WO2000070313A1 - Gas meter with low power consumption mode - Google Patents
Gas meter with low power consumption mode Download PDFInfo
- Publication number
- WO2000070313A1 WO2000070313A1 PCT/AU2000/000479 AU0000479W WO0070313A1 WO 2000070313 A1 WO2000070313 A1 WO 2000070313A1 AU 0000479 W AU0000479 W AU 0000479W WO 0070313 A1 WO0070313 A1 WO 0070313A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- meter
- power consumption
- consumption mode
- period
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/06—Indicating or recording devices
- G01F15/068—Indicating or recording devices with electrical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/07—Integration to give total flow, e.g. using mechanically-operated integrating mechanism
- G01F15/075—Integration to give total flow, e.g. using mechanically-operated integrating mechanism using electrically-operated integrating means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/32—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/005—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
Definitions
- the invention relates to a gas meter of the type used for measuring gas consumption by a commercial or residential premises.
- Gas meters of this type must be low cost, reliable and have a long life. Typically, such meters have mechanical gas flow metering and pressure regulating mechanisms, and as a result the meters are quite bulky. Gas meter readers are employed to visit the premises and note the meter readings periodically, from which the gas supply authority calculates the energy usage of the premises and bills the customer accordingly.
- Electronic metering means are known per se, for example in Australian Patent No. 682498. However, commercially available electronic meters still have substantial limitations. One difficulty is that the metering means requires electrical power, which is normally provided by some form of battery. It would be desirable for a meter to include supplementary electronic components such as electronic regulators, prepayment valves and additional sensing, calculating and communications functions. However, such extra features increase the power consumption of the meter beyond what is practical for the existing arrangements, and thus the presently available meters do not include these extra functions.
- the invention aims to overcome at least some of these disadvantages.
- the invention provides a gas meter for measuring gas consumption by a premises including a gas inlet, a gas outlet, electrically-powered gas metering means between said inlet and outlet, means sensing a reduced flow condition and switching the meter to a low power consumption mode, and means sensing a high flow condition and switching the meter to a higher power consumption mode.
- the meter includes means for periodically actuating said metering means to measure gas flow said periodic actuating means actuating said metering means at a first period between successive actuations when said meter is operating in said higher power consumption mode, and actuating said meter means at a second period between successive actuations when said meter is operating in said low power consumption mode, said second period being greater than said first period.
- the meter operates in conjunction with a gas pressure regulator and is actuated from the low power consumption mode to the higher power consumption mode in response to a detected change at the regulator.
- the meter is actuated from the low power consumption mode to the higher power consumption mode in response to an increased gas flow measurement.
- the meter can operate in first and second low power consumption modes, the first low power consumption mode corresponding to a low flow condition, such as a pilot flow, in which said metering means is actuated to measure gas flow at a second period greater than the first period between successive actuations, the second low power consumption mode corresponding to a zero flow condition in which said metering means is actuated to measure gas flow at a third period between successive actuations, said third period being greater than said second period.
- a low flow condition such as a pilot flow
- the meter can operate in a plurality of low power consumption modes each having a respective period between successive actuations of the metering means, the meter being actuated from one low power consumption mode to a lower power consumption mode in response to a predetermined number of successive measurements of gas flow below a predetermined value.
- a second form of the invention provides a gas meter for measuring gas consumption by a premises including a gas inlet, a gas outlet, electrically-powered gas metering means between said inlet and outlet, electrical power generation means powered by the gas to produce electrical power, means sensing a reduced flow condition and switching the meter to a low power consumption mode, and means sensing a high flow condition and switching the meter to a higher power consumption mode.
- the power generation means is powered, directly or indirectly, by the flow of gas through the meter.
- Fig. 1 is a schematic showing the components in the gas meter/regulator unit
- Fig. 2 is a block diagram showing a first preferred operation of the meter functions in switching between operative modes
- Fig. 3 is a block diagram showing a second preferred operation in switching between modes.
- Fig. 1 shows a gas meter/regulator unit 10 having a gas inlet 12 for connection to a high, variable pressure gas supply, typically at 5-600 kPa, and an outlet 13 for connection to the gas plumbing of the premises for which the meter/regulator unit is installed.
