WO2000078562A1 - Low-noise tire - Google Patents

Low-noise tire Download PDF

Info

Publication number
WO2000078562A1
WO2000078562A1 PCT/JP1999/003308 JP9903308W WO0078562A1 WO 2000078562 A1 WO2000078562 A1 WO 2000078562A1 JP 9903308 W JP9903308 W JP 9903308W WO 0078562 A1 WO0078562 A1 WO 0078562A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
base resin
tire
active ingredient
silent
Prior art date
Application number
PCT/JP1999/003308
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Ohira
Mitsuo Hori
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Priority to PCT/JP1999/003308 priority Critical patent/WO2000078562A1/en
Publication of WO2000078562A1 publication Critical patent/WO2000078562A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/002Noise damping elements provided in the tyre structure or attached thereto, e.g. in the tyre interior

Definitions

  • the present invention relates to a silent tire for an automobile in which noise during running is reduced.
  • an automobile tire 1 has a tread portion 2 on an outer surface that comes into contact with a road surface, a force portion 9 on an inner surface side of the tread portion 2, a breaker belt portion 3, and a radial ply 4. Or an inner layer made of a bias ply or the like.
  • the tread portion 2 is formed in an annular shape having a substantially U-shaped cross section, and a rib portion 6 including a beat wire 5 is formed at both ends thereof so that the rib portion 6 is fitted into the rim flange 8 of the wheel 7. It has become.
  • Such tires are required to have various performances such as abrasion resistance, wet braking performance, and rolling resistance.However, when a vehicle is running, it is caused by vibration or air bombing that occurs when the tire tread surface comes into contact with the road surface. There is a problem that noise is generated inside and outside the vehicle. Conventionally, various proposals have been made for the purpose of preventing such a problem, that is, noise during traveling. For example, Japanese Patent Application Laid-Open No. 1-254411 discloses that by providing a layer of a foamed rubber composition having a foaming rate of 150% or more inside a tire, the tire characteristics are not impaired, and the tire is manufactured with a low performance. Proposals have been made to reduce noise. However, even such an attempt did not achieve the noise reduction effect enough to sufficiently solve the above problem, and an effective solution was required. An object of the present invention is to provide a silent vehicle tire having reduced noise during traveling. It is the purpose. Disclosure of the invention
  • the silent tire according to the present invention is characterized by including a damping material in which an active component that increases the amount of dipole moment in the base resin is mixed with the base resin.
  • the damping material contained in the tire reliably attenuates noises that enter and exit the vehicle due to vibration or air bombing generated when the tire tread surface contacts the road surface. It is like that.
  • FIG. 1 is a perspective view showing one embodiment of the silent tire of the present invention.
  • FIG. 2 is an enlarged sectional view showing another embodiment of the silent tire of the present invention.
  • FIG. 3 is a schematic diagram showing a dipole in the base resin.
  • Fig. 4 is a schematic diagram showing the state of the dipole in the base resin when vibration energy is applied.
  • FIG. 5 is a schematic diagram showing a state of a dipole in a base resin when an active ingredient is blended.
  • FIG. 6 is a schematic diagram showing a test device for measuring a noise level during running of the tires of the example and the comparative example.
  • FIG. 7 is a graph showing the noise level (d B A) during running for the tires of the example and the comparative example at each frequency.
  • FIG. 8 is a perspective view showing the structure of a conventional general tire. BEST MODE FOR CARRYING OUT THE INVENTION
  • This silent tire is for an automobile, and includes a base resin and a vibration damping material in which an active component that increases the amount of dipole moment in the base resin is blended.
  • Base resins include polyvinyl chloride (PVC), polyethylene (PE), chlorinated polyethylene (CPE), polypropylene (PP), ethylene-vinyl acetate copolymer, polymethyl acrylate (PMMA), polyvinylidene fluoride, Polymers such as polyisoprene (IP), polystyrene (PS), styrene-butadiene-acrylonitrile copolymer (ABS), styrene-acrylonitrile copolymer (AS), polycarbonate, or natural rubber (NR), styrene Halogenated rubbers such as butadiene rubber (SBR), butadiene rubber (BR), butyl rubber, isobutylene isoprene rubber (PVC), polyethylene (PE), chlorinated polyethylene (CPE), polypropylene (
  • FIG. 3 shows an arrangement state of the dipole 32 inside the base resin 31 before the vibration energy is transmitted. It can be said that the arrangement state of the dipole 32 is in a stable state. However, when vibration energy is transmitted to this, displacement occurs in the dipoles 32 existing inside the base resin 31, and as shown in FIG. Will be placed in an unstable state, and each dipole 32 will try to return to a stable state as shown in FIG. At this time, energy is consumed.
  • the base resin When selecting the base resin, it may be appropriately determined according to the application site of the tire, for example, a tread portion, a belt portion, a radial ply or a bias ply, that is, in consideration of the performance required for the application site. It is desirable to consider the magnitude of the dipole moment inside the molecule. It is also good to consider the size and shape of the application area, as well as the handleability, moldability, availability, temperature performance (heat resistance and cold resistance), weather resistance, and price of the base resin.
  • the active component is a component that dramatically increases the amount of dipole moment in the base resin, and the active component itself has a large dipole moment, or the active component itself has a small dipole moment.
  • the amount of the dipole moment generated in the base resin 31 under a predetermined temperature condition and the magnitude of the energy can be adjusted by blending the active ingredient into the base resin 31 as shown in FIG. It will increase by a factor of 3 or 10 below.
  • the energy consumption due to the restoring action of the dipole 32 when the above-mentioned energy is added also increases drastically, and vibration damping performance far exceeding the prediction is produced.
  • active ingredients that induce such effects include N, N-dicyclohexylbenzothiazyl-2-sulfenamide (DCHBSA), 2-mercaptobenzothiazole (MBT), dibenzothiazylsulfide (MBTS), Cyclohexyl benzothiaziru 2-sulfenamide (CBS), N-tert
  • BVS N-oxyxeti —Sulfenamide
  • ⁇ BS N-oxyxeti —Sulfenamide
  • DPBS benzothiazyl 2-sulfenamide
  • benzotriazole with an azole group bonded to the benzene ring as the mother nucleus, to which a phenyl group is bonded.
  • the amount of dipole moment in the above-mentioned active ingredient is variously different depending on the type of the active ingredient, similarly to the amount of dipole moment in the base resin. Even when the same active component is used, the amount of dipole moment generated in the base resin changes depending on the temperature when vibration energy is applied. The amount of dipole moment also changes depending on the magnitude of the vibration energy applied to the base resin. For this reason, it is desirable to select and use the active component that gives the largest amount of the dipole moment in consideration of the temperature and energy at the time of application. In deciding the active ingredient to be blended in the base resin, it is good to select the one with a similar value in consideration of the compatibility between the active ingredient and the base resin, that is, the SP value.
  • the compounding amount is 10 to 400 parts by weight based on 100 parts by weight of the base resin. That is, if the amount of the active ingredient is less than 10 parts by weight, the sufficient effect of dramatically increasing the amount of the dipole moment in the base resin cannot be obtained. If the amount is more than 0 parts by weight, an increase in the amount of dipole moment cannot be expected by the increased amount even if the amount is increased, and furthermore, there is a risk of causing a disadvantage that the formability is deteriorated.
  • at least two or more active ingredients having different glass transition points can be blended into the base resin to extend the temperature range in which vibration absorption performance is exhibited. It is.
  • the above-mentioned vibration damping material is filled with an inorganic filler such as my flakes, glass pieces, glass fiber, carbon fiber, calcium carbonate, barite, precipitated barium sulfate, etc. for the purpose of further improving the vibration damping performance.
  • the inorganic filler is preferably contained in a proportion of 100 to 100 parts by weight based on 100 parts by weight of the base resin.
  • the vibration damping performance is not sufficiently improved. Even if the amount exceeds 100 parts by weight, adverse effects may occur if filling cannot be actually performed or mechanical strength decreases.
  • anti-oxidants, reinforcing agents and reinforcement Agents, antistatic agents, flame retardants, lubricants, foaming agents, coloring agents, and the like are added to the above components.
  • the silent tire of the present invention contains the above-described vibration damping material. As a preferred mode, as shown in FIG.
  • the tread portion 12 constituting the tire 11 and the inner surface thereof
  • the component itself of the tire 11 such as the carcass part 19, the breaker belt part 13, and the radial ply 14 may be formed of the damping material.
  • the tread portion 12 is a rubber layer composed of a mixture of SBR and BR or a mixture of NR and BR mixed with carbon black depending on the type of tire, and the active ingredient is compounded in these rubber materials. This gives the tread portion 12 itself vibration damping properties.
  • the tire performance such as abrasion resistance, wet damping property and rolling resistance may be impaired.
  • the tread portion 12 has a two-layer structure of a cap tread 12a and an inner tread 12b, and the inner tread 12b at the inner side is made of the above-described vibration damping material.
  • the carcass portion 19 is formed by laminating a plurality of layers each having a rubber layer on the upper surface of a bamboo cloth, and the carcass portion 19 itself is compounded by mixing an active ingredient into the rubber material constituting the rubber layer. It gives vibration damping properties to In this case, depending on the amount of the active ingredient, sufficient care must be taken because the strength may be reduced and the function of withstanding the load, impact and air pressure received by the tire may be impaired.
  • the breaker belt portion 13 is disposed between the tread portion 12 and the carcass portion 19 to mitigate an external impact, and cracks and scratches generated in the tread portion 12 are directly applied to the carcass portion 19. It is a part that has the function of preventing the influence, but this belt part 13 also has a rubber layer on the upper surface of It is a combination. Also in the case of the belt portion 13, the active material is blended into the rubber material constituting the rubber layer to impart vibration damping properties to the belt portion 13 itself.
  • the tire component itself is made of the damping material have been described above. However, the present invention is not limited to this, and the tire can be freely changed, for example, a plurality of tire components are made of the damping material.
  • the damping material is formed into a sheet, and the damping sheet 20 is attached to the tread portion 1.
  • the damping sheet 20 is attached to the tread portion 1.
  • it can be applied to the tire as a part separate from the constituent parts of the tire 11 by bonding to the inner surface side of the tire 2.
  • the vibration damping sheet since it is only necessary to bond the vibration damping sheet to the inner surface of the tread portion 12, there is the simplicity that a commercially available tire can be used as it is.
  • the vibration damping sheet 20 was adhered to the inner surface of the tread portion 12 with an adhesive.
  • the tire 11 is rotatably supported by the support 23, and the tire 11 is placed on a rotating roller 21 provided with irregularities on its surface, and the rotating roller is rotated to rotate the tire 11 and
  • the noise level (dBA) was picked up by a sound level meter. The results are shown in FIG. The noise was measured at a temperature of 25 ° C and a tire rotation speed of 20 rpm. For comparison, a similar experiment was carried out for a tire without a vibration damping sheet (comparative example), The sound level was measured and also shown in Figure 7.

Abstract

A low-noise tire for automobiles, having an excellent damping performance, characterized in that a base resin contains a damping material comprising an active component adapted to increase a dipole moment in the base resin.

Description

明糸田書 静音タイヤ 技術分野  Akitoda, Quiet tire Technical field
本発明は、 走行時の騒音を低減させた自動車用の静音タイヤに関する。 背景技術  TECHNICAL FIELD The present invention relates to a silent tire for an automobile in which noise during running is reduced. Background art
一般に自動車用タイヤ 1は、 図 8に示すように、 道路面と接触する外面側のト レッド部 2と、 このトレッド部 2の内面側の力一カス部 9、 ブレーカーベルト部 3、 ラジアルプライ 4、 あるいはバイアスプライなどからなる内側層とから構成 されている。 またトレッド部 2は、 断面略 U字の円環状をなし、 その両端部には ビートワイヤー 5を内包したリブ部 6が形成され、 このリブ部 6がホイール 7の リムフランジ 8内に嵌め込まれるようになつている。 かかるタイヤは、 耐摩耗性ゃゥエツト制動性あるいは転動抵抗など各種性能が 要求されているが、 自動車の走行に際し、 タイヤトレッド面と道路面との接触の 際に生じる振動やエアボンビングなどに起因して車内外に騒音が生じるという問 題がある。 従来、 このような問題、 すなわち走行時の騒音の防止を.目的とする種々の提案 がなされている。 例えば特開平 1— 2 5 4 4 1 1号公報には、 タイヤの内側に発 泡率 1 5 0 %以上の発泡ゴム組成物の層を設けることで、 タイヤ特性を損なわず 、 しかもタイヤを低騒音化するという提案がなされている。 しかしながら、 このような試みも、 上記問題を十分に解決し得る程度の騒音低 減効果を得るには至らず、 実効性のある解決手段が求められていた。 本発明は、 走行時の騒音を低減させた自動車用の静音タイヤを提供することを 目的とするものである。 発明の開示 Generally, as shown in Fig. 8, an automobile tire 1 has a tread portion 2 on an outer surface that comes into contact with a road surface, a force portion 9 on an inner surface side of the tread portion 2, a breaker belt portion 3, and a radial ply 4. Or an inner layer made of a bias ply or the like. The tread portion 2 is formed in an annular shape having a substantially U-shaped cross section, and a rib portion 6 including a beat wire 5 is formed at both ends thereof so that the rib portion 6 is fitted into the rim flange 8 of the wheel 7. It has become. Such tires are required to have various performances such as abrasion resistance, wet braking performance, and rolling resistance.However, when a vehicle is running, it is caused by vibration or air bombing that occurs when the tire tread surface comes into contact with the road surface. There is a problem that noise is generated inside and outside the vehicle. Conventionally, various proposals have been made for the purpose of preventing such a problem, that is, noise during traveling. For example, Japanese Patent Application Laid-Open No. 1-254411 discloses that by providing a layer of a foamed rubber composition having a foaming rate of 150% or more inside a tire, the tire characteristics are not impaired, and the tire is manufactured with a low performance. Proposals have been made to reduce noise. However, even such an attempt did not achieve the noise reduction effect enough to sufficiently solve the above problem, and an effective solution was required. An object of the present invention is to provide a silent vehicle tire having reduced noise during traveling. It is the purpose. Disclosure of the invention
本発明の静音タイヤは、 ベース樹脂に、 同ベース樹脂における双極子モーメン ト量を増加させる活性成分を配合した制振材料を含むことを特徴とするものであ る。 本発明の静音タイヤは、 当該タイヤに含まれる制振材料が、 タイヤトレッド面 と道路面との接触の際に生じる振動やエアボンビングなどに起因して車内外に乗 じる騒音を確実に減衰させるようになつている。 図面の簡単な説明  The silent tire according to the present invention is characterized by including a damping material in which an active component that increases the amount of dipole moment in the base resin is mixed with the base resin. In the silent tire according to the present invention, the damping material contained in the tire reliably attenuates noises that enter and exit the vehicle due to vibration or air bombing generated when the tire tread surface contacts the road surface. It is like that. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の静音タイヤの一形態を示す斜視図。  FIG. 1 is a perspective view showing one embodiment of the silent tire of the present invention.
図 2は、 本発明の静音タイヤの別形態を示す拡大断面図。  FIG. 2 is an enlarged sectional view showing another embodiment of the silent tire of the present invention.
図 3は、 ベース樹脂における双極子を示した模式図である。  FIG. 3 is a schematic diagram showing a dipole in the base resin.
図 4は、 振動エネルギーが加わったときのベース樹脂における双極子の状態を 示した模式図。  Fig. 4 is a schematic diagram showing the state of the dipole in the base resin when vibration energy is applied.
図 5は、 活性成分が配合されたときのベース樹脂における双極子の状態を示し た模式図。  FIG. 5 is a schematic diagram showing a state of a dipole in a base resin when an active ingredient is blended.
図 6は、 実施例及び比較例のタイヤについての走行時における騒音レベルを測 定する試験装置を示した模式図。  FIG. 6 is a schematic diagram showing a test device for measuring a noise level during running of the tires of the example and the comparative example.
図 7は、 各周波数における実施例及び比較例のタイヤについての走行時におけ る騒音レベル (d B A) を示したグラフ。  FIG. 7 is a graph showing the noise level (d B A) during running for the tires of the example and the comparative example at each frequency.
図 8は、 従来の一般的なタイヤの構造を示す斜視図。 発明を実施するための最良の形態  FIG. 8 is a perspective view showing the structure of a conventional general tire. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の静音タイヤを更に詳しく説明する。 この静音タイヤは、 自動車 用であって、 ベース樹脂に、 同ベース樹脂における双極子モーメント量を増加さ せる活性成分を配合した制振材料を含むものである。 この制振材料に適用される ベース樹脂としては、 ポリ塩化ビニル (PVC) 、 ポリエチレン (PE) 、 塩素 化ポリエチレン (CPE) 、 ポリプロピレン (P P) 、 エチレン一酢ピ共重合体 、 ポリメ夕クリル酸メチル (PMMA) 、 ポリフッ化ビニリデン、 ポリイソプレ ン ( I P) 、 ポリスチレン (P S) 、 スチレン一ブタジエン一アクリロニトリル 共重合体 (AB S) 、 スチレン—アクリロニトリル共重合体 (AS) 、 ポリカー ボネートなどの高分子、 あるいは天然ゴム (NR) 、 スチレン—ブタジエンゴム (S BR) 、 ブタジエンゴム (BR) 、 ブチルゴム、 イソブチレンイソプレンゴ ム ( I I R) 、 塩素化ブチルゴム、 臭素化ブチルゴムなどのハロゲン化ゴム、 ェ チレン . プロピレン · ジェン系共重合体ゴム (EPDM) 、 アクリロニトリル— ブタジエンゴム (NBR) 、 イソプレンゴム ( I R) などのゴム系高分子の中か ら選ばれた 1種若しくはそれらの混合物を用いることができる。 本発明者は、 制振材料の研究を通じて、 新たな振動エネルギーの吸収減衰のメ 力二ズムを解明した。 そのメカニズムは以下のとおりである。 すなわち、 図 3は 、 振動エネルギーが伝達される前のベース樹脂 3 1内部における双極子 32の配 置状態を示している。 この双極子 32の配置状態は安定な状態にあると言える。 ところが、 これに振動エネルギーが伝達されることで、 ベース樹脂 3 1内部に存 在する双極子 32には変位が生じ、 図 4に示すように、 ベース樹脂 3 1内部にお ける各双極子 32は不安定な状態に置かれることになり、 各双極子 32は、 図 3 に示すような安定な状態に戻ろうとする。 このとき、 エネルギーの消費が生じることになる。 こうした、 ベース樹脂 3 1 内部における双極子の変位、 双極子の復元作用によるエネルギー消費を通じて、 振動エネルギーの吸収が生じるものと考えられる。 このような振動減衰のメ力二ズムから、 図 3及び図 4に示すようなベース樹脂 3 1内部における双極子モーメントの量が大きくなればなる程、 そのベース樹脂 3 1の持つ減衰性も高くなると考えられる。 このことから、 ベース樹脂として、 分子内部における双極子モーメント量がもともと大きなものを用いることは、 よ り高い振動エネルギーの吸収性能 (制振性能) を確保する上で大変有用なことで ある。 尚、 ベース樹脂の選択に際しては、 例えばトレッド部、 ベルト部、 あるいはラ ジアルプライやバイアスプライなど、 当該タイヤにおける適用部位に合わせて、 すなわち適用部位に求められる性能を考慮して適宜決定するとよく、 さらには分 子内部における双極子モーメン卜量の大小も考慮するのが望ましい。 また適用部 位の大きさや形状、 さらには当該ベース樹脂の取り扱い性、 成形性、 入手容易性 、 温度性能 (耐熱性や耐寒性) 、 耐候性、 価格なども考慮すると良い。 活性成分とは、 前記ベース樹脂における双極子モーメントの量を飛躍的に増加 させる成分であり、 当該活性成分そのものの双極子モーメント量が大きいもの、 あるいは活性成分そのものの双極子モーメント量は小さいが、 当該活性成分を配 合することで、 ベース樹脂における双極子モーメント量を飛躍的に増加させるこ とができる成分をいう。 例えば所定の温度条件、 エネルギーの大きさとしたときの、 ベース樹脂 3 1に 生じる双極子モーメントの量が、 このベース樹脂に前記活性成分を配合すること で、 図 5に示すように、 同じ条件の下で 3倍とか、 10倍とかいった量に増加す ることになるのである。 これに伴って、 前述のエネルギーが加わったときの双極 子 32の復元作用によるエネルギー消費量も飛躍的に増大することになり、 予測 を遙かに越える制振性能が生じることになると考えられる。 このような作用効果を導く活性成分としては、 例えば N、 N—ジシクロへキシ ルベンゾチアジル— 2—スルフェンアミ ド (DCHBSA) 、 2—メルカプトべ ンゾチアゾール (MBT) 、 ジベンゾチアジルスルフイ ド (MBTS) 、 N—シ クロへキシルベンゾチアジルー 2—スルフェンアミド (CB S) 、 N- t e r t Hereinafter, the silent tire of the present invention will be described in more detail. This silent tire is for an automobile, and includes a base resin and a vibration damping material in which an active component that increases the amount of dipole moment in the base resin is blended. Applied to this damping material Base resins include polyvinyl chloride (PVC), polyethylene (PE), chlorinated polyethylene (CPE), polypropylene (PP), ethylene-vinyl acetate copolymer, polymethyl acrylate (PMMA), polyvinylidene fluoride, Polymers such as polyisoprene (IP), polystyrene (PS), styrene-butadiene-acrylonitrile copolymer (ABS), styrene-acrylonitrile copolymer (AS), polycarbonate, or natural rubber (NR), styrene Halogenated rubbers such as butadiene rubber (SBR), butadiene rubber (BR), butyl rubber, isobutylene isoprene rubber (IIR), chlorinated butyl rubber, and brominated butyl rubber, and ethylene.propylene-gen-based copolymer rubber (EPDM) , Acrylonitrile-butadiene rubber (NBR), isoprene rubber (IR), etc. One selected from the above rubber-based polymers or a mixture thereof can be used. The present inventor has clarified the mechanism of absorption and attenuation of new vibration energy through research on vibration damping materials. The mechanism is as follows. That is, FIG. 3 shows an arrangement state of the dipole 32 inside the base resin 31 before the vibration energy is transmitted. It can be said that the arrangement state of the dipole 32 is in a stable state. However, when vibration energy is transmitted to this, displacement occurs in the dipoles 32 existing inside the base resin 31, and as shown in FIG. Will be placed in an unstable state, and each dipole 32 will try to return to a stable state as shown in FIG. At this time, energy is consumed. It is considered that vibration energy is absorbed through the displacement of the dipole inside the base resin 31 and the energy consumption by the restoring action of the dipole. From the mechanism of such vibration damping, as the amount of the dipole moment inside the base resin 31 as shown in FIGS. 3 and 4 increases, the damping property of the base resin 31 increases. It is considered to be. For this reason, it is difficult to use a resin having a large dipole moment inside the molecule as the base resin. This is very useful in ensuring high vibration energy absorption performance (damping performance). When selecting the base resin, it may be appropriately determined according to the application site of the tire, for example, a tread portion, a belt portion, a radial ply or a bias ply, that is, in consideration of the performance required for the application site. It is desirable to consider the magnitude of the dipole moment inside the molecule. It is also good to consider the size and shape of the application area, as well as the handleability, moldability, availability, temperature performance (heat resistance and cold resistance), weather resistance, and price of the base resin. The active component is a component that dramatically increases the amount of dipole moment in the base resin, and the active component itself has a large dipole moment, or the active component itself has a small dipole moment. It refers to a component that can dramatically increase the amount of dipole moment in the base resin by combining the active component. For example, the amount of the dipole moment generated in the base resin 31 under a predetermined temperature condition and the magnitude of the energy can be adjusted by blending the active ingredient into the base resin 31 as shown in FIG. It will increase by a factor of 3 or 10 below. Along with this, it is considered that the energy consumption due to the restoring action of the dipole 32 when the above-mentioned energy is added also increases drastically, and vibration damping performance far exceeding the prediction is produced. Examples of active ingredients that induce such effects include N, N-dicyclohexylbenzothiazyl-2-sulfenamide (DCHBSA), 2-mercaptobenzothiazole (MBT), dibenzothiazylsulfide (MBTS), Cyclohexyl benzothiaziru 2-sulfenamide (CBS), N-tert
- 2—スルフェンアミド (BBS) 、 N—ォキシジェチ
Figure imgf000005_0001
—スルフェンアミ ド (〇BS) 、 N、 N—ジイソプロピ ルベンゾチアジルー 2—スルフェンアミ ド (DPB S) などのベンゾチアジル基 を含む化合物、 ベンゼン環にァゾール基が結合したべンゾトリアゾールを母核とし、 これにフ ェニル基が結合した 2— { 2 ' —ハイ ド口キシー 3 ' ― (3" , 4" , 5" , 6 " テトラハイ ドロフタリミデメチル) 一 5 ' —メチルフエ二ル} 一べンゾトリア ゾ一ル (2HPMMB) 、 2 - { 2 ' 一ハイ ド口キシ— 5 ' —メチルフエ二ル} —ベンゾトリアゾール (2HMPB) 、 2 - { 2 ' 一ハイ ド口キシ— 3 ' - t - ブチル一 5 ' —メチルフエ二ル} 一 5—クロ口べンゾ卜リアゾール (2HBMP C B) 、 2 - { 2 ' —ハイ ドロキシー 3 ' , 5 ' —ジ— t一ブチルフエ二ル} ― 5—クロ口べンゾトリアゾール (2HDBPCB) などのベンゾ卜リアゾール基 を持つ化合物、 ェチルー 2—シァノ一 3, 3—ジーフエニルァクリレートなどのジフエ二ルァ クリレート基を含む化合物、 あるいは 2—ハイド口キシー 4ーメ卜キシベンゾフエノン (HMBP) 、 2 - ハイドロキシー 4—メトキシベンゾフエノン一 5—スルフォニックァシド (HM BP S) などのベンゾフエノン基を持つ化合物の中から選ばれた 1種若しくは 2 種以上を挙げることができる。 尚、 上記活性成分における双極子モーメント量は、 ベース樹脂における双極子 モーメント量と同様に活性成分の種類により様々に異なる。 また、 同一の活性成 分を用いたとしても、 振動エネルギーが加わったときの温度により、 ベース樹脂 に生じる双極子モーメントの量も変わる。 また、 ベース樹脂に加わる振動エネル ギ一の大小によっても、 双極子モーメントの量は変わる。 このため、 適用時の温 度、 エネルギーの大きさを考慮して、 そのとき最も大きな双極子モーメント量と なる活性成分を選択して用いるのが望ましい。 尚、 ベース樹脂に配合する活性成分を決定するに当たり、 活性成分とベース樹 脂との相溶し易さ、 すなわち S P値を考慮し、 その値の近いものを選択すると良 レ^ この活性成分の配合量としては、 前記べ一ス樹脂 1 0 0重量部に対し 1 0〜4 0 0重量部の割合で含まれていることが望ましい。 というのは、 活性成分の配合 量が 1 0重量部を下回る場合には、 ベース樹脂における双極子モーメントの量を 飛躍的に増加させるという十分な効果を得ることができず、 配合量が 4 0 0重量 部を上回る場合には、 配合量を多くしても、 多くした分だけの双極子モーメント 量の増大が期待できず、 しかも成形性が悪くなるという不具合を招く恐れがある からである。 尚、 上記活性成分を 2種以上配合する場合、 ガラス転移点の異なる少なくとも 2種以上の活性成分を前記ベース樹脂に配合して、 振動吸収性能の発揮される温 度領域を拡張することも可能である。 例えば B Rをベース樹脂としたときの、 D C H B S Aと 2 H P MM Bの組み合わせや、 同じく S B Rをべ一ス樹脂としたと きの、 D C H B S Aと 2 H P MM Bと E C D P Aの組み合わせなどを挙げること ができる。 尚、 上述の制振材料には、 マイ力鱗片、 ガラス片、 グラスファイバ一、 カーボ ンファイバ一、 炭酸カルシウム、 バライト、 沈降硫酸バリウムなどの無機充填材 を制振性能をさらに向上させる目的で充填することもできる。 当該無機充填材の 充填量としては、 ベース榭脂 1 0 0重量部に対し 1 0〜 1 0 0 0重量部の割合で 含まれているのが好ましい。 例えば無機充填材の充填量が 1 0重量部を下回る場 合には、 無機充填材を充填しても十分な制振性能の向上がみられず、 反対に無機 充填材の充填量を 1 0 0 0重量部を上回る量としても、 現実に充填できなかった り、 機械的強度が低下したりするといつた弊害を招くことになる。 尚、 制振材料には、 上記成分の他に、 必要に応じて酸化防止剤、 補強剤 ·強化 剤、 帯電防止剤、 難燃剤、 滑剤、 発泡剤、 着色剤などを配合することができる。 本発明の静音タイヤは、 上述の制振材料を含んでいるのであるが、 その好まし い形態としては、 図 1に示すように、 タイヤ 1 1を構成するトレッド部 1 2、 そ の内面側の、 カーカス部 1 9、 ブレーカーベルト部 1 3、 ラジアルプライ 1 4な どのタイヤ 1 1の構成部品そのものを当該制振材料によって構成する形態を挙げ ることができる。 例えば卜レツド部 1 2は、 タイヤの種類に応じて S B Rと B Rの混合物や N R と B Rの混合物にカーボン黒を混入したものからなるゴム層であるが、 これらの ゴム材料中に活性成分を配合することでトレッド部 1 2自体に制振性を付与する のである。 尚、 この場合、 活性成分の配合量によっては、 耐摩耗性やウエット制 動性あるいは転動抵抗などのタイヤ性能を損なう恐れがあるので、 十分に注意を 要する。 図 1に示す形態は、 トレッド部 1 2をキャップトレッド 1 2 aとインナートレ ッド 1 2 bの 2層構造とし、 内側のインナートレツド 1 2 bを上述の制振材料に よって構成した。 またカーカス部 1 9は、 すだれ布上面にゴム層を設けたものを複数枚重ね合わ せたものであるが、 このゴム層を構成するゴム材料中に活性成分を配合すること でカーカス部 1 9自体に制振性を付与するのである。 尚、 この場合、 活性成分の 配合量によっては、 強度が低下してタイヤの受ける荷重や衝撃、 空気圧に耐える という機能を損なう恐れがあるので、 十分に注意を要する。 ブレーカ一ベルト部 1 3は、 前記トレッド部 1 2とカーカス部 1 9との間に配 されて外部からの衝撃を緩和すると共にトレッド部 1 2に生じたクラックや傷が 直接カーカス部 1 9に影響するのを防ぐ働きを持つ部品であるが、 このベルト部 1 3もカーカス部 1 9と同じくすだれ布上面にゴム層を設けたものを複数枚重ね 合わせたものである。 このベルト部 1 3の場合も、 ゴム層を構成するゴム材料中 に活性成分を配合することでベルト部 1 3自体に制振性を付与するのである。 以上、 タイヤの構成部品そのものを制振材料で構成する 3つの例を挙げたが、 これに限らず、 タイヤの複数の構成部品を制振材料で構成するなど、 自由に変更 することができる。 また当該制振材料によってタイヤ 1 1の構成部品そのものを構成するのではな く、 例えば図 2に示すように、 当該制振材料をシート状に成形し、 この制振シー ト 20をトレッド部 1 2の内面側に接着するなど、 タイヤ 1 1の構成部品とは別 の部品としてタイヤに適用することもできる。 尚、 図 2に示す形態の場合、 制振 シートをトレツド部 1 2の内面側に接着するだけでよいことから、 市販のタイヤ をそのまま利用することができるという手軽さがある。 実施例
-2-sulfenamide (BBS), N-oxyxeti
Figure imgf000005_0001
—Sulfenamide (〇BS), N, N—diisopropyl A compound containing a benzothiazyl group, such as benzothiazyl 2-sulfenamide (DPBS), and a benzotriazole with an azole group bonded to the benzene ring as the mother nucleus, to which a phenyl group is bonded. —Hide mouth 3 '― (3 ", 4", 5 ", 6" tetrahydroflophthalimide methyl) 1 5' —Methylphenyl} Benzotriazole (2HPMMB), 2-{2 ' 1-Hydrox—5′—Methylphenyl} —Benzotriazole (2HMPB), 2- {2′Hydroxy—3′-t-butyl-1-5′—Methylphenyl} 1—5-Hydroxy Benzotriazole groups such as benzotriazole (2HBMP CB), 2- {2'-hydroxy-3 ', 5'-di-t-butylphenyl} -5-chlorobenzototriazole (2HDBPCB) A compound having the following: ethyl 2-cyano-3,3-diphenylacrylate Which compounds contain diphenyl acrylate groups, or 2-hydroxy-4-methoxybenzophenone (HMBP), 2-hydroxy-4-methoxybenzophenone- 15-sulfonic acid (HMBPS) And one or more compounds selected from compounds having a benzophenone group. Incidentally, the amount of dipole moment in the above-mentioned active ingredient is variously different depending on the type of the active ingredient, similarly to the amount of dipole moment in the base resin. Even when the same active component is used, the amount of dipole moment generated in the base resin changes depending on the temperature when vibration energy is applied. The amount of dipole moment also changes depending on the magnitude of the vibration energy applied to the base resin. For this reason, it is desirable to select and use the active component that gives the largest amount of the dipole moment in consideration of the temperature and energy at the time of application. In deciding the active ingredient to be blended in the base resin, it is good to select the one with a similar value in consideration of the compatibility between the active ingredient and the base resin, that is, the SP value. It is desirable that the compounding amount is 10 to 400 parts by weight based on 100 parts by weight of the base resin. That is, if the amount of the active ingredient is less than 10 parts by weight, the sufficient effect of dramatically increasing the amount of the dipole moment in the base resin cannot be obtained. If the amount is more than 0 parts by weight, an increase in the amount of dipole moment cannot be expected by the increased amount even if the amount is increased, and furthermore, there is a risk of causing a disadvantage that the formability is deteriorated. When two or more of the above active ingredients are blended, at least two or more active ingredients having different glass transition points can be blended into the base resin to extend the temperature range in which vibration absorption performance is exhibited. It is. For example, a combination of DCHBSA and 2 HP MMB when BR is used as a base resin, and a combination of DCHBSA, 2 HP MMB and ECDPA when SBR is used as a base resin can be given. In addition, the above-mentioned vibration damping material is filled with an inorganic filler such as my flakes, glass pieces, glass fiber, carbon fiber, calcium carbonate, barite, precipitated barium sulfate, etc. for the purpose of further improving the vibration damping performance. You can also. The inorganic filler is preferably contained in a proportion of 100 to 100 parts by weight based on 100 parts by weight of the base resin. For example, when the filling amount of the inorganic filler is less than 10 parts by weight, even if the filling of the inorganic filler is performed, the vibration damping performance is not sufficiently improved. Even if the amount exceeds 100 parts by weight, adverse effects may occur if filling cannot be actually performed or mechanical strength decreases. In addition to the above components, anti-oxidants, reinforcing agents and reinforcement Agents, antistatic agents, flame retardants, lubricants, foaming agents, coloring agents, and the like. The silent tire of the present invention contains the above-described vibration damping material. As a preferred mode, as shown in FIG. 1, the tread portion 12 constituting the tire 11 and the inner surface thereof In this case, the component itself of the tire 11 such as the carcass part 19, the breaker belt part 13, and the radial ply 14 may be formed of the damping material. For example, the tread portion 12 is a rubber layer composed of a mixture of SBR and BR or a mixture of NR and BR mixed with carbon black depending on the type of tire, and the active ingredient is compounded in these rubber materials. This gives the tread portion 12 itself vibration damping properties. In this case, depending on the amount of the active ingredient, the tire performance such as abrasion resistance, wet damping property and rolling resistance may be impaired. In the embodiment shown in FIG. 1, the tread portion 12 has a two-layer structure of a cap tread 12a and an inner tread 12b, and the inner tread 12b at the inner side is made of the above-described vibration damping material. The carcass portion 19 is formed by laminating a plurality of layers each having a rubber layer on the upper surface of a bamboo cloth, and the carcass portion 19 itself is compounded by mixing an active ingredient into the rubber material constituting the rubber layer. It gives vibration damping properties to In this case, depending on the amount of the active ingredient, sufficient care must be taken because the strength may be reduced and the function of withstanding the load, impact and air pressure received by the tire may be impaired. The breaker belt portion 13 is disposed between the tread portion 12 and the carcass portion 19 to mitigate an external impact, and cracks and scratches generated in the tread portion 12 are directly applied to the carcass portion 19. It is a part that has the function of preventing the influence, but this belt part 13 also has a rubber layer on the upper surface of It is a combination. Also in the case of the belt portion 13, the active material is blended into the rubber material constituting the rubber layer to impart vibration damping properties to the belt portion 13 itself. The three examples in which the tire component itself is made of the damping material have been described above. However, the present invention is not limited to this, and the tire can be freely changed, for example, a plurality of tire components are made of the damping material. Also, instead of constituting the component itself of the tire 11 with the damping material, for example, as shown in FIG. 2, the damping material is formed into a sheet, and the damping sheet 20 is attached to the tread portion 1. For example, it can be applied to the tire as a part separate from the constituent parts of the tire 11 by bonding to the inner surface side of the tire 2. In the case of the embodiment shown in FIG. 2, since it is only necessary to bond the vibration damping sheet to the inner surface of the tread portion 12, there is the simplicity that a commercially available tire can be used as it is. Example
CPE (エラスレン 352 NA 昭和電工株式会社製) 9重量部に対し、 マイ 力鱗片 (クラライトマイ力、 30 C、 株式会社クラレ製) 65. 0重量%、 DC HB SA26. 0重量%の割合で配合し、 この配合物を 1 60°Cに設定した混練 ロールに投入して混練し、 得られた混練物を 1 80°Cに加熱した金型間に挟んで 1 80秒間加熱し、 この後、 プレス機で 80 k g · f /cm2の圧力で 30秒間加 圧してシート化し、 厚さ lmmの制振シートを得た。 この制振シート 20を図 2及び図 6に示すように、 トレツド部 12の内面側に 接着剤によって接着した。 このタイヤ 1 1を支持具 23によって回転可能に支持 し、 タイヤ 1 1を表面に凹凸を設けた回転ローラ 2 1上に置き、 回転ローラを回 転させて、 タイヤ 1 1を回転させ、 そのときに生じる騒音 「騒音レベル (dBA ) 」 を騒音計で拾った。 その結果を図 7に示した。 尚、 騒音の測定に際しては、 測定温度を 25°C、 タイヤの回転数を 20 r pmとした。 尚、 比較として制振シ —卜を接着していないタイヤ (比較例) についても同様な実験を行って、 その騒 音レベルを測定し、 同じく図 7に示した 95.0 parts by weight of CPE (Eraslen 352 NA manufactured by Showa Denko KK), 65.0% by weight of My power scales (Kuraray My Power, 30C, manufactured by Kuraray Co., Ltd.) and 26.0% by weight of DC HB SA This mixture was put into a kneading roll set at 160 ° C and kneaded, and the obtained kneaded product was sandwiched between molds heated to 180 ° C and heated for 180 seconds. The sheet was pressed with a press machine at a pressure of 80 kg · f / cm 2 for 30 seconds to obtain a vibration-damping sheet having a thickness of lmm. As shown in FIGS. 2 and 6, the vibration damping sheet 20 was adhered to the inner surface of the tread portion 12 with an adhesive. The tire 11 is rotatably supported by the support 23, and the tire 11 is placed on a rotating roller 21 provided with irregularities on its surface, and the rotating roller is rotated to rotate the tire 11 and The noise level (dBA) was picked up by a sound level meter. The results are shown in FIG. The noise was measured at a temperature of 25 ° C and a tire rotation speed of 20 rpm. For comparison, a similar experiment was carried out for a tire without a vibration damping sheet (comparative example), The sound level was measured and also shown in Figure 7.

Claims

言青求の範囲 Scope of word blue
1. ベース樹脂に、 同ベース樹脂における双極子モーメント量を増加させる活 性成分を配合した制振材料を含むことを特徴とする静音タイヤ。 1. A silent tire characterized by including a base resin containing a vibration damping material containing an active component that increases the amount of dipole moment in the base resin.
2. ベース樹脂に活性成分を配合した制振材料によってタイヤの構成部品を構 成したことを特徴とする請求項 1記載の静音タイヤ。 2. The silent tire according to claim 1, wherein the component parts of the tire are made of a vibration damping material obtained by mixing an active ingredient with a base resin.
3. ベース樹脂に活性成分を配合した制振材料がシ一ト状に成形されており、 当該シートがタイヤの内面側に配置されていることを特徴とする請求項 1記載の 静音タイヤ。 3. The silent tire according to claim 1, wherein a vibration damping material obtained by mixing an active ingredient with a base resin is formed in a sheet shape, and the sheet is disposed on an inner surface side of the tire.
4. ベース樹脂が、 ポリ塩化ビニル (PVC) 、 ポリエチレン (PE) 、 塩素 化ポリエチレン (CPE) 、 ポリプロピレン (PP) 、 エチレン—酢ビ共重合体 、 ポリメ夕クリル酸メチル (PMMA) 、 ポリフッ化ピニリデン、 ポリイソプレ ン ( I P) 、 ポリスチレン (P S) 、 スチレン一ブタジエン一アクリロニトリル 共重合体 (AB S) 、 スチレン一アクリロニトリル共重合体 (AS) 、 ポリ力一 ポネートなどの高分子、 あるいは天然ゴム (NR) 、 スチレン一ブタジエンゴム4. Base resin is polyvinyl chloride (PVC), polyethylene (PE), chlorinated polyethylene (CPE), polypropylene (PP), ethylene-vinyl acetate copolymer, polymethyl methacrylate (PMMA), and poly (vinylidene fluoride) , Polyisoprene (IP), polystyrene (PS), styrene-butadiene-acrylonitrile copolymer (ABS), styrene-acrylonitrile copolymer (AS), polymer such as polyacrylonitrile, or natural rubber (NR) , Styrene-butadiene rubber
(S BR) 、 ブタジエンゴム (BR) 、 ブチルゴム、 イソブチレンイソプレンゴ ム ( I I R) 、 塩素化ブチルゴム、 臭素化ブチルゴムなどのハロゲン化ゴム、 ェ チレン · プロピレン . ジェン系共重合体ゴム (EPDM) 、 アクリロニトリル— ブタジエンゴム (NBR) 、 イソプレンゴム ( I R) などのゴム系高分子の中か ら選ばれた 1種若しくはそれらの混合物であることを特徴とする請求項 1〜 3の いずれかに記載の静音タイヤ。 (SBR), butadiene rubber (BR), butyl rubber, isobutylene isoprene rubber (IIR), chlorinated butyl rubber, halogenated rubber such as brominated butyl rubber, etc., ethylene / propylene / copolymer rubber (EPDM), acrylonitrile — The silent sound according to any one of claims 1 to 3, wherein the rubber is one selected from rubber-based polymers such as butadiene rubber (NBR) and isoprene rubber (IR) or a mixture thereof. tire.
5. 活性成分が、 ベンゾチアジル基を含む化合物の中から選ばれた 1種若しく は 2種以上であることを特徴とする請求項 1〜 3のいずれかに記載の静音タイヤ 5. The silent tire according to any one of claims 1 to 3, wherein the active ingredient is one kind or two or more kinds selected from compounds containing a benzothiazyl group.
6 . 活性成分が、 ベンゾトリァゾール基を持つ化合物の中から選ばれた 1種若 しくは 2種以上であることを特徴とする請求項 1〜3のいずれかに記載の静音タ ィャ。 6. The silent tire according to any one of claims 1 to 3, wherein the active ingredient is at least one compound selected from compounds having a benzotriazole group.
7 . 活性成分が、 ジフエニルアタリ レート基を持つ化合物の中から選ばれた 1 種若しくは 2種以上であることを特徴とする請求項 1〜 3のいずれかに記載の静 音タイヤ。 7. The silent tire according to any one of claims 1 to 3, wherein the active ingredient is at least one compound selected from compounds having a diphenyl atalylate group.
8 . 活性成分が、 ベンゾフエノ ン基を持つ化合物の中から選ばれた 1種若しく は 2種以上であることを特徴とする請求項 1〜 3のいずれかに記載の静音タイヤ 8. The silent tire according to any one of claims 1 to 3, wherein the active ingredient is one kind or two or more kinds selected from compounds having a benzophenone group.
9 . 活性成分が前記ベース樹脂 1 0 0重量部に対し 1 0〜4 0 0重量部の割合 で含まれていることを特徴とする請求項 1〜3のいずれかに記載の静音タイヤ。 9. The silent tire according to any one of claims 1 to 3, wherein the active ingredient is contained in an amount of 10 to 400 parts by weight based on 100 parts by weight of the base resin.
PCT/JP1999/003308 1999-06-21 1999-06-21 Low-noise tire WO2000078562A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/003308 WO2000078562A1 (en) 1999-06-21 1999-06-21 Low-noise tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/003308 WO2000078562A1 (en) 1999-06-21 1999-06-21 Low-noise tire

Publications (1)

Publication Number Publication Date
WO2000078562A1 true WO2000078562A1 (en) 2000-12-28

Family

ID=14236028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003308 WO2000078562A1 (en) 1999-06-21 1999-06-21 Low-noise tire

Country Status (1)

Country Link
WO (1) WO2000078562A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104314A (en) * 2003-09-30 2005-04-21 Tokai Rubber Ind Ltd Soundproof tire
WO2005115769A1 (en) * 2004-05-25 2005-12-08 Bridgestone Corporation Pneumatic tire
GB2441048A (en) * 2006-08-16 2008-02-20 Glassflake Ltd A vehicle tyre containing a filler including glass flake
JP2008049749A (en) * 2006-08-22 2008-03-06 Sumitomo Rubber Ind Ltd Pneumatic tire
US7677284B2 (en) * 2004-12-01 2010-03-16 Sumitomo Rubber Industries, Ltd. Pneumatic tire with tread tape radially inside carcass and method of manufacturing the same
JP2017105270A (en) * 2015-12-08 2017-06-15 東洋ゴム工業株式会社 Pneumatic tire
US10632790B2 (en) 2014-09-12 2020-04-28 Bridgestone Corporation Pneumatic tire
CN115891508A (en) * 2022-11-02 2023-04-04 中智途瑞轮胎科技(山东)有限公司 Rubber composition for mute self-sealing tire and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213342A (en) * 1990-08-08 1992-08-04 Sumitomo Chem Co Ltd Rubber composition
JPH04365605A (en) * 1990-09-14 1992-12-17 Honda Motor Co Ltd Pneumatic tire
JPH0693134A (en) * 1992-07-31 1994-04-05 Sumitomo Chem Co Ltd Rubber composition excellent in grip and rolling resistance and its production
JPH06145422A (en) * 1992-11-12 1994-05-24 Yokohama Rubber Co Ltd:The Rubber composition for tire
JPH09302139A (en) * 1996-05-10 1997-11-25 Cci Corp Damping material
JPH107845A (en) * 1996-06-28 1998-01-13 Cci Corp Vibration-damping material
JPH10139933A (en) * 1996-11-07 1998-05-26 Cci Corp Vibration-proofing material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213342A (en) * 1990-08-08 1992-08-04 Sumitomo Chem Co Ltd Rubber composition
JPH04365605A (en) * 1990-09-14 1992-12-17 Honda Motor Co Ltd Pneumatic tire
JPH0693134A (en) * 1992-07-31 1994-04-05 Sumitomo Chem Co Ltd Rubber composition excellent in grip and rolling resistance and its production
JPH06145422A (en) * 1992-11-12 1994-05-24 Yokohama Rubber Co Ltd:The Rubber composition for tire
JPH09302139A (en) * 1996-05-10 1997-11-25 Cci Corp Damping material
JPH107845A (en) * 1996-06-28 1998-01-13 Cci Corp Vibration-damping material
JPH10139933A (en) * 1996-11-07 1998-05-26 Cci Corp Vibration-proofing material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104314A (en) * 2003-09-30 2005-04-21 Tokai Rubber Ind Ltd Soundproof tire
WO2005115769A1 (en) * 2004-05-25 2005-12-08 Bridgestone Corporation Pneumatic tire
JPWO2005115769A1 (en) * 2004-05-25 2008-03-27 株式会社ブリヂストン Pneumatic tire
JP4651036B2 (en) * 2004-05-25 2011-03-16 株式会社ブリヂストン Pneumatic tire
US7677284B2 (en) * 2004-12-01 2010-03-16 Sumitomo Rubber Industries, Ltd. Pneumatic tire with tread tape radially inside carcass and method of manufacturing the same
GB2441048A (en) * 2006-08-16 2008-02-20 Glassflake Ltd A vehicle tyre containing a filler including glass flake
GB2441048B (en) * 2006-08-16 2009-01-07 Glassflake Ltd Vehicle tyres
JP2008049749A (en) * 2006-08-22 2008-03-06 Sumitomo Rubber Ind Ltd Pneumatic tire
US10632790B2 (en) 2014-09-12 2020-04-28 Bridgestone Corporation Pneumatic tire
JP2017105270A (en) * 2015-12-08 2017-06-15 東洋ゴム工業株式会社 Pneumatic tire
CN115891508A (en) * 2022-11-02 2023-04-04 中智途瑞轮胎科技(山东)有限公司 Rubber composition for mute self-sealing tire and preparation method thereof
CN115891508B (en) * 2022-11-02 2023-12-19 中智途瑞轮胎科技(山东)有限公司 Rubber composition for silent self-sealing tire and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6303456B2 (en) Pneumatic tire and manufacturing method thereof
JP6019148B2 (en) Rubber composition and method for producing the same, and tire using the rubber composition
JP4318639B2 (en) Pneumatic tire and rim assembly, and sound absorber used therefor
WO2004013222A1 (en) Rubber composition, and pneumatic tire using the composition
JP2003048407A (en) Assembly of pneumatic tire with rim
JP5967252B1 (en) Rubber composition for tire tread and studless tire
WO2000078562A1 (en) Low-noise tire
WO2009133823A1 (en) Pneumatic tire/rim assembly
WO2014041842A1 (en) Pneumatic tire provided with inner liner
JP2003314700A5 (en)
JP6024781B2 (en) Rubber composition for tire tread and pneumatic tire
JP2001233994A (en) Pneumatic tire
JP2004276686A (en) Pneumatic tire
JP2005023219A (en) Rubber composition for tire tread, and pneumatic tire
WO1997043136A1 (en) Pneumatic tyre
JP6644268B2 (en) Rubber composition for tire and studless tire
JP7222193B2 (en) Tire rubber composition and tire
JPH11198615A (en) Pneumatic tire
JP6106916B2 (en) Rubber composition for tire and pneumatic tire using the same
JPH10149171A (en) Foamed sound absorbing material
JP4112495B2 (en) Damping composition and damping structure
JP5528161B2 (en) tire
JP4386560B2 (en) Pneumatic tire
JP2003278832A (en) Vibration damping molding
JPH01269601A (en) Pneumatic type

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 504591

Kind code of ref document: A

Format of ref document f/p: F