WO2000065393A1 - Circuit photonique integre comprenant un composant optique resonant et procedes de fabrication de ce circuit - Google Patents

Circuit photonique integre comprenant un composant optique resonant et procedes de fabrication de ce circuit Download PDF

Info

Publication number
WO2000065393A1
WO2000065393A1 PCT/FR2000/001062 FR0001062W WO0065393A1 WO 2000065393 A1 WO2000065393 A1 WO 2000065393A1 FR 0001062 W FR0001062 W FR 0001062W WO 0065393 A1 WO0065393 A1 WO 0065393A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical component
light guide
integrated photonic
photonic circuit
Prior art date
Application number
PCT/FR2000/001062
Other languages
English (en)
Inventor
Christian Luc Seassal
Pierre Viktorovitch
Xavier Letartre
Guy Hollinger
Original Assignee
Centre National De La Recherche Scientifique
Ecole Centrale De Lyon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Ecole Centrale De Lyon filed Critical Centre National De La Recherche Scientifique
Priority to EP00922715A priority Critical patent/EP1173788A1/fr
Priority to CA002367708A priority patent/CA2367708A1/fr
Priority to JP2000614077A priority patent/JP2002543452A/ja
Priority to AU43019/00A priority patent/AU4301900A/en
Publication of WO2000065393A1 publication Critical patent/WO2000065393A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12176Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices

Definitions

  • the present invention relates to integrated photonic circuits.
  • the subject of the present invention is an integrated photonic circuit in which a resonant optical component, for example a laser emitter, is optically coupled to a light guide formed on a substrate, with a coupling efficiency greater than that of the coupling mentioned above, between the laser of the VCSEL type and the light guide.
  • a resonant optical component for example a laser emitter
  • the subject of the present invention is an integrated photonic circuit formed on a substrate and comprising at least one light guide integrated into this substrate, this circuit being characterized in that it further comprises at least one resonant optical component which is integrated into the substrate and intended to emit or detect light or both, this resonant optical component being placed above a photon collector formed at the end of the light guide, and a means of vertical optical coupling between the resonant optical component and the photon collector, the latter being provided to ensure the transfer of light between the resonant optical component and the rest of the light guide by means of the vertical optical coupling means.
  • the vertical optical coupling means comprises a layer of a material which is transparent to light and whose optical index is lower than that of the light guide thus than that of the material of the resonant optical component.
  • the light guide is made of silicon. The invention makes it possible to efficiently couple a resonant optical component to a silicon light guide whose small cross section, although it is compatible with the dimensions required by microelectronics on silicon, does not allow, when a method is used conventional coupling, sufficient light insertion efficiency.
  • silicon light guide use is preferably made, as a substrate, of a structure of silicon on insulator type or SOI structure (for “Silicon On Insulator”).
  • Such structures are almost the only ones to allow the production of passive photonic circuits having dimensions compatible with microelectronics. It should in fact be noted that a strong confinement of the light in the silicon guides is obtained due to the high index contrast between the silicon and the insulator constituted by silica.
  • the vertical optical coupling means comprises a layer of silica.
  • a layer is well suited to the use of a silicon light guide and of a substrate having a structure of silicon on insulator type.
  • the resonant optical component comprises a microresonator.
  • a laser transmitter comprising a microresonator or resonant microcavity (resonator or resonant cavity whose dimensions are of the order of a few micrometers) makes it possible, by confining the photons produced, to promote the rate of spontaneous emission in the desired mode and therefore lower the stimulated emission threshold of the laser transmitter.
  • Such a laser transmitter is compatible with the size requirements of photonic integration on silicon.
  • the density of photonic states of the laser mode is reinforced so that the photons are compelled to occupy this mode.
  • the microresonator is a microdisc microresonator ("microdisk”) or micro ring (“microring”) or a microstructure based on a two-dimensional photonic crystal.
  • a microdisk or micro-ring resonator, exploiting gallery modes (called “Whispering gallery modes” in the articles in English) allows to obtain a strong confinement of photons. The same is true for a microresonator constituted by a microstructure based on two-dimensional photonic crystal.
  • the material of the resonant optical component is chosen from III-V semiconductor compounds which are among the most efficient emitter and / or detector materials.
  • This material may be a III-V semiconductor heterostructure with quantum wells (“quantum wells”) or with quantum dots (“quantum dots”). This allows, in the case where the resonant optical component is a laser emitter, to lower the threshold of this laser emitter by increasing the confinement of excitons in the latter.
  • the stimulated emission is all the more favored when the density of convolved exciton-photon states is high in the desired laser mode.
  • a one or two dimensional laser transmitter thus has a very low threshold.
  • quantum wells are simpler to form than quantum dots but that the latter allow optimal confinement of excitons.
  • a well-based III-V semiconductor heterostructure quantum or quantum dots can emit at wavelengths that are in the range from 1.3 ⁇ m to 1.5 ⁇ m, wavelengths at which the silicon is transparent.
  • passive optical components the “silicon on insulator” technology allows, thanks to the high optical index contrast between, on the one hand, silicon and, on the other hand, silica and air, d '' ensure the strong confinement of the light which is necessary for the miniaturization of these components.
  • the present invention also relates to a method of manufacturing the integrated photonic circuit object of the invention, in which a substrate is formed comprising a first layer intended for the manufacture of the light guide and a second layer intended for the manufacture of the optical coupling means and a third layer or portion of layer is added to this second layer by a technique called wafer bonding, this third layer or portion of layer being intended for the manufacture of the resonant optical component or comprising this latest.
  • the present invention further relates to another method of manufacturing the integrated photonic circuit object of the invention, in which a substrate is formed comprising a first layer intended for the manufacture of the light guide and a second layer intended for the manufacture of the means of optical coupling and a heterostructure is formed on this second layer based on an active material comprising nanocrystals of InAs (forming quantum dots) in an Si or Si 3 N 4 matrix, this heterostructure being intended for the manufacture of the resonant optical component.
  • Figure 1 is a schematic longitudinal sectional view of an integrated photonic circuit according to the invention
  • Figure 2 is a schematic top view of a first particular embodiment of the integrated photonic circuit object of the invention , comprising a microdisc type microdisc
  • Figure 3 is a schematic longitudinal sectional view of the circuit of Figure 2
  • Figure 4 is a schematic top view of a second particular embodiment of the integrated photonic circuit object of the invention, comprising a microresonator based on two-dimensional photonic crystal
  • Figure 5 is a schematic longitudinal sectional view of the circuit of Figure 4, and
  • Figure 6 is a schematic longitudinal sectional view of a structure used for the manufacture of a circuit according to the invention.
  • a laser microsource 2 with resonant microcavity is associated with a light guide 4 so as to allow the transfer of the light generated by the microsource in this light guide.
  • the latter can be optically connected to other passive optical components (not shown) of the photonic circuit, which then receive the light generated by the microsource and transmitted by the light guide.
  • the light guide 4 is formed, in the example shown, from a structure of silicon on insulator type.
  • This structure comprises a silicon substrate 6, on which a layer of silica 8 has been formed, as well as a layer of silicon formed on this layer of silica 8 and treated to form the light guide 4.
  • the laser microsource 2 is formed above one end 10 of this light guide and a layer intermediate silica 12 is interposed between the laser microsource and this end of the light guide.
  • the function of the intermediate layer 12 is to transfer the light emitted by the laser microsource to the end 10 of the light guide by vertical evanescent coupling, which is symbolized by the arrow FI in FIG. 1.
  • the end 10 of the waveguide which is located below this intermediate layer, is provided for recovering the light thus transferred.
  • the latter then propagates in the rest 14 of the light guide (which is symbolized by the horizontal arrow F2) to be optionally sent to other passive components (not shown) of the integrated photonic circuit.
  • the use of the laser microsource with a resonant microcavity 2 and the silicon-on-insulator type structure makes light transfer from the microsource to the light guide particularly efficient due to the compatibility, in terms of optical confinement, of such a laser source and such a structure.
  • the end of the waveguide intended to recover the light emitted by the laser microsource and to redirect it towards the guide light must be what is called a “photon collector” and then the rest 14 of the waveguide should be sufficiently coupled to this photon collector to inhibit the resonant nature of the latter which would otherwise cause a additional light filtering (not desired).
  • the laser microsource has a configuration of microdisc type 2a.
  • the silicon-on-insulator type structure further comprising the silicon substrate 6, the silica layer 8 formed on the latter and, on this silica layer, the silicon light guide 4 whose end 10 constitutes then a photon collector (made of silicon).
  • the intermediate layer of silica 12 On this latter is the intermediate layer of silica 12.
  • the microsource of microdisk 2a type is formed on this intermediate layer.
  • the width L of the light guide is 0.3 ⁇ m
  • the diameter D of the microdisk microsource is approximately 5 ⁇ m
  • the thickness El of the silica layer 8 is 0.5 ⁇ m
  • l thickness E2 of the silicon layer, from which the collector 10 and the rest 14 of the light guide are formed is 0.2 ⁇ m
  • the thickness E3 of the intermediate silica layer 12 is 0.2 ⁇ m
  • the thickness E4 of the microdisc laser microsource is 0.2 ⁇ m.
  • the laser microsource comprises a resonator 2b based on a two-dimensional photonic crystal.
  • the end 10 of this light guide is a photon collector which is formed like a microcavity based on a two-dimensional photonic crystal and extends the rest 14
  • the surface Si of this microsource based on photonic crystals is worth approximately 10 ⁇ m 2 while the surface S 2 of the photon collector is of the order of 20 ⁇ m 2 , the width L of the guide light is 0.3 ⁇ m, the thickness El of the silica layer 8 is 0.5 ⁇ m, the thickness E2 of the silicon layer, from which the end 10 and the rest 14 of the guide are formed. light is 0.2 ⁇ m, the thickness E3 of the intermediate layer 12 is 0.2 ⁇ m and the thickness E4 of the microsource based on photonic crystal is 0.2 ⁇ m.
  • FIGS. 2 and 3 In the particular configuration of FIGS. 2 and 3 and in the other particular configuration of FIGS. 4 and 5 there are found the important elements of the diagram of FIG. 1, which are the resonant microcavity source, the intermediate evanescent coupling layer and the guide. light (in silicon in the examples considered).
  • the free spectral interval between the cavity modes is appreciable: in the case of FIGS. 2 and 3, the free spectral interval between two modes is of the order of a few tens of nanometers for a microdisc whose radius is worth a few micrometers (see on this subject the document [2]) and, in the case of FIGS. 4 and 5, where one uses a crystal two-dimensional photonics, this interval can exceed one hundred nanometers (see document [3] on this subject).
  • the laser microsource can be pumped either optically or electrically, but pumping optically is easier to set up. pumping by electric means because the latter requires the deposition of metal layers (to form electrical contacts) as well as the doping of semiconductor materials.
  • the integrated photonic circuits of FIGS. 2 to 5 have the advantage of allowing the exploitation of electro-optical materials, such as InP, which have high refractive indices and are in contact with air and with materials, such as for example silica, which have low refractive indices, which ensures excellent optical confinement.
  • the methods of manufacturing the active and passive parts of the integrated photonic circuits of FIGS. 2 to 5 are sufficiently independent to retain all the achievements of the techniques of manufacturing photonic circuits on structures of silicon on insulator type.
  • a III-V semiconductor compound having a direct gap is preferably used, a material which is perfectly mastered for manufacturing the lasers conventionally used in the field of optical telecommunications at 1, 3 ⁇ m and 1.55 ⁇ m.
  • a structure of silicon on insulator type is made up comprising a silicon substrate 6, on which a layer of silica 8 is formed, as well as a layer of silicon 16 formed on this layer of silica 8 , or a commercially available structure of this kind is used.
  • This layer 20 or this portion of layer of InP is applied to this layer of silica 18 by the technique called wafer bonding.
  • the laser microsource 2 is then produced from this layer 20 in InP, by epitaxy of InP / GaInAsP and known techniques for manufacturing laser microsources, so as to obtain a GaInAsP / InP heterostructure (with quantum wells or quantum dots).
  • the intermediate vertical coupling layer 12 is then produced from the silica layer 18 and then the light microguide 4 (including the end 10 of the latter which is located under the layer 12) is produced from the layer of silicon 16 of the silicon on insulator structure.
  • the second particular implementation mode also uses a silicon on insulator type substrate.
  • a silica layer is formed intended for the formation of the intermediate coupling layer and, on this silica layer, a chemical vapor deposition is produced and epitaxy a heterostructure based on 'an active material, called SIA material and made up of InAs nanocrystals distributed in an Si or Si 3 N 4 matrix.
  • This SIA material is manufactured by a combination of chemical vapor deposition techniques, to obtain the Si or Si 3 N matrix, and molecular beam epitaxy, to obtain the nanocrystals of InAs.
  • the intermediate vertical coupling layer 12 and the light guide 4 are manufactured as before.
  • an integrated microresonator according to the invention can be used not only as a laser emitter but also as a light amplifier or as a resonant photodetector or even as a laser emitter and resonant photodetector, alternating these two uses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Selon l'invention, le composant optique résonant (2) est placé au-dessus d'un collecteur de photons (10) formé à l'extrémité d'un guide de lumière (4) du circuit et couplé verticalement à cette partie. Pour fabriquer ce circuit on forme par exemple un substrat comprenant une première couche destinée à la fabrication du guide et une deuxième couche destinée à la fabrication d'une couche de couplage (12) entre le composant et la partie du guide et l'on rapporte sur cette couche de couplage, par une technique dite de collage de plaquette, une couche destinée à la fabrication du composant ou comprenant ce dernier. L'invention s'applique notamment aux télécommunications et interconnexions optiques.

Description

CIRCUIT PHOTONIQUE INTEGRE COMPRENANT UN COMPOSANT OPTIQUE RÉSONANT ET PROCÉDÉS DE FABRICATION DE CE
CIRCUIT
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne les circuits photoniques intégrés .
Elle s'applique notamment aux systèmes intégrés de télécommunications optiques et d'interconnexions optiques.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Il est connu de coupler optiquement, par l'intermédiaire d'un miroir par exemple, un guide de lumière formé sur un substrat, à un laser de type VCSEL hybride à ce substrat. Il est également connu d'émettre de la lumière à partir d'une microsource à base de microdisques, de micro-anneaux ou de cristaux photoniques. Il est en outre connu de coupler la lumière verticalement entre deux guides de lumière.
EXPOSÉ DE L'INVENTION
La présente invention a pour objet un circuit photonique intégré dans lequel un composant optique résonant, par exemple un émetteur laser, est optiquement couplé à un guide de lumière formé sur un substrat, avec un rendement de couplage supérieur à celui du couplage mentionné ci-dessus, entre le laser de type VCSEL et le guide de lumière.
De façon précise, la présente invention a pour objet un circuit photonique intégré formé sur un substrat et comprenant au moins un guide de lumière intégré à ce substrat, ce circuit étant caractérisé en ce qu'il comprend en outre au moins un composant optique résonant qui est intégré au substrat et destiné à émettre ou détecter de la lumière ou les deux, ce composant optique résonant étant placé au-dessus d'un collecteur de photons formé à l'extrémité du guide de lumière, et un moyen de couplage optique vertical entre le composant optique résonant et le collecteur de photons, ce dernier étant prévu pour assurer le transfert de lumière entre le composant optique résonant et le reste du guide de lumière par l'intermédiaire du moyen de couplage optique vertical.
Il convient de noter que le couplage vertical utilisé dans la présente invention autorise un réglage précis du couplage, alors qu'un couplage latéral classique est beaucoup plus délicat à mettre en œuvre du point de vue technique.
Selon un mode de réalisation préféré du circuit photonique intégré objet de l'invention, le moyen de couplage optique vertical comprend une couche d'un matériau qui est transparent à la lumière et dont l'indice optique est inférieur à celui du guide de lumière ainsi qu'à celui du matériau du composant optique résonant. De préférence, le guide de lumière est en silicium. L'invention permet de coupler efficacement un composant optique résonant a un guide de lumière en silicium dont la faible section transversale, bien qu'elle soit compatible avec les dimensions requises par la microélectronique sur silicium, ne permet pas, lorsqu'on utilise une méthode de couplage classique, un rendement d'insertion suffisant de la lumière.
Avec ce guide de lumière en silicium, on utilise de préférence, en tant que substrat, une structure de type silicium sur isolant ou structure SOI (pour « Silicon On Insulator ») .
La possibilité de ce couplage optique entre le composant optique résonant et le guide de lumière en silicium permet l'intégration de ce composant avec d'autres composants électro-optiques et avec des dispositifs micro-photoniques passifs qui sont réalisables sur des structures de type silicium sur isolant .
De telles structures sont quasiment les seules à permettre la réalisation de circuits photoniques passifs ayant des dimensions compatibles avec la microélectronique. Il convient en effet de noter que l'on obtient un fort confinement de la lumière dans les guides en silicium en raison du fort contraste d'indice entre le silicium et l'isolant constitué par de la silice.
De préférence, le moyen de couplage optique vertical comprend une couche de silice. Une telle couche est bien adaptée à l'utilisation d'un guide de lumière en silicium et d'un substrat ayant une structure de type silicium sur isolant. De préférence, le composant optique résonant comprend un microrésonateur.
Il convient de noter que l'utilisation d'un émetteur laser comprenant un microrésonateur ou microcavité résonante (résonateur ou cavité résonante dont les dimensions sont de l'ordre de quelques micromètres) permet, en confinant les photons produits, de favoriser le taux d'émission spontanée dans le mode désiré et donc d'abaisser le seuil d'émission stimulée de l'émetteur laser.
Il convient aussi de noter qu'un tel émetteur laser est compatible avec les exigences de taille de l'intégration photonique sur silicium.
De préférence, on fait en sorte que la densité d'états photoniques du mode laser soit renforcée afin que les photons soient astreints à occuper ce mode.
On rappelle que ce renforcement sélectif du taux d'émission spontanée dépend du rapport Q/V où Q est le facteur de qualité de la cavité et V le volume du mode associé. Si le facteur de qualité de la microcavité est suffisant, cela permet alors de transférer un fort pourcentage (quelques dizaines de %) de l'émission spontanée dans le mode laser. De préférence, le microrésonateur est un microrésonateur à microdisque (« microdisk ») ou à microanneau (« microring ») ou encore une microstructure à base d'un cristal photonique à deux dimensions . Un résonateur à microdisque ou à microanneau, exploitant des modes de galerie (appelés « whispering gallery modes » dans les articles en langue anglaise) permet d'obtenir un fort confinement des photons. Il en est de même pour un microrésonateur constitué par une microstructure à base de cristal photonique à deux dimensions.
Au sujet de ce dernier, on consultera le document [1] qui, comme les autres documents cités par la suite, est mentionné à la fin de la présente description. De préférence, le matériau du composant optique résonant est choisi parmi les composés semiconducteurs III-V qui sont parmi les matériaux émetteurs et/ou détecteurs les plus performants.
Ce matériau peut être une hétérostructure semiconductrice III-V à puits quantiques (« quantum wells ») ou à boîtes quantiques (« quantum dots ») . Cela permet, dans le cas où le composant optique résonant est un émetteur laser, d'abaisser le seuil de cet émetteur laser en augmentant le confinement des excitons dans ce dernier.
L'émission stimulée est d'autant plus favorisée que la densité d'états convoluée exciton- photon est importante dans le mode laser souhaité. Un émetteur laser à une ou deux dimensions a ainsi un seuil très bas.
Il convient de noter que les puits quantiques sont plus simples à former que les boîtes quantiques mais que ces dernières permettent un confinement optimal des excitons. II convient aussi de noter qu'une hétérostructure semiconductrice III-V à base de puits quantiques ou de boîtes quantiques peut émettre à des longueurs d'onde qui sont comprises dans la gamme allant de 1,3 μm à 1,5 μm, longueurs d'onde auxquelles le silicium est transparent. Remarquons en outre que, pour réaliser des circuits photoniques intégrés, il convient de disposer de sources de lumière et de composants optiques passifs de dimensions microniques. En ce qui concerne les composants optiques passifs, la technologie « silicium sur isolant » permet, grâce au grand contraste d'indice optique entre, d'une part, le silicium et, d'autre part, la silice et l'air, d'assurer le fort confinement de la lumière qui est nécessaire à la miniaturisation de ces composants . En outre, la réalisation de sources de lumière à microcavités permet de satisfaire à des exigences de miniaturisation et de faible consommation électrique tout en étant compatible avec la technologique « silicium sur isolant ». La présente invention concerne également un procédé de fabrication du circuit photonique intégré objet de l'invention, dans lequel on forme un substrat comprenant une première couche destinée à la fabrication du guide de lumière et une deuxième couche destinée à la fabrication du moyen de couplage optique et l'on rapporte une troisième couche ou portion de couche sur cette deuxième couche par une technique dite de collage de plaquette (« wafer bonding ») , cette troisième couche ou portion de couche étant destinée à la fabrication du composant optique résonant ou comprenant ce dernier. La présente invention concerne en outre un autre procédé de fabrication du circuit photonique intégré objet de l'invention, dans lequel on forme un substrat comprenant une première couche destinée à la fabrication du guide de lumière et une deuxième couche destinée à la fabrication du moyen de couplage optique et l'on forme, sur cette deuxième couche, une hétérostructure à base d'un matériau actif comprenant des nanocristaux de InAs (formant des boîtes quantiques) dans une matrice de Si ou de Si3N4, cette hétérostructure étant destinée à la fabrication du composant optique résonant.
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
" la figure 1 est une vue en coupe longitudinale schématique d'un circuit photonique intégré conforme à l'invention, " la figure 2 est une vue de dessus schématique d'un premier mode de réalisation particulier du circuit photonique intégré objet de l'invention, comprenant un microrésonateur de type microdisque, " la figure 3 est une vue en coupe longitudinale schématique -du circuit de la figure 2, " la figure 4 est une vue de dessus schématique d'un deuxième mode de réalisation particulier du circuit photonique intégré objet de l'invention, comprenant un microrésonateur à base de cristal photonique à deux dimensions,
" la figure 5 est une vue en coupe longitudinale schématique du circuit de la figure 4, et
" la figure 6 est une vue en coupe longitudinale schématique d'une structure utilisable pour la fabrication d'un circuit conforme à l'invention.
EXPOSÉ DÉTAILLÉ DE MODES DE REALISATION PARTICULIERS
Dans le circuit photonique intégré conforme à l'invention, qui est schématiquement représenté sur la figure 1, une microsource laser 2, à microcavité résonante, est associée à un guide de lumière 4 de façon à permettre le transfert de la lumière engendrée par la microsource dans ce guide de lumière.
Ce dernier peut être optiquement relié à d'autres composants optiques passifs (non représentés) du circuit photonique, qui reçoivent alors la lumière engendrée par la microsource et transmise par le guide de lumière.
Le guide de lumière 4 est formé, dans l'exemple représenté, à partir d'une structure de type silicium sur isolant. Cette structure comprend un substrat en silicium 6, sur lequel on a formé une couche de silice 8, ainsi qu'une couche de silicium formée sur cette couche de silice 8 et traitée pour former le guide de lumière 4.
La microsource laser 2 est formée au-dessus d'une extrémité 10 de ce guide de lumière et une couche intermédiaire en silice 12 est interposée entre la microsource laser et cette extrémité du guide de lumière .
On réalise ainsi une intégration verticale d'une partie active (microsource laser) du circuit photonique et d'une partie passive (guide de lumière) de ce circuit, la partie active étant positionnée au- dessus de cette partie passive.
La couche intermédiaire 12 a pour fonction de transférer la lumière émise par la microsource laser vers l'extrémité 10 du guide de lumière par couplage évanescent vertical, ce qui est symbolisé par la flèche FI de la figure 1.
L'extrémité 10 du guide d'onde, qui se trouve en-dessous de cette couche intermédiaire, est prévue pour récupérer la lumière ainsi transférée. Cette dernière se propage ensuite dans le reste 14 du guide de lumière (ce qui est symbolisé par la flèche horizontale F2 ) pour être éventuellement envoyée à d'autres composants passifs (non représentés) du circuit photonique intégré.
L'utilisation de la microsource laser à microcavité résonante 2 et de la structure de type silicium sur isolant rend particulièrement performant le transfert de lumière de la microsource au guide de lumière du fait de la compatibilité, en termes de confinement optique, d'une telle source laser et d'une telle structure.
Comme on le verra plus loin, l'extrémité du guide d'onde destiné à récupérer la lumière émise par la microsource laser et à la rediriger vers le guide de lumière doit être ce que l'on appelle un « collecteur de photons » et il convient alors que le reste 14 du guide d'onde soit suffisamment couplé à ce collecteur de photons pour inhiber le caractère résonant de ce dernier qui, sinon, provoquerait un filtrage supplémentaire de lumière (non souhaité) .
Dans 1 ' exemple des figures 2 et 3 , la microsource laser a une configuration de type microdisque 2a. On voit sur ces figures la structure de type silicium sur isolant comprenant encore le substrat de silicium 6, la couche de silice 8 formée sur ce dernier et, sur cette couche de silice, le guide de lumière en silicium 4 dont l'extrémité 10 constitue alors un collecteur de photon (en silicium) . Sur ce dernier se trouve la couche intermédiaire en silice 12. La microsource de type microdisque 2a est formée sur cette couche intermédiaire .
A titre purement indicatif et nullement limitatif la largeur L du guide de lumière vaut 0,3 μm, le diamètre D de la microsource à microdisque vaut environ 5 μm, l'épaisseur El de la couche de silice 8 vaut 0,5 μm, l'épaisseur E2 de la couche de silicium, à partir de laquelle sont formés le collecteur 10 et le reste 14 du guide de lumière, vaut 0,2 μm, l'épaisseur E3 de la couche intermédiaire de silice 12 vaut 0,2 μm et l'épaisseur E4 de la microsource laser à microdisque vaut 0,2 μm.
Dans l'exemple des figures 4 et 5, la microsource laser comprend un résonateur 2b à base d'un cristal photonique à deux dimensions. On voit encore sur ces figures 4 et 5 le substrat de silicium 6 recouvert par la couche de silice 8, elle-même surmontée du guide de lumière en silicium 4.
Dans le cas des figures 4 et 5, l'extrémité 10 de ce guide de lumière est un collecteur de photons qui est formé comme une microcavité à base d'un cristal photonique à deux dimensions et prolonge le reste 14
(lui-même rectiligne) de ce guide de lumière. Cette extrémité est recouverte par la couche intermédiaire en silice 12, elle-même recouverte par la microsource laser 2 à base de cristal photonique à deux dimensions.
A titre purement indicatif et nullement limitatif, la surface Si de cette microsource à base de cristaux photoniques vaut environ 10 μm2 alors que la surface S2 du collecteur de photons est de l'ordre de 20 μm2 , la largeur L du guide de lumière vaut 0,3 μm, l'épaisseur El de la couche de silice 8 vaut 0,5 μm, l'épaisseur E2 de la couche de silicium, à partir de laquelle sont formés l'extrémité 10 et le reste 14 du guide de lumière, vaut 0,2 μm, l'épaisseur E3 de la couche intermédiaire 12 vaut 0,2 μm et l'épaisseur E4 de la microsource à base de cristal photonique vaut 0 , 2 μm.
Dans la configuration particulière des figures 2 et 3 et dans l'autre configuration particulière des figures 4 et 5 on retrouve les éléments importants du schéma de la figure 1 que sont la source à microcavité résonante, la couche intermédiaire de couplage évanescent et le guide de lumière (en silicium dans les exemples considérés) . Compte tenu des faibles dimensions données plus haut à titre d'exemple pour les circuits des figures 2 à 5, l'intervalle spectral libre entre les modes de cavité est appréciable : dans le cas des figures 2 et 3 , l'intervalle spectral libre entre deux modes est de l'ordre de quelques dizaines de nanomètres pour un microdisque dont le rayon vaut quelques micromètres (voir à ce sujet le document [2] ) et, dans le cas des figures 4 et 5, où 1 ' on utilise un cristal photonique à deux dimensions, cet intervalle peut dépasser une centaine de nanomètres (voir à ce sujet le document [3 ] ) .
De telles caractéristiques sont en accord avec les performances qui sont généralement requises pour les télécommunications optiques par exemple (actuellement 30 nm de plage spectrale utile) .
Pour la fabrication des structures des figures 2 à 5 on peut commencer par élaborer le matériau actif de la microsource laser (on reviendra sur cela par la suite) puis définir cette microsource laser, par exemple par lithographie électronique puis gravure ionique réactive (« reactive ion etching ») et définir ensuite les composants passifs (susceptibles de se trouver sur le substrat 6) et le guide de lumière 4 avec son extrémité 10 (collecteur de photons) ainsi que d'éventuels autres guides de lumière par exemple par lithographie optique ou électronique ou par gravure sèche et/ou humide.
La microsource laser peut être pompée soit par voie optique soit par voie électrique mais le pompage par voie optique est plus simple à mettre en œuvre que le pompage par voie électrique car ce dernier nécessite le dépôt de couches métalliques (pour former des contacts électriques) ainsi que le dopage de matériaux semiconducteurs . Les circuits photoniques intégrés des figures 2 à 5 présentent l'avantage de permettre l'exploitation de matériaux électro-optiques, comme par exemple InP, qui ont de forts indices de réfraction et sont en contact avec l'air et avec des matériaux, comme par exemple la silice, qui ont de faibles indices de réfraction, ce qui assure un excellent confinement optique .
De ce fait il n'est pas nécessaire de réaliser des composants très épais (plusieurs micromètres d'épaisseur) ni de suspendre ces composants au-dessus d'une lame d'air au moyen d'un micro-usinage. On résout ainsi en particulier les problèmes de fabrication et de fiabilité mécanique qui sont généralement observés dans le cas des microlasers suspendus de type microdisque résonant (voir à ce sujet le document [4] ) .
De plus, les procédés de fabrication des parties actives et passives des circuits photoniques intégrés des figures 2 à 5 sont suffisamment indépendants pour conserver tous les acquis des techniques de fabrication de circuits photoniques sur des structures de type silicium sur isolant.
Dans ce qui suit, on revient sur la fabrication de la microsource laser. Plus précisément, on considère maintenant l'intégration, au reste du circuit, du matériau actif à partir duquel est formée cette microsource laser.
En tant que matériau actif, on utilise de préférence un composé semiconducteur III-V ayant un gap direct, matériau qui est parfaitement maîtrisé pour fabriquer les lasers classiquement utilisés dans le domaine des télécommunications optiques à 1 , 3 μm et 1,55 μm .
Deux voies sont possibles et indiquées dans ce qui suit.
Selon un premier mode de mise en œuvre particulier on fabrique une structure de type silicium sur isolant comprenant un substrat en silicium 6, sur lequel est formée une couche de silice 8, ainsi qu'une couche de silicium 16 formée sur cette couche de silice 8, ou on utilise une structure commercialement disponible de ce genre.
On forme ensuite une couche de silice 18, destinée à la formation de la couche intermédiaire 12, sur la couche de silicium 16 puis une couche complète
20 ou une portion de couche d'un composé semiconducteur
III-V, par exemple InP, sur cette couche de silice 18.
Cette couche 20 ou cette portion de couche de InP est rapportée sur cette couche de silice 18 par la technique appelée collage de plaquette (« wafer bonding ») .
Lorsque l'on utilise une portion de couche de InP, cette portion ne s'étend donc que sur une partie de la couche 18. On fabrique ensuite la microsource laser 2 à partir de cette couche 20 en InP, par épitaxie de InP/GaInAsP et des techniques connues de fabrication des microsources lasers, de manière à obtenir une hétérostructure GaInAsP/InP (à puits quantiques ou à boîtes quantiques) . On fabrique ensuite la couche intermédiaire de couplage vertical 12 à partir de la couche de silice 18 puis on fabrique le microguide de lumière 4 (y compris l'extrémité 10 de ce dernier qui se trouve sous la couche 12) à partir de la couche de silicium 16 de la structure silicium sur isolant.
Au lieu de former la microsource laser par épitaxie à partir de la couche 20 ou la portion de couche en InP, on peut aussi transférer, sur la structure de type silicium sur isolant munie de la couche de silice 18, une structure laser complète formée à partir de InP, ce transfert se faisant encore par la technique de collage de plaquette.
Le deuxième mode de mise en œuvre particulier utilise aussi un substrat de type silicium sur isolant.
Sur ce substrat, on forme une couche de silice destinée à la formation de la couche de couplage intermédiaire et, sur cette couche de silice, on fabrique par dépôt chimique en phase vapeur (« chemical vapor déposition ») et épitaxie une hétérostructure à base d'un matériau actif, appelé matériau SIA et constitué de nanocristaux de InAs répartis dans une matrice de Si ou de Si3N4. Ce matériau SIA est fabriqué par une combinaison des techniques de dépôt chimique en phase vapeur, pour obtenir la matrice de Si ou de Si3N , et d' épitaxie par jets moléculaires (« molecular beam epitaxy ») , pour obtenir les nanocristaux de InAs .
Au sujet d'un tel matériau SIA on pourra consulter le document [5] . Après la fabrication de 1 'hétérostructure, on fabrique comme précédemment la couche intermédiaire de couplage vertical 12 et le guide de lumière 4 (y compris l'extrémité 10 de ce dernier).
On donne ci-après des précisions supplémentaires sur la fabrication de circuits photoniques intégrés conformes à l'invention.
Des substrats SOI (Si/Si02/Si) appelés
« Unibond » sont commercialement disponibles auprès de la Société SOITEC . Au sujet de microsources lasers à microdisque ou microanneau on consultera également les documents [6], [7] et [8].
Au sujet des cristaux photoniques, on se reportera aussi au document [9]. De plus, l'invention n'est pas limitée à l'intégration d'une microsource laser : un microresonateur intégré conformément à l'invention peut être utilisé non seulement en tant qu'émetteur laser mais encore en tant qu'amplificateur de lumière ou en tant que photodétecteur résonant ou même en tant qu'émetteur laser et photodétecteur résonant, en alternant ces deux utilisations.
Les documents cités dans la présente description sont les suivants : [1]T. Baba, IEEE J. Select. Topics . In Quantum Electron. 3 n°3 (1997) p.808 [2]B.E. Little et al., J. of Lightwave Technol. 15 n°6 (1997) p.998
[3]O.J. Painter et al., J. Lightwave Technol. 17 (1999) 2082 [4]D.Y. Chu et al., Appl. Phys. Lett. 65 n°25 (1994) 3167
[5]J. Shi et al., Appl. Phys. Lett. 70 (1997) 2586
[6]S.I. McCall et al., Appl. Phys. Lett. 60 (1992) 289
[7]J.P. Zhang et al., Phys. Rev. Lett. 75 (1995) 2678 [8] T. Baba et al., IEEE Photon. Technol. Lett. 9 (1997) 878
[9]E. Yablonovitch, Phys. Lett. 58, 2059 (1987).

Claims

REVENDICATIONS
1. Circuit photonique intégré formé sur un substrat et comprenant au moins un guide de lumière (4) intégré à ce substrat, ce circuit étant caractérisé en ce qu'il comprend en outre au moins un composant optique résonant (2) qui est intégré au substrat et destiné à émettre ou détecter de la lumière ou les deux, ce composant optique résonant étant placé au- dessus d'un collecteur de photons (10) formé à l'extrémité du guide de lumière (4), et un moyen (12) de couplage optique vertical entre le composant optique résonant et le collecteur de photons, ce dernier étant prévu pour assurer le transfert de lumière entre le composant optique résonant et le reste (14) du guide de lumière par l'intermédiaire du moyen de couplage optique vertical.
2. Circuit photonique intégré selon la revendication 1, dans lequel le moyen de couplage optique vertical comprend une couche (12) d'un matériau qui est transparent à la lumière et dont l'indice optique est inférieur à celui du guide de lumière ainsi qu'à celui du matériau du composant optique résonant.
3. Circuit photonique intégré selon l'une quelconque des revendications 1 et 2 , dans lequel le guide de lumière (4) est en silicium.
4. Circuit photonique intégré selon la revendication 3, dans lequel le substrat est une structure de type silicium sur isolant.
5. Circuit photonique intégré selon l'une quelconque des revendications 1 à 4, dans lequel le moyen de couplage optique vertical comprend une couche de silice (12) .
6. Circuit photonique intégré selon l'une quelconque des revendications 1 à 5, dans lequel le composant optique résonant (2) comprend un microrésonateur .
7. Circuit photonique intégré selon la revendication 6, dans lequel le microrésonateur est un microrésonateur à microdisque ou à microanneau (2a) .
8. Circuit photonique intégré selon la revendication 6, dans lequel le microrésonateur est une microstructure à base d'un cristal photonique (2b) à deux dimensions.
9. Circuit photonique intégré selon l'une quelconque des revendications 1 à 8, dans lequel le matériau du composant optique résonant (2) est choisi parmi les composés semiconducteurs III-V.
10. Circuit photonique intégré selon la revendication 9, dans lequel le matériau du composant optique résonant (2) est une hétérostructure semiconductrice III-V à puits quantiques ou à boîtes quantiques .
11. Procédé de fabrication du circuit photonique intégré selon l'une quelconque des revendications 1 à 10, dans lequel on forme un substrat comprenant une première couche (16) destinée à la fabrication du guide de lumière et une deuxième couche (18) destinée à la fabrication du moyen de couplage optique et l'on rapporte une troisième couche ou portion de couche (20) sur cette deuxième couche par une technique dite de collage de plaquette, cette troisième couche ou portion de couche étant destinée à la fabrication du composant optique résonant (2) ou comprenant ce dernier.
12. Procédé de fabrication du circuit photonique intégré selon l'une quelconque des revendications 1 à 10, dans lequel on forme un substrat comprenant une première couche (16) destinée à la fabrication du guide de lumière et une deuxième couche (18) destinée à la fabrication du moyen de couplage optique et l'on forme, sur cette deuxième couche, une hétérostructure à base d'un matériau actif comprenant des nanocristaux de InAs dans une matrice de Si ou de Si3N , cette hétérostructure étant destinée à la fabrication du composant optique résonant (2).
PCT/FR2000/001062 1999-04-23 2000-04-21 Circuit photonique integre comprenant un composant optique resonant et procedes de fabrication de ce circuit WO2000065393A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00922715A EP1173788A1 (fr) 1999-04-23 2000-04-21 Circuit photonique integre comprenant un composant optique resonant et procedes de fabrication de ce circuit
CA002367708A CA2367708A1 (fr) 1999-04-23 2000-04-21 Circuit photonique integre comprenant un composant optique resonant et procedes de fabrication de ce circuit
JP2000614077A JP2002543452A (ja) 1999-04-23 2000-04-21 共振光学コンポーネントを含む集積型フォトニック回路とその製造方法
AU43019/00A AU4301900A (en) 1999-04-23 2000-04-21 Photonic integrated circuit comprising a resonant optical component and methods for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9905176A FR2792734A1 (fr) 1999-04-23 1999-04-23 Circuit photonique integre comprenant un composant optique resonant et procedes de fabrication de ce circuit
FR99/05176 1999-04-23

Publications (1)

Publication Number Publication Date
WO2000065393A1 true WO2000065393A1 (fr) 2000-11-02

Family

ID=9544793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/001062 WO2000065393A1 (fr) 1999-04-23 2000-04-21 Circuit photonique integre comprenant un composant optique resonant et procedes de fabrication de ce circuit

Country Status (6)

Country Link
EP (1) EP1173788A1 (fr)
JP (1) JP2002543452A (fr)
AU (1) AU4301900A (fr)
CA (1) CA2367708A1 (fr)
FR (1) FR2792734A1 (fr)
WO (1) WO2000065393A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004545A (ja) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd バンドギャップおよび構造内の伝達をチューニングするためにレーザ微細加工によって光結晶の屈折率を調整する方法
EP2685297A1 (fr) 2012-07-13 2014-01-15 Caliopa NV Procédé de fabrication d'un circuit photonique avec structures actives et passives
US8767792B2 (en) 2006-06-30 2014-07-01 Intel Corporation Method for electrically pumped semiconductor evanescent laser

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2521660A1 (fr) * 2003-04-23 2004-11-04 Sioptical, Inc. Dispositifs a ondes lumineuses plans et submicroniques formes sur une plate-forme optique soi (silicium sur isolant)
US20060078254A1 (en) * 2004-10-08 2006-04-13 Djordjev Kostadin D Vertically coupling of resonant cavities to bus waveguides
EP2396861B1 (fr) 2009-02-11 2013-08-28 Danmarks Tekniske Universitet Laser à cavité verticale hybride
TWI436114B (zh) 2010-05-24 2014-05-01 Univ Nat Central 具有光波導結構之發射端模組和接收端模組
KR20130085763A (ko) * 2012-01-20 2013-07-30 삼성전자주식회사 광 집적 회로용 혼성 레이저 광원
GB2555100B (en) * 2016-10-14 2020-07-08 Toshiba Res Europe Limited A photon source and a method of fabricating a photon source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3820171A1 (de) * 1988-06-14 1989-12-21 Messerschmitt Boelkow Blohm Wellenleiter/detektor-kombination
US5513288A (en) * 1992-06-15 1996-04-30 Robert Bosch Gmbh Optical polymer element for coupling photoelements onto integrated-optical circuits
US5787105A (en) * 1995-01-20 1998-07-28 Nikon Corporation Integrated semiconductor laser apparatus
US5838870A (en) * 1997-02-28 1998-11-17 The United States Of America As Represented By The Secretary Of The Air Force Nanometer-scale silicon-on-insulator photonic componets

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3820171A1 (de) * 1988-06-14 1989-12-21 Messerschmitt Boelkow Blohm Wellenleiter/detektor-kombination
US5513288A (en) * 1992-06-15 1996-04-30 Robert Bosch Gmbh Optical polymer element for coupling photoelements onto integrated-optical circuits
US5787105A (en) * 1995-01-20 1998-07-28 Nikon Corporation Integrated semiconductor laser apparatus
US5838870A (en) * 1997-02-28 1998-11-17 The United States Of America As Represented By The Secretary Of The Air Force Nanometer-scale silicon-on-insulator photonic componets

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BABA T: "Photonic crystals and microdisk cavities based on GaInAsP-InP system", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, JUNE 1997, IEEE, USA, vol. 3, no. 3, pages 808 - 830, XP002127166, ISSN: 1077-260X *
ZHANG J P ET AL: "DIRECTIONAL LIGHT OUTPUT FROM PHOTONIC-WIRE MICROCAVITY SEMICONDUCTOR LASERS", IEEE PHOTONICS TECHNOLOGY LETTERS,US,IEEE INC. NEW YORK, vol. 8, no. 8, pages 968-970, XP000621629, ISSN: 1041-1135 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004545A (ja) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd バンドギャップおよび構造内の伝達をチューニングするためにレーザ微細加工によって光結晶の屈折率を調整する方法
US8767792B2 (en) 2006-06-30 2014-07-01 Intel Corporation Method for electrically pumped semiconductor evanescent laser
EP2685297A1 (fr) 2012-07-13 2014-01-15 Caliopa NV Procédé de fabrication d'un circuit photonique avec structures actives et passives
WO2014009029A1 (fr) 2012-07-13 2014-01-16 Caliopa Nv Procédé de fabrication d'un circuit photonique à structures actives et passives
US9799791B2 (en) 2012-07-13 2017-10-24 Huawei Technologies Co., Ltd. Process for manufacturing a photonic circuit with active and passive structures

Also Published As

Publication number Publication date
AU4301900A (en) 2000-11-10
FR2792734A1 (fr) 2000-10-27
CA2367708A1 (fr) 2000-11-02
JP2002543452A (ja) 2002-12-17
EP1173788A1 (fr) 2002-01-23

Similar Documents

Publication Publication Date Title
Wang et al. Novel light source integration approaches for silicon photonics
EP3352312B1 (fr) Dispositif photonique comportant un laser optiquement connecté à un guide d'onde silicium et procédé de fabrication d'un tel dispositif photonique
EP2092618B1 (fr) Dispositif laser a source laser et guide d'onde couples
US8299485B2 (en) Substrates for monolithic optical circuits and electronic circuits
KR101516690B1 (ko) 마이크로 공진기 시스템들 및 그 제조 방법들
EP2988378B1 (fr) Dispositif laser et procédé de fabrication d'un tel dispositif laser
US10897121B2 (en) Lateral current injection electro-optical device with well-separated doped III-V layers structured as photonic crystals
US7391801B1 (en) Electrically pumped Group IV semiconductor micro-ring laser
FR2707401A1 (fr) Procédé de fabrication d'une structure intégrant un guide optique clivé à un support de fibre optique pour un couplage optique guide-fibre et structure obtenue.
JP2019161229A (ja) シリコン導波路に光学的に接続されたレーザーを含むフォトニックデバイス及びこのようなフォトニックデバイスの製造方法
EP3264541B1 (fr) Source laser à semi-conducteur
EP1173788A1 (fr) Circuit photonique integre comprenant un composant optique resonant et procedes de fabrication de ce circuit
EP1577690B1 (fr) Fabrication d'une couche d'interconnéction optique sur un circuit
EP2442164B1 (fr) Procédé de fabrication d'un duplexeur optique
WO2021004930A1 (fr) Assemblage d'un composant semi-conducteur actif et d'un composant optique passif à base de silicium
Keyvaninia et al. Heterogeneously integrated III-V/Si multi-wavelength laser based on a ring resonator array multiplexer
FR2749447A1 (fr) Dispositif optique a guide de lumiere semi-conducteur, a faisceau emergent de faible divergence, application aux lasers de fabry-perot et a contre-reaction distribuee
WO1993009569A1 (fr) Procede de realisation de composants opto-electroniques par epitaxie selective dans un sillon
EP3772145A1 (fr) Source laser hybride comportant un guide d'onde integre a reseau de bragg intercalaire
FR3074372A1 (fr) Structure a gain, dispositif photonique comprenant une telle structure et procede de fabrication d'une telle structure a gain
EP3869641A1 (fr) Dispositif d'émission laser à effet vernier accordable
FR2897726A1 (fr) Source optique laser a emission verticale

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000922715

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2367708

Country of ref document: CA

Ref country code: CA

Ref document number: 2367708

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: JP

Ref document number: 2000 614077

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09958951

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000922715

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000922715

Country of ref document: EP