- a gas inlet 12 for connection to a high, variable pressure gas supply, typically at 5-600 kPa, and an outlet 13 for connection to the gas plumbing of the premises for which the meter/regulator unit is installed.
- the gas flow path is divided into a high, variable pressure region between the inlet 10 and a regulator 14, and a low pressure region downstream of the regulator.
- the regulator acts to reduce the high gas supply pressure to a lower, substantially constant pressure at which the gas is supplied to the premises, typically in the range of 0.5-3.5 kPa.
- the regulator 14 may be mechanically operated, such as a conventional spring-biased valve, but preferably is electronically controlled by the processor/controller 16 or a combination of electronic and mechanical control.
- an electronic metering apparatus 18 Located upstream of the regulator 14 in the high pressure region of the gas path is an electronic metering apparatus 18, such as the type consisting of acoustic transducers situated at upstream and downstream ends of a gas flow measurement tube.
- the transducers are controlled by the processor 16 to periodically, for example every 1-4 seconds, transmit and receive acoustic (e.g. ultrasonic) signals through the tube. Variations in the time taken for the signal to traverse the tube or changes in the signal phase are used to calculate the gas flow velocity through the tube.
- acoustic e.g. ultrasonic
- a pressure sensor 28 measures the gas pressure in the high pressure region and generates an output to the processor 16.
- the sensor 28 may also incorporate a sensor for measuring the gas temperature.
- the sensor is preferably situated in the gas flow path after the metering tube 18 and before the regulator 14. If an electronically controlled regulator is employed, the output value from the pressure sensor 28 may also be used as a control for the regulator.
- the processor 16 receives the outputs from the metering apparatus 18 and, optionally, from any other sensors (not shown) and from this information calculates the gas flow quantity passing through the unit and into the premises. A cumulative quantity reading is communicated to a display 20 on the unit.
- the processor 16 may also be provided with an external communications link 22 allowing remote reading and control of the meter/regulator unit. For example, if an electronically controlled regulator is used, the unit may have facility for the gas supply authority to send a signal causing the processor 16 to close the regulator valve 14, shutting off the gas supply to the premises.
- a power generation unit 24 is positioned in the gas flow path to produce electrical power from the gas flow through the meter.
- the generating units may be driven directly by the gas movement, such as a turbine, or indirectly, for example by a thermocouple producing a voltage due to the gas temperature change across the regulator 14 or gas metering apparatus 18.
- Electrical power can also be generated by placing a coil and actuating arm in communication with a regulator valve. Oscillations of the regulator valve cause relative movement between the coil and arm, thereby generating a current.
- the unit also includes an energy storage device 26, for example a high capacitance, low leakage "super” capacitor and/or a back-up Lithium battery, as stand by against failure of the power generating unit and for operation of the unit when the gas flow is zero.
- the power storage requirements of the storage device 26 are substantially less than for the batteries used in conventional electronic meters and therefore the device 26 can be smaller and cheaper than otherwise required.
- Fig. 2 shows, in block diagram form, a first embodiment of switching the unit between a low power consumption mode and normal operative mode.
- the processor actuates the transducers of the metering apparatus 18 to send an acoustic signal on average every 2 seconds to measure the gas flow and controls the other features and sensors of the meter unit.
- the processor 16 Upon the sensing of no gas consumption for a predetermined time, for example 10-60 seconds, the processor 16 puts the unit into a lower power consumption mode in which the display and a timer operates but other operations of the unit are closed down.
- the acoustic signals sent between the transducers of the electronic metering apparatus are either discontinued entirely or sent at much-reduced regularity, for example 20 - 60 seconds.
- the 'no flow' condition maybe sensed by the gas metering apparatus 18 or by the regulator 14 remaining closed for a predetermined time.
- Another possible mode of operation is that of low gas usage, for example when only pilot burners are being operated. If this low flow condition is detected by flow below a threshold value for a predetermined time, for example 10-60 seconds, the meter can operate in a reduced consumption mode where the regularity of the acoustic signals is reduced to save power until higher flow rates are detected.
- the meter may have a range of low power consumption modes. If a low flow reading is recorded for a predetermined number of successive measurements, for example 10, the period between measurements may increase, for example by a preset amount or by doubling the measurement period. This can continue to occur, and the meter can operate in successively reduced power consumption modes, until a maximum measurement period is reached.
- the processor 16 remains alert to a wake up signal, being one or more of a communications signal from the gas supply authority, an alarm condition such as a tamper alarm, or detection of increased gas flow.
- a wake up signal being one or more of a communications signal from the gas supply authority, an alarm condition such as a tamper alarm, or detection of increased gas flow.
- the latter may be induced by detection of increased flow by the electronic metering apparatus (if operating), a change in gas temperature in response to gas consumption by the consumer, opening of the regulator, a change in voltage from the power generation means 24, or a reduction in pressure downstream of the regulator, in which case a piezo-electric or other transducer can be used to detect the pressure fluctuations. Small variations above and below the measured gas flow during the reduced consumption nodes that are insufficient to trigger a wake up signal will average out over the billing period.
- the processor may perform housekeeping operations such as downloading calibration data from non-volatile memory and updating the clock before switching on the full operative functions of the meter.
- Fig. 3 illustrates a preferred embodiment in which the meter is put into sleep mode between successive metering signals, the period between signals being varied dependent on whether high flow, low flow or no flow conditions are detected.
- the processor wakes up the meter upon detection of increased flow, a communications request, a tamper alarm or other alarms such as earthquake or excess flow alarms, or upon signal from the wake up timer.
- the processor then proceeds with its wake up housekeeping, downloading calibration data from non- volatile memory into RAM and updating the clock by adding the elapsed time stored in RAM to the stored time and date in the non- volatile memory.
- the processor then instructs the various sensors in the meter to actuate, including the acoustic transducers which meter the flow velocity. This measurement is then compared against the high flow and low flow thresholds. If the measurement is above the high flow threshold, the wake up timer is set for a preset time, e.g. 1 -4 seconds. When a low flow or no flow measurement is detected, the unit continues to set the wake up timer at the high flow timer setting until a predetermined number of consecutive low flow or no flow measurements have been recorded. After this number of low flow or no flow measurements is recorded, the wake up timer is then set at a low flow timer setting, e.g. 10-30 seconds, or no flow timer setting e.g. 20-60 seconds, respectively. The processor then puts the unit into sleep mode until it receives a wake up signal from the wake up timer or detection of any of the other wake up signals.
- a preset time e.g. 1 -4 seconds.
- the threshold value defining the high gas flow is sufficiently high for the power generating means to be producing enough power for full meter operations without drawing power from the storage device 26.
- the unit operates at a lower power consumption mode thus reducing the power drawn from storage device 26.
- meter unit By providing the meter unit with power generating means and one or more low power consumption modes, more sophisticated functions can be incorporated into the meter while retaining the required longevity of the power supply.
- Features which may be incorporated include external communications capability, an electronic regulator which may act also as a prepayment valve, and recording of gas usage patterns, which can be used to allow charging on the basis of peak and off-peak gas usage. While particular embodiments of this invention have been described, it will be evident to those skilled in the art that the present invention may be embodied in other specific forms without departing from the essential characteristics thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002372727A CA2372727A1 (en) | 1999-05-17 | 2000-05-17 | Gas meter with low power consumption mode |
EP00926558A EP1181508A1 (en) | 1999-05-17 | 2000-05-17 | Gas meter with low power consumption mode |
AU45260/00A AU4526000A (en) | 1999-05-17 | 2000-05-17 | Gas meter with low power consumption mode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPQ0410A AUPQ041099A0 (en) | 1999-05-17 | 1999-05-17 | Low power consumption meter |
AUPQ0410 | 1999-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000070313A1 true WO2000070313A1 (en) | 2000-11-23 |
Family
ID=3814613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2000/000479 WO2000070313A1 (en) | 1999-05-17 | 2000-05-17 | Gas meter with low power consumption mode |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1181508A1 (en) |
AU (1) | AUPQ041099A0 (en) |
CA (1) | CA2372727A1 (en) |
WO (1) | WO2000070313A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002010695A2 (en) * | 2000-10-13 | 2002-02-07 | Email Limited | Powered gas meters |
WO2004046658A1 (en) * | 2002-11-19 | 2004-06-03 | Endress + Hauser Flowtec Ag | Device for the determination and/or monitoring of the volume and/or mass flow of a medium |
WO2005103631A1 (en) * | 2004-03-26 | 2005-11-03 | Panametrics, Inc. | Low power ultrasonic flow meter |
WO2005111549A1 (en) * | 2004-05-07 | 2005-11-24 | Endress+Hauser Flowtec Ag | Ultrasonic measuring apparatus for determining and/or monitoring the volume flow rate and/or mass flow rate of a medium |
ITAN20080054A1 (en) * | 2008-12-01 | 2010-06-02 | Sauro Bianchelli | NEW GAS METER WITH MECHANICAL MODULE OF MEASUREMENT OF CONSUMED AND INNOVATIVE GAS QUANTITY ELECTRONIC DATA PROCESSING AND TRANSMISSION MODULE |
WO2012004471A1 (en) * | 2010-07-06 | 2012-01-12 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Fluid delivery device including a thermoelectric module |
EP2570783A1 (en) * | 2011-09-15 | 2013-03-20 | Sensus Spectrum LLC | Measuring device for water meters and method for operating a battery powered measuring device |
EP2631610A1 (en) * | 2010-10-22 | 2013-08-28 | Panasonic Corporation | Flow-rate measurement device |
ITMI20120631A1 (en) * | 2012-04-17 | 2013-10-18 | Metersit S R L | STATIC GAS COUNTER |
ITMI20120629A1 (en) * | 2012-04-17 | 2013-10-18 | Metersit S R L | STATIC GAS COUNTER WITH IMPROVED ELECTRONICS |
US9207683B2 (en) | 2012-01-20 | 2015-12-08 | Infineon Technologies Austria Ag | Flow meter device and method of operation |
EP3411864A4 (en) * | 2016-02-05 | 2019-11-13 | Apana Inc. | Low power, high resolution automated meter reading, centralized data collection, and analytics |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4799169A (en) * | 1987-05-26 | 1989-01-17 | Mark Industries, Inc. | Gas well flow instrumentation |
US4829449A (en) * | 1986-02-05 | 1989-05-09 | Rockwell International Corporation | Method and apparatus for measuring and providing corrected gas flow |
US4918995A (en) * | 1988-01-04 | 1990-04-24 | Gas Research Institute | Electronic gas meter |
US5251149A (en) * | 1991-08-02 | 1993-10-05 | Great Plains Industries, Inc. | Electronic nutating disc flow meter |
US5481259A (en) * | 1994-05-02 | 1996-01-02 | Motorola, Inc. | Method for reading a plurality of remote meters |
JPH08159824A (en) * | 1994-12-07 | 1996-06-21 | Kansai Gas Meter Co Ltd | Cpu circuit for measurement of little power consumption |
US5747703A (en) * | 1993-12-07 | 1998-05-05 | Schlumberger Industries S.A. | Method and apparatus for monitoring variation in the current value of a rate of fluid flow through a flow meter |
JPH11281429A (en) * | 1998-03-31 | 1999-10-15 | Yazaki Corp | Method and device for flow rate measuring and electronic gas meter |
-
1999
- 1999-05-17 AU AUPQ0410A patent/AUPQ041099A0/en not_active Abandoned
-
2000
- 2000-05-17 EP EP00926558A patent/EP1181508A1/en not_active Withdrawn
- 2000-05-17 WO PCT/AU2000/000479 patent/WO2000070313A1/en not_active Application Discontinuation
- 2000-05-17 CA CA002372727A patent/CA2372727A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4829449A (en) * | 1986-02-05 | 1989-05-09 | Rockwell International Corporation | Method and apparatus for measuring and providing corrected gas flow |
US4799169A (en) * | 1987-05-26 | 1989-01-17 | Mark Industries, Inc. | Gas well flow instrumentation |
US4918995A (en) * | 1988-01-04 | 1990-04-24 | Gas Research Institute | Electronic gas meter |
US5251149A (en) * | 1991-08-02 | 1993-10-05 | Great Plains Industries, Inc. | Electronic nutating disc flow meter |
US5747703A (en) * | 1993-12-07 | 1998-05-05 | Schlumberger Industries S.A. | Method and apparatus for monitoring variation in the current value of a rate of fluid flow through a flow meter |
US5481259A (en) * | 1994-05-02 | 1996-01-02 | Motorola, Inc. | Method for reading a plurality of remote meters |
JPH08159824A (en) * | 1994-12-07 | 1996-06-21 | Kansai Gas Meter Co Ltd | Cpu circuit for measurement of little power consumption |
JPH11281429A (en) * | 1998-03-31 | 1999-10-15 | Yazaki Corp | Method and device for flow rate measuring and electronic gas meter |
Non-Patent Citations (3)
Title |
---|
DATABASE WPI Derwent World Patents Index; Class S02, AN 1996-345116/35 * |
DATABASE WPI Derwent World Patents Index; Class S02, AN 2000-003110/01 * |
PATENT ABSTRACTS OF JAPAN * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002010695A2 (en) * | 2000-10-13 | 2002-02-07 | Email Limited | Powered gas meters |
WO2002010695A3 (en) * | 2000-10-13 | 2002-03-28 | Email Ltd | Powered gas meters |
WO2004046658A1 (en) * | 2002-11-19 | 2004-06-03 | Endress + Hauser Flowtec Ag | Device for the determination and/or monitoring of the volume and/or mass flow of a medium |
WO2005103631A1 (en) * | 2004-03-26 | 2005-11-03 | Panametrics, Inc. | Low power ultrasonic flow meter |
US7058521B2 (en) | 2004-03-26 | 2006-06-06 | Panametrics, Inc. | Low power ultrasonic flow meter |
CN100419387C (en) * | 2004-03-26 | 2008-09-17 | 帕纳梅特里克斯公司 | Low power ultrasonic flow meter |
WO2005111549A1 (en) * | 2004-05-07 | 2005-11-24 | Endress+Hauser Flowtec Ag | Ultrasonic measuring apparatus for determining and/or monitoring the volume flow rate and/or mass flow rate of a medium |
CN100443860C (en) * | 2004-05-07 | 2008-12-17 | 恩德斯+豪斯流量技术股份有限公司 | Ultrasonic measuring apparatus for determining and/or monitoring the volume flow rate and/or mass flow rate of a medium |
US7552652B2 (en) | 2004-05-07 | 2009-06-30 | Endress + Hauser Flowtec Ag | Device for determining and/or monitoring the volume-and/or mass-flow of a medium |
ITAN20080054A1 (en) * | 2008-12-01 | 2010-06-02 | Sauro Bianchelli | NEW GAS METER WITH MECHANICAL MODULE OF MEASUREMENT OF CONSUMED AND INNOVATIVE GAS QUANTITY ELECTRONIC DATA PROCESSING AND TRANSMISSION MODULE |
US8701702B2 (en) | 2010-07-06 | 2014-04-22 | Commissariat A L'energie Atomique | Fluid delivery device including a thermoelectric module |
WO2012004471A1 (en) * | 2010-07-06 | 2012-01-12 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Fluid delivery device including a thermoelectric module |
CN102971681A (en) * | 2010-07-06 | 2013-03-13 | 原子能和代替能源委员会 | Fluid delivery device including a thermoelectric module |
US20130074954A1 (en) * | 2010-07-06 | 2013-03-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Fluid delivery device including a thermoelectric module |
JP2013535713A (en) * | 2010-07-06 | 2013-09-12 | コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ | Fluid supply apparatus including thermoelectric module |
FR2962563A1 (en) * | 2010-07-06 | 2012-01-13 | Commissariat Energie Atomique | DEVICE FOR DISPENSING A FLUID WITH A THERMOELECTRIC MODULE. |
EP2631610A1 (en) * | 2010-10-22 | 2013-08-28 | Panasonic Corporation | Flow-rate measurement device |
US9239256B2 (en) | 2010-10-22 | 2016-01-19 | Panasonic Intellectual Property Management Co., Ltd. | Flow-rate measurement device |
EP2631610A4 (en) * | 2010-10-22 | 2014-08-13 | Panasonic Corp | Flow-rate measurement device |
EP2570783A1 (en) * | 2011-09-15 | 2013-03-20 | Sensus Spectrum LLC | Measuring device for water meters and method for operating a battery powered measuring device |
DE102011113541A1 (en) * | 2011-09-15 | 2013-03-21 | Sensus Spectrum Llc | Measuring device for water meter and method for operating a battery-powered measuring device |
US9207683B2 (en) | 2012-01-20 | 2015-12-08 | Infineon Technologies Austria Ag | Flow meter device and method of operation |
WO2013156946A1 (en) | 2012-04-17 | 2013-10-24 | Metersit S.R.L. | Static gas meter with improved electronics |
ITMI20120629A1 (en) * | 2012-04-17 | 2013-10-18 | Metersit S R L | STATIC GAS COUNTER WITH IMPROVED ELECTRONICS |
ITMI20120631A1 (en) * | 2012-04-17 | 2013-10-18 | Metersit S R L | STATIC GAS COUNTER |
EP3411864A4 (en) * | 2016-02-05 | 2019-11-13 | Apana Inc. | Low power, high resolution automated meter reading, centralized data collection, and analytics |
US10536185B2 (en) | 2016-02-05 | 2020-01-14 | Apana Inc. | Low power, centralized data collection |
US11025291B2 (en) | 2016-02-05 | 2021-06-01 | Apana Inc. | Low power, centralized data collection |
US11595076B2 (en) | 2016-02-05 | 2023-02-28 | Apana Inc. | Low power, centralized data collection |
US12088334B2 (en) | 2016-02-05 | 2024-09-10 | Hydropoint Data Systems Inc. | Low power, centralized data collection |
Also Published As
Publication number | Publication date |
---|---|
CA2372727A1 (en) | 2000-11-23 |
AUPQ041099A0 (en) | 1999-06-10 |
EP1181508A1 (en) | 2002-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101529217B (en) | Flow rate measuring device and gas supply system employing it, method for specifying gas appliance | |
US4399510A (en) | System for monitoring utility usage | |
WO2000070313A1 (en) | Gas meter with low power consumption mode | |
JP4175619B2 (en) | Low power consumption regulating valve system and method | |
GB2268301A (en) | Flow detecting systems for leak detection | |
AU729558B2 (en) | Metering systems | |
JP3381835B2 (en) | Electronic gas meter | |
AU4526000A (en) | Gas meter with low power consumption mode | |
AU7371981A (en) | System for monitoring utility usage | |
AU736144B2 (en) | Battery monitoring in metering systems | |
CN210375231U (en) | Field device and flow meter | |
KR100443824B1 (en) | Watt-hour meter that having electronic and mechanical display device | |
CN214279069U (en) | Intelligent temperature control type prepayment heat meter | |
JPH09204592A (en) | Remote display device | |
JP2002267568A (en) | Leakage detecting system | |
KR100445975B1 (en) | Apparatus for remotely examining gauge | |
JP4526370B2 (en) | Meter and meter adapter | |
KR100471959B1 (en) | Instrument for Cumulative Measuring Stop Time in Electric Water Gauge for Charging of Broader Unit Area Water Service | |
CN219284368U (en) | Zero-power consumption remote water meter | |
JP4392108B2 (en) | Gas meter | |
JPH11230794A (en) | Lp gas measuring device | |
JPS633324A (en) | Power supply system using solar battery | |
JPH079104Y2 (en) | Electricity meter with transmitter | |
CA1185660A (en) | System for monitoring utility usage | |
KR100516790B1 (en) | Multi function watt hour meter for midnight hour eletric power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 45260/00 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000926558 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 515362 Country of ref document: NZ |
|
ENP | Entry into the national phase |
Country of ref document: CA Kind code of ref document: A Ref document number: 2372727 |
|
WWP | Wipo information: published in national office |
Ref document number: 2000926558 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000926558 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |