WO2001000224A1 - Compositions and methods for treatment of sexual dysfunction - Google Patents

Compositions and methods for treatment of sexual dysfunction Download PDF

Info

Publication number
WO2001000224A1
WO2001000224A1 PCT/US2000/018217 US0018217W WO0100224A1 WO 2001000224 A1 WO2001000224 A1 WO 2001000224A1 US 0018217 W US0018217 W US 0018217W WO 0100224 A1 WO0100224 A1 WO 0100224A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
trp
phe
administration
arg
Prior art date
Application number
PCT/US2000/018217
Other languages
French (fr)
Inventor
Christine H. Blood
Annette M. Shadiack
Joanna K. Bernstein
Guy W. Herbert
Original Assignee
Palatin Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2376978A priority Critical patent/CA2376978C/en
Application filed by Palatin Technologies Inc. filed Critical Palatin Technologies Inc.
Priority to DE60019598T priority patent/DE60019598T2/en
Priority to AU63407/00A priority patent/AU783718B2/en
Priority to AT00950283T priority patent/ATE293453T1/en
Priority to DK00950283T priority patent/DK1196184T3/en
Priority to EP00950283A priority patent/EP1196184B8/en
Priority to BRPI0012200-9B1A priority patent/BR0012200B1/en
Priority to NZ516030A priority patent/NZ516030A/en
Priority to JP2001505933A priority patent/JP4576493B2/en
Priority to MXPA02000111A priority patent/MXPA02000111A/en
Publication of WO2001000224A1 publication Critical patent/WO2001000224A1/en
Priority to HK02107538.2A priority patent/HK1047881B/en
Priority to US10/946,969 priority patent/US20050037951A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/665Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans derived from pro-opiomelanocortin, pro-enkephalin or pro-dynorphin
    • C07K14/68Melanocyte-stimulating hormone [MSH]
    • C07K14/685Alpha-melanotropin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/811Test for named disease, body condition or organ function

Definitions

  • the present invention relates to peptide constructs for the treatment of sexual dysfunction in animals, including both male erectile dysfunction and female sexual dysfunction, including methods and formulations for the use and administration of the same.
  • Viagra® a brand of sildenafil, which is a phosphodiesterase 5 inhibitor, increasing the persistence of cyclic guanosine monophosphate and thereby enhancing erectile response.
  • sildenafil which is a phosphodiesterase 5 inhibitor, increasing the persistence of cyclic guanosine monophosphate and thereby enhancing erectile response.
  • Urethral inserts such as with suppositories containing prostaglandin, may also be employed.
  • mechanical aids including constriction devices and penile implants.
  • ⁇ -MSH cyclic ⁇ -melanocyte-stimulating hormone
  • the minimum peptide fragment of native ⁇ -MSH needed for erectile response is the central tetrapeptide sequence, His 6 -Phe 7 -Arg 8 -Trp 9 (SEQ ID 1).
  • His 6 -Phe 7 -Arg 8 -Trp 9 SEQ ID 1.
  • all melanocortin peptides share the same active core sequence, His-Phe-Arg-Trp, including melanotropin neuropeptides and adrenocorticotropin.
  • Five distinct melanocortin receptor subtypes have been identified, called MC1- R through MC5-R, and of these MC3-R and MC4-R are believed to be expressed in the human brain.
  • MC3-R has the highest expression in the arcuate nucleus of the hypothalamus, while MC4-R is more widely expressed in the thalamus, hypothalamus and hippocampus.
  • a central nervous system mechanism for melanocortins in the induction of penile erection has been suggested by experiments demonstrating penile erection resulting from central intracerebroventricular administration of melanocortins in rats. While the mechanism of His-Phe-Arg-Trp induction of erectile response has not been fully elucidated, it has been hypothesized that it involves the central nervous system, and probably binding to MC3-R and/or MC4-R.
  • the invention relates to a peptide that is a free acid or pharmaceutically acceptable salt thereof that includes the sequence His-Phe-Arg-Trp, His-D-Phe-Arg-Trp, homologs of His-Phe-Arg- Trp or homologs of His-D-Phe-Arg-Trp.
  • the peptide is preferably a cyclic peptide, and preferable has a terminal -OH at the carboxyl terminus.
  • the peptide is Ac-Nle- cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH.
  • the invention also includes pharmaceutical compositions of matter, including a peptide of this invention and a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier may be a buffered aqueous carrier, and preferably a saline or citrate buffered carrier.
  • the peptide of this invention, and pharmaceutical compositions of this invention may be used for stimulating sexual response in a mammal.
  • the invention thus also includes a method for stimulating sexual response in a mammal, in which a pharmaceutically sufficient amount of a composition including His-Phe-Arg-Trp, His-D-Phe-Arg-Trp, homologs of His-Phe-Arg-Trp or homologs of His-D-Phe-Arg-Trp is administered.
  • the composition includes a peptide or pharmaceutically acceptable salt thereof of the formula Ac-Nle-cyclo(-Asp-His- D-Phe-Arg-Trp-Lys)-OH.
  • the mammal may be male or female.
  • the composition can also include a pharmaceutically acceptable carrier.
  • the peptide or pharmaceutical composition may be administered by any means known in the art, including administration by injection, administration through mucous membranes, buccal administration, oral administration, dermal administration, inhalation administration and nasal administration.
  • administration is by nasal administration of a metered amount of a formulation including an aqueous buffer, which buffer may be a saline or citrate buffer.
  • a primary object of the present invention is a melanocortin receptor-specific pharmaceutical for use in treatment of sexual dysfunction.
  • a second object is to provide a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of male sexual dysfunction, including erectile dysfunction.
  • Yet another object is to provide a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of sexual dysfunction which is effective by nasal administration at doses of less than 75 ⁇ g/kg of body weight, and preferably at doses of less than 25 ⁇ g/kg of body weight.
  • Yet another object is to provide a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of sexual dysfunction with substantially reduced incidence of undesirable side effects.
  • a primary advantage of the present invention is that it is therapeutically effective at doses that do not cause deleterious side effects, such side effects including nausea, yawning, stretching, decreased appetite and other effects observed with Melanotan-ll.
  • a second advantage of the present invention is that it provides compositions with a larger therapeutic window between desired therapeutic effects and the onset of undesired side effects than other melanocortin receptor-specific agents for the intended purpose.
  • Yet another advantage of the present invention is that it provides compositions with a greater safety margin between desired therapeutic effects and the onset of undesired side effects than other melanocortin receptor-specific agents for the intended purpose.
  • Yet another advantage of the present invention is that it provides a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of sexual dysfunction which, because of increased efficacy at low doses, may be administered by delivery systems other than art conventional intravenous, subcutaneous or intramuscular injection, including but not limited to nasal delivery systems and mucous membrane delivery systems.
  • FIG. 1 is a plot of the pharmacokinetic profile in rats intravenously administered 100 ⁇ g/kg body weight of Compound 1 ;
  • FIG. 2 is a plot of the pharmacokinetic profile in monkeys intravenously administered 50 ⁇ g/kg body weight of Compound 1 ;
  • FIG. 3 is a plot of the pharmacokinetic profile in a monkey intranasally administered 50 ⁇ g/kg body weight of Compound 1;
  • FIG. 4 is a plot of the intranasal efficacy in rats of different amounts of Compound 1 ;
  • FIG. 5 is a plot of pharmacokinetic profile in Beagle dogs intranasally administered 30, 150 and 650 ⁇ g/kg body weight of Compound 1.
  • amino acid residues have their conventional meaning as given in Chapter 2400 of the Manual of Patent Examining Procedure, 7 th Ed.
  • “Nle” is norleucine;
  • “Asp” is aspartic acid;
  • His is histidine;
  • D-Phe is D- phenylalanine;
  • Arg is arginine;
  • Trp is tryptophan;
  • Lys is lysine;
  • Gly is glycine;
  • Pro is proline;
  • Tyr is tyrosine, and "Ser” is serine.
  • “Ac” refers to a peptide or amino acid sequence that is acetylated.
  • the invention provides deamidated ⁇ -MSH peptides, which are peptides that include the core ⁇ -MSH sequence His-Phe-Arg-Trp, His-D-Phe-Arg-Trp, or homologs or analogs of either of the foregoing, in which the peptide is deamidated, which is to say that it does not include an -NH 2 group at the carboxyl terminus.
  • the deamidated ⁇ -MSH peptides of this invention have an -OH group at the carboxyl terminus, and are thus a free acid form of peptide.
  • the invention provides the peptide
  • the peptide of Compound 1 has a formula of and a net molecular weight of 1025.18.
  • This peptide may be synthesized by solid-phase means and purified to greater than 96% purity by HPLC, yielding a white powder that is a clear, colorless solution in water.
  • the peptide compounds of this invention may be synthesized by solid-phase synthesis and purified according to methods known in the art. Any of a number of well-known procedures utilizing a variety of resins and reagents may be used to prepare the compounds of this invention.
  • the peptides of this invention may be in the form of any pharmaceutically acceptable salt.
  • Acid addition salts of the compounds of this invention are prepared in a suitable solvent from the peptide and an excess of an acid, such as hydrochloric, hydrobromic, sulfuric, phosphoric, acetic, trifluoroacetic, maleic, succinic or methanesulfonic.
  • the acetate salt form is especially useful.
  • suitable pharmaceutically acceptable salts may include alkali metal salts, such as sodium or potassium salts, or alkaline earth metal salts, such as calcium or magnesium salts.
  • the invention provides a pharmaceutical composition that includes a peptide of this invention and a pharmaceutically acceptable carrier.
  • the carrier may be a liquid formulation, and is preferably a buffered, isotonic, aqueous solution.
  • Pharmaceutically acceptable carriers also include excipients, such as diluents, carriers and the like, and additives, such as stabilizing agents, preservatives, solubilizing agents, buffers and the like, as hereafter described.
  • these peptides may be administered by means other than by injection. If it is administered by injection, the injection may be intravenous, subcutaneous, intramuscular, intraperitoneal or other means known in the art.
  • the peptides of this invention may be formulated by any means known in the art, including but not limited to formulation as tablets, capsules, caplets, suspensions, powders, lyophilized preparations, suppositories, ocular drops, skin patches, oral soluble formulations, sprays, aerosols and the like, and may be mixed and formulated with buffers, binders, excipients, stabilizers, anti-oxidants and other agents known in the art. In general, any route of administration by which the peptides of invention are introduced across an epidermal layer of cells may be employed. Administration means may include administration through mucous membranes, buccal administration, oral administration, dermal administration, inhalation administration, nasal administration and the like.
  • the dosage for treatment of male erectile dysfunction is administration, by any of the foregoing means or any other means known in the art, of an amount sufficient to bring about an erection of the penis in a male.
  • the dosage for treatment of female sexual dysfunction is administration, by any of the foregoing means or any other means known in the art, of an amount sufficient to bring about the desired response.
  • the peptides of this invention may be formulated or compounded into pharmaceutical compositions that include at least one peptide of this invention together with one or more pharmaceutically acceptable carriers, including excipients, such as diluents, carriers and the like, and additives, such as stabilizing agents, preservatives, solubilizing agents, buffers and the like, as may be desired.
  • pharmaceutically acceptable carriers including excipients, such as diluents, carriers and the like, and additives, such as stabilizing agents, preservatives, solubilizing agents, buffers and the like, as may be desired.
  • Formulation excipients may include polyvinylpyrrolidone, gelatin, hydroxy cellulose, acacia, polyethylene giycol, manniton, sodium chloride or sodium citrate.
  • water containing at least one or more buffering constituents is preferred, and stabilizing agents, preservatives and solubilizing agents may also be employed.
  • any of a variety of thickening, filler, bulking and carrier additives may be employed, such as starches, sugars, fatty acids and the like.
  • any of a variety of creams, ointments, gels, lotions and the like may be employed.
  • non-active ingredients will constitute the greater part, by weight or volume, of the preparation.
  • any of a variety of measured-release, slow-release or time-release formulations and additives may be employed, so that the dosage may be formulated so as to effect delivery of a peptide of this invention over a period of time.
  • the actual quantity of peptides of this invention administered to a patient will vary between fairly wide ranges depending upon the mode of administration, the formulation used, and the response desired.
  • nasal administration is meant any form of intranasal administration of any of the peptides of this invention.
  • the peptides may be in an aqueous solution, such as a solution including saline, citrate or other common excipients or preservatives.
  • the peptides may also be in a dry or powder formulation.
  • peptides of this invention may be administered directly into the lung.
  • Intrapulmonary administration may be performed by means of a metered dose inhaler, a device allowing self-administration of a metered bolus of a peptide of this invention when actuated by a patient during inspiration.
  • the peptides of this invention may be formulated with any of a variety of agents that increase effective nasal absorption of drugs, including peptide drugs. These agents should increase nasal absorption without unacceptable damage to the mucosal membrane.
  • the peptide may be appropriately buffered by means of saline, acetate, phosphate, citrate, acetate or other buffering agents, which may be at any physiologically acceptable pH, generally from about pH 4 to about pH 7.
  • buffering agents may also be employed, such as phosphate buffered saline, a saline and acetate buffer, and the like.
  • a 0.9% saline solution may be employed.
  • a suitable preservative may be employed, to prevent or limit bacteria and other microbial growth.
  • One such preservative that may be employed is 0.05% benzalkonium chloride.
  • the peptide may be in a dried and part icu late form.
  • the particles are between about 0.5 and 6.0 ⁇ m, such that the particles have sufficient mass to settle on the lung surface, and not be exhaled, but are small enough that they are not deposited on surfaces of the air passages prior to reaching the lung.
  • Any of a variety of different techniques may be used to make dry powder microparticles, including but not limited to micro-milling, spray drying and a quick freeze aerosol followed by lyophilization. With micro- particles, the peptides may be deposited to the deep lung, thereby providing quick and efficient absorption into the bloodstream.
  • inhalers Any of a variety of inhalers can be employed, including propellant-based aerosols, nebulizers, single dose dry powder inhalers and multidose dry powder inhalers.
  • Common devices in current use include metered dose inhalers, which are used to deliver medications for the treatment of asthma, chronic obstructive pulmonary disease and the like.
  • Preferred devices include dry powder inhalers, designed to form a cloud or aerosol of fine powder with a particle size that is always less than about 6.0 ⁇ m.
  • Glaxo's RotahalerTM which dispenses a unit dose of powder into a tube, and employs patient suction for inhalation of the powder.
  • Other, more advanced and preferred dry powder inhalers have been or are in development, which include propellants and the like.
  • Microparticle size may be controlled by means of the method of making.
  • the size of the milling head, speed of the rotor, time of processing and the like control the microparticle size.
  • the nozzle size, flow rate, dryer heat and the like control the microparticle size.
  • the nozzle size, flow rate, concentration of aerosoled solution and the like control the microparticle size.
  • a dry powder inhaler which includes a piezoelectric crystal that deaggregates a dry powder dose, creating a small powder "cloud.” Once the powder cloud is generated, an electricostatically charged plated above the powder cloud lifts the drug into the air stream. The user with one relatively easy breath can then inhale the powder.
  • the device may be breath activated, utilizing a flow sensor that activates the electronic components upon the start of inhalation, and thereby eliminating the need for coordination of activation and breathing rhythms by the user.
  • Compound 1 resulted in penile erection in 100% of rats tested, with approximately 50% of the rats having multiple erections during a 30 minutes observation period.
  • the optimal efficacious dose intravenously of Melanotan-ll in the same rat model was 100 ⁇ g/kg of body weight.
  • the therapeutic window (the range from the desired therapeutic effect to observed adverse effects) for Compound 1 is on the order of >1 ,000-fold, compared to a 3- to 4-fold therapeutic window for Melanotan-ll. That is, the optimal efficacious dose of Melanotan-ll is approximately one- third to one-fourth the dose that causes observed adverse effects. For Compound 1, the optimal efficacious dose is less than one-one thousandth the dose that causes observed adverse effects.
  • the significantly greater therapeutic window for Compound 1 demonstrates that it is better tolerated than Melanontan-ll.
  • the potency of Compound 1 is significantly higher than that of Melanotan-ll, meaning that significantly less Compound 1 is required for a desired effect, as compared to Melanotan-ll.
  • 2 ⁇ g/kg of body weight of Compound 1 resulted in penile response by intravenous injection in rats, while 100 ⁇ g/kg of body weight of Melanotan-ll was required for an equivalent penile response.
  • the significantly higher potency results in less product being required. It further permits utilization of alternative delivery routes, including dermal, nasal and similar delivery routes, wherein higher quantities of drug may be required in order to achieve the desired effect.
  • intranasal routes of administration typically have a bioavailability substantially less than that achieved with intravenous dosing, and thus more drug must be administered by intranasal routes in order to achieve the equivalent pharmacological response.
  • the peptide Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH was synthesized by standard solid phase peptide synthesis methods, and is a cyclic heptapeptide melanocortin peptide analog with a free acid at the carboxyl terminus and an acetylated amino group at the amino terminus, with the structure:
  • the peptide has a net molecular weight of 1025.18, and is supplied in an acetate salt form.
  • the peptide is a white, odorless amorphous hygroscopic powder, soluble in 0.9% saline, composed of
  • an Fmoc-Lys(R 3 )-p-alkoxybenzyl alcohol resin was transferred to a solid phase peptide synthesizer reactor with a mechanical stirrer.
  • the R 3 group such as 1-(1'- adamantyl)-1-methyl-ethoxycarbonyl (Adpoc), allyloxycarbonyl (Aloe) or 4-methyltrityl (Mtt), was removed and the next Fmoc-protected amino acid (Fmoc-Trp(Boc)-OH) was added to the resin through standard coupling procedures.
  • the Fmoc protective group was removed and the remaining amino acids added individually in the correct sequence, by repeating coupling and deprotection procedures until the amino acid sequence was completed.
  • the exposed terminal amino group was acetylated with acetic anhydride and pyridine in N,N-dimethylformamide (DMF).
  • DMF N,N-dimethylformamide
  • the Lys and Asp deprotected peptide resin was suspended in a suitable solvent, such as DMF, dichloromethane (DCM) or 1-methyl-2-pyrrolidone (NMP), a suitable cyclic coupling reagent, such as 2-(1 H- benzotriazol-1-yl)-1 ,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), 2-(7-aza-1 H-benzotriazol-1- yl)-1 ,1 ,3,3-tetramethyluronium tetrafluoroborate (TATU), 2-(2-oxo-1(2H)-pyridyl)-1 , 1 ,3,3- tetramethyluronium tetrafluoroborate (TPTU) or N,N'-dicyclohexylcarbodiimide/1- hydroxybenzotriazole (DCCI/HOBt) was added, and coupling initiated by use of a suitable base, such as N,N
  • the peptide-resin was washed and the peptide cleaved from the resin and any remaining protective groups using trifluoroacetic acid (TFA) in the presence of water and 1 ,2-ethanedithiol (EDT).
  • TFA trifluoroacetic acid
  • EDT 1 ,2-ethanedithiol
  • the final product was precipitated by adding cold ether and collected by filtration.
  • Final purification was by reversed phase HPLC using a C 18 column. The purified peptide was converted to acetate salt by passage through an ion-exchange column.
  • Relative binding was determined by competitive inhibition using ⁇ -MSH.
  • B16-F1 melanoma cells were used as the source of MC1 receptors;
  • HEK 293 cells, transfected with human melanocortin receptor sequences, were used as the source of MC3, MC4 and MC5 receptors; and
  • Y1 cells were used as the source of MC2 receptors.
  • a standard competitive binding assay protocol was following, using 125 I-NDP-MSH as the radioligand.
  • the agonist activity of Compound 1 was evaluated by cyclic adenosine 3':5'-cyclic monophosphate (cAMP) detection using a commercially available cAMP kit (R&D Systems, DE0350, low pH).
  • cAMP cyclic adenosine 3':5'-cyclic monophosphate
  • R&D Systems DE0350, low pH.
  • HEK 293 cells stably transfected with human MC4-R, were used.
  • Compound 1 was evaluated by addition of each to cells both with and without concomitant addition of ⁇ -MSH, with ⁇ -MSH also used as a positive control. Following incubation, the medium was aspirated and cell layers extracted. The total cAMP accumulation in fixed quantities of cell extract was determined by competitive immunoassay using the cAMP kit. These results are shown on Table 2.
  • EXAMPLE 4 Induction of Penile Erections Using Compound 1 and Melanotan-ll
  • the efficacious dose of Compound 1, made as in Example 1 above, to induce penile erection in Sprague Dawley rats by intravenous dosing was determined.
  • the optimal efficacious dose by intravenous administration is 100 ⁇ g/kg body weight.
  • Melanotan-ll was also made by conventional peptide synthesis, as generally described in Example 1 above.
  • Compound 1 was at least approximately 50-fold more potent for inducing erection in a rat model when administered by intravenous injection than is Melanotan-ll.
  • no adverse side effects including excessive grooming, yawning, vacuous chewing, hypoactivity, or heaving, were observed on administration of intravenous doses of Compound 1 as high as 3,000 ⁇ g/kg body weight.
  • a sensitive bioassay based on high affinity binding to MCRs, was used to monitor plasma levels of Compound 1 in dosed rats. Rats were dosed intravenously with 100 ⁇ g/kg of Compound 1. A bi-phasic pharmacokinetic profile resulted, as shown in FIG. 1.
  • FIG. 4 shows the number of penile erections per rat during the initial 30 minute period post-administration; as shown for the 25 ⁇ g/kg level, no penile erections were observed with pre-administration of SHU9119.
  • Tritiated Compound 1 was prepared.
  • a precursor to Compound 1 was prepared using the general methods of Example 1 , and the D-Phe amino acid was labeled with H 3 using a tritiation reduction reaction.
  • the nonselective antagonist SHU9119 was administered to Sprague Dawley rats by intravenous administration. Five minutes following administration of SHU9119, 10 ⁇ Ci of tritiated Compound 1 was administered by nasal administration. In a control group of animals, the same dose of tritiated Compound 1 was administered, without prior administration of SHU9119. Both groups were sacrificed five minutes following administration of tritiated Compound 1 , and the amount of tritium in the hypothalamus was detected. In animals pre- administered SHU9119, there was a decrease of 55% in the amount of detectable tritiated
  • Compound 1 within the hypothalamus compared to animals not pre-administered SHU9119.
  • the mean and standard deviation of counts per minute per 100 mg for animals pre-administered SHU9119 was 169.25 ⁇ 23.13, and 75.75 ⁇ 13.5 for animals not pre-administered SHU9119.
  • Nasal Formulation 1 of Example 6 was administered to cynomolgus monkeys by nasal spray, at a dose of approximately 50 ⁇ g per kg of body weight. Compared to intravenous injection of the same dose of Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH, the mean bioavailability of the peptide using Nasal Formulation 1 was approximately 31.9% ⁇ 2.7.
  • the mean bioavailability of the peptide using Nasal Formulation 1 was 27.9% ⁇ 9.7, and the mean bioavailability of the peptide using Nasal Formulation 2 was 34.7% ⁇ 15.6, in both cases again compared to bioavailability of the same quantity of peptide administered by intravenous injection.
  • an erection lasting approximately one hour was observed in one of four monkeys.
  • a sensitive bioassay based on high affinity binding to MCRs, was used to monitor plasma levels of Compound 1 in cynomolgus monkeys.
  • Monkeys were dosed intravenously with 50 ⁇ g/kg of Compound 1.
  • a bi-phasic pharmacokinetic profile resulted, as shown in FIG. 2.
  • a selected monkey was intranasally administered 50 ⁇ g/kg of Compound 1 in Nasal Formulation 1, and the resulting pharmacokinetic profile is shown in FIG. 3.
  • a dosing study was conducted in rats by nasal administration of from 15 ⁇ g per kg of body weight to 1500 ⁇ g per kg of body weight, using Nasal Formulation 1. Based on penile erectile response behavior, the peptide was efficacious at all dose amounts administered, and particularly from 25 ⁇ g/kg to 75 ⁇ g/kg, with pharacologic effect observed over the range from 15 ⁇ g/kg to 1500 ⁇ g/kg. In addition, the response rate and side effects differed significantly from those demonstrated with nasal administration of Melanotan-ll.
  • a sensitive bioassay based on high affinity binding to MCRs, was used to monitor plasma levels of Compound 1 in Beagle dogs.
  • the dogs were administered 0 (control), 30, 150 or 540 ⁇ g/kg of Compound 1 in Nasal Formulation 1 by nasal administration.
  • the pharmacokinetic profile through four hours post-administration is shown in FIG. 5.
  • a total dose of 500 ⁇ g of Compound 1 in Nasal Formulation 1 is administered by means of a nasal administration metered dose device.
  • the device dispenses a 100 ⁇ L spray volume, and is administered by the patient into a single nostril. If desired, erectile response is measured using an appropriate device, such as a Rigiscan (Dacomed).
  • a total dose of 500 ⁇ g of Compound 1 in Nasal Formulation 1 is administered by means of a nasal administration metered dose device.
  • the device dispenses a 100 ⁇ L spray volume, and is administered by the patient into a single nostril.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Endocrinology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Reproductive Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Gynecology & Obstetrics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

Compositions and methods are provided for treatment of sexual dysfunction in mammals, including male sexual dysfunction, such as erectile dysfunction, and female sexual dysfunction. In one embodiment, a peptide-based composition including the peptide sequence Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH is administered. Methods of administration include injection, oral, nasal and mucosal administration.

Description

COMPOSITIONS AND METHODS FOR TREATMENT OF SEXUAL DYSFUNCTION
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of the filing of U.S. Provisional Patent Application Serial No. 60/142,346, entitled Compositions And Methods For Treatment Of Sexual Dysfunction, filed on June 29, 1999, and U.S. Provisional Patent Application Serial No. 60/194,987, entitled Compositions And Nasal Delivery Methods For Treatment Of Sexual Dysfunction, filed on April 5, 2000, and the specification thereof of each is incorporated herein by reference.
GOVERNMENT RIGHTS The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Grant No. R43 GM60144 awarded by the awarded by the National Institute of General Medical Sciences of the National Institutes of Health of the U.S. Department of Health and Human Services.
BACKGROUND OF THE INVENTION Field of the Invention (Technical Field):
The present invention relates to peptide constructs for the treatment of sexual dysfunction in animals, including both male erectile dysfunction and female sexual dysfunction, including methods and formulations for the use and administration of the same.
Background Art:
Note that the following discussion refers to a number of publications by author(s) and year of publication, and that due to recent publication dates certain publications are not to be considered as prior art vis-a-vis the present invention. Discussion of such publications herein is given for more complete background and is not to be construed as an admission that such publications are prior art for patentability determination purposes. Sexual dysfunction, including both penile erectile dysfunction or impotence and female sexual dysfunction, are common medical problems. Significant effort has been devoted over the last twenty or more years to develop methods, devices and compounds for treatment of sexual dysfunction. While more effort has been undertaken for treatment of penile erectile dysfunction, female sexual dysfunction is also an area to which significant research and effort has been devoted.
At present, one commonly used orally administered drug for treatment of sexual dysfunction in the male is Viagra®, a brand of sildenafil, which is a phosphodiesterase 5 inhibitor, increasing the persistence of cyclic guanosine monophosphate and thereby enhancing erectile response. There are several other medical treatment alternatives currently available depending on the nature and cause of the impotence problem. Some men have abnormally low levels of the male hormone testosterone, and treatment with testosterone injections or pills may be beneficial. However, comparatively few impotent men have low testosterone levels. For many forms of erectile dysfunction, treatment may be undertaken with drugs injected directly into the penis, including drugs such as papaverin, prostaglandin EL phenoxybenzamine or phentolamine. These all work primarily by dilating the arterial blood vessels and decreasing the venous drainage. Urethral inserts, such as with suppositories containing prostaglandin, may also be employed. In addition, a variety of mechanical aids are employed, including constriction devices and penile implants.
A variety of treatments have also been explored for female sexual dysfunction, including use of sildenafil, although the Food and Drug Administration has not specifically approved such use. Testosterone propionate has also been employed to increase or augment female libido.
Melanocortin receptor-specific compounds have been explored for use of treatment of sexual dysfunction. In one report, a cyclic α-melanocyte-stimulating hormone ("α-MSH") analog, called Melanotan-ll, was evaluated for erectogenic properties for treatment of men with psychogenic erectile dysfunction. Wessells H. et al., J Urology 160:389-393 (1998); see also U.S. Patent No. 5,576,290, issued November 19, 1996 to M.E. Hadley, entitled Compositions and Methods for the Diagnosis and Treatment of Psychogenic Erectile Dysfunction and U.S. Patent No. 6,051 ,555, issued April 18, 2000, also to M.E. Hadley, entitled Stimulating Sexual Response in Females. The peptides used in U.S. Patent Nos. 5,576,290 and 6,051 ,555 are also described in U.S. Patent No. 5,674,839, issued October 7, 1997, to V.J. Hruby, M.E. Hadley and F. Al-Obeidi, entitled Cyclic Analogs of Alpha-MSH Fragments, and in U.S. Patent No. 5,714,576, issued February 3, 1998, to V.J. Hruby, M.E. Hadley and F. Al-Obeidi, entitled Linear Analogs of Alpha-MSH Fragments. Melanotan-ll is a peptide of the following formula:
I I
Ac-Nle-Asp-His-D-Phe-Arg-Trp-Lys-NH2
Additional related peptides are disclosed in U.S. Patent Nos. 5,576,290, 5,674,839, 5,714,576 and 6,051,555. These peptides are described as being useful for both the diagnosis and treatment of psychogenic sexual dysfunction in males and females. These peptides are related to the structure of melanocortins.
In use of Melanotan-ll, significant erectile responses were observed, with 8 of 10 treated men developing clinically apparent erections, and with a mean duration of tip rigidity greater than 80% for 38 minutes with Melanotan-ll compared to 3.0 minutes with a placebo (p = 0.0045). The drug was administered by subcutaneous abdominal wall injection, at doses ranging from 0.025 to 0.157 mg/kg body weight. Transient side effects were observed, including nausea, stretching and yawning, and decreased appetite.
The minimum peptide fragment of native α-MSH needed for erectile response is the central tetrapeptide sequence, His6-Phe7-Arg8-Trp9 (SEQ ID 1). In general, all melanocortin peptides share the same active core sequence, His-Phe-Arg-Trp, including melanotropin neuropeptides and adrenocorticotropin. Five distinct melanocortin receptor subtypes have been identified, called MC1- R through MC5-R, and of these MC3-R and MC4-R are believed to be expressed in the human brain. MC3-R has the highest expression in the arcuate nucleus of the hypothalamus, while MC4-R is more widely expressed in the thalamus, hypothalamus and hippocampus. A central nervous system mechanism for melanocortins in the induction of penile erection has been suggested by experiments demonstrating penile erection resulting from central intracerebroventricular administration of melanocortins in rats. While the mechanism of His-Phe-Arg-Trp induction of erectile response has not been fully elucidated, it has been hypothesized that it involves the central nervous system, and probably binding to MC3-R and/or MC4-R. Other peptides and constructs have been proposed which are iigands that alter or regulate the activity of one or more melanocortin receptors. For example, International Patent Application No. PCT/US99/09216, entitled Isoquinoline Compound Melanocortin Receptor Ligands and Methods of Using Same, discloses two compounds that induce penile erections in rats. However, these compounds were administered by injection at doses of 1.8 mg/kg and 3.6 mg/kg, respectively, and at least one compound resulted in observable side effects, including yawning and stretching. Other melanocortin receptor-specific compounds with claimed application for treatment of sexual dysfunction are disclosed in International Patent Application No. PCT/US99/13252, entitled Spiropiperidine Derivatives as Melanocortin Receptor Agonists.
Both cyclic and linear α-MSH peptides have been studied; however, the peptides heretofore evaluated have had an NH2 group at the carboxyl terminus. See, for example, Wessells H. et al., J Urology, cited above; Haskell-Luevano C. et al., J Med Chem 40:2133-39 (1997); Schioth H.B. et al., Brit J Pharmacol 124:75-82 (1998); Schioth H.B. et al., Eur J Pharmacol 349:359-66 (1998); Hadley M.E. et al., Pigment Cell Res 9:213-34 (1996); Bednarek M.A. et al., Peptides 20:401-09 (1999); U.S. Patent Nos. 6,054,556, 6,051 ,555 and 5,576,290; and, International Patent Applications PCT/US99/04111 and PCT/US98/03298. While significant research has been conducted in an effort to determine the optimal structure of α-MSH peptides, including a variety of structure-function, agonist-antagonist, molecular modeling and pharmacophore studies, such studies have relied upon peptides with an art conventional NH2 group at the carboxyl terminus. Further, it has long been believed that biologically active neuropeptides, including α-MSH peptides, are amidated, with an NH2 group at the carboxyl terminus, and that such amidation is required both for biological activity and stability. See, for example, Metabolism of Brain Peptides, Ed. G. O'Cuinn, CRC Press, New York, 1995, pp. 1-9 and 99-101.
SUMMARY OF THE INVENTION (DISCLOSURE OF THE INVENTION)
The invention relates to a peptide that is a free acid or pharmaceutically acceptable salt thereof that includes the sequence His-Phe-Arg-Trp, His-D-Phe-Arg-Trp, homologs of His-Phe-Arg- Trp or homologs of His-D-Phe-Arg-Trp. The peptide is preferably a cyclic peptide, and preferable has a terminal -OH at the carboxyl terminus. In a preferred embodiment, the peptide is Ac-Nle- cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH.
The invention also includes pharmaceutical compositions of matter, including a peptide of this invention and a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier may be a buffered aqueous carrier, and preferably a saline or citrate buffered carrier.
The peptide of this invention, and pharmaceutical compositions of this invention, may be used for stimulating sexual response in a mammal. The invention thus also includes a method for stimulating sexual response in a mammal, in which a pharmaceutically sufficient amount of a composition including His-Phe-Arg-Trp, His-D-Phe-Arg-Trp, homologs of His-Phe-Arg-Trp or homologs of His-D-Phe-Arg-Trp is administered. In a preferred embodiment, the composition includes a peptide or pharmaceutically acceptable salt thereof of the formula Ac-Nle-cyclo(-Asp-His- D-Phe-Arg-Trp-Lys)-OH. The mammal may be male or female. In this method, the composition can also include a pharmaceutically acceptable carrier. The peptide or pharmaceutical composition may be administered by any means known in the art, including administration by injection, administration through mucous membranes, buccal administration, oral administration, dermal administration, inhalation administration and nasal administration. In a preferred embodiment, administration is by nasal administration of a metered amount of a formulation including an aqueous buffer, which buffer may be a saline or citrate buffer.
A primary object of the present invention is a melanocortin receptor-specific pharmaceutical for use in treatment of sexual dysfunction.
A second object is to provide a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of male sexual dysfunction, including erectile dysfunction.
Yet another object is to provide a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of female sexual dysfunction. Yet another object is to provide a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of sexual dysfunction which is effective by intravenous administration at doses of less than 25 μg/kg of body weight, and preferably at doses of less than 0.5 μg/kg of body weight.
Yet another object is to provide a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of sexual dysfunction which is effective by nasal administration at doses of less than 75 μg/kg of body weight, and preferably at doses of less than 25 μg/kg of body weight.
Yet another object is to provide a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of sexual dysfunction with substantially reduced incidence of undesirable side effects.
A primary advantage of the present invention is that it is therapeutically effective at doses that do not cause deleterious side effects, such side effects including nausea, yawning, stretching, decreased appetite and other effects observed with Melanotan-ll.
A second advantage of the present invention is that it provides compositions with a larger therapeutic window between desired therapeutic effects and the onset of undesired side effects than other melanocortin receptor-specific agents for the intended purpose.
Yet another advantage of the present invention is that it provides compositions with a greater safety margin between desired therapeutic effects and the onset of undesired side effects than other melanocortin receptor-specific agents for the intended purpose.
Yet another advantage of the present invention is that it provides a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of sexual dysfunction which is efficacious at significantly lower doses than Melanotan-ll or other melanocortin receptor-specific agents. Yet another advantage of the present invention is that it provides a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of sexual dysfunction which is pharmaceutically active more rapidly following administration than Melanotan-ll or other peptide- based melanocortin receptor-specific agents.
Yet another advantage of the present invention is that it provides a peptide-based melanocortin receptor-specific pharmaceutical for use in treatment of sexual dysfunction which, because of increased efficacy at low doses, may be administered by delivery systems other than art conventional intravenous, subcutaneous or intramuscular injection, including but not limited to nasal delivery systems and mucous membrane delivery systems.
Other objects, advantages and novel features, and further scope of applicability of the present invention will be set forth in part in the detailed description to follow, taken in conjunction with the accompanying drawings, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated into and form a part of the specification, illustrate several embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating a preferred embodiment of the invention and are not to be construed as limiting the invention. In the drawings:
FIG. 1 is a plot of the pharmacokinetic profile in rats intravenously administered 100 μg/kg body weight of Compound 1 ;
FIG. 2 is a plot of the pharmacokinetic profile in monkeys intravenously administered 50 μg/kg body weight of Compound 1 ; FIG. 3 is a plot of the pharmacokinetic profile in a monkey intranasally administered 50 μg/kg body weight of Compound 1;
FIG. 4 is a plot of the intranasal efficacy in rats of different amounts of Compound 1 ; and
FIG. 5 is a plot of pharmacokinetic profile in Beagle dogs intranasally administered 30, 150 and 650 μg/kg body weight of Compound 1.
DESCRIPTION OF THE PREFERRED EMBODIMENTS (BEST MODES FOR CARRYING OUT THE INVENTION)
In the listing of compounds according to the present invention, the amino acid residues have their conventional meaning as given in Chapter 2400 of the Manual of Patent Examining Procedure, 7th Ed. Thus, "Nle" is norleucine; "Asp" is aspartic acid; "His" is histidine; "D-Phe" is D- phenylalanine; "Arg" is arginine; "Trp" is tryptophan; "Lys" is lysine; "Gly" is glycine; "Pro" is proline; "Tyr" is tyrosine, and "Ser" is serine. "Ac" refers to a peptide or amino acid sequence that is acetylated.
The invention provides deamidated α-MSH peptides, which are peptides that include the core α-MSH sequence His-Phe-Arg-Trp, His-D-Phe-Arg-Trp, or homologs or analogs of either of the foregoing, in which the peptide is deamidated, which is to say that it does not include an -NH2 group at the carboxyl terminus. In a preferred embodiment, the deamidated α-MSH peptides of this invention have an -OH group at the carboxyl terminus, and are thus a free acid form of peptide.
In a preferred embodiment, the invention provides the peptide
Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH Compound 1
The peptide of Compound 1 has a formula of
Figure imgf000009_0001
and a net molecular weight of 1025.18. This peptide may be synthesized by solid-phase means and purified to greater than 96% purity by HPLC, yielding a white powder that is a clear, colorless solution in water. In general, the peptide compounds of this invention may be synthesized by solid-phase synthesis and purified according to methods known in the art. Any of a number of well-known procedures utilizing a variety of resins and reagents may be used to prepare the compounds of this invention.
The peptides of this invention may be in the form of any pharmaceutically acceptable salt. Acid addition salts of the compounds of this invention are prepared in a suitable solvent from the peptide and an excess of an acid, such as hydrochloric, hydrobromic, sulfuric, phosphoric, acetic, trifluoroacetic, maleic, succinic or methanesulfonic. The acetate salt form is especially useful. Where the compounds of this invention include an acidic moiety, suitable pharmaceutically acceptable salts may include alkali metal salts, such as sodium or potassium salts, or alkaline earth metal salts, such as calcium or magnesium salts.
The invention provides a pharmaceutical composition that includes a peptide of this invention and a pharmaceutically acceptable carrier. The carrier may be a liquid formulation, and is preferably a buffered, isotonic, aqueous solution. Pharmaceutically acceptable carriers also include excipients, such as diluents, carriers and the like, and additives, such as stabilizing agents, preservatives, solubilizing agents, buffers and the like, as hereafter described.
Routes of Administration. Because, in part, of the increased potency of Compound 1 and the other peptides of this invention, these peptides may be administered by means other than by injection. If it is administered by injection, the injection may be intravenous, subcutaneous, intramuscular, intraperitoneal or other means known in the art. The peptides of this invention may be formulated by any means known in the art, including but not limited to formulation as tablets, capsules, caplets, suspensions, powders, lyophilized preparations, suppositories, ocular drops, skin patches, oral soluble formulations, sprays, aerosols and the like, and may be mixed and formulated with buffers, binders, excipients, stabilizers, anti-oxidants and other agents known in the art. In general, any route of administration by which the peptides of invention are introduced across an epidermal layer of cells may be employed. Administration means may include administration through mucous membranes, buccal administration, oral administration, dermal administration, inhalation administration, nasal administration and the like. The dosage for treatment of male erectile dysfunction is administration, by any of the foregoing means or any other means known in the art, of an amount sufficient to bring about an erection of the penis in a male. The dosage for treatment of female sexual dysfunction is administration, by any of the foregoing means or any other means known in the art, of an amount sufficient to bring about the desired response.
The peptides of this invention may be formulated or compounded into pharmaceutical compositions that include at least one peptide of this invention together with one or more pharmaceutically acceptable carriers, including excipients, such as diluents, carriers and the like, and additives, such as stabilizing agents, preservatives, solubilizing agents, buffers and the like, as may be desired. Formulation excipients may include polyvinylpyrrolidone, gelatin, hydroxy cellulose, acacia, polyethylene giycol, manniton, sodium chloride or sodium citrate. For injection or other liquid administration formulations, water containing at least one or more buffering constituents is preferred, and stabilizing agents, preservatives and solubilizing agents may also be employed. For solid administration formulations, any of a variety of thickening, filler, bulking and carrier additives may be employed, such as starches, sugars, fatty acids and the like. For topical administration formulations, any of a variety of creams, ointments, gels, lotions and the like may be employed. For most pharmaceutical formulations, non-active ingredients will constitute the greater part, by weight or volume, of the preparation. For pharmaceutical formulations, it is also contemplated that any of a variety of measured-release, slow-release or time-release formulations and additives may be employed, so that the dosage may be formulated so as to effect delivery of a peptide of this invention over a period of time.
In general, the actual quantity of peptides of this invention administered to a patient will vary between fairly wide ranges depending upon the mode of administration, the formulation used, and the response desired.
Nasal or Intrapulmonary Administration. By "nasal administration" is meant any form of intranasal administration of any of the peptides of this invention. The peptides may be in an aqueous solution, such as a solution including saline, citrate or other common excipients or preservatives. The peptides may also be in a dry or powder formulation. In an alternative embodiment, peptides of this invention may be administered directly into the lung. Intrapulmonary administration may be performed by means of a metered dose inhaler, a device allowing self-administration of a metered bolus of a peptide of this invention when actuated by a patient during inspiration.
The peptides of this invention may be formulated with any of a variety of agents that increase effective nasal absorption of drugs, including peptide drugs. These agents should increase nasal absorption without unacceptable damage to the mucosal membrane. U.S. Patents No. 5,693,608, 5,977,070 and 5,908,825, among others, teach a number of pharmaceutical compositions that may be employed, including absorption enhancers, and the teachings of each of the foregoing, and all references and patents cited therein, are incorporated by reference.
If in an aqueous solution, the peptide may be appropriately buffered by means of saline, acetate, phosphate, citrate, acetate or other buffering agents, which may be at any physiologically acceptable pH, generally from about pH 4 to about pH 7. A combination of buffering agents may also be employed, such as phosphate buffered saline, a saline and acetate buffer, and the like. In the case of saline, a 0.9% saline solution may be employed. In the case of acetate, phosphate, citrate, acetate and the like, a 50 mM solution may be employed. In addition to buffering agents, a suitable preservative may be employed, to prevent or limit bacteria and other microbial growth. One such preservative that may be employed is 0.05% benzalkonium chloride.
It is also possible and contemplated that the peptide may be in a dried and part icu late form. In a preferred embodiment, the particles are between about 0.5 and 6.0 μm, such that the particles have sufficient mass to settle on the lung surface, and not be exhaled, but are small enough that they are not deposited on surfaces of the air passages prior to reaching the lung. Any of a variety of different techniques may be used to make dry powder microparticles, including but not limited to micro-milling, spray drying and a quick freeze aerosol followed by lyophilization. With micro- particles, the peptides may be deposited to the deep lung, thereby providing quick and efficient absorption into the bloodstream. Further, with such approach penetration enhancers are not required, as is sometimes the case in transdermal, nasal or oral mucosal delivery routes. Any of a variety of inhalers can be employed, including propellant-based aerosols, nebulizers, single dose dry powder inhalers and multidose dry powder inhalers. Common devices in current use include metered dose inhalers, which are used to deliver medications for the treatment of asthma, chronic obstructive pulmonary disease and the like. Preferred devices include dry powder inhalers, designed to form a cloud or aerosol of fine powder with a particle size that is always less than about 6.0 μm. One type of dry powder inhaler in current use is Glaxo's Rotahaler™, which dispenses a unit dose of powder into a tube, and employs patient suction for inhalation of the powder. Other, more advanced and preferred dry powder inhalers have been or are in development, which include propellants and the like.
Microparticle size, including mean size distribution, may be controlled by means of the method of making. For micro-milling, the size of the milling head, speed of the rotor, time of processing and the like control the microparticle size. For spray drying, the nozzle size, flow rate, dryer heat and the like control the microparticle size. For making by means of quick freeze aerosol followed by lyophilization, the nozzle size, flow rate, concentration of aerosoled solution and the like control the microparticle size. These parameters and others may be employed to control the microparticle size.
In one preferred embodiment, a dry powder inhaler is employed which includes a piezoelectric crystal that deaggregates a dry powder dose, creating a small powder "cloud." Once the powder cloud is generated, an electricostatically charged plated above the powder cloud lifts the drug into the air stream. The user with one relatively easy breath can then inhale the powder. The device may be breath activated, utilizing a flow sensor that activates the electronic components upon the start of inhalation, and thereby eliminating the need for coordination of activation and breathing rhythms by the user.
Induction of Penile Response. Both Compound 1 and Melanotan-ll induce penile erections in experimental rat models when administered by intravenous routes and by other routes, including nasal administration. However, Compound 1 is approximately 100-fold more potent than Melanotan-ll for inducing penile erection in the rat model. In intravenous dosing studies, penile erection was induced by Compound 1 in a broad range of concentrations, from 0.5 μg/kg of body weight to 25 μg/kg of body weight. At intravenous doses of 2 μg/kg of body weight, Compound 1 resulted in penile erection in 100% of rats tested, with approximately 50% of the rats having multiple erections during a 30 minutes observation period. By comparison, the optimal efficacious dose intravenously of Melanotan-ll in the same rat model was 100 μg/kg of body weight.
The therapeutic window (the range from the desired therapeutic effect to observed adverse effects) for Compound 1 is on the order of >1 ,000-fold, compared to a 3- to 4-fold therapeutic window for Melanotan-ll. That is, the optimal efficacious dose of Melanotan-ll is approximately one- third to one-fourth the dose that causes observed adverse effects. For Compound 1, the optimal efficacious dose is less than one-one thousandth the dose that causes observed adverse effects. The significantly greater therapeutic window for Compound 1 demonstrates that it is better tolerated than Melanontan-ll.
The potency of Compound 1 is significantly higher than that of Melanotan-ll, meaning that significantly less Compound 1 is required for a desired effect, as compared to Melanotan-ll. For example, 2 μg/kg of body weight of Compound 1 resulted in penile response by intravenous injection in rats, while 100 μg/kg of body weight of Melanotan-ll was required for an equivalent penile response. The significantly higher potency results in less product being required. It further permits utilization of alternative delivery routes, including dermal, nasal and similar delivery routes, wherein higher quantities of drug may be required in order to achieve the desired effect. For example, intranasal routes of administration typically have a bioavailability substantially less than that achieved with intravenous dosing, and thus more drug must be administered by intranasal routes in order to achieve the equivalent pharmacological response.
Significant commercial advantage for Compound 1 is demonstrated by the reduced effective dose, compared to Melanotan-ll, as a treatment or diagnostic for erectile dysfunction. Among the potential commercial advantages of Compound 1 are improved effectiveness; lower costs of the product; improved convenience, particularly in that the lower dose permits non-conventional delivery methods that are not feasible with Melanotan-ll doses; and improved safety with a decreased risk of side-effects. Industrial Applicability:
The invention is further illustrated by the following non-limiting examples.
EXAMPLE 1 Peptide Synthesis
The peptide Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH was synthesized by standard solid phase peptide synthesis methods, and is a cyclic heptapeptide melanocortin peptide analog with a free acid at the carboxyl terminus and an acetylated amino group at the amino terminus, with the structure:
Ac-Nle-Asp-His-D-Phe-Arg-Trp-Lys-OH
The peptide has a net molecular weight of 1025.18, and is supplied in an acetate salt form. The peptide is a white, odorless amorphous hygroscopic powder, soluble in 0.9% saline, composed of For synthesis, an Fmoc-Lys(R3)-p-alkoxybenzyl alcohol resin was transferred to a solid phase peptide synthesizer reactor with a mechanical stirrer. The R3 group, such as 1-(1'- adamantyl)-1-methyl-ethoxycarbonyl (Adpoc), allyloxycarbonyl (Aloe) or 4-methyltrityl (Mtt), was removed and the next Fmoc-protected amino acid (Fmoc-Trp(Boc)-OH) was added to the resin through standard coupling procedures. The Fmoc protective group was removed and the remaining amino acids added individually in the correct sequence, by repeating coupling and deprotection procedures until the amino acid sequence was completed. After completion of coupling with the last Fmoc-amino acid derivative, Fmoc-Nle-OH, and cleavage of the Fmoc protective group, the exposed terminal amino group was acetylated with acetic anhydride and pyridine in N,N-dimethylformamide (DMF). The peptide-resin was dried and the Lys and Asp protective groups cleaved. The Lys and Asp deprotected peptide resin was suspended in a suitable solvent, such as DMF, dichloromethane (DCM) or 1-methyl-2-pyrrolidone (NMP), a suitable cyclic coupling reagent, such as 2-(1 H- benzotriazol-1-yl)-1 ,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), 2-(7-aza-1 H-benzotriazol-1- yl)-1 ,1 ,3,3-tetramethyluronium tetrafluoroborate (TATU), 2-(2-oxo-1(2H)-pyridyl)-1 , 1 ,3,3- tetramethyluronium tetrafluoroborate (TPTU) or N,N'-dicyclohexylcarbodiimide/1- hydroxybenzotriazole (DCCI/HOBt) was added, and coupling initiated by use of a suitable base, such as N,N-diispropylethylamine (DIPEA), sym-collidine or N-methylmorphoiine (NMM). After cyclization, the peptide-resin was washed and the peptide cleaved from the resin and any remaining protective groups using trifluoroacetic acid (TFA) in the presence of water and 1 ,2-ethanedithiol (EDT). The final product was precipitated by adding cold ether and collected by filtration. Final purification was by reversed phase HPLC using a C18 column. The purified peptide was converted to acetate salt by passage through an ion-exchange column.
EXAMPLE 2 Binding of Compound 1 and Melanotan-ll to Melanocortin Receptors
The binding of Compound 1 , made as in Example 1 above, to selected melanocortin receptors was compared to binding of Melanotan-ll. Melanotan-ll was also made by conventional peptide synthesis, as generally described in Example 1 above.
Relative binding was determined by competitive inhibition using α-MSH. B16-F1 melanoma cells were used as the source of MC1 receptors; HEK 293 cells, transfected with human melanocortin receptor sequences, were used as the source of MC3, MC4 and MC5 receptors; and Y1 cells were used as the source of MC2 receptors. A standard competitive binding assay protocol was following, using 125I-NDP-MSH as the radioligand.
Utilizing the assay procedure, the following relative binding was determined:
Figure imgf000016_0001
As shown above in Table 1, relative binding of Compound 1 to MC4-R demonstrated, compared to Melanotan-ll, on the order of 1/23 the affinity, while relatative binding of Compound 1 to MC3-R demonstrated, compared to Melanotan-ll, on the order of eight-fold higher affinity. This substantial and unexpected difference in relative binding and affinity, particularly to MC4-R and MC3-R, is hypothesized to relate to the significantly increased potency of Compound 1 as compared to Melanotan-ll, the concomitant decrease in side effects with Compound 1 as compared to Melanotan-ll, and the significantly greater therapeutic window with Compound 1 as compared to Melanotan-ll.
EXAMPLE 3 Agonist Activity of Compound 1
The agonist activity of Compound 1 , made as in Example 1 above, was evaluated by cyclic adenosine 3':5'-cyclic monophosphate (cAMP) detection using a commercially available cAMP kit (R&D Systems, DE0350, low pH). HEK 293 cells, stably transfected with human MC4-R, were used. Compound 1 was evaluated by addition of each to cells both with and without concomitant addition of α-MSH, with α-MSH also used as a positive control. Following incubation, the medium was aspirated and cell layers extracted. The total cAMP accumulation in fixed quantities of cell extract was determined by competitive immunoassay using the cAMP kit. These results are shown on Table 2.
Figure imgf000017_0001
These results demonstrate that Compound 1 exhibits agonist activity to MC4-R.
EXAMPLE 4 Induction of Penile Erections Using Compound 1 and Melanotan-ll The efficacious dose of Compound 1, made as in Example 1 above, to induce penile erection in Sprague Dawley rats by intravenous dosing was determined. In the rat model of penile erection, the optimal efficacious dose by intravenous administration is 100 μg/kg body weight. Melanotan-ll was also made by conventional peptide synthesis, as generally described in Example 1 above. Male Sprague Dawley rats were administered Compound 1 , in the indicated dose, Melanotan-ll, or a saline negative control, and were observed for erections and side effects, including excessive grooming, yawning, vacuous chewing, hypoactivity, and heaving. It is known that Melanotan-ll induces these side effects as doses as low as 300 μg/kg body weight. Table 3 sets forth the results obtained:
Figure imgf000018_0001
Two to four rats were observed in each group, with observation over a one-half hour period following administration. No adverse side effects were observed in any rat administered Compound 1. In this and comparable experiments, it was observed that Compound 1 was efficacious at doses as low as 1 μg/kg of body weight when administered by intravenous injection, with efficacy determined by induction of penile erection in 100% of animals administered Compound 1. The comparable efficacious dose of Melanotan-ll, with efficacy also determined by induction of penile erection in 100% of animals, was at least approximately 100 μg/kg body weight. This resulted in the unexpected conclusion that Compound 1 was at least approximately 50-fold more potent for inducing erection in a rat model when administered by intravenous injection than is Melanotan-ll. In other studies, no adverse side effects, including excessive grooming, yawning, vacuous chewing, hypoactivity, or heaving, were observed on administration of intravenous doses of Compound 1 as high as 3,000 μg/kg body weight.
EXAMPLE 5 Pharmacokinetics in Rats Following IV Administration of Compound 1
A sensitive bioassay, based on high affinity binding to MCRs, was used to monitor plasma levels of Compound 1 in dosed rats. Rats were dosed intravenously with 100 μg/kg of Compound 1. A bi-phasic pharmacokinetic profile resulted, as shown in FIG. 1.
EXAMPLE 6 Pre-Formulation Studies for Nasal Delivery
A series of pre-formulation studies for nasal delivery were conducted. This study shows the stability of the peptide Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH, at a concentration of .825 mg/mL, over a period of twelve weeks, with storage at 40° C.
EXAMPLE 7 Formulations for Nasal Delivery
Based on the pre-formulation study of Example 6, two formulations were prepared. For the first, the peptide Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH was dissolved in a 0.9% saline solution, pH approximately 6.0, at a concentration of .825 mg per mL of solution (Nasal Formulation 1). In an alternative formulation, Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH was dissolved in a 50 mM citrate, pH approximately 6.0, also at a concentration of .825 mg per mL of solution (Nasal Formulation 2).
EXAMPLE 8 Inhibition of Compound 1 Using Melanocortin Antagonist
The effect of a nonselective melanocortin antagonist, SHU9119 (Hruby VJ, Lu D, Sharma SD, et al. J Med Chem 38:3454-3461 (1995)) to inhibit induction of penile erection with Compound 1 was studied. A group of four Sprague Dawley rats were administered 5 μg/kg of SHU9119 by intravenous administration, and five minutes later 25 or 50 μg/kg of Compound 1 in Nasal Formulation 1 was administered by nasal administration. No erections were observed in the rats over the one-half hour observation period. No erections were observed in rats administered a saline control by nasal administration. In control groups, 100% of the rats administered the same dose of Compound 1 by the same route of administration, but without pre-administration of SHU9119, had observed erections. FIG. 4 shows the number of penile erections per rat during the initial 30 minute period post-administration; as shown for the 25 μg/kg level, no penile erections were observed with pre-administration of SHU9119.
EXAMPLE 9 Inhibition of Hypothalmus Accumulation Using Melanocortin Antagonist
Tritiated Compound 1 was prepared. In brief, a precursor to Compound 1 was prepared using the general methods of Example 1 , and the D-Phe amino acid was labeled with H3 using a tritiation reduction reaction. The resulting tritiated Compound 1, with a specific activity of 50 Ci/mM, was purified and tested. The nonselective antagonist SHU9119 was administered to Sprague Dawley rats by intravenous administration. Five minutes following administration of SHU9119, 10 μCi of tritiated Compound 1 was administered by nasal administration. In a control group of animals, the same dose of tritiated Compound 1 was administered, without prior administration of SHU9119. Both groups were sacrificed five minutes following administration of tritiated Compound 1 , and the amount of tritium in the hypothalamus was detected. In animals pre- administered SHU9119, there was a decrease of 55% in the amount of detectable tritiated
Compound 1 within the hypothalamus, compared to animals not pre-administered SHU9119. The mean and standard deviation of counts per minute per 100 mg for animals pre-administered SHU9119 was 169.25 ± 23.13, and 75.75 ± 13.5 for animals not pre-administered SHU9119. Levels of tritiated Compound 1 in the cerebral spinal fluid surrounding the hypothalamus were comparable in both groups of animals (161 ± 82 counts per minute per 100 mg for animals pre-administered SHU9119 compared to 165 ± 56 for animals not pre-administered SHU9119), indicating that the decrease in the hypothalamus following administration of SHU9119 is due to competition for specific receptors within the hypothalamus.
EXAMPLE 10 Nasal Administration to Cynomolgus Monkeys
Nasal Formulation 1 of Example 6 was administered to cynomolgus monkeys by nasal spray, at a dose of approximately 50 μg per kg of body weight. Compared to intravenous injection of the same dose of Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH, the mean bioavailability of the peptide using Nasal Formulation 1 was approximately 31.9% ± 2.7. In another series of experiments, the mean bioavailability of the peptide using Nasal Formulation 1 was 27.9% ± 9.7, and the mean bioavailability of the peptide using Nasal Formulation 2 was 34.7% ± 15.6, in both cases again compared to bioavailability of the same quantity of peptide administered by intravenous injection. In a related cardiovascular safety study using cynomolgus monkeys with intranasal administration of Nasal Formulation 1 , an erection lasting approximately one hour was observed in one of four monkeys.
EXAMPLE 11 Pharmacokinetic Profiles Following Administration to Cynomolgus
Monkeys
A sensitive bioassay, based on high affinity binding to MCRs, was used to monitor plasma levels of Compound 1 in cynomolgus monkeys. Monkeys were dosed intravenously with 50 μg/kg of Compound 1. A bi-phasic pharmacokinetic profile resulted, as shown in FIG. 2. A selected monkey was intranasally administered 50 μg/kg of Compound 1 in Nasal Formulation 1, and the resulting pharmacokinetic profile is shown in FIG. 3.
EXAMPLE 12 Nasal Administration Dosing Study in Rats
In another series of experiments, a dosing study was conducted in rats by nasal administration of from 15 μg per kg of body weight to 1500 μg per kg of body weight, using Nasal Formulation 1. Based on penile erectile response behavior, the peptide was efficacious at all dose amounts administered, and particularly from 25 μg/kg to 75 μg/kg, with pharacologic effect observed over the range from 15 μg/kg to 1500 μg/kg. In addition, the response rate and side effects differed significantly from those demonstrated with nasal administration of Melanotan-ll. With nasal administration of the peptide of Melanotan-ll, the penile erection response was primarily in the 2nd and 3rd ten-minute period, while with Nasal Formulation 1 the penile erection response was primarily in the 1st and 2nd ten-minute period. Additionally, no adverse side effects were detected at any dosage level with Nasal Formulation 1 , while adverse side effects were seen with administration of higher doses of the peptide of Melanotan-ll. Table 4 sets forth the comparative data:
Figure imgf000022_0001
EXAMPLE 13 Pharmacokinetic Profiles Following Administration to Beagle Dogs
A sensitive bioassay, based on high affinity binding to MCRs, was used to monitor plasma levels of Compound 1 in Beagle dogs. The dogs were administered 0 (control), 30, 150 or 540 μg/kg of Compound 1 in Nasal Formulation 1 by nasal administration. The pharmacokinetic profile through four hours post-administration is shown in FIG. 5.
EXAMPLE 14 Administration For Treatment of Male Erectile Dysfunction
For treatment of male erectile dysfunction in human males with psychogenic erectile dysfunction, a total dose of 500 μg of Compound 1 in Nasal Formulation 1 is administered by means of a nasal administration metered dose device. The device dispenses a 100 μL spray volume, and is administered by the patient into a single nostril. If desired, erectile response is measured using an appropriate device, such as a Rigiscan (Dacomed). EXAMPLE 15 Administration For Treatment of Female Sexual Dysfunction
For treatment of female sexual dysfunction in human females with psychogenic sexual dysfunction, a total dose of 500 μg of Compound 1 in Nasal Formulation 1 is administered by means of a nasal administration metered dose device. The device dispenses a 100 μL spray volume, and is administered by the patient into a single nostril.
The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.
Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover in the appended claims all such modifications and equivalents. The entire disclosures of all references, applications, patents, and publications cited above are hereby incorporated by reference.

Claims

CLAIMS What is claimed is:
1. A peptide, comprising the sequence Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH.
2. The peptide of claim 1 , consisting of the sequence Ac-Nle-cyclo(-Asp-His-D-Phe-Arg- Trp-Lys)-OH.
3. A composition of matter, comprising a peptide and a pharmaceutically acceptable carrier, said peptide selected from the group consisting of Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-
Lys)-OH and pharmaceutically acceptable salts of Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH.
4. The composition of matter of claim 3, wherein the peptide consists of the sequence Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH.
5. The composition of matter of claim 3, wherein the pharmaceutically acceptable carrier is a buffered aqueous carrier.
6. A pharmaceutical composition for stimulating sexual response in a mammal, comprising a peptide and a pharmaceutically acceptable carrier, said peptide selected from the group consisting of Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH and pharmaceutically acceptable salts of Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH.
7. The pharmaceutical composition of matter of claim 6, wherein the peptide consists of the sequence Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH.
8. A pharmaceutical composition for stimulating sexual response in a mammal, comprising a peptide and a pharmaceutically acceptable carrier, wherein said peptide is a free acid or pharmaceutically acceptable salt thereof comprising a sequence selected from the group consisting of His-Phe-Arg-Trp, His-D-Phe-Arg-Trp, homologs of His-Phe-Arg-Trp and homologs of His-D-Phe-Arg-Trp.
9. The pharamceutical composition of claim 8, wherein said peptide is a cyclic peptide.
10. The pharmaceutical composition of claim 8, wherein said peptide has a terminal -OH at the carboxyl terminus.
11. The pharmaceutical composition of claim 8, wherein the peptide consists of the sequence Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH.
12. A method for stimulating sexual response in a mammal, comprising administering a pharmaceutically sufficient amount of a composition comprising a peptide or pharmaceutically acceptable salt thereof of the formula Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys)-OH.
13. The method of claim 12, wherein the mammal is a male.
14. The method of claim 12, wherein the mammal is a female.
15. The method of claim 12, wherein the peptide consists of the sequence Ac-Nle-cyclo(- Asp-His-D-Phe-Arg-Trp-Lys)-OH.
16. The method of claim of claim 12, wherein the composition further comprises a pharmaceutically acceptable carrier.
17. The method of claim 12, wherein administering comprises administering by a method of administration selected from the group consisting of administration by injection, administration through mucous membranes, buccal administration, oral administration, dermal administration, inhalation administration and nasal administration.
18. The method of claim 17, wherein administering comprises nasal administration of a metered amount of a formulation comprising an aqueous buffer.
19. The method of claim 18, wherein the aqueous buffer is a member selected from the group consisting of saline and citrate buffer.
20. A method for stimulating sexual response in a mammal, comprising administering a pharmaceutically sufficient amount of a composition comprising peptide wherein said peptide is a free acid or pharmaceutically acceptable salt thereof comprising a sequence selected from the group consisting of His-Phe-Arg-Trp, His-D-Phe-Arg-Trp, homologs of His-Phe-Arg-Trp and homologs of His-D-Phe-Arg-Trp.
21. The method of claim 20, wherein the mammal is a male.
22. The method of claim 20, wherein the mammal is a female.
23. The method of claim 20, wherein the peptide consists of the sequence Ac-Nle-cyclo(- Asp-His-D-Phe-Arg-Trp-Lys)-OH.
24. The method of claim of claim 20, wherein the composition further comprises a pharmaceutically acceptable carrier.
25. The method of claim 20, wherein administering comprises administering by a method of administration selected from the group consisting of administration by injection, administration through mucous membranes, buccal administration, oral administration, dermal administration, inhalation administration and nasal administration.
26. The method of claim 20, wherein administering comprises nasal administration of a metered amount of a formulation comprising an aqueous buffer.
27. The method of claim 26, wherein the aqueous buffer is a member selected from the group consisting of saline and citrate buffer.
PCT/US2000/018217 1999-06-29 2000-06-29 Compositions and methods for treatment of sexual dysfunction WO2001000224A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP00950283A EP1196184B8 (en) 1999-06-29 2000-06-29 Compositions for treatment of sexual dysfunction
DE60019598T DE60019598T2 (en) 1999-06-29 2000-06-29 COMPOUNDS FOR THE TREATMENT OF SEXUAL FUNCTIONAL DISORDERS
AU63407/00A AU783718B2 (en) 1999-06-29 2000-06-29 Compositions and methods for treatment of sexual dysfunction
AT00950283T ATE293453T1 (en) 1999-06-29 2000-06-29 COMPOUNDS FOR THE TREATMENT OF SEXUAL DISORDERS
DK00950283T DK1196184T3 (en) 2000-06-29 2000-06-29 Compositions for the treatment of sexual dysfunction
CA2376978A CA2376978C (en) 1999-06-29 2000-06-29 Compositions and methods for treatment of sexual dysfunction
BRPI0012200-9B1A BR0012200B1 (en) 1999-06-29 2000-06-29 peptide composition for treating sexual dysfunction and pharmaceutical composition for treating sexual dysfunction in a mammal.
MXPA02000111A MXPA02000111A (en) 1999-06-29 2000-06-29 Compositions and methods for treatment of sexual dysfunction.
JP2001505933A JP4576493B2 (en) 1999-06-29 2000-06-29 Drugs and methods of treatment for sexual dysfunction
NZ516030A NZ516030A (en) 1999-06-29 2000-06-29 Compositions and methods for treatment of sexual dysfunction using MSH analogs containing the sequence His-Phe-Arg-Trp
HK02107538.2A HK1047881B (en) 1999-06-29 2002-10-17 Compositions and treatment of sexual dysfunction
US10/946,969 US20050037951A1 (en) 1999-06-29 2004-09-20 Composition and methods for treatment of sexual dysfunction

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US14234699P 1999-06-29 1999-06-29
US60/142,346 1999-06-29
US19498700P 2000-04-05 2000-04-05
US60/194,987 2000-04-05
US09/606,501 US6579968B1 (en) 1999-06-29 2000-06-28 Compositions and methods for treatment of sexual dysfunction
US09/606,501 2000-06-28

Publications (1)

Publication Number Publication Date
WO2001000224A1 true WO2001000224A1 (en) 2001-01-04

Family

ID=27385799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/018217 WO2001000224A1 (en) 1999-06-29 2000-06-29 Compositions and methods for treatment of sexual dysfunction

Country Status (15)

Country Link
US (3) US6579968B1 (en)
EP (1) EP1196184B8 (en)
JP (1) JP4576493B2 (en)
KR (1) KR101021632B1 (en)
AT (1) ATE293453T1 (en)
AU (1) AU783718B2 (en)
BR (1) BR0012200B1 (en)
CA (1) CA2376978C (en)
DE (1) DE60019598T2 (en)
ES (1) ES2235921T3 (en)
HK (1) HK1047881B (en)
MX (1) MXPA02000111A (en)
NZ (1) NZ516030A (en)
PT (1) PT1196184E (en)
WO (1) WO2001000224A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350760B1 (en) 1999-06-04 2002-02-26 Merck & Co., Inc. Substituted piperidines as melanocortin-4 receptor agonists
WO2002026774A2 (en) * 2000-09-27 2002-04-04 The Procter & Gamble Company Melanocortin receptor ligands
EP1487474A2 (en) * 2002-02-25 2004-12-22 Chiron Corporation Intranasal administration of mc4-r agonists
WO2006032457A1 (en) * 2004-09-20 2006-03-30 Lonza Ag Peptide cyclisation
WO2006060873A1 (en) * 2004-12-09 2006-06-15 Prince Henry's Institute Of Medical Research Method for restoring reproductive function
EP1740181A1 (en) * 2004-04-22 2007-01-10 Boehringer Ingelheim International Gmbh New pharmaceutical compositions for the treatment of sexual disorders ii
US7235625B2 (en) 1999-06-29 2007-06-26 Palatin Technologies, Inc. Multiple agent therapy for sexual dysfunction
US7307063B2 (en) 2001-02-13 2007-12-11 Palatin Technologies, Inc. Melanocortin metallopeptides for treatment of sexual dysfunction
EP1957096A2 (en) * 2005-08-29 2008-08-20 Palatin Technologies, Inc. Cyclic peptide isolation by spray drying
US7473760B2 (en) 1999-06-29 2009-01-06 Palatin Technologies, Inc. Cyclic peptide compositions for treatment of sexual dysfunction
US7517854B2 (en) 2003-09-30 2009-04-14 Novo Nordisk A/S Melanocortin receptor agonists
WO2009144433A1 (en) * 2008-05-30 2009-12-03 Palatin Technologies, Inc. Methods for selection of melanocortin 4 receptor-specific agents for treatment of obesity
WO2009151383A1 (en) * 2008-06-09 2009-12-17 Palatin Technologies, Inc. Melanocortin receptor-specific peptides for the treatment of obesity and other diseases associated with melanocortin receptor function
US7795378B2 (en) 2002-07-09 2010-09-14 Palatin Technologies, Inc. Peptide compositions for treatment of sexual dysfunction
US7923449B2 (en) 2005-10-29 2011-04-12 Boehringer Ingelheim International Gmbh Benzimidazolone derivatives for the treatment of premenstrual and other female sexual disorders
CN101195654B (en) * 2006-12-08 2011-06-15 上海吉尔多肽有限公司 Solid phase synthesis technique for melanotan-II
US8227476B2 (en) 2005-08-03 2012-07-24 Sprout Pharmaceuticals, Inc. Use of flibanserin in the treatment of obesity
US8227471B2 (en) 2001-10-20 2012-07-24 Sprout Pharmaceuticals, Inc. Treating sexual desire disorders with flibanserin
WO2012172433A3 (en) * 2011-06-14 2013-01-31 Ipsen Pharma S.A.S. A sustained -release composition containing a melanocortin receptor ligand as the active ingredient
US8455617B2 (en) 2009-06-08 2013-06-04 Astrazeneca Ab Melanocortin receptor-specific peptides
US8487073B2 (en) 2008-06-09 2013-07-16 Palatin Technologies, Inc. Melanocortin receptor-specific peptides for treatment of sexual dysfunction
US8492517B2 (en) 2009-11-23 2013-07-23 Palatin Technologies, Inc. Melanocortin-1 receptor-specific cyclic peptides
US8512748B2 (en) 2006-08-25 2013-08-20 Boehringer Ingelheim International Gmbh Controlled release system and method for manufacturing the same
US8658207B2 (en) 2006-08-14 2014-02-25 Boehringer Ingelheim International Gmbh Extended release tablet formulations of flibanserin and method for manufacturing the same
US8722682B2 (en) 2006-12-20 2014-05-13 Sprout Pharmaceuticals, Inc. Sulfated benzimidazolone derivatives having mixed serotonin receptor affinity
WO2014145718A2 (en) 2013-03-15 2014-09-18 Longevity Biotech, Inc. Peptides comprising non-natural amino acids and methods of making and using the same
US8933194B2 (en) 2009-11-23 2015-01-13 Palatin Technologies, Inc. Melanocortin-1 receptor-specific linear peptides
CN105037502A (en) * 2009-06-08 2015-11-11 帕拉丁科技公司 Melanocortin receptor-specific peptides
US9763936B2 (en) 2006-06-30 2017-09-19 Sprout Pharmaceuticals, Inc. Flibanserin for the treatment of urinary incontinence and related diseases
US9782454B2 (en) 2010-04-22 2017-10-10 Longevity Biotech, Inc. Highly active polypeptides and methods of making and using the same
US10166230B2 (en) 2007-09-12 2019-01-01 Sprout Pharmaceuticals Inc. Treatment of vasomotor symptoms
US10675280B2 (en) 2001-10-20 2020-06-09 Sprout Pharmaceuticals, Inc. Treating sexual desire disorders with flibanserin

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7258850B2 (en) * 1999-05-04 2007-08-21 Aradigm Corporation Methods and compositions for treating erectile dysfunction
US6579968B1 (en) * 1999-06-29 2003-06-17 Palatin Technologies, Inc. Compositions and methods for treatment of sexual dysfunction
US7342089B2 (en) * 2001-07-11 2008-03-11 Palatin Technologies, Inc. Cyclic peptides for treatment for cachexia
US7354923B2 (en) * 2001-08-10 2008-04-08 Palatin Technologies, Inc. Piperazine melanocortin-specific compounds
US7732451B2 (en) * 2001-08-10 2010-06-08 Palatin Technologies, Inc. Naphthalene-containing melanocortin receptor-specific small molecule
WO2003013571A1 (en) 2001-08-10 2003-02-20 Palatin Technologies, Inc. Peptidomimetics of biologically active metallopeptides
US7718802B2 (en) 2001-08-10 2010-05-18 Palatin Technologies, Inc. Substituted melanocortin receptor-specific piperazine compounds
US7655658B2 (en) * 2001-08-10 2010-02-02 Palatin Technologies, Inc. Thieno [2,3-D]pyrimidine-2,4-dione melanocortin-specific compounds
US7456184B2 (en) * 2003-05-01 2008-11-25 Palatin Technologies Inc. Melanocortin receptor-specific compounds
US6873883B2 (en) * 2001-12-26 2005-03-29 Hewlett-Packard Development Company, L.P. Adaptive fan controller for a computer system
US8043287B2 (en) * 2002-03-05 2011-10-25 Kimberly-Clark Inc. Method of treating biological tissue
DE10228837B4 (en) * 2002-06-27 2016-01-07 Elfriede Rauch Skin cosmetic composition and use of the composition as a skin tanning agent
JPWO2004075920A1 (en) * 2003-02-26 2006-06-01 大塚製薬株式会社 Sustained release pharmaceutical composition for pulmonary administration
US7727991B2 (en) 2003-05-01 2010-06-01 Palatin Technologies, Inc. Substituted melanocortin receptor-specific single acyl piperazine compounds
US7968548B2 (en) 2003-05-01 2011-06-28 Palatin Technologies, Inc. Melanocortin receptor-specific piperazine compounds with diamine groups
US7727990B2 (en) 2003-05-01 2010-06-01 Palatin Technologies, Inc. Melanocortin receptor-specific piperazine and keto-piperazine compounds
US20050101535A1 (en) * 2003-05-06 2005-05-12 Rosenstein David H. Use of a synthetic alpha-melanocyte stimulating hormone agonist to decrease steroid induced weight gain
EP1644022A1 (en) * 2003-06-19 2006-04-12 Eli Lilly And Company Uses of melanocortin-3 receptor (mc3r) agonist peptides
JP2006527773A (en) * 2003-06-19 2006-12-07 イーライ リリー アンド カンパニー Melanocortin receptor 4 (MC4) agonist and its use
US7550602B1 (en) * 2004-01-14 2009-06-23 Palatin Technologies, Inc. Small molecule compositions for sexual dysfunction
US7649002B2 (en) 2004-02-04 2010-01-19 Pfizer Inc (3,5-dimethylpiperidin-1yl)(4-phenylpyrrolidin-3-yl)methanone derivatives as MCR4 agonists
US7709484B1 (en) 2004-04-19 2010-05-04 Palatin Technologies, Inc. Substituted melanocortin receptor-specific piperazine compounds
ES2877349T3 (en) * 2005-07-08 2021-11-16 Ipsen Pharma Melanocortin receptor ligands
EP1912968A1 (en) * 2005-08-04 2008-04-23 Pfizer Limited Piperidinoyl-pyrrolidine and piperidinoyl-piperidine compounds
US8247530B2 (en) * 2005-11-08 2012-08-21 Palatin Technologies, Inc. N-alkylated cyclic peptide melanocortin agonists
CN101092451B (en) * 2006-06-20 2011-02-09 中国人民解放军军事医学科学院毒物药物研究所 Solid phase synthesis method for PT 141 and MT II
US7834017B2 (en) 2006-08-11 2010-11-16 Palatin Technologies, Inc. Diamine-containing, tetra-substituted piperazine compounds having identical 1- and 4-substituents
WO2008091355A2 (en) * 2007-01-24 2008-07-31 Breathe Pharmaceuticals, Inc. Drug transfer device
CN101280005B (en) * 2007-04-06 2013-03-13 扬子江药业集团四川海蓉药业有限公司 Preparation of PT141
WO2009120656A1 (en) * 2008-03-24 2009-10-01 Palatin Technologies, Inc. Pharmaceutical for ocular indications
EP2350118B1 (en) * 2008-09-19 2016-03-30 Nektar Therapeutics Carbohydrate-based drug delivery polymers and conjugates thereof
WO2010144341A2 (en) 2009-06-08 2010-12-16 Palatin Technologies, Inc. Lactam-bridged melanocortin receptor-specific peptides
WO2013067309A1 (en) 2011-11-04 2013-05-10 Xion Pharmaceutical Corporation Methods and compositions for oral administration of melanocortin receptor agonist compounds
BR112015009936A8 (en) 2012-11-05 2019-09-17 Palatin Technologies Inc use of a formulation dose; bremelanotide for use in a method for treating female sexual dysfunction; and preloaded dose unit
EP2925340B8 (en) 2012-11-21 2019-07-24 University Of Cincinnati Pharmaceutical compositions comprising selective agonists of melanocortin 1 receptor and their use in therapeutic methods
US9814755B2 (en) 2014-06-10 2017-11-14 The Arizona Board Of Regents On Behalf Of The University Of Arizona Methods for the treatment of depression and anxiety
US20170022252A1 (en) 2014-06-10 2017-01-26 The Arizona Board Of Regents On Behalf Of The University Of Arizona Novel modulators of melanocortin receptors
US9821023B2 (en) 2014-06-10 2017-11-21 The Arizona Board Of Regents On Behalf Of The University Of Arizona Methods for the treatment of central nervous system (CNS) disorders and mood disorders
WO2016168388A2 (en) 2015-04-14 2016-10-20 Palatin Technologies, Inc. Therapies for obesity, diabetes and related indications
WO2017066769A1 (en) * 2015-10-16 2017-04-20 The Arizona Board Of Regents On Behalf Of The University Of Arizona Compositions and methods for treating central nervous system (cns) disorders and mood disorders
US10550157B2 (en) 2015-10-16 2020-02-04 Arizona Board Of Regent On Behalf Of The University Of Arizona Compositions and methods for treating central nervous system (CNS) disorders and mood disorders
WO2017168174A1 (en) 2016-04-02 2017-10-05 N4 Pharma Uk Limited New pharmaceutical forms of sildenafil
CN106243214B (en) * 2016-08-29 2019-12-10 济南康和医药科技有限公司 Preparation method of melanotan I
RU2655763C2 (en) * 2016-10-24 2018-05-29 Общество С Ограниченной Ответственностью "Айвикс" Pharmaceutical composition and method for treating female sexual dysfunctions
PE20221328A1 (en) * 2020-02-03 2022-09-09 Palatin Technologies Inc CYCLIC PEPTIDES SPECIFIC TO DIAMINE-BINDED RECEPTORS
CN115279390A (en) * 2020-02-03 2022-11-01 帕拉丁科技公司 Reverse amide linked melanotropin receptor specific cyclic peptides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576290A (en) * 1993-04-05 1996-11-19 Competitive Technologies, Inc. Compositions and methods for the diagnosis and treatment of psychogenic erectile dysfunction
WO1999064002A1 (en) * 1998-06-11 1999-12-16 Merck & Co., Inc. Spiropiperidine derivatives as melanocortin receptor agonists

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862928A (en) * 1969-07-09 1975-01-28 Akzona Inc Psychopharmacological hexa-peptides containing a d-phenylalanyl residue
BE795788A (en) * 1972-02-22 1973-08-22 Akzo Nv PROCESS FOR THE PREPARATION OF PEPTIDES AND PEPTIDE DERIVATIVES AND THEIR USE
US4649191A (en) * 1984-05-10 1987-03-10 Gibson-Stephens Neuropharmaceuticals, Inc. Conformationally constrained alpha-melanotropin analogs with specific central nervous system activity
US4623715A (en) * 1984-10-22 1986-11-18 Hoechst Aktiengeselleschaft Novel peptides which are active on the central nervous system and have an action on the cholinergic system
US5674839A (en) 1987-05-22 1997-10-07 Competitive Technologies, Inc. Cyclic analogs of alpha-MSH fragments
ATE164080T1 (en) 1990-05-10 1998-04-15 Bechgaard Int Res PHARMACEUTICAL PREPARATION CONTAINING N-GLYCOFUROLES AND N-ETHYLENE GLYCOLS
FR2691465B1 (en) * 1992-05-25 1995-08-11 Pf Medicament COMPLEXES COMPRISING AT LEAST ONE ALPHA MSH-DERIVED PEPTIDE, PEPTIDE, MICROSPHERE, MEDICAMENT AND GALENIC COMPOSITION COMPRISING THE SAME.
US5977070A (en) 1992-07-14 1999-11-02 Piazza; Christin Teresa Pharmaceutical compositions for the nasal delivery of compounds useful for the treatment of osteoporosis
US5420109A (en) * 1993-11-12 1995-05-30 Houghten Pharmaceuticals, Inc. Cytokine restraining agents
US6054556A (en) 1995-04-10 2000-04-25 The Arizona Board Of Regents On Behalf Of The University Of Arizona Melanocortin receptor antagonists and agonists
FR2735131B1 (en) * 1995-06-12 1997-08-22 Rech De Pathologie Appliquee S CONJUGATES OF MSH WITH A FATTY ACID, THEIR PREPARATION PROCESS AND THEIR USE AS MEDICAMENTS
US5908825A (en) 1997-01-09 1999-06-01 University Of Maryland At Baltimore Dosage composition for nasal delivery and method of use of the same
US6350430B1 (en) 1997-10-27 2002-02-26 Lion Bioscience Science Ag Melanocortin receptor ligands and methods of using same
US6228840B1 (en) 1998-02-27 2001-05-08 Edward T. Wei Melanocortin receptor antagonists and modulations of melanocortin receptor activity
EP1076649A4 (en) 1998-04-28 2010-06-02 Trega Biosciences Inc Isoquinoline compound melanocortin receptor ligands and methods of using same
US6579968B1 (en) * 1999-06-29 2003-06-17 Palatin Technologies, Inc. Compositions and methods for treatment of sexual dysfunction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576290A (en) * 1993-04-05 1996-11-19 Competitive Technologies, Inc. Compositions and methods for the diagnosis and treatment of psychogenic erectile dysfunction
US6051555A (en) * 1993-04-05 2000-04-18 Hadley; Mac E. Stimulating sexual response in females
WO1999064002A1 (en) * 1998-06-11 1999-12-16 Merck & Co., Inc. Spiropiperidine derivatives as melanocortin receptor agonists

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350760B1 (en) 1999-06-04 2002-02-26 Merck & Co., Inc. Substituted piperidines as melanocortin-4 receptor agonists
US7473760B2 (en) 1999-06-29 2009-01-06 Palatin Technologies, Inc. Cyclic peptide compositions for treatment of sexual dysfunction
US7897721B2 (en) 1999-06-29 2011-03-01 Palatin Technologies, Inc. Cyclic peptide compositions for treatment of sexual dysfunction
US7235625B2 (en) 1999-06-29 2007-06-26 Palatin Technologies, Inc. Multiple agent therapy for sexual dysfunction
WO2002026774A2 (en) * 2000-09-27 2002-04-04 The Procter & Gamble Company Melanocortin receptor ligands
WO2002026774A3 (en) * 2000-09-27 2003-03-27 Procter & Gamble Melanocortin receptor ligands
US7307063B2 (en) 2001-02-13 2007-12-11 Palatin Technologies, Inc. Melanocortin metallopeptides for treatment of sexual dysfunction
US10675280B2 (en) 2001-10-20 2020-06-09 Sprout Pharmaceuticals, Inc. Treating sexual desire disorders with flibanserin
US9782403B2 (en) 2001-10-20 2017-10-10 Sprout Pharmaceuticals, Inc. Treating sexual desire disorders with flibanserin
US11058683B2 (en) 2001-10-20 2021-07-13 Sprout Pharmaceuticals, Inc. Treating sexual desire disorders with flibanserin
US8227471B2 (en) 2001-10-20 2012-07-24 Sprout Pharmaceuticals, Inc. Treating sexual desire disorders with flibanserin
JP2005524649A (en) * 2002-02-25 2005-08-18 カイロン コーポレーション Intranasal administration of MC4-R agonist
EP1487474A4 (en) * 2002-02-25 2006-11-29 Chiron Corp Intranasal administration of mc4-r agonists
EP1487474A2 (en) * 2002-02-25 2004-12-22 Chiron Corporation Intranasal administration of mc4-r agonists
US7795378B2 (en) 2002-07-09 2010-09-14 Palatin Technologies, Inc. Peptide compositions for treatment of sexual dysfunction
US7517854B2 (en) 2003-09-30 2009-04-14 Novo Nordisk A/S Melanocortin receptor agonists
JP2007533686A (en) * 2004-04-22 2007-11-22 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Novel pharmaceutical composition for the treatment of sexual disorder II
EP1740181A1 (en) * 2004-04-22 2007-01-10 Boehringer Ingelheim International Gmbh New pharmaceutical compositions for the treatment of sexual disorders ii
EA010786B1 (en) * 2004-09-20 2008-10-30 Лонца Аг Peptide cyclisation
WO2006032457A1 (en) * 2004-09-20 2006-03-30 Lonza Ag Peptide cyclisation
WO2006060873A1 (en) * 2004-12-09 2006-06-15 Prince Henry's Institute Of Medical Research Method for restoring reproductive function
US9730927B2 (en) 2005-08-03 2017-08-15 Sprout Pharmaceuticals, Inc. Use of flibanserin in the treatment of obesity
US8227476B2 (en) 2005-08-03 2012-07-24 Sprout Pharmaceuticals, Inc. Use of flibanserin in the treatment of obesity
US10874668B2 (en) 2005-08-03 2020-12-29 Sprout Pharmaceuticals, Inc. Use of Flibanserin in the treatment of obesity
US10335407B2 (en) 2005-08-03 2019-07-02 Sprout Pharmaceuticals, Inc. Use of flibanserin in the treatment of obesity
US8785458B2 (en) 2005-08-03 2014-07-22 Sprout Pharmaceuticals, Inc. Use of flibanserin in the treatment of obesity
EP1957096A4 (en) * 2005-08-29 2012-03-21 Palatin Technologies Inc Cyclic peptide isolation by spray drying
EP1957096A2 (en) * 2005-08-29 2008-08-20 Palatin Technologies, Inc. Cyclic peptide isolation by spray drying
US7923449B2 (en) 2005-10-29 2011-04-12 Boehringer Ingelheim International Gmbh Benzimidazolone derivatives for the treatment of premenstrual and other female sexual disorders
US10004731B2 (en) 2006-06-30 2018-06-26 Sprout Pharmaceuticals, Inc. Flibanserin for the treatment of urinary incontinence and related diseases
US9763936B2 (en) 2006-06-30 2017-09-19 Sprout Pharmaceuticals, Inc. Flibanserin for the treatment of urinary incontinence and related diseases
US8658207B2 (en) 2006-08-14 2014-02-25 Boehringer Ingelheim International Gmbh Extended release tablet formulations of flibanserin and method for manufacturing the same
US8512748B2 (en) 2006-08-25 2013-08-20 Boehringer Ingelheim International Gmbh Controlled release system and method for manufacturing the same
CN101195654B (en) * 2006-12-08 2011-06-15 上海吉尔多肽有限公司 Solid phase synthesis technique for melanotan-II
US8722682B2 (en) 2006-12-20 2014-05-13 Sprout Pharmaceuticals, Inc. Sulfated benzimidazolone derivatives having mixed serotonin receptor affinity
US10166230B2 (en) 2007-09-12 2019-01-01 Sprout Pharmaceuticals Inc. Treatment of vasomotor symptoms
WO2009144433A1 (en) * 2008-05-30 2009-12-03 Palatin Technologies, Inc. Methods for selection of melanocortin 4 receptor-specific agents for treatment of obesity
US8487073B2 (en) 2008-06-09 2013-07-16 Palatin Technologies, Inc. Melanocortin receptor-specific peptides for treatment of sexual dysfunction
US8729224B2 (en) 2008-06-09 2014-05-20 Palatin Technologies, Inc. Melanocortin receptor-specific peptides for treatment of female sexual dysfunction
WO2009151383A1 (en) * 2008-06-09 2009-12-17 Palatin Technologies, Inc. Melanocortin receptor-specific peptides for the treatment of obesity and other diseases associated with melanocortin receptor function
US9040663B2 (en) 2009-06-08 2015-05-26 Astrazeneca Ab Melanocortin receptor-specific peptides
CN105037502A (en) * 2009-06-08 2015-11-11 帕拉丁科技公司 Melanocortin receptor-specific peptides
US8455617B2 (en) 2009-06-08 2013-06-04 Astrazeneca Ab Melanocortin receptor-specific peptides
US8455618B2 (en) 2009-06-08 2013-06-04 Astrazeneca Ab Melanocortin receptor-specific peptides
US10711039B2 (en) 2009-11-23 2020-07-14 Palatin Technologies, Inc. Melanocortin receptor-specific peptide with C-terminal naphthylalanine
US9447148B2 (en) 2009-11-23 2016-09-20 Palatin Technologies, Inc. Melanocortin-1 receptor-specific cyclic peptides
US8877890B2 (en) 2009-11-23 2014-11-04 Palatin Technologies, Inc. Melanocortin-1 receptor-specific cyclic peptides
US8492517B2 (en) 2009-11-23 2013-07-23 Palatin Technologies, Inc. Melanocortin-1 receptor-specific cyclic peptides
US8933194B2 (en) 2009-11-23 2015-01-13 Palatin Technologies, Inc. Melanocortin-1 receptor-specific linear peptides
US9580466B2 (en) 2009-11-23 2017-02-28 Palatin Technologies, Inc. Melanocortin-1 receptor-specific linear peptides
US10017539B2 (en) 2009-11-23 2018-07-10 Palatin Technologies, Inc. Melanocortin-1 receptor-specific cyclic hexapeptides
US10106578B2 (en) 2009-11-23 2018-10-23 Palatin Technologies, Inc. Melanocortin-1 receptor-specific linear peptides
US9782454B2 (en) 2010-04-22 2017-10-10 Longevity Biotech, Inc. Highly active polypeptides and methods of making and using the same
US10772934B2 (en) 2010-04-22 2020-09-15 Longevity Biotech, Inc. Highly active polypeptides and methods of making and using the same
CN103608003A (en) * 2011-06-14 2014-02-26 益普生制药股份有限公司 A sustained-release composition containing a melanocortin receptor ligand as the active ingredient
US9415012B2 (en) 2011-06-14 2016-08-16 Ipsen Pharma S.A.S. Sustained-release composition containing peptides as active ingredient
WO2012172433A3 (en) * 2011-06-14 2013-01-31 Ipsen Pharma S.A.S. A sustained -release composition containing a melanocortin receptor ligand as the active ingredient
US9789164B2 (en) 2013-03-15 2017-10-17 Longevity Biotech, Inc. Peptides comprising non-natural amino acids and methods of making and using the same
US10543255B2 (en) 2013-03-15 2020-01-28 Longevity Biotech, Inc. Peptides comprising non-natural amino acids and methods of making and using the same
WO2014145718A2 (en) 2013-03-15 2014-09-18 Longevity Biotech, Inc. Peptides comprising non-natural amino acids and methods of making and using the same
US11278595B2 (en) 2013-03-15 2022-03-22 Longevity Biotech, Inc. Peptides comprising non-natural amino acids and methods of making and using the same

Also Published As

Publication number Publication date
ATE293453T1 (en) 2005-05-15
BR0012200B1 (en) 2013-08-06
CA2376978A1 (en) 2001-01-04
MXPA02000111A (en) 2003-07-21
NZ516030A (en) 2004-10-29
US20050037951A1 (en) 2005-02-17
EP1196184A1 (en) 2002-04-17
EP1196184B8 (en) 2005-06-15
US6794489B2 (en) 2004-09-21
HK1047881B (en) 2005-10-14
KR20020016876A (en) 2002-03-06
AU783718B2 (en) 2005-12-01
EP1196184A4 (en) 2003-05-28
PT1196184E (en) 2005-08-31
US6579968B1 (en) 2003-06-17
ES2235921T3 (en) 2005-07-16
BR0012200A (en) 2002-03-26
CA2376978C (en) 2012-11-20
EP1196184B1 (en) 2005-04-20
KR101021632B1 (en) 2011-03-17
DE60019598D1 (en) 2005-05-25
DE60019598T2 (en) 2005-09-29
HK1047881A1 (en) 2003-03-14
AU6340700A (en) 2001-01-31
JP4576493B2 (en) 2010-11-10
US20020107182A1 (en) 2002-08-08
JP2003503357A (en) 2003-01-28

Similar Documents

Publication Publication Date Title
US6579968B1 (en) Compositions and methods for treatment of sexual dysfunction
US7473760B2 (en) Cyclic peptide compositions for treatment of sexual dysfunction
US7795378B2 (en) Peptide compositions for treatment of sexual dysfunction
Bury et al. Biological activity of carbon-terminal partial sequences of substance P
KR101687037B1 (en) Melanocortin receptor-specific peptides for treatment of sexual dysfunction
US6703483B1 (en) Compounds useful in pain management
JP2016084357A (en) μ OPIOID RECEPTOR AGONIST ANALOGS OF ENDOMORPHINS
US8247530B2 (en) N-alkylated cyclic peptide melanocortin agonists
US7307063B2 (en) Melanocortin metallopeptides for treatment of sexual dysfunction
EP1593384A2 (en) Compositions for treatment of sexual dysfunction
HUT73777A (en) Novel tripeptides useful in immune and central nerve system therapy
CA2385910A1 (en) Somatostatin analogs for the treatment of cancer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000950283

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 63407/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 516030

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/000111

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2001 505933

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017016944

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2376978

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2000950283

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000950283

Country of ref document: EP