WO2000071281A1 - Molding material for breaker cores for spheroidal graphite iron - Google Patents

Molding material for breaker cores for spheroidal graphite iron Download PDF

Info

Publication number
WO2000071281A1
WO2000071281A1 PCT/EP2000/004598 EP0004598W WO0071281A1 WO 2000071281 A1 WO2000071281 A1 WO 2000071281A1 EP 0004598 W EP0004598 W EP 0004598W WO 0071281 A1 WO0071281 A1 WO 0071281A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding material
spheroidal
magnesium
additive
spheroidal graphite
Prior art date
Application number
PCT/EP2000/004598
Other languages
German (de)
French (fr)
Inventor
Clemens Schottek
Original Assignee
AS Lüngen GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AS Lüngen GmbH & Co. KG filed Critical AS Lüngen GmbH & Co. KG
Priority to EP00929545A priority Critical patent/EP1198310A1/en
Publication of WO2000071281A1 publication Critical patent/WO2000071281A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives

Definitions

  • the invention relates to a molding material for crushing cores for spheroidal iron.
  • Crushing cores are used in foundry technology as intermediate pieces between a feeder and a casting. They contain a "narrow point" at which the iron located between the feeder and the casting can be broken off.
  • Spheroidal graphite cast iron has several advantages over flake graphite cast iron, e.g. higher strength and better plastic deformability.
  • the minimum tensile strength of spheroidal graphite cast iron for predominantly ferritic or pearlitic basic structures is over 400 to 800 N / mm ⁇ instead of 100 or 400 N / mrt.2 for cast iron with lamellar graphite, and the minimum elongation at break is 15 or 2% instead an elongation at break of less than 1% (cf. Ulimann's Encyclopedia of Industrial Chemistry, 4th edition, Vol. 12 (1976), pp. 423-424).
  • the cast iron solidified in the "crushing cores" did not contain spheroidal graphite, but only lamellar graphite, even if the molten iron contained small amounts of spheroidal additives.
  • the flake graphite cast iron even extended into the area of the casting because the molten iron migrated from the feeder into the casting as a result of the volume contraction.
  • the invention thus relates to a molding material for crushing cores for spheroidal cast iron, comprising a refractory granular base material and a binder.
  • the molding material is characterized by a content of a finely divided spheroidal additive.
  • the preferred spheroidal additive is finely divided magnesium, although other spheroidal additives, such as cerium, which have hitherto only been added to iron, can also be used.
  • the result that can be achieved with the aid of the invention is surprising because the spheroidal additive contained in the molding material does not come into direct contact with the molten iron and therefore no interaction between the additive and the molten iron was to be expected.
  • a reaction of the spheroidal additive contained in the molding material with the molten iron in the vapor phase can be regarded as excluded, since the magnesium and even more the cerium has an extremely low vapor pressure and the molding material contains air inclusions between the grains of the fine-grained mineral, so that the vaporous spheroid Additive would react immediately with the atmospheric oxygen.
  • the molding material contains impurities (for example sulfur) which diffuse from the molding material into the molten iron without the spherogenic additive and thus with the very small amounts of the spheroidal additive in the molten iron Iron can react so that when the iron solidifies it does not form spheroidal graphite, but lamellar graphite. It is assumed that the spheroidal additive in the molding material of the crushing cores reacts with the impurities contained therein, so that they can no longer diffuse into the molten iron.
  • the spheroidal sentence obviously has a "scavenger" function.
  • the molding material contains approximately 1 to 3% by weight of finely divided magnesium.
  • the finely divided magnesium preferably has a particle size of approximately 0.063 to 2 mm.
  • the refractory granular base material is usually classified quartz sand. Chromite, zircon and olivine sand can also be used. Raw materials based on chamotte, as well as .Magnesite, Sillimanite and corundum can also be used.
  • the binders for the refractory granular base material can be inorganic or organic in nature.
  • the inorganic binders are divided into natural and synthetic.
  • Natural inorganic binders are clays (montmorillonite, glauconite, kaolinite, illite, attapulgite);
  • Synthetic inorganic binders are, for example, water glass, cement and plaster.
  • the organic binders primarily include synthetic resins, e.g. Phenolic, urea and furan resins as well as ethyl silicate.
  • oils, carbohydrate binders, water-soluble liquid binders based on sulfite leaching, molasses, dextrose processes, alkanolamines and pitch binders can also be used.
  • the refractory granular base e.g. Quartz sand, coated with a resin.
  • This sand is called croning sand.
  • Such sand is blown into the hollow form of the crushing core with the aid of a core shooter and fills the cavity there.
  • the mold is cured at 200 to 300 ° C, whereby the resin becomes liquid and binds the sand particles together.
  • the phenolic resin hardens in the heat so that it cannot be melted afterwards.
  • sands can also be used in the crusher core.
  • a so-called cold box mass can be used which contains water glass as a binder. The coldbox mass is cured by blowing in carbon dioxide and then drying.
  • a compound of 92 parts by weight of quartz sand (F 32, manufacturer: Quarzwerke Frechem) and 5 parts by weight of croning resin (a phenolic resin) is mixed with 3 parts by weight of magnesium (particle size 0.1 mm). The mixture is filled into a crusher mold and cured at 240 ° C for 2 minutes.
  • the crusher core is glued to a feeder and placed on a cast model. After the casting model has been removed, the cooled casting mold is filled with molten nodular cast iron (about 3.4% C, 0.05% Mg) and allowed to solidify.
  • the solidified sphere roguß shows spheroidal graphite in the cut both in the casting and in the crushing core area.
  • a mixture of 90 parts by weight of quartz sand, 7 parts by weight of water glass (50% solids content) and 3 parts by weight of magnesium is filled into a crusher core, hardened by gassing with CO2 at room temperature, and at 180 ° C. to constant weight dried.
  • the further treatment steps are carried out as in Example 1.
  • the solidified nodular cast iron shows spheroidal graphite both in the casting and in the crushing core area.
  • Example 1 The procedure of Example 1 is repeated with the difference that no magnesium is added.
  • the cut in the border area between the crusher core and the casting shows a mixture of spheroidal and lamellar graphite (degenerate graphite) right into the casting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

The invention relates to a molding material for breaker cores for spheroidal graphite iron, containing a mineral, fire-resistant, granular base material and a binding agent. The inventive molding material is characterized in that it contains a fine-grained spherogenic additive, preferably magnesium.

Description

Patentanmeldung- Patent application-
Formstoff für Brechkerne für den SphärogußMolding material for crushing cores for nodular cast iron
Beschreibungdescription
Die Erfindung betrifft einen Formstoff für Brechkerne für den Sphärogu .The invention relates to a molding material for crushing cores for spheroidal iron.
Brechkerne (Einschnürkerne) werden in der Gießereitechnik als Zwischenstücke zwischen einem Speiser und einem Gußstück verwendet. Sie enthalten eine "Engstelle", an der das zwischen dem Speiser und dem Gußstück befindliche Eisen abgebrochen werden kann.Crushing cores (constricting cores) are used in foundry technology as intermediate pieces between a feeder and a casting. They contain a "narrow point" at which the iron located between the feeder and the casting can be broken off.
Es existiert eine etwa 1935 beginnende systematische Forschung mit dem Ziel, die mechanischen Eigenschaften des Gußeisens durch die Ausscheidung eines kugeligen, anstelle eines lamel- laren Graphits zu verbessern. Diese Entwicklung führte in den nachfolgenden 20 Jahren zu der Erkenntnis, daß geringe Zusätze von Alkali- oder Erdalkalimetallen, wie Magnesium (etwa 0,02 bis 0,08%) oder auch Cer (nachstehend als "sphärogene Zusätze" bezeichnet) eine Ausscheidung des Graphits in Kugelform bewirken, und bot so ab etwa 1950 die Grundlage für eine industrielle Erzeugung dieses Werkstoffes, der im allgemeinen als "Sphäroguß" bezeichnet wird.There is a systematic research beginning around 1935 with the aim of determining the mechanical properties of cast iron by eliminating a spherical, instead of a to improve laren graphite. This development led in the following 20 years to the realization that small additions of alkali or alkaline earth metals, such as magnesium (about 0.02 to 0.08%) or also cerium (hereinafter referred to as "spheroidal additions") excreted the graphite effect in spherical form, and thus from about 1950 provided the basis for the industrial production of this material, which is generally referred to as "nodular cast iron".
Gußeisen mit Kugelgraphit hat gegenüber Gußeisen mit Lamellengraphit verschiedene Vorteile, z.B. eine höhere Festigkeit und eine bessere plastische Verformbarkeit. So liegt die Mindestzugfestigkeit von Gußeisen mit Kugelgraphit bei vorwiegend ferritischem bzw. perlitischem Grundgefüge über 400 bis 800 N/mm^ anstelle von 100 bzw. 400 N/mrt.2 bei Gußeisen mit Lamellengraphit, und die Mindestbruchdehnung liegt bei 15 bzw. 2% anstelle einer Bruchdehnung unter 1% (vgl. Ulimanns Encyklo- pädie der technischen Chemie, 4. Aufl., Bd. 12 (1976), S. 423- 424) .Spheroidal graphite cast iron has several advantages over flake graphite cast iron, e.g. higher strength and better plastic deformability. The minimum tensile strength of spheroidal graphite cast iron for predominantly ferritic or pearlitic basic structures is over 400 to 800 N / mm ^ instead of 100 or 400 N / mrt.2 for cast iron with lamellar graphite, and the minimum elongation at break is 15 or 2% instead an elongation at break of less than 1% (cf. Ulimann's Encyclopedia of Industrial Chemistry, 4th edition, Vol. 12 (1976), pp. 423-424).
Das in den "Brechkernen" erstarrte Gußeisen enthielt aber keinen Kugelgraphit, sondern nur Lamellengraphit, auch wenn das schmelzflüssige Eisen geringe Mengen an sphärogenen Zusätzen enthielt. Das Gußeisen mit Lamellengraphit dehnte sich sogar in den Bereich des Gußstücks aus, weil das Eisen im schmelz- flüssigen Zustand infolge der Volumenkontraktion aus dem Speiser in das Gußstück nachwanderte.However, the cast iron solidified in the "crushing cores" did not contain spheroidal graphite, but only lamellar graphite, even if the molten iron contained small amounts of spheroidal additives. The flake graphite cast iron even extended into the area of the casting because the molten iron migrated from the feeder into the casting as a result of the volume contraction.
Der Grund für diese unerwünschte Erscheinung war bisher unbekannt .The reason for this undesirable phenomenon was previously unknown.
Es wurde nun überraschenderweise gefunden, daß Gußstücke erhalten werden können, die auch im Brechkern sowie im Grenz- bereich zwischen Brechkern und Gußstück Kugelgraphit enthalten, wenn dem Formstoff der Brechkerne ein sphärogener Zusatz beigemischt wird. Die Erfindung betrifft somit einen Formstoff für Brechkerne für den Sphäroguß, enthaltend einen feuerfesten körnigen Grundstoff und ein Bindemittel. Der Formstoff ist gekennzeichnet durch einen Gehalt an einem feinteiligem sphärogenen Zusatz .It has now surprisingly been found that castings can be obtained which also contain spheroidal graphite in the crusher core and in the border area between the crusher core and the casting when a spheroidal additive is added to the molding material of the crusher cores. The invention thus relates to a molding material for crushing cores for spheroidal cast iron, comprising a refractory granular base material and a binder. The molding material is characterized by a content of a finely divided spheroidal additive.
Der bevorzugte sphärogene Zusatz ist feinteiliges Magnesium, obwohl auch andere, bisher nur dem Eisen zugesetzte sphärogene Zusätze, wie Cer, verwendet werden können. Alkalimetalle oder andere Erdalkalimetalle als Magnesium, z.B. Calcium, sind nicht so gut geeignet, da sie an der Luft leicht oxidieren.The preferred spheroidal additive is finely divided magnesium, although other spheroidal additives, such as cerium, which have hitherto only been added to iron, can also be used. Alkali metals or alkaline earth metals other than magnesium, e.g. Calcium, are not so suitable because they oxidize easily in the air.
Das mit Hilfe der Erfindung erzielbare Ergebnis ist deshalb überraschend, weil der im Formstoff enthaltene sphärogene Zusatz nicht unmittelbar mit dem schmelzflüssigen Eisen in Berührung kommt und daher auch keine Wechselwirkung zwischen dem Zusatz und dem schmelzflüssigen Eisen zu erwarten war. Eine Reaktion des im Formstoff enthaltenen sphärogenen Zusatzes mit dem schmelzflüssigen Eisen in der Dampfphase kann als ausgeschlossen gelten, da das Magnesium und noch mehr das Cer einen äußerst niedrigen Dampfdruck hat und der Formstoff zwischen den Körnern des feinkörnigen Minerals Lufteinschlüsse enthält, so daß der dampfförmige sphärogene Zusatz sofort mit dem Luftsauerstoff reagieren würde.The result that can be achieved with the aid of the invention is surprising because the spheroidal additive contained in the molding material does not come into direct contact with the molten iron and therefore no interaction between the additive and the molten iron was to be expected. A reaction of the spheroidal additive contained in the molding material with the molten iron in the vapor phase can be regarded as excluded, since the magnesium and even more the cerium has an extremely low vapor pressure and the molding material contains air inclusions between the grains of the fine-grained mineral, so that the vaporous spheroid Additive would react immediately with the atmospheric oxygen.
Die Erklärung für den durch die Erfindung erzielbaren Effekt liegt wahrscheinlich darin, daß der Formstoff Verunreinigungen (z.B. Schwefel) enthält, die ohne den sphärogenen Zusatz aus dem Formstoff in das schmelzflüssige Eisen diffundieren und auf diese Weise mit den sehr geringen Mengen des sphärogenen Zusatzes im schmelzflüssigen Eisen reagieren können, so daß sich beim Erstarren des Eisens kein Kugelgraphit, sondern Lamellengraphit bildet. Es wird angenommen, daß der sphärogene Zusatz im Formstoff der Brechkerne mit den darin enthaltenden Verunreinigungen reagiert, so daß diese nicht mehr in das schmelzflüssige Eisen diffundieren können. Der sphärogene Zu- satz hat also offenbar eine "scavenger" -Funktion.The explanation for the effect which can be achieved by the invention is probably that the molding material contains impurities (for example sulfur) which diffuse from the molding material into the molten iron without the spherogenic additive and thus with the very small amounts of the spheroidal additive in the molten iron Iron can react so that when the iron solidifies it does not form spheroidal graphite, but lamellar graphite. It is assumed that the spheroidal additive in the molding material of the crushing cores reacts with the impurities contained therein, so that they can no longer diffuse into the molten iron. The spheroidal sentence obviously has a "scavenger" function.
Zusätze von Magnesium zu Speisermassen sind an sich bekannt, wobei auf folgende Druckschriften hingewiesen wird: DE 25 32 745 C2; DE-OS 29 23 393; EP 0 879 662 AI.Additions of magnesium to feeder masses are known per se, reference being made to the following publications: DE 25 32 745 C2; DE-OS 29 23 393; EP 0 879 662 AI.
Diese Zusätze haben jedoch eine völlig andere Funktion. Sie sollen bei Speisermassen ohne fluoridhaltige Flußmittel mit dem in der thermischen Speisermasse vorhandenen Oxidationsmittel reagieren und auf diese Weise eine höhere Temperatur erzeugen, bei der die passivierende Oxidschicht auf dem gleichzeitig vorhandenen Aluminiumpulver aufgebrochen und das Aluminium ebenfalls oxidiert wird. Das in den thermischen Speisermassen vorhandene Magnesium ist also nach der Oxidation durch das Oxidationsmittel in der Oxidform vorhanden und kann mit den restlichen Verunreinigungen in der Speisermasse nicht mehr reagieren.However, these additives have a completely different function. In feed masses without fluoride-containing fluxes, they should react with the oxidizing agent present in the thermal feed mass and in this way generate a higher temperature at which the passivating oxide layer on the aluminum powder present at the same time is broken up and the aluminum is also oxidized. The magnesium present in the thermal feed masses is therefore present in the oxide form after oxidation by the oxidizing agent and can no longer react with the remaining impurities in the feed mass.
Nach einer bevorzugten Ausfuhrungsform der vorliegenden Erfindung enthält der Formstoff etwa 1 bis 3 Gew.-% feinteiliges Magnesium. Vorzugsweise hat das feinteilige Magnesium eine Teilchengröße von etwa 0,063 bis 2 mm.According to a preferred embodiment of the present invention, the molding material contains approximately 1 to 3% by weight of finely divided magnesium. The finely divided magnesium preferably has a particle size of approximately 0.063 to 2 mm.
Der feuerfeste körnige Grundstoff ist üblicherweise klassierter Quarzsand. Daneben können auch Chromit—, Zirkon- und Oli- vinsand verwendet werden. Auch Grundstoffe auf der Basis von Schamotte, sowie .Magnesit , Sillimanit und Korund können verwendet werden.The refractory granular base material is usually classified quartz sand. Chromite, zircon and olivine sand can also be used. Raw materials based on chamotte, as well as .Magnesite, Sillimanite and corundum can also be used.
Die Binder für den feuerfesten körnigen Grundstoff können anorganischer oder organischer Natur sein. Die anorganischen Binder werden in natürliche und synthetische unterteilt. Natürliche anorganische Binder sind Tone (Montmorillonit , Glaukonit, Kaolinit, Illit, Attapulgit) ; synthetische anorganische Binder sind z.B. Wasserglas, Zement und Gips. Zu den organischen Bindern zählen vor allem die Kunstharze, z.B. Phenol-, Harnstoff- und Furanharze sowie Ethylsilicat . Es können aber auch Öle, Kohlenhydratbinder, wasserlösliche Flüssigbinder auf der Basis von Sulfit-Ablaugen, Melasse, Dextrose- Abläufen, Alkanolaminen und Pechbinder verwendet werden.The binders for the refractory granular base material can be inorganic or organic in nature. The inorganic binders are divided into natural and synthetic. Natural inorganic binders are clays (montmorillonite, glauconite, kaolinite, illite, attapulgite); Synthetic inorganic binders are, for example, water glass, cement and plaster. The organic binders primarily include synthetic resins, e.g. Phenolic, urea and furan resins as well as ethyl silicate. However, oils, carbohydrate binders, water-soluble liquid binders based on sulfite leaching, molasses, dextrose processes, alkanolamines and pitch binders can also be used.
Vorzugsweise ist der feuerfeste körnige Grundstoff, z.B. Quarzsand, mit einem Harz umhüllt. Dieser Sand wird als Croning-Sand bezeichnet. Ein solcher Sand wird mit Hilfe einer Kernschießmaschine in die Hohlform des Brechkerns geblasen und füllt dort den Hohlraum aus. Die Form wird bei 200 bis 300°C ausgehärtet, wobei das Harz flüssig wird und die Sandteilchen miteinander verbindet. Das Phenolharz härtet in der Hitze aus, so daß es nachher nicht mehr geschmolzen werden kann.Preferably the refractory granular base e.g. Quartz sand, coated with a resin. This sand is called croning sand. Such sand is blown into the hollow form of the crushing core with the aid of a core shooter and fills the cavity there. The mold is cured at 200 to 300 ° C, whereby the resin becomes liquid and binds the sand particles together. The phenolic resin hardens in the heat so that it cannot be melted afterwards.
In dem Brechkern können aber auch andere Sande verwendet werden. Weiterhin kann eine sogenannte Coldbox-Masse verwendet werden, die als Bindemittel Wasserglas enthält. Die Aushärtung der Coldbox-Masse erfolgt durch Einblasen von Kohlendioxid und anschließende Trocknung.However, other sands can also be used in the crusher core. Furthermore, a so-called cold box mass can be used which contains water glass as a binder. The coldbox mass is cured by blowing in carbon dioxide and then drying.
Die Erfindung ist durch die nachstehenden Beispiele erläutert.The invention is illustrated by the examples below.
Beispiel 1example 1
Herstellung eines Formstoffs mit Croning-SandProduction of a molding material with croning sand
Ein Compound aus 92 Gew. -Teilen Quarzsand (F 32, Hersteller Quarzwerke Frechem) und 5 Gew. -Teilen Croning-Harz (einem Phenolharz) wird mit 3 Gew. -Teilen Magnesium (Teilchengröße 0,1 mm) vermischt . Das Gemisch wird in eine Brechkernform gefüllt und bei 240 °C 2 Minuten ausgehärtet.A compound of 92 parts by weight of quartz sand (F 32, manufacturer: Quarzwerke Frechem) and 5 parts by weight of croning resin (a phenolic resin) is mixed with 3 parts by weight of magnesium (particle size 0.1 mm). The mixture is filled into a crusher mold and cured at 240 ° C for 2 minutes.
Der Brechkern wird mit einem Speiser verklebt und auf ein Gußmodell gesetzt. Nach der Entfernung des Gußmodells wird die erkaltete Gußform mit schmelzflüssigem Sphäroguß (etwa 3,4% C, 0,05% Mg) gefüllt und erstarren gelassen. Der erstarrte Sphä- roguß zeigt im Schliff sowohl im Gußstück als auch im Brechkernbereich Kugelgraphit.The crusher core is glued to a feeder and placed on a cast model. After the casting model has been removed, the cooled casting mold is filled with molten nodular cast iron (about 3.4% C, 0.05% Mg) and allowed to solidify. The solidified sphere roguß shows spheroidal graphite in the cut both in the casting and in the crushing core area.
Beispiel 2Example 2
Ein Gemisch aus 90 Gew. -Teilen Quarzsand, 7 Gew. -Teilen Wasserglas (Feststoffgehalt 50%) und 3 Gew. -Teilen Magnesium wird in eine Brechkernform gefüllt, durch Begasen mit CO2 bei Raumtemperatur ausgehärtet, und bei 180°C bis zur Gewichtskonstanz getrocknet . Die weiteren Behandlungsschritte werden wie nach Beispiel 1 durchgeführt . Der erstarrte Sphäroguß zeigt im Schliff sowohl im Gußstück als auch im Brechkernbereich Kugel- graphit .A mixture of 90 parts by weight of quartz sand, 7 parts by weight of water glass (50% solids content) and 3 parts by weight of magnesium is filled into a crusher core, hardened by gassing with CO2 at room temperature, and at 180 ° C. to constant weight dried. The further treatment steps are carried out as in Example 1. The solidified nodular cast iron shows spheroidal graphite both in the casting and in the crushing core area.
Beispiel 3 (Vergleichsbeispiel)Example 3 (comparative example)
Die Arbeitsweise von Beispiel 1 wird mit der Abweichung wiederholt, daß kein Magnesium zugesetzt wird.The procedure of Example 1 is repeated with the difference that no magnesium is added.
Der Schliff im Grenzbereich zwischen Brechkern und Gußstück zeigt bis hinein in das Gußstück ein Gemisch aus Kugel- und Lamellengraphit (entarteter Graphit) . The cut in the border area between the crusher core and the casting shows a mixture of spheroidal and lamellar graphite (degenerate graphite) right into the casting.

Claims

Patentansprüche claims
1. Formstoff für Brechkerne für den Sphäroguß, enthaltend einen mineralischen, feuerfesten körnigen Grundstoff und ein Bindemittel, dadurch gekennzeichnet, daß er einen feinkörnigen sphärogenen Zusatz enthält.1. Molding material for crushing cores for spheroidal cast iron, containing a mineral, refractory granular base material and a binder, characterized in that it contains a fine-grained spheroidal additive.
2. Formstoff nach Anspruch 1, dadurch gekennzeichnet, daß der sphärogene Zusatz Magnesium und/oder Cer darstellt.2. Molding material according to claim 1, characterized in that the spheroidal additive is magnesium and / or cerium.
3. Formstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß er etwa 1 bis 53% feinkörniges Magnesium enthält.3. Molding material according to claim 1 or 2, characterized in that it contains about 1 to 53% fine-grained magnesium.
4. Formstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Magnesium eine Teilchengröße von etwa 0,063 bis 2 mm hat .4. Molding material according to one of claims 1 to 3, characterized in that the magnesium has a particle size of about 0.063 to 2 mm.
5. Formstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der körnige Grundstoff Quarzsand darstellt, der mit einem Harzbinder umhüllt ist .5. Molding material according to one of claims 1 to 4, characterized in that the granular base material is quartz sand which is coated with a resin binder.
6. Formstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Bindemittel ein Coldbox-Bindemittel , vorzugsweise Wasserglas, darstellt. 6. Molding material according to one of claims 1 to 4, characterized in that the binder is a cold box binder, preferably water glass.
PCT/EP2000/004598 1999-05-22 2000-05-20 Molding material for breaker cores for spheroidal graphite iron WO2000071281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00929545A EP1198310A1 (en) 1999-05-22 2000-05-20 Molding material for breaker cores for spheroidal graphite iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999123779 DE19923779A1 (en) 1999-05-22 1999-05-22 Molding material used for cores in casting techniques contains a mineral refractory granular base material, a binder and a finely ground spheroidal additive
DE19923779.4 1999-05-22

Publications (1)

Publication Number Publication Date
WO2000071281A1 true WO2000071281A1 (en) 2000-11-30

Family

ID=7909035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004598 WO2000071281A1 (en) 1999-05-22 2000-05-20 Molding material for breaker cores for spheroidal graphite iron

Country Status (3)

Country Link
EP (1) EP1198310A1 (en)
DE (1) DE19923779A1 (en)
WO (1) WO2000071281A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024540A3 (en) * 2004-09-02 2006-07-13 Luengen Gmbh & Co Kg As Material mixture for producing casting moulds for machining metal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10209183A1 (en) * 2002-03-04 2003-10-02 Vaw Mandl & Berger Gmbh Linz Production of cast pieces from a molten metal comprises forming a cast molded part, forming a molded part from the molding material, pouring the molten bath into the casting mold, cooling, removing the fragments of the mold part
DE10209224A1 (en) * 2002-03-04 2003-10-09 Vaw Mandl & Berger Gmbh Linz Production of cast pieces from a molten metal comprises forming a cast molded part, forming a molded part from the molding material, pouring the molten bath into the casting mold, cooling, removing the fragments of the mold part
CN105665615B (en) 2016-02-05 2018-10-02 济南圣泉集团股份有限公司 A kind of casting waterglass curing agent and its preparation method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1559585A (en) * 1975-08-22 1980-01-23 Ford Motor Co Nodularizing agent for cast iron and method of making same
JPS63174752A (en) * 1987-01-14 1988-07-19 Sadaji Nagabori Method and apparatus for continuous production of sand mold or core for casting suitable for non-coating casting
EP0288646A1 (en) * 1987-04-22 1988-11-02 Teiji Nagahori Mold material for forming sandmold without requiring mold wash
EP0410603A1 (en) * 1989-07-26 1991-01-30 Foseco International Limited Casting of molten iron and filters for use therein
EP0444318A2 (en) * 1990-02-27 1991-09-04 General Motors Corporation Differential pressure, countergravity casting of a melt with a fugative alloyant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2532745C2 (en) * 1975-07-22 1985-09-26 Chemineon Inc.,, Southfield, Mich. Heat-insulating lining for feeders
DE7916621U1 (en) * 1979-06-08 1981-07-09 Foseco Gesellschaft für chemischmetallurgische Erzeugnisse mbH, 4280 Borken DEVICE FOR USE IN THE PRODUCTION OF CASTING MOLDS WITH FEEDERS
US5161604A (en) * 1992-03-26 1992-11-10 General Motors Corporation Differential pressure, countergravity casting with alloyant reaction chamber
JP3239209B2 (en) * 1997-05-22 2001-12-17 正光 三木 Manufacturing method of heating element for casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1559585A (en) * 1975-08-22 1980-01-23 Ford Motor Co Nodularizing agent for cast iron and method of making same
JPS63174752A (en) * 1987-01-14 1988-07-19 Sadaji Nagabori Method and apparatus for continuous production of sand mold or core for casting suitable for non-coating casting
EP0288646A1 (en) * 1987-04-22 1988-11-02 Teiji Nagahori Mold material for forming sandmold without requiring mold wash
EP0410603A1 (en) * 1989-07-26 1991-01-30 Foseco International Limited Casting of molten iron and filters for use therein
EP0444318A2 (en) * 1990-02-27 1991-09-04 General Motors Corporation Differential pressure, countergravity casting of a melt with a fugative alloyant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 442 (M - 766) 21 November 1988 (1988-11-21) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024540A3 (en) * 2004-09-02 2006-07-13 Luengen Gmbh & Co Kg As Material mixture for producing casting moulds for machining metal
US7770629B2 (en) 2004-09-02 2010-08-10 As Lungen Gmbh Moulding mixture for producing casting moulds for metalworking
EP2392424A1 (en) * 2004-09-02 2011-12-07 AS Lüngen GmbH Method for producing casting moulds for metal processing, casting moulds produced according to the method and the use of same

Also Published As

Publication number Publication date
DE19923779A1 (en) 2000-11-23
EP1198310A1 (en) 2002-04-24

Similar Documents

Publication Publication Date Title
DE102004042535B4 (en) Molding material mixture for the production of casting molds for metal processing, process and use
DE2239835C3 (en) Process for the production of moldings from a granular material and an acid-curable resin
DE69917172T2 (en) Exothermic body for foundry purposes
EP0084689B1 (en) Process for the manufacture of a foundry core or mould
DE60220841T2 (en) SLEEVE, MANUFACTURING PROCESS THEREOF AND MIXTURE FOR THE MANUFACTURE THEREOF
WO2000071281A1 (en) Molding material for breaker cores for spheroidal graphite iron
US4396431A (en) Process for preparing olivine sand cores and molds
DE3020089C2 (en) Molding compounds for foundry cores and molds and their use
US4423764A (en) Binder for preparing improved cores and molds
US4422496A (en) Process for preparing olivine sand cores and molds
US4383861A (en) Metal silico-phosphate binders and foundry shapes produced therefrom
KR900016361A (en) Ester curing agent, binder containing the same, and molding composition for casting containing the same
AT389249B (en) Additive for regulating the strength remaining after casting of water-glass-bound casting moulds and/or cores
DE2630832A1 (en) METHOD OF MANUFACTURING CAST BLOCKS FROM MOLTEN METAL
DE3049174C2 (en) Cold-curing molding compound to avoid the formation of veins
DE10065270A1 (en) Composition used in the production of feeds in the casting industry comprises a particulate filler, an organic binder system, an oxidant for the binder system, and an easily oxidizable metal
US4464492A (en) Foundry binder
DE2518485B2 (en) PROCESS FOR PRODUCING A LIQUID BINDING AGENT FOR FOUNDRY FORM AND CORE COMPOSITION
US4396725A (en) Process for preparing olivine sand cores and molds
US4522799A (en) Process for preparing olivine sand cores and molds
DE2401185A1 (en) BINDER
RU2094162C1 (en) Self-hardening mixture for manufacturing casting molds and cores
DE3424970C2 (en)
AT350201B (en) INSULATING BODY FOR CHILL HEAD AND BLOCK HEAD LINING
EP0032596B1 (en) Process for producing lost moulds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000929545

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000929545

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000929545

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)