WO2000071640A1 - Method and means for adding demulsifying agents to a process tank - Google Patents

Method and means for adding demulsifying agents to a process tank Download PDF

Info

Publication number
WO2000071640A1
WO2000071640A1 PCT/CH2000/000276 CH0000276W WO0071640A1 WO 2000071640 A1 WO2000071640 A1 WO 2000071640A1 CH 0000276 W CH0000276 W CH 0000276W WO 0071640 A1 WO0071640 A1 WO 0071640A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
emulsion
emulsion layer
tank
detected
Prior art date
Application number
PCT/CH2000/000276
Other languages
German (de)
French (fr)
Inventor
Anthony Byatt
Daniel Matter
Thomas Kleiner
Philippe Pretre
Original Assignee
Abb Research Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Research Ltd. filed Critical Abb Research Ltd.
Priority to AU42839/00A priority Critical patent/AU4283900A/en
Publication of WO2000071640A1 publication Critical patent/WO2000071640A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/288X-rays; Gamma rays or other forms of ionising radiation
    • G01F23/2885X-rays; Gamma rays or other forms of ionising radiation for discrete levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0211Separation of non-miscible liquids by sedimentation with baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/047Breaking emulsions with separation aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/12Auxiliary equipment particularly adapted for use with liquid-separating apparatus, e.g. control circuits

Definitions

  • the invention relates to the field of process control. It relates to a method and a means for the controlled addition of emulsion breakers into a process tank according to the preamble of claims 1 and 6.
  • Unwanted emulsion formation in process tanks occurs in various manufacturing areas.
  • An example of this is the oil separation tank, in which early detection and timely reduction of emulsion formation at the oil / water interface is essential in order to optimize the oil demand.
  • Chemicals, so-called emulsion breakers or demulsifiers are therefore added, which break up the emulsion and thereby delay the process avoid.
  • Such emulsion breakers are known from the prior art. They are usually fed continuously into the process tank, the amount of which is based on experience and is so large that emulsions are broken up with certainty.
  • Process tanks that are freely accessible can be checked sporadically with regard to emulsion formation by eye inspection. However, if the process tank is on the sea floor, for example in the event of an offshore oil demand, such a check is not possible.
  • the quantity of emulsion breakers supplied is very generously dimensioned.
  • Emulsion breakers are expensive, pollute the environment and often have to be extracted from the process fluid.
  • a separation tank with an emulsion breaker control which uses two sensors.
  • a first sensor which detects electrical differences between water and oil, is arranged on a maximum possible upper layer of an emulsion layer.
  • a second sensor which determines density differences, is located at a maximum possible lower layer of the emulsion layer.
  • the first sensor in the event that it detects an emulsion, activates a valve to introduce emulsion breakers into the tank.
  • WO 98/33044 describes a capacitive full level sensor which is suitable for determining the location of a boundary layer between water and oil in a separation tank.
  • DE-A-197 ⁇ 22 ⁇ 837 discloses a gamma ray density profile sensor which is suitable for full level measurement in an oil separator tank.
  • the formation of an emulsion layer is detected by means of a sensor having a vertical spatial resolution, with emulsion breakers being supplied in an amount required to dissolve the emulsion layer only when an emulsion layer is detected.
  • a capacitive sensor or a gamma ray sensor is preferably used.
  • Such sensors are in the state known in the art, for example from DE 197 22 837 and WO 98/33044, where they are used as full level sensors.
  • Figure 1 is a schematic representation of a separation tank with an emulsion breaker feed device
  • Figure 2a is a schematic representation of a capacitive sensor in a separator tank according to a first
  • Figure 2b is a graphic showing an emulsion formation, measured by means of the capacitive sensor according to Figures 2a and
  • Figure 3 is a schematic representation of a gamma ray sensor in a separation tank according to a second embodiment. Ways of Carrying Out the Invention
  • a separation tank 1 is shown in FIG. 1 as an example of a process tank.
  • Such separation tanks 1 are used in the offshore oil production below the sea surface in order to separate the different phases occurring in the oil production (sand, oil, water and gas) due to their density differences and to discharge them in separate piping systems.
  • the separation tank 1 has a fill opening 10 and four outlet openings 11, 12, 13, 14.
  • a mixture of gas, oil, water and sand reaches the separation tank 1 through the filling opening 10.
  • the individual components of the mixture are deposited at different distances from the filling opening 10 and at different heights, depending on their density.
  • the heavy sand S thus collects in the vicinity of the fill opening 10 and can be discharged through the first outlet opening 11 which is closest to the fill opening and is preferably arranged in the bottom of the tank.
  • Water W, 01 0 and gas G are deposited over the sand layer S, in the order mentioned.
  • a foam layer F is generally present between gas G and 01 0.
  • an emulsion layer E is formed between 01 0 and water W.
  • the second outlet opening 12 for water W is arranged and this is followed by the third outlet opening 13 for the 01 0.
  • the intake areas of the second and third outlet openings 12, 13 are separated from one another by a partition wall 15.
  • the gas G escapes through the fourth outlet opening 14, which is arranged in the upper region of the separation tank 1.
  • the gas G is passed together with the 01 0 through the third outlet opening 13.
  • the separation tank 1 there is also a rod-shaped sensor 2, which detects the boundary layer between 01 0 and water W and thus the emulsion layer in a vertical spatial resolution.
  • a rod-shaped sensor 2 which detects the boundary layer between 01 0 and water W and thus the emulsion layer in a vertical spatial resolution.
  • it also serves as a level sensor for the detection of individual boundary layers of the entire filling material. It therefore protrudes into the separation tank 1, whereby it extends at least approximately over the entire height of the separation tank 1 and thus through all phases of the filling material.
  • the sensor 2 only extended over that area of the separation tank 1 in which an emulsion could potentially have formed.
  • the separation tank 1 is provided with an emulsion breaker feed device 3 which has an emulsion breaker storage tank 30 and an emulsion breaker feed controller 31.
  • the emulsion breaker storage tank 30 is connected to the separation tank 1 via a feed line 33, the feed line being closable by means of a valve 32 which can be regulated via the feed controller 31.
  • the emulsion breaker feeder 3 is connected to the probe 2. If the probe 2 detects an emulsion layer, its signal is forwarded to the feed controller 31, whereupon the emulsion breaker is passed from the storage tank 30 into the separation tank 1.
  • the feed controller 31 If the emulsion layer E occurs, emulsion breaker EB is initiated and the feed line is only stopped again, when the sensor 2 no longer detects a relevant emulsion layer.
  • the amount of emulsion breaker is adapted to the signal value. That is, the thicker the emulsion layer E, the more emulsion breaker EB is supplied. The exact amount introduced depends essentially on the type of emulsion breaker EB and the thickness of the emulsion layer E and is generally determined empirically. As a result, the supply to emulsion breaker EB can be stopped before the emulsion layer E has been reduced.
  • any sensor which can detect emulsion formation is suitable as sensor 2.
  • An electrode arrangement for capacitive measurement of the electrode surroundings or a gamma-ray sensor is preferably used.
  • FIG. 2a A first exemplary embodiment of the sensor for detecting the emulsion layer is shown schematically in FIG. 2a. It is a rod-shaped, closed probe which is immersed in a filling material in order to measure the environmental capacity.
  • This capacitive sensor 2 has a plurality of annular electrodes 21, 22, 23, 24, 25, 26 arranged along a probe axis 20. The principle of operation is based on measuring the change in capacitance between adjacent electrodes 21, 22, 23, 24, 25, 26, which is caused by a shift in a boundary layer between a conductive medium, for example salt water, and an insulating medium, for example 01 is caused. Electrode pairs that lie in the insulating material measure a capacitance of at least approximately 0. When an emulsion layer begins to form, the probe registers an increase of capacity. The thickness of the emulsion layer results from the individual capacitance values and from the number of electron pairs concerned.
  • the capacitive full-level sensor described in WO 98/33044 has proven to be particularly suitable for this measurement. It essentially has the structure described above, the electrodes being of large area and lying relatively close to one another. The ratio of the electrode height to the distance between adjacent electrodes is greater than one, preferably in the range from 1 to 6. This fill level sensor has a high measuring accuracy over a large full range. The disturbing influence of dirt films on the probe signal is avoided with this probe by operating it at frequencies which are adapted to the conductivity of the media, in this example 01 and water, and the dirt film.
  • FIG. 2b shows a simulation of an emulsion formation in a separator tank, which was measured with the above-mentioned capacitive full-level sensor.
  • the capacitances in Farad [F] detected by the individual electrodes are shown as a function of time in seconds [s].
  • electrodes 21, 22 and 23 are surrounded by water and electrodes 24 and 25 by 01 0.
  • the electrode 26 lies in the gaseous zone. This is shown in Figure 2a.
  • the signals of the adjacent electrodes are identified in FIG. 2b with 21 ', 22', 23 ', 24' and 25 ', the signal 21' originating from the pair of electrodes 21 and 22.
  • the senor for the detection of an emulsion formation is a gamma-ray sensor.
  • a gamma ray sensor can be used to create a density profile of this matter based on the absorption of gamma rays in a matter.
  • Energy-rich photons or gamma rays are emitted from one or more gamma sources, some of which are absorbed by matter. The absorption depends exponentially on the irradiated length, whereby the absorption coefficient is proportional to the density.
  • the remaining transmitted photons are converted into an electrical sensor signal in at least one light detector. Different sensor signals signal density differences in matter.
  • This sensor can also be used to detect the formation of an emulsion layer and its thickness.
  • a gamma ray sensor 2 ′′ is used, as described in DE-A-197 '22'837 as a level meter. It comprises a plurality of gamma emitters 27, which are arranged essentially vertically one above the other, and a spaced-apart, rod-shaped, light-guiding scintillation detector 28, which is optically connected to a photodetector 29 at at least one end.
  • the density profile is determined from the number rate of the scintillation flashes as a function of the transit time difference of the light components propagating in opposite directions.
  • the method according to the invention and the agent according to the invention enable emulsion breakers to be added to a process tank in a manner which is adapted to the requirements and is minimally dosed, since the formation of emulsions is continuously detected and a dosage is determined as a function of this sensor signal.

Abstract

The invention relates to a method for the controlled addition of demulsifying agents (EB) to a process tank, in particular, to a separation tank (1), filled with oil and water. According to said method, an emulsion layer (E) is detected, using a sensor (2) with vertical local resolution and a sensor signal is transmitted to a feed control (3). A metered amount of demulsifying agent to be added is then supplied by said feed control (3), in conjunction with the sensor signal. This enables a minimal dosage of demulsifying agents (EB). In particular, capacitive level sensors, or gamma-ray density-profile sensors are suitable for use as sensors.

Description

Verfahren und Mittel zur Zugabe von Emulsionsbrechern in einen ProzesstankMethod and means for adding emulsion breakers to a process tank
B E S C H R E I B U N GDESCRIPTION
Technisches GebietTechnical field
Die Erfindung bezieht sich auf das Gebiet der Prozesssteuerung. Sie bezieht sich auf ein Verfahren und ein Mittel zur kontrollierten Zugabe von Emulsionsbrechern in einen Prozesstank gemass Oberbegriff der Patentansprüche 1 und 6.The invention relates to the field of process control. It relates to a method and a means for the controlled addition of emulsion breakers into a process tank according to the preamble of claims 1 and 6.
Stand der TechnikState of the art
Unerwünschte Emulsionsbildung in Prozesstanks erfolgt in diversen Herstelllungsbereichen . Ein Beispiel hierfür ist der Olseparationstank, bei welchem ein frühzeitiges Erkennen und eine rechtzeitige Reduktion einer Emulsionsbildung an der Ol/Wasser-Grenzschicht wesentlich ist, um die Olforderung zu optimieren. Es werden deshalb Chemikalien, sogenannte Emul- sionsbrecher oder Demulgiermittel, zugeführt, welche die Emulsion aufbrechen und dadurch eine Verzögerung des Prozesses vermeiden. Derartige Emulsionsbrecher sind aus dem Stand der Technik bekannt. Üblicherweise werden sie kontinuierlich in den Prozesstank geleitet, wobei ihre Menge auf Erfahrungswerten beruht und so gross bemessen ist, dass Emulsionen mit Sicherheit aufgebrochen werden.Unwanted emulsion formation in process tanks occurs in various manufacturing areas. An example of this is the oil separation tank, in which early detection and timely reduction of emulsion formation at the oil / water interface is essential in order to optimize the oil demand. Chemicals, so-called emulsion breakers or demulsifiers, are therefore added, which break up the emulsion and thereby delay the process avoid. Such emulsion breakers are known from the prior art. They are usually fed continuously into the process tank, the amount of which is based on experience and is so large that emulsions are broken up with certainty.
Prozesstanks, welche frei zuganglich sind, lassen sich bezuglich Emulsionsbildung sporadisch durch Augenscheinnahme kontrollieren. Befindet sich der Prozesstank jedoch auf dem Meeresboden, beispielsweise bei einer Offshore-Erdolforderung, so ist eine derartige Kontrolle nicht möglich. Um die Funktionsfahigkeit der Separationsanlage zu gewährleisten, wird in diesem Fall die zugefuhrte Menge an Emulsionsbrechern überaus grosszϋgig bemessen.Process tanks that are freely accessible can be checked sporadically with regard to emulsion formation by eye inspection. However, if the process tank is on the sea floor, for example in the event of an offshore oil demand, such a check is not possible. In order to ensure the functionality of the separation system, the quantity of emulsion breakers supplied is very generously dimensioned.
Die Verwendung von Emulsionsbrechern weist jedoch mehrere Nachteile auf. Emulsionsbrecher sind teuer, sie belasten die Umwelt und müssen zudem oft wieder aus dem Prozessfluid extrahiert werden.However, the use of emulsion breakers has several disadvantages. Emulsion breakers are expensive, pollute the environment and often have to be extracted from the process fluid.
Aus US-A-3 Λ220 Λ 930 ist ein Separationstank mit einer Emulsionsbrecherkontrolle bekannt, welche zwei Sensoren verwendet. Ein erster Sensor, welcher elektrische Unterschiede zwischen Wasser und 01 detektiert, ist an einer maximal möglichen oberen Lage einer Emulsionschicht angeordnet. Ein zweiter Sensor, welcher Dichteunterschiede bestimmt, befindet sich an einer maximal möglichen unteren Lage der Emulsionschicht. Der erste Sensor aktiviert, im Falle, dass er eine Emulsion detektiert, ein Ventil, um Emulsionsbrecher in den Tank einzufuhren. WO 98/33044 beschreibt einen kapazitiven Fullstandsensor, welcher zur Ortsbestimmung einer Grenzschicht zwischen Wasser und 01 in einem Separationstank geeignet ist.From US-A-3 Λ 220 Λ 930 a separation tank with an emulsion breaker control is known which uses two sensors. A first sensor, which detects electrical differences between water and oil, is arranged on a maximum possible upper layer of an emulsion layer. A second sensor, which determines density differences, is located at a maximum possible lower layer of the emulsion layer. The first sensor, in the event that it detects an emulsion, activates a valve to introduce emulsion breakers into the tank. WO 98/33044 describes a capacitive full level sensor which is suitable for determining the location of a boundary layer between water and oil in a separation tank.
DE-A-197 λ22 λ837 offenbart einen Gammastrahlen- Dichteprofilsensor, welcher zur Fullstandsmessung in einem Olseparatortank geeignet ist.DE-A-197 λ 22 λ 837 discloses a gamma ray density profile sensor which is suitable for full level measurement in an oil separator tank.
Darstellung der ErfindungPresentation of the invention
Es ist deshalb Aufgabe der Erfindung, ein Verfahren und ein Mittel zur Zugabe von Emulsionsbrechern in einen Prozesstank zu schaffen, welche eine minimale Dosierung von Emulsions- brechern erlauben.It is therefore an object of the invention to provide a method and a means for adding emulsion breakers into a process tank, which allow a minimal dosage of emulsion breakers.
Diese Aufgabe lost ein Verfahren der eingangs genannten Art mit den Merkmalen des Patentanspruches 1 sowie ein Mittel mit den Merkmalen des Patentanspruches 6.This object is achieved by a method of the type mentioned at the outset with the features of patent claim 1 and a means with the features of patent claim 6.
Erfindungsgemass wird die Bildung einer Emulsionsschicht mittels eines eine vertikale Ortsauflosung aufweisenden Sensors detektiert, wobei lediglich bei Detektion einer Emulsionsschicht Emulsionsbrecher in einer zur Auflosung der Emulsionsschicht erforderlichen Menge zugeführt wird.According to the invention, the formation of an emulsion layer is detected by means of a sensor having a vertical spatial resolution, with emulsion breakers being supplied in an amount required to dissolve the emulsion layer only when an emulsion layer is detected.
Die Verwendung eines Sensors mit einer vertikalen Ortsauflosung ermöglicht eine quantitative Aussage über die Dicke der Emulsionsschicht, was eine optimierte Dosierung der Menge an Emulsionsbrecher erlaubt.The use of a sensor with a vertical spatial resolution enables a quantitative statement about the thickness of the emulsion layer, which allows an optimized dosage of the amount of emulsion breaker.
Vorzugsweise wird ein kapazitiver Sensor oder ein Gammastrahlen-Sensor verwendet. Derartige Sensoren sind im Stand der Technik bekannt, beispielsweise aus DE 197 22 837 und WO 98/33044, wobei sie als Fullstandssensoren eingesetzt werden.A capacitive sensor or a gamma ray sensor is preferably used. Such sensors are in the state known in the art, for example from DE 197 22 837 and WO 98/33044, where they are used as full level sensors.
Weitere vorteilhafte Varianten des Verfahrens und bevorzugte Ausfuhrungsformen gehen aus den abhangigen Patentansprüchen hervor .Further advantageous variants of the method and preferred embodiments are evident from the dependent patent claims.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Im folgenden wird das erfindungsgemasse Verfahren und der Erfindungsgegenstand anhand von bevorzugten Ausfuhrungsbeispielen, welche in den beiliegenden Zeichnungen dargestellt sind, näher erläutert. Es zeigen:The method according to the invention and the subject matter of the invention are explained in more detail below on the basis of preferred exemplary embodiments which are illustrated in the accompanying drawings. Show it:
Figur 1 eine schematische Darstellung eines Separationstanks mit einer Emulsionsbrecher-Zufuhreinrichtung;Figure 1 is a schematic representation of a separation tank with an emulsion breaker feed device;
Figur 2a eine schematische Darstellung eines kapazitiven Sensors in einem Separatortank gemass einer erstenFigure 2a is a schematic representation of a capacitive sensor in a separator tank according to a first
Ausfuhrungsform der Erfindung;Embodiment of the invention;
Figur 2b eine eine Emulsionsbildung aufzeigende Graphik, gemessen mittels des kapazitiven Sensors gemass Figur 2a undFigure 2b is a graphic showing an emulsion formation, measured by means of the capacitive sensor according to Figures 2a and
Figur 3 eine schematische Darstellung eines Gammastrahlensensors in einem Separationstank gemass einer zweiten Ausfuhrungsform. Wege zur Ausführung der ErfindungFigure 3 is a schematic representation of a gamma ray sensor in a separation tank according to a second embodiment. Ways of Carrying Out the Invention
In Figur 1 ist als Beispiel für einen Prozesstank ein Separationstank 1 dargestellt. Derartige Separationstanks 1 werden in der Offshore-Erdolforderung unterhalb der Meeresoberfläche eingesetzt, um die bei der Olforderung auftretenden verschiedenen Phasen (Sand, 01, Wasser und Gas) aufgrund ihrer Dichteunterschiede zu separieren und in getrennten Leitungssystemen abzuführen .A separation tank 1 is shown in FIG. 1 as an example of a process tank. Such separation tanks 1 are used in the offshore oil production below the sea surface in order to separate the different phases occurring in the oil production (sand, oil, water and gas) due to their density differences and to discharge them in separate piping systems.
Der Separationstank 1 weist eine Einfulloffnung 10 sowie vier Auslassoffnungen 11,12,13,14 auf. Durch die Einfulloffnung 10 gelangt eine Mischung aus Gas, 01, Wasser und Sand in den Separationstank 1. Die Einzelkomponenten der Mischung lagern sich entsprechend ihrer Dichte in unterschiedlichen Abständen von der Einfüllöffnung 10 sowie in verschiedenen Hohen ab. So sammelt sich der schwere Sand S in der Nahe der Einfulloffnung 10 und lasst sich durch die zur Einfulloffnung am nächsten liegenden, vorzugsweise im Boden des Tanks angeordneten ersten Auslassoffnung 11 abführen. Über der Sandschicht S lagern sich Wasser W, 01 0 und Gas G ab, und zwar in genannter Reihenfolge. Zwischen Gas G und 01 0 ist im allgemeinen eine Schaumschicht F vorhanden. Ebenso bildet sich zwischen 01 0 und Wasser W eine Emulsionsschicht E. In Einlassrichtung nach der sandabfuhrenden ersten Auslassoffnung 11 ist die zweite Aus- lassoffnung 12 für Wasser W und dieser nachfolgend die dritte Auslassoffnung 13 für das 01 0 angeordnet. Die Einzugsbereiche der zweiten und dritten Auslassoffnungen 12,13 sind hierfür durch eine Trennwand 15 voneinander getrennt. Das Gas G ent- weicht durch die vierte Auslassoffnung 14, welche im oberen Bereich des Separationstanks 1 angeordnet ist. In einer anderen, insbesondere bei Unterwassertanks bevorzugten Ausfuhrungsform wird das Gas G zusammen mit dem 01 0 durch die dritte Auslassoffnung 13 geleitet.The separation tank 1 has a fill opening 10 and four outlet openings 11, 12, 13, 14. A mixture of gas, oil, water and sand reaches the separation tank 1 through the filling opening 10. The individual components of the mixture are deposited at different distances from the filling opening 10 and at different heights, depending on their density. The heavy sand S thus collects in the vicinity of the fill opening 10 and can be discharged through the first outlet opening 11 which is closest to the fill opening and is preferably arranged in the bottom of the tank. Water W, 01 0 and gas G are deposited over the sand layer S, in the order mentioned. A foam layer F is generally present between gas G and 01 0. Likewise, an emulsion layer E is formed between 01 0 and water W. In the inlet direction after the sand-removing first outlet opening 11, the second outlet opening 12 for water W is arranged and this is followed by the third outlet opening 13 for the 01 0. For this purpose, the intake areas of the second and third outlet openings 12, 13 are separated from one another by a partition wall 15. The gas G escapes through the fourth outlet opening 14, which is arranged in the upper region of the separation tank 1. In another, especially preferred for underwater tanks In the embodiment, the gas G is passed together with the 01 0 through the third outlet opening 13.
Im Separationstank 1 ist ferner ein stabformiger Sensor 2 an- geordnet, welcher in einer vertikalen Ortsauflosung die Grenzschicht zwischen 01 0 und Wasser W und somit die Emulsionsschicht detektiert. Im hier dargestellten Beispiel dient er zugleich als Fullstandssensor zur Detektion einzelner Grenzschichten des gesamten Füllgutes. Er ragt deshalb in den Sepa- rationstank 1 hinein, wobei er sich mindestens annähernd über die gesamte Hohe des Separationstanks 1 und somit durch alle Phasen des Füllgutes erstreckt. Zur Detektion der Emulsionsschicht wurde es jedoch grundsatzlich ausreichen, wenn sich der Sensor 2 lediglich über denjenigen Bereich des Separa- tionstankes 1 erstreckt, in welchem potentiell eine Emulsioin entstehen konnte.In the separation tank 1 there is also a rod-shaped sensor 2, which detects the boundary layer between 01 0 and water W and thus the emulsion layer in a vertical spatial resolution. In the example shown here, it also serves as a level sensor for the detection of individual boundary layers of the entire filling material. It therefore protrudes into the separation tank 1, whereby it extends at least approximately over the entire height of the separation tank 1 and thus through all phases of the filling material. To detect the emulsion layer, however, it would basically be sufficient if the sensor 2 only extended over that area of the separation tank 1 in which an emulsion could potentially have formed.
Der Separationstank 1 ist mit einer Emulsionsbrecher-Zufuhreinrichtung 3 versehen, welche einen Emulsionsbrecher- Vorratstank 30 und eine Emulsionsbrecher-Zufuhrsteuerung 31 aufweist. Der Emulsionsbrecher-Vorratstank 30 ist über eine Zufuhrungsleitung 33 mit dem Separationstank 1 verbunden, wobei die Zufuhrungsleitung mittels eines über die Zufuhrsteuerung 31 regelbares Ventil 32 verschliessbar ist.The separation tank 1 is provided with an emulsion breaker feed device 3 which has an emulsion breaker storage tank 30 and an emulsion breaker feed controller 31. The emulsion breaker storage tank 30 is connected to the separation tank 1 via a feed line 33, the feed line being closable by means of a valve 32 which can be regulated via the feed controller 31.
Die Emulsionsbrecher-Zufuhreinrichtung 3 ist mit der Sonde 2 verbunden. Detektiert die Sonde 2 eine Emulsionsschicht, so wird ihr Signal an die Zufuhrsteuerung 31 weitergeleitet, worauf Emulsionsbrecher aus dem Vorratstank 30 in den Separa- tionstank 1 geleitet wird. In einer ersten Variante des Verfahrens wird bei Auftreten der Emulsionsschicht E Emulsionsbrecher EB eingeleitet und die Zuleitung erst wieder gestoppt, wenn der Sensor 2 keine relevante Emulsionsschicht mehr detektiert .The emulsion breaker feeder 3 is connected to the probe 2. If the probe 2 detects an emulsion layer, its signal is forwarded to the feed controller 31, whereupon the emulsion breaker is passed from the storage tank 30 into the separation tank 1. In a first variant of the method, when the emulsion layer E occurs, emulsion breaker EB is initiated and the feed line is only stopped again, when the sensor 2 no longer detects a relevant emulsion layer.
In einer weiteren Variante des Verfahrens wird die Menge an Emulsionsbrecher dem Signalwert angepasst. Das heisst, j e dicker die Emulsionsschicht E, umso mehr Emulsionsbrecher EB wird zugeführt. Die genau eingeleitete Menge hangt dabei im wesentlichen von der Art des Emulsionsbrechers EB und der Dicke der Emulsionsschicht E ab und wird im allgemeinen empirisch festgelegt. Dadurch lasst sich die Zufuhr an Emulsions- brecher EB bereits stoppen, bevor die Emulsionsschicht E reduziert worden ist.In a further variant of the method, the amount of emulsion breaker is adapted to the signal value. That is, the thicker the emulsion layer E, the more emulsion breaker EB is supplied. The exact amount introduced depends essentially on the type of emulsion breaker EB and the thickness of the emulsion layer E and is generally determined empirically. As a result, the supply to emulsion breaker EB can be stopped before the emulsion layer E has been reduced.
Als Sensor 2 eignet sich grundsatzlich jeder Sensor, welcher eine Emulsionsbildung nachweisen kann. Vorzugsweise wird eine Elektrodenanordnung zur kapazitiven Messung der Elektrodenumgebung oder ein Gammastrahlen-Sensor eingesetzt.In principle, any sensor which can detect emulsion formation is suitable as sensor 2. An electrode arrangement for capacitive measurement of the electrode surroundings or a gamma-ray sensor is preferably used.
In Figur 2a ist schematisch ein erstes Ausfuhrungsbeispiel des Sensors zur Detektion der Emulsionsschicht dargestellt. Es handelt sich um eine stabformige geschlossene Sonde, welche in ein Füllgut eingetaucht ist, um die umgebungsabhangige Kapazität zu messen. Dieser kapazitive Sensor 2' weist mehrere, entlang einer Sondenachse 20 angeordnete ringförmige Elektro- den 21,22,23,24,25,26 auf. Die prinzipielle Funktionsweise beruht darauf, dass zwischen benachbarten Elektroden 21,22,23,24,25,26 die Kapazitatsanderung gemessen wird, welche durch eine Verschiebung einer Grenzschicht zwischen einem leitfahigen Medium, beispielsweise Salzwasser, und einem iso- lierenden Medium, beispielsweise 01, verursacht wird. Elektrodenpaare, welche im isolierenden Material liegen, messen eine Kapazität von mindestens annähernd 0. Beginnt sich eine Emulsionsschicht zu bilden, so verzeichnet die Sonde einen Anstieg der Kapazität. Die Dicke der Emulsionsschicht ergibt sich dabei aus den einzelnen Kapazitatswerten sowie aus der Anzahl der betroffenen Elektronenpaare.A first exemplary embodiment of the sensor for detecting the emulsion layer is shown schematically in FIG. 2a. It is a rod-shaped, closed probe which is immersed in a filling material in order to measure the environmental capacity. This capacitive sensor 2 'has a plurality of annular electrodes 21, 22, 23, 24, 25, 26 arranged along a probe axis 20. The principle of operation is based on measuring the change in capacitance between adjacent electrodes 21, 22, 23, 24, 25, 26, which is caused by a shift in a boundary layer between a conductive medium, for example salt water, and an insulating medium, for example 01 is caused. Electrode pairs that lie in the insulating material measure a capacitance of at least approximately 0. When an emulsion layer begins to form, the probe registers an increase of capacity. The thickness of the emulsion layer results from the individual capacitance values and from the number of electron pairs concerned.
Für diese Messung als besonders geeignet hat sich der in WO 98/33044 beschriebene kapazitive Fullstandssensor erwiesen. Er weist im wesentlichen den oben beschriebenen Aufbau auf, wobei die Elektroden grossflachig ausgebildet sind und relativ dicht beeinander liegen. Das Verhältnis von Elektrodenhόhe zum Abstand benachbarter Elektroden ist dabei grosser als eins, vorzugsweise liegt es im Bereich von 1 bis 6. Dieser Füllstandsensor weist eine hohe Messgenauigkeit über einen grossen Fullstandsbereich auf. Der störende Einfluss von Schmutzfilmen auf das Sondensignal wird bei dieser Sonde dadurch vermieden, dass sie mit Frequenzen betrieben wird, welche an die Leitfähigkeit der Medien, in diesem Beispiel 01 und Wasser, und des Schmutzfilms angepasst sind.The capacitive full-level sensor described in WO 98/33044 has proven to be particularly suitable for this measurement. It essentially has the structure described above, the electrodes being of large area and lying relatively close to one another. The ratio of the electrode height to the distance between adjacent electrodes is greater than one, preferably in the range from 1 to 6. This fill level sensor has a high measuring accuracy over a large full range. The disturbing influence of dirt films on the probe signal is avoided with this probe by operating it at frequencies which are adapted to the conductivity of the media, in this example 01 and water, and the dirt film.
In Figur 2b ist eine Simulation einer Emulsionsbildung in einem Separatortank dargestellt, welche mit dem obengenannten kapazitiven Fullstandssensor gemessen worden ist. Die von den einzelnen Elektroden detektierten Kapazitäten in Farad [F] sind als Funktion der Zeit in Sekunden [s] dargestellt. Zum Zeitpunkt 0 sind die Elektroden 21, 22 und 23 von Wasser und die Elektroden 24 und 25 von 01 0 umgeben. Die Elektrode 26 liegt in der gasformigen Zone. Dies ist in Figur 2a dargestellt. Die Signale der benachbarten Elektroden sind in der Figur 2b mit 21 ' , 22 ' , 23 ' , 24 ' und 25' gekennzeichnet, wobei das Signal 21' vom Elektrodenpaar 21 und 22 herrührt.FIG. 2b shows a simulation of an emulsion formation in a separator tank, which was measured with the above-mentioned capacitive full-level sensor. The capacitances in Farad [F] detected by the individual electrodes are shown as a function of time in seconds [s]. At time 0, electrodes 21, 22 and 23 are surrounded by water and electrodes 24 and 25 by 01 0. The electrode 26 lies in the gaseous zone. This is shown in Figure 2a. The signals of the adjacent electrodes are identified in FIG. 2b with 21 ', 22', 23 ', 24' and 25 ', the signal 21' originating from the pair of electrodes 21 and 22.
Zum Zeitpunkt 50 wurde eine schwache Emulsion gebildet, welche im Signal 22' erkennbar ist. Die Emulsion loste sich schnell wieder auf. Zum Zeitpunkt 100 wurde eine stärkere Emulsion gebildet, welche sich über die Elektroden 24 und 25 erstreckt. Die korrespondierenden Signale 24' und 25' sind eindeutig erkennbar. Zum Zeitpunkt 165 erfolgte, wie ebenfalls in Figur 2b erkennbar ist, eine Separation, welche zum ursprunglichen Messsignal zurückgeführt hat.At time 50, a weak emulsion was formed, which can be seen in signal 22 '. The emulsion quickly dissolved. At time 100 there was a stronger emulsion formed, which extends over the electrodes 24 and 25. The corresponding signals 24 'and 25' are clearly recognizable. At time 165, as can also be seen in FIG. 2b, a separation took place, which led back to the original measurement signal.
In einer zweiten bevorzugten Ausfuhrungsform ist der Sensor zur Detektion einer Emulsionsbildung ein Gammastrahlen-Sensor. Mittels derartiger Gammastrahlen-Sensoren lasst sich basierend auf der Absorption von Gammastrahlen in einer Materie ein Dichteprofil dieser Materie erstellen. Von einer oder mehreren Gammaquellen werden energiereiche Photonen beziehungsweise Gammastrahlen ausgesandt, welche teilweise von der Materie absorbiert werden. Die Absorption hängt exponentiell von der durchstrahlten Länge ab, wobei der Absorptionskoeffizient proportional zur Dichte ist. Die restlichen transmittierten Photonen werden in mindestens einem Lichtdetektor in ein elektrisches Sensorsignal umgewandelt. Unterschiedliche Sensorsignale signalisieren Dichteunterschiede in der Materie. Mittels dieses Sensors lasst sich ebenfalls die Entstehung einer Emulsionsschicht sowie ihre Dicke detektieren.In a second preferred embodiment, the sensor for the detection of an emulsion formation is a gamma-ray sensor. Such a gamma ray sensor can be used to create a density profile of this matter based on the absorption of gamma rays in a matter. Energy-rich photons or gamma rays are emitted from one or more gamma sources, some of which are absorbed by matter. The absorption depends exponentially on the irradiated length, whereby the absorption coefficient is proportional to the density. The remaining transmitted photons are converted into an electrical sensor signal in at least one light detector. Different sensor signals signal density differences in matter. This sensor can also be used to detect the formation of an emulsion layer and its thickness.
Vorzugsweise wird ein Gammastrahlen-Sensor 2'' eingesetzt, wie er in DE-A-197 ' 22 ' 837 als Füllstandsmesser beschrieben. Er um- fasst mehrere Gammastrahler 27, die im wesentlichen vertikal übereinander angeordnet sind, sowie einen beabstandet gegenüber angeordneten, stabformigen, lichtleitenden Szintilla- tionsdetektor 28, welcher an mindestens einem Ende mit einem Photodetektor 29 optisch verbunden ist. Das Dichteprofil wird aus der Zahlrate der Szintillationsblitze in Funktion der Laufzeitdifferenz der sich in entgegengesetzte Richtungen ausbreitenden Lichtanteile bestimmt. Das erfindungsgemasse Verfahren und das erfindungsgemasse Mittel ermöglichen eine den Bedurfnissen angepasste und minimal dosierte Zugabe von Emulsionsbrechern in einen Prozesstank, da die Emulsionsbildung fortlaufend detektiert wird und in Abhängigkeit dieses Sensorsignals eine Dosierung festgelegt wird.Preferably, a gamma ray sensor 2 ″ is used, as described in DE-A-197 '22'837 as a level meter. It comprises a plurality of gamma emitters 27, which are arranged essentially vertically one above the other, and a spaced-apart, rod-shaped, light-guiding scintillation detector 28, which is optically connected to a photodetector 29 at at least one end. The density profile is determined from the number rate of the scintillation flashes as a function of the transit time difference of the light components propagating in opposite directions. The method according to the invention and the agent according to the invention enable emulsion breakers to be added to a process tank in a manner which is adapted to the requirements and is minimally dosed, since the formation of emulsions is continuously detected and a dosage is determined as a function of this sensor signal.
BezugszeichenlisteReference list
1 Separatortank 10 Einfullόffnung1 separator tank 10 filler opening
11 erste Auslassoffnung11 first outlet opening
12 zweite Auslassoffnung12 second outlet opening
13 dritte Auslassoffnung13 third outlet opening
14 vierte Auslassoffnung 15 Trennwand14 fourth outlet opening 15 partition
2 Sensor2 sensor
2' kapazitiver Sensor2 'capacitive sensor
2'' Gammastrahlen-Sensor2 '' gamma ray sensor
21 Elektrode 22 Elektrode21 electrode 22 electrode
23 Elektrode23 electrode
24 Elektrode24 electrode
25 Elektrode25 electrode
26 Elektrode 27 Gammastrahler26 electrode 27 gamma emitter
28 S zmt i llat ionsdete ktor28 S zmt i llationsdete ktor
29 Photodete ktor 21 ' Sensorsignal 22' Sensorsignal 23' Sensorsignal 24' Sensorsignal 25' Sensorsignal 3 Emulsionsbrecher-Zufuhreinrichtung29 photodetector 21 'sensor signal 22 'Sensor signal 23' Sensor signal 24 'Sensor signal 25' Sensor signal 3 Emulsion breaker feeder
30 Emulsionsbrecher-Vorratstank30 emulsion breaker storage tank
31 Zufuhrsteuerung31 Feed control
32 Ventil32 valve
33 Zufuhrungsleitung G Gas33 G gas supply line
0 01 W Wasser S Sand0 01 W water S sand
E Emulsionsschicht F SchaumE emulsion layer F foam
EB Emulsionsbrecher EB emulsion breaker

Claims

P A T E N T A N S P R U E C H E PATENT CLAIMS
1. Verfahren zur kontrollierten Zugabe von Emulsionsbrechern in einen Prozesstank, insbesondere in einen mit 01 und Wasser gefüllten Separationstank (1), dadurch gekennzeichnet, dass mittels eines Sensors (2,2',2'') mit vertikaler Ortsauflosung eine Emulsionsschicht (E) detektiert und ein Sensorsignal an eine Zufuhrsteuerung (3) geleitet wird, worauf mittels der Zufuhrsteuerung (3) eine Menge an zuzuführendem Emulsionsbrecher (EB) in Abhängigkeit des Sensorsignals dosiert zugegeben wird.1. A method for the controlled addition of emulsion breakers into a process tank, in particular into a separation tank (1) filled with 01 and water, characterized in that an emulsion layer (E) is used by means of a sensor (2, 2 ', 2' ') with vertical spatial resolution. detected and a sensor signal is passed to a feed controller (3), whereupon a quantity of emulsion breaker (EB) to be fed is metered in as a function of the sensor signal by means of the feed controller (3).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Emulsionsschicht (E) mittels eines kapazitiven Sensors (2 ' ) detektiert wird.2. The method according to claim 1, characterized in that the emulsion layer (E) is detected by means of a capacitive sensor (2 ').
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Emulsionsschicht mittels eines Gammastrahlen-Dichteprofilsensors (2'') detektiert wird.3. The method according to claim 1, characterized in that the emulsion layer is detected by means of a gamma ray density profile sensor (2 '').
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Sensor (2,2',2'') die Dicke der Emulsionsschicht (E) detektiert und die Dosierung in Abhängigkeit der detek- tierten Dicke erfolgt.4. The method according to claim 1, characterized in that the sensor (2,2 ', 2' ') detects the thickness of the emulsion layer (E) and the dosing is carried out as a function of the detected thickness.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Sensor (2,2',2'') zugleich den Füllstand eines Full- gutes im Prozesstank misst. 5. The method according to claim 1, characterized in that the sensor (2,2 ', 2'') simultaneously measures the level of a full good in the process tank.
6. Mittel zur kontrollierten Zugabe von Emulsionsbrechern in einen Prozesstank, insbesondere in einen mit 01 und Wasser gefüllten Separationstank (1), dadurch gekennzeichnet, dass das Mittel einen Sensor (2,2',2'') mit vertikaler Ortsauflosung zur Detektion einer Emulsionsschicht (E) aufweist und dass ein Detektionssignal des Sensors (2,2',2'') an eine Emulsionsbrecher-Zufuhrsteuerung (3) leitbar ist.6. Means for the controlled addition of emulsion breakers into a process tank, in particular into a separation tank (1) filled with 01 and water, characterized in that the means comprises a sensor (2,2 ', 2' ') with vertical spatial resolution for the detection of an emulsion layer (E) and that a detection signal of the sensor (2,2 ', 2' ') can be conducted to an emulsion breaker feed controller (3).
7. Mittel nach Anspruch 6, dadurch gekennzeichnet, dass der Sensor ein Gammastrahlen-Dichteprofilsensor (2'') ist.7. Means according to claim 6, characterized in that the sensor is a gamma-ray density profile sensor (2 '').
8. Mittel nach Anspruch 6, dadurch gekennzeichnet, dass der Sensor ein kapazitiver Sensor (2') ist.8. Means according to claim 6, characterized in that the sensor is a capacitive sensor (2 ').
9. Mittel nach Anspruch 6, dadurch gekennzeichnet, dass der Sensor (2,2',2'') ein Füllstandssensor ist. 9. Means according to claim 6, characterized in that the sensor (2,2 ', 2' ') is a level sensor.
PCT/CH2000/000276 1999-05-25 2000-05-18 Method and means for adding demulsifying agents to a process tank WO2000071640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU42839/00A AU4283900A (en) 1999-05-25 2000-05-18 Method and means for adding demulsifying agents to a process tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19923901A DE19923901A1 (en) 1999-05-25 1999-05-25 Method and means for adding emulsion breakers to a process tank
DE19923901.0 1999-05-25

Publications (1)

Publication Number Publication Date
WO2000071640A1 true WO2000071640A1 (en) 2000-11-30

Family

ID=7909112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2000/000276 WO2000071640A1 (en) 1999-05-25 2000-05-18 Method and means for adding demulsifying agents to a process tank

Country Status (3)

Country Link
AU (1) AU4283900A (en)
DE (1) DE19923901A1 (en)
WO (1) WO2000071640A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035259B2 (en) 2008-09-18 2015-05-19 Johnson Matthey Plc Level measurement system
CN105377401A (en) * 2013-03-15 2016-03-02 哈文技术解决方案有限公司 Apparatus and method for gas-liquid separation
WO2017196233A1 (en) * 2016-05-10 2017-11-16 Recondoil Sweden Ab Method and system for purification of oil
CN109777471A (en) * 2019-03-07 2019-05-21 吴建湘 A kind of emulsification processing device of crude oil dehydration settling tank

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360361B2 (en) * 2012-09-27 2016-06-07 Magnetrol International, Inc. System and method for emulsion measurement and profiling
US10478753B1 (en) 2018-12-20 2019-11-19 CH International Equipment Ltd. Apparatus and method for treatment of hydraulic fracturing fluid during hydraulic fracturing
CN113692311A (en) 2018-12-20 2021-11-23 哈文技术解决方案有限公司 Apparatus and method for gas-liquid separation of multiphase fluids
DE102020130930A1 (en) 2020-11-23 2022-05-25 Vega Grieshaber Kg Sensor device and sensor arrangement for measuring the interface of an emulsion
EP4281203A1 (en) 2021-01-25 2023-11-29 Boehringer Ingelheim International Gmbh Process for purifying and enriching proteins, nucleic acids or viruses using an aqueous two-phase system
EP4050248A1 (en) * 2021-02-26 2022-08-31 NOV Process & Flow Technologies AS Subsea storage of a water miscible storage fluid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220930A (en) * 1961-06-29 1965-11-30 Texaco Inc Apparatus for emulsion breaking of crude oils
US5612490A (en) * 1995-10-31 1997-03-18 Exxon Research And Engineering Company Method and apparatus for measuring phases in emulsions
DE19713267A1 (en) * 1997-01-28 1998-07-30 Abb Research Ltd Method for determining the dielectric constant and / or the conductivity of at least one medium and device for carrying out the method
DE19722837A1 (en) * 1997-05-30 1998-12-03 Abb Research Ltd Method and device for level measurement with gamma emitters and a virtual linear detector arrangement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033044A1 (en) * 1997-01-28 1998-07-30 Abb Research Ltd. Capacitative level detector with optimized electrode geometry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220930A (en) * 1961-06-29 1965-11-30 Texaco Inc Apparatus for emulsion breaking of crude oils
US5612490A (en) * 1995-10-31 1997-03-18 Exxon Research And Engineering Company Method and apparatus for measuring phases in emulsions
DE19713267A1 (en) * 1997-01-28 1998-07-30 Abb Research Ltd Method for determining the dielectric constant and / or the conductivity of at least one medium and device for carrying out the method
DE19722837A1 (en) * 1997-05-30 1998-12-03 Abb Research Ltd Method and device for level measurement with gamma emitters and a virtual linear detector arrangement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035259B2 (en) 2008-09-18 2015-05-19 Johnson Matthey Plc Level measurement system
US9534947B2 (en) 2008-09-18 2017-01-03 Johnson Matthey Plc Level measurement system
CN105377401A (en) * 2013-03-15 2016-03-02 哈文技术解决方案有限公司 Apparatus and method for gas-liquid separation
WO2017196233A1 (en) * 2016-05-10 2017-11-16 Recondoil Sweden Ab Method and system for purification of oil
CN109152963A (en) * 2016-05-10 2019-01-04 洛可废油转化公司 Purify the method and system of oil
CN109152963B (en) * 2016-05-10 2022-01-11 洛可废油转化公司 Method and system for purifying oil
CN109777471A (en) * 2019-03-07 2019-05-21 吴建湘 A kind of emulsification processing device of crude oil dehydration settling tank
CN109777471B (en) * 2019-03-07 2021-09-07 山东京胜石油化工有限公司 Emulsification treatment device of crude oil dehydration settling cask

Also Published As

Publication number Publication date
DE19923901A1 (en) 2000-11-30
AU4283900A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
EP2223059B1 (en) Method for filling level measurement
EP1314006B1 (en) Device for determining and/or monitoring the level of a filling material in a container
DE2640087A1 (en) MEASURING PROBES AND METHOD FOR DETERMINING FLOW DATA
DE19841770A1 (en) Level gauge system for urea solution used in selective catalytic reduction of exhaust pollutants, includes sensors for interdependent magnitudes, to establish filling level reliably
EP2041530A1 (en) Multichamber ultrasonic sensor for determining a liquid level
WO2000071640A1 (en) Method and means for adding demulsifying agents to a process tank
DE102014006695A1 (en) Level sensor for level measurement and method for determining the level of a liquid
EP2527802B1 (en) Method and device for determining media and container characteristics
DE10035263C2 (en) Optical device
DE10032775A1 (en) Liquid level monitoring and measuring device has surface wave conductor having several coaxial layers each comprising twisted wires
EP3312571B1 (en) Impedance type medium limit switch comprising an additional shield electrode
DE19713267A1 (en) Method for determining the dielectric constant and / or the conductivity of at least one medium and device for carrying out the method
EP2126522B1 (en) Device and method for detecting a volume while receiving and/or discharging a fluid having a gas portion
EP3081908A1 (en) Method and device for detecting the presence of a liquid in a gas flow
DE3233434A1 (en) DEVICE AND METHOD FOR TRANSPORTING MATERIAL
DE10236283A1 (en) fluid measurement
EP3246671B1 (en) Capacitive sensor and method for determining the permittivity distribution in an object
WO2007054513A1 (en) Device for determining the position of at least one phase boundary by evaluating acoustic signals
DE102013225509B4 (en) Radiometric density profile measuring arrangement
AT393169B (en) METHOD AND DEVICE FOR GRANE SIZE ANALYSIS
DE102013018802A1 (en) Nuclear magnetic flowmeter and method of operating nuclear magnetic flowmeters
EP3078943B1 (en) Measuring device and method for detecting a medium fill level
DE19847555A1 (en) Level measurement system for multi-phase offshore separator tank, comprises gamma detector to detect shadow of natural gamma radiation absorption by tank contents using long, vertical scintillation detector
DE102016117945A1 (en) Distributor with capacitive level detection
DE102016222298A1 (en) Radiometric level measurement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP