WO2000065240A1 - Device and method for control of construction machinery - Google Patents

Device and method for control of construction machinery

Info

Publication number
WO2000065240A1
WO2000065240A1 PCT/JP2000/002442 JP0002442W WO0065240A1 WO 2000065240 A1 WO2000065240 A1 WO 2000065240A1 JP 0002442 W JP0002442 W JP 0002442W WO 0065240 A1 WO0065240 A1 WO 0065240A1
Authority
WO
WIPO (PCT)
Prior art keywords
stick
fine operation
boom
bucket
fine
Prior art date
Application number
PCT/JP2000/002442
Other languages
French (fr)
Japanese (ja)
Inventor
Kimimasa Onda
Original Assignee
Shin Caterpillar Mitsubishi Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Caterpillar Mitsubishi Ltd. filed Critical Shin Caterpillar Mitsubishi Ltd.
Publication of WO2000065240A1 publication Critical patent/WO2000065240A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • F15B2211/20584Combinations of pumps with high and low capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/26Power control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3144Directional control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31552Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line
    • F15B2211/31564Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line having multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31576Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/321Directional control characterised by the type of actuation mechanically
    • F15B2211/324Directional control characterised by the type of actuation mechanically manually, e.g. by using a lever or pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41554Flow control characterised by the connections of the flow control means in the circuit being connected to a return line and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41572Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/575Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/67Methods for controlling pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors

Definitions

  • the present invention relates to a control of a construction machine which controls an operation of a hydraulic actuator such as a boom cylinder / bucket cylinder by controlling a tilt angle of a hydraulic pump provided in the construction machine to control a pump discharge flow rate.
  • the present invention relates to an apparatus and a control method. Background art
  • a construction machine such as a hydraulic excavator includes an upper swing body 102, a lower traveling body 100, and a working device 118 as shown in FIG.
  • the undercarriage 100 has a right track 100R and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has a lower track 100 On the other hand, it is provided so as to be pivotable in a horizontal plane.
  • the working device 118 mainly consists of a boom 103, a stick 104, a bucket 108, and the like, and the boom 103 can rotate with respect to the upper swing body 102. Is pivoted to.
  • a stick 104 is connected to the end of the boom 103 so as to be rotatable in the same vertical plane.
  • a boom drive hydraulic cylinder (boom cylinder, hydraulic actuator) 105 for driving the boom 103 is provided between the upper swing body 102 and the boom 103.
  • a boom driving hydraulic cylinder (stick cylinders, hydraulic actuators) for driving the stick 104 is provided between the boom 103 and the stick 104.
  • stick driving hydraulic cylinders stick cylinders, hydraulic actuators
  • bucket driving hydraulic cylinder bucket cylinder, hydraulic actuator
  • Each of the cylinders 105 to 107 described above includes a plurality of hydraulic pumps driven by an engine (mainly a diesel engine), a boom control valve, a stick control valve, a packet control valve, and the like.
  • a hydraulic circuit (not shown) including a control valve is connected, and hydraulic oil of a predetermined hydraulic pressure is supplied from each hydraulic valve via each control valve, and driven in accordance with the hydraulic pressure supplied in this manner. It has become so.
  • a plurality of control valves are interposed in hydraulic oil supply passages (hydraulic pump cylinder passages, PC passages) for supplying and discharging hydraulic oil to and from each cylinder 105 to 107 and hydraulic pumps.
  • hydraulic oil supply passages hydraulic pump cylinder passages, PC passages
  • PC throttle and a hydraulic oil discharge passage cylinder tank passage, CT passage
  • a c- ⁇ throttle is provided, and a bypass passage from the hydraulic pump to the reservoir tank is provided. It also has a bypass bypass restriction.
  • the boom 103 is in the direction of arrow a and arrow b in the figure
  • the stick 104 is in the direction of arrow c and arrow d in the figure
  • the packet 108 is in the direction of arrow e and arrow in the figure.
  • It is configured to be rotatable in the direction of arrow f.
  • the rotation of the boom 103 in the direction of the arrow a in the figure is called boom up
  • the rotation of the boom 103 in the direction of the arrow b in the figure is called boom down.
  • the rotation of the stick 104 in the direction of arrow c in the figure is called stick-out
  • the rotation of the stick 104 in the direction of arrow d in the figure is called stick-in.
  • the rotation of the bucket 108 in the direction of the arrow e in the figure is called bucket open, and the rotation of the bucket 108 in the direction of the arrow f in the figure is called bucket-in.
  • the operating room 101 has left lever, right lever, and left lever as operating members for controlling the operation (running, turning, boom turning, stick turning, and packet turning) of the excavator. Left pedal and right pedal etc. ing.
  • each control valve of the hydraulic circuit is controlled, and each cylinder 105 to 107 is driven. 3.
  • the stick 104 and the bucket 108 can be rotated.
  • a pilot hydraulic circuit is provided to control each control valve.
  • the boom operating member in the driver's operation room 101 is operated by operating the stick operating member.
  • Act on the valve-to-stick control valve to drive the boom control valve or stick control valve to the required position.
  • the cylinders 105 to 107 are driven to expand and contract, and the working devices 118 such as the boom 103, the stick 104, and the baguette 108 are driven.
  • Various operations such as excavation work are performed.
  • leveling operation As one operation in such various operations, there is, for example, a so-called leveling operation (leveling operation).
  • leveling operation the above-described boom-up, stick-in, and baguette-in are simultaneously operated.
  • the boom 103 is driven as follows.
  • the boom 103 can be raised by extending the boom drive hydraulic cylinder 105.
  • the pilot oil pressure is applied to the boom control valve through the pilot oil passage.
  • the spool position of the boom control valve becomes the boom raising position, and the hydraulic oil from the hydraulic pump is supplied to one chamber of the boom driving hydraulic cylinder 105 through the oil passage.
  • hydraulic oil in the other room of the boom drive hydraulic cylinder 105 is discharged to the tank through the oil passage. This causes the boom 103 to rotate upward as shown by the arrow a in FIG. 8 while the boom drive hydraulic cylinder 105 extends.
  • the stick 104 is driven as follows.
  • the stick drive hydraulic cylinder 106 may be extended to lower the stick 104.
  • the pilot oil pressure is applied to the stick control valve through the pilot oil passage.
  • the spool position of the stick control valve becomes the stick lowered position, and the hydraulic oil from the hydraulic pump is supplied to one chamber of the stick driving hydraulic cylinder 106 through the oil passage.
  • the hydraulic oil in the other room of the stick driving hydraulic cylinder 106 is discharged to the tank through the oil passage.
  • the stick 104 is rotated downward as shown by the arrow d in FIG. 8 while the stick driving hydraulic cylinder 106 is extended.
  • the packet 108 is driven as follows.
  • the bucket 108 when the bucket-in operation is performed, the bucket 108 can be closed by extending the bucket driving hydraulic cylinder 107.
  • the pilot oil pressure is applied to the bucket control valve through the pilot oil passage.
  • the spool position of the packet control valve becomes the baggage closed position, and the hydraulic oil from the hydraulic pump is bucketed through the oil passage.
  • the hydraulic cylinder for driving 107 is supplied to one chamber.
  • hydraulic oil in the other chamber of the packet driving hydraulic cylinder 107 is discharged to the tank through the oil passage.
  • the bucket 108 is moved in the closing direction as shown by an arrow f in FIG. 8 while the packet driving hydraulic cylinder 107 is extended.
  • the pressure of the hydraulic oil discharged from the hydraulic pump must be equal to the operating pressure of these working machines. It must be set to the maximum pressure (maximum pressure value).
  • the pump discharge flow rate is slightly larger than the total flow rate of the hydraulic oil supplied to each cylinder, and the excess pump discharge flow rate is reduced by the control valve bypass passage throttle to increase the pressure. It is common.
  • a leveling operation as an operation for simultaneously operating the boom 103, the stick 104, and the bucket 108.
  • This leveling operation includes any of a boom-up, a stick-in, and a baguette-in. Is also performed by a fine operation.
  • the load direction of the stick-in and bucket-in is the direction of falling of the linkage's own weight.Therefore, in these operations, the flow rate of the hydraulic oil discharged from the hydraulic pump is not so necessary, and the pressure of the hydraulic oil is also low. Not very necessary.
  • an object of the present invention is to provide a control device and a control method for a construction machine, which are capable of suppressing a loss in engine output and, consequently, preventing deterioration of fuel efficiency. Disclosure of the invention
  • a control device for a construction machine includes a hydraulic pump for discharging hydraulic oil in a tank, a plurality of operating members operated by an operator, and control means for controlling a discharge flow rate from the hydraulic pump.
  • a control unit configured to determine whether the boom fine operation is performed based on an operation amount of the boom operation member of the plurality of operation members; and a stick operation of the plurality of operation members.
  • a stick fine operation determining means for determining whether or not a stick fine operation has been performed based on the operation amount of the member; and a bucket fine operation based on the operation amount of the bucket operating member of the plurality of operating members.
  • Bucket fine operation determining means for determining whether the hydraulic pump is tilted based on the determination results of the boom fine operation determining means, the stick fine operation determining means and the bucket fine operation determining means. It is characterized in that it comprises a pump tilting angle control means for controlling.
  • the plurality of operation members are configured to output an electric signal according to the operation amount
  • the control means is configured to perform a tilt angle control of the hydraulic pump based on the electric signals from the plurality of operation members.
  • the boom fine operation determining means is configured to determine whether or not the boom up fine operation has been performed
  • the stick fine operation determining means includes:
  • the bucket fine operation determining means is configured to determine whether the bucket-in fine operation has been performed
  • the pump tilt angle control means is configured to determine whether the bucket fine operation has been performed.
  • the boom fine operation determining means is configured to determine whether a boom up fine operation has been performed
  • the stick fine operation determining means is configured to determine whether a States Quinn fine operation has been performed.
  • the operation determining means is configured to determine whether a bucket-in operation has been performed
  • the pump tilt angle controlling means is boom-up by the boom fine operation determining means, the stick fine operation determining means, and the bucket fine operation determining means.
  • the hydraulic pump may be configured to perform tilt angle control so as to reduce the flow rate below the flow rate.
  • a control method for a construction machine includes a hydraulic pump for discharging hydraulic oil in a tank, a plurality of operating members operated by an operator, and control means for controlling a discharge flow rate from the hydraulic pump.
  • a machine control method comprising: a boom fine operation determining step of determining whether a boom fine operation has been performed based on an operation amount of a boom operating member of the plurality of operating members; A stick fine operation determining step of determining whether a stick fine operation has been performed based on the operation amount of the stick operating member; and a stick fine operation determining step based on the operation amount of the bucket operating member of the plurality of operating members.
  • the tilt angle of the hydraulic pump is controlled based on an electric signal corresponding to the operation amounts of the plurality of operation members.
  • the boom fine operation determination step it is determined whether a boom-up fine operation has been performed.
  • the stick fine operation determination step it is determined whether a stick-in fine operation has been performed.
  • a bucket-in fine operation is performed.
  • the control step when it is determined in the determination step that the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation have been performed, the boom operating member and the stick operating member are determined. It is also preferable to control the tilt angle of the hydraulic pump in response to an electric signal from the bucket operating member.
  • the boom fine operation determination step it is determined whether a boom up fine operation has been performed.
  • the stick fine operation step it is determined whether a stick-in fine operation has been performed.
  • the bucket fine operation step a packet in In the control step, if it is determined in the determination step that the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation have been performed, the discharge flow rate from the hydraulic pump is finely controlled. It is also preferable to control the tilt angle of the hydraulic pump so as to reduce the discharge flow rate from the hydraulic pump when any one of the operations is not a fine operation.
  • the boom-up fine operation and the stick are performed based on the operation amounts of the boom operation member, the stick operation member, and the baguette operation member. If the in-fine operation and the bucket-in fine operation are performed at the same time, it is determined that it is so-called leveling work, and the optimum pump flow rate for this leveling work is determined. Since the tilt angle control of the hydraulic pump is performed in a short time, the output loss of the engine that drives the hydraulic pump can be suppressed, and the fuel efficiency can be improved.
  • the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation are simultaneously performed based on the operation amounts of the boom operation member, the stick operation member, and the packet operation member, it is determined that the operation is a leveling operation.
  • the tilt angle of the hydraulic pump is controlled so as to reduce the pump discharge flow according to the operation amount of the boom operating member, the stick operating member, and the bucket operating member so that the pump discharge pressure does not excessively increase.
  • the output loss of the engine that drives the hydraulic pump can be suppressed, and the fuel efficiency can be improved.
  • FIG. 1 is a control block diagram for explaining tilt angle control of a hydraulic pump in a control device for a construction machine according to an embodiment of the present invention.
  • FIG. 2 is an overall configuration diagram of a control device for a construction machine according to one embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining a control valve of the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 4 is a diagram showing a relationship between a required flow rate of negative flow control and a negative control pressure in the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 5 is a diagram showing the relationship between the allowable flow rate of the negative flow control and the pump discharge pressure in the control device for the construction machine according to the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a control device for a construction machine according to an embodiment of the present invention. 6 is a flow chart for explaining a gating control.
  • FIG. 7 is a flowchart for explaining pump tilt angle control (control method) in the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 8 is a schematic perspective view showing a conventional construction machine. BEST MODE FOR CARRYING OUT THE INVENTION
  • This construction machine is a construction machine (working machine) such as a hydraulic shovel, as described in the prior art (see FIG. 8), and works with the upper revolving unit 102 and the lower traveling unit 100.
  • the device consists of 1 1 8.
  • the undercarriage 100 has a right track 10OR and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has It is provided so that it can turn in a horizontal plane.
  • the working device 118 mainly comprises a boom 103, a stick 104, a knotting 108, and the like, and the boom 103 can rotate with respect to the upper swing body 102. Is pivoted to.
  • a stick 104 is connected to the end of the boom 103 so as to be rotatable in the same vertical plane.
  • a boom drive hydraulic cylinder (boom cylinder, hydraulic actuator) 105 for driving the boom 103 is provided between the upper swing body 102 and the boom 103.
  • a hydraulic cylinder (stick cylinder, hydraulic actuator) 106 for driving the stick 104 is provided between the boom 103 and the stick 104.
  • a bucket driving hydraulic cylinder (bucket cylinder, hydraulic actuator) 107 for driving the bucket 108 is provided between the stick 104 and the bucket 108.
  • FIG. 2 is a diagram schematically showing a main part of a hydraulic circuit of such a hydraulic shovel.
  • the left track 100L and the right track 100R are provided with traveling motors 109L and 109R as independent power sources, respectively.
  • the revolving unit 102 is provided with a revolving motor 110 for driving the upper revolving unit 102 to revolve with respect to the lower traveling unit 100.
  • These traveling motors 109 L and 109 R and the turning motor 110 are configured as hydraulic motors operated by hydraulic pressure, and as described later, the engine (mainly a diesel engine) 5 Hydraulic oil from a plurality (here, two) of hydraulic pumps 51, 52 driven by 0 is supplied at a predetermined pressure via a hydraulic circuit 53, and the hydraulic pressure supplied in this manner is provided.
  • the hydraulic motors 109 L, 109 R, and 110 are driven in accordance with the conditions.
  • the hydraulic pumps 51 and 52 discharge the hydraulic oil in the reservoir tank 70 as a predetermined oil pressure.
  • a swash plate rotary piston pump (piston type variable displacement pump, variable discharge amount type) is used. (Piston pump).
  • These hydraulic pumps 51 and 52 can adjust the pump discharge flow rate by changing the stroke amount of a piston (not shown) provided in the hydraulic pump.
  • one end of the piston is configured to contact a swash plate (creep plate: not shown), and the inclination (tilt angle) of the swash plate will be described later.
  • a swash plate creep plate: not shown
  • the inclination (tilt angle) of the swash plate will be described later.
  • the inclination of the swash plate can be changed based on the operation signal from the controller 1, and in addition to the pressure of the hydraulic oil in the oil passage that composes the hydraulic circuit, each operation by operating Since the amount of operation of the member 54 can be taken into account, the operator's driving feeling is improved compared to the conventional method in which the pressure of the hydraulic oil in the oil passage is guided to change the inclination of the swash plate. You can do that.
  • the engine 50 is designed so that the operator can set the engine speed by switching the engine speed setting dial.
  • the maximum engine speed for example, about 200 rpm
  • the minimum engine speed are set. It is designed to be able to be switched in multiple stages between a rotating speed (for example, about 100 rpm).
  • the engine speed is not limited to such a stepwise switching, but may be a type that can be changed smoothly.
  • the total horsepower of the engine 50 is consumed to drive these hydraulic pumps 51, 52 and a pilot pump 83, which will be described later.
  • the cylinders 105 to 107 are also driven by the engine 50 in the same manner as the traveling motors 109 L and 109 R and the turning motor 110. Are driven by the hydraulic pressure of hydraulic oil supplied from two hydraulic pumps 51 and 52.
  • the operation room 101 has a left lever, a right lever, a left pedal and a right pedal for controlling the operation of the hydraulic excavator (running, turning, boom turning, stick turning, and baguette turning).
  • a plurality of operation members 54 such as pedals are provided. These operation members 54 are configured as electric operation members (for example, electric operation levers), and output an electric signal corresponding to the operation amount to a controller (control means) 1 described later.
  • the control valves 57 to 60 and 62 to 65 interposed in the hydraulic circuit 53 are controlled, and the cylinders 1 to 1 are controlled.
  • 05 to 107 and hydraulic motors 109L, 109R, 110 are driven.
  • the upper swing body 102 can be turned, the boom 103, the stick 104, the bucket 108, and the like can be turned, and the hydraulic shovel can be run.
  • boom operating member 54a The member operated when rotating the boom 103 is referred to as a boom operating member 54a, and the member operated when rotating the stick 104 is referred to as a stick operating member 54b.
  • stick operating member 54b A member operated when rotating the bucket 108 is referred to as a bucket operating member 54c.
  • the hydraulic circuit 53 includes a first circuit unit 55 and a second circuit unit 56.
  • the first circuit section 55 is an oil passage connected to the first hydraulic pump 51.
  • the hydraulic oil from the first hydraulic pump 51 is supplied to the right traveling motor 109 R via the oil passage 61, the right traveling motor evening control valve 57, and the right traveling motor 109 R Is to be driven.
  • the hydraulic oil from the first hydraulic pump 51 is supplied to the bucket driving hydraulic cylinder 107 via the oil passage 61 and the bucket control valve 58, and the oil passage 61, It is supplied to the boom drive hydraulic cylinder 105 via the first boom control valve 59, and is further connected to the stick drive hydraulic cylinder 106 via the oil passage 61 and the second stick control valve 60. To each cylinder 1 0 5, 1 0 6, 107 is driven.
  • a throttle (throttle with a relief valve) 81 is provided downstream of the oil passage 61 of the first circuit portion 55, and hydraulic fluid from the first hydraulic pump 51 is supplied to the reservoir through the throttle 81. It returns to tank 70.
  • the second circuit section 56 includes an oil passage 66 connected to the second hydraulic pump 52, a left traveling motor control valve 62 interposed in the oil passage 66, and a turning motor control valve 6 3 , A control valve for the first stick 64, a control valve for the second boom 65, etc .;
  • the hydraulic oil from the second hydraulic pump 52 is supplied to the left traveling motor 109 L via the oil passage 66 and the left traveling motor control valve 62, whereby the left traveling motor 1 0 9 L is driven.
  • Hydraulic oil from the second hydraulic pump 52 is supplied to the swing motor 110 via the oil passage 66 and the swing motor control valve 63, whereby the swing motor 110 is driven. It has become so.
  • the hydraulic oil from the second hydraulic pump 52 is supplied to the hydraulic cylinder 106 for driving the stick via the oil passage 66 and the control valve 64 for the first stick. It is supplied to the boom drive hydraulic cylinder 105 via the boom control valve 65, whereby the respective cylinders 105, 106 are driven.
  • a throttle (a throttle with a relief valve) 82 is provided on the downstream side of the oil passage 66 of the second circuit portion 56, and the hydraulic oil from the second hydraulic pump 52 is reservoired through the throttle 82. It is designed to return to one tank 70.
  • control valves 57 to 60 and 62 to 65 are housed in a control unit (not shown).
  • the second stick is set so that a sufficient hydraulic oil is supplied to the important stick 104 in the operation of the construction machine even at the same time when the other work machine 118 is operated simultaneously. Operation of the circuit section 56 from the second hydraulic pump 52 In addition to the oil, hydraulic oil from the first hydraulic pump 51 of the first circuit section 55 is also supplied to the stick driving hydraulic cylinder 106.
  • the first stick control valve 64 is interposed in the oil passage 66 of the second circuit portion 56, and the second stick control valve 60 is interposed in the oil passage 61 of the first circuit portion 55.
  • the first stick control valve 64 is controlled by the proportional control valves 64a and 64b, and the second stick control valve 60 is controlled by the proportional control valves 60a and 60b.
  • the hydraulic cylinder for driving the stick 106 can supply and discharge the hydraulic oil c.Sufficient operation of the boom 103 when operating simultaneously with other work equipment 118 as well as c
  • the hydraulic oil from the second hydraulic pump 52 of the second circuit section 56 is also used for boom drive.
  • the control valve 59 for the first boom is interposed in the oil passage 61 of the first circuit section 55, and the oil in the second circuit section 56 is supplied to the hydraulic cylinder 105.
  • a second boom control valve 65 is interposed in the road 66.
  • the first boom control valve 59 is controlled by the proportional control valves 59a and 59b, and the second boom control valve 65 is controlled by the proportional control valves 65a and 65b.
  • the hydraulic oil can be supplied to and discharged from the boom drive hydraulic cylinder 105.
  • a stick regeneration valve 76 is interposed in the oil passages 67, 68 for supplying and discharging hydraulic oil to and from the hydraulic cylinder 106 for driving the stick.
  • a predetermined amount of hydraulic oil can be regenerated from the side oil passage to the hydraulic oil supply-side oil passage.
  • boom regeneration valves 77 are also interposed in the oil passages 7 8 and 7 9 that supply and discharge hydraulic oil to the boom drive hydraulic cylinder 105, and operate from the hydraulic oil discharge side oil passage. A predetermined amount of hydraulic oil can be regenerated to the oil supply side oil passage.
  • each of the control valves 57 to 60 and 62 to 65 is configured as a spool valve, and each is provided with a plurality (here, five) of throttles.
  • each of the control valves 57 to 60 and 62 to 65 is an oil passage that connects the first hydraulic pump 51 and the second hydraulic pump 52 to the stick driving hydraulic cylinder 106.
  • (Hydraulic oil supply passage, P-C passage) 61-a, 66-a, a P-C throttle 8 and an oil passage connecting the stick drive hydraulic cylinder 106 and the reservoir tank 70 (Hydraulic oil discharge passage, C-T passage) Connects the C-T throttle 9 interposed between 66 b, 69, the first hydraulic pump 51, the second hydraulic pump 52, and the reservoir tank 70.
  • the oil passage (bypass passage) 61 b, 66 c is provided with a bypass passage throttle 10 interposed therebetween.
  • the stick control valves 60 and 64 are in the stick lowered position in FIG. 3, the stick control valves 60 and 64 are moved upward in FIG.
  • the stick control valves 60 and 64 By interposing the bypass passage restrictor 10 in the bypass passages 61b and 66c, the stick control valves 60 and 64 can be set to the neutral position.
  • the PC throttles 8 of the stick control valves 60 and 64 are interposed in the PC passages 61a and 66a, and the stick control is performed.
  • the stick control valves 60 and 64 can be in the stick-up position.
  • the operating members 54 are fully operated to ensure the interlocking of the working devices 118 such as the boom 103 and the stick 104. All working devices 1 18 are considered to move when they are in use.
  • the opening area of the oil passages 61 a and 66 a communicating the first hydraulic pump 51 and the second hydraulic pump 52 and the stick driving hydraulic cylinder 106 by the P_C throttle 8 (the hydraulic oil supply) The opening area of the passage and the PC opening area are adjusted.
  • the opening area (opening area of the hydraulic oil discharge passage, opening area of C-T opening) of the oil passages 66 b and 69 communicating the stick drive hydraulic cylinder 106 and the reservoir tank 70 is increased by the C-T throttle 9. Adjusted.
  • the opening area (opening area of the bypass passage) of the oil passages 61b and 66c communicating the first hydraulic pump 51 and the second hydraulic pump 52 with the reservoir tank 70 is reduced. Adjusted.
  • a pilot pump 83 and proportional pressure reducing valves 57a to 60a, 57b A pilot hydraulic circuit including ⁇ 60 b, 62 a ⁇ 65 a, and 62 b ⁇ 65 b is provided.
  • the pilot pump 83 provided in the pilot hydraulic circuit and the proportional pressure reducing valves 57a to 60a, 57b to 60b, 62a to 65a, 62b 665b only, the pilot oil passage is omitted, and the pilot oil pressure is indicated by the symbol P.
  • the proportional pressure reducing valves 57a to 60a, 57b to 60b, 62a to 65a, 62b to 65b are solenoid valves, and are operated by the controller 1 described later. It is activated by a signal. As a result, the pilot oil pressure from the pilot pump 83 is applied to each of the control valves 57 to 60 and 62 to 65 as a predetermined pressure based on the operation signal from the controller 1.
  • the boom operating member 54a in the operation room 101 is operated to reduce the hydraulic pressure P from the pilot pump 83.
  • the boom control valves 59, 65 are moved to required positions. Accordingly, the supply and discharge of the hydraulic oil of the boom drive hydraulic cylinder 105 is adjusted, and these cylinders 105 are driven to expand and contract to a required length, whereby the boom 103 is operated.
  • the boom drive hydraulic cylinder 105 may be contracted.
  • the pilot port hydraulic pressure is applied to the first boom control valve 59 through the pilot oil passage.
  • the spool position of the first boom control valve 59 becomes the boom lower rotation position (boom down position)
  • the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 becomes oily. It is supplied to one chamber of the boom drive hydraulic cylinder 105 via the passages 95 and 79, and is supplied to one chamber of the boom drive hydraulic cylinder 105.
  • the hydraulic oil in the other room of the boom drive hydraulic cylinder 105 is discharged to the reservoir tank 70 through the oil passages 78 and 69.
  • the boom driving hydraulic cylinder 105 contracts while the boom 103 is turned downward as shown by the arrow b in FIG.
  • the boom drive hydraulic cylinder 105 may be extended.
  • the pilot oil pressure is applied to the first boom control valve 59 and the second boom control valve 65 through the pilot oil passage.
  • the spool position of the first boom control valve 59 and the second boom control valve 65 becomes the boom upper rotation position (boom up position)
  • the first hydraulic pump 5 of the first circuit portion 55 Hydraulic oil from 1 is supplied to one chamber of the boom drive hydraulic cylinder 105 through oil passages 95, 788, and further actuated from the second hydraulic pump 52 of the second circuit section 56. Oil is supplied to the other chamber of the boom drive hydraulic cylinder 105 via the oil passages 66a, 90, 78.
  • the hydraulic oil in one room of the boom drive hydraulic cylinder 105 flows through the oil passages 79, 91, 66 b or 79, 69. Is discharged to the reservoir tank 70. This causes the boom 103 to rotate upward as shown by the arrow a in FIG. 8 while the boom drive hydraulic cylinder 105 extends.
  • the pilot hydraulic pressure is applied to the first boom control valve 59 and the second boom control valve 65 appropriately to control the first boom.
  • the position of each spool of the valve 59 and the second boom control valve 65 may be set to the neutral position (the hydraulic supply / discharge path shutoff position). As a result, the supply and discharge of hydraulic oil in each oil chamber of the boom drive hydraulic cylinder 105 is stopped, and the boom 103 is held at the current position.
  • the stick control valves 60 and 64 are driven to required positions.
  • the hydraulic fluid of the stick driving hydraulic cylinder 106 is adjusted for supply and discharge, and these cylinders 105 and 106 are driven to extend and contract to a required length, whereby the stick 104 is operated.
  • the stick driving hydraulic cylinder 106 may be extended.
  • the pilot oil pressure is applied to the second stick control valve 60 through the pilot oil passage.
  • the spool position of the second stick control valve 60 becomes the stick rotation position (stick-in position)
  • the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 flows through the oil passage. It is supplied to one chamber of the stick driving hydraulic cylinder 106 via 61 and 67.
  • hydraulic oil in the other chamber of the stick driving hydraulic cylinder 106 is discharged to the reservoir tank 70 via the oil passages 68, 69.
  • the stick driving hydraulic cylinder 106 extends while the stick 104 extends. Is rotated inward as shown by arrow d in FIG.
  • the stick drive hydraulic cylinder 106 may be contracted.
  • the pilot oil pressure is applied to the second stick control valve 60 through the pilot oil passage.
  • the spool position of the second stick control valve 60 becomes the stick outside rotation position (stick out position)
  • the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 flows through the oil passage. It is supplied to the other chamber of the stick driving hydraulic cylinder 106 via 61 and 68.
  • the hydraulic oil in one chamber of the stick driving hydraulic cylinder 106 is discharged to the reservoir tank 70 through the oil passages 67, 69.
  • the stick driving hydraulic cylinder 106 is contracted while the stick 104 is rotated outward as shown by the arrow c in FIG.
  • the pilot hydraulic pressure is applied to the second stick control valve 60 as appropriate, and each spool of the second stick control valve 60 is controlled. Should be set to the neutral position (hydraulic supply / discharge path cutoff position). As a result, the supply and discharge of the hydraulic oil in each oil chamber of the stick driving hydraulic cylinder 106 is stopped, and the stick 104 is held at the current position.
  • the bucket operating member 54c in the operator's cab 101 is operated, and the pilot port hydraulic pressure P from the pilot pump 83 is not shown.
  • the bucket control valve 58 By acting on the bucket control valve 58 through the pipe oil passage, the bucket control valve 58 is moved to a required position.
  • the supply and discharge of the hydraulic oil for the packet driving hydraulic cylinder 107 is adjusted, and these cylinders 107 are driven to expand and contract to a required length, whereby the packet 108 is operated.
  • the bucket driving hydraulic cylinder 107 may be extended.
  • the pilot oil pressure is applied to the bucket control valve 58 through the pilot oil passage.
  • the spool position of the bucket control valve 58 becomes the packet inside rotation position (bucket-in position)
  • the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 passes through the oil passage 61. , 92, and is supplied to one chamber of the hydraulic cylinder 107 for driving the packet.
  • the hydraulic oil in the other chamber of the bucket driving hydraulic cylinder 107 is discharged to the reservoir tank 70 through the oil passages 93, 69. This causes the bucket 108 to rotate inward as indicated by the arrow f in FIG. 8, while the bucket driving hydraulic cylinder 107 extends.
  • the bucket driving hydraulic cylinder 107 may be contracted.
  • the pilot oil pressure is applied to the bucket control valve 58 through the pilot oil passage.
  • the spool position of the bucket control valve 58 becomes the baguette outside rotation position (packet open position), and the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 flows through the oil passages 94, After 93, it is supplied to the other chamber of the bucket driving hydraulic cylinder 107.
  • hydraulic oil in one chamber of the bucket driving hydraulic cylinder 107 is discharged to the reservoir tank 70 through the oil passages 92 and 69.
  • the baguette driving hydraulic cylinder 107 is contracted while the baguette 108 is rotated outward as shown by an arrow e in FIG.
  • the pilot hydraulic pressure is applied to the bucket control valve 58 as appropriate, and the position of the spool of the bucket control valve 58 is set to the neutral position. (Hydraulic supply / discharge path cutoff position).
  • the neutral position (Hydraulic supply / discharge path cutoff position).
  • the supply and discharge of hydraulic oil to and from the oil chamber of the bucket driving hydraulic cylinder 107 are stopped, and the bucket 108 is held at the current position.
  • various sensors are attached to the construction machine configured as described above, and a detection signal from each sensor is sent to a controller 1 described later.
  • an engine 50 for driving the hydraulic pumps 51 and 52 is provided with an engine speed sensor 71, and a detection signal from the engine speed sensor 71 is transmitted to a controller 1 described later. It has been The controller 1 performs feedback control so that the actual engine speed becomes the target engine speed set by the engine speed setting dial during the operation.
  • a pressure sensor (PZS-P1) 72 and a pressure sensor (PZS-P2) 73 are provided to detect the pump discharge pressure.
  • the detection signals from 72 and 73 are sent to the controller 1 described later.
  • a pressure sensor ( PZS-N 1) 74 and pressure sensor (PZS-N 2) 75 are provided downstream of each of the control valves 57 to 60 of the oil passage 61 of the first circuit unit 55 and each of the control valves 62 to 65 of the oil passage 66 of the second circuit unit 56, and the detection signals from these pressure sensors 74 and 75 are sent to the controller 1 described later. .
  • a pressure sensor (PZS-BMd) 80 is provided in an oil passage for supplying and discharging hydraulic oil to and from the boom drive hydraulic cylinder 105.
  • the boom drive hydraulic cylinder 100 is provided by the pressure sensor 80.
  • the rod side pressure (load pressure) of 5 can be detected.
  • the detection signal from the pressure sensor 80 is sent to the controller 1 described later.
  • the construction machine configured as described above is controlled.
  • a controller 1 is provided.
  • the controller 1 controls the first hydraulic pump 51, the second hydraulic pump 52, 7 6, 7 7, and output control signals to each control valve 57 to 60 and 62 to 65 to control the tilt angle of the first hydraulic pump 51 and the second hydraulic pump 52,
  • the position control of the control valves 57 to 60 and 62 to 65, the position control of the regeneration valves 76 and 77, and the like are performed.
  • the tilt angle control of the first hydraulic pump 51 and the second hydraulic pump 52 by the controller 1 is performed on the downstream side of the bypass passage 61 b of the first circuit section 55 and the second circuit section 56.
  • Negative control is performed based on detection signals from the respective pressure sensors 74 and 75 provided on the downstream side of the bypass passage 66c. Since the negative flow control is performed based on the pressures detected by the pressure sensors 74 and 75, the pressure detected by the pressure sensors 74 and 75 is also referred to as a negative control pressure.
  • the negative flow control is a pump flow control with a negative characteristic that reduces the pump discharge flow rate when the pressure on the downstream side of the bypass passage 6 lb, 66 c increases.
  • the negative flow control is based on the operation amount of each operation member 54, that is, the flow control in which the pump discharge flow rate is controlled according to the negative control pressure, and the load pressure applied to the actuator, that is, the pump discharge pressure. And horsepower control in which the pump discharge flow rate is controlled according to the pressure.
  • the flow control can control the speed of the actuator (each cylinder) within the allowable horsepower. That is, the pump discharge flow rate can be controlled in accordance with the operation amount of each operation member 54, that is, the negative control pressure. It can control the speed of Kuchiyue overnight.
  • the pump discharge flow rate (that is, the speed of the actuator) is determined by the following equation. Is done.
  • the pump discharge flow rate Q is not controlled according to the operation amount of each operation member 54, but is controlled according to the load pressure applied to the actuator, that is, the pump discharge pressure P.
  • the magnitude of Q is referred to as horsepower control when the control depends on the allowable horsepower W of the engine 50 that drives the first hydraulic pump 51 and the second hydraulic pump 52.
  • the operation member 54 when the operation member 54 is in the neutral position, that is, when the operator does not operate the operation member 54, the work machine 118 does not work at all, and there is no need to drive the actuator.
  • the pump discharge flow rate from the hydraulic pumps 51 and 52 is desirably set to zero.
  • the control valves 57 to 60 and 62 to 65 are open centers (arranged so that the bypass passages 61b and 66c are open at the spool neutral position).
  • the hydraulic oil supplied from the hydraulic pumps 51 and 52 returns to the reservoir tank 70 through the bypass passages 61 b and 66 c.
  • the orifices 81, 82 are provided downstream of the bypass passages 61b, 66c as described above.
  • Pressure sensors 74, 66 are provided in bypass passages 61b, 66c immediately upstream of these throttles 81, 82.
  • the tilt angle control of the hydraulic pumps 51 and 52 is performed based on the pressure immediately upstream of the throttles 81 and 82 detected by the pressure sensors 74 and 75. I'm sorry.
  • the control valves 57 to 60 and 62 to 65 move according to the operation amount of the operation member 54, and the bypass passages 6 lb and 66 c are throttled, and the bypass passages are reduced.
  • the flow rate of hydraulic oil flowing through 6 1 b and 6 6 c decreases, but the diameter of the throttles 8 1 and 8 2 is constant.
  • the pressure that is, the pressure detected by the pressure sensors 74 and 75, decreases, and the pump discharges according to the reduced pressure.
  • the tilt angle control of the variable displacement hydraulic pumps 51 and 52 is performed so that the flow rate increases.
  • the pump discharge flow rate is controlled to increase according to the operator's request, that is, the operation amount of the operation member 54 by the operator.
  • the speed of the actuator can be controlled by controlling the pump discharge flow from 51 and 52.
  • the controller 1 reads the operating oil pressures (negative control pressures) P N1 and P N2 detected by the pressure sensors 74 and 75 and correlates the negative control pressure P N with the required flow rate Q N as shown in FIG. from a map, the request corresponds to the negative control pressure P N1, P N2 read flow Q N1, Q N2 (determined specifically main flow Q N1, Q pump tilting angle corresponding to N2 V N1, V N2) Is set.
  • the required flow rate is the flow rate required in negative flow control. Also shows only 4 in negative control pressure P N1 required flow rate Q that correspond to N1 (specifically required flow rate Q N1, a pump corresponding to the tilting angle V N1).
  • the controller 1 reads the pump discharge pressures P P1 and P P2 detected by the pressure sensors 72 and 73 and associates the pump discharge pressure P P with the allowable flow rate Q P as shown in FIG. from Matsupu, allowable flow corresponding to the pump discharge pressure read P P 1, P P2 Q P1 , Q P2 ( specifically allowable flow Q P1, the pump tilting angle corresponding to Q P2 V P1, V P2) Is set.
  • the allowable flow rate refers to a pump discharge flow rate according to the allowable horsepower of the engine 50 that drives the first hydraulic pump 51 and the second hydraulic pump 52.
  • allowable flow Q P1 (specifically allowable flow rate corresponding to the pump discharge pressure P P1 in FIG. 5 Only the pump tilt angle V P1 ) corresponding to Q P1 is shown.
  • the controller 1 compares the required flow rates Q N1 and Q N2 with the allowable flow rates Q P1 and Q P2 and determines the smaller pump flow rate (required flow rate Q N1 and Q N2 or allowable flow rate Q P1 and Q P2 ).
  • the pump tilt angle (pump tilt angle V N1 , V N2 or pump tilt angle V P1 , V P2 ) is set so that the first hydraulic pump 51 and the first hydraulic pump 51 are used as tilt angle control signals.
  • the output is provided to the second hydraulic pump 52.
  • step S10 the negative control pressures P N1 and P N2 are read, and at step S20, the pump discharge pressures P P1 and P P2 are read.
  • step S30 the required flow rates Q N1 and Q N2 corresponding to the negative control pressures P N1 and P N2 read in step S 10 are calculated from the map of FIG. 4 and read in step S 20 in step 40.
  • the allowable flow Q P1, Q P2 is calculated from the map of FIG. 5 corresponding to the pump discharge pressure P P1, P P 2 that.
  • step S 5 allowed the required flow rate Q N1, Q N2 in Step S 5 0 flow rate Q P1, Q less whether determined than P2, the result of this determination, required flow rate Q N1, Q N2 is allowable flow Q P1, If it is determined that the flow rate is smaller than Q P2 , the process proceeds to step S60, where the required flow rates Q N1 and Q N2 are set as the pump flow rates, and the routine returns.
  • the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 are set to be the tilt angles corresponding to the required flow rates Q N1 and Q N2 .
  • step S70 the allowable flow rates Q P1 and Q P2 are set as the pump flow rates and the return is performed. I do.
  • the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 become tilt angles corresponding to the allowable flow rates Q P1 and Q P2. It is set as follows.
  • the control device for a construction machine is configured as described above, and various controls are performed by the controller 1.
  • the boom-up fine operation and the stick-in fine operation are performed.
  • pump flow control different from the pump flow control in the normal negative flow control is performed.
  • FIG. 1 is a control block diagram for explaining the pump flow rate control by the control device of the construction machine according to the present embodiment.
  • the controller 1 includes a boom-up fine operation determining means (boom fine operation determining means) 2, a stick-in fine operation determining means (stick fine operation determining means) 3, and a bucket. It is configured to include a toe fine operation determination means (bucket fine operation determination means) 4 and a pump tilt angle control means 5.
  • the boom-up fine operation determining means 2 determines whether or not the boom-up fine operation has been performed based on an electric signal corresponding to the operation amount of the boom operation member 54a, and determines the result of the pump operation. A signal is output to the tilt angle control means 5.
  • the stick-in fine operation determining means 3 determines whether or not the fine operation of the stick-in has been performed based on an electric signal corresponding to the operation amount of the stick operating member 54, and determines the pump tilt angle control based on the determination result. A signal is output to means 5.
  • the bucket-in fine operation determination means 4 determines whether or not the bucket-in fine operation has been performed based on an electric signal corresponding to the operation amount of the bucket operating member 54c, and determines the pump tilt angle control means based on the determination result. It outputs a signal to 5.
  • the pump tilt angle control means 5 includes a boom-up fine operation, a stick-in fine operation, and a bucket based on signals from the boom-up fine operation determination means 2, the stick-in fine operation determination means 3, and the baguette-in fine operation determination means 4.
  • the operation member for boom 54 a, the operation member for stick 54 b and the operation member for bucket 54 c are set so that the optimum pump flow rate in this operation pattern is obtained.
  • the pump tilt angles of the hydraulic pumps 51 and 52 are controlled based on an electric signal corresponding to the operation amount of the pump.
  • the pump displacement angle control means 5 controls the displacement angles of the hydraulic pumps 51 and 52 as follows.
  • the pump tilt angle control means 5 basically controls the tilt angles of the hydraulic pumps 51 and 52 by negative flow control.
  • each control valve 58 to 60, 64, 65 is controlled in accordance with the operation amount of the cylinder, and the boom drive hydraulic cylinder 105, the stick drive hydraulic cylinder 106, and the bucket drive Since the hydraulic oil is supplied to the hydraulic cylinder 107, the pressure of the hydraulic oil downstream of each of these control valves 58 to 60, 64, 65 (in the bypass passages 61b, 66c) The pressure of the hydraulic oil) decreases, and this pressure is detected by the pressure sensors 74 and 75 and used in negative flow control, and the tilt angles of the hydraulic pumps 51 and 52 are increased so that the pump discharge flow rate increases. Is controlled It is.
  • the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation are performed at the same time.
  • the hydraulic pumps 51, 52 are operated so that the excessive pump discharge flow rate is obtained.
  • the tilt angle control is performed. Therefore, in the present embodiment, the pump tilt angle control means 5 determines that the boom-up fine operation, the stick-in fine operation, and the packet-in fine operation have been performed at the same time.
  • Boom operation member 54a, stick operation member 54b, and bucket operation member 54c based on electric signals from the stick operation member 54b and the bucket operation member 54c.
  • the pump tilt angles of the hydraulic pumps 51 and 52 are controlled so that the pump discharge flow rate decreases in accordance with the operation amount of the pump.
  • the boost pressure (the differential pressure between the pump discharge pressures of the hydraulic pumps 51 and 52 and the load pressure) becomes a predetermined pressure ( Approximately 100 kgf Z cm 2 ).
  • a predetermined pressure than the pump discharge pressure is the load pressure (approximately 1 0 0 kgf / cm 2) becomes higher as the boom operation member 5 4 a, 5 4 b the stick operation member and the bucket preparative operation member
  • the pump tilt angle control may be performed based on an electric signal from 54c.
  • the pressure of the hydraulic oil discharged from the hydraulic pumps 51, 52 must be controlled by these working machines. It is necessary to set so that it becomes the maximum pressure (maximum pressure value) of the operation pressure of 1 18. For this reason, the control flow of the negative flow control described above is also increased by slightly increasing the pump discharge flow rate from the total flow rate of the hydraulic oil supplied to each cylinder 105 to 107, thereby reducing the excess pump discharge flow rate to each control valve. To increase the pressure It is set to let.
  • the pump tilt angle control means 5 is based on signals from the boom-up fine operation determination means 2, the stick-in fine operation determination means 3, and the bucket-in fine operation determination means 4, and performs boom-up fine operation and stick-in fine operation. If it is determined that the bucket and the bucket-in micro-operation are not performed at the same time, the other operation of operating the boom 103, the stick 104 and the bucket 108 without performing the micro-operation is performed. As one example, the pump flow rate of the hydraulic pumps 51 and 52 is controlled so that the optimum pump flow rate in a normal negative flow control is obtained.
  • the normal negative flow control means that, as described above, the control valves 57 to 60 and 62 to 65 operate according to the operation amounts of the operation members 54 and the bypass oil passage 6.
  • the pressure (negative control pressure) generated by the change in the flow rate of the hydraulic oil of 1b, 66c is detected by the pressure sensors 74, 75, and the pump tilt angle of the hydraulic pumps 51, 52 To control the pump flow rate.
  • the pump tilt angle control based on the electric signals from the boom operation member 54a, the stick operation member 54b, and the bucket operation member 54c is not performed.
  • the boost pressure becomes a predetermined pressure (about 1 5 0 ⁇ 2 0 0 kgf / / cm 2). Therefore, the pump discharge pressure is higher than the load pressure by a predetermined pressure (approximately
  • the required pump flow rate is different depending on the difference of the lever pattern and the operation amount.
  • the boost pressure becomes a predetermined pressure (about 20 O kgf / cm 2 ).
  • the pump flow should be such that the boost pressure becomes a predetermined pressure (about 150 kgf / cm 2 ).
  • differences in the operation amount of the operation member 54 include, for example, a boom-up fine operation, a stick-in operation (approximately 50% to 100% of the total operation amount), and a bucket-in operation (all operations). (Operation of about 50% to 100% of the volume) is equivalent to excavation using stick 104 and bucket 108, and the pump discharge pressure is balanced with the excavation load. The applied pressure is reached. In this case, since no boost pressure is generated, a pump flow rate corresponding to the operation amount of the operation member 54 is supplied to secure productivity.
  • the control device for a construction machine is configured as described above, and operates as shown in the flowchart of FIG. 7 to perform optimal pump flow rate control (control method) during so-called leveling work.
  • step A10 the electric signal from each operation member 54 is read, and the process proceeds to step A20.
  • step A20 the boom-up fine operation determining means 2 determines whether or not the boom-up fine operation has been performed based on the operation amount of the boom operating member 54a.
  • step A30 the stick-in fine operation determining means 3 determines whether the stick-in fine operation has been performed based on the operation amount of the stick operating member 54b. It is determined whether a fine operation has been performed.
  • step A40 the bucket-in fine operation determining means 4 further performs the bucket-in operation based on the operation amount of the bucket operating member 54c. It is determined whether or not the fine operation of the bucket has been performed. If it is determined that the operation has been performed, the flow proceeds to step A50, and the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation are simultaneously performed.
  • the boom operating member 54a, the stick operating member 54b and the bucket operating member 5 are controlled by the control means 5 so that the optimum pump flow rate during the leveling work (at the time of fine operation of the boom, stick and bucket) is obtained. 4 Perform pump tilt angle control according to the operation amount of c and return.
  • step A20 if it is determined in step A20 that the fine boom-up operation has not been performed by the fine boom-up operation determining means 2, the stick-in fine operation determining means 3 does not perform the fine-in-stick operation in step A30.
  • the bucket-in fine operation has not been performed by the bucket-in fine operation determination means 4 in step A40, it is determined that the leveling work has not been performed in any case. Judgment proceeds to step A60, where the pump tilt angle control is performed so that the optimum pump flow rate in normal negative flow control is obtained, and the routine returns.
  • the table below shows the measurement results of fuel efficiency when the optimal pump flow control is performed during the leveling operation.
  • the table shows the measurement results when the leveling operation (leveling operation) was performed for 10 cycles.
  • the boom-up fine operation and the stick-in fine operation are performed based on the operation amounts of the boom operation member 54a, the stick operation member 54b, and the bucket operation member 54c. If the bucket-in fine operation is performed at the same time, it is determined that the operation is a so-called leveling operation.
  • the hydraulic pressure is controlled. There is an advantage that the output loss of the engine 50 that drives the pumps 51 and 52 can be suppressed, and consequently fuel efficiency can be improved.
  • the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation are simultaneously performed.
  • the operation is a leveling operation
  • the operating member for boom 54 a, the operating member for stick 54 b and the operating member for bucket 54 are used so that the pump discharge pressure does not excessively increase.
  • the present invention is not limited to this, and the boom-down fine operation (boom fine operation),
  • the present invention is similarly applicable to the case where stick-out fine operation (stick fine operation) and packet open fine operation (bucket fine operation) are performed. Can be used.
  • the boom fine operation determining means 2 is configured to determine whether the boom down fine operation has been performed based on the operation amount of the boom operating member 54a
  • the stick fine operation determining means 3 The bucket fine operation determining means 4 is configured to determine whether or not the fine operation of the stick is performed based on the operation amount of the stick operating member 54b, and the bucket fine operation determining means 4 is used for the operation of the bucket operating member 54c. It is configured to determine whether the bucket open fine operation has been performed based on this.
  • the pump tilt angle control means 5 determines the tilt angles of the hydraulic pumps 51, 52 based on the determination results of the boom fine operation determination means 2, the stick fine operation determination means 3, and the bucket fine operation determination means 4. Control will be performed.
  • control device and the control method for a construction machine of the present invention are useful for a construction machine (for example, a hydraulic shovel) that performs a leveling operation by finely operating a boom, a stick, and a bucket. It is suitable for construction machinery that supplies hydraulic oil discharged by an engine-driven hydraulic pump during a hydraulic work to drive work machines (booms, sticks, and buckets).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

A device and a method for control of construction machinery capable of controlling a pump flow rate so that a pump delivery pressure does not rise excessively even in a grading operation so as to suppress an engine output loss, and thus preventing a fuel efficiency from being deteriorated; the device comprising hydraulic pumps (51) and (52), a plurality of operation members (54), and a control means (1) to control a delivery flow rate from the hydraulic pumps; the control means (1) comprising a boom fine operation judgment means (2) which judges whether or not a boom fine operation is performed based on the manipulated variable of a boom operating member (54a), a stick fine operation judgment means (3) which judges whether or not a stick fine operation is performed based on the manipulated variable of a stick operating member (54b), a bucket fine operation judgment means (4) which judges whether or not a bucket fine operation is performed based on the manipulated variable of a bucket operating member (54c), and a pump inclination angle control means (5) which performs the inclination angle control of the hydraulic pumps (51) and (52) based on the judgment results of the boom fine operation judgment means (2), stick fine operation judgment means (3), and bucket fine operation judgment means (4).

Description

明 細 書 建設機械の制御装置及び制御方法 技術分野  Description Control device and control method for construction machinery
本発明は、 建設機械に備えられる油圧ポンプの傾転角制御を行なうこ とによりポンプ吐出流量を制御して、 ブームシリンダゃバケツトシリン ダ等の油圧ァクチユエ一夕の作動を制御する、 建設機械の制御装置及び 制御方法に関する。 背景技術  The present invention relates to a control of a construction machine which controls an operation of a hydraulic actuator such as a boom cylinder / bucket cylinder by controlling a tilt angle of a hydraulic pump provided in the construction machine to control a pump discharge flow rate. The present invention relates to an apparatus and a control method. Background art
一般に、 油圧ショベル等の建設機械は、 図 8に示すように、 上部旋回 体 1 0 2と下部走行体 1 0 0と作業装置 1 1 8とからなっている。  In general, a construction machine such as a hydraulic excavator includes an upper swing body 102, a lower traveling body 100, and a working device 118 as shown in FIG.
下部走行体 1 0 0は、 互いに独立して駆動しうる右トラック 1 0 0 R 及び左トラック 1 0 0 Lをそなえており、 一方、 上部旋回体 1 0 2は、 下部走行体 1 0 0に対して水平面内で旋回可能に設けられている。  The undercarriage 100 has a right track 100R and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has a lower track 100 On the other hand, it is provided so as to be pivotable in a horizontal plane.
また、 作業装置 1 1 8は、 主にブーム 1 0 3 , スティック 1 0 4, バ ケット 1 0 8等からなっており、 ブーム 1 0 3は、 上部旋回体 1 0 2に 対して回動可能に枢着されている。 また、 ブーム 1 0 3の先端には、 同 じく鉛直面内に回動可能にスティック 1 0 4が接続されている。  The working device 118 mainly consists of a boom 103, a stick 104, a bucket 108, and the like, and the boom 103 can rotate with respect to the upper swing body 102. Is pivoted to. A stick 104 is connected to the end of the boom 103 so as to be rotatable in the same vertical plane.
また、 上部旋回体 1 0 2とブーム 1 0 3との間には、 ブーム 1 0 3を 駆動するためのブーム駆動用油圧シリンダ (ブームシリンダ, 油圧ァク チユエ一夕) 1 0 5が設けられるとともに、 ブーム 1 0 3とスティック 1 0 4との間には、 スティック 1 0 4を駆動するためのスティック駆動 用油圧シリンダ (スティックシリンダ, 油圧ァクチユエ一夕) 1 0 6カ 設けられている。 また、 スティック 1 0 4とバケツト 1 0 8との間には、 バケツト 1 0 8を駆動するためのバケツト駆動用油圧シリンダ (バケツ トシリンダ, 油圧ァクチユエ一夕) 1 0 7が設けられている。 A boom drive hydraulic cylinder (boom cylinder, hydraulic actuator) 105 for driving the boom 103 is provided between the upper swing body 102 and the boom 103. In addition, between the boom 103 and the stick 104, there are provided 106 stick driving hydraulic cylinders (stick cylinders, hydraulic actuators) for driving the stick 104. Also, between the stick 104 and the bucket 108, A bucket driving hydraulic cylinder (bucket cylinder, hydraulic actuator) 107 for driving the bucket 107 is provided.
また、 上述の各シリンダ 1 0 5〜 1 0 7には、 エンジン (主に、 ディ ーゼルエンジン) により駆動される油圧ポンプ、 ブーム用制御弁, ステ イツク用制御弁, パケット用制御弁等の複数の制御弁を備える油圧回路 (図示せず) が接続されており、 油圧ポンプから各制御弁を介して所定 の油圧の作動油が供給され、 このようにして供給された作動油圧に応じ て駆動されるようになっている。  Each of the cylinders 105 to 107 described above includes a plurality of hydraulic pumps driven by an engine (mainly a diesel engine), a boom control valve, a stick control valve, a packet control valve, and the like. A hydraulic circuit (not shown) including a control valve is connected, and hydraulic oil of a predetermined hydraulic pressure is supplied from each hydraulic valve via each control valve, and driven in accordance with the hydraulic pressure supplied in this manner. It has become so.
ここで、 複数の制御弁はそれぞれ各シリンダ 1 0 5〜 1 0 7や油圧ポ ンプへの作動油の給排を行なう作動油供給通路 (油圧ポンプーシリンダ 通路, P— C通路) へ介装される P— C絞りや作動油排出通路 (シリン ダ—タンク通路, C _ T通路) へ介装される c— τ絞りを備えるほか、 油圧ポンプからリザ一バタンクへ通じるバイパス通路に介装されるバイ パス通路絞りも備える。  Here, a plurality of control valves are interposed in hydraulic oil supply passages (hydraulic pump cylinder passages, PC passages) for supplying and discharging hydraulic oil to and from each cylinder 105 to 107 and hydraulic pumps. In addition to a PC throttle and a hydraulic oil discharge passage (cylinder tank passage, CT passage), a c-τ throttle is provided, and a bypass passage from the hydraulic pump to the reservoir tank is provided. It also has a bypass bypass restriction.
このような構成により、 ブーム 1 0 3は図中矢印 a方向及び矢印 b方 向に、 スティック 1 0 4は図中矢印 c方向及び矢印 d方向に、 パケット 1 0 8は図中矢印 e方向及び矢印 f 方向に回動可能に構成されている。 なお、ブーム 1 0 3の図中矢印 a方向への回動をブームアップといい、 図中矢印 b方向への回動をブームダウンという。 また、 スティック 1 0 4の図中矢印 c方向への回動をスティックアウトといい、 図中矢印 d方 向への回動をスティックインという。 また、 バケツト 1 0 8の図中矢印 e方向への回動をバケツトオープンといい、 図中矢印 f 方向への回動を バケツ卜インという。  With this configuration, the boom 103 is in the direction of arrow a and arrow b in the figure, the stick 104 is in the direction of arrow c and arrow d in the figure, and the packet 108 is in the direction of arrow e and arrow in the figure. It is configured to be rotatable in the direction of arrow f. The rotation of the boom 103 in the direction of the arrow a in the figure is called boom up, and the rotation of the boom 103 in the direction of the arrow b in the figure is called boom down. The rotation of the stick 104 in the direction of arrow c in the figure is called stick-out, and the rotation of the stick 104 in the direction of arrow d in the figure is called stick-in. The rotation of the bucket 108 in the direction of the arrow e in the figure is called bucket open, and the rotation of the bucket 108 in the direction of the arrow f in the figure is called bucket-in.
また、 運転操作室 1 0 1には、 油圧ショベルの作動 (走行, 旋回, ブ —ム回動, スティック回動及びパケット回動) を制御するための操作部 材として、 左レバー, 右レバー, 左ペダル及び右ペダル等がそなえられ ている。 The operating room 101 has left lever, right lever, and left lever as operating members for controlling the operation (running, turning, boom turning, stick turning, and packet turning) of the excavator. Left pedal and right pedal etc. ing.
そして、 例えばオペレータがこれらのレバーやペダル等の操作部材を 操作することにより、 油圧回路の各制御弁が制御されて、 各シリンダ 1 0 5〜 1 0 7が駆動され、 これにより、 ブーム 1 0 3, スティック 1 0 4及びバケツト 1 0 8等を回動させうるようになつている。  Then, for example, when the operator operates these operating members such as levers and pedals, each control valve of the hydraulic circuit is controlled, and each cylinder 105 to 107 is driven. 3. The stick 104 and the bucket 108 can be rotated.
また、 各制御弁を制御するために、 パイロット油圧回路が設けられて いる。 これにより、 ブーム 1 0 3やスティック 1 0 4を作動させるには、 運転操作室 1 0 1内のブーム操作部材ゃスティック操作部材を操作して、 パイロット油圧が、 パイロット油路を通じて、 ブーム用制御弁ゃスティ ック用制御弁に作用させて、 ブーム用制御弁やスティック用制御弁を所 要の位置に駆動させる。 これにより、 ブーム駆動用油圧シリンダ 1 0 5 やスティック駆動用油圧シリンダ 1 0 6への作動油が給排調整され、 こ れらのシリンダ 1 0 5, 1 0 6が所要の長さに伸縮駆動されることにな る。  In addition, a pilot hydraulic circuit is provided to control each control valve. As a result, in order to operate the boom 103 and the stick 104, the boom operating member in the driver's operation room 101 is operated by operating the stick operating member. Act on the valve-to-stick control valve to drive the boom control valve or stick control valve to the required position. This regulates the supply and discharge of hydraulic oil to the boom drive hydraulic cylinder 105 and the stick drive hydraulic cylinder 106, and the cylinders 105, 106 are driven to expand and contract to the required length. Will be done.
上述のように、 油圧ショベルでは、 各シリンダ 1 0 5〜 1 0 7を伸縮 駆動させ、 ブーム 1 0 3 , スティック 1 0 4 , バゲット 1 0 8等の作業 装置 1 1 8を駆動させることで、 掘削作業等の各種作業を行なうように なっている。  As described above, in the hydraulic excavator, the cylinders 105 to 107 are driven to expand and contract, and the working devices 118 such as the boom 103, the stick 104, and the baguette 108 are driven. Various operations such as excavation work are performed.
ところで、 このような各種作業における一動作としては、 例えばいわ ゆる地ならし作業 (レべリングオペレーション) があり、 この地ならし 作業では、 上述のブームアップ, スティックイン及びバゲットインが同 時操作される。  By the way, as one operation in such various operations, there is, for example, a so-called leveling operation (leveling operation). In this leveling operation, the above-described boom-up, stick-in, and baguette-in are simultaneously operated.
ここで、 ブームアップ操作された場合、 ブーム 1 0 3は以下のように して駆動される。  Here, when the boom up operation is performed, the boom 103 is driven as follows.
つまり、 ブームアップ操作が行なわれた場合に、 ブーム 1 0 3を上昇 させるにはブーム駆動用油圧シリンダ 1 0 5を伸長させればよい。 この 場合には、 パイロッ ト油路を通じてパイロッ ト油圧をブーム用制御弁に 作用させる。 これにより、 ブーム用制御弁のスプール位置がブーム上げ 位置となって、 油圧ポンプからの作動油が油路を通じてブーム駆動用油 圧シリンダ 1 0 5の一室へ供給される。 この一方で、 ブーム駆動用油圧 シリンダ 1 0 5の他室内の作動油が、油路を通じてタンクへ排出される。 これにより、 ブーム駆動用油圧シリンダ 1 0 5が伸長しながら、 ブーム 1 0 3を図 8中、 矢印 aで示すように上側へ回動させる。 That is, when the boom-up operation is performed, the boom 103 can be raised by extending the boom drive hydraulic cylinder 105. this In this case, the pilot oil pressure is applied to the boom control valve through the pilot oil passage. As a result, the spool position of the boom control valve becomes the boom raising position, and the hydraulic oil from the hydraulic pump is supplied to one chamber of the boom driving hydraulic cylinder 105 through the oil passage. On the other hand, hydraulic oil in the other room of the boom drive hydraulic cylinder 105 is discharged to the tank through the oil passage. This causes the boom 103 to rotate upward as shown by the arrow a in FIG. 8 while the boom drive hydraulic cylinder 105 extends.
また、 スティックイン操作された場合、 スティック 1 0 4は以下のよ うにして駆動される。  When the stick-in operation is performed, the stick 104 is driven as follows.
つまり、 スティックイン操作が行なわれた場合に、 スティック 1 0 4 を下降させるにはスティック駆動用油圧シリンダ 1 0 6を伸長させれば よい。 この場合には、 パイロッ ト油路を通じてパイロット油圧をスティ ック用制御弁に作用させる。 これにより、 スティック用制御弁のスプ一 ル位置がスティック下げ位置となって、 油圧ポンプからの作動油が油路 を通じてスティック駆動用油圧シリンダ 1 0 6の一室へ供給される。 こ の一方で、 スティック駆動用油圧シリンダ 1 0 6の他室内の作動油が、 油路を通じてタンクへ排出される。 これにより、 スティック駆動用油圧 シリンダ 1 0 6が伸長しながら、 スティック 1 0 4を図 8中、 矢印 dで 示すように下側へ回動させる。  In other words, when the stick-in operation is performed, the stick drive hydraulic cylinder 106 may be extended to lower the stick 104. In this case, the pilot oil pressure is applied to the stick control valve through the pilot oil passage. Thereby, the spool position of the stick control valve becomes the stick lowered position, and the hydraulic oil from the hydraulic pump is supplied to one chamber of the stick driving hydraulic cylinder 106 through the oil passage. On the other hand, the hydraulic oil in the other room of the stick driving hydraulic cylinder 106 is discharged to the tank through the oil passage. As a result, the stick 104 is rotated downward as shown by the arrow d in FIG. 8 while the stick driving hydraulic cylinder 106 is extended.
さらに、 パケッ トイン操作された場合、 パケッ ト 1 0 8は以下のよう にして駆動される。  Further, when a packet-in operation is performed, the packet 108 is driven as follows.
つまり、 バケツ トイン操作が行なわれた場合に、 バケツ ト 1 0 8を 閉じるにはバケツ ト駆動用油圧シリンダ 1 0 7を伸長させれば良い。 こ の場合には、 パイロッ ト油路を通じてパイロッ ト油圧をバケツ ト用制御 弁に作用させる。 これにより、 パケッ ト用制御弁のスプール位置がバゲ ッ ト閉位置となって、 油圧ポンプからの作動油が油路を通じてバケツ ト 駆動用油圧シリンダ 1 0 7の一室へ供給される。 この一方で、 パケット 駆動用油圧シリンダ 1 0 7の他室内の作動油が、 油路を通じてタンクへ 排出される。 これにより、 パケット駆動用油圧シリンダ 1 0 7が伸長し ながら、 バケツ卜 1 0 8を図 8中、 矢印 f で示すように閉方向へ動させ る。 In other words, when the bucket-in operation is performed, the bucket 108 can be closed by extending the bucket driving hydraulic cylinder 107. In this case, the pilot oil pressure is applied to the bucket control valve through the pilot oil passage. As a result, the spool position of the packet control valve becomes the baggage closed position, and the hydraulic oil from the hydraulic pump is bucketed through the oil passage. The hydraulic cylinder for driving 107 is supplied to one chamber. On the other hand, hydraulic oil in the other chamber of the packet driving hydraulic cylinder 107 is discharged to the tank through the oil passage. As a result, the bucket 108 is moved in the closing direction as shown by an arrow f in FIG. 8 while the packet driving hydraulic cylinder 107 is extended.
また、 これらのブーム 1 0 3, スティック 1 0 4及びバケツト 1 0 8 の同時操作性を確保するためには、 油圧ポンプから吐出される作動油の 圧力はこれらの作業機の作動圧力のうちの最大圧力 (最大圧力値) にな るように設定する必要がある。この作動油の圧力を確保する手法として、 各シリンダへ供給する作動油の合計流量よりもポンプ吐出流量を少し多 くして、 余剰ポンプ吐出流量を制御弁のバイパス通路絞りで絞って圧力 を上昇させるのが一般的である。  In addition, in order to ensure the simultaneous operability of these booms 103, sticks 104 and buckets 108, the pressure of the hydraulic oil discharged from the hydraulic pump must be equal to the operating pressure of these working machines. It must be set to the maximum pressure (maximum pressure value). As a method of securing the hydraulic oil pressure, the pump discharge flow rate is slightly larger than the total flow rate of the hydraulic oil supplied to each cylinder, and the excess pump discharge flow rate is reduced by the control valve bypass passage throttle to increase the pressure. It is common.
ところで、 上述のようにブーム 1 0 3 , スティック 1 0 4及びバケツ ト 1 0 8を同時操作する作業として例えば地ならし作業があるが、 この 地ならし作業はブームアップ, スティックイン及びバゲットインのいず れも微操作で行なわれる。 また、 この場合のスティックイン及びバケツ トインの荷重方向はリンケージの自重落下方向であるため、 これらの作 業においては油圧ポンプから吐出される作動油の流量はそれほど必要で なく、 作動油の圧力もあまり必要でない。  By the way, as mentioned above, there is, for example, a leveling operation as an operation for simultaneously operating the boom 103, the stick 104, and the bucket 108. This leveling operation includes any of a boom-up, a stick-in, and a baguette-in. Is also performed by a fine operation. Also, in this case, the load direction of the stick-in and bucket-in is the direction of falling of the linkage's own weight.Therefore, in these operations, the flow rate of the hydraulic oil discharged from the hydraulic pump is not so necessary, and the pressure of the hydraulic oil is also low. Not very necessary.
このような地ならし作業において、 ブーム 1 0 3, スティック 1 0 4 及びバケツト 1 0 8のいずれかを微操作せずに操作する他の作業時にお いて油圧ポンプから吐出される作動油の流量と同量の作動油が供給され ることになると、その分だけ過剰な流量の作動油を供給することになり、 油圧ポンプからのポンプ吐出圧も過剰に高めることになる。  In such a leveling operation, the flow rate of the hydraulic oil discharged from the hydraulic pump during the other operation in which one of the boom 103, the stick 104, and the bucket 108 is operated without fine operation is the same. When an amount of hydraulic oil is supplied, an excess flow of hydraulic oil is supplied, and the pump discharge pressure from the hydraulic pump is also excessively increased.
このように、 過剰なポンプ吐出圧になるように油圧ポンプのポンプ流 量制御を行なうことになるため、 その分だけ油圧ポンプを駆動するェン ジン出力にロスが生じ、 ひいては燃費の悪化につながることになる。 本発明は、 このような課題に鑑み創案されたもので、 いわゆる地なら し作業時においてブーム, スティック, バケツトが微操作された場合に、 ポンプ吐出圧が過剰に上昇しないようにボンプ流量制御を行なうように して、 エンジン出力のロスを抑制し、 ひいては燃費の悪化を防止できる ようにした、 建設機械の制御装置及び制御方法を提供することを目的と する。 発明の開示 As described above, the pump flow rate of the hydraulic pump is controlled so that the pump discharge pressure becomes excessive. This results in loss of gin output, which in turn leads to worse fuel economy. The present invention has been made in view of such a problem, and when the boom, the stick, and the bucket are finely operated during so-called leveling work, the pump flow control is performed so that the pump discharge pressure does not excessively increase. Accordingly, an object of the present invention is to provide a control device and a control method for a construction machine, which are capable of suppressing a loss in engine output and, consequently, preventing deterioration of fuel efficiency. Disclosure of the invention
本発明の建設機械の制御装置は、 タンク内の作動油を吐出する油圧ポ ンプと、 オペレータにより操作される複数の操作部材と、 油圧ポンプか らの吐出流量を制御する制御手段とを備え、 制御手段が、 複数の操作部 材のうちのブーム用操作部材の操作量に基づいてブーム微操作が行なわ れたかを判定するブーム微操作判定手段と、 複数の操作部材のうちのス ティック用操作部材の操作量に基づいてスティック微操作が行なわれた かを判定するスティック微操作判定手段と、 複数の操作部材のうちのバ ケット用操作部材の操作量に基づいてバケツ ト微操作が行なわれたかを 判定するバケツト微操作判定手段と、 ブーム微操作判定手段, ステイツ ク微操作判定手段及びバケツト微操作判定手段の判定結果に基づいて油 圧ポンプの傾転角制御を行なうポンプ傾転角制御手段とを備えることを 特徴としている。  A control device for a construction machine according to the present invention includes a hydraulic pump for discharging hydraulic oil in a tank, a plurality of operating members operated by an operator, and control means for controlling a discharge flow rate from the hydraulic pump. A control unit configured to determine whether the boom fine operation is performed based on an operation amount of the boom operation member of the plurality of operation members; and a stick operation of the plurality of operation members. A stick fine operation determining means for determining whether or not a stick fine operation has been performed based on the operation amount of the member; and a bucket fine operation based on the operation amount of the bucket operating member of the plurality of operating members. Bucket fine operation determining means for determining whether the hydraulic pump is tilted based on the determination results of the boom fine operation determining means, the stick fine operation determining means and the bucket fine operation determining means. It is characterized in that it comprises a pump tilting angle control means for controlling.
好ましくは、 複数の操作部材を、 操作量に応じて電気信号を出力する ように構成し、 制御手段を、 複数の操作部材からの電気信号に基づいて 油圧ポンプの傾転角制御を行なうように構成する。  Preferably, the plurality of operation members are configured to output an electric signal according to the operation amount, and the control means is configured to perform a tilt angle control of the hydraulic pump based on the electric signals from the plurality of operation members. Constitute.
また、 ブーム微操作判定手段を、 ブームアップ微操作が行なわれたか を判定するものとして構成し、 スティック微操作判定手段を、 ステイツ クイン微操作が行なわれたかを判定するものとして構成し、 バケツ ト微 操作判定手段を、 バケツ トイン微操作が行なわれたかを判定するものと して構成し、 ポンプ傾転角制御手段を、 ブーム微操作判定手段, スティ ック微操作判定手段及びバケツ ト微操作判定手段によってブームアップ 微操作, スティックイン微操作及びバケツ トイン微操作が行なわれたと 判定した場合にブーム用操作部材, スティック用操作部材及びバケツ ト 用操作部材からの電気信号に応じて油圧ポンプの傾転角制御を行なうよ うに構成するのも好ましい。 Further, the boom fine operation determining means is configured to determine whether or not the boom up fine operation has been performed, and the stick fine operation determining means includes: The bucket fine operation determining means is configured to determine whether the bucket-in fine operation has been performed, and the pump tilt angle control means is configured to determine whether the bucket fine operation has been performed. When the fine operation determining means, the stick fine operation determining means, and the bucket fine operation determining means determine that the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation have been performed, the boom operating member and the stick operation. It is also preferable to control the tilt angle of the hydraulic pump in accordance with an electric signal from the member and the bucket operating member.
また、 ブーム微操作判定手段を、 ブームアップ微操作が行なわれたか を判定するものとして構成し、 スティック微操作判定手段を、 ステイツ クイン微操作が行なわれたかを判定するものとして構成し、 バケツ ト操 作判定手段を、 バケツ トイン操作が行なわれたかを判定するものとして 構成し、 ポンプ傾転角制御手段を、 ブーム微操作判定手段, スティック 微操作判定手段及びバケツ ト微操作判定手段によってブームアップ微操 作, スティックイン微操作及びバケツ トイン微操作が行なわれたと判定 された場合の該油圧ポンプからの吐出流量を、 微操作のうちのいずれか が微操作でない場合の該油圧ポンプからの吐出流量よりも減らすように 油圧ポンプの傾転角制御を行なうように構成しても良い。  Further, the boom fine operation determining means is configured to determine whether a boom up fine operation has been performed, and the stick fine operation determining means is configured to determine whether a States Quinn fine operation has been performed. The operation determining means is configured to determine whether a bucket-in operation has been performed, and the pump tilt angle controlling means is boom-up by the boom fine operation determining means, the stick fine operation determining means, and the bucket fine operation determining means. The discharge flow rate from the hydraulic pump when it is determined that the fine operation, the stick-in fine operation, and the bucket-in fine operation have been performed, and the discharge flow from the hydraulic pump when any of the fine operations is not a fine operation. The hydraulic pump may be configured to perform tilt angle control so as to reduce the flow rate below the flow rate.
本発明の建設機械の制御方法は、 タンク内の作動油を吐出する油圧ポ ンプと、 オペレータにより操作される複数の操作部材と、 油圧ポンプか らの吐出流量を制御する制御手段とを備える建設機械の制御方法であつ て、 複数の操作部材のうちのブーム用操作部材の操作量に基づいてブー ム微操作が行なわれたかを判定するブーム微操作判定ステップと、 複数 の操作部材のうちのスティ ック用操作部材の操作量に基づいてスティッ ク微操作が行なわれたかを判定するスティ ック微操作判定ステップと、 複数の操作部材のうちのバケツ 卜用操作部材の操作量に基づいてバケツ ト微操作が行なわれたかを判定するバケツ ト微操作判定ステップとから なる判定ステップと、 判定ステップでの判定結果に基づいて油圧ポンプ の傾転角制御を行なう制御ステップとを備える。 A control method for a construction machine according to the present invention includes a hydraulic pump for discharging hydraulic oil in a tank, a plurality of operating members operated by an operator, and control means for controlling a discharge flow rate from the hydraulic pump. A machine control method, comprising: a boom fine operation determining step of determining whether a boom fine operation has been performed based on an operation amount of a boom operating member of the plurality of operating members; A stick fine operation determining step of determining whether a stick fine operation has been performed based on the operation amount of the stick operating member; and a stick fine operation determining step based on the operation amount of the bucket operating member of the plurality of operating members. bucket And a control step of performing a tilt angle control of the hydraulic pump based on a result of the determination in the determining step.
好ましくは、 制御ステップでは、 複数の操作部材の操作量に応じた電 気信号に基づいて油圧ポンプの傾転角制御を行なう。  Preferably, in the control step, the tilt angle of the hydraulic pump is controlled based on an electric signal corresponding to the operation amounts of the plurality of operation members.
また、 ブーム微操作判定ステップでは、 ブームアップ微操作が行なわ れたかを判定し、 スティック微操作判定ステップでは、 スティックイン 微操作が行なわれたかを判定し、 バケツト微操作ステップでは、 バケツ トイン微操作が行なわれたかを判定し、 制御ステップでは、 判定ステツ プでブームアップ微操作, スティックイン微操作及びバケツ トイン微操 作が行なわれたと判定された場合に、 ブーム用操作部材, スティック用 操作部材及びバケツ ト用操作部材からの電気信号に応じて油圧ポンプの 傾転角制御を行なうのも好ましい。  In the boom fine operation determination step, it is determined whether a boom-up fine operation has been performed. In the stick fine operation determination step, it is determined whether a stick-in fine operation has been performed. In the bucket fine operation step, a bucket-in fine operation is performed. In the control step, when it is determined in the determination step that the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation have been performed, the boom operating member and the stick operating member are determined. It is also preferable to control the tilt angle of the hydraulic pump in response to an electric signal from the bucket operating member.
さらに、 ブーム微操作判定ステップでは、 ブームアップ微操作が行な われたかを判定し、 スティック微操作ステップでは、 スティックイン微 操作が行なわれたかを判定し、 バケツ ト微操作ステップでは、 パケッ ト イン微操作が行なわれたかを判定し、 制御ステップでは、 判定ステップ でブームアップ微操作, スティックイン微操作及びバケツ トイン微操作 が行なわれたと判定された場合に、 油圧ポンプからの吐出流量を微操作 のうちのいずれかが微操作でない場合の油圧ポンプからの吐出流量より も減らすように油圧ポンプの傾転角制御を行なうのも好ましい。  Further, in the boom fine operation determination step, it is determined whether a boom up fine operation has been performed. In the stick fine operation step, it is determined whether a stick-in fine operation has been performed. In the bucket fine operation step, a packet in In the control step, if it is determined in the determination step that the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation have been performed, the discharge flow rate from the hydraulic pump is finely controlled. It is also preferable to control the tilt angle of the hydraulic pump so as to reduce the discharge flow rate from the hydraulic pump when any one of the operations is not a fine operation.
このように構成される本発明の建設機械の制御装置及び制御方法によ れば、 ブーム用操作部材, スティック用操作部材及びバゲッ ト用操作部 材の操作量に基づいてブームアップ微操作, スティックイン微操作及び バケツ トイン微操作が同時に行なわれた場合にいわゆる地ならし作業で あると判定し、 この地ならし作業において最適なポンプ流量となるよう に油圧ポンプの傾転角制御を行なうため、 油圧ポンプを駆動するェンジ ンの出力ロスを抑制することができ、 ひいては燃費を良くすることがで きる。 According to the control device and the control method for a construction machine of the present invention configured as described above, the boom-up fine operation and the stick are performed based on the operation amounts of the boom operation member, the stick operation member, and the baguette operation member. If the in-fine operation and the bucket-in fine operation are performed at the same time, it is determined that it is so-called leveling work, and the optimum pump flow rate for this leveling work is determined. Since the tilt angle control of the hydraulic pump is performed in a short time, the output loss of the engine that drives the hydraulic pump can be suppressed, and the fuel efficiency can be improved.
また、 ブーム用操作部材, スティック用操作部材及びパケット用操作 部材の操作量に基づいてブームアップ微操作, スティックイン微操作及 びバケツトイン微操作が同時に行なわれた場合に地ならし作業であると 判定し、 ポンプ吐出圧が過剰に上昇しないようにブーム用操作部材, ス ティック用操作部材及びバケツト用操作部材の操作量に応じてポンプ吐 出流量を減らすように油圧ポンプの傾転角を制御するため、 油圧ポンプ を駆動するエンジンの出力ロスを抑制することができ、 ひいては燃費を 良くすることができる。 図面の簡単な説明  If the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation are simultaneously performed based on the operation amounts of the boom operation member, the stick operation member, and the packet operation member, it is determined that the operation is a leveling operation. The tilt angle of the hydraulic pump is controlled so as to reduce the pump discharge flow according to the operation amount of the boom operating member, the stick operating member, and the bucket operating member so that the pump discharge pressure does not excessively increase. However, the output loss of the engine that drives the hydraulic pump can be suppressed, and the fuel efficiency can be improved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態にかかる建設機械の制御装置における油 圧ポンプの傾転角制御を説明するための制御プロック図である。  FIG. 1 is a control block diagram for explaining tilt angle control of a hydraulic pump in a control device for a construction machine according to an embodiment of the present invention.
図 2は、 本発明の一実施形態にかかる建設機械の制御装置の全体構成 図である。  FIG. 2 is an overall configuration diagram of a control device for a construction machine according to one embodiment of the present invention.
図 3は、 本発明の一実施形態にかかる建設機械の制御装置の制御弁を 説明するための模式図である。  FIG. 3 is a schematic diagram for explaining a control valve of the control device for a construction machine according to one embodiment of the present invention.
図 4は、 本発明の一実施形態にかかる建設機械の制御装置におけるネ ガティブフローコントロールの要求流量とネガコン圧との関係を示す図 である。  FIG. 4 is a diagram showing a relationship between a required flow rate of negative flow control and a negative control pressure in the control device for a construction machine according to one embodiment of the present invention.
図 5は、 本発明の一実施形態にかかる建設機械の制御装置におけるネ ガティブフローコントロールの許容流量とポンプ吐出圧との関係を示す 図である。  FIG. 5 is a diagram showing the relationship between the allowable flow rate of the negative flow control and the pump discharge pressure in the control device for the construction machine according to the embodiment of the present invention.
図 6は、 本発明の一実施形態にかかる建設機械の制御装置におけるネ ガティブフ口一コントロールを説明するためのフローチヤ一トである。 図 7は、 本発明の一実施形態にかかる建設機械の制御装置におけるポ ンプ傾転角制御 (制御方法) を説明するためのフローチャートである。 図 8は、 従来の建設機械を示す模式的斜視図である。 発明を実施するための最良の形態 FIG. 6 is a schematic diagram of a control device for a construction machine according to an embodiment of the present invention. 6 is a flow chart for explaining a gating control. FIG. 7 is a flowchart for explaining pump tilt angle control (control method) in the control device for a construction machine according to one embodiment of the present invention. FIG. 8 is a schematic perspective view showing a conventional construction machine. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面により、 本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
まず、 本実施形態にかかる建設機械について説明する。  First, a construction machine according to the present embodiment will be described.
本建設機械は、 従来技術 (図 8参照) で既に説明したように、 油圧シ ョベル等の建設機械 (作業機械) であって、 上部旋回体 1 0 2と下部走 行体 1 0 0と作業装置 1 1 8とからなっている。  This construction machine is a construction machine (working machine) such as a hydraulic shovel, as described in the prior art (see FIG. 8), and works with the upper revolving unit 102 and the lower traveling unit 100. The device consists of 1 1 8.
下部走行体 1 0 0は、 互いに独立して駆動しうる右トラック 1 0 O R 及び左トラック 1 0 0 Lをそなえており、 一方、 上部旋回体 1 0 2は、 下部走行体 1 0 0に対して水平面内で旋回可能に設けられている。  The undercarriage 100 has a right track 10OR and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has It is provided so that it can turn in a horizontal plane.
また、 作業装置 1 1 8は、 主にブーム 1 0 3, スティック 1 0 4 , ノ ケット 1 0 8等からなっており、 ブーム 1 0 3は、 上部旋回体 1 0 2に 対して回動可能に枢着されている。 また、 ブーム 1 0 3の先端には、 同 じく鉛直面内に回動可能にスティック 1 0 4が接続されている。  In addition, the working device 118 mainly comprises a boom 103, a stick 104, a knotting 108, and the like, and the boom 103 can rotate with respect to the upper swing body 102. Is pivoted to. A stick 104 is connected to the end of the boom 103 so as to be rotatable in the same vertical plane.
また、 上部旋回体 1 0 2とブーム 1 0 3との間には、 ブーム 1 0 3を 駆動するためのブーム駆動用油圧シリンダ (ブ一ムシリンダ, 油圧ァク チユエ一夕) 1 0 5が設けられるとともに、 ブーム 1 0 3とスティック 1 0 4との間には、 スティック 1 0 4を駆動するためのスティック駆動 用油圧シリンダ (スティックシリンダ, 油圧ァクチユエ一夕) 1 0 6が 設けられている。 また、 スティック 1 0 4とバケツト 1 0 8との間には、 バケツト 1 0 8を駆動するためのバケツト駆動用油圧シリンダ (バケツ トシリンダ, 油圧ァクチユエ一夕) 1 0 7が設けられている。 そして、 このような構成により、 ブーム 1 0 3は図中 a方向及び b方 向に、 スティック 1 0 4は図中 c方向及び d方向に、 ノ ケット 1 0 8は 図中 e方向及び f 方向に回動可能に構成されている。 A boom drive hydraulic cylinder (boom cylinder, hydraulic actuator) 105 for driving the boom 103 is provided between the upper swing body 102 and the boom 103. At the same time, a hydraulic cylinder (stick cylinder, hydraulic actuator) 106 for driving the stick 104 is provided between the boom 103 and the stick 104. A bucket driving hydraulic cylinder (bucket cylinder, hydraulic actuator) 107 for driving the bucket 108 is provided between the stick 104 and the bucket 108. With such a configuration, the boom 103 is in the directions a and b in the figure, the stick 104 is in the directions c and d in the figure, and the knocket 108 is the direction e and f in the figure. It is configured to be rotatable.
ここで、 図 2はこのような油圧ショベルの油圧回路の要部を模式的に 示す図である。  Here, FIG. 2 is a diagram schematically showing a main part of a hydraulic circuit of such a hydraulic shovel.
図 2に示すように、 上述の左トラック 1 0 0 L及び右トラック 1 0 0 Rには、 それぞれ独立した動力源としての走行モータ 1 0 9 L, 1 0 9 Rが設けられ、 また、 上部旋回体 1 0 2には、 下部走行体 1 0 0に対し て上部旋回体 1 0 2を旋回駆動させるための旋回モータ 1 1 0が設けら れている。  As shown in FIG. 2, the left track 100L and the right track 100R are provided with traveling motors 109L and 109R as independent power sources, respectively. The revolving unit 102 is provided with a revolving motor 110 for driving the upper revolving unit 102 to revolve with respect to the lower traveling unit 100.
これらの走行モータ 1 0 9 L, 1 0 9 Rや旋回モー夕 1 1 0は、 油圧 により作動する油圧モー夕として構成されており、 後述するようにェン ジン (主に、 ディーゼルエンジン) 5 0により駆動される複数 (ここで は 2つ) の油圧ポンプ 5 1 , 5 2からの作動油が油圧回路 5 3を介して 所定圧力とされて供給され、 このようにして供給される作動油圧に応じ て各油圧モータ 1 0 9 L, 1 0 9 R , 1 1 0が駆動されるようになって いる。  These traveling motors 109 L and 109 R and the turning motor 110 are configured as hydraulic motors operated by hydraulic pressure, and as described later, the engine (mainly a diesel engine) 5 Hydraulic oil from a plurality (here, two) of hydraulic pumps 51, 52 driven by 0 is supplied at a predetermined pressure via a hydraulic circuit 53, and the hydraulic pressure supplied in this manner is provided. The hydraulic motors 109 L, 109 R, and 110 are driven in accordance with the conditions.
ここで、 油圧ポンプ 5 1 , 5 2は、 リザ一バタンク 7 0内の作動油を 所定油圧として吐出するもので、 ここでは、 斜板回転式ピストンポンプ (ピストン型可変容量ポンプ, 可変吐出量形ピストンポンプ) として構 成されている。 これらの油圧ポンプ 5 1, 5 2は、 油圧ポンプ内に設け られたピストン (図示略) のストローク量を変更することでポンプ吐出 流量を調整しうるようになっている。  Here, the hydraulic pumps 51 and 52 discharge the hydraulic oil in the reservoir tank 70 as a predetermined oil pressure. Here, a swash plate rotary piston pump (piston type variable displacement pump, variable discharge amount type) is used. (Piston pump). These hydraulic pumps 51 and 52 can adjust the pump discharge flow rate by changing the stroke amount of a piston (not shown) provided in the hydraulic pump.
つまり、 これらの油圧ポンプ 5 1, 5 2では、 上記ピストンの一端が 斜板 (クリーププレート : 図示略) に当接するように構成されており、 この斜板の傾き (傾転角) を後述するコントローラ 1からの作動信号に 基づいて変更することでビストンのストローク量を変更してポンプ吐出 流量を調整しうるようになっている。 That is, in these hydraulic pumps 51 and 52, one end of the piston is configured to contact a swash plate (creep plate: not shown), and the inclination (tilt angle) of the swash plate will be described later. To the operation signal from controller 1. Based on the change, the stroke amount of the piston can be changed to adjust the pump discharge flow rate.
このようにコントローラ 1からの作動信号に基づいて斜板の傾きを変 更しうるようになつており、 油圧回路を構成する油路内の作動油の圧力 のほかに、 ォペレ一夕による各操作部材 5 4の操作量をも加味すること ができるため、 従来のように油路内の作動油の圧力を導いて斜板の傾き を変更するものに比べ、 オペレータの運転フィ一リングを向上させるこ とができることになる。  In this way, the inclination of the swash plate can be changed based on the operation signal from the controller 1, and in addition to the pressure of the hydraulic oil in the oil passage that composes the hydraulic circuit, each operation by operating Since the amount of operation of the member 54 can be taken into account, the operator's driving feeling is improved compared to the conventional method in which the pressure of the hydraulic oil in the oil passage is guided to change the inclination of the swash plate. You can do that.
また、 エンジン 5 0は、 オペレータがエンジン回転速度設定ダイヤル を切り替えることでエンジン回転速度を設定できるようになつており、 ここでは、 最大エンジン回転速度 (例えば約 2 0 0 0 r p m) と最小ェ ンジン回転速度 (例えば約 1 0 0 0 r p m) との間で複数段階に切り換 えられるようになつている。 なお、 エンジン回転速度はこのように段階 的に切り換えるものに限られず、 滑らかに変更しうるものであっても良 い。 また、 エンジン 5 0の全馬力はこれらの油圧ポンプ 5 1 , 5 2及び 後述するパイロットポンプ 8 3を駆動するために消費される。  The engine 50 is designed so that the operator can set the engine speed by switching the engine speed setting dial. Here, the maximum engine speed (for example, about 200 rpm) and the minimum engine speed are set. It is designed to be able to be switched in multiple stages between a rotating speed (for example, about 100 rpm). Note that the engine speed is not limited to such a stepwise switching, but may be a type that can be changed smoothly. The total horsepower of the engine 50 is consumed to drive these hydraulic pumps 51, 52 and a pilot pump 83, which will be described later.
また、 各シリンダ 1 0 5〜 1 0 7についても、 これらの走行モータ 1 0 9 L , 1 0 9 Rや旋回モ一夕 1 1 0と同様に、 エンジン 5 0により駆 動される複数 (ここでは 2つ) の油圧ポンプ 5 1 , 5 2から供給される 作動油の油圧により駆動されるようになっている。  In addition, the cylinders 105 to 107 are also driven by the engine 50 in the same manner as the traveling motors 109 L and 109 R and the turning motor 110. Are driven by the hydraulic pressure of hydraulic oil supplied from two hydraulic pumps 51 and 52.
また、 運転操作室 1 0 1には、 油圧ショベルの作動 (走行, 旋回, ブ ーム回動, スティック回動及びバゲット回動) を制御するために左レバ 一, 右レバー, 左ペダル及び右ペダル等の複数の操作部材 5 4が備えら れている。 これらの操作部材 5 4は電気式操作部材 (例えば電気式操作 レバ一) として構成され、 その操作量に応じた電気信号を後述するコン トローラ (制御手段) 1へ出力するようになっている。 そして、 例えばオペレータがこれらの操作部材 5 4を操作することに より、 油圧回路 5 3に介装される各制御弁 5 7〜6 0, 6 2〜6 5が制 御されて、 各シリンダ 1 0 5〜 1 0 7や油圧モー夕 1 0 9 L, 1 0 9 R , 1 1 0が駆動される。 これにより、 上部旋回体 1 0 2を旋回させたり、 ブーム 1 0 3,スティック 1 0 4及びバケツ ト 1 0 8等を回動させたり、 油圧ショベルを走行させることができるのである。 The operation room 101 has a left lever, a right lever, a left pedal and a right pedal for controlling the operation of the hydraulic excavator (running, turning, boom turning, stick turning, and baguette turning). A plurality of operation members 54 such as pedals are provided. These operation members 54 are configured as electric operation members (for example, electric operation levers), and output an electric signal corresponding to the operation amount to a controller (control means) 1 described later. For example, when the operator operates these operating members 54, the control valves 57 to 60 and 62 to 65 interposed in the hydraulic circuit 53 are controlled, and the cylinders 1 to 1 are controlled. 05 to 107 and hydraulic motors 109L, 109R, 110 are driven. As a result, the upper swing body 102 can be turned, the boom 103, the stick 104, the bucket 108, and the like can be turned, and the hydraulic shovel can be run.
なお、 ブーム 1 0 3を回動させる場合に操作するものをブーム用操作 部材 5 4 aといい、 スティック 1 0 4を回動させる場合に操作するもの をスティック用操作部材 5 4 bといい、 バケツ ト 1 0 8を回動させる場 合に操作するものをバケツ ト用操作部材 5 4 cという。  The member operated when rotating the boom 103 is referred to as a boom operating member 54a, and the member operated when rotating the stick 104 is referred to as a stick operating member 54b. A member operated when rotating the bucket 108 is referred to as a bucket operating member 54c.
次に、 これらの各シリンダ等を制御するための油圧回路 5 3について 説明する。  Next, a hydraulic circuit 53 for controlling these cylinders and the like will be described.
油圧回路 5 3は、 図 2に示すように、 第 1回路部 5 5と、 第 2回路部 5 6とを備える。  As shown in FIG. 2, the hydraulic circuit 53 includes a first circuit unit 55 and a second circuit unit 56.
このうち、 第 1回路部 5 5は、 第 1油圧ポンプ 5 1に接続される油路 Among them, the first circuit section 55 is an oil passage connected to the first hydraulic pump 51.
6 1 と、 油路 6 1に介装される右走行モータ用制御弁 5 7 , パケッ ト用 制御弁 5 8 , 第 1ブーム用制御弁 5 9 , 第 2スティック用制御弁 6 0等 の制御弁とを備えて構成される。 6 1 and control of the right travel motor control valve 57 interposed in the oil passage 61, the packet control valve 58, the first boom control valve 59, the second stick control valve 60 etc. And a valve.
そして、 第 1油圧ポンプ 5 1からの作動油が、 油路 6 1 , 右走行モー 夕用制御弁 5 7を介して右走行モータ 1 0 9 Rへ供給され、 右走行モー 夕 1 0 9 Rを駆動するようになっている。 また、 第 1油圧ポンプ 5 1か らの作動油は、 油路 6 1 , バケツ ト用制御弁 5 8を介してバケツ ト駆動 用油圧シリンダ 1 0 7へ供給されるとともに、 油路 6 1 , 第 1ブーム用 制御弁 5 9を介してブーム駆動用油圧シリンダ 1 0 5へ供給され、 さら に油路 6 1, 第 2スティック用制御弁 6 0を介してスティック駆動用油 圧シリンダ 1 0 6へ供給され、 これにより、 各シリンダ 1 0 5 , 1 0 6 , 1 0 7が駆動されるようになっている。 Then, the hydraulic oil from the first hydraulic pump 51 is supplied to the right traveling motor 109 R via the oil passage 61, the right traveling motor evening control valve 57, and the right traveling motor 109 R Is to be driven. The hydraulic oil from the first hydraulic pump 51 is supplied to the bucket driving hydraulic cylinder 107 via the oil passage 61 and the bucket control valve 58, and the oil passage 61, It is supplied to the boom drive hydraulic cylinder 105 via the first boom control valve 59, and is further connected to the stick drive hydraulic cylinder 106 via the oil passage 61 and the second stick control valve 60. To each cylinder 1 0 5, 1 0 6, 107 is driven.
また、 第 1回路部 5 5の油路 6 1の下流側には絞り (リリーフ弁付き 絞り) 8 1が備えられており、 この絞り 8 1を通じて第 1油圧ポンプ 5 1からの作動油をリザーバタンク 7 0へ戻すようになつている。  A throttle (throttle with a relief valve) 81 is provided downstream of the oil passage 61 of the first circuit portion 55, and hydraulic fluid from the first hydraulic pump 51 is supplied to the reservoir through the throttle 81. It returns to tank 70.
第 2回路部 5 6は、 第 2油圧ポンプ 5 2に接続される油路 6 6と、 油 路 6 6に介装される左走行モータ用制御弁 6 2 , 旋回モー夕用制御弁 6 3, 第 1スティック用制御弁 6 4, 第 2ブーム用制御弁 6 5等の制御弁 と、 絞り 8 2とを備えて構成される。  The second circuit section 56 includes an oil passage 66 connected to the second hydraulic pump 52, a left traveling motor control valve 62 interposed in the oil passage 66, and a turning motor control valve 6 3 , A control valve for the first stick 64, a control valve for the second boom 65, etc .;
そして、 第 2油圧ポンプ 5 2からの作動油が、 油路 6 6 , 左走行モー 夕用制御弁 6 2を介して左走行モータ 1 0 9 Lへ供給され、これにより、 左走行モー夕 1 0 9 Lが駆動されるようになっている。 また、 第 2油圧 ポンプ 5 2からの作動油は、 油路 6 6 , 旋回モータ用制御弁 6 3を介し て旋回モータ 1 1 0へ供給され、 これにより、 旋回モー夕 1 1 0が駆動 されるようになつている。 さらに、第 2油圧ポンプ 5 2からの作動油は、 油路 6 6, 第 1スティック用制御弁 6 4を介してスティック駆動用油圧 シリンダ 1 0 6へ供給されるとともに、 油路 6 6, 第 2ブーム用制御弁 6 5を介してブーム駆動用油圧シリンダ 1 0 5へ供給され、これにより、 各シリンダ 1 0 5 , 1 0 6が駆動されるようになっている。  Then, the hydraulic oil from the second hydraulic pump 52 is supplied to the left traveling motor 109 L via the oil passage 66 and the left traveling motor control valve 62, whereby the left traveling motor 1 0 9 L is driven. Hydraulic oil from the second hydraulic pump 52 is supplied to the swing motor 110 via the oil passage 66 and the swing motor control valve 63, whereby the swing motor 110 is driven. It has become so. Further, the hydraulic oil from the second hydraulic pump 52 is supplied to the hydraulic cylinder 106 for driving the stick via the oil passage 66 and the control valve 64 for the first stick. It is supplied to the boom drive hydraulic cylinder 105 via the boom control valve 65, whereby the respective cylinders 105, 106 are driven.
また、 第 2回路部 5 6の油路 6 6の下流側には絞り (リリーフ弁付き 絞り) 8 2が備えられており、 この絞り 8 2を通じて第 2油圧ポンプ 5 2からの作動油をリザ一バタンク 7 0へ戻すようになつている。  A throttle (a throttle with a relief valve) 82 is provided on the downstream side of the oil passage 66 of the second circuit portion 56, and the hydraulic oil from the second hydraulic pump 52 is reservoired through the throttle 82. It is designed to return to one tank 70.
なお、 各制御弁 5 7〜6 0, 6 2〜6 5は、 図示しないコントロール ュニット内に収納されている。  The control valves 57 to 60 and 62 to 65 are housed in a control unit (not shown).
このように、 本実施形態では、 建設機械の作業において重要なスティ ック 1 0 4に他の作業機 1 1 8との同時操作時においても十分な作動油 が供給されるように、 第 2回路部 5 6の第 2油圧ポンプ 5 2からの作動 油に加え、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作動油もスティ ック駆動用油圧シリンダ 1 0 6へ供給されるようになっている。 As described above, in the present embodiment, the second stick is set so that a sufficient hydraulic oil is supplied to the important stick 104 in the operation of the construction machine even at the same time when the other work machine 118 is operated simultaneously. Operation of the circuit section 56 from the second hydraulic pump 52 In addition to the oil, hydraulic oil from the first hydraulic pump 51 of the first circuit section 55 is also supplied to the stick driving hydraulic cylinder 106.
このため、 第 2回路部 5 6の油路 6 6に第 1スティック用制御弁 6 4 が介装され、 第 1回路部 5 5の油路 6 1に第 2スティック用制御弁 6 0 が介装されている。 そして、 第 1スティック用制御弁 6 4を比例制御弁 6 4 a , 6 4 bにより制御するとともに、 第 2スティック用制御弁 6 0 を比例制御弁 6 0 a , 6 0 bにより制御することにより、 スティック駆 動用油圧シリンダ 1 0 6への作動油の給排を行なえるようになつている c 同様に、 他の作業機 1 1 8との同時操作時においてもブーム 1 0 3に 十分な作動油が供給されるように、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作動油に加え、 第 2回路部 5 6の第 2油圧ポンプ 5 2からの作 動油もブーム駆動用油圧シリンダ 1 0 5へ供給されるようになっている このため、 第 1回路部 5 5の油路 6 1に第 1ブーム用制御弁 5 9が介 装され、 第 2回路部 5 6の油路 6 6に第 2ブーム用制御弁 6 5が介装さ れている。 そして、 第 1ブーム用制御弁 5 9を比例制御弁 5 9 a, 5 9 bにより制御するとともに、 第 2ブーム用制御弁 6 5を比例制御弁 6 5 a , 6 5 bにより制御することにより、 ブーム駆動用油圧シリンダ 1 0 5への作動油の給排を行なえるようになつている。 For this reason, the first stick control valve 64 is interposed in the oil passage 66 of the second circuit portion 56, and the second stick control valve 60 is interposed in the oil passage 61 of the first circuit portion 55. Is equipped. The first stick control valve 64 is controlled by the proportional control valves 64a and 64b, and the second stick control valve 60 is controlled by the proportional control valves 60a and 60b. The hydraulic cylinder for driving the stick 106 can supply and discharge the hydraulic oil c.Sufficient operation of the boom 103 when operating simultaneously with other work equipment 118 as well as c In order to supply oil, in addition to the hydraulic oil from the first hydraulic pump 51 of the first circuit section 55, the hydraulic oil from the second hydraulic pump 52 of the second circuit section 56 is also used for boom drive. As a result, the control valve 59 for the first boom is interposed in the oil passage 61 of the first circuit section 55, and the oil in the second circuit section 56 is supplied to the hydraulic cylinder 105. A second boom control valve 65 is interposed in the road 66. The first boom control valve 59 is controlled by the proportional control valves 59a and 59b, and the second boom control valve 65 is controlled by the proportional control valves 65a and 65b. The hydraulic oil can be supplied to and discharged from the boom drive hydraulic cylinder 105.
また、 本実施形態では、 スティック駆動用油圧シリンダ 1 0 6への作 動油の給排を行なう油路 6 7, 6 8にはスティック用再生弁 7 6が介装 されており、 作動油排出側油路から作動油供給側油路へ所定量の作動油 を再生できるようになつている。  In this embodiment, a stick regeneration valve 76 is interposed in the oil passages 67, 68 for supplying and discharging hydraulic oil to and from the hydraulic cylinder 106 for driving the stick. A predetermined amount of hydraulic oil can be regenerated from the side oil passage to the hydraulic oil supply-side oil passage.
同様に、 ブーム駆動用油圧シリンダ 1 0 5への作動油の給排を行なう 油路 7 8 , 7 9にもブーム用再生弁 7 7が介装されており、 作動油排出 側油路から作動油供給側油路へ所定量の作動油を再生できるようになつ ている。 ここで、 各制御弁 5 7〜 60, 6 2〜6 5は、 図 3に示すように、 ス プール弁として構成され、 いずれも複数 (ここでは 5つ) の絞りを備え て構成される。 Similarly, boom regeneration valves 77 are also interposed in the oil passages 7 8 and 7 9 that supply and discharge hydraulic oil to the boom drive hydraulic cylinder 105, and operate from the hydraulic oil discharge side oil passage. A predetermined amount of hydraulic oil can be regenerated to the oil supply side oil passage. Here, as shown in FIG. 3, each of the control valves 57 to 60 and 62 to 65 is configured as a spool valve, and each is provided with a plurality (here, five) of throttles.
つまり、 各制御弁 5 7〜60, 62〜 6 5は、 図 3に示すように、 第 1油圧ポンプ 5 1, 第 2油圧ポンプ 52とスティック駆動用油圧シリン ダ 1 06とを連通する油路 (作動油供給通路, P— C通路) 6 1 a, 6 6 aに介装される P— C絞り 8と、 スティック駆動用油圧シリンダ 1 0 6とリザーバタンク 7 0とを連通する油路 (作動油排出通路, C— T通 路) 66 b, 6 9に介装される C— T絞り 9と、 第 1油圧ポンプ 5 1, 第 2油圧ポンプ 5 2とリザーバタンク 7 0とを連通する油路 (バイパス 通路) 6 1 b, 6 6 cに介装されるバイパス通路絞り 1 0とを備えて構 成される。  That is, as shown in FIG. 3, each of the control valves 57 to 60 and 62 to 65 is an oil passage that connects the first hydraulic pump 51 and the second hydraulic pump 52 to the stick driving hydraulic cylinder 106. (Hydraulic oil supply passage, P-C passage) 61-a, 66-a, a P-C throttle 8 and an oil passage connecting the stick drive hydraulic cylinder 106 and the reservoir tank 70 ( (Hydraulic oil discharge passage, C-T passage) Connects the C-T throttle 9 interposed between 66 b, 69, the first hydraulic pump 51, the second hydraulic pump 52, and the reservoir tank 70. The oil passage (bypass passage) 61 b, 66 c is provided with a bypass passage throttle 10 interposed therebetween.
なお、 図 3ではスティック用制御弁 60, 64はスティック下げ位置 になっているが、 スティック用制御弁 60, 64を、 図 3中、 上方向へ 移動させて、 スティック用制御弁 60 , 64のバイパス通路絞り 1 0を バイパス通路 6 1 b, 66 cに介装させることで、 スティック用制御弁 6 0, 64を中立位置とすることができ、 また、 スティック用制御弁 6 0, 64を、 図 3中、 最も上方向へ移動させて、 スティック用制御弁 6 0, 64の P— C絞り 8を P— C通路 6 1 a, 6 6 aに介装させるとと もに、 スティック用制御弁 60 , 64の C— T絞り 9を C— T通路 66 b, 6 9に介装させることで、 スティック用制御弁 6 0, 64をスティ ック上げ位置にすることができる。  Although the stick control valves 60 and 64 are in the stick lowered position in FIG. 3, the stick control valves 60 and 64 are moved upward in FIG. By interposing the bypass passage restrictor 10 in the bypass passages 61b and 66c, the stick control valves 60 and 64 can be set to the neutral position. In Fig. 3, by moving it to the uppermost position, the PC throttles 8 of the stick control valves 60 and 64 are interposed in the PC passages 61a and 66a, and the stick control is performed. By interposing the C—T throttle 9 of the valves 60 and 64 in the C—T passages 66 b and 69, the stick control valves 60 and 64 can be in the stick-up position.
なお、 絞り 8, 9, 1 0の径の設定においては、 ブーム 1 0 3ゃステ イツク 1 04等の作業装置 1 1 8の連動性を確保すべく、 各操作部材 5 4がフル操作されている場合に全ての作業装置 1 1 8が動くように考慮 される。 そして、 P _C絞り 8によって、 第 1油圧ポンプ 5 1 , 第 2油圧ボン プ 5 2とスティック駆動用油圧シリンダ 1 0 6とを連通する油路 6 1 a, 66 aの開口面積 (作動油供給通路の開口面積, P— C開口面積) が調 整される。 In setting the diameters of the apertures 8, 9, and 10, the operating members 54 are fully operated to ensure the interlocking of the working devices 118 such as the boom 103 and the stick 104. All working devices 1 18 are considered to move when they are in use. The opening area of the oil passages 61 a and 66 a communicating the first hydraulic pump 51 and the second hydraulic pump 52 and the stick driving hydraulic cylinder 106 by the P_C throttle 8 (the hydraulic oil supply) The opening area of the passage and the PC opening area are adjusted.
C— T絞り 9によって、 スティック駆動用油圧シリンダ 1 06とリザ ーバタンク 7 0とを連通する油路 6 6 b, 6 9の開口面積 (作動油排出 通路の開口面積, C一 T開口面積) が調整される。  The opening area (opening area of the hydraulic oil discharge passage, opening area of C-T opening) of the oil passages 66 b and 69 communicating the stick drive hydraulic cylinder 106 and the reservoir tank 70 is increased by the C-T throttle 9. Adjusted.
バイパス通路絞り 1 0によって、 第 1油圧ポンプ 5 1, 第 2油圧ボン プ 52とリザーバタンク 7 0とを連通する油路 6 1 b, 6 6 cの開口面 積 (バイパス通路の開口面積) が調整される。  By the bypass passage restrictor 10, the opening area (opening area of the bypass passage) of the oil passages 61b and 66c communicating the first hydraulic pump 51 and the second hydraulic pump 52 with the reservoir tank 70 is reduced. Adjusted.
ところで、 本実施形態では、 図 2に示すように、 各制御弁 57〜6 0, 62〜 6 5を制御するために、 パイロッ トポンプ 83と、 比例減圧弁 5 7 a〜60 a, 5 7 b〜60 b, 6 2 a〜6 5 a, 62 b〜6 5 bとを 備えるパイロット油圧回路が設けられている。 なお、 図 2では、 パイ口 ット油圧回路に備えられるパイ口ッ トポンプ 8 3及び比例減圧弁 5 7 a 〜60 a, 5 7 b〜6 0 b, 6 2 a〜6 5 a, 62 b〜6 5 bのみを図 示し、パイロット油路を省略してパイ口ッ ト油圧を符号 Pで示している。 ここで、 比例減圧弁 5 7 a〜 6 0 a , 5 7 b〜 60 b, 62 a〜 6 5 a, 6 2 b〜6 5 bは、 電磁弁であって、 後述するコントローラ 1から の作動信号により作動されるようになっている。 これにより、 パイロッ トポンプ 8 3からのパイ口ット油圧をコントロ一ラ 1からの作動信号に 基づいて所定圧として各制御弁 5 7〜60, 62〜6 5に作用させるよ うになっている。  By the way, in this embodiment, as shown in FIG. 2, in order to control each of the control valves 57 to 60, 62 to 65, a pilot pump 83 and proportional pressure reducing valves 57a to 60a, 57b A pilot hydraulic circuit including を 60 b, 62 a〜65 a, and 62 b〜65 b is provided. In Fig. 2, the pilot pump 83 provided in the pilot hydraulic circuit and the proportional pressure reducing valves 57a to 60a, 57b to 60b, 62a to 65a, 62b 665b only, the pilot oil passage is omitted, and the pilot oil pressure is indicated by the symbol P. Here, the proportional pressure reducing valves 57a to 60a, 57b to 60b, 62a to 65a, 62b to 65b are solenoid valves, and are operated by the controller 1 described later. It is activated by a signal. As a result, the pilot oil pressure from the pilot pump 83 is applied to each of the control valves 57 to 60 and 62 to 65 as a predetermined pressure based on the operation signal from the controller 1.
このような構成により、 例えばブーム 1 0 3を作動させるには、 運 転操作室 1 0 1内のブーム用操作部材 54 aを操作して、 パイロッ トポ ンプ 83からのパイ口ッ ト油圧 Pを図示しないパイ口ッ ト油路を通じて、 ブーム用制御弁 5 9 , 6 5に作用させて、 ブーム用制御弁 5 9 , 6 5を 所要の位置に移動させる。 これにより、 ブーム駆動用油圧シリンダ 1 0 5の作動油が給排調整され、 これらのシリンダ 1 0 5が所要の長さに伸 縮駆動され、 これにより、 ブーム 1 0 3が作動される。 With such a configuration, for example, in order to operate the boom 103, the boom operating member 54a in the operation room 101 is operated to reduce the hydraulic pressure P from the pilot pump 83. Through a pie mouth oil passage not shown By operating the boom control valves 59, 65, the boom control valves 59, 65 are moved to required positions. Accordingly, the supply and discharge of the hydraulic oil of the boom drive hydraulic cylinder 105 is adjusted, and these cylinders 105 are driven to expand and contract to a required length, whereby the boom 103 is operated.
例えば、 ブーム 1 0 3を下側へ回動させる (ブームダウン) には、 ブ ーム駆動用油圧シリンダ 1 0 5を収縮させればよい。 この場合には、 パ イロット油路を通じてパイ口ット油圧を第 1ブーム用制御弁 5 9に作用 させる。 これにより、 第 1ブーム用制御弁 5 9のスプール位置がブーム 下側回動位置 (ブームダウン位置) となって、 第 1回路部 5 5の第 1油 圧ポンプ 5 1からの作動油が油路 9 5, 7 9を経て、 ブーム駆動用油圧 シリンダ 1 0 5の一室へ供給され、 ブーム駆動用油圧シリンダ 1 0 5の 一室へ供給される。 この一方で、 ブーム駆動用油圧シリンダ 1 0 5の他 室内の作動油が、 油路 7 8, 6 9を経てリザーバタンク 7 0へ排出され る。 これにより、 ブーム駆動用油圧シリンダ 1 0 5が収縮しながら、 ブ ーム 1 0 3を図 8中、 矢印 bで示すように下側へ回動させる。  For example, to rotate the boom 103 downward (boom down), the boom drive hydraulic cylinder 105 may be contracted. In this case, the pilot port hydraulic pressure is applied to the first boom control valve 59 through the pilot oil passage. As a result, the spool position of the first boom control valve 59 becomes the boom lower rotation position (boom down position), and the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 becomes oily. It is supplied to one chamber of the boom drive hydraulic cylinder 105 via the passages 95 and 79, and is supplied to one chamber of the boom drive hydraulic cylinder 105. On the other hand, the hydraulic oil in the other room of the boom drive hydraulic cylinder 105 is discharged to the reservoir tank 70 through the oil passages 78 and 69. As a result, the boom driving hydraulic cylinder 105 contracts while the boom 103 is turned downward as shown by the arrow b in FIG.
逆に、 ブーム 1 0 3を上側へ回動させる (ブームアップ) には、 ブー ム駆動用油圧シリンダ 1 0 5を伸長させればよい。 この場合には、 パイ ロット油路を通じてパイロット油圧を第 1ブーム用制御弁 5 9 , 第 2ブ ーム用制御弁 6 5に作用させる。 これにより、第 1ブーム用制御弁 5 9, 第 2ブーム用制御弁 6 5のスプール位置がブーム上側回動位置 (ブーム アップ位置) となって、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作 動油が油路 9 5 , 7 8を経て、 ブーム駆動用油圧シリンダ 1 0 5の一室 へ供給され、 さらに、 第 2回路部 5 6の第 2油圧ポンプ 5 2からの作動 油が油路 6 6 a, 9 0, 7 8を経て、 ブーム駆動用油圧シリンダ 1 0 5 の他室へ供給される。 この一方で、 ブーム駆動用油圧シリンダ 1 0 5の 一室内の作動油が、 油路 7 9 , 9 1, 6 6 b又は、 油路 7 9, 6 9を経 てリザ一バタンク 7 0へ排出される。 これにより、 ブーム駆動用油圧シ リンダ 1 0 5が伸長しながら、 ブーム 1 0 3を図 8中、 矢印 aで示すよ うに上側へ回動させる。 Conversely, to rotate the boom 103 upward (boom up), the boom drive hydraulic cylinder 105 may be extended. In this case, the pilot oil pressure is applied to the first boom control valve 59 and the second boom control valve 65 through the pilot oil passage. As a result, the spool position of the first boom control valve 59 and the second boom control valve 65 becomes the boom upper rotation position (boom up position), and the first hydraulic pump 5 of the first circuit portion 55 Hydraulic oil from 1 is supplied to one chamber of the boom drive hydraulic cylinder 105 through oil passages 95, 788, and further actuated from the second hydraulic pump 52 of the second circuit section 56. Oil is supplied to the other chamber of the boom drive hydraulic cylinder 105 via the oil passages 66a, 90, 78. On the other hand, the hydraulic oil in one room of the boom drive hydraulic cylinder 105 flows through the oil passages 79, 91, 66 b or 79, 69. Is discharged to the reservoir tank 70. This causes the boom 103 to rotate upward as shown by the arrow a in FIG. 8 while the boom drive hydraulic cylinder 105 extends.
さらに、 ブーム駆動用油圧シリンダ 1 0 5の現状態を保持するには、 パイロット油圧を第 1ブーム用制御弁 5 9, 第 2ブーム用制御弁 6 5に 適宜作用させて、 第 1ブーム用制御弁 5 9, 第 2ブーム用制御弁 6 5の 各スプールの位置を中立位置 (油圧給排路遮断位置) にすればよい。 こ れにより、 ブーム駆動用油圧シリンダ 1 0 5の各油室における作動油の 給排が停止され、 ブーム 1 0 3が現位置に保持される。  In addition, in order to maintain the current state of the boom drive hydraulic cylinder 105, the pilot hydraulic pressure is applied to the first boom control valve 59 and the second boom control valve 65 appropriately to control the first boom. The position of each spool of the valve 59 and the second boom control valve 65 may be set to the neutral position (the hydraulic supply / discharge path shutoff position). As a result, the supply and discharge of hydraulic oil in each oil chamber of the boom drive hydraulic cylinder 105 is stopped, and the boom 103 is held at the current position.
また、 例えばスティック 1 0 4を作動させるには、 運転操作室 1 0 1 内の操作部材 5 4を操作して、 パイロットポンプ 8 3からのパイロット 油圧 Pを図示しないパイ口ット油路を通じて、スティック用制御弁 6 0 , 6 4に作用させて、 スティック用制御弁 6 0, 6 4を所要の位置に駆動 させるようにする。 これにより、 スティック駆動用油圧シリンダ 1 0 6 の作動油が給排調整され、 これらのシリンダ 1 0 5, 1 0 6が所要の長 さに伸縮駆動され、 これにより、 スティック 1 0 4が作動される。  Further, for example, to operate the stick 104, the operating member 54 in the operation room 101 is operated, and the pilot hydraulic pressure P from the pilot pump 83 is passed through a pipe oil passage (not shown). By acting on the stick control valves 60 and 64, the stick control valves 60 and 64 are driven to required positions. As a result, the hydraulic fluid of the stick driving hydraulic cylinder 106 is adjusted for supply and discharge, and these cylinders 105 and 106 are driven to extend and contract to a required length, whereby the stick 104 is operated. You.
例えば、 スティック 1 0 4を内側へ回動させる (スティックイン) に は、 スティック駆動用油圧シリンダ 1 0 6を伸長させればよい。 この場 合には、 パイロット油路を通じてパイロット油圧を第 2スティック用制 御弁 6 0に作用させる。 これにより、 第 2スティック用制御弁 6 0のス プール位置がスティック内側回動位置(スティックイン位置) となって、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作動油が油路 6 1 , 6 7を 経て、 スティック駆動用油圧シリンダ 1 0 6の一室へ供給される。 この 一方で、 スティック駆動用油圧シリンダ 1 0 6の他室内の作動油が、 油 路 6 8 , 6 9を経てリザ一バタンク 7 0へ排出される。 これにより、 ス ティック駆動用油圧シリンダ 1 0 6が伸長しながら、 スティック 1 0 4 を図 8中、 矢印 dで示すように内側へ回動させる。 For example, to rotate the stick 104 inward (stick-in), the stick driving hydraulic cylinder 106 may be extended. In this case, the pilot oil pressure is applied to the second stick control valve 60 through the pilot oil passage. As a result, the spool position of the second stick control valve 60 becomes the stick rotation position (stick-in position), and the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 flows through the oil passage. It is supplied to one chamber of the stick driving hydraulic cylinder 106 via 61 and 67. On the other hand, hydraulic oil in the other chamber of the stick driving hydraulic cylinder 106 is discharged to the reservoir tank 70 via the oil passages 68, 69. As a result, the stick driving hydraulic cylinder 106 extends while the stick 104 extends. Is rotated inward as shown by arrow d in FIG.
逆に、 スティック 1 0 4を外側へ回動させる (スティックアウト) に は、 スティック駆動用油圧シリンダ 1 0 6を収縮させればよい。 この場 合には、 パイロッ 卜油路を通じてパイロッ ト油圧を第 2スティック用制 御弁 6 0に作用させる。 これにより、 第 2スティック用制御弁 6 0のス プール位置がスティック外側回動位置 (スティックアウト位置) となつ て、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作動油が油路 6 1, 6 8を経て、 スティック駆動用油圧シリンダ 1 0 6の他室へ供給される。 この一方で、スティック駆動用油圧シリンダ 1 0 6の一室内の作動油が、 油路 6 7, 6 9を経てリザーバタンク 7 0へ排出される。 これにより、 スティック駆動用油圧シリンダ 1 0 6が収縮しながら、 スティック 1 0 4を図 8中、 矢印 cで示すように外側へ回動させる。  Conversely, to rotate the stick 104 outward (stick out), the stick drive hydraulic cylinder 106 may be contracted. In this case, the pilot oil pressure is applied to the second stick control valve 60 through the pilot oil passage. As a result, the spool position of the second stick control valve 60 becomes the stick outside rotation position (stick out position), and the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 flows through the oil passage. It is supplied to the other chamber of the stick driving hydraulic cylinder 106 via 61 and 68. On the other hand, the hydraulic oil in one chamber of the stick driving hydraulic cylinder 106 is discharged to the reservoir tank 70 through the oil passages 67, 69. As a result, the stick driving hydraulic cylinder 106 is contracted while the stick 104 is rotated outward as shown by the arrow c in FIG.
さらに、 スティ ック駆動用油圧シリンダ 1 0 6の現状態を保持する には、パイロッ ト油圧を第 2スティック用制御弁 6 0に適宜作用させて、 第 2スティック用制御弁 6 0の各スプールの位置を中立位置 (油圧給排 路遮断位置) にすればよい。 これにより、 スティック駆動用油圧シリン ダ 1 0 6の各油室における作動油の給排が停止され、 スティック 1 0 4 が現位置に保持される。  Furthermore, in order to maintain the current state of the stick drive hydraulic cylinder 106, the pilot hydraulic pressure is applied to the second stick control valve 60 as appropriate, and each spool of the second stick control valve 60 is controlled. Should be set to the neutral position (hydraulic supply / discharge path cutoff position). As a result, the supply and discharge of the hydraulic oil in each oil chamber of the stick driving hydraulic cylinder 106 is stopped, and the stick 104 is held at the current position.
また、 例えばバケツ ト 1 0 8を作動させるには、 運転操作室 1 0 1 内のバケツ ト用操作部材 5 4 cを操作して、 パイロッ トポンプ 8 3から のパイ口ッ ト油圧 Pを図示しないパイ口ッ ト油路を通じて、 バケツ ト用 制御弁 5 8に作用させて、 バケツ ト用制御弁 5 8を所要の位置に移動さ せる。 これにより、 パケッ ト駆動用油圧シリンダ 1 0 7の作動油が給排 調整され、 これらのシリンダ 1 0 7が所要の長さに伸縮駆動され、 これ により、 パケッ ト 1 0 8が作動される。  Also, for example, to operate the bucket 108, the bucket operating member 54c in the operator's cab 101 is operated, and the pilot port hydraulic pressure P from the pilot pump 83 is not shown. By acting on the bucket control valve 58 through the pipe oil passage, the bucket control valve 58 is moved to a required position. As a result, the supply and discharge of the hydraulic oil for the packet driving hydraulic cylinder 107 is adjusted, and these cylinders 107 are driven to expand and contract to a required length, whereby the packet 108 is operated.
例えば、 パケッ ト 1 0 8を内側へ回動させる (バゲットイン) には、 バケツト駆動用油圧シリンダ 1 0 7を伸長させればよい。この場合には、 パイロット油路を通じてパイロット油圧をバケツト用制御弁 5 8に作用 させる。 これにより、 バケツ卜用制御弁 5 8のスプール位置がパケット 内側回動位置 (バケツトイン位置) となって、 第 1回路部 5 5の第 1油 圧ポンプ 5 1からの作動油が油路 6 1 , 9 2を経て、 パケット駆動用油 圧シリンダ 1 0 7の一室へ供給される。 この一方で、 バケツト駆動用油 圧シリンダ 1 0 7の他室内の作動油が、 油路 9 3, 6 9を経てリザ一バ タンク 7 0へ排出される。 これにより、 バケツト駆動用油圧シリンダ 1 0 7が伸長しながら、 バケツト 1 0 8を図 8中、 矢印 f で示すように内 側へ回動させる。 For example, to rotate packet 108 inward (baguette in), The bucket driving hydraulic cylinder 107 may be extended. In this case, the pilot oil pressure is applied to the bucket control valve 58 through the pilot oil passage. As a result, the spool position of the bucket control valve 58 becomes the packet inside rotation position (bucket-in position), and the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 passes through the oil passage 61. , 92, and is supplied to one chamber of the hydraulic cylinder 107 for driving the packet. On the other hand, the hydraulic oil in the other chamber of the bucket driving hydraulic cylinder 107 is discharged to the reservoir tank 70 through the oil passages 93, 69. This causes the bucket 108 to rotate inward as indicated by the arrow f in FIG. 8, while the bucket driving hydraulic cylinder 107 extends.
逆に、 バケツト 1 0 8を外側へ回動させる (バケツトオープン) には、 バケツト駆動用油圧シリンダ 1 0 7を収縮させればよい。この場合には、 パイロット油路を通じてパイロット油圧をバケツト用制御弁 5 8に作用 させる。 これにより、 バケツト用制御弁 5 8のスプール位置がバゲット 外側回動位置 (パケットオープン位置) となって、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作動油が油路 9 4, 9 3を経て、 バケツト駆動 用油圧シリンダ 1 0 7の他室へ供給される。 この一方で、 バケツト駆動 用油圧シリンダ 1 0 7の一室内の作動油が、 油路 9 2, 6 9を経てリザ ーバタンク 7 0へ排出される。 これにより、 バゲット駆動用油圧シリン ダ 1 0 7が収縮しながら、 バゲット 1 0 8を図 8中、 矢印 eで示すよう に外側へ回動させる。  Conversely, to rotate the bucket 108 outward (bucket open), the bucket driving hydraulic cylinder 107 may be contracted. In this case, the pilot oil pressure is applied to the bucket control valve 58 through the pilot oil passage. As a result, the spool position of the bucket control valve 58 becomes the baguette outside rotation position (packet open position), and the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 flows through the oil passages 94, After 93, it is supplied to the other chamber of the bucket driving hydraulic cylinder 107. On the other hand, hydraulic oil in one chamber of the bucket driving hydraulic cylinder 107 is discharged to the reservoir tank 70 through the oil passages 92 and 69. As a result, the baguette driving hydraulic cylinder 107 is contracted while the baguette 108 is rotated outward as shown by an arrow e in FIG.
さらに、 バケツ ト駆動用油圧シリンダ 1 0 7の現状態を保持するに は、 パイロット油圧をバケツ卜用制御弁 5 8に適宜作用させて、 バケツ ト用制御弁 5 8のスプールの位置を中立位置 (油圧給排路遮断位置) に すればよい。 これにより、 バケツト駆動用油圧シリンダ 1 0 7の油室に おける作動油の給排が停止され、バケツト 1 0 8が現位置に保持される。 ところで、 このように構成される建設機械には、 種々のセンサが取り 付けられており、 各センサからの検出信号は後述するコントローラ 1へ 送られるようになつている。 Further, in order to maintain the current state of the bucket driving hydraulic cylinder 107, the pilot hydraulic pressure is applied to the bucket control valve 58 as appropriate, and the position of the spool of the bucket control valve 58 is set to the neutral position. (Hydraulic supply / discharge path cutoff position). As a result, the supply and discharge of hydraulic oil to and from the oil chamber of the bucket driving hydraulic cylinder 107 are stopped, and the bucket 108 is held at the current position. By the way, various sensors are attached to the construction machine configured as described above, and a detection signal from each sensor is sent to a controller 1 described later.
例えば、 油圧ポンプ 5 1, 5 2を駆動するエンジン 50にはエンジン 回転速度センサ 7 1が取り付けられており、 このエンジン回転速度セン サ 7 1からの検出信号は後述するコントローラ 1へ送られるようになつ ている。 そして、 コントローラ 1は、 実際のエンジン回転速度がォペレ 一夕によりエンジン回転速度設定ダイヤルで設定された目標エンジン回 転速度になるようにフィードバック制御するようになっている。  For example, an engine 50 for driving the hydraulic pumps 51 and 52 is provided with an engine speed sensor 71, and a detection signal from the engine speed sensor 71 is transmitted to a controller 1 described later. It has been The controller 1 performs feedback control so that the actual engine speed becomes the target engine speed set by the engine speed setting dial during the operation.
また、 第 1回路部 5 5の第 1油圧ポンプ 5 1及び第 2回路部 5 6の第 Also, the first hydraulic pump 51 of the first circuit section 55 and the first hydraulic pump 51 of the second circuit section 56
2油圧ポンプ 52の吐出側には、 ポンプ吐出圧を検出すべくそれぞれ圧 力センサ (PZS— P 1) 72, 圧力センサ (PZS— P 2) 7 3が備 えられており、 これらの圧力センサ 72, 7 3からの検出信号は後述す るコントローラ 1へ送られるようになっている。 (2) On the discharge side of the hydraulic pump 52, a pressure sensor (PZS-P1) 72 and a pressure sensor (PZS-P2) 73 are provided to detect the pump discharge pressure. The detection signals from 72 and 73 are sent to the controller 1 described later.
また、 第 1回路部 5 5の油路 6 1の各制御弁 5 7〜60及び第 2回路 部 5 6の油路 66の各制御弁 62〜65の下流側には、 それぞれ圧力セ ンサ (PZS— N 1) 74, 圧力センサ (PZS— N 2) 7 5が備えら れており、 これらの圧力センサ 74, 7 5からの検出信号は後述するコ ントローラ 1へ送られるようになつている。  Further, downstream of each of the control valves 57 to 60 of the oil passage 61 of the first circuit unit 55 and each of the control valves 62 to 65 of the oil passage 66 of the second circuit unit 56, a pressure sensor ( PZS-N 1) 74 and pressure sensor (PZS-N 2) 75 are provided, and the detection signals from these pressure sensors 74 and 75 are sent to the controller 1 described later. .
また、 ブーム駆動用油圧シリンダ 1 0 5への作動油の給排を行なう油 路には圧力センサ (PZS— BMd) 80が設けられており、 この圧力 センサ 8 0によってブーム駆動用油圧シリンダ 1 0 5のロッ ド側圧力 (負荷圧力) を検出できるようになつている。 そして、 この圧力センサ 80からの検出信号は後述するコントローラ 1へ送られるようになって いる。  Further, a pressure sensor (PZS-BMd) 80 is provided in an oil passage for supplying and discharging hydraulic oil to and from the boom drive hydraulic cylinder 105. The boom drive hydraulic cylinder 100 is provided by the pressure sensor 80. The rod side pressure (load pressure) of 5 can be detected. The detection signal from the pressure sensor 80 is sent to the controller 1 described later.
そして、 本実施形態では、 上述のように構成される建設機械を制御す ベく、 コントローラ 1が備えられている。 In this embodiment, the construction machine configured as described above is controlled. In particular, a controller 1 is provided.
コントローラ 1は、 上述の各センサ 7 1〜 7 5, 8 0からの検出信号 や操作部材 5 4からの電気信号に基づいて、 第 1油圧ポンプ 5 1, 第 2 油圧ポンプ 5 2, 各再生弁 7 6 , 7 7 , 各制御弁 5 7〜6 0, 6 2〜6 5へ作動信号を出力することにより、 第 1油圧ポンプ 5 1 , 第 2油圧ポ ンプ 5 2の傾転角制御, 各制御弁 5 7〜6 0 , 6 2〜6 5の位置制御, 各再生弁 7 6, 7 7の位置制御等を行なうようになっている。  Based on the detection signals from the sensors 71 to 75 and 80 and the electric signals from the operating member 54, the controller 1 controls the first hydraulic pump 51, the second hydraulic pump 52, 7 6, 7 7, and output control signals to each control valve 57 to 60 and 62 to 65 to control the tilt angle of the first hydraulic pump 51 and the second hydraulic pump 52, The position control of the control valves 57 to 60 and 62 to 65, the position control of the regeneration valves 76 and 77, and the like are performed.
このうち、 コントローラ 1による第 1油圧ポンプ 5 1, 第 2油圧ボン プ 5 2の傾転角制御は、 第 1回路部 5 5のバイパス通路 6 1 bの下流側 及び第 2回路部 5 6のバイパス通路 6 6 cの下流側に設けられたそれぞ れの圧力センサ 7 4 , 7 5からの検出信号に基づいてネガティブフ口一 コントロールにより行なわれるようになつている。 なお、 圧力センサ 7 4, 7 5により検出される圧力に基づいてネガティブフローコント口一 ルが行なわれるため、 圧力センサ 7 4, 7 5により検出される圧力をネ ガコン圧ともいう。  Of these, the tilt angle control of the first hydraulic pump 51 and the second hydraulic pump 52 by the controller 1 is performed on the downstream side of the bypass passage 61 b of the first circuit section 55 and the second circuit section 56. Negative control is performed based on detection signals from the respective pressure sensors 74 and 75 provided on the downstream side of the bypass passage 66c. Since the negative flow control is performed based on the pressures detected by the pressure sensors 74 and 75, the pressure detected by the pressure sensors 74 and 75 is also referred to as a negative control pressure.
ここで、 ネガティブフローコントロール (電子式ネガティブフローコ ントロ一システム) とは、 バイパス通路 6 l b , 6 6 cの下流側の圧力 が上がったらポンプ吐出流量を減らすようなネガティブな特性のポンプ 流量制御をいう。  Here, the negative flow control (electronic negative flow control system) is a pump flow control with a negative characteristic that reduces the pump discharge flow rate when the pressure on the downstream side of the bypass passage 6 lb, 66 c increases. Say.
ここで、 ネガティブフローコントロ一ルは、各操作部材 5 4の操作量、 即ちネガコン圧に応じてポンプ吐出流量が制御される流量制御と、 ァク チユエ一夕にかかる負荷圧力、 即ちポンプ吐出圧力に応じてポンプ吐出 流量が制御される馬力制御とに分けられる。  Here, the negative flow control is based on the operation amount of each operation member 54, that is, the flow control in which the pump discharge flow rate is controlled according to the negative control pressure, and the load pressure applied to the actuator, that is, the pump discharge pressure. And horsepower control in which the pump discharge flow rate is controlled according to the pressure.
このうち、 流量制御は、 許容馬力内でァクチユエ一夕 (各シリンダ) のスピードを制御しうるものである。 つまり、 ポンプ吐出流量を各操作 部材 5 4の操作量、 即ちネガコン圧に応じて制御でき、 これにより、 ァ クチユエ一夕のスピードを制御できるものである。 Among them, the flow control can control the speed of the actuator (each cylinder) within the allowable horsepower. That is, the pump discharge flow rate can be controlled in accordance with the operation amount of each operation member 54, that is, the negative control pressure. It can control the speed of Kuchiyue overnight.
ところで、 各操作部材 5 4がフル操作され、 ポンプ吐出流量が最大と なり、ァクチユエ一夕のスピードが最大となる場合、ポンプ吐出流量(即 ち、 ァクチユエ一夕のスピード) は、 次式により決定される。  By the way, when the operation members 54 are fully operated and the pump discharge flow rate is maximum and the speed of the actuator is maximum, the pump discharge flow rate (that is, the speed of the actuator) is determined by the following equation. Is done.
ポンプ吐出流量 Q =許容馬力 ポンプ吐出圧力 P  Pump discharge flow Q = Allowable horsepower Pump discharge pressure P
この状態で、 ァクチユエ一夕にかかる負荷圧力が変動するとポンプ吐 出圧力 Pも変動し、 上式より、 ポンプ吐出流量 Qも変動することになる ため、 これにより、 ァクチユエ一夕のスピードも変動することになる。 このように、 ポンプ吐出流量 Qが、 各操作部材 5 4の操作量に応じて 制御されるのではなく、 ァクチユエ一夕にかかる負荷圧力、 即ちポンプ 吐出圧力 Pに応じて制御され、 ポンプ吐出流量 Qの大小は第 1油圧ボン プ 5 1 , 第 2油圧ポンプ 5 2を駆動するエンジン 5 0の許容馬力 Wに依 存するような状態における制御を馬力制御という。  In this state, if the load pressure applied to the actuator changes, the pump discharge pressure P also changes, and the pump discharge flow rate Q also changes according to the above equation, so that the speed of the actuator changes as well. Will be. As described above, the pump discharge flow rate Q is not controlled according to the operation amount of each operation member 54, but is controlled according to the load pressure applied to the actuator, that is, the pump discharge pressure P. The magnitude of Q is referred to as horsepower control when the control depends on the allowable horsepower W of the engine 50 that drives the first hydraulic pump 51 and the second hydraulic pump 52.
このような馬力制御が行なわれる場合には、 オペレー夕が各操作部材 5 4をフル操作し、 ァクチユエ一夕の最大スピードを要求しても、 実際 のァクチユエ一夕のスピ一ドは負荷圧力の大きさによって決まることに なる。 この場合、 エンジン 5 0の馬力は許容最大値となる。  When such horsepower control is performed, even if the operator fully operates the operation members 54 and requests the maximum speed of the actuator, the actual speed of the actuator will not exceed the load pressure. It depends on the size. In this case, the horsepower of the engine 50 becomes the maximum allowable value.
また、 例えば複数のァクチユエ一夕を同時操作するような場合、 各々 の操作部材 5 4がフル操作されていない状態であっても、 それぞれのァ クチユエ一夕へ作動油が供給されてネガコン圧が低下し、 要求流量が許 容馬力によって決定される許容流量を超えているときは馬力制御におけ る許容流量になるようにボンプ傾転角制御が行なわれる。  Also, for example, in the case of operating a plurality of actuators simultaneously, even if each operating member 54 is not fully operated, hydraulic oil is supplied to each actuator and the negative control pressure is reduced. If the required flow rate falls below the allowable flow rate determined by the allowable horsepower, the pump tilt angle control is performed so that the required flow rate in the horsepower control is achieved.
ところで、 操作部材 5 4が中立位置の場合、 即ちオペレータが操作部 材 5 4を操作していない場合は、 作業機 1 1 8は何ら仕事せず、 ァクチ ユエ一夕を駆動させる必要がないため、 油圧ポンプ 5 1, 5 2からのポ ンプ吐出流量は望ましくはゼロにしたい。 このため、 本実施形態では、 各制御弁 5 7〜60, 62〜6 5はォー プンセンタ (スプール中立位置でバイパス通路 6 1 b, 6 6 cがオーブ ンになるように配設すること) にして、 操作部材 54が中立位置の場合 は、油圧ポンプ 5 1, 5 2から供給される作動油はバイパス通路 6 1 b, 66 cを通じてリザ一バタンク 7 0へ戻るようになつている。 By the way, when the operation member 54 is in the neutral position, that is, when the operator does not operate the operation member 54, the work machine 118 does not work at all, and there is no need to drive the actuator. The pump discharge flow rate from the hydraulic pumps 51 and 52 is desirably set to zero. For this reason, in the present embodiment, the control valves 57 to 60 and 62 to 65 are open centers (arranged so that the bypass passages 61b and 66c are open at the spool neutral position). When the operating member 54 is at the neutral position, the hydraulic oil supplied from the hydraulic pumps 51 and 52 returns to the reservoir tank 70 through the bypass passages 61 b and 66 c.
これにより、操作部材 54が中立位置の場合は、バイパス通路 6 1 , Thus, when the operation member 54 is in the neutral position, the bypass passages 6 1,
66 cの下流側に介装された絞り 8 1, 82の直上流側の圧力が大きく なり、 ネガティブフローコントロールによって、 可変容量油圧ポンプ 5 1 , 52からのポンプ吐出流量が減少するように制御されるようになつ ている。 The pressure immediately upstream of the throttles 81, 82 interposed downstream of 66c increases, and the negative flow control controls the pump discharge flow from the variable displacement hydraulic pumps 51, 52 to decrease. It has become so.
一方、 操作部材 54が操作された場合には、 その操作量に応じた量の 作動油が各ァクチユエ一夕 (シリンダ等) へ供給され、 残りの作動油が バイパス通路 6 1 b, 6 6 cを通じてリザーバタンク 70へ戻るように なっている。  On the other hand, when the operation member 54 is operated, an amount of hydraulic oil corresponding to the operation amount is supplied to each actuator (cylinder and the like), and the remaining hydraulic oil is supplied to the bypass passages 6 1 b and 66 c. Through the reservoir tank 70.
また、 バイパス通路 6 1 b, 6 6 cの下流側には、 上述したように絞 り (オリフィス) 8 1 , 8 2が設けられている。 そして、 これらの絞り 8 1 , 82の直上流側のバイパス通路 6 1 b, 6 6 cに圧力センサ 74, The orifices 81, 82 are provided downstream of the bypass passages 61b, 66c as described above. Pressure sensors 74, 66 are provided in bypass passages 61b, 66c immediately upstream of these throttles 81, 82.
7 5が介装され、 これらの圧力センサ 74, 7 5により検出される絞り 8 1, 8 2の直上流側の圧力に基づいて油圧ポンプ 5 1 , 52の傾転角 制御が行なわれるようになつている。 The tilt angle control of the hydraulic pumps 51 and 52 is performed based on the pressure immediately upstream of the throttles 81 and 82 detected by the pressure sensors 74 and 75. I'm sorry.
そして、 オペレータが操作部材 54を操作すると、 操作部材 54の操 作量に応じて制御弁 5 7〜60, 6 2〜 6 5が移動してバイパス通路 6 l b, 66 cが絞られ、 バイパス通路 6 1 b, 6 6 cを流れる作動油の 流量が減少するが、 絞り 8 1 , 8 2の径は一定であるため、 流量が減つ た分だけ絞り 8 1, 8 2の直上流側の圧力、 即ち圧力センサ 74, 7 5 により検出される圧力が低下し、 この低下した圧力に応じてポンプ吐出 流量が多くなるように可変容量油圧ポンプ 5 1, 52の傾転角制御が行 なわれることになる。 When the operator operates the operation member 54, the control valves 57 to 60 and 62 to 65 move according to the operation amount of the operation member 54, and the bypass passages 6 lb and 66 c are throttled, and the bypass passages are reduced. The flow rate of hydraulic oil flowing through 6 1 b and 6 6 c decreases, but the diameter of the throttles 8 1 and 8 2 is constant. The pressure, that is, the pressure detected by the pressure sensors 74 and 75, decreases, and the pump discharges according to the reduced pressure. The tilt angle control of the variable displacement hydraulic pumps 51 and 52 is performed so that the flow rate increases.
これは、 オペレータの要求、 即ちオペレータによる操作部材 54の操 作量に応じてポンプ吐出流量が多くなるように制御されることを意味し、 これはオペレータが操作部材 54を操作することで油圧ポンプ 5 1, 5 2からのポンプ吐出流量を制御してァクチユエ一夕 (各シリンダ) のス ピードを制御できることを意味する。  This means that the pump discharge flow rate is controlled to increase according to the operator's request, that is, the operation amount of the operation member 54 by the operator. This means that the speed of the actuator (each cylinder) can be controlled by controlling the pump discharge flow from 51 and 52.
ここで、 コントローラ 1によるネガティブフローコントロールにおけ る基本的なポンプ傾転角制御について説明する。  Here, basic pump tilt angle control in the negative flow control by the controller 1 will be described.
つまり、 コントローラ 1は、 圧力センサ 74, 7 5によって検出され た作動油圧 (ネガコン圧) PN1, PN2を読み込んで、 ネガコン圧 PNと 要求流量 QNとを関係づけた図 4に示すようなマップから、 読み込まれ たネガコン圧 PN1, PN2に対応する要求流量 QN1, QN2 (具体的には要 求流量 QN1, QN2に相当するポンプ傾転角 VN1, VN2) を設定するよう になっている。 なお、 要求流量とは、 ネガティブフロ一コントロールに おいて要求される流量をいう。 また、 図 4ではネガコン圧 PN1に対応す る要求流量 QN1 (具体的には要求流量 QN1, に相当するポンプ傾転角 V N1) のみ示している。 In other words, the controller 1 reads the operating oil pressures (negative control pressures) P N1 and P N2 detected by the pressure sensors 74 and 75 and correlates the negative control pressure P N with the required flow rate Q N as shown in FIG. from a map, the request corresponds to the negative control pressure P N1, P N2 read flow Q N1, Q N2 (determined specifically main flow Q N1, Q pump tilting angle corresponding to N2 V N1, V N2) Is set. The required flow rate is the flow rate required in negative flow control. Also shows only 4 in negative control pressure P N1 required flow rate Q that correspond to N1 (specifically required flow rate Q N1, a pump corresponding to the tilting angle V N1).
一方、 コントローラ 1は、 圧力センサ 7 2, 7 3によって検出された ポンプ吐出圧 PP1, PP2を読み込んで、 ポンプ吐出圧 PPと許容流量 QP とを関係づけた図 5に示すようなマツプから、 読み込まれたポンプ吐出 圧 PP 1, PP2に対応する許容流量 QP1, QP2 (具体的には許容流量 QP1, QP2に相当するポンプ傾転角 VP1, VP2) を設定するようになっている。 なお、 許容流量とは第 1油圧ポンプ 5 1及び第 2油圧ポンプ 5 2を駆動 するエンジン 50の許容馬力に応じたポンプ吐出流量をいう。 また、 図 5ではポンプ吐出圧 PP1に対応する許容流量 QP1 (具体的には許容流量 QP1に相当するポンプ傾転角 VP1) のみ示している。 On the other hand, the controller 1 reads the pump discharge pressures P P1 and P P2 detected by the pressure sensors 72 and 73 and associates the pump discharge pressure P P with the allowable flow rate Q P as shown in FIG. from Matsupu, allowable flow corresponding to the pump discharge pressure read P P 1, P P2 Q P1 , Q P2 ( specifically allowable flow Q P1, the pump tilting angle corresponding to Q P2 V P1, V P2) Is set. The allowable flow rate refers to a pump discharge flow rate according to the allowable horsepower of the engine 50 that drives the first hydraulic pump 51 and the second hydraulic pump 52. Further, allowable flow Q P1 (specifically allowable flow rate corresponding to the pump discharge pressure P P1 in FIG. 5 Only the pump tilt angle V P1 ) corresponding to Q P1 is shown.
そして、 コントローラ 1は、 上述の要求流量 QN1, QN2と許容流量 Q P1, QP2とを比較し、 小さい方のポンプ流量 (要求流量 QN1, QN2又は 許容流量 QP1, QP2) になるようにポンプ傾転角 (ポンプ傾転角 VN1, VN2又はポンプ傾転角 VP1, VP2) を設定し、 これを傾転角制御信号と して第 1油圧ポンプ 5 1及び第 2油圧ポンプ 52へ出力するようになつ ている。 The controller 1 compares the required flow rates Q N1 and Q N2 with the allowable flow rates Q P1 and Q P2 and determines the smaller pump flow rate (required flow rate Q N1 and Q N2 or allowable flow rate Q P1 and Q P2 ). The pump tilt angle (pump tilt angle V N1 , V N2 or pump tilt angle V P1 , V P2 ) is set so that the first hydraulic pump 51 and the first hydraulic pump 51 are used as tilt angle control signals. The output is provided to the second hydraulic pump 52.
次に、 コントローラ 1によるネガティブフローコントロールにおけ る基本的なポンプ傾転角制御の動作について、 図 6のフローチャートを 参照しながら説明する。  Next, the basic operation of the pump tilt angle control in the negative flow control by the controller 1 will be described with reference to the flowchart of FIG.
つまり、 まずステップ S 1 0でネガコン圧 PN1, PN2を読み込むとと もに、 ステップ S 20でポンプ吐出圧 PP1, PP2を読み込む。 That is, first, at step S10, the negative control pressures P N1 and P N2 are read, and at step S20, the pump discharge pressures P P1 and P P2 are read.
次に、 ステップ S 30でステップ S 1 0で読み込まれたネガコン圧 P N1, PN2に対応する要求流量 QN1, QN2を図 4のマップから算出すると ともに、 ステップ 40でステップ S 20で読み込まれたポンプ吐出圧 P P1, PP 2に対応する許容流量 QP1, QP2を図 5のマップから算出する。 そして、 ステップ S 5 0で要求流量 QN1, QN2が許容流量 QP1, QP2 よりも小さいか否かを判定し、 この判定の結果、 要求流量 QN1, QN2が 許容流量 QP1, QP2よりも小さいと判定された場合は、 ステップ S 6 0 に進み、 要求流量 QN1, QN2をポンプ流量として設定し、 リターンする。 これにより、 第 1油圧ポンプ 5 1及び第 2油圧ポンプ 52の傾転角が要 求流量 QN1, QN2に応じた傾転角となるように設定される。 Next, in step S30, the required flow rates Q N1 and Q N2 corresponding to the negative control pressures P N1 and P N2 read in step S 10 are calculated from the map of FIG. 4 and read in step S 20 in step 40. the allowable flow Q P1, Q P2 is calculated from the map of FIG. 5 corresponding to the pump discharge pressure P P1, P P 2 that. Then, allowed the required flow rate Q N1, Q N2 in Step S 5 0 flow rate Q P1, Q less whether determined than P2, the result of this determination, required flow rate Q N1, Q N2 is allowable flow Q P1, If it is determined that the flow rate is smaller than Q P2 , the process proceeds to step S60, where the required flow rates Q N1 and Q N2 are set as the pump flow rates, and the routine returns. Thus, the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 are set to be the tilt angles corresponding to the required flow rates Q N1 and Q N2 .
一方、 要求流量 QNI, QN2が許容流量 QP1, QP2以上であると判定さ れた場合は、 ステップ S 7 0に進み、 許容流量 QP1, QP2をポンプ流量 として設定し、 リターンする。 これにより、 第 1油圧ポンプ 5 1及び第 2油圧ポンプ 52の傾転角が許容流量 QP1, QP2に応じた傾転角となる ように設定される。 On the other hand, when it is determined that the required flow rates Q NI and Q N2 are equal to or higher than the allowable flow rates Q P1 and Q P2 , the process proceeds to step S70, where the allowable flow rates Q P1 and Q P2 are set as the pump flow rates and the return is performed. I do. As a result, the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 become tilt angles corresponding to the allowable flow rates Q P1 and Q P2. It is set as follows.
本実施形態にかかる建設機械の制御装置は、 上述のように構成され、 コントローラ 1による各種の制御が行なわれ、 本実施形態では、 いわゆ る地ならし作業時においてブームアップ微操作, スティックイン微操作 及びバケツ トイン微操作が同時に行なわれる場合には、 通常のネガティ ブフローコントロールにおけるポンプ流量制御とは異なるポンプ流量制 御が行なわれる。  The control device for a construction machine according to the present embodiment is configured as described above, and various controls are performed by the controller 1. In the present embodiment, during the so-called leveling operation, the boom-up fine operation and the stick-in fine operation are performed. When the bucket-in and bucket-in fine operations are performed at the same time, pump flow control different from the pump flow control in the normal negative flow control is performed.
次に、 本実施形態にかかる建設機械の制御装置及び制御方法におい て特徴となる地ならし作業時においてブームアップ微操作, スティック イン微操作及びバケツ トイン微操作が同時に行なわれた場合におけるポ ンプ流量制御について説明する。  Next, the pump flow control in the case where the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation are simultaneously performed during the leveling work, which is a feature of the control device and the control method of the construction machine according to the present embodiment. Will be described.
ここで、 図 1は本実施形態にかかる建設機械の制御装置によるボン プ流量制御を説明するための制御ブロック図である。  Here, FIG. 1 is a control block diagram for explaining the pump flow rate control by the control device of the construction machine according to the present embodiment.
本実施形態では、 図 1に示すように、 コントローラ 1は、 ブームアツ プ微操作判定手段 (ブーム微操作判定手段) 2と、 スティックイン微操 作判定手段 (スティック微操作判定手段) 3と、 バケツ トイン微操作判 定手段 (バケツト微操作判定手段) 4と、 ポンプ傾転角制御手段 5とを 備えて構成される。  In the present embodiment, as shown in FIG. 1, the controller 1 includes a boom-up fine operation determining means (boom fine operation determining means) 2, a stick-in fine operation determining means (stick fine operation determining means) 3, and a bucket. It is configured to include a toe fine operation determination means (bucket fine operation determination means) 4 and a pump tilt angle control means 5.
このうち、 ブームアップ微操作判定手段 2は、 ブーム用操作部材 5 4 aの操作量に応じた電気信号に基づいてブームアップの微操作が行なわ れたか否かを判定し、 その判定結果をポンプ傾転角制御手段 5へ信号を 出力するものである。  Among them, the boom-up fine operation determining means 2 determines whether or not the boom-up fine operation has been performed based on an electric signal corresponding to the operation amount of the boom operation member 54a, and determines the result of the pump operation. A signal is output to the tilt angle control means 5.
スティックイン微操作判定手段 3は、 スティック用操作部材 5 4 の 操作量に応じた電気信号に基づいてスティックインの微操作が行なわれ たか否かを判定し、 その判定結果をポンプ傾転角制御手段 5へ信号を出 力するものである。 バケツトイン微操作判定手段 4は、 バケツト用操作部材 5 4 cの操作 量に応じた電気信号に基づいてバケツトインの微操作が行なわれたか否 かを判定し、 その判定結果をポンプ傾転角制御手段 5へ信号を出力する ものである。 The stick-in fine operation determining means 3 determines whether or not the fine operation of the stick-in has been performed based on an electric signal corresponding to the operation amount of the stick operating member 54, and determines the pump tilt angle control based on the determination result. A signal is output to means 5. The bucket-in fine operation determination means 4 determines whether or not the bucket-in fine operation has been performed based on an electric signal corresponding to the operation amount of the bucket operating member 54c, and determines the pump tilt angle control means based on the determination result. It outputs a signal to 5.
ポンプ傾転角制御手段 5は、 ブームアップ微操作判定手段 2, スティ ックイン微操作判定手段 3及びバゲットイン微操作判定手段 4からの信 号に基づいてブームアップ微操作, スティックイン微操作及びバケツト ィン微操作が同時に行なわれたと判定した場合に、 この操作パターンで の最適ポンプ流量になるように、 ブーム用操作部材 5 4 a , スティック 用操作部材 5 4 b及びバケツト用操作部材 5 4 cの操作量に相当する電 気信号に基づいて油圧ポンプ 5 1, 5 2のポンプ傾転角制御を行なうも のである。  The pump tilt angle control means 5 includes a boom-up fine operation, a stick-in fine operation, and a bucket based on signals from the boom-up fine operation determination means 2, the stick-in fine operation determination means 3, and the baguette-in fine operation determination means 4. When it is determined that the fine operation is performed simultaneously, the operation member for boom 54 a, the operation member for stick 54 b and the operation member for bucket 54 c are set so that the optimum pump flow rate in this operation pattern is obtained. The pump tilt angles of the hydraulic pumps 51 and 52 are controlled based on an electric signal corresponding to the operation amount of the pump.
具体的には、 本実施形態では、 ポンプ傾転角制御手段 5は、 以下のよ うに油圧ポンプ 5 1 , 5 2の傾転角制御を行なう。  Specifically, in the present embodiment, the pump displacement angle control means 5 controls the displacement angles of the hydraulic pumps 51 and 52 as follows.
このポンプ傾転角制御手段 5では、 基本的にはネガティブフローコン トロールにより油圧ポンプ 5 1, 5 2の傾転角制御を行なう。  The pump tilt angle control means 5 basically controls the tilt angles of the hydraulic pumps 51 and 52 by negative flow control.
このネガティブフローコントロールでは、 ブーム用操作部材 5 4 a , スティック用操作部材 5 4 b及びバケツト用操作部材 5 4 cが操作され ると、 これらの操作部材 5 4 a, 5 4 b , 5 4 cの操作量に応じて各制 御弁 5 8〜6 0 , 6 4 , 6 5の移動量が制御され、 ブーム駆動用油圧シ リンダ 1 0 5, スティック駆動用油圧シリンダ 1 0 6及びバケツト駆動 用油圧シリンダ 1 0 7へ作動油が供給されるため、 これらの各制御弁 5 8〜6 0 , 6 4 , 6 5の下流側の作動油の圧力 (バイパス通路 6 1 b, 6 6 c内の作動油の圧力) は低下し、 この圧力が圧力センサ 7 4, 7 5 により検出されてネガティブフローコントロールにおいて用いられ、 ポ ンプ吐出流量が増加するように油圧ポンプ 5 1 , 5 2の傾転角が制御さ れる。 In this negative flow control, when the boom operating member 54a, the stick operating member 54b, and the bucket operating member 54c are operated, these operating members 54a, 54b, 54c The amount of movement of each control valve 58 to 60, 64, 65 is controlled in accordance with the operation amount of the cylinder, and the boom drive hydraulic cylinder 105, the stick drive hydraulic cylinder 106, and the bucket drive Since the hydraulic oil is supplied to the hydraulic cylinder 107, the pressure of the hydraulic oil downstream of each of these control valves 58 to 60, 64, 65 (in the bypass passages 61b, 66c) The pressure of the hydraulic oil) decreases, and this pressure is detected by the pressure sensors 74 and 75 and used in negative flow control, and the tilt angles of the hydraulic pumps 51 and 52 are increased so that the pump discharge flow rate increases. Is controlled It is.
このため、 ブームアップ微操作, スティックイン微操作及びバケツ ト ィン微操作が同時に行なわれ、 いわゆる地ならし作業である場合には、 過剰なポンプ吐出流量となるように油圧ポンプ 5 1, 5 2の傾転角制御 が行なわれることになる。 そこで、 本実施形態では、 ポンプ傾転角制 御手段 5は、 ブームアップ微操作, スティックイン微操作及びパケッ ト ィン微操作が同時に行なわれたと判定した場合に、 ブーム用操作部材 5 4 a, スティック用操作部材 5 4 b及びバケツ 卜用操作部材 5 4 cから の電気信号に基づいて、 ブーム用操作部材 5 4 a, スティック用操作部 材 5 4 b及びバケツ ト用操作部材 5 4 cの操作量に応じてポンプ吐出流 量が減るように油圧ポンプ 5 1, 5 2のポンプ傾転角制御を行なうよう になっている。  For this reason, the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation are performed at the same time. In the case of so-called leveling work, the hydraulic pumps 51, 52 are operated so that the excessive pump discharge flow rate is obtained. The tilt angle control is performed. Therefore, in the present embodiment, the pump tilt angle control means 5 determines that the boom-up fine operation, the stick-in fine operation, and the packet-in fine operation have been performed at the same time. , Boom operation member 54a, stick operation member 54b, and bucket operation member 54c based on electric signals from the stick operation member 54b and the bucket operation member 54c. The pump tilt angles of the hydraulic pumps 51 and 52 are controlled so that the pump discharge flow rate decreases in accordance with the operation amount of the pump.
このようにして、 油圧ポンプ 5 1, 5 2のポンプ傾転角制御が行なわ れると、 例えばブースト圧 (油圧ポンプ 5 1, 5 2のポンプ吐出圧力と 負荷圧力との差圧) は所定圧力 (約 1 0 0 k g f Z c m 2 ) となる。 こ のため、 ポンプ吐出圧力が負荷圧力よりも所定圧力 (約 1 0 0 k g f / c m 2 ) 高くなるようにブーム用操作部材 5 4 a, スティック用操作部 材 5 4 b及びバケツ ト用操作部材 5 4 cからの電気信号に基づいてボン プ傾転角制御を行なっても良い。 In this way, when the pump tilt angle control of the hydraulic pumps 51 and 52 is performed, for example, the boost pressure (the differential pressure between the pump discharge pressures of the hydraulic pumps 51 and 52 and the load pressure) becomes a predetermined pressure ( Approximately 100 kgf Z cm 2 ). For this reason, a predetermined pressure than the pump discharge pressure is the load pressure (approximately 1 0 0 kgf / cm 2) becomes higher as the boom operation member 5 4 a, 5 4 b the stick operation member and the bucket preparative operation member The pump tilt angle control may be performed based on an electric signal from 54c.
なお、 これらのブーム 1 0 3 , スティック 1 0 4及びバゲッ ト 1 0 8 の同時操作性を確保するためには、 油圧ポンプ 5 1 , 5 2から吐出され る作動油の圧力はこれらの作業機 1 1 8の作動圧力のうちの最大圧力 (最大圧力値) になるように設定する必要がある。 このため、 上述のネ ガティブフローコントロールの制御バランスも、 各シリンダ 1 0 5〜 1 0 7へ供給する作動油の合計流量よりもポンプ吐出流量を少し多く して、 余剰ポンプ吐出流量を各制御弁のバイパス通路絞りで絞つて圧力を上昇 させるように設定されている。 In order to ensure the simultaneous operability of the boom 103, the stick 104, and the baguette 108, the pressure of the hydraulic oil discharged from the hydraulic pumps 51, 52 must be controlled by these working machines. It is necessary to set so that it becomes the maximum pressure (maximum pressure value) of the operation pressure of 1 18. For this reason, the control flow of the negative flow control described above is also increased by slightly increasing the pump discharge flow rate from the total flow rate of the hydraulic oil supplied to each cylinder 105 to 107, thereby reducing the excess pump discharge flow rate to each control valve. To increase the pressure It is set to let.
一方、 ポンプ傾転角制御手段 5は、 ブームアップ微操作判定手段 2, スティックイン微操作判定手段 3及びバケツ トイン微操作判定手段 4か らの信号に基づいてブームアップ微操作, スティックイン微操作及びバ ケッ トイン微操作が同時に行なわれていないと判定した場合には、 ブー ム 1 0 3 , スティック 1 0 4及びバケツ ト 1 0 8のいずれかを微操作せ ずに操作する他の作業であるとして、 通常のネガティブフローコントロ ールにおける最適ポンプ流量になるように油圧ポンプ 5 1 , 5 2のボン プ流量制御を行なうものである。  On the other hand, the pump tilt angle control means 5 is based on signals from the boom-up fine operation determination means 2, the stick-in fine operation determination means 3, and the bucket-in fine operation determination means 4, and performs boom-up fine operation and stick-in fine operation. If it is determined that the bucket and the bucket-in micro-operation are not performed at the same time, the other operation of operating the boom 103, the stick 104 and the bucket 108 without performing the micro-operation is performed. As one example, the pump flow rate of the hydraulic pumps 51 and 52 is controlled so that the optimum pump flow rate in a normal negative flow control is obtained.
ここで、 通常のネガティブフローコントロールとは、 上述のように、 各操作部材 5 4の操作量に応じて各制御弁 5 7〜6 0, 6 2〜6 5が作 動し、 バイパス油路 6 1 b, 6 6 cの作動油の流量が変化することによ り発生する圧力 (ネガコン圧) を圧力センサ 7 4, 7 5により検出して、 油圧ポンプ 5 1, 5 2のポンプ傾転角を制御してポンプ流量制御を行な うものである。 なお、 この場合には、 ブーム用操作部材 5 4 a, スティ ック用操作部材 5 4 b及びバケツ ト用操作部材 5 4 cからの電気信号に 基づくボンプ傾転角制御が行なわない。  Here, the normal negative flow control means that, as described above, the control valves 57 to 60 and 62 to 65 operate according to the operation amounts of the operation members 54 and the bypass oil passage 6. The pressure (negative control pressure) generated by the change in the flow rate of the hydraulic oil of 1b, 66c is detected by the pressure sensors 74, 75, and the pump tilt angle of the hydraulic pumps 51, 52 To control the pump flow rate. In this case, the pump tilt angle control based on the electric signals from the boom operation member 54a, the stick operation member 54b, and the bucket operation member 54c is not performed.
このようにして、 油圧ポンプ 5 1, 5 2のポンプ傾転角制御が行なわ れると、 例えばブースト圧は所定圧力 (約 1 5 0〜2 0 0 k g f // c m 2) となる。 このため、 ポンプ吐出圧力が負荷圧力よりも所定圧力 (約In this way, when the pump tilting angle control of the hydraulic pump 5 1, 5 2 is performed, for example, the boost pressure becomes a predetermined pressure (about 1 5 0~2 0 0 kgf / / cm 2). Therefore, the pump discharge pressure is higher than the load pressure by a predetermined pressure (approximately
1 5 0〜 2 0 0 k g f / c m2) 高くなるようにポンプ傾転角制御を行 なうこともできる。 150 to 200 kgf / cm 2 ) It is also possible to control the pump tilt angle so that it becomes higher.
ここで、 ネガティブフローコントロールでは、 レバ一パターンの違い や操作量の違いに応じて必要なポンプ流量も異なるものとなる。  Here, in the negative flow control, the required pump flow rate is different depending on the difference of the lever pattern and the operation amount.
例えば、 操作部材 5 4の操作パターンの違いとして、 ブームアップと スティックアウトとを連動させる場合はブースト圧が所定圧力 (約 2 0 O k g f / c m 2 ) になるようなポンプ流量とし、 またブームアップと バケツトァゥ卜とを連動させる場合はブースト圧が所定圧力 (約 1 5 0 k g f / c m 2 ) になるようなポンプ流量とする。 For example, as a difference in the operation pattern of the operation member 54, when the boom-up and the stick-out are linked, the boost pressure becomes a predetermined pressure (about 20 O kgf / cm 2 ). When the boom-up and the bucket are linked, the pump flow should be such that the boost pressure becomes a predetermined pressure (about 150 kgf / cm 2 ).
一方、 操作部材 5 4の操作量の違いとして、 例えば、 ブームアップ微 操作, スティックイン操作 (全操作量に対して約 5 0〜 1 0 0 %程度の 操作) 及びバケツ卜イン操作 (全操作量に対して約 5 0〜 1 0 0 %程度 の操作) が行なわれた場合は、 スティック 1 0 4及びバケツ卜 1 0 8を 使った掘削作業に相当し、 ポンプ吐出圧力は掘削負荷とバランスさせた 圧力になる。 この場合、 ブースト圧は発生しないため、 操作部材 5 4の 操作量に見合ったポンプ流量を供給し、 生産性を確保する。  On the other hand, differences in the operation amount of the operation member 54 include, for example, a boom-up fine operation, a stick-in operation (approximately 50% to 100% of the total operation amount), and a bucket-in operation (all operations). (Operation of about 50% to 100% of the volume) is equivalent to excavation using stick 104 and bucket 108, and the pump discharge pressure is balanced with the excavation load. The applied pressure is reached. In this case, since no boost pressure is generated, a pump flow rate corresponding to the operation amount of the operation member 54 is supplied to secure productivity.
本実施形態にかかる建設機械の制御装置は、 上述のように構成され、 いわゆる地ならし作業時に最適ポンプ流量制御 (制御方法) を行なうベ く、 図 7のフローチャートに示すように動作する。  The control device for a construction machine according to the present embodiment is configured as described above, and operates as shown in the flowchart of FIG. 7 to perform optimal pump flow rate control (control method) during so-called leveling work.
つまり、 ステップ A 1 0では各操作部材 5 4からの電気信号を読み込 み、 ステップ A 2 0に進む。  That is, in step A10, the electric signal from each operation member 54 is read, and the process proceeds to step A20.
ステップ A 2 0では、 ブームアップ微操作判定手段 2によってブーム 用操作部材 5 4 aの操作量に基づいてブームアップの微操作が行なわれ たか否かが判定される。  In step A20, the boom-up fine operation determining means 2 determines whether or not the boom-up fine operation has been performed based on the operation amount of the boom operating member 54a.
その判定の結果、 ブームアップ微操作が行なわれたと判定された場合 は、 ステップ A 3 0に進み、 スティックイン微操作判定手段 3によって スティック用操作部材 5 4 bの操作量に基づいてスティックインの微操 作が行なわれたか否かが判定される。  As a result of the determination, when it is determined that the boom-up fine operation has been performed, the process proceeds to step A30, and the stick-in fine operation determining means 3 determines whether the stick-in fine operation has been performed based on the operation amount of the stick operating member 54b. It is determined whether a fine operation has been performed.
その判定の結果、 スティックイン微操作が行なわれたと判定された場 合は、 ステップ A 4 0に進み、 さらにバケツトイン微操作判定手段 4に よってバケツト用操作部材 5 4 cの操作量に基づいてバケツトインの微 操作が行なわれたか否かが判定され、 その結果、 バケツトイン微操作が 行なわれたと判定された場合は、 ステップ A 5 0に進み、 ブームアップ 微操作, スティックイン微操作及びバケツトイン微操作が同時に行なわ れ、 いわゆる地ならし作業時であると考えられるため、 ポンプ傾転角制 御手段 5によって地ならし作業時 (ブーム ·スティック ·バケツト微操 作時) の最適ポンプ流量になるように、 ブーム用操作部材 5 4 a , ステ ィック用操作部材 5 4 b及びバケツ卜用操作部材 5 4 cの操作量に応じ てポンプ傾転角制御を行ない、 リタ一ンする。 As a result of the determination, when it is determined that the stick-in fine operation has been performed, the process proceeds to step A40, and the bucket-in fine operation determining means 4 further performs the bucket-in operation based on the operation amount of the bucket operating member 54c. It is determined whether or not the fine operation of the bucket has been performed. If it is determined that the operation has been performed, the flow proceeds to step A50, and the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation are simultaneously performed. The boom operating member 54a, the stick operating member 54b and the bucket operating member 5 are controlled by the control means 5 so that the optimum pump flow rate during the leveling work (at the time of fine operation of the boom, stick and bucket) is obtained. 4 Perform pump tilt angle control according to the operation amount of c and return.
一方、 ステップ A 2 0でブームアップ微操作判定手段 2によってブー ムアップ微操作が行なわれていないと判定された場合、 ステップ A 3 0 でスティックイン微操作判定手段 3によってスティックイン微操作が行 なわれていないと判定された場合、 ステップ A 4 0でバケツトイン微操 作判定手段 4によってバケツトイン微操作が行なわれていないと判定さ れた場合は、 いずれの場合も地ならし作業は行なわれていないと判断し て、 ステップ A 6 0に進み、 通常のネガティブフローコントロールにお ける最適ポンプ流量になるようにポンプ傾転角制御を行ない、 リターン する。  On the other hand, if it is determined in step A20 that the fine boom-up operation has not been performed by the fine boom-up operation determining means 2, the stick-in fine operation determining means 3 does not perform the fine-in-stick operation in step A30. When it is determined that the bucket-in fine operation has not been performed by the bucket-in fine operation determination means 4 in step A40, it is determined that the leveling work has not been performed in any case. Judgment proceeds to step A60, where the pump tilt angle control is performed so that the optimum pump flow rate in normal negative flow control is obtained, and the routine returns.
ここで、 以下に示す表は地ならし作業時に最適ポンプ流量制御を行な つた場合の燃費の計測結果を示すものである。 なお、 表は地ならし作業 (レべリングオペレーション) を 1 0サイクル行なった場合の計測結果 である。  Here, the table below shows the measurement results of fuel efficiency when the optimal pump flow control is performed during the leveling operation. The table shows the measurement results when the leveling operation (leveling operation) was performed for 10 cycles.
Figure imgf000035_0001
Figure imgf000035_0001
この表に示すように、 本実施形態における最適ポンプ流量制御を行な つた場合、 従来のポンプ流量制御に比べ、 地ならし作業時の燃費を約 2 5 %向上させることができることがわかる。 なお、 パケッ ト用操作部材 5 4 cゃスティック用操作部材 5 4 bがフル操作された場合の燃費は従 来の場合とほとんど変わらない。 As shown in this table, when the optimum pump flow control in this embodiment is performed, the fuel consumption during leveling work is reduced by about 2 times compared to the conventional pump flow control. It can be seen that it can be improved by 5%. It should be noted that the fuel consumption when the packet operation member 54c ゃ stick operation member 54b is fully operated is almost the same as the conventional case.
したがって、 本実施形態によれば、 ブーム用操作部材 5 4 a, スティ ック用操作部材 5 4 b及びバケツ 卜用操作部材 5 4 cの操作量に基づい てブームアップ微操作, スティックイン微操作及びバケツ トイン微操作 が同時に行なわれた場合にいわゆる地ならし作業であると判定し、 この 地ならし作業において最適なポンプ流量となるように油圧ポンプ 5 1, 5 2の傾転角制御を行なうため、 油圧ポンプ 5 1, 5 2を駆動するェン ジン 5 0の出力ロスを抑制することができ、 ひいては燃費を良くするこ とができるという利点がある。  Therefore, according to the present embodiment, the boom-up fine operation and the stick-in fine operation are performed based on the operation amounts of the boom operation member 54a, the stick operation member 54b, and the bucket operation member 54c. If the bucket-in fine operation is performed at the same time, it is determined that the operation is a so-called leveling operation. In order to control the tilt angles of the hydraulic pumps 51 and 52 so that the optimum pump flow rate is obtained in the leveling operation, the hydraulic pressure is controlled. There is an advantage that the output loss of the engine 50 that drives the pumps 51 and 52 can be suppressed, and consequently fuel efficiency can be improved.
また、 ブーム用操作部材 5 4 a, スティック用操作部材 5 4 b及びバ ケッ ト用操作部材 5 4 cの操作量に基づいてブームアップ微操作, ステ ィックイン微操作及びバケツ トイン微操作が同時に行なわれた場合に地 ならし作業であると判定し、 ポンプ吐出圧が過剰に上昇しないようにブ ーム用操作部材 5 4 a , スティック用操作部材 5 4 b及びバケツ ト用操 作部材 5 4 cの操作量に応じて油圧ポンプ 5 1, 5 2の傾転角制御を行 なうため、 つまりポンプ吐出流量を減らすように油圧ポンプ 5 1 , 5 2 の傾転角を制御するため、 油圧ポンプ 5 1, 5 2を駆動するエンジン 5 0の出力ロスを抑制することができ、 ひいては燃費を良くすることがで きるという利点がある。  Further, based on the operation amounts of the boom operation member 54a, the stick operation member 54b, and the bucket operation member 54c, the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation are simultaneously performed. In this case, it is determined that the operation is a leveling operation, and the operating member for boom 54 a, the operating member for stick 54 b and the operating member for bucket 54 are used so that the pump discharge pressure does not excessively increase. In order to control the tilt angles of the hydraulic pumps 51 and 52 according to the operation amount of c, that is, to control the tilt angles of the hydraulic pumps 51 and 52 so as to reduce the pump discharge flow rate, There is an advantage that the output loss of the engine 50 that drives the pumps 51 and 52 can be suppressed, and consequently fuel efficiency can be improved.
なお、 上述の実施形態では、 ブームアップ微操作, スティックイン微 操作及びバケツ トイン微操作が行なわれる場合について説明したが、 こ れに限られるものではなく、 ブームダウン微操作 (ブーム微操作), ス ティックアウト微操作 (スティック微操作) 及びパケッ トオープン微操 作 (バケツト微操作) が行なわれる場合であっても、 本発明を同様に適 用できる。 In the above embodiment, the case where the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation are performed has been described. However, the present invention is not limited to this, and the boom-down fine operation (boom fine operation), The present invention is similarly applicable to the case where stick-out fine operation (stick fine operation) and packet open fine operation (bucket fine operation) are performed. Can be used.
この場合、 ブーム微操作判定手段 2は、 ブーム用操作部材 5 4 aの操 作量に基づいてブームダウン微操作が行なわれたかを判定するものとし て構成され、 スティック微操作判定手段 3は、 スティック用操作部材 5 4 bの操作量に基づいてスティックァゥト微操作が行なわれたかを判定 するものとして構成されるとともに、 バケツト微操作判定手段 4は、 バ ケット用操作部材 5 4 cの操作に基づいてバケツトオープン微操作が行 なわれたかを判定するものとして構成される。 そして、 ポンプ傾転角制 御手段 5が、 ブーム微操作判定手段 2 , スティック微操作判定手段 3及 びバケツト微操作判定手段 4の判定結果に基づいて油圧ポンプ 5 1, 5 2の傾転角制御を行なうことになる。  In this case, the boom fine operation determining means 2 is configured to determine whether the boom down fine operation has been performed based on the operation amount of the boom operating member 54a, and the stick fine operation determining means 3 The bucket fine operation determining means 4 is configured to determine whether or not the fine operation of the stick is performed based on the operation amount of the stick operating member 54b, and the bucket fine operation determining means 4 is used for the operation of the bucket operating member 54c. It is configured to determine whether the bucket open fine operation has been performed based on this. The pump tilt angle control means 5 determines the tilt angles of the hydraulic pumps 51, 52 based on the determination results of the boom fine operation determination means 2, the stick fine operation determination means 3, and the bucket fine operation determination means 4. Control will be performed.
また、 上述の実施形態では、 本発明をネガティブフローコントロール を行なう建設機械の制御装置及び制御方法に適用する場合について説明 しているが、 本発明をポジティブフローコントロールを行なう建設機械 の制御装置に適用しても良い。 産業上の利用可能性  Further, in the above-described embodiment, the case where the present invention is applied to the control device and the control method of the construction machine that performs the negative flow control is described. However, the present invention is applied to the control device of the construction machine that performs the positive flow control. You may. Industrial applicability
以上のように、本発明の建設機械の制御装置及び制御方法は、 ブーム, スティック, バケツトを微操作させて地ならし作業等を行なう建設機械 (例えば、 油圧ショベル) に有用であり、 特に、 これらの作業機 (ブー ム, スティック, バケツト) を駆動するための油圧ァクチユエ一夕に、 エンジン駆動油圧ポンプにより吐出される作動油を供給する建設機械に 適している。  INDUSTRIAL APPLICABILITY As described above, the control device and the control method for a construction machine of the present invention are useful for a construction machine (for example, a hydraulic shovel) that performs a leveling operation by finely operating a boom, a stick, and a bucket. It is suitable for construction machinery that supplies hydraulic oil discharged by an engine-driven hydraulic pump during a hydraulic work to drive work machines (booms, sticks, and buckets).

Claims

請 求 の 範 囲 The scope of the claims
1. タンク内の作動油を吐出する油圧ポンプ ( 5 1 ), (52) と、 オペレータにより操作される複数の操作部材 (54) と、 1. A hydraulic pump (51), (52) for discharging hydraulic oil in the tank, and a plurality of operating members (54) operated by an operator;
該油圧ポンプからの吐出流量を制御する制御手段 ( 1) とを備え、 該制御手段 ( 1) が、  Control means (1) for controlling a discharge flow rate from the hydraulic pump, wherein the control means (1) comprises:
上記の複数の操作部材 (54) のうちのブーム用操作部材 (54 a) の操作量に基づいてブーム微操作が行なわれたかを判定するブーム微操 作判定手段 (2) と、  Boom fine operation determining means (2) for determining whether a boom fine operation has been performed based on the operation amount of the boom operating member (54a) of the plurality of operating members (54);
上記の複数の操作部材 ( 54) のうちのスティック用操作部材 ( 54 b) の操作量に基づいてスティ ック微操作が行なわれたかを判定するス ティック微操作判定手段 (3) と、  Stick fine operation determining means (3) for determining whether or not a stick fine operation has been performed based on the operation amount of the stick operating member (54b) of the plurality of operating members (54);
上記の複数の操作部材 (54) のうちのバケツ ト用操作部材 (54 c) の操作量に基づいてバケツ ト微操作が行なわれたかを判定するバケツ ト 微操作判定手段 (4) と、  Bucket fine operation determining means (4) for determining whether a bucket fine operation has been performed based on the operation amount of the bucket operating member (54c) of the plurality of operating members (54);
該ブーム微操作判定手段 (2), 該スティ ック微操作判定手段 ( 3) 及び該バケツ ト微操作判定手段 (4) の判定結果に基づいて該油圧ボン プの傾転角制御を行なうポンプ傾転角制御手段 (5) とを備えることを 特徴とする、 建設機械の制御装置。  A pump for controlling the tilt angle of the hydraulic pump based on the determination results of the boom fine operation determining means (2), the stick fine operation determining means (3) and the bucket fine operation determining means (4). A control device for a construction machine, comprising: a tilt angle control means (5).
2. 上記の複数の操作部材 (54) 力 操作量に応じて電気信号を出力 するように構成され、 2. The above-mentioned plural operation members (54) force are configured to output an electric signal according to the operation amount,
該制御手段 ( 1) が、 上記の複数の操作部材 (54) からの電気信号 に基づいて該油圧ポンプ ( 5 1 ), ( 5 2) の傾転角制御を行なうことを 特徴とする、 請求の範囲第 1項記載の建設機械の制御装置。 The control means (1) performs tilt angle control of the hydraulic pumps (51) and (52) based on electric signals from the plurality of operating members (54). 2. The control device for a construction machine according to claim 1, wherein
3. 該ブーム微操作判定手段 (2) 力 ブームアップ微操作が行なわれ たかを判定するものとして構成され、 3. The boom fine operation determination means (2) Force is configured to determine whether a boom up fine operation has been performed,
該スティック微操作判定手段 (3) 力 スティックイン微操作が行な われたかを判定するものとして構成され、  The fine stick operation determining means (3) is configured to determine whether a fine stick-in operation has been performed,
該バケツ ト微操作判定手段 (4) 力 バケツ トイン微操作が行なわれ たかを判定するものとして構成され、  The bucket fine operation determining means (4) is configured to determine whether a force bucket-in fine operation has been performed,
該ポンプ傾転角制御手段 ( 5) が、 該ブーム微操作判定手段 (2), 該スティ ック微操作判定手段 (3) 及び該バケツ ト微操作判定手段 (4) によってブームアップ微操作, スティックイン微操作及びバケツ トイン 微操作が行なわれたと判定した場合に該ブーム用操作部材 ( 54 a), 該スティ ック用操作部材 (54 b) 及び該バケツ ト用操作部材 (54 c) からの電気信号に応じて該油圧ポンプ (5 1), (52) の傾転角制御を 行なうことを特徴とする、請求の範囲第 2項記載の建設機械の制御装置。  The pump tilt angle control means (5) is controlled by the boom fine operation determining means (2), the stick fine operation determining means (3) and the bucket fine operation determining means (4) to perform a boom up fine operation. When it is determined that the stick-in fine operation and the bucket-in fine operation have been performed, the operation member for boom (54a), the operation member for stick (54b), and the operation member for bucket (54c) are used. 3. The control device for a construction machine according to claim 2, wherein tilt angle control of said hydraulic pumps (51), (52) is performed in accordance with said electric signal.
4. 該ブーム微操作判定手段 (2) が、 ブームアップ微操作が行なわれ たかを判定するものとして構成され、 4. The boom fine operation determining means (2) is configured to determine whether a boom up fine operation has been performed,
該スティック微操作判定手段 (3) が、 スティ ックイン微操作が行な われたかを判定するものとして構成され、  The stick fine operation determining means (3) is configured to determine whether a stick-in fine operation has been performed,
該バケツ ト微操作判定手段 (4) 力 バケツ トイン微操作が行なわれ たかを判定するものとして構成され、  The bucket fine operation determining means (4) is configured to determine whether a force bucket-in fine operation has been performed,
該ポンプ傾転角制御手段 (5) が、 該ブーム微操作判定手段 (2), 該スティ ック微操作判定手段 (3) 及び該バケツ ト微操作判定手段 (4) によってブームアップ微操作, スティックイン微操作及びバケツ トイン 微操作が行なわれたと判定された場合の該油圧ポンプ (5 1), (52) からの吐出流量を、 上記微操作のうちのいずれかが微操作でない場合の 該油圧ポンプ (5 1), (52) からの吐出流量よりも減らすように該油 圧ポンプ (5 1), (52) の傾転角制御を行なうことを特徴とする、 請 求の範囲第 1項記載の建設機械の制御装置。 The pump tilt angle control means (5) is operated by the boom fine operation determining means (2), the stick fine operation determining means (3) and the bucket fine operation determining means (4) to perform a boom up fine operation. When it is determined that the stick-in fine operation and the bucket-in fine operation have been performed, the discharge flow rate from the hydraulic pumps (51) and (52) is set to the value when one of the fine operations is not a fine operation. Hydraulic pump (51), (52) The control device for a construction machine according to claim 1, wherein the tilt angle control of the pressure pumps (51) and (52) is performed.
5. タンク内の作動油を吐出する油圧ポンプ (5 1), (5 2) と、 オペレータにより操作される複数の操作部材 ( 54) と、 5. Hydraulic pumps (5 1) and (5 2) for discharging hydraulic oil in the tank, and a plurality of operating members (54) operated by the operator,
該油圧ポンプからの吐出流量を制御する制御手段 ( 1 ) とを備える建 設機械の制御方法であって、  A control means (1) for controlling a discharge flow rate from the hydraulic pump.
上記の複数の操作部材 (54) のうちのブーム用操作部材 ( 54 a) の操作量に基づいてブーム微操作が行なわれたかを判定するブーム微操 作判定ステップと、 上記の複数の操作部材 (54) のうちのスティック 用操作部材 (54 b) の操作量に基づいてスティック微操作が行なわれ たかを判定するスティック微操作判定ステップと、 上記の複数の操作部 材 ( 54) のうちのバゲッ ト用操作部材 (54 c) の操作量に基づいて バケツ ト微操作が行なわれたかを判定するバケツ ト微操作判定ステップ とからなる判定ステップと、  A boom fine operation determining step of determining whether a boom fine operation has been performed based on the operation amount of the boom operating member (54a) of the plurality of operating members (54); A stick fine operation determining step of determining whether a stick fine operation has been performed based on the operation amount of the stick operating member (54b) of (54); and a stick fine operation determining step of the plurality of operating members (54). A bucket fine operation determining step of determining whether a bucket fine operation has been performed based on the operation amount of the baguette operating member (54c);
該判定ステップでの判定結果に基づいて該油圧ポンプの傾転角制御を 行なう制御ステップとを備えることを特徴とする、建設機械の制御方法。  Controlling the tilt angle of the hydraulic pump based on a result of the determination in the determining step.
6. 該制御ステップでは、 上記の複数の操作部材 (54) の操作量に応 じた電気信号に基づいて該油圧ポンプ (5 1 ), (52) の傾転角制御を 行なうことを特徴とする、請求の範囲第 5項記載の建設機械の制御方法。 6. In the control step, tilt angle control of the hydraulic pumps (51), (52) is performed based on an electric signal corresponding to an operation amount of the plurality of operation members (54). 6. The method for controlling a construction machine according to claim 5, wherein
7. 該ブーム微操作判定ステップでは、 ブームアップ微操作が行なわれ たかを判定し、 7. In the boom fine operation determination step, it is determined whether a boom up fine operation has been performed.
該スティック微操作判定ステップでは、 スティックイン微操作が行な われたかを判定し、 該バケツト微操作ステップでは、 バケツ トイン微操作が行なわれたか を判定し、 In the stick fine operation determination step, it is determined whether a stick-in fine operation has been performed. In the bucket fine operation step, it is determined whether bucket-in fine operation has been performed.
該制御ステップでは、 該判定ステップでブームアップ微操作, スティ ックイン微操作及びバケツ トイン微操作が行なわれたと判定された場合 に、 該ブーム用操作部材 ( 54 a), 該スティック用操作部材 ( 54 b) 及び該パケッ ト用操作部材 ( 54 c) からの電気信号に応じて該油圧ポ ンプ (5 1), (5 2) の傾転角制御を行なうことを特徴とする、 請求の 範囲第 6項記載の建設機械の制御方法。  In the control step, when it is determined that the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation are performed in the determination step, the boom operation member (54a) and the stick operation member (54) b) and the tilt angle control of the hydraulic pumps (51) and (52) according to an electric signal from the packet operating member (54c). 6. The method for controlling a construction machine according to item 6.
8. 該ブーム微操作判定ステップでは、 ブームアップ微操作が行なわれ たかを判定し、 8. In the boom fine operation determination step, it is determined whether a boom up fine operation has been performed.
該スティック微操作ステップでは、 スティックイン微操作が行なわれ たかを判定し、  In the stick fine operation step, it is determined whether a stick-in fine operation has been performed.
該バケツ ト微操作ステップでは、 バケツ トイン微操作が行なわれたか を判定し、  In the bucket fine operation step, it is determined whether the bucket-in fine operation has been performed, and
該制御ステップでは、 該判定ステップでブームアップ微操作, スティ ックイン微操作及びバケツ トイン微操作が行なわれたと判定された場合 に、 該油圧ポンプ (5 1), (5 2) からの吐出流量を上記微操作のうち のいずれかが微操作でない場合の該油圧ポンプ (5 1), (52) からの 吐出流量よりも減らすように該油圧ポンプ (5 1), (52) の傾転角制 御を行なうことを特徴とする、 請求の範囲第 5項記載の建設機械の制御 方法。  In the control step, when it is determined in the determination step that the boom-up fine operation, the stick-in fine operation, and the bucket-in fine operation have been performed, the discharge flow rate from the hydraulic pumps (51) and (52) is determined. When any of the above fine operations is not a fine operation, the tilt angle control of the hydraulic pumps (51) and (52) is reduced so as to reduce the discharge flow from the hydraulic pumps (51) and (52). 6. The method for controlling a construction machine according to claim 5, wherein the control is performed.
PCT/JP2000/002442 1999-04-27 2000-04-14 Device and method for control of construction machinery WO2000065240A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11920999A JP3645740B2 (en) 1999-04-27 1999-04-27 Construction machine control equipment
JP11/119209 1999-04-27

Publications (1)

Publication Number Publication Date
WO2000065240A1 true WO2000065240A1 (en) 2000-11-02

Family

ID=14755646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002442 WO2000065240A1 (en) 1999-04-27 2000-04-14 Device and method for control of construction machinery

Country Status (2)

Country Link
JP (1) JP3645740B2 (en)
WO (1) WO2000065240A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655795B2 (en) * 2005-07-15 2011-03-23 コベルコ建機株式会社 Hydraulic control device of excavator
BR112015001444A2 (en) * 2012-07-27 2017-07-04 Volvo Constr Equip Ab hydraulic system for a construction machine
GB2546485A (en) 2016-01-15 2017-07-26 Artemis Intelligent Power Ltd Hydraulic apparatus comprising synthetically commutated machine, and operating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837302A (en) * 1981-08-31 1983-03-04 Mitsubishi Heavy Ind Ltd Pump control device of working machine
JPH10227047A (en) * 1997-02-17 1998-08-25 Hitachi Constr Mach Co Ltd Remote controller for working machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837302A (en) * 1981-08-31 1983-03-04 Mitsubishi Heavy Ind Ltd Pump control device of working machine
JPH10227047A (en) * 1997-02-17 1998-08-25 Hitachi Constr Mach Co Ltd Remote controller for working machine

Also Published As

Publication number Publication date
JP3645740B2 (en) 2005-05-11
JP2000309948A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
US6564548B2 (en) Speed control apparatus of working vehicle and speed control method thereof
JP3985756B2 (en) Hydraulic control circuit for construction machinery
JP5013452B2 (en) Hydraulic control circuit in construction machinery
JP6474718B2 (en) Hydraulic control equipment for construction machinery
JP5805217B2 (en) Hydraulic closed circuit drive
WO2005098148A1 (en) Hydraulic drive device for working machine
JP6383676B2 (en) Work machine
JP3576064B2 (en) Control equipment for construction machinery
CN111587306B (en) Rotary hydraulic engineering machinery
EP3872354B1 (en) Construction machine with open and closed hydraulic circuits
JP3634980B2 (en) Construction machine control equipment
JP4731033B2 (en) Hydraulic drive control device
JP3539720B2 (en) Control equipment for construction machinery
JP3594837B2 (en) Control equipment for construction machinery
WO2000065240A1 (en) Device and method for control of construction machinery
JP7444032B2 (en) construction machinery
JP3629382B2 (en) Construction machine control equipment
JP5269754B2 (en) Pump controller for construction machinery
JP7331786B2 (en) swivel construction machine
JP3541154B2 (en) Control equipment for construction machinery
JP3541142B2 (en) Control equipment for construction machinery
JP3612253B2 (en) Construction machine control device and control method thereof
JP2005016228A (en) Turning hydraulic circuit
JP4953378B2 (en) Hydraulic control system for construction machinery
JPH11140914A (en) Hydraulic pump control device for slewing construction machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase