WO2000077358A1 - Kolbenbrennkraftmaschine mit mitteln zur erzeugung einer sekundär-ladeluftströmung - Google Patents

Kolbenbrennkraftmaschine mit mitteln zur erzeugung einer sekundär-ladeluftströmung Download PDF

Info

Publication number
WO2000077358A1
WO2000077358A1 PCT/EP2000/004900 EP0004900W WO0077358A1 WO 2000077358 A1 WO2000077358 A1 WO 2000077358A1 EP 0004900 W EP0004900 W EP 0004900W WO 0077358 A1 WO0077358 A1 WO 0077358A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
combustion chamber
internal combustion
flow
combustion engine
Prior art date
Application number
PCT/EP2000/004900
Other languages
English (en)
French (fr)
Inventor
Ernst-Siegfried Hartmann
Thomas Schwaderlapp
Jürgen Wahnschaffe
Original Assignee
Fev Motorentechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fev Motorentechnik Gmbh filed Critical Fev Motorentechnik Gmbh
Priority to JP2001503784A priority Critical patent/JP2003502550A/ja
Priority to DE10081628T priority patent/DE10081628D2/de
Publication of WO2000077358A1 publication Critical patent/WO2000077358A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0636Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space having a substantially flat and horizontal bottom
    • F02B23/0639Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space having a substantially flat and horizontal bottom the combustion space having substantially the shape of a cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0627Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion having additional bores or grooves machined into the piston for guiding air or charge flow to the piston bowl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the cylinders each have two air inlet ducts, each of which is closed by an inlet valve, the swirl flow in the cylinder chamber being to be generated by a corresponding geometric assignment of the two inlet ducts to one another and by a corresponding angular position of the inlet ducts to one another.
  • a piston with a piston recess limited by a squeeze area is known for externally or self-ignited piston internal combustion engines with direct fuel injection.
  • the squeeze surface is provided with several groove-shaped knobs oriented tangentially to the piston bowl.
  • the air is swirled into the combustion chamber or introduced into a flow that is only slightly swirled without a pronounced flow characteristic. Only by an upward movement of the piston, a strong swirl flow and thus an essentially directional flow is generated towards the end of the compression via the channels from the squeeze flow, which flow is directed at a point of impact of the injection jet in the piston recess.
  • the object of the invention is now to bring about an increase in the amount of charge air for a piston-type internal combustion engine with direct fuel injection even without a turbocharger, and to achieve an optimal fuel distribution in the interior of the cylinder with the help of a throttle flow generated without throttling.
  • a piston internal combustion engine with fuel injection into the combustion chamber formed in the cylinder, which is limited by a combustion chamber roof with at least one gas outlet valve and at least one gas inlet valve and by a piston with piston recess and squeeze surface, with at least the gas inlet in the combustion chamber roof being designed such that the inflowing air forms a tumble flow in the combustion chamber and the piston has at least in the area of its squeezing surface associated with the downward-directed air flow at least one guide element that extends approximately in a spiral from the outer edge of the piston in the direction of the piston bowl.
  • a piston internal combustion engine designed in this way has the advantage that the charge air is initially in a swirl free, so-called tumble flow, i.e.
  • Tumble flow means a flow which, starting from the inlet duct, is guided in the combustion chamber about an axis oriented transversely to the cylinder axis.
  • the piston In order to guide the swirl-free air flow in such a way that the injected fuel is optimally distributed in the piston recess, the piston has an approximately spiral-shaped guide element in the area of its squeezing surface associated with the downward-directed air flow.
  • this guide element By means of this guide element, even before the piston moves upward, a partial flow is "peeled off” from the intensive tumble flow directed essentially against the assigned squeeze surface on the piston head and introduced into the piston bowl. This partial flow forms a swirl flow there, which is largely retained until the end phase of the piston movement and thus additionally distributes the injected fuel in the swirl direction.
  • the guide element can be web-shaped or channel-shaped. In particular in the case of a channel-shaped design, the guide element extends into the piston recess. In the final phase of the piston movement immediately before the fuel is injected, the swirl flow is superimposed by the tumble flow and thus a flow of the main divider of the charge air in the combustion chamber that is no longer clearly directed. This has the great advantage that a strong microturbulence occurs due to the dispersion due to the piston movement, which leads to a significant improvement in the mixture formation and homogenization with a high degree of turbulence at the time of ignition.
  • the pinch surface of the piston is designed to run parallel to the roof of the combustion chamber. As a result, the process of "peeling off” the swirl component from the tumble flow is further improved.
  • the combustion chamber roof and thus also the squeeze surface can be angled flat or roof-shaped.
  • two guide elements are arranged on the area of the squeezing surface which is assigned to the downward area of the tumble flow.
  • This arrangement is particularly advantageous if two gas inlet valves are assigned to the combustion chamber.
  • the arrangement here is such that the two guide elements merge into one another in the transition region to the bottom of the piston bowl, so that the partial streams peeled from the two air streams entering the combustion chamber through the two inlet openings in the piston bowl form a swirl strand flow together.
  • At least one guide element is also arranged on the area of the squeeze surface assigned to the rising area of the tumble flow.
  • 1 is a vertical section through a combustion chamber of a piston internal combustion engine with a roof-shaped combustion chamber roof,
  • FIG. 3 shows a perspective view of a first embodiment for a piston
  • FIG. 4 is a perspective view of a second embodiment for a piston
  • FIG. 5 shows a perspective view of a further embodiment for a piston
  • Fig. 7 shows the change in flow in the combustion chamber. 5 at the beginning of the compression stroke
  • Fig. 8 shows the shape of the flow. Fig. 6 at the end of
  • FIG. 1 schematically shows in vertical section a cylinder 1 of a piston internal combustion engine, which encloses a combustion chamber 2.
  • the combustion chamber 2 is closed off by an angled combustion chamber roof 3, an air inlet duct 4 opening into one roof surface 3.1 and the other roof surface 3.2 an air outlet duct 5 opens out.
  • a valve seat ring 6 for a gas inlet valve 7 is assigned to the inlet channel 4 in the mouth region.
  • a valve seat ring 8 for a gas outlet valve 9 is assigned to the gas outlet channel 5 in the mouth region.
  • the combustion chamber 2 is further delimited by a piston 10, the piston crown of which is provided with a depression 11 which is delimited laterally by a circumferential squeeze surface 12.
  • the squeeze surface 12 is angled parallel to the combustion chamber roof 3.
  • a cylinder 1 is shown schematically in vertical section in FIG. 2, the combustion chamber 2 of which is closed off by an essentially flat combustion chamber roof 3.
  • the piston crown of the piston 10, which is provided with a depression 11, is designed accordingly.
  • the inlet duct 4 opens out substantially perpendicular to the combustion chamber roof 3, so that after the Opening the gas inlet valve 7, the air flows downward in the direction of arrow 13.1 and, after deflection, flows upward over the piston head on the gas outlet side in the direction of arrow 14.1.
  • the above-described tumble flow also forms here.
  • FIG. 3 is for a combustion chamber design.
  • 1 shows a perspective view of a first embodiment for a piston 10.
  • the squeeze surface 12 assigned to the gas outlet valve, the latter has two channel-shaped guide elements 16.1 and 16.2 which run approximately from the outer edge of the piston to the edge of the piston recess 11.
  • the guide element 16.1 begins approximately in the region of the ridge 17 of the squeeze surface 12 and extends in a spiral shape to the bottom of the piston recess 11.
  • the second guide element 16.2 begins approximately offset by 90 ° to the ridge 17 of the squeeze surface 12 and is with the Guide element 16.1 merged with it in the region of its junction at the piston crown.
  • Fig. 4 shows a modification of the embodiment according to. Fig. 3.
  • a channel-shaped first guide element 16.1 is arranged in the outlet-side area 12.1 of the squeeze surface 12 and a corresponding guide element 16.3 is arranged in the inlet-side area 12.2 of the squeeze surface 12.
  • the embodiment acc. 5 shows a piston in which, in the inlet area 12.1 of the squeeze surface 12, there is a web-shaped guide element 18 extending from the ridge 17, which extends spirally over the squeeze surface 12.1, so that there is a recessed area on the squeeze surface 12.1 opposite the outer edge of the piston, which is connected to the piston recess 11, so that, as will be described in more detail below, a partial flow is deflected into the piston recess 11 via the web-shaped guide element 18 from the tumble flow described with reference to FIG.
  • FIG. 6 for a piston internal combustion engine with a combustion chamber roof according to FIG.
  • the combustion chamber roof is shown only by the intake-side valve seat rings 6 and the exhaust-side valve seat rings 8.
  • the drawing shows that the inlet valves 7 are open and the outlet valves 9 are closed.
  • the piston 10 designed according to FIG. 3 is located at the end of the downward movement in bottom dead center shortly before the inlet valves 7 close.
  • Gas inlet valves 7 of the pistons move upwards in the compression stroke, the air streams 19 are already deflected upwards and guided upwards in the direction of arrow 14 on the cylinder wall assigned to the gas inlet valves.
  • Fig. 7 the position of the piston is shown about 40 ° crank angle after the bottom dead center.
  • partial flows 20 are “peeled off” from the two air flows 19 through the trough-shaped guide elements 16.1 and 16.2, as shown in FIG. 7, and are diverted into the piston recess 11, in which they move around the vertical cylinder axis
  • the gas exchange valves are closed (the front gas outlet valve 9 is to clarify the illustration). lung omitted), the piston 10 in the compression stroke about 15 ° crank angle before top dead center.
  • the partial flows 19 assigned to the front gas inlet valve 7 are also omitted to simplify and clarify the illustration.
  • the tumble flow is deformed with increasing upward movement of the piston 10 or dissolves into micro vortexes.
  • a further part of the air is forced into the piston recess 11 between the squeezing surface 12 and the combustion chamber roof 3 via the guide elements 16, so that an intensive swirl flow is maintained in the piston recess 11, into which flow a fuel injection nozzle 21 (FIG. 1 ) the fuel is injected and, depending on the engine design, the combustion process can be initiated by self-ignition or by an ignition device, for example a spark plug.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Die Erfindung betrifft eine Kolbenbrennkraftmaschine mit Kraftstoffeinspritzung in den im Zylinder (1) gebildeten Brennraum (2), der durch ein Brennraumdach (3) mit wenigstens einem Gasauslassventil (9) und wenigstens einem Gaseinlassventil (7) sowie durch einen Kolben (10) mit Kolbenmulde (11) und Quetschfläche (12) begrenzt wird, wobei zumindest der Gaseinlass (4) im Brennraumdach (3) so ausgebildet ist, dass die einströmende Luft im Brennraum (2) eine Tumbleströmung bildet und wobei der Kolben (10) zumindest im Bereich seiner der nach unten gerichteten Luftströmung zugeordneten Quetschfläche (12) wenigstens ein vom Kolbenaussenrand in Richtung der Kolbenmulde (11) in etwa spiralförmig verlaufendes Leitelement (16; 18) aufweist.

Description

Bezeichnung: Kolbenbrennkraftmaschine mit Mitteln zur
Erzeugung einer Sekundär-Ladeluftströmung
Beschreibung
Bei Kolbenbrennkraftmaschinen mit Kraftstoffdirekteinspritzung wird zur optimalen Verteilung des eingespritzten Kraftstoffs eine um die Zylinderachse geführte Drallströmung der Ladeluft in der Kolbenmulde benötigt, insbesondere gegen En- des des Kolbenhubes. Die Erzeugung dieser Drallströmung erfolgt nach dem Stand der Technik durch eine gezielte Strö- mungsumlenkung über eine entsprechende Ausgestaltung der Gaseinlaßkanäle vor den Ventilen oder unmittelbar im Bereich der Ventile.
Dies ist bekannt beispielsweise aus EP-A-0 634 571, in der eine Diesel-Kolbenbrennkraftmaschine beschrieben ist. Die Zylinder weisen jeweils zwei Lufteinlaßkanäle auf, die jeweils durch ein Einlaßventil abgeschlossen sind, wobei durch eine entsprechende geometrische Zuordnung der beiden Einlaßkanäle zueinander sowie durch eine entsprechende Winkelstellung der Einlaßkanäle zueinander die Drallströmung im Zylinderraum erzeugt werden soll.
Aus DE-A-20 17 877 und FR-A-2 151 198 sind Anordnungen bekannt, bei denen im Bereich des Ventilsitzes eine spiralförmige Führung des Einlaßkanals vorgesehen ist, so daß die einströmende Luft durch entsprechende Strömungsumlenkung eine Drallströmung im Zylinderinnenraum bewirkt.
In allen Fällen führen diese Maßnahmen zu einer Drosselung und damit zu einer Reduzierung der maximal möglichen Verbren- nungsluftmenge im Zylinder, die bei Kolbenbrennkraftmaschinen mit großen Hubraumvolumen durch die Verwendung von Turbola- dern wieder ausgeglichen werden kann. Bei kleineren Kolbenbrennkraftmaschinen ist der Kostenaufwand für eine Aufladung verhältnismäßig groß, so daß auch heute Saugmotore im Bereich der Motorisierung von Personenkraftwagen realisiert werden.
Aus DE-A-198 23 004 ist für fremd- oder selbstgezündete Kol- benbrennkraftmaschinen mit Kraftstoffdirekteinspritzung ein Kolben mit einer von eine Quetschfläche begrenzten Kolbenmulde bekannt. Die Quetschfläche ist mit mehreren tangential zur Kolbenmulde ausgerichteten rinnenförmigen Knälen versehen. Die Luft wird in den Brennraum unverdrallt oder in einer nur leicht verdrallten Strömung ohne eine ausgeprägte Strömungscharakteristik eingeleitet. Erst durch eine Aufwärtsbewegung des Kolbens wird gegen Ende der Kompression über die Kanäle aus der Quetschströmung eine starke Drallströmung und somit eine im wesentlichen gerichtete Strömung erzeugt, die auf ei- nen Auftreffpunkt des Einspritzstrahles in der Kolbenmulde gerichtet ist.
Der Erfindung liegt nun die Aufgabe zugrunde, für eine Kolbenbrennkraftmaschine mit Kraftstoffdirekteinspritzung eine Erhöhung der Ladeluftmenge auch ohne Turbolader zu bewirken und hierbei mit Hilfe einer drosselfrei erzeugten Drallströ- mung im Zylinderinnenraum eine optimale Kraftstoffverteilung zu bewirken.
Diese Aufgabe wird gelöst mit einer Kolbenbrennkraftmaschine mit Kraftstoffeinspritzung in den im Zylinder gebildeten Brennraum, der durch ein Brennraumdach mit wenigstens einem Gasauslaßventil und wenigstens einem Gaseinlaßventil sowie durch einen Kolben mit Kolbenmulde und Quetschfläche begrenzt wird, wobei zumindest der Gaseinlaß im Brennraumdach so ausgelegt ist, daß die einströmende Luft im Brennraum eine Tum- bleströmung bildet und wobei der Kolben zumindest im Bereich seiner der nach unten gerichteten Luftströmung zugeordneten Quetschfläche wenigstens ein vom Kolbenaußenrand in Richtung der Kolbenmulde in etwa spiralförmig verlaufendes Leitelement aufweist. Eine derart ausgebildete Kolbenbrennkraftmaschine hat den Vorteil, daß die Ladeluft zunächst in einer drall- freien, sogenannten TumbleStrömung, also einer gerichteten Strömung, und im wesentlichen drosselfrei in den Brennraum eingeführt werden kann. Tumbleströmung bedeutet hierbei eine Strömung, die ausgehend vom Einlaßkanal um eine quer zur Zy- linderachse ausgerichtete Achse im Brennraum geführt ist. Bei vergleichbarer Brennraumgeometrie in bezug auf Ventile, Kolbendurchmesser und Zylindervolumen ist es hierdurch möglich, eine um etwa 25% größere Ladeluftmenge in den Zylinder einzubringen, im Vergleich zu einer Kolbenbrennkraftmaschine mit Erzeugung einer Drallströmung durch Strömungsumlenkung im Einlaßbereich nach dem Stande der Technik.
Um nun die drallfrei eintretende Luftströmung so zu führen, daß eine optimale Verteilung des eingespritzten Kraftstoffs in der Kolbenmulde erfolgt, weist der Kolben im Bereich seiner der nach unten gerichteten Luftströmung zugeordneten Quetschfläche ein in etwa spiralförmig verlaufendes Leitelement auf. Durch dieses Leitelement wird schon vor der Aufwärtsbewegung des Kolbens aus der im wesentlichen gegen die zugeordnete Quetschfläche am Kolbenboden gerichteten intensiven Tumbleströmung eine Teilströmung "abgeschält" und in die Kolbenmulde eingeleitet. Diese Teilströmung bildet dort eine Drallströmung, die bis in die Endphase der Kolbenbewegung weitgehend erhalten bleibt und so den eingespritzten Kraft- stoff in Drallrichtung zusätzlich verteilt. Damit ist es möglich, den Vorteil der größeren Ladeluftmenge bei einer drallfreien Einführung der Ladeluft in den Brennraum während des Ansaughubes mit der Bildung einer Drallströmung in der Kolbenmulde während des Kompressionshubes zu kombinieren und da- mit eine optimale Verteilung des eingespritzten Kraftstoffs und so eine Leistungssteigerung durch eine größere Ladeluftmenge ohne zusätzliche Einrichtungen zur Aufladung zu bewirken. Das Leitelement kann stegförmig oder rinnenförmig ausgebildet sein. Insbesondere bei einer rinnenförmigen Ausbildung erstreckt sich das Leitelement bis in die Kolbenmulde. In der Endphase der Kolbenbewegung unmittelbar vor dem Einspritzen des Kraftstoffs erfolgt eine Überlagerung der Drallströmung durch die Tumbleströmung und damit eine nicht mehr eindeutig gerichtete Strömung des Hauptteilers der Ladeluft im Brennraum. Dies hat den großen Vorteil, daß durch die Dis- sipation infolge der Kolbenbewegung eine starke Mikroturbu- lenz auftritt, die zu einer deutlichen Verbesserung der Gemischbildung und Homogenisierung mit hohem Turbulenzgrad zum Zündzeitpunkt führt.
In Ausgestaltung der Erfindung ist vorgesehen, daß die Quetschfläche des Kolbens parallel zum Brennraumdach verlaufend ausgebildet ist. Hierdurch wird der Vorgang des "Abschä- lens" des Drallanteils aus der Tumbleströmung noch verbes- sert. Das Brennraumdach und damit auch die Quetschfläche kann ebenflächig oder dachförmig abgewinkelt ausgeführt sein.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß auf dem der nach unten gerichteten Bereich der Tumbleströmung zugeordneten Bereich der Quetschfläche zwei Leitelemente angeordnet sind. Diese Anordnung ist insbesondere dann von Vorteil, wenn dem Brennraum zwei Gaseinlaßventile zugeordnet sind. Die Anordnung ist hierbei so getroffen, daß die beiden Leitelemente bei rinnenför iger Ausbildung im Übergangsbe- reich zum Boden der Kolbenmulde ineinander übergehen, so daß die jeweils aus den beiden in den Brennraum durch die beiden Einlaßöffnungen eintretenden Luftstränge abgeschälten Teilströme in der Kolbenmulde zu einem Drallstrang zusammenströmen.
In einer anderen Ausgestaltung der Erfindung ist vorgesehen, daß auch auf dem dem aufsteigenden Bereich der Tumbleströmung zugeordneten Bereich der Quetschfläche wenigstens ein Leitelement angeordnet ist. Durch diese Maßnahme wird in der End- phase der Aufwärtsbewegung des Kolbens aus dem Bereich der
Quetschfläche Luft über das Leitelement in die Kolbenmulde eingepreßt und so in der Endphase des Verdichtungsvorgangs kurz vor der Kraftstoffeinspritzung der Drallströmung in der Kolbenmulde ein erneuter Bewegungsimpuls aufgeprägt.
Die Erfindung wird anhand schematischer Zeichnungen von Aus- führungsbeispielen näher erläutert. Es zeigen:
Fig. 1 einen Vertikalschnitt durch einen Brennraum einer Kolbenbrennkraftmaschine mit dachförmig ausgebildetem Brennraumdach,
Fig. 2 einen Vertikalschnitt durch einen Brennraum mit ebenem Brennraumdach,
Fig. 3 eine perspektivische Ansicht einer ersten Aus- führungsform für einen Kolben,
Fig. 4 eine perspektivische Ansicht einer zweiten Ausführungsform für einen Kolben,
Fig. 5 eine perspektivische Ansicht einer weiteren Aus- führunsgform für einen Kolben,
Fig. 6 perspektivisch die Ausbildung der Strömung im
Brennraum mit einem Kolben gem. Fig. 2 zum Ende des Ansaughubes,
Fig. 7 die Veränderung der Strömung im Brennraum gem. Fig. 5 zu Beginn des Kompressionshubes,
Fig. 8 die Form der Strömung gem. Fig. 6 zum Ende des
Kompressionshubes .
Fig. 1 zeigt schematisch im Vertikalschnitt einen Zylinder 1 einer Kolbenbrennkraftmaschine, der einen Brennraum 2 um- schließt. Der Brennraum 2 ist durch ein abgewinkeltes Brennraumdach 3 abgeschlossen, wobei in der einen Dachfläche 3.1 ein Lufteinlaßkanal 4 einmündet und in der anderen Dachfläche 3.2 ein Luftauslaßkanal 5 ausmündet. Im Mündungsbereich ist dem Einlaßkanal 4 ein Ventilsitzring 6 für ein Gaseinlaßventil 7 zugeordnet. Dem Gasauslaßkanal 5 ist im Mündungsbereich ein Ventilsitzring 8 für ein Gasauslaßventil 9 zugeordnet.
Der Brennraum 2 ist ferner durch einen Kolben 10 begrenzt, dessen Kolbenboden mit einer Mulde 11 versehen ist, die seitlich durch eine umlaufende Quetschfläche 12 begrenzt ist. Die Quetschfläche 12 ist hierbei parallel zum Brennraumdach 3 ab- gewinkelt ausgebildet.
Bei vorzugsweise spät geöffnetem Gaseinlaßventil 7 und bereits abwärts bewegtem Kolben 10 strömt infolge des verstärkten Unterdrucks Luft über den Einlaßkanal 4 in Richtung des Pfeiles 13 auf der Gasauslaßseite nach unten in den Brennraum 2 ein. Diese Ausrichtung der definierten Luftströmung wird durch die geneigte Ausrichtung des Einlaßkanals 4 und/oder entsprechende Leitmittel im Einlaßkanal 4 in Form einer quer zur Zylinderachse 15 ausgerichteten Leitlamelle und/oder ent- sprechenden seitlichen Ausnehmungen am Ventilsitzring 6 bewirkt, so daß die Luft praktisch ungedrosselt und gerichtet in den Brennraum 2 einströmen kann und so eine optimale Luftmenge mit hoher Geschwwindigkeit in den Brennraum 2 gelangt und schon in diesem Zeitbereich über den Kolbenboden nach oben in Richtung des Pfeiles 14 umgelenkt wird, so daß sich im Brennraum 2 eine Tumbleströmung ausbildet, deren Bewegung um eine senkrecht zur Zylinderachse 15 ausgerichtete Querachse erfolgt.
In Fig. 2 ist schematisch im Vertikalschnitt ein Zylinder 1 dargestellt, dessen Brennraum 2 durch ein im wesentlichen ebenes Brennraumdach 3 abgeschlossen ist. Der mit einer Mulde 11 versehene Kolbenboden des Kolbens 10 ist entsprechend ausgebildet.
Bei dieser Ausführungsform mündet der Einlaßkanal 4 im wesentlichen senkrecht zum Brennraumdach 3 aus, so daß nach dem Öffnen des Gaseinlaßventils 7 die Luft in Richtung des Pfeiles 13.1 unmittelbar nach unten strömt und nach Umlenkung über den Kolbenboden auf der Gasauslaßseite in Richtung des Pfeiles 14.1 nach oben strömt. Auch hier bildet sich die vor- beschriebene Tumbleströmung aus.
In Fig. 3 ist für einen Brennraumgestaltung gem. Fig. 1 in einer perspektivischen Ansicht eine erste Ausführungsform für einen Kolben 10 dargestellt. Dieser weist in seinem dem Gas- auslaßventil zugeordneten Bereich 12.1 der Quetschfläche 12 zwei vom Kolbenaußenrand zum Rand der Kolbenmulde 11 in etwa spiralförmig verlaufende rinnenförmige Leitelemente 16.1 und 16.2 auf. Das Leitelement 16.1 beginnt in etwa im Bereich des Firstes 17 der Quetschfläche 12. und erstreckt sich spiral- förmig bis zum Boden der Kolbenmulde 11. Das zweite Leitelement 16.2 beginnt in etwa um 90° versetzt zum First 17 der Quetschfläche 12. und ist mit der Leitelement 16.1 im Bereich ihrer Einmündung am Kolbenboden mit dieser zusammengeführt.
Fig. 4 zeigt eine Abwandlung der Ausführungsform gem. Fig. 3.
Bei dieser Ausführungsform ist ein rinnenförmiges erstes Leitelement 16.1 im auslaßseitigen Bereich 12.1 der Quetschfläche 12 angeordnet und ein entsprechendes Leitelement 16.3 im einlaßseitigen Bereich 12.2 der Quetschfläche 12 angeordnet.
Die Ausführungsform gem. Fig. 5 zeigt einen Kolben, bei dem im Einlaßbereich 12.1 der Quetschfläche 12 ein vom First 17 ausgehendes stegförmiges Leitelement 18 angeordnet ist, das sich spiralförmig über die Quetschfläche 12.1 erstreckt, so daß sich gegenüber dem Kolbenaußenrand ein vertiefter Bereich auf der Quetschfläche 12.1 ergibt, der mit der Kolbenmulde 11 in Verbindung steht, so daß, wie nachstehend noch näher beschrieben wird, über das stegförmige Leitelement 18 aus der anhand von Fig. 1 beschriebenen Tumbleströmung eine Teilströ- mung in die Kolbenmulde 11 umgelenkt wird. In der schematischen perspektivischen Darstellung in Fig. 6 sind für eine Kolbenbrennkraftmaschine mit einem Brennraumdach entsprechend Fig. 1 und mit zwei Einlaßventilen 7 und zwei Auslaßventilen 9 je Zylinder das Brennraumdach jeweils nur durch die einlaßseitigen Ventilsitzringe 6 und die aus- laßseitigen Ventilsitzringe 8 dargestellt. Die Zeichnung läßt erkennen, daß die Einlaßventile 7 geöffnet sind und die Auslaßventile 9 geschlossen sind. Der entsprechend Fig. 3 ausgestaltete Kolben 10 befindet sich hierbei zum Ende der Ab- wärtsbewegung im unteren Totpunkt kurz vor dem Schließen der Einlaßventile 7. Durch die Einlaßöffnungen treten zwei parallele, hier schematisch als Bänder dargestellte und an ihren einander benachbarten Rändern ineinanderfließende Luftströme 19 ein. Diese Luftströme 19 werden in ihrer Abwärtsbewegung weitgehend an der Zylinderwandung unterhalb der Gasauslaßven- tile 9 geführt und über dem Kolbenboden auf den gegenüberliegenden Bereich der Zylinderwandung in Richtung des Pfeiles 14 umgelenkt.
Sobald nun, wie in Fig. 7 dargestellt, nach dem Schließen der
Gaseinlaßventile 7 der Kolben im Kompressionshub sich nach oben bewegt, sind die Luftströme 19 bereits nach oben umgelenkt und in Richtung des Pfeiles 14 an der den Gaseinlaßventilen zugeordneten Zylinderwandung nach oben geführt. In Fig. 7 ist die Position des Kolbens etwa 40° Kurbelwinkel nach dem unteren Totpunkt dargestellt. In dieser Kolbenstellung sind aus den beiden Luftströmungen 19 durch die rinnen- förmigen Leitelemente 16.1 und 16.2, wie in Fig. 7 dargestellt, Teilströmungen 20 "abgeschält" und in die Kolbenmulde 11 umgeleitet, in der sie eine um die vertikale Zylinderachse
15 rotierende Drallströmung bilden. In Fig. 7 ist ein Teil der vorderen Luftströmung 19 "weggeschnitten", um die Drallströmung in der Kolbenmulde 11 durch den Teilstrom 20 sichtbar zu machen.
Fig. 8 zeigt dann bei geschlossenen Gaswechselventilen (das vordere Gasauslaßventil 9 ist zur Verdeutlichung der Darstel- lung weggelassen), den Kolben 10 im Kompressionshub etwa 15° Kurbelwinkel vor dem oberen Totpunkt. In dieser Darstellung sind auch die dem vorderen Gaseinlaßventil 7 zugeordnete Teilströmungen 19 zur Vereinfachung und zur Verdeutlichung der Darstellung weggelassen.
Wie Fig. 8 erkennen läßt, wird die Tumbleströmung mit zunehmender Aufwärtsbewegung des Kolbens 10 deformiert bzw. in Mi- krowirbel auflöst. Infolge der Verdrängung wird zwischen Quetschfläche 12 und Brennraumdach 3 über die Leitelemente 16 ein weiterer Teil der Luft in die Kolbenmulde 11 abgedrängt, so daß in der Kolbenmulde 11 eine intensive Drallströmung aufrechterhalten bleibt, in die dann über eine Kraftstoffein- spritzdüse 21 (Fig. 1) der Kraftstoff eingespritzt und der Verbrennungsvorgang je nach Motorkonzeption durch Selbstzündung oder über eine Zündeinrichtung, beispielsweise eine Zündkerze, eingeleitet werden kann.
Für eine Brennraumgestaltung gem. Fig. 2 gelten die vorste- henden Beschreibungen der Strömungsvorgänge unter Berücksichtigung der anderen Strömungsrichtungen des Tumble entsprechend.

Claims

Ansprüche
1. Kolbenbrennkraftmaschine mit Kraftstoffeinspritzung in den im Zylinder (1) gebildeten Brennraum (2), der durch ein Brennraumdach (3) mit wenigstens einem Gasauslaßventil (9) und wenigstens einem Gaseinlaßventil (7) sowie durch einen Kolben (10) mit Kolbenmulde (11) und Quetschfläche (12) begrenzt wird, wobei zumindest der Gaseinlaß (4) im Brennraumdach (3) so ausgebildet ist, daß die einströmende Luft im Brennraum (2) eine Tumbleströmung bildet und wobei der Kolben (10) zumindest im Bereich seiner der nach unten gerichteten Luftströmung zugeordneten Quetschfläche (12) wenigstens ein vom Kolbenaußenrand in Richtung der Kolbenmulde (11) in etwa spiralförmig verlaufendes Leitelement (16; 18) aufweist.
2. Kolbenbrennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, daß die Quetschfläche (12) des Kolbens (10) parallel zum Brennraumdach (3) verlaufend ausgebildet ist.
3. Kolbenbrennkraftmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Leitelement (16) rinnenförmig ausgebildet ist.
4. Kolbenbrennkraftmaschine nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß das Leitelement (18) stegförmig ausgebildet ist.
5. Kolbenbrennkraftmaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß auf dem der nach unten gerichte- ten Luftströmung zugeordneten Bereich (12.1) der Quetschfläche (12) zwei Leitelemente (16.1, 16.2) angeordnet sind.
6. Kolbenbrennkraftmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß auf dem dem aufsteigenden Bereich der Luftströmung zugeordneten Bereich (12.2) der Quetschfläche (12) wenigstens ein Leitelement (16.3) angeordnet ist.
PCT/EP2000/004900 1999-06-09 2000-05-30 Kolbenbrennkraftmaschine mit mitteln zur erzeugung einer sekundär-ladeluftströmung WO2000077358A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001503784A JP2003502550A (ja) 1999-06-09 2000-05-30 二次給気流発生手段を備えたピストン式内燃機関
DE10081628T DE10081628D2 (de) 1999-06-09 2000-05-30 Kolbenbrennkraftmaschine mit Mitteln zur Erzeugung einer Sekundär-Ladeluftströmung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19926132.6 1999-06-09
DE19926132A DE19926132A1 (de) 1999-06-09 1999-06-09 Selbstzündende Kolbenbrennkraftmaschine mit Mitteln zur Erzeugung einer Sekundär-Ladeluftströmung

Publications (1)

Publication Number Publication Date
WO2000077358A1 true WO2000077358A1 (de) 2000-12-21

Family

ID=7910569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004900 WO2000077358A1 (de) 1999-06-09 2000-05-30 Kolbenbrennkraftmaschine mit mitteln zur erzeugung einer sekundär-ladeluftströmung

Country Status (3)

Country Link
JP (1) JP2003502550A (de)
DE (2) DE19926132A1 (de)
WO (1) WO2000077358A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834003B1 (fr) * 2001-12-21 2004-07-09 Renault Moteur multicylindre a allumage par compression, notamment de type diesel a injection directe, a pistons presentant un fond de bol specialement profile
DE10323000B4 (de) * 2003-05-21 2007-07-19 Meta Motoren- Und Energie-Technik Gmbh Verfahren sowie Kolben-Zylindereinheit zum Erzeugen eines brennfähigen Kraftstoff-Gasgemisches in einem Brennraum einer Hubkolbenbrennkraftmaschine
JP4767775B2 (ja) * 2006-07-04 2011-09-07 本田技研工業株式会社 燃料直噴ディーゼルエンジン
CN102472199B (zh) * 2010-04-30 2014-04-23 丰田自动车株式会社 发动机的活塞
CN113944543B (zh) * 2021-08-31 2023-05-30 东风汽车集团股份有限公司 一种汽油发动机燃烧系统、汽油发动机总成及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2017877A1 (de) 1969-05-07 1970-11-12 List, Dipl.-Ing, Dr.Dr.h.c. Prof. Hans, Graz (Österrreich) Zylinderkopf
FR2151198A5 (de) 1971-08-25 1973-04-13 Colebrand Ltd
DE2753341A1 (de) * 1977-11-30 1979-05-31 Daimler Benz Ag Luftverdichtende hubkolbenbrennkraftmaschine mit selbstzuendung
EP0634571A1 (de) 1993-05-18 1995-01-18 Mazda Motor Corporation Einlassvorrichtung einer Dieselkraftmaschine
DE19823004A1 (de) 1997-06-19 1998-12-24 Volkswagen Ag Kolben mit Drallkanälen
DE19838868A1 (de) * 1997-08-08 1999-02-11 Avl List Gmbh Brennkraftmaschine mit Fremdzündung
DE19835563A1 (de) * 1998-08-06 2000-02-10 Volkswagen Ag Viertakt-Brennkraftmaschine mit Direkteinspritzung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2017877A1 (de) 1969-05-07 1970-11-12 List, Dipl.-Ing, Dr.Dr.h.c. Prof. Hans, Graz (Österrreich) Zylinderkopf
FR2151198A5 (de) 1971-08-25 1973-04-13 Colebrand Ltd
DE2753341A1 (de) * 1977-11-30 1979-05-31 Daimler Benz Ag Luftverdichtende hubkolbenbrennkraftmaschine mit selbstzuendung
EP0634571A1 (de) 1993-05-18 1995-01-18 Mazda Motor Corporation Einlassvorrichtung einer Dieselkraftmaschine
DE19823004A1 (de) 1997-06-19 1998-12-24 Volkswagen Ag Kolben mit Drallkanälen
DE19838868A1 (de) * 1997-08-08 1999-02-11 Avl List Gmbh Brennkraftmaschine mit Fremdzündung
DE19835563A1 (de) * 1998-08-06 2000-02-10 Volkswagen Ag Viertakt-Brennkraftmaschine mit Direkteinspritzung

Also Published As

Publication number Publication date
DE19926132A1 (de) 2000-12-14
DE10081628D2 (de) 2001-06-21
JP2003502550A (ja) 2003-01-21

Similar Documents

Publication Publication Date Title
DE3347112C2 (de)
DE19804161C2 (de) Viertakt-Brennkraftmaschine
EP0444018B1 (de) Brennkraftmaschine mit zumindest zwei Einlassventilen je Motorzylinder
DE3828742C2 (de)
DE3600408C2 (de)
DE19713029C2 (de) Viertakt-Brennkraftmaschine mit Fremdzündung
DE102009059143A1 (de) Zweitaktmotor, Sandkern zur Herstellung eines Zweitaktmotors und Verfahren zum Betrieb eines Zweitaktmotors
EP0258207B1 (de) Einlasskanal für Brennkraftmaschinen
DE3016139A1 (de) Einsatz zum bilden einer vorkammer im zylinderkopf einer dieselmaschine
DE3139309A1 (de) Brennkraftmaschine
DE10110986B4 (de) Viertakt-Brennkraftmaschine mit zumindest zwei Einlassventilen
DE3718083C2 (de)
DE3711859C2 (de) Mehrzylindrige Hubkolben-Brennkraftmaschine
EP0897052B1 (de) Brennkraftmaschine mit Fremdzündung
DE19942169A1 (de) Brennkraftmaschine mit zwei Einlassventilen je Zylinder
EP0580039B1 (de) Brennkraftmaschine mit Hubkolben und innerer Verbrennung, insbesondere Dieselmotor
WO2000077358A1 (de) Kolbenbrennkraftmaschine mit mitteln zur erzeugung einer sekundär-ladeluftströmung
DE3836550C2 (de)
DE4205237C2 (de) Einlaßkanal in einem Zylinderkopf einer Brennkraftmaschine mit mindestens zwei Einlaßventilen pro Zylinder
DE3153079C2 (de)
DE10118490C2 (de) Anordnung des Ansaugsystems für eine Brennkraftmaschine mit EGR-Einrichtung
DE3343690C2 (de)
DE19503378C1 (de) Kanalanordnung für ein Ventil
DE19801607A1 (de) Brennkraftmaschine und Verfahren zur Gemischaufbereitung bei einer Brennkraftmaschine
EP0754848B1 (de) Brennkraftmaschine mit innerer Gemischbildung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09762592

Country of ref document: US

REF Corresponds to

Ref document number: 10081628

Country of ref document: DE

Date of ref document: 20010621

WWE Wipo information: entry into national phase

Ref document number: 10081628

Country of ref document: DE

122 Ep: pct application non-entry in european phase