a direct coupling of a piezoelectric vibrator or an edge transducer generally directly excites a sound wave having a large amount of energy on the substrate surface.
  • Edge transducers are most naturally used for coupling with plate waves. Some work has been done to develop edge transducers that couple to Rayleigh waves. Such edge transducers are small, but the exposed piezoelectric transducers remain vulnerable.
  • the part where the edge-type transducer is located on the surface of the sunset panel is necessarily higher than the surface of the nonel.
  • the display is formed of a panel such as a general cathode ray tube, there is a space between the curved panel and the outer frame surrounding the curved panel. I do.
  • the display is formed of a flat panel such as a liquid crystal display or a plasma display, there is no gap between the panel and the outer frame around the surface of the panel covered with the outer frame. No space to place page transducer. Therefore, the use of an edge transducer makes it difficult to adapt the ultrasonic touch panel to a flat panel.
  • the applicable display and outer frame structure are greatly restricted.
  • an edge transformer The use of a transducer can complicate mechanical design and limit options.
  • U.S. patent application Ser. No. 08 / 610,260 states that the edge transducer is mounted on the front slope adjacent to the sunset area and the edge transducer is lower than the front height of the panel substrate. It has been proposed. However, such a design not only causes acoustic loss, but also necessitates an increase in the edge width of the panel substrate, contrary to what is required in a liquid crystal display (LCD) design.
  • LCD liquid crystal display
  • edge transducers are not suitable for liquid crystal displays (LCDs).
  • Japanese Patent Laid-Open Publication No. Hei 10-244443 discloses a grating transducer (diffractive acoustic wave transducer) in order to solve the above problems.
  • the distance (pitch) between the gratings of the diffraction grating constituting the diffractive acoustic wave transducer is about 0.01 to: L0 mm
  • the grating width is about 0.01 to: I0 mm
  • the height of the grating is It is stated that the glass frit can be selected from a range of 5 mm or less (preferably 0.1 to l mm).
  • Example 4 glass frit (density of about 5.6 g / cm It is also disclosed that a grating transducer having a grating height of 4 ⁇ and a grating interval of 0.89 mm was formed using 3 ). In addition, Takeuchi reports that the thickness and density of the grating and the bond length are important for obtaining a large perturbation.
  • This grading transducer attaches a piezoelectric vibrator to the back surface of the glass substrate or to a third surface provided between the end surface and the back surface to excite bulk waves inside the glass substrate, and this bulk wave is applied to the front surface.
  • the mode conversion by the diffraction grating provided excites a wave that concentrates energy on the surface represented by surface acoustic waves.
  • this transducer does not require a ⁇ edge, surface irregularities can be reduced to almost zero. Also, since the piezoelectric vibrator can be installed on the back side, the cable wiring can also be arranged on the back side of the board, leading to space saving.
  • a grating transducer diffractive acoustic wave transducer
  • the mode conversion of the acoustic wave cannot be performed reliably due to the perturbation period. In particular, mode conversion cannot be performed with high efficiency even if the ratio between the lattice wire diameter and the distance between lines is set to a ratio of 1: 1 which is considered to be theoretically the highest in mode conversion.
  • an object of the present invention is to provide an acoustic contact detection device (or Yutzuchi-type coordinate input device) that can convert an acoustic wave mode with high efficiency by a diffractive acoustic wave transducer, and a substrate therefor.
  • Another object of the present invention is to provide an acoustic contact detection device (or an evening switch) capable of obtaining a high signal strength by performing mode conversion at a practically high level by a diffractive acoustic wave transducer and detecting a contact position with high accuracy. And a substrate therefor. Disclosure of the invention
  • the profile (shape) of the diffraction grating formed by the printing method is not a rectangular parallelepiped, but necessarily a semi-cylindrical shape.
  • the first term of the Fourier transform which is most important for diffraction scattering, is reduced, and even if the thickness of the grating is increased to 40 ⁇ or more, the productivity is reduced and the mode They found that the conversion efficiency did not improve, and completed the present invention.
  • the acoustic contact detection device of the present invention comprises: (a) a substrate having a surface; (b) a first wave as a bulk wave propagating through the substrate along an axis intersecting the surface.
  • An acoustic wave transducer for: (c) having a mode of a converted wave having more energy at the surface and propagating along an axis parallel to the surface
  • a second acoustic wave transducer for coupling the second wave with the first wave, and (d) means for detecting a perturbation in energy of the second wave.
  • the diffractive acoustic wave transducer has at least one of the following characteristics (i) to (iv).
  • the present invention further includes a substrate for an acoustic detection device, the substrate comprising: (a) an acoustic wave transducer coupled to a bulk wave having a propagation axis crossing the substrate surface in the substrate. (B) a diffractive acoustic wave transducer formed in the vicinity of the surface for converting acoustic wave energy of a bulk wave into a wave propagating along an axis parallel to the surface; And (c) means for detecting the acoustic energy converted with respect to the location of the perturbation.
  • the diffractive acoustic wave transducer since the diffractive acoustic wave transducer has specific characteristics, the mode conversion between the bulk wave and the acoustic wave (surface wave or plate wave) can be performed with high efficiency. Therefore, even if a diffractive acoustic wave transducer is used, the contact position can be detected with high signal strength.
  • FIG. 1 is a schematic perspective view showing an example of the device of the present invention.
  • FIG. 2 is a schematic sectional view of the apparatus shown in FIG.
  • FIG. 3 is a graph showing the results in Example 1.
  • FIG. 4 is a graph showing the results of Example 2.
  • FIG. 5 is a graph showing the results of Example 3.
  • FIG. 6 is a graph showing the results of Example 4. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic perspective view showing an example of the apparatus of the present invention
  • FIG. 2 is a schematic sectional view of the apparatus shown in FIG.
  • the device capable of acoustically detecting a contact position includes a substrate 1 as a propagation medium having a surface through which an acoustic wave (surface wave or plate wave) can propagate, and a bottom surface of the substrate ( Or acoustic transducers 3 and 4 which are mounted on the rear surface) and are composed of piezoelectric vibrators.
  • the surface of the substrate 1 has a display area (image display area) 2 which is symmetrical with respect to the X-axis and Y-axis directions.
  • the acoustic wave transducers 3 and 4 are not formed with a edge-type transducer but are formed of plate-shaped piezoelectric vibrators in order to reduce the thickness and weight of the device.
  • Acoustic wave transducers 3 and 4 consist of transmitting transducers 3a and 3b, which are attached to the X-axis and Y-axis starting regions (part of the bottom corners of the X-axis and Y-axis in this example) on the back of substrate 1; It consists of a pair of receiving transducers 4a and 4b attached to the X-axis and Y-axis end areas (part of the bottom corners of the X-axis and Y-axis in this example) on the back of the board.
  • the transmitting transducers 3a and 3b are Function as bulk wave generating means for propagating a bulk wave (which may be a longitudinal mode or a transverse mode) in a direction crossing the surface (front surface) of the substrate, and the receiving transducers 4 a and 4 b It functions as bulk wave receiving means for receiving a bulk wave propagating in the substrate in a direction intersecting from the surface (front surface) of the substrate 1. That is, the acoustic wave transducers 3 and 4 transmit a bulk wave (first wave) propagating through the substrate 1 along an axis crossing the surface of the substrate 1, in other words, a propagation crossing the surface. It is coupled to a bulk wave having an axis.
  • a bulk wave (first wave) is emitted through the substrate 1 toward a mode conversion portion (perturbation region or oscillation region) on the surface (front surface).
  • the bulk wave arriving at the mode conversion part is converted into an acoustic wave (differential acoustic mode coupler) 5a, 5b provided at the mode conversion part.
  • acoustic wave Differential acoustic mode coupler
  • Surface waves or plate waves especially surface acoustic waves (second waves). This surface acoustic wave has a mode of a converted wave having a large amount of energy on the substrate surface.
  • the diffractive acoustic wave transducers (acoustic mode couplers) 5 a and 5 b function as acoustic wave generating means, and are arranged along the bulk wave (first wave) and an axis parallel to the surface of the substrate 1.
  • the surface wave (second wave) propagating near the substrate surface is coupled, and the mode of the acoustic wave can be converted into a bulk wave and a surface wave.
  • the diffractive acoustic wave transducers 5a and 5b are formed as diffraction gratings (gratings) formed of linear gratings by a screen printing method. It is formed in a curved or round shape.
  • the acoustic wave transducer has at least one of the following characteristics (i) to (iv) in order to increase the signal strength (output voltage) by improving the mode conversion efficiency of the acoustic wave transducer. I have.
  • the thickness (height) h of the grating constituting the diffractive acoustic wave transducer is 15 To 39 ⁇ (preferably 20 to 38 ⁇ , more preferably 25 to 37 ⁇ , particularly about 30 to 37 ⁇ ), and usually about 27 to 36 ⁇ (eg, 30 to 35 ⁇ ). If the grating thickness h is small, the mode conversion efficiency decreases, and if it is too large, the mode conversion efficiency does not improve much, possibly because of the cross-sectional shape of the lattice.
  • the ratio W / P of the diameter W of the grating constituting the diffractive acoustic wave transducer to the pitch P is 0.4 to 0.95 (preferably 0.6 to 0.95, more preferably 0.7 to 0.95). 0.95, especially about 0.75 to 0.95). If the value W / P is too small, the mode conversion efficiency decreases, and if it is too large, the grating cannot be formed accurately.
  • the value h 2 L (unit ⁇ 2 -mm) is 750 or more (for example, 760-5000, preferably 1500-4000, more preferably 2000-4000, especially about 2200-4000) and usually about 2500-4000. If the value h 2 L is too small, the mode conversion efficiency decreases, and if it is too large, the mode conversion efficiency does not improve much.
  • the diffractive acoustic wave transducer only needs to have at least one of the above characteristics (i) to (iv), and may have a plurality of characteristics. For example, a combination of two characteristics [combination of (i) and (ii), combination of (i) and (iii), combination of (i) and (iv), and (ii) and ( i ii), the combination of (ii) and (iv), etc.], 3 Combinations of the three properties [for example, the combination of (i), (ii), and (iii), the combination of (i), (ii), and (iv), (ii), (iii), and (iv) And a combination of the four characteristics.
  • X-axis reflection means 7 a and 7 b extending in the X-axis direction are provided on opposite sides of the first side of the surface of the substrate 1, respectively.
  • Y-axis reflecting means 8 a and 8 b extending in the Y-axis direction are provided to face each other.
  • Each reflection means consists of a reflection array consisting of an array group inclined at an angle of about 45 ° to the traveling direction of the surface acoustic wave, and a part of the surface acoustic wave passes through the array of the reflection array. It is possible.
  • the surface acoustic waves (surface waves or plate waves, particularly, surface acoustic waves) converted by the diffractive acoustic wave transducers 5 a and 5 b are applied to the first X-axis reflecting means (reflection array) on the surface of the substrate 1. 7) and the first Y-axis reflecting means
  • the light is reflected in the Y-axis and X-axis directions by the reflection array 8a, and propagates throughout the display area 2 on the surface of the substrate 1.
  • the surface acoustic waves reflected in the Y-axis and X-axis directions are respectively
  • the diffractive acoustic wave transducers 6a and 6b are configured similarly to the diffractive acoustic wave transducers 5a and 5b, and convert a surface acoustic wave into a bulk wave.
  • the converted bulk waves are received by acoustic wave transducers (X-axis and Y-axis receiving transducers) 4a and 4b each composed of a piezoelectric vibrator as described above, and are converted into electric signals.
  • the perturbation of energy of the surface acoustic wave (second wave) on the substrate surface is based on the signals from the receiving transducers 4a and 4b, which are detected by the detection means of the controller. It can be done by processing and analyzing or analyzing.
  • the diffractive acoustic wave transducer is formed by a specific diffraction grating, the efficiency of the bulk wave and the surface acoustic wave can be increased. Mode conversion can be done well. As a result, the detection intensity can be increased, and the Yuttsu position can be detected with high accuracy. Further, since the plate-like acoustic wave transducer is arranged on the back surface of the substrate and the diffraction grating is arranged on the surface of the substrate, the thickness and weight of the device can be greatly reduced. Therefore, it can be suitably applied to a liquid crystal display (LCD), a plasma display and the like.
  • LCD liquid crystal display
  • acoustic wave transducers For details of the substrate material and structure and shape of the propagation medium, acoustic wave transducers, diffractive acoustic wave transducers (acoustic wave mode couplers), reflecting means, and means for detecting perturbations, see Japanese Patent Laid-Open No. — Reference can be made to Japanese Patent Publication No. 2404443.
  • acoustic waves include ultrasonic surface acoustic waves such as Rayleigh waves, Lamb waves, Love waves, zero-order transverse waves (ZOHPS) whose vibration direction is horizontally deflected, and vibration waves that are deflected horizontally.
  • ZOHPS zero-order transverse waves
  • HHPS High-order transverse waves
  • the propagation medium can be formed of glass, ceramics, aluminum, polymer, or the like, may be a heterogeneous laminate, and the shape of the propagation medium is not particularly limited.
  • the propagation medium may be a flat panel substrate such as a liquid crystal display or a plasma display, or may be a curved panel.
  • the acoustic wave transducer can be composed of a sound emitting element such as a piezoelectric vibrator / piezoelectric transducer, and a piezoelectric resonator composed of a piezoelectric substrate and various electrode structures can be used.
  • a plate-shaped piezoelectric vibrator in order to suppress an increase in thickness, it is advantageous to use a plate-shaped piezoelectric vibrator.
  • the number of acoustic wave transducers may be reduced by employing a structure in which surface acoustic waves are reflected on the opposite side of the reflection array and using a folded acoustic wave path.
  • the acoustic wave transducer can be mounted in a proper position on the propagation medium, for example, as shown in the figure, the bottom or bottom wall of the substrate, the side or side wall of the substrate, the inclined surface formed on the lower side or side wall of the substrate, etc. Can be formed. Even in such a case, the diffractive acoustic wave transducer can efficiently and efficiently convert the acoustic wave into a bulk wave and a surface acoustic wave.
  • Diffractive acoustic wave transducers can be composed of grating transducers, a series of scattering centers and scattering elements, linear elements or gratings formed at intervals, and grooved scattering elements.
  • the shape may be a dot shape, a linear shape, or the like, or an arc shape capable of converging or focusing a surface acoustic wave.
  • Mode conversion means for mutually converting a bulk wave and a surface acoustic wave into each other and diffracting the wave in a predetermined direction is usually composed of a plurality of linearly extending linearly extending in a direction orthogonal to the traveling direction of the bulk wave. It consists of a grid (grid grid).
  • the width W of the grating may be selected, for example, from a range of about 0.2-0.52 mm, usually between 0.4-0.52 mm, preferably about 0.5-0.52 mm. It may be about 42 to 0.5 mm, more preferably about 0.43 to 0.49 mm.
  • the bond length L can be selected according to the density and the number of lattices, and may be, for example, about 2 to 5 mm, preferably about 2.5 to 4.5 mm, and more preferably about 3 to 4 mm.
  • the density p of the grating is advantageously larger in order of the mode conversion, for example, 4 to be selected from Og / cm 3 range of about, typically, 5 ⁇ 8g / cm 3 order.
  • the lattice can be formed of various materials, and usually can be formed of glass, ceramic, or the like.
  • the reflection array constituting the reflection means may be formed as an aggregate (reflection grating) of reflection array elements formed as projections or projections using glass or the like. It may be an assembly of reflective array elements formed as grooves.
  • the reflection array elements are usually formed parallel to each other. To provide even acoustic energy to the receiving transducer, the spacing between the reflective array elements may be reduced as one moves away from the oscillating transducer, and the reflectivity increases as one moves away from the oscillating transducer. Is also good. Since the contact detection device (Yuuchi coordinate input device) is provided at the front of the display device, the reflection array is usually provided in the detection area (or display area) in order to avoid seeing the reflection array. It is placed around the substrate outside the box, and is covered and protected by the outer frame.
  • the diffractive acoustic wave transducer / reflection array is formed by printing a predetermined material (especially a paste-like material) in a predetermined pattern using a printing technique (such as screen printing), drying, and firing. be able to.
  • the device (or unit) and substrate of the present invention are thin and lightweight, they can be suitably used as a flat panel or a low curvature panel of a thin display device such as a liquid crystal display device and a plasma display device.
  • the mode of the acoustic wave can be mutually converted to the surface acoustic wave and the bulk wave with high efficiency because the diffraction acoustic wave transducer having the specific characteristics is provided.
  • the mode can be converted to a practically high level by the diffractive acoustic wave transducer to obtain a high signal strength, and the contact position can be detected with high accuracy.
  • the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
  • a diffractive acoustic wave transducer (grating length) was applied to the mode conversion site on the surface of the soda lime glass substrate using glass paste as ink. 7 mm, grid width 0.45 mm, number of grids 6) were printed, and a reflective array was printed using a glass frit paste on the reflective area on the surface of the glass substrate and dried. The angle of the reflection array element is 45 ° with respect to the X axis and the Y axis.
  • the printed pattern was fired together with the glass substrate at a firing temperature of 485 ° C. to 490 ° C. for a top keeping time of 10 minutes to obtain a glass substrate. Further, a glass substrate was produced in the same manner as above, except that the height of the grating of the diffractive acoustic wave transducer was changed.
  • a plate-shaped piezoelectric vibrator was bonded to the obtained glass substrate on the opposite side of the diffractive acoustic wave transducer using an ultraviolet curable adhesive, thereby producing a sample having the structure shown in FIG.
  • the piezoelectric vibrator is electrically connected to a controller of a sunset panel (manufactured by Evening Panel Systems Co., Ltd.), and a pulse voltage of 15 V to an oscillation transducer and a Rayleigh wave (frequency of 5.53 MHz) are supplied. )
  • a controller of a sunset panel manufactured by Evening Panel Systems Co., Ltd.
  • a pulse voltage of 15 V to an oscillation transducer and a Rayleigh wave (frequency of 5.53 MHz) are supplied.
  • the change of the received signal strength depending on the thickness h of the diffraction grating was measured.
  • the results are shown in Figure 3.
  • the dotted line in Fig. 3 represents the minimum signal strength level to be driven. As is evident from Fig. 3, it is difficult to obtain a high signal intensity when the grating thickness h is less than 15 microns.
  • a glass substrate was produced in the same manner as in Example 1, except that the ratio W / P between the wire diameter W of the grating constituting the diffractive acoustic wave transducer and the distance between lines (pitch) P was changed. As a result, the result shown in FIG. 5 was obtained.

Abstract

An acoustic transducer for practically efficient acoustic mode conversion is used to generate a high-intensity signal in a touch-sensitive coordinate input device. A device according to the invention comprises acoustic transducers (piezoelectric oscillators) (3a, 4a) for generating a bulk wave (first wave) toward the surface (2) of a substrate (1), acoustic gratings (diffraction gratings) (5a-6b) for conversion between bulk wave and surface acoustic wave (second wave), and means for detecting the disturbance of the second wave on the surface of the substrate. The acoustic gratings (5a-6b) have the following characteristics: (i) grating thickness h=15 to 39 νm, (ii) W/P=0.4 to 0.95, where W is grating size and P is grating pitch, (iii) h2L⊃750 νm2-mm, where L is the coupling length of acoustic grating, (vi) ςh2L⊃3.5x10?6 νm2¿-mm-kg/m3, where ς is grating density.

Description

音響的接触検出装置 技術分野  Acoustic contact detection device
本発明は、 超音波方式夕ツチパネルなどの音響的に接触位置を検出するための 音響的接触検出装置又は夕ツチ式座標入力装置、 そのための基板に関する。 宵景技術  TECHNICAL FIELD The present invention relates to an acoustic contact detection device for detecting a contact position acoustically, such as an ultrasonic touch panel, or a touch coordinate input device, and a substrate therefor. Night view technology
夕ツチパネルは対話型コンビュ一夕システムのための入力装置として、 キォス ク情報端末やレストランのオーダー入力方式などに広く利用されている。 主要な 夕ツチパネルとしては、 抵抗膜方式夕ツチパネル、 静電容量方式夕ツチパネル、 および音響方式夕ツチパネルが知られている。 音響方式夕ツチパネル、 特に超音 波夕ツチパネルは、 非常に丈夫な接触感知表面や、 ディスプレイ画像の透過度の 向上が要求されるとき、 特に有利である。  The evening touch panel is widely used as an input device for an interactive convenience viewing system, such as a kiosk information terminal and an order input method for restaurants. As the main touch panel, a resistive touch panel, a capacitive touch panel, and an acoustic touch panel are known. Acoustic touch panels, especially ultrasonic touch panels, are particularly advantageous when very tough touch-sensitive surfaces and improved transmission of display images are required.
音響方式夕ツチパネルには、 種々のトランスデューサ (特にゥエッジトランス デューサ) が使用され、 圧電振動子と夕ツチ基板との間を直接結合している。 ト ランスデューザとは、 或る形態から他の形態へとエネルギーを変換する 1又は一 連の物理的要素であり、 音響波のモード間の変換や電気エネルギーと音響エネル ギ一との間の変換も含むエレメントである。 典型的な圧電方式トランスデューサ は、 表面に導電体を有する角柱形圧電振動子で形成されており、 基板表面の素子 Various types of transducers (especially ト ラ ン ス edge transducers) are used in acoustic type touch panels, which directly couple the piezoelectric vibrator and the touch panel. A transducer is one or a series of physical elements that convert energy from one form to another, including conversion between acoustic wave modes and between electrical energy and acoustic energy. Contains element. A typical piezoelectric transducer is formed of a prismatic piezoelectric vibrator with a conductor on the surface, and the elements on the substrate surface
(例えば、 くさび材料) と接触する金属電極や、 基板表面への圧電素子表面の配 置により、 音響的に基板表面と結合している。 It is acoustically coupled to the substrate surface by a metal electrode that comes into contact with the substrate (eg, a wedge material) or by arranging the piezoelectric element surface on the substrate surface.
前記ゥエッジトランスデューサは、 異なる媒体の境界面に音波が斜めに入射し たとき、 音波が屈折する現象を利用しており、 ゥエッジトランスデューサは表面  The edge transducer uses a phenomenon in which a sound wave is refracted when a sound wave is obliquely incident on a boundary surface between different media.
1 波や板波を基板に励起する。 典型的なゥヱッジトランスデューサは、 1つの側面 に貼着された圧電振動子と、 その斜辺が基板 (例えばガラスなど) と接着したプ ラスチックのくさびとで構成されており、 圧電振動子はくさび材料を介してバル ク波と結合する。 バルク波は、 臨界角すなわち 「くさびの角度」で屈折してガラ スの平面方向に伝播し、 表面波は、 前記臨界角で屈折してバルク波として伝播す る。 従って、 ゥエッジトランスデューサは、 レーリー (Rayleigh) 波やラブ (Lo ve) 波などの表面波、 およびラム (Lamb) 波などの板波の送信と受信と両方に使 用できる。 1 Excites waves and plate waves on the substrate. A typical edge transducer is composed of a piezoelectric vibrator attached to one side and a plastic wedge whose hypotenuse is bonded to a substrate (such as glass). Coupling with bulk waves through wedge material. Bulk waves are refracted at a critical angle, or “wedge angle”, and propagate in the plane direction of the glass, and surface waves are refracted at the critical angle and propagate as bulk waves. Thus, edge transducers can be used to both transmit and receive surface waves, such as Rayleigh and Love waves, and plate waves, such as Lamb waves.
これに対して、 圧電振動子の直接結合やエッジトランスデューサは、 一般的に は、 基板表面に多くのエネルギーを有する音波を直接励起する。 エッジトランス デューサは、 板波との結合のために、 最も自然に使われている。 レーリー波と結 合するエッジトランスデューサを開発するため、 いくつかの検討が行われてきた。 このようなエッジトランスデューサは小型であるが、 露呈した圧電トランスデュ —サは無防備なままである。  In contrast, a direct coupling of a piezoelectric vibrator or an edge transducer generally directly excites a sound wave having a large amount of energy on the substrate surface. Edge transducers are most naturally used for coupling with plate waves. Some work has been done to develop edge transducers that couple to Rayleigh waves. Such edge transducers are small, but the exposed piezoelectric transducers remain vulnerable.
夕ツチパネルの表面上で、 ゥエッジ型トランスデューザが位置する部分は、 ノ ネルの表面よりも必然的に高くなる。 また、 ディスプレイが一般の陰極線管のよ うな局面パネルで形成されているとき、 ゥエッジ卜ランスデューサを配設可能な スペースは、 曲面パネルと、 この曲面パネルの周囲を覆う外枠との間に存在する。 しかし、 ディスプレイが、 液晶ディスプレイやプラズマディスプレイなどのフラ ットパネルで形成されているとき、 外枠で覆われたパネル表面の周囲において、 パネルと外枠との間には隙間がなく、 そのため、 ゥヱヅジトランスデューサを配 置するための空間がない。 従って、 ゥエッジトランスデューサを使用すると、 超 音波方式夕ツチパネルをフラットパネルに十分に適応させることができない。 さ らに、 適用可能なディスプレイおよび外枠構造が大きく制約される。 特に、 レー リー波 (Rayleigh波) を利用した音響夕ツチセンサにおいてゥエッジトランス デューサを使用すると、 機械的な設計を複雑化させ、 オプションを制限する虞が ある。 The part where the edge-type transducer is located on the surface of the sunset panel is necessarily higher than the surface of the nonel. Also, when the display is formed of a panel such as a general cathode ray tube, there is a space between the curved panel and the outer frame surrounding the curved panel. I do. However, when the display is formed of a flat panel such as a liquid crystal display or a plasma display, there is no gap between the panel and the outer frame around the surface of the panel covered with the outer frame. No space to place page transducer. Therefore, the use of an edge transducer makes it difficult to adapt the ultrasonic touch panel to a flat panel. In addition, the applicable display and outer frame structure are greatly restricted. In particular, in an acoustic sunset sensor using Rayleigh waves, an edge transformer The use of a transducer can complicate mechanical design and limit options.
米国特許出願番号 0 8 / 6 1 0 , 2 6 0号には、 ゥヱッジトランスデューサを 夕ツチ領域に隣接した前面傾斜部に取り付け、 パネル基板の前面の高さよりもゥ エッジトランスデューサを低くすることが提案されている。 しかし、 このような 設計では、 音響損失を招くとともに、 液晶ディスプレイ (L C D ) 設計で要求さ れることとは逆に、 パネル基板の縁幅を大きくする必要がある。  U.S. patent application Ser. No. 08 / 610,260 states that the edge transducer is mounted on the front slope adjacent to the sunset area and the edge transducer is lower than the front height of the panel substrate. It has been proposed. However, such a design not only causes acoustic loss, but also necessitates an increase in the edge width of the panel substrate, contrary to what is required in a liquid crystal display (LCD) design.
このように、 ゥエッジトランスデューサは液晶ディスプレイ (L C D ) には不 向きである。 特開平 1 0— 2 4 0 4 4 3号公報には、 上記課題を解決するため、 グレーティングトランスデューサ (回折音響波トランスデューサ) が閧示されて いる。 この文献には、 回折音響波トランスデューサを構成する回折格子の格子間 距離 (ピッチ) が約 0 . 0 1〜: L 0 mm、 格子幅が約 0 . 0 1〜: I 0 mm、 格子 の高さが 5 mm以下 (好ましくは 0 . l〜l mm) の範囲から選択できることが 言己載されているとともに、 実施例 4には、 スクリーン印刷法によりガラスフリツ ト (密度約 5 . 6 g/ c m3) を用いて格子高さ 4 Ο μπι及び格子間隔 0 . 8 9 mmのグレーティングトランスデュ一サを形成したことも開示されている。 また、 竹内の文献には、 大きな摂動を得るためには、 グレーティングの厚さと密度、 及 び結合長が重要であることが報告されている。 このグレーディングトランスデュ ーサは、 圧電振動子を、 ガラス基板の裏面または端面と裏面との間に設けた第 3 面に貼り付けてガラス基板内部にバルク波を励起させ、 このバルク波を表面に設 けた回折格子によってモード変換させることにより、 弾性表面波に代表される表 面にエネルギーを集中させる波を励起する。 このトランスデューサはゥエッジの 必要がないため、 表面の凹凸をほぼゼロにできる。 また、 圧電振動子を裏面に設 置できるため、 ケーブル配線も基板の裏側に配置することができ、 省スペース化 につながる。 しかし、 基板の表面に、 回折格子で構成されたグレーティングトランスデュー サ (回折音響波トランスデューサ) を形成しても、 摂動周期により音響波のモー ド変換を確実に行うことができない。 特に、 格子線径と線間距離との比を、 理論 的に最も高い効率でモード変換できると思われる比 1 : 1に設定しても、 高い効 率でモード変換できない。 従って、 本発明の目的は、 回折音響波トランスデューサにより音響波のモード を高い効率で変換できる音響的接触検出装置 (又は夕ツチ式座標入力装置) 、 お よびそのための基板を提供することにある。 Thus, edge transducers are not suitable for liquid crystal displays (LCDs). Japanese Patent Laid-Open Publication No. Hei 10-244443 discloses a grating transducer (diffractive acoustic wave transducer) in order to solve the above problems. According to this document, the distance (pitch) between the gratings of the diffraction grating constituting the diffractive acoustic wave transducer is about 0.01 to: L0 mm, the grating width is about 0.01 to: I0 mm, and the height of the grating is It is stated that the glass frit can be selected from a range of 5 mm or less (preferably 0.1 to l mm). In Example 4, glass frit (density of about 5.6 g / cm It is also disclosed that a grating transducer having a grating height of 4 μμπι and a grating interval of 0.89 mm was formed using 3 ). In addition, Takeuchi reports that the thickness and density of the grating and the bond length are important for obtaining a large perturbation. This grading transducer attaches a piezoelectric vibrator to the back surface of the glass substrate or to a third surface provided between the end surface and the back surface to excite bulk waves inside the glass substrate, and this bulk wave is applied to the front surface. The mode conversion by the diffraction grating provided excites a wave that concentrates energy on the surface represented by surface acoustic waves. Since this transducer does not require a ゥ edge, surface irregularities can be reduced to almost zero. Also, since the piezoelectric vibrator can be installed on the back side, the cable wiring can also be arranged on the back side of the board, leading to space saving. However, even if a grating transducer (diffractive acoustic wave transducer) composed of a diffraction grating is formed on the surface of the substrate, the mode conversion of the acoustic wave cannot be performed reliably due to the perturbation period. In particular, mode conversion cannot be performed with high efficiency even if the ratio between the lattice wire diameter and the distance between lines is set to a ratio of 1: 1 which is considered to be theoretically the highest in mode conversion. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an acoustic contact detection device (or Yutzuchi-type coordinate input device) that can convert an acoustic wave mode with high efficiency by a diffractive acoustic wave transducer, and a substrate therefor.
本発明の他の目的は、 回折音響波トランスデューサにより実用的に高いレベル でモード変換して高い信号強度を得ることができ、 接触位置を高い精度で検出で きる音響的接触検出装置 (又は夕ツチ式座標入力装置) 、 およびそのための基板 を提供することにある。 発明の開示  Another object of the present invention is to provide an acoustic contact detection device (or an evening switch) capable of obtaining a high signal strength by performing mode conversion at a practically high level by a diffractive acoustic wave transducer and detecting a contact position with high accuracy. And a substrate therefor. Disclosure of the invention
本発明者らは前記課題を解決するため鋭意検討の結果、 印刷法により形成され た回折格子のプロファイル (形状) が直方体ではなく必然的にかまぼこ型になる こと、 このようなプロファイルの回折格子を用いると、 回折散乱のために最も重 要なフーリェ変換の第 1項が小さくなり、 たとえ格子の厚さを 4 0 μΐϊΐ以上に大 きくしても、 生産性が低下するとことに加えて、 さほどモード変換効率が向上し ないことを見いだし、 本発明を完成した。  The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, the profile (shape) of the diffraction grating formed by the printing method is not a rectangular parallelepiped, but necessarily a semi-cylindrical shape. When used, the first term of the Fourier transform, which is most important for diffraction scattering, is reduced, and even if the thickness of the grating is increased to 40 μΐϊΐ or more, the productivity is reduced and the mode They found that the conversion efficiency did not improve, and completed the present invention.
すなわち、 本発明の音響的接触検出装置は、 (a ) 表面を有する基板、 (b ) 前記表面と交差する軸に沿って前記基板を通って伝播するバルク波としての第 1 の波と結合させるための音響波トランスデューサ、 (c ) 前記表面で多ぐのエネ ルギ一を有する変換波のモードを有し、 かつ前記表面に平行な軸に沿って伝播す る第 2の波と、 前記第 1の波とを結合させるための回折音響波トランスデューサ、 および (d) 前記第 2の波のエネルギーの摂動を検出するための手段を備えてい る。 そして、 このような装置において、 前記回折音響波トランスデューサは、 下 記特性 (i) 〜 (iv) のうち少なくとも 1つの特性を備えている。 That is, the acoustic contact detection device of the present invention comprises: (a) a substrate having a surface; (b) a first wave as a bulk wave propagating through the substrate along an axis intersecting the surface. An acoustic wave transducer for: (c) having a mode of a converted wave having more energy at the surface and propagating along an axis parallel to the surface A second acoustic wave transducer for coupling the second wave with the first wave, and (d) means for detecting a perturbation in energy of the second wave. In such an apparatus, the diffractive acoustic wave transducer has at least one of the following characteristics (i) to (iv).
(i) 回折音響波トランスデューサを構成する格子の厚み hが 15〜39μπι である  (i) The thickness h of the grating constituting the diffractive acoustic wave transducer is 15-39μπι
(ii) 回折音響波トランスデューサを構成する格子の径 Wとピヅチ Pとの割合 W/Pが 0. 4〜0. 95  (ii) The ratio W / P between the diameter W of the grating constituting the diffractive acoustic wave transducer and the pitch P is 0.4 to 0.95.
(iii) 回折音響波トランスデューザの結合長を L、 回折音響波トランスデュ ーサを構成する格子の厚みを hとしたとき、 ] 2:1が750 1112 ' mm以上であ る (iii) Assuming that the coupling length of the diffractive acoustic wave transducer is L and the thickness of the grating constituting the diffractive acoustic wave transducer is h, 2 : 1 is at least 750 111 2 'mm
(iv) 回折音響波トランスデューザの結合長を L、 回折音響波トランスデュー サを構成する格子の厚みを h、 格子を構成する材料の密度を pとしたとき、 ph2 Lが 3. 5 X 106μπι2 · mm · kg/m3以上である (iv) Assuming that the coupling length of the diffractive acoustic wave transducer is L, the thickness of the grating constituting the diffractive acoustic wave transducer is h, and the density of the material constituting the grating is p, ph 2 L is 3.5 It is X 10 6 μπι 2 · mm · kg / m 3 or more
さらに、 本発明は、 音響的な検出装置のための基板も含んでおり、 この基板は、 (a) 基板中で前記基板表面に交差する伝播軸を有するバルク波と結合している 音響波トランスデューサ; (b)前記表面近傍に形成され、 バルク波の音響波ェ ネルギーを前記表面に平行な軸に沿って伝播する波へ変換するための回折音響波 トランスデューザであって、 前記 (i) 〜 (iv) の特性を有する回折音響波トラ ンスデューサ;及び (c) 摂動の位置に関して変換された音響波エネルギーを検 出するための手段を備えている。  The present invention further includes a substrate for an acoustic detection device, the substrate comprising: (a) an acoustic wave transducer coupled to a bulk wave having a propagation axis crossing the substrate surface in the substrate. (B) a diffractive acoustic wave transducer formed in the vicinity of the surface for converting acoustic wave energy of a bulk wave into a wave propagating along an axis parallel to the surface; And (c) means for detecting the acoustic energy converted with respect to the location of the perturbation.
本発明では、 回折音響波トランスデューザが特定の特性を備えているため、 高 い効率でバルク波と音響波 (表面波又は板波) とを相互にモード変換できる。 そ のため、 回折音響波トランスデューサを用いても高い信号強度で接触位置を検出 できる。 図面の簡単な説明 In the present invention, since the diffractive acoustic wave transducer has specific characteristics, the mode conversion between the bulk wave and the acoustic wave (surface wave or plate wave) can be performed with high efficiency. Therefore, even if a diffractive acoustic wave transducer is used, the contact position can be detected with high signal strength. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の装置の一例を示す概略斜視図である。  FIG. 1 is a schematic perspective view showing an example of the device of the present invention.
図 2は図 1に示す装置の概略断面図である。  FIG. 2 is a schematic sectional view of the apparatus shown in FIG.
図 3は実施例 1での結果を示すグラフである。  FIG. 3 is a graph showing the results in Example 1.
図 4は実施例 2での結果を示すグラフである。  FIG. 4 is a graph showing the results of Example 2.
図 5は実施例 3での結果を示すグラフである。  FIG. 5 is a graph showing the results of Example 3.
図 6は実施例 4での結果を示すグラフである。 発明を実施するための最良の形態  FIG. 6 is a graph showing the results of Example 4. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 必要により添付図面を参照しつつ本発明をより詳細に説明する。 図 1は本発明の装置の一例を示す概略斜視図、 図 2は図 1に示す装置の概略断 面図である。  Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings as necessary. FIG. 1 is a schematic perspective view showing an example of the apparatus of the present invention, and FIG. 2 is a schematic sectional view of the apparatus shown in FIG.
前記音響的に接触位置を検出可能な装置 (夕ツチ式座標入力装置) は、 音響波 (表面波又は板波) が伝播可能な表面を有する伝播媒体としての基板 1と、 この 基板の底面 (又は背面) に取り付けられ、 かつ圧電振動子で構成された音響波ト ランスデューサ 3 , 4とを備えている。 なお、 前記基板 1の表面には、 X軸及び Y軸方向に対して左右対称の表示領域 (画像表示領域) 2を有している。 また、 前記音響波トランスデューサ 3 , 4は、 装置の厚み及び重量を低減するため、 ゥ ェッジ型トランスデューサではなく、 板状圧電振動子で構成さている。  The device capable of acoustically detecting a contact position (the Utsuchi-type coordinate input device) includes a substrate 1 as a propagation medium having a surface through which an acoustic wave (surface wave or plate wave) can propagate, and a bottom surface of the substrate ( Or acoustic transducers 3 and 4 which are mounted on the rear surface) and are composed of piezoelectric vibrators. The surface of the substrate 1 has a display area (image display area) 2 which is symmetrical with respect to the X-axis and Y-axis directions. In addition, the acoustic wave transducers 3 and 4 are not formed with a edge-type transducer but are formed of plate-shaped piezoelectric vibrators in order to reduce the thickness and weight of the device.
音響波トランスデューサ 3, 4は、 基板 1背面の X軸及び Y軸起点域 (この例 では、 X軸及び Y軸の底部コーナ一部) にそれぞれ取り付けられた発信トランス デューサ 3 a, 3 bと、 基板背面の X軸及び Y軸終点域 (この例では X軸及び Y 軸の底部コーナ一部) にそれそれ取り付けられた一対の受信トランスデューサ 4 a, 4 bとで構成されている。 発信トランスデューサ 3 a, 3 bは、 伝播媒体と しての基板の表面 (フロント面) に対する交差方向にバルク波 (縦波モード又は 横波モードであってもよい) を伝播させるためのバルク波生成手段として機能し、 受信トランスデューサ 4 a , 4 bは、 基板 1の表面 (フロント面) から交差する 方向に基板中を伝播するバルク波を受信するためのバルク波受信手段として機能 する。 すなわち、 音響波トランスデューサ 3, 4は、 前記基板 1の表面と交差す る軸に沿って前記基板 1を通って伝播するバルク波 (第一の波) 、 換言すれば前 記表面に交差する伝播軸を有するバルク波と結合している。 Acoustic wave transducers 3 and 4 consist of transmitting transducers 3a and 3b, which are attached to the X-axis and Y-axis starting regions (part of the bottom corners of the X-axis and Y-axis in this example) on the back of substrate 1; It consists of a pair of receiving transducers 4a and 4b attached to the X-axis and Y-axis end areas (part of the bottom corners of the X-axis and Y-axis in this example) on the back of the board. The transmitting transducers 3a and 3b are Function as bulk wave generating means for propagating a bulk wave (which may be a longitudinal mode or a transverse mode) in a direction crossing the surface (front surface) of the substrate, and the receiving transducers 4 a and 4 b It functions as bulk wave receiving means for receiving a bulk wave propagating in the substrate in a direction intersecting from the surface (front surface) of the substrate 1. That is, the acoustic wave transducers 3 and 4 transmit a bulk wave (first wave) propagating through the substrate 1 along an axis crossing the surface of the substrate 1, in other words, a propagation crossing the surface. It is coupled to a bulk wave having an axis.
前記音響波トランスデューサ 3 , 4の発振トランスデューサ 3 a , 3 bからは、 バルク波 (第一の波) が基板 1を通じて表面 (フロント面) のモード変換部位 (摂動領域又は発振領域) に向かって発射され、 モード変換部位に到達したバル ク波は、 前記モード変換部位に設けられた X軸及び Y軸回折音響波トランスデュ ーサ (回折音響モード結合器) 5 a , 5 bにより、 音響波 (表面波又は板波) 、 特に表面音響波 (第二の波) に変換される。 この表面音響波は、 基板表面で多く のエネルギーを有する変換波のモードを有している。 すなわち、 回折音響波トラ ンスデューサ (音響モード結合器) 5 a , 5 bは、 音響波生成手段として機能し、 前記バルク波 (第一の波) と、 基板 1の表面に平行な軸に沿って基板表面近傍を 伝播する表面波 (第二の波) とを結合しており、 音響波のモードをバルク波と表 面波とに相互に変換可能である。 この例では、 回折音響波トランスデューサ 5 a, 5 bは、 スクリーン印刷法により、 線形格子で構成された回折格子 (グレーティ ング) として形成されており、 各線形格子の断面形状は、 上端両側部が湾曲又は アール状のかまぼこ型に形成されている。  From the oscillation transducers 3 a and 3 b of the acoustic wave transducers 3 and 4, a bulk wave (first wave) is emitted through the substrate 1 toward a mode conversion portion (perturbation region or oscillation region) on the surface (front surface). The bulk wave arriving at the mode conversion part is converted into an acoustic wave (differential acoustic mode coupler) 5a, 5b provided at the mode conversion part. Surface waves or plate waves), especially surface acoustic waves (second waves). This surface acoustic wave has a mode of a converted wave having a large amount of energy on the substrate surface. That is, the diffractive acoustic wave transducers (acoustic mode couplers) 5 a and 5 b function as acoustic wave generating means, and are arranged along the bulk wave (first wave) and an axis parallel to the surface of the substrate 1. The surface wave (second wave) propagating near the substrate surface is coupled, and the mode of the acoustic wave can be converted into a bulk wave and a surface wave. In this example, the diffractive acoustic wave transducers 5a and 5b are formed as diffraction gratings (gratings) formed of linear gratings by a screen printing method. It is formed in a curved or round shape.
そして、 音響波トランスデューサによるモード変換効率を向上させて信号強度 (出力電圧) を高めるため、 音響波トランスデューサは、 次のような特性 (i ) ~ (iv) のうち少なくとも 1つの特性を有している。  The acoustic wave transducer has at least one of the following characteristics (i) to (iv) in order to increase the signal strength (output voltage) by improving the mode conversion efficiency of the acoustic wave transducer. I have.
( i ) 回折音響波トランスデューサを構成する格子の厚み (高さ) hは、 1 5 〜 39 μπι (好ましくは 20 ~ 38 μπι、 さらに好ましくは 25〜 37 μπι、 特に 30-37 μπι程度) であり、 通常、 27〜 36 μπι (例えば、 30〜 35 μπι) 程度である。 格子の厚み hが小さいとモード変換効率が低下し、 大きすぎると格 子の断面形状に起因するためか、 さほどモード変換効率が向上しない。 (i) The thickness (height) h of the grating constituting the diffractive acoustic wave transducer is 15 To 39 μπι (preferably 20 to 38 μπι, more preferably 25 to 37 μπι, particularly about 30 to 37 μπι), and usually about 27 to 36 μπι (eg, 30 to 35 μπι). If the grating thickness h is small, the mode conversion efficiency decreases, and if it is too large, the mode conversion efficiency does not improve much, possibly because of the cross-sectional shape of the lattice.
( i i ) 回折音響波トランスデューサを構成する格子の径 Wとピッチ Pとの比 W /Pは、 0. 4〜0. 95 (好ましくは 0. 6〜0. 95、 さらに好ましくは 0. 7〜0. 95、 特に 0. 75〜0. 95程度) である。 前記値 W/Pが小さすぎ るとモード変換効率が低下し、 大きすぎると格子を精度よく形成できなくなる。  (ii) The ratio W / P of the diameter W of the grating constituting the diffractive acoustic wave transducer to the pitch P is 0.4 to 0.95 (preferably 0.6 to 0.95, more preferably 0.7 to 0.95). 0.95, especially about 0.75 to 0.95). If the value W / P is too small, the mode conversion efficiency decreases, and if it is too large, the grating cannot be formed accurately.
(iii) 回折音響波トランスデューザの結合長を L、 回折音響モード結合器を 構成する格子の厚みを hとしたとき、 値 h2L (単位 μπι2 - mm) は、 750以 上 (例えば、 760〜5000、 好ましくは 1500〜4000、 さらに好まし くは 2000~4000、 特に 2200〜 4000程度) であり、 通常、 250 0〜4000程度である。 上記値 h2Lが小さすぎるとモード変換効率が低下し、 大きすぎてもさほどモード変換効率が向上しない。 (iii) When the coupling length of the diffractive acoustic wave transducer is L and the thickness of the grating forming the diffractive acoustic mode coupler is h, the value h 2 L (unit μπι 2 -mm) is 750 or more (for example, 760-5000, preferably 1500-4000, more preferably 2000-4000, especially about 2200-4000) and usually about 2500-4000. If the value h 2 L is too small, the mode conversion efficiency decreases, and if it is too large, the mode conversion efficiency does not improve much.
(iv) 回折音響波トランスデューザの結合長を L、 回折音響モード結合器を構 成する格子の厚みを]!、 格子を構成する材料の密度を pとしたとき、 ph2L (単 位 μπι2 · mm · kg/m3) は、 3. 5x l 06以上 (例えば、 5x l 06〜2.(iv) When the coupling length of the diffractive acoustic wave transducer is L, the thickness of the grating constituting the diffractive acoustic mode coupler is] !, and the density of the material constituting the grating is p, ph 2 L (unit μπι 2 · mm · kg / m 3) is, 3. 5x l 0 6 or more (e.g., 5x l 0 6 ~2.
5 x 10 \ 好ましくは 1 X 107〜2x 107、 さらに好ましくは 1. 2x 10 7〜2x 107程度) である。 上記値 ph2Lが小さすぎるとモード変換効率が低 下し、 大きすぎてもさほどモード変換効率が向上しない。 5 x 10 \ preferably 1 X 10 7 ~2x 10 7, more preferably from 1. 2x 10 7~2x 10 about 7). Beat the value ph 2 L is too small mode conversion efficiency low, it does not improve much mode conversion efficiency be too large.
なお、 回折音響波トランスデューサは、 上記特性 (i) 〜 (iv)のうち少なく とも 1つの特性を備えていればよく、 複数の特性を備えていてもよい。 例えば、 2つの特性の組み合わせ [前記 (i) と (ii) との組み合わせ、 前記 (i) と (iii) との組み合わせ、 前記 (i) と (iv) との組み合わせ、 前記 (ii) と (i ii) との組み合わせ、 前記 (ii) と (iv) との組み合わせなど] による特性、 3 つの特性の組み合わせ [例えば、 前記 (i ) と (ii) と (iii) との組み合わせ、 前記 (i ) と (ii) と (iv) との組み合わせ、 (ii) と (iii) と (iv) との組 み合わせなど] による特性、 4つの特性の組み合わせによる特性を備えていても よい。 The diffractive acoustic wave transducer only needs to have at least one of the above characteristics (i) to (iv), and may have a plurality of characteristics. For example, a combination of two characteristics [combination of (i) and (ii), combination of (i) and (iii), combination of (i) and (iv), and (ii) and ( i ii), the combination of (ii) and (iv), etc.], 3 Combinations of the three properties [for example, the combination of (i), (ii), and (iii), the combination of (i), (ii), and (iv), (ii), (iii), and (iv) And a combination of the four characteristics.
前記基板 1の表面の第 1の両側部には、 それぞれ X軸方向に延びる X軸反射手 段 7 a, 7 bが対向して設けられ、 基板 1の表面の第 2の両側部には、 それぞれ Y軸方向に延びる Y軸反射手段 8 a, 8 bが対向して設けられている。 各反射手 段は、 表面音響波の進行方向に対して約 4 5 ° の角度で傾斜したアレイ群から なる反射アレイで構成されており、 表面音響波の一部は、 反射アレイのアレイを 透過可能である。 そのため、 回折音響波トランスデューサ 5 a , 5 bにより変換 された表面音響波 (表面波又は板波、 特に表面弾性波) は、 基板 1の表面におい て、 それぞれ第 1の X軸反射手段 (反射アレイ) 7 a及び第 1の Y軸反射手段 X-axis reflection means 7 a and 7 b extending in the X-axis direction are provided on opposite sides of the first side of the surface of the substrate 1, respectively. Y-axis reflecting means 8 a and 8 b extending in the Y-axis direction are provided to face each other. Each reflection means consists of a reflection array consisting of an array group inclined at an angle of about 45 ° to the traveling direction of the surface acoustic wave, and a part of the surface acoustic wave passes through the array of the reflection array. It is possible. Therefore, the surface acoustic waves (surface waves or plate waves, particularly, surface acoustic waves) converted by the diffractive acoustic wave transducers 5 a and 5 b are applied to the first X-axis reflecting means (reflection array) on the surface of the substrate 1. 7) and the first Y-axis reflecting means
(反射アレイ) 8 aにより、 Y軸及び X軸方向に反射され、 基板 1の表面の表示 領域 2を全体に亘り伝播する。 (Reflection array) The light is reflected in the Y-axis and X-axis directions by the reflection array 8a, and propagates throughout the display area 2 on the surface of the substrate 1.
Y軸及び X軸方向に反射された表面音響波は、 それぞれ第 2の X軸反射手段 The surface acoustic waves reflected in the Y-axis and X-axis directions are respectively
(反射アレイ) 7 b及び第 2の Y軸反射手段 (反射アレイ) 8 bにより、 X軸及 び Y軸方向に反射され、 モード変換部位 (受信領域又は摂動領域) の X軸及び Y 軸回折音響波トランスデューサ 6 a , 6 bに向けられる。 回折音響波トランスデ ュ一サ 6 a, 6 bは前記回折音響波トランスデューサ 5 a , 5 bと同様に構成さ れており、 表面音響波をバルク波に変換する。 変換されたバルク波は、 前記と同 様に、 圧電振動子で構成された音響波トランスデューサ (X軸及び Y軸受信トラ ンスデューサ) 4 a, 4 bにより受信され、 電気信号に変換され、 検出手段に与 えられる。 (Reflection array) 7b and the second Y-axis reflection means (reflection array) 8b are reflected in the X-axis and Y-axis directions, and the X-axis and Y-axis diffraction of the mode conversion part (reception area or perturbation area) It is directed to the acoustic wave transducers 6a, 6b. The diffractive acoustic wave transducers 6a and 6b are configured similarly to the diffractive acoustic wave transducers 5a and 5b, and convert a surface acoustic wave into a bulk wave. The converted bulk waves are received by acoustic wave transducers (X-axis and Y-axis receiving transducers) 4a and 4b each composed of a piezoelectric vibrator as described above, and are converted into electric signals. Given to
そして、 画像表示領域 2の夕ツチにより生じる受信信号の攪乱又は散乱成分が、 時系列的受信情報の減衰情報に対応することを利用して、 音響波生成手段からの 表面音響波 (第 2の波) の基板表面でのエネルギーの摂動 (ひいては夕ツチ位置 に対応する摂動の位置) は、 受信トランスデューサ 4 a , 4 bからの信号を、 コ ントローラの検出手段により信号処理して分析又は解析することにより行うこと ができる。 Then, utilizing the fact that the disturbed or scattered component of the received signal caused by the sunset in the image display area 2 corresponds to the attenuation information of the time-series received information, The perturbation of energy of the surface acoustic wave (second wave) on the substrate surface (and the perturbation position corresponding to the Yutzuchi position) is based on the signals from the receiving transducers 4a and 4b, which are detected by the detection means of the controller. It can be done by processing and analyzing or analyzing.
このような音響的接触検出装置 (又はユニット) や前記表面及びエレメントを 備えた基板では、 回折音響波トランスデューサを特定の回折格子で形成している ため、 バルク波と表面音響波とを相互に効率よくモード変換できる。 そのため、 検出強度を高めることができ、 高い精度で夕ツチ位置を検出できる。 また、 基板 の裏面に板状の音響波トランスデューサを配置し、 基板の表面に前記回折格子を 配置しているため、 装置の厚み及び重量を大きく低減できる。 そのため、 液晶デ イスプレイ (L C D ) 、 プラズマディスプレイなどに好適に適用できる。  In such an acoustic contact detection device (or unit) and a substrate provided with the surface and the elements, since the diffractive acoustic wave transducer is formed by a specific diffraction grating, the efficiency of the bulk wave and the surface acoustic wave can be increased. Mode conversion can be done well. As a result, the detection intensity can be increased, and the Yuttsu position can be detected with high accuracy. Further, since the plate-like acoustic wave transducer is arranged on the back surface of the substrate and the diffraction grating is arranged on the surface of the substrate, the thickness and weight of the device can be greatly reduced. Therefore, it can be suitably applied to a liquid crystal display (LCD), a plasma display and the like.
なお、 前記伝播媒体の基板材料と構造や形状、 音響波トランスデューサ、 回折 音響波トランスデューサ (音響波モード結合器) 、 反射手段、 摂動を検出するた めの手段などの詳細については、 特開平 1 0— 2 4 0 4 4 3号公報を参照できる。 例えば、 音響波としては、 レイリー波などの超音波表面弾性波、 ラム波、 ラブ波、 振動方向が水平方向に偏向している 0次の横波 (Z O H P S ) 、 振動方向が水平 方向に偏向している高次の横波 (H O H P S ) などが例示できる。  For details of the substrate material and structure and shape of the propagation medium, acoustic wave transducers, diffractive acoustic wave transducers (acoustic wave mode couplers), reflecting means, and means for detecting perturbations, see Japanese Patent Laid-Open No. — Reference can be made to Japanese Patent Publication No. 2404443. For example, acoustic waves include ultrasonic surface acoustic waves such as Rayleigh waves, Lamb waves, Love waves, zero-order transverse waves (ZOHPS) whose vibration direction is horizontally deflected, and vibration waves that are deflected horizontally. High-order transverse waves (HOHPS).
伝播媒体は、 ガラス、 セラミックス、 アルミニウム、 ポリマ一などで形成でき、 不均質な積層体であってもよく、 伝播媒体の形状は特に制限されない。 伝播媒体 は、 液晶ディスプレイやプラズマディスプレイなどのフラヅトパネル基板であつ てもよく、 曲面パネルであってもよい。  The propagation medium can be formed of glass, ceramics, aluminum, polymer, or the like, may be a heterogeneous laminate, and the shape of the propagation medium is not particularly limited. The propagation medium may be a flat panel substrate such as a liquid crystal display or a plasma display, or may be a curved panel.
音響波トランスデューサは、 圧電振動子ゃ圧電トランスデューザなどの音響放 出素子などで構成でき、 圧電基板と種々の電極構造とで構成された圧電共振子が 利用できる。 特に、 厚みの増加を抑制するためには、 板状の圧電振動子を用いる のが有利である。 米国特許第 4 , 7 0 0 , 1 7 6号明細書に開示されているよう に、 表面音響波が反射アレイの反対側に反射する構造を採用し、 折返し音響波経 路を利用することにより、 音響波トランスデューザの数を低減してもよい。 The acoustic wave transducer can be composed of a sound emitting element such as a piezoelectric vibrator / piezoelectric transducer, and a piezoelectric resonator composed of a piezoelectric substrate and various electrode structures can be used. In particular, in order to suppress an increase in thickness, it is advantageous to use a plate-shaped piezoelectric vibrator. As disclosed in U.S. Pat.No. 4,700,176 In addition, the number of acoustic wave transducers may be reduced by employing a structure in which surface acoustic waves are reflected on the opposite side of the reflection array and using a folded acoustic wave path.
さらに、 音響波トランスデューサは、 伝播媒体の適所に取り付けることができ、 例えば、 前記図に示すように基板の底面又は底壁、 基板の側面又は側壁、 基板の 下部側面又は側壁に形成した傾斜面などに形成できる。 このような場合であつて も、 前記回折音響波トランスデューサにより、 音響波をバルク波と表面音響波と に相互に効率よくモード変換できる。  Further, the acoustic wave transducer can be mounted in a proper position on the propagation medium, for example, as shown in the figure, the bottom or bottom wall of the substrate, the side or side wall of the substrate, the inclined surface formed on the lower side or side wall of the substrate, etc. Can be formed. Even in such a case, the diffractive acoustic wave transducer can efficiently and efficiently convert the acoustic wave into a bulk wave and a surface acoustic wave.
また、 回折音響波トランスデューサ (音臂波モード結合器) は、 グレーティン グトランスデューサ、 一連の散乱中心や散乱要素、 間隔をおいて形成された線形 要素又は格子、 溝状の散乱要素などで構成でき、 ドット状、 線状などであっても よく、 表面音響波を収束又はフォーカシング可能な円弧状などであってもよい。 バルク波と表面音響波とを相互に変換し、 かつ所定方向に回折するためのモード 変換手段は、 通常、 バルク波の進行方向に対して、 直交する方向に周期的に平行 に延びる複数の線形格子 (グリッド格子) で構成されている。  Diffractive acoustic wave transducers can be composed of grating transducers, a series of scattering centers and scattering elements, linear elements or gratings formed at intervals, and grooved scattering elements. The shape may be a dot shape, a linear shape, or the like, or an arc shape capable of converging or focusing a surface acoustic wave. Mode conversion means for mutually converting a bulk wave and a surface acoustic wave into each other and diffracting the wave in a predetermined direction is usually composed of a plurality of linearly extending linearly extending in a direction orthogonal to the traveling direction of the bulk wave. It consists of a grid (grid grid).
回折音響波トランスデューザにおいて、 格子の幅 Wは、 例えば、 0. 2〜0. 52 mm程度の範囲から選択してもよく、 通常、 0. 4〜0. 52mm、 好まし くは 0. 42〜0. 5mm、 さらに好ましくは 0. 43〜0. 49 mm程度であ つてもよい。 結合長 Lは、 格子の密度や数に応じて選択でき、 例えば、 2〜5m m、 好ましくは 2. 5〜4. 5mm、 さらに好ましくは 3〜 4 mm程度であって もよい。 さらに、 格子の密度 pは、 モード変換のためには大きい程有利であり、 例えば、 4〜1 Og/cm3程度の範囲から選択でき、 通常、 5〜8g/cm3 程度である。 また、 格子は種々の材料で形成でき、 通常、 ガラスやセラミックス などで形成できる。 In a diffractive acoustic wave transducer, the width W of the grating may be selected, for example, from a range of about 0.2-0.52 mm, usually between 0.4-0.52 mm, preferably about 0.5-0.52 mm. It may be about 42 to 0.5 mm, more preferably about 0.43 to 0.49 mm. The bond length L can be selected according to the density and the number of lattices, and may be, for example, about 2 to 5 mm, preferably about 2.5 to 4.5 mm, and more preferably about 3 to 4 mm. Furthermore, the density p of the grating is advantageously larger in order of the mode conversion, for example, 4 to be selected from Og / cm 3 range of about, typically, 5~8g / cm 3 order. Further, the lattice can be formed of various materials, and usually can be formed of glass, ceramic, or the like.
反射手段を構成する反射アレイは、 ガラスなどを用い、 突起又は凸部として形 成された反射アレイ素子の集合体 (反射グレーティング) として形成してもよく、 溝として形成された反射ァレィ素子の集合体であつてもよい。 反射ァレィ素子は、 通常、 互いに平行に形成されている。 受信トランスデューザに均等な音響波エネ ルギ一を与えるため、 反射アレイ素子の間隔は、 発振トランスデューザから離れ るにつれて小さくしてもよく、 発振トランスデューザから離れるにつれて反射率 を増加させてもよい。 なお、 前記接触検出装置 (夕ツチ座標入力装置) は、 ディ スプレイ装置のフロント部に配設されるので、 通常、 反射アレイが見えるのを避 けるため、 反射アレイは検出領域 (又は表示領域) の外側である基板の周囲に配 置され、 外枠によりカバ一して保護されている。 The reflection array constituting the reflection means may be formed as an aggregate (reflection grating) of reflection array elements formed as projections or projections using glass or the like. It may be an assembly of reflective array elements formed as grooves. The reflection array elements are usually formed parallel to each other. To provide even acoustic energy to the receiving transducer, the spacing between the reflective array elements may be reduced as one moves away from the oscillating transducer, and the reflectivity increases as one moves away from the oscillating transducer. Is also good. Since the contact detection device (Yuuchi coordinate input device) is provided at the front of the display device, the reflection array is usually provided in the detection area (or display area) in order to avoid seeing the reflection array. It is placed around the substrate outside the box, and is covered and protected by the outer frame.
なお、 前記回折音響波トランスデューサゃ反射アレイは、 所定の材料 (特にへ ペースト状材料) を印刷技術 (スクリーン印刷など) を利用して所定のパターン に印刷し、 乾燥させた後、 焼成により形成することができる。  The diffractive acoustic wave transducer / reflection array is formed by printing a predetermined material (especially a paste-like material) in a predetermined pattern using a printing technique (such as screen printing), drying, and firing. be able to.
本発明の装置 (又はユニット) や基板は、 薄くて軽量であるため、 液晶表示装 置、 プラズマ表示装置などの薄型表示装置のフラットパネル又は低曲率パネルと して好適に利用できる。 本発明では、 特定の特性を有する回折音響波トランスデューサを備えているた め、 音響波のモードを表面音響波とバルク波とに相互に高い効率で変換できる。 特に、 回折音響波トランスデューサにより実用的に高いレベルでモード変換して 高い信号強度を得ることができ、 接触位置を高い精度で検出できる。 以下に、 実施例に基づいて本発明をより詳細に説明するが、 本発明はこれらの 実施例によって限定されるものではない。  Since the device (or unit) and substrate of the present invention are thin and lightweight, they can be suitably used as a flat panel or a low curvature panel of a thin display device such as a liquid crystal display device and a plasma display device. According to the present invention, the mode of the acoustic wave can be mutually converted to the surface acoustic wave and the bulk wave with high efficiency because the diffraction acoustic wave transducer having the specific characteristics is provided. In particular, the mode can be converted to a practically high level by the diffractive acoustic wave transducer to obtain a high signal strength, and the contact position can be detected with high accuracy. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
実施例 1  Example 1
スクリーン印刷法により、 ソ一ダライムガラス基板の表面のモード変換部位に、 インクとしてガラスペーストを用いて、 回折音響波トランスデューサ (格子長さ 7 mm, 格子幅 0 . 4 5 mm、 格子数 6本) を印刷し、 ガラス基板の表面の反射 領域に、 ガラスフリットペーストを用いて、 反射アレイを印刷し、 乾燥した。 な お、 反射アレイ素子の角度は X軸及び Y軸に対して 4 5 ° である。 ガラス基板 とともに印刷パターンを、 焼成温度 4 8 5 °C〜4 9 0 °C、 トヅプキープ時間 1 0 分間で、 焼成し、 ガラス基板を得た。 また、 回折音響波トランスデューザの格子 の高さを代える以外、 上記と同様にしてガラス基板を作製した。 By screen printing, a diffractive acoustic wave transducer (grating length) was applied to the mode conversion site on the surface of the soda lime glass substrate using glass paste as ink. 7 mm, grid width 0.45 mm, number of grids 6) were printed, and a reflective array was printed using a glass frit paste on the reflective area on the surface of the glass substrate and dried. The angle of the reflection array element is 45 ° with respect to the X axis and the Y axis. The printed pattern was fired together with the glass substrate at a firing temperature of 485 ° C. to 490 ° C. for a top keeping time of 10 minutes to obtain a glass substrate. Further, a glass substrate was produced in the same manner as above, except that the height of the grating of the diffractive acoustic wave transducer was changed.
紫外線硬化型接着剤を用い、 得られた各ガラス基板のうち回折音響波トランス デューザの反対側に板状の圧電振動子を接着し、 図 2に示す構造のサンプルを作 製した。  A plate-shaped piezoelectric vibrator was bonded to the obtained glass substrate on the opposite side of the diffractive acoustic wave transducer using an ultraviolet curable adhesive, thereby producing a sample having the structure shown in FIG.
そして、 圧電振動子と夕ヅチパネルのコントローラ (夕ツチパネルシステムズ (株) 製) とを電気的に接続し、 発振トランスデューザへのパルス電圧 1 5 V、 レーリー波 (周波数 5 . 5 3 MH z ) 、 送受信トランスデューサ間の距離 2 5 m mの条件で、 回折格子の厚さ hによる受信信号強度の変化を測定した。 結果を図 3に示す。 図 3の点線は、 駆動する最低限の信号強度レベルを表す。 図 3から明 らかなように、 格子の厚み hが 1 5ミクロン未満では、 高い信号強度を得ること が困難である。  Then, the piezoelectric vibrator is electrically connected to a controller of a sunset panel (manufactured by Evening Panel Systems Co., Ltd.), and a pulse voltage of 15 V to an oscillation transducer and a Rayleigh wave (frequency of 5.53 MHz) are supplied. ) In the condition of the distance between the transmitting and receiving transducers of 25 mm, the change of the received signal strength depending on the thickness h of the diffraction grating was measured. The results are shown in Figure 3. The dotted line in Fig. 3 represents the minimum signal strength level to be driven. As is evident from Fig. 3, it is difficult to obtain a high signal intensity when the grating thickness h is less than 15 microns.
実施例 2  Example 2
回折格子の厚み h及び回折格子の結合長 Lを代える以外、 実施例 1と同様にし てガラス基板を作製し、 h 2 Lと信号強度との関係を調べたところ、 図 4に示す 結果を得た。 図 4から明らかなように、 7 5 Ο μπι2 · mm以上において、 タヅ チパネルとして実用的に動作可能である。 Except for replacing the coupling length L of the thickness h and the diffraction grating of the diffraction grating, where to prepare a glass substrate in the same manner as in Example 1 was examined the relationship between h 2 L and the signal strength, the results shown in FIG. 4 Was. As is evident from FIG. 4, when the thickness is 75 μμπι 2 · mm or more, the touch panel can be practically operated as a touch panel.
実施例 3  Example 3
回折音響波トランスデューサを構成する格子の線径 Wと線間距離 (ピッチ) P との割合 W/Pを代える以外、 実施例 1と同様にしてガラス基板を作製し、 割合 W/Pと信号強度との関係を調べたところ、 図 5に示す結果を得た。 図 5から明 らかなように、 割合 W/P = 0. 4〜0. 95で夕ツチパネルとして実用的に動 作可能である。 A glass substrate was produced in the same manner as in Example 1, except that the ratio W / P between the wire diameter W of the grating constituting the diffractive acoustic wave transducer and the distance between lines (pitch) P was changed. As a result, the result shown in FIG. 5 was obtained. Figure 5 As can be seen, the ratio W / P = 0.4 to 0.95 enables practical operation as a sunset panel.
実施例 4  Example 4
回折音響波トランスデューザの結合長 L、 格子の厚み]!、 格子を構成する材料 の密度 Pを代える以外、 実施例 1と同様にしてガラス基板を作製し、 ph2Lと信 号強度との関係を調べたところ、 図 6に示す結果を得た。 図 6から明らかなよう に、 ph2Lが 3. 5 X 106μπι2 · mm · kg/m3以上において、 夕ツチパネ ルとして実用的に動作可能である。 Coupling length of the diffractive acoustic wave transducin The L, except for replacing the density P of the material constituting the grid thickness] !, grid, to prepare a glass substrate in the same manner as in Example 1, and ph 2 L and signal strength When the relationship was examined, the result shown in FIG. 6 was obtained. As is apparent from FIG. 6, in ph 2 L is 3. 5 X 10 6 μπι 2 · mm · kg / m 3 or more, it is practically operable as evening Tsuchipane Le.

Claims

請求の範囲 The scope of the claims
1. (a) 表面を有する基板、 (b) 前記表面と交差する軸に沿って前記基板を 通って伝播するバルク波としての第 1の波と結合させるための音響波トランスデ ユーザ、 (c) 前記表面で多くのエネルギーを有する変換波のモードを有し、 か つ前記表面に平行な軸に沿って伝播する第 2の波と、 前記第 1の波とを結合させ るための回折音響波トランスデューサ、 および (d) 前記第 2の波のエネルギー の摂動を検出するための手段を備えている装置であって、 前記回折音響波トラン スデューサを構成する格子の厚み hが 15〜39 μπιである音響的接触検出装置。1. (a) a substrate having a surface; (b) an acoustic wave transformer for coupling with a first wave as a bulk wave propagating through the substrate along an axis intersecting the surface; (c) A second acoustic wave having a mode of a converted wave having a large amount of energy at the surface and propagating along an axis parallel to the surface; and a diffractive acoustic wave for coupling the first wave with the second wave. A transducer, and (d) means for detecting a perturbation in energy of the second wave, wherein a thickness h of a grating constituting the diffractive acoustic wave transducer is 15 to 39 μπι. Acoustic contact detection device.
2. 請求項 1記載の構成 (a) 〜 (d) を備えている装置であって、 回折音響波 トランスデューサを構成する格子の径 Wとピッチ Pとの割合 W/Pが、 0. 4~ 0. 95である音響的接触検出装置。 2. A device provided with the configurations (a) to (d) according to claim 1, wherein a ratio W / P of a diameter W and a pitch P of a grating constituting the diffractive acoustic wave transducer is 0.4 to Acoustic contact detection device that is 0.95.
3. 請求項 1記載の構成 (a) ~ (d) を備えている装置であって、 回折音響波 トランスデューザの結合長を L、 回折音響波トランスデューサを構成する格子の 厚みを hとしたとき、 h2Lが 75 Ομπι2 · mm以上である音響的接触検出装置。3. A device comprising the configurations (a) to (d) according to claim 1, wherein the coupling length of the diffractive acoustic wave transducer is L, and the thickness of the grating constituting the diffractive acoustic wave transducer is h. When h 2 L is greater than or equal to 75 μμπι 2 · mm, an acoustic contact detector.
4. 請求項 1記載の構成 (a) 〜 (d) を備えている装置であって、 回折音響波 トランスデューザの結合長を L、 回折音響波トランスデューサを構成する格子の 厚みを h、 格子を構成する材料の密度を pとしたとき、 ph2Lが 3. 5 X 106μ m2 · mm · k g/m3以上である音響的接触検出装置。 4. An apparatus comprising the configuration (a) to (d) according to claim 1, wherein the coupling length of the diffractive acoustic wave transducer is L, the thickness of the grating constituting the diffractive acoustic wave transducer is h, and the grating is when the density of the material constituting the p-a, ph 2 L is 3. 5 X 10 6 μ m acoustic touch sensing apparatus is 2 · mm · kg / m 3 or more.
5. 下記構成:  5. The following configuration:
(a) 基板中で前記基板表面に交差する伝播軸を有するバルク波と結合している 音響波トランスデューサ;  (a) an acoustic wave transducer coupled to a bulk wave having a propagation axis crossing the substrate surface in the substrate;
(b) 前記表面近傍に形成され、 バルク波の音響波エネルギーを前記表面に平行 な軸に沿って伝播する波へ変換するための回折音響波トランスデューザであって、 請求項 1〜4のいずれかの項に記載の回折音響波トランスデューサ;及び (C) 摂動の位置に関して、 変換された音響波エネルギーを検出するための手段 を有する音響的な検出装置のための基板。 (b) a diffractive acoustic wave transducer formed in the vicinity of the surface for converting acoustic wave energy of a bulk wave into a wave propagating along an axis parallel to the surface; A diffractive acoustic wave transducer according to any of paragraphs; and (C) A substrate for an acoustic detection device having means for detecting the converted acoustic wave energy with respect to the location of the perturbation.
PCT/JP2000/004294 1999-06-30 2000-06-29 Acoustic touch sensor WO2001002943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU57058/00A AU5705800A (en) 1999-06-30 2000-06-29 Acoustic touch sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18641799A JP2001014092A (en) 1999-06-30 1999-06-30 Acoustic contact detecter
JP11/186417 1999-06-30

Publications (1)

Publication Number Publication Date
WO2001002943A1 true WO2001002943A1 (en) 2001-01-11

Family

ID=16188071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004294 WO2001002943A1 (en) 1999-06-30 2000-06-29 Acoustic touch sensor

Country Status (4)

Country Link
JP (1) JP2001014092A (en)
AU (1) AU5705800A (en)
TW (1) TW538367B (en)
WO (1) WO2001002943A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615146B2 (en) * 2001-05-18 2011-01-19 旭化成エンジニアリング株式会社 Operation indicator with explosion-proof construction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072427A (en) * 1990-11-16 1991-12-10 Exzec Inc. Acoustic touch position sensor with shear to lamb wave conversion
WO1998029853A1 (en) * 1996-12-25 1998-07-09 Elo Touchsystems, Inc. Grating transducer for acoustic touchscreen
JPH10222284A (en) * 1996-12-04 1998-08-21 Daicel Chem Ind Ltd Touch type coordinate input device
US5854450A (en) * 1995-04-19 1998-12-29 Elo Touchsystems, Inc. Acoustic condition sensor employing a plurality of mutually non-orthogonal waves

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072427A (en) * 1990-11-16 1991-12-10 Exzec Inc. Acoustic touch position sensor with shear to lamb wave conversion
US5854450A (en) * 1995-04-19 1998-12-29 Elo Touchsystems, Inc. Acoustic condition sensor employing a plurality of mutually non-orthogonal waves
JPH10222284A (en) * 1996-12-04 1998-08-21 Daicel Chem Ind Ltd Touch type coordinate input device
WO1998029853A1 (en) * 1996-12-25 1998-07-09 Elo Touchsystems, Inc. Grating transducer for acoustic touchscreen

Also Published As

Publication number Publication date
JP2001014092A (en) 2001-01-19
AU5705800A (en) 2001-01-22
TW538367B (en) 2003-06-21

Similar Documents

Publication Publication Date Title
JP4989461B2 (en) Elastic wave touch screen
TW494349B (en) Acoustic touch sensor
US6091406A (en) Grating transducer for acoustic touchscreens
JP2001014093A (en) Acoustic contact detecter
US7204148B2 (en) Acoustic wave touch detecting apparatus
EP1639442B1 (en) Acoustic touch sensor with low-profile diffractive grating transducer assembly
JP3270467B2 (en) Touch position sensor
US9310939B2 (en) Acoustic touch sensor
JP2006524817A (en) Touch sensor having driving frequency, method for detecting contact on touch sensor, acoustic base system having driving frequency, and method of using acoustic board
JP2005092527A (en) Ultrasonic touch panel
WO2001002943A1 (en) Acoustic touch sensor
JP2006185362A (en) Touch panel device
JP3749608B2 (en) Touch coordinate input device
JP2002041232A (en) Acoustic touch sensing device
JPH08305481A (en) Touch input device
KR20070011247A (en) Acoustic wave touch detecting apparatus
JP4026030B2 (en) Ultrasonic touch panel
JPS6333999A (en) Ultrasonic wave transducer
MXPA99005934A (en) Grating transducer for acoustic touchscreen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase