WO2000062052A1 - Method and device for analyzing chemical substances - Google Patents

Method and device for analyzing chemical substances Download PDF

Info

Publication number
WO2000062052A1
WO2000062052A1 PCT/JP2000/001514 JP0001514W WO0062052A1 WO 2000062052 A1 WO2000062052 A1 WO 2000062052A1 JP 0001514 W JP0001514 W JP 0001514W WO 0062052 A1 WO0062052 A1 WO 0062052A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
compound
mass
mass spectrometer
measured
Prior art date
Application number
PCT/JP2000/001514
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyoshi Nozaki
Original Assignee
Fujisawa Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujisawa Pharmaceutical Co., Ltd. filed Critical Fujisawa Pharmaceutical Co., Ltd.
Publication of WO2000062052A1 publication Critical patent/WO2000062052A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography

Definitions

  • the present invention relates to a method and an apparatus for analyzing a sample, and more particularly, to a method and an apparatus for analyzing a sample obtained by combining a method of electrochemically performing Z reduction with mass spectrometry.
  • a mass spectrometer converts particles such as atoms, molecules, clusters, and organic compounds into gaseous ions and moves them in a vacuum, and separates samples according to the mass-Z charge ratio (mZz).
  • mZz mass-Z charge ratio
  • A device that can be detected. By analyzing the mass spectrum obtained using this device, it is possible to determine the mass (molecular weight information) from the molecular weight-related ions, the molecular structure (structural information) from the fragment ions, and the height and pattern of the isotope ions. The type and number of elements (elemental information) can be obtained.
  • mass spectrometers have traditionally been selected as LC-MS by connecting to a liquid chromatograph (LC), and MSZMS, MSZMS / MS, etc. by connecting multiple mass spectrometers.
  • LC liquid chromatograph
  • MSZMS MSZMS / MS, etc.
  • one of the detectors of liquid chromatographs is an electrochemical detector (ECD), which has a higher specificity, a wider measurement concentration range and better sensitivity than an ultraviolet absorption detector. Used for many substances.
  • ECD electrochemical detector
  • LC-ECD is a commonly used analyzer for certain types of compounds
  • the compound to be analyzed is detected using a redox reaction. Only compounds that are easily oxidized or reduced can be analyzed, and their targets are limited.
  • increasing the potential applied for the oxidation-reduction reaction increases the background, reduces the selectivity of the compound, and requires time to stabilize the current signal in order to perform highly sensitive measurements. There are issues. Disclosure of the invention
  • a method of analyzing a sample by subjecting the sample to a mass spectrometer and subjecting the sample to electrochemical analysis and then subjecting the sample to a mass spectrometer.
  • the sample in a method of subjecting a sample to a mass spectrometer for analysis, the sample is electrochemically treated and then subjected to a mass spectrometer to obtain a mass spectrum. And a mass spectrum obtained by directly subjecting the sample to a mass spectrometer.
  • a sample analyzer in which a device capable of electrochemically processing a sample is incorporated in a sample introduction portion of a mass spectrometer. That is, the present invention provides a method for stabilizing structural information in mass spectrometry to analyze or quantify a target compound with high sensitivity, and to obtain molecular structural information that cannot be obtained only by using a mass spectrometer alone. It is an object of the present invention to provide a highly useful analysis method and an analysis device that can perform the analysis. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a conceptual diagram of a main part showing a series of analyzers used in the analysis method of the present invention.
  • FIGS. 2 (a) to 2 (d) are mass spectra of compound (1) measured in MS in positive ion mode.
  • FIGS. 3 (a) to 3 (c) are mass spectra of compound (2) measured in MS in positive ion mode.
  • FIGS. 4 (a) to (c) are mass spectra of compound (2) measured in negative ion mode with MS.
  • Fig. 5 (a) to (d) show that compound (3) was measured in positive ion mode by MS. It is a specified mass spectrum.
  • Fig. 6 (a) to (c) are mass spectra of compound (3) measured by negative ion mode using MS.
  • FIGS. 7 (a) to 7 (d) are mass spectra of compound (4) measured in the positive ion mode by MS.
  • FIG. 8 is a mass spectrum of compound (5) measured in positive ion mode by MS.
  • FIGS. 9 (a) to 9 (d) are mass spectra of compound (5) directly measured by MS ZMS.
  • FIG. 10 is a mass spectrum measured by MSMS after passing compound (5) through an ECD cell without applying a voltage.
  • FIGS. 11 (a) to (c) are mass spectra measured by MS ZMS after passing compound (5) through an ECD cell without applying a voltage.
  • FIG. 12 is a mass spectrum showing the average of 104 continuous mass spectra measured by MSZMS / MS after passing compound (5) through an ECD cell without applying a voltage.
  • Figures 13 (a) and (b) are mass spectra measured with MS after applying voltage to compound (5) and passing it through the cells of an ECD.
  • FIG. 14 is a mass spectrum measured by MSZ.MS after compound (5) was passed through an ECD cell by applying a voltage.
  • FIGS. 15 (a) to 15 (c) are mass spectra measured by MSZMSZMS after applying a voltage to compound (5) through an ECD cell.
  • FIG. 16 is a mass spectrum showing the average of 35 continuous mass spectra measured by MSZMSZMS after applying a voltage to compound (5) and passing it through an ECD cell.
  • FIGS. 17 (a) and (b) are mass spectra of compound (6) measured in positive ion mode by MS.
  • FIGS. 18 (a) to 18 (c) are mass spectra of compound (7) measured in positive ion mode by MS.
  • FIGS. 19 (a) to (d) are mass spectra of compound (8) measured in positive ion mode by MS. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention mainly comprises subjecting a sample to be analyzed by a mass spectrometer to an electrochemical treatment in advance.
  • the sample in the present invention means a test substance containing a chemical substance to be measured, and is particularly preferably a liquid substance dissolved in a suitable solvent such as water or an organic solvent. Further, in the present invention, it is preferable that the chemical substance to be measured is present almost purely in the sample, and it is preferable to use the one after the separation or purification treatment.
  • the separation or purification treatment can be performed by a conventional method in the relevant field, for example, by subjecting to a liquid chromatography (LC) or the like.
  • Chemical substances include various substances such as substances extracted from natural animals and plants, synthesized organic substances, inorganic substances, and metabolites thereof. For example, by subjecting to electrochemical treatment, electrochemically oxidized or reduced such that is easily compound, or oxidized or reduced, etc.
  • R represents an alkyl group and X represents a halogen atom.
  • a compound which can be oxidized or reduced or a compound having such a functional group when a certain voltage is applied to a sample dissolved in an appropriate solvent such as water or an organic solvent is advantageous.
  • the sample of the present invention may be applied to the case where the sample contains a chemical substance other than the compound which is susceptible to electrochemical oxidation or reduction as described above, or a compound having a functional group which is susceptible to oxidation or reduction. Can be.
  • a mass spectrometer used in the present invention a device which can be generally used for performing mass spectrometry, mainly after ionizing a sample and separating the sample according to a mass Z charge number (m / z); Means a device for measuring a mass spectrum by electrically detecting a target or detecting a specific ion.
  • the mass spectrometer is composed of an ion source for ionizing a sample, an analyzer for separating ions according to m / z, and a Z recording unit for detecting separated ions.
  • ion trap mass spectrometer IMS
  • quadrupole mass spectrometer QMS
  • double focusing mass spectrometer T ⁇ F-MS
  • ICR-MS ion cyclotron resonance mass
  • analyzers ICR-MS
  • the ion source of the mass spectrometer may be of any type, but is preferably of a type capable of ionizing a liquid sample.
  • ion sources that can be ionized by the electrospray ionization (ESI) method, the atmospheric pressure chemical ionization (APCI) method, the fast atom bombardment (FAB) method, and the like.
  • electrochemical treatment generally means that an electrochemical oxidation or reduction reaction is performed by applying a predetermined voltage to a sample containing a chemical substance to be analyzed. I do.
  • electrochemical treatment is generally performed by applying to an electrochemical detector (ECD) which has been conventionally used as an LC detector.
  • ECD electrochemical detector
  • a coulometric detector having a reaction rate close to 100% is preferable.
  • various detectors used in this field such as an amberometric detector, can be used.
  • ECDs are mainly composed of cells in which a pair of inert electrodes are placed in an electrolyte solution containing a sample and a predetermined voltage is applied between the electrodes.
  • the magnitude of the applied voltage can be appropriately adjusted according to the type of the electrode, the solvent used, the configuration of the cell used, and the properties of the chemical substance to be analyzed contained in the sample.
  • the voltage is set to a value suitable for the sample to be oxidized or reduced. Specifically, when a coulometric cell manufactured by ESA is used, a voltage of about ⁇ 200 to 100 OmV is applied.
  • the molecular weight information and structural information normally obtained in the mass spectrometer can be obtained more stably and with higher sensitivity. be able to.
  • a sample is electrochemically treated and then subjected to mass spectrometry to obtain a mass spectrum, and the obtained mass spectrum is analyzed by mass spectrometry without subjecting the sample to electrochemical treatment.
  • the mass number of the mass spectrum (mZz) and the ionic strength changed by the electrochemical treatment and the ionic strength Various information about the structure can be obtained.
  • the mass of the chemical substance which is easily or less likely to be oxidized or reduced, is compared with a mass spectrometer not subjected to the electrochemical treatment.
  • the ionic strength of the vector increases or the peak is obtained stably, and stable fragmentation can be observed.
  • the compound which is liable to be oxidized or reduced electrochemically or the functional group which is liable to be oxidized or reduced is desorbed or changed by the electrochemical treatment, the sample is removed. Before and after the electrochemical treatment, the mass number increases and decreases, and thus can be used as an index when specifying a compound or a functional group.
  • the sample after the sample has been subjected to the electrochemical treatment, the sample may be applied only once to the mass spectrometer, or may be applied continuously two or more times. In particular, more stable fragmentation can be observed when the sample is continuously applied to the mass spectrometer two or more times.
  • the analysis method of the present invention can be easily implemented by, for example, an analyzer configured by incorporating a device capable of electrochemically processing a sample into a sample introduction portion of a mass spectrometer described later.
  • a sample containing a chemical substance to be analyzed can be electrochemically treated with a mobile phase having a composition that does not react with the chemical substance at a constant flow rate for a predetermined time, if desired.
  • the sample is introduced into the instrument and a predetermined voltage is applied to the introduced sample.
  • the specified phase was introduced in advance to a device that can electrochemically process only the mobile phase not containing the sample It is preferable to apply this voltage beforehand and then introduce the sample together with the mobile phase into an apparatus capable of electrochemically processing the sample.
  • the sample may be introduced using a syringe infusion known in the art, a syringe infusion provided in a commercially available mass spectrometer, or may be electrochemically introduced.
  • an analyzer that incorporates a liquid chromatograph, etc. in the introduction part of the equipment that can be processed, the sample discharged from the liquid chromatograph is kept while maintaining the mobile phase of the liquid chromatograph at a constant flow rate. It may be introduced into equipment that can be processed directly electrochemically.
  • the sample which is attached to a device that can be processed electrochemically and discharged from this device, is directly introduced into the ion source, which is the interface of the mass spectrometer.
  • the sample may be introduced by any means as long as the sample can be introduced at a constant flow rate for a predetermined time.
  • the introduction means usually provided in the mass spectrometer may be used, or the mobile phase discharge means from the liquid chromatograph may be used.
  • the chemical substance analyzer according to the present invention is configured by incorporating a device capable of electrochemically processing a sample into a sample introduction part of a mass spectrometer, preferably immediately before an ion source of the mass spectrometer.
  • a mass spectrometer and an electrochemical detector known in the art can be used as the mass spectrometer and the device capable of performing the electrochemical treatment used here.
  • a liquid chromatograph for separating and purifying a sample is further incorporated in the introduction portion of the device capable of electrochemical processing, preferably immediately before the device. Is preferred. With such a configuration, the sample to be applied to the analyzer of the present invention can be easily purified to a more pure state.
  • a device which can be electrochemically processed and a mass spectrometer are connected to tubes generally used in the field, for example, PEEK tubes, stainless steel tubes, etc. (0.13 to 0.25 mm, outer diameter 1.6 mm) . If a liquid chromatograph is further incorporated, it is processed electrochemically with the liquid chromatograph. The resulting device can be connected using a tube as described above.
  • a liquid chromatograph is further incorporated, it is processed electrochemically with the liquid chromatograph.
  • the resulting device can be connected using a tube as described above.
  • a fixed amount of the mobile phase L was flowed from the high-performance liquid chromatograph (HPLC) 10, and the sample M was mixed with the mobile phase L via the T-tube 12 using the syringe 11 and then mixed.
  • the measurement sample M was measured by introducing it into the cell 14 of an electrochemical processing device (electrochemical detector, ECD) 13 and then continuously introducing it into a mass spectrometer (MS) 15.
  • ECD electrochemical processing device
  • MS mass spectrometer
  • Compounds (1) represented by the following structural formulas, compounds (2) and (3) which are metabolites of compound (1), and compounds (4) in which the phenolic hydroxyl group of compound (2) is converted to a methoxy group ) was used as a measurement sample.
  • Compound (1) is a compound described in JP-A-2-111774
  • compounds (2) and (3) are compounds described in J. Pharm. Biomed. Anal., 17 (1998) ⁇ 1381392. Yes, the compound (4) was produced according to the method described in JP-A-2-111774.
  • ECD Esa Coulochem II and Analytical Cell Model 5010
  • MS LCQ (ion trap type) manufactured by ThermoQuest, Inc. Electrospray method (ESI) was used as the interface.
  • Degassing was performed with the online degasser attached to HP LC. The column was not used and the mobile phase flow rate was set to 0.2 mL / min.
  • the measurement sample was prepared by dissolving with acetonitrile so that the concentration of each of the above compounds would be 5 O AiM, then diluting with about 40% aqueous solution of acetonitrile, and using a syringe at a rate of 5 L / min. Injected into the mobile phase before it was introduced.
  • the MS used an electrospray method (ESI) as the interface, set the heating capillary temperature to 250 ° C, the sheath gas volume to 75 psi, and the auxiliary gas volume to 1 Opsi.
  • the spray voltage was 4.5 kV in the positive ion mode and 4 kV in the negative ion mode. Optimization of the tube lens voltage, etc. was performed using the autotune program attached to the equipment.
  • compound (1) was introduced into MS without applying the ECD voltage, and was measured by full scan in positive ion mode.
  • the molecular weight-related ion [M + H] + was found to be m / z 439 (Fig. 2 (a)).
  • the compound (4) having a methoxy group instead of the phenolic hydroxyl group of the compound (2) was measured.
  • the compounds (2) and (3) having a phenolic hydroxyl group, which is a functional group that is easily oxidized electrochemically have a mass number of 14 by applying an oxidation potential.
  • the change to a compound provided structural information that could not be obtained with MS alone. That is, structural information as to whether or not the compound is easily oxidized or reduced electrochemically was obtained by simple online measurement.
  • the voltage of the ECD especially in the negative ion mode By applying 70 OmV, the peak force of mZz 467 was about 15 times that of mZz 453 when OmV was applied, and the effect of enhancing ionic strength was recognized.
  • the sample was measured in the same manner as in the first embodiment.
  • the mobile phase of HPLC and the flow rate of the mobile phase were set in the same manner as in the first embodiment. Degassing was performed with an online degasser attached to HP LC.
  • the measurement sample was prepared by dissolving the above compound (5) in acetonitrile so that the concentration of the compound (5) became 50 / xM, diluting it with about 40% acetonitrile aqueous solution, and using a syringe to prepare 5 L / min.
  • the mobile phase was injected before it was introduced into the ECD at a rate.
  • Compound (5) was passed through an ECD cell without applying voltage, and MSZMS by collision was performed to measure the daughter ions. When the collision power was changed to about 15%, the fragment of mZz 317 was detected. Peaks have been observed (Fig. 10).
  • FIG. 11 (a;) to (c) show mass spectra measured individually
  • FIG. 12 shows an average of 104 continuous mass spectra on a computer.
  • Compound (5) was applied to the MS at an ECD voltage of 70 OmV, measured in the positive ion mode, and a new peak was found at mZz 330, which has a smaller mass number by 2 as a molecular weight-related ion. This peak becomes the main peak when the voltage is increased to 800 mV or more (Figs. 13 (a) and (b)), and the ion intensity is about 10 times that of when not passing through the ECD cell (see Fig. 8). It's big.
  • FIGS. 15 (a) to 15 (c) show mass spectra measured individually, and FIG. 16 shows an average of 35 continuous mass spectra on a computer.
  • the intensity is increased, that is, the sensitivity is improved, as compared to the MS peak measured without applying the ECD. I was able to plan.
  • the fragmentation as structural information can be stabilized and the peak intensity can be increased by applying a voltage to the cell through the ECD cell and further applying a voltage.
  • the sample was measured in the same manner as in the first embodiment.
  • Hydroxyacetamides having different hydroxyl positions (compounds (6), (7) and (8)) represented by the following structural formulas were used as measurement samples.
  • the mobile phase of HPLC and the flow rate of the mobile phase were set in the same manner as in Embodiment 1.
  • Degassing was performed using an online degasser attached to HPLC.
  • the measurement sample is prepared by dissolving with acetonitrile so that the concentration of each of the above compounds becomes 1 mM, then diluting with about 40% aqueous acetonitrile solution, and introducing it into the CCD at a rate of 5 LZ using a syringe. Injected into the previous mobile phase.
  • the MS used an electrospray method (ESI) as an in-face, and was used under the same conditions as in the first embodiment.
  • ESI electrospray method
  • the compounds (6), (7), and (8) which have different phenolic hydroxyl groups, which are functional groups that are easily oxidized electrochemically, have oxidation potentials whose peaks change.
  • differences were found in the mass numbers of the changed compounds, and it was possible to obtain structural information on binding positions that cannot be obtained by MS alone.
  • the sample in a method of subjecting a sample to a mass spectrometer for analysis, the sample is electrochemically treated and then subjected to a mass spectrometer, whereby a molecule is converted from a fragment ion measured by the mass spectrometer.
  • the structure structural information
  • an analysis method with higher accuracy can be provided in terms of specificity and sensitivity.
  • the sample in a method of subjecting a sample to a mass spectrometer for analysis, the sample is electrochemically treated and then subjected to a mass spectrometer to obtain a mass spectrum.
  • the sample is susceptible to the electrochemical treatment, that is, a function that is easily oxidized or reduced.
  • the presence of a group is expressed as a change in mass number, so that it is possible to obtain structural information on molecules that cannot be obtained by simply attaching it to a mass spectrometer, and to provide a more reliable and useful analytical method in terms of sensitivity. Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

A method for analyzing a sample on a mass spectrometer, wherein the sample is electrochemically treated before being assigned to a mass spectrometer, whereby molecular structure-related information (structural information) can be constantly obtained from fragment ions measured by a mass spectrometer to thereby provide a high-accuracy analyzing method in terms of specificity and sensitivity.

Description

明細書  Specification
化学物質の分析方法及び分析装置 技術分野  Chemical substance analysis method and analyzer
本発明は、 試料の分析方法及び分析装置に関し、 より詳細には、 電気化 学的に酸化 Z還元を行う方法と質量分析法とを組み合わせてなる試料の分 析方法及び分析装置に関する。  The present invention relates to a method and an apparatus for analyzing a sample, and more particularly, to a method and an apparatus for analyzing a sample obtained by combining a method of electrochemically performing Z reduction with mass spectrometry.
背景技術 Background art
一般に、 質量分析計 (MS) は、 原子、 分子、 クラスタ一、 有機化合物 等の粒子を気体状のイオンにして真空中で運動させ、 質量 Z電荷比 (mZ z) に応じて、 試料を分離 ·検出し得る装置である。 この装置を使用して 得られるマススぺクトルを解析することにより、 分子量関連イオンから分 子の質量 (分子量情報) 、 フラグメントイオンから分子の構造 (構造情報) 及び同位体イオンの高さとパターンから構成元素の種類と数 (元素情報) が得られる。  In general, a mass spectrometer (MS) converts particles such as atoms, molecules, clusters, and organic compounds into gaseous ions and moves them in a vacuum, and separates samples according to the mass-Z charge ratio (mZz). · A device that can be detected. By analyzing the mass spectrum obtained using this device, it is possible to determine the mass (molecular weight information) from the molecular weight-related ions, the molecular structure (structural information) from the fragment ions, and the height and pattern of the isotope ions. The type and number of elements (elemental information) can be obtained.
したがって、従来から、 質量分析計は、 例えば、 液体クロマトグラフ (L C) と接続することにより LC一 MS、 さらに複数個の質量分析計を接続 することにより、 MSZMS, MSZMS/MS等として、 選択性が高く 汎用性のある分析機器として、 種々の分野で試料の定量や構造解析に利用 されている。  Therefore, mass spectrometers have traditionally been selected as LC-MS by connecting to a liquid chromatograph (LC), and MSZMS, MSZMS / MS, etc. by connecting multiple mass spectrometers. As a highly versatile analytical instrument, it is used for sample quantification and structural analysis in various fields.
一方、液体クロマトグラフの検出器の 1つとして、電気化学的検出器(E CD) があり、 この EC Dは、 紫外吸収検出器よりも特異性が高く、 測定 濃度範囲が広く、 感度も良好であるために多くの物質に対して使用されて いる。  On the other hand, one of the detectors of liquid chromatographs is an electrochemical detector (ECD), which has a higher specificity, a wider measurement concentration range and better sensitivity than an ultraviolet absorption detector. Used for many substances.
しかし、 MSを LCと接続して使用する場合には、 質量分析において、 目的物質のイオン化のしゃすさや安定性が定量感度に直接関係するため、 イオン化しにくい化合物をいかにイオン化させるかが重要となる。 また、 MSによる分析では、 構造情報としては NMR (核磁気共鳴) ほど多くの 情報が得られないという課題がある。  However, when an MS is connected to an LC, it is important in mass spectrometry to ionize compounds that are difficult to ionize, since the low ionization and stability of the target substance are directly related to the quantitative sensitivity. . In addition, there is a problem in that analysis by MS cannot provide as much structural information as NMR (nuclear magnetic resonance).
さらに、 LC— ECDは、 ある種の化合物では汎用されている分析装置 であるが、分析対象の化合物は、酸化還元反応を利用して検出されるため、 酸化又は還元しやすい化合物しか分折することができず、 その対象が限定 される。 しかも、 酸化還元反応のために負荷する電位を上げると、 バック グラウンドが増大し、 化合物の選択性に乏しくなるとともに、 高感度の測 定を行うためには電流信号の安定化に時間を要するという課題がある。 発明の開示 Furthermore, although LC-ECD is a commonly used analyzer for certain types of compounds, the compound to be analyzed is detected using a redox reaction. Only compounds that are easily oxidized or reduced can be analyzed, and their targets are limited. In addition, increasing the potential applied for the oxidation-reduction reaction increases the background, reduces the selectivity of the compound, and requires time to stabilize the current signal in order to perform highly sensitive measurements. There are issues. Disclosure of the invention
本発明によれば、 試料を質量分析計に付して分析する方法において、 該 試料を電気化学的に処理した後に、 質量分析計に付す試料の分析方法が提 供される。  According to the present invention, there is provided a method of analyzing a sample by subjecting the sample to a mass spectrometer and subjecting the sample to electrochemical analysis and then subjecting the sample to a mass spectrometer.
また、 本発明によれば、 試料を質量分析計に付して分析する方法におい て、 該試料を電気化学的に処理した後に質量分析計に付してマススぺクト ルを得、 該マススペクトルを、 前記試料を直接質量分析計に付すことによ り得られたマススペクトルと対比することからなる試料の分析方法が提供 される。  Further, according to the present invention, in a method of subjecting a sample to a mass spectrometer for analysis, the sample is electrochemically treated and then subjected to a mass spectrometer to obtain a mass spectrum. And a mass spectrum obtained by directly subjecting the sample to a mass spectrometer.
さらに、 本発明によれば、 質量分析計の試料導入部に、 試料を電気化学 的に処理し得る機器を組み込んでなる試料の分析装置が提供される。 すなわち本発明は、 質量分析において、 構造情報を安定化して、 対象化 合物を感度よく分析又は定量することができるとともに、 さらに質量分析 計を用いるのみでは得られない分子の構造情報を得ることができる有用性 の高い分析方法及び分析装置を提供することを目的とする。 図面の簡単な説明  Further, according to the present invention, there is provided a sample analyzer in which a device capable of electrochemically processing a sample is incorporated in a sample introduction portion of a mass spectrometer. That is, the present invention provides a method for stabilizing structural information in mass spectrometry to analyze or quantify a target compound with high sensitivity, and to obtain molecular structural information that cannot be obtained only by using a mass spectrometer alone. It is an object of the present invention to provide a highly useful analysis method and an analysis device that can perform the analysis. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の分析方法において使用する一連の分析装置を示す要 部の概念図である。  FIG. 1 is a conceptual diagram of a main part showing a series of analyzers used in the analysis method of the present invention.
第 2図 (a ) 〜 (d ) は、 化合物 (1 ) を M Sで正イオンモードにて測 定したマススぺクトルである。  FIGS. 2 (a) to 2 (d) are mass spectra of compound (1) measured in MS in positive ion mode.
第 3図 (a ) 〜 (c ) は、 化合物 (2 ) を M Sで正イオンモードにて測 定したマススぺクトルである。  FIGS. 3 (a) to 3 (c) are mass spectra of compound (2) measured in MS in positive ion mode.
第 4図 (a ) 〜 (c ) は、 化合物 (2 ) を M Sで負イオンモードにて測 定したマススペクトルである。  FIGS. 4 (a) to (c) are mass spectra of compound (2) measured in negative ion mode with MS.
第 5図 (a ) 〜 (d ) は、 化合物 (3 ) を M Sで正イオンモードにて測 定したマススペクトルである。 Fig. 5 (a) to (d) show that compound (3) was measured in positive ion mode by MS. It is a specified mass spectrum.
第 6図 (a) 〜 (c) は、 化合物 (3) を MSで負イオンモ一ドにて測 定したマススぺクトルである。  Fig. 6 (a) to (c) are mass spectra of compound (3) measured by negative ion mode using MS.
第 7図 (a) 〜 (d) は、 化合物 (4) を MSで正イオンモードにて測 定したマススペクトルである。  FIGS. 7 (a) to 7 (d) are mass spectra of compound (4) measured in the positive ion mode by MS.
第 8図は、 化合物 (5) を MSで正イオンモードにて測定したマススぺ クトルである。  FIG. 8 is a mass spectrum of compound (5) measured in positive ion mode by MS.
第 9図 (a) 〜 (d) は、 化合物 (5) を直接 MS ZMSで測定したマ ススぺクトルである。  FIGS. 9 (a) to 9 (d) are mass spectra of compound (5) directly measured by MS ZMS.
第 10図は、 化合物 (5) を電圧を印加せずに ECDのセルに通した後 に M S M Sで測定したマススペクトルである。  FIG. 10 is a mass spectrum measured by MSMS after passing compound (5) through an ECD cell without applying a voltage.
第 1 1図 (a) 〜 (c) は、 化合物 (5) を電圧-を印加せずに E CDセ ルに通した後に M S ZM S ZM Sで測定したマススペクトルである。 第 12図は、 化合物 (5) を電圧を印加せずに E CDセルに通した後に MSZMS /MSで測定した104個の連続マススペクトルの平均を示す マススぺクトルである。 FIGS. 11 (a) to (c) are mass spectra measured by MS ZMS after passing compound (5) through an ECD cell without applying a voltage. FIG. 12 is a mass spectrum showing the average of 104 continuous mass spectra measured by MSZMS / MS after passing compound (5) through an ECD cell without applying a voltage.
第 13図 (a) 、 (b) は、 化合物 (5) を電圧を印加して ECDのセ ルに通した後に M Sで測定したマススペクトルである。  Figures 13 (a) and (b) are mass spectra measured with MS after applying voltage to compound (5) and passing it through the cells of an ECD.
第 14図は、 化合物 (5) を電圧を印加して ECDのセルに通した後に MSZ.MSで測定したマススペクトルである。  FIG. 14 is a mass spectrum measured by MSZ.MS after compound (5) was passed through an ECD cell by applying a voltage.
第 15図 (a) 〜 (c) は、 化合物 (5) を電圧を印加して ECDセル に通した後に M S ZM S ZM Sで測定したマススペクトルである。  FIGS. 15 (a) to 15 (c) are mass spectra measured by MSZMSZMS after applying a voltage to compound (5) through an ECD cell.
第 16図は、 化合物 (5) を電圧を印加して ECDセルに通した後に M SZMSZMSで測定した 35個の連続マススぺクトルの平均を示すマス スぺクトルである。  FIG. 16 is a mass spectrum showing the average of 35 continuous mass spectra measured by MSZMSZMS after applying a voltage to compound (5) and passing it through an ECD cell.
第 17図 (a) 、 (b) は、 化合物 (6) を MSで正イオンモードにて 測定したマススぺクトルである。  FIGS. 17 (a) and (b) are mass spectra of compound (6) measured in positive ion mode by MS.
第 18図 (a) 〜 (c) は、 化合物 (7) を MSで正イオンモードにて 測定したマススぺクトルである。  FIGS. 18 (a) to 18 (c) are mass spectra of compound (7) measured in positive ion mode by MS.
第 19図 (a) 〜 (d) は、 化合物 (8) を M Sで正イオンモードにて 測定したマススぺクトルである。 発明を実施するための最良の形態 FIGS. 19 (a) to (d) are mass spectra of compound (8) measured in positive ion mode by MS. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 主として、 質量分析計に付して分析する試料を、 あらかじめ 電気化学的処理に付すことからなる。  The present invention mainly comprises subjecting a sample to be analyzed by a mass spectrometer to an electrochemical treatment in advance.
本発明における試料とは、 測定対象となる化学物質を含有する被検物を 意味し、 特に、 水又は有機溶媒等の適当な溶剤に溶解させた液状のもので あることが好ましい。 また、 本発明においては、 測定対象となる化学物質 が試料中にほぼ純粋に存在することが好ましく、 分離又は精製処理を行つ た後のものを使用することが好ましい。 分離又は精製処理は、 当該分野に おける常法により行うことができ、 例えば、 液体クロマトグラフ (LC) 等に付すことが挙げられる。  The sample in the present invention means a test substance containing a chemical substance to be measured, and is particularly preferably a liquid substance dissolved in a suitable solvent such as water or an organic solvent. Further, in the present invention, it is preferable that the chemical substance to be measured is present almost purely in the sample, and it is preferable to use the one after the separation or purification treatment. The separation or purification treatment can be performed by a conventional method in the relevant field, for example, by subjecting to a liquid chromatography (LC) or the like.
化学物質としては、 天然の動植物から抽出された物質、 合成された有機 物質、 無機物質、 あるいはこれらの代謝物等、 種々のものが含まれる。 例 えば、 電気化学的処理に付すことにより、 電気化学的に酸化又は還元等さ れやすい化合物、 あるいは酸化又は還元等されやすい官能基 (例えば、 一 CHO、 -CO, -NO, 一 N02、 =C = C =、 =C = S、 =C = N—、 一 N = N―、 — N = N_N =、 一〇一 O—、 _S— S―、 有機金属化合物 残基、 一 C三 N、 一 N=S、 -SO, 一 S〇2、 — SX、 -CX, =N— X、 =P— R等;アミノ基、 フエノール性の OH基、 =P— O—、 一 SH、 R2H - C (=S) 一 S―、 一 NH - CO - NH -、 -NH-C S -NH ―、 -NH (-R) 2、 ― NH— NH2、 ― CS—NH— R等 (ただし、 R はアルキル基、 Xはハロゲン原子を示す) ) を有する化合物等が挙げられ る。 なかでも、 水又は有機溶媒等の適当な溶剤に溶解させた試料に一定の 電圧を印加した場合に、 酸化又は還元され得る化合物又はそのような官能 基を有する化合物が有利である。 なお、 本発明における試料は、 上記のよ うな電気化学的に酸化又は還元等されやすい化合物、 あるいは酸化又は還 元等されやすい官能基を有する化合物以外の化学物質を含有する場合にも 適用することができる。 Chemical substances include various substances such as substances extracted from natural animals and plants, synthesized organic substances, inorganic substances, and metabolites thereof. For example, by subjecting to electrochemical treatment, electrochemically oxidized or reduced such that is easily compound, or oxidized or reduced, etc. are susceptible functional groups (e.g., single CHO, -CO, -NO, One N0 2, = C = C =, = C = S, = C = N—, 1 N = N—, — N = N_N =, 1〇1 O—, _S—S—, organometallic compound residue, 1 C3 N , One N = S, -SO, one S〇 2 , —SX, -CX, = N—X, = P—R, etc .; amino group, phenolic OH group, = P—O—, one SH, R 2 H - C (= S) one S-, one NH - CO - NH -, -NH -C S -NH -, -NH (-R) 2, - NH- NH 2, - CS-NH- R , etc. (Where R represents an alkyl group and X represents a halogen atom). Among them, a compound which can be oxidized or reduced or a compound having such a functional group when a certain voltage is applied to a sample dissolved in an appropriate solvent such as water or an organic solvent is advantageous. The sample of the present invention may be applied to the case where the sample contains a chemical substance other than the compound which is susceptible to electrochemical oxidation or reduction as described above, or a compound having a functional group which is susceptible to oxidation or reduction. Can be.
本発明において使用される質量分析計;ま、 通常、 質量分析を行うために 使用され得る装置であって、 主として、 試料をイオン化し、 質量 Z電荷数 (m/z) に従って分離した後、 これを電気的に検出して質量スペクトル を測定するか又は特定のイオンの検出を行うための装置を意味する。 一般 に、 質量分析計は、 試料のイオン化を行うためのイオン源、 イオンを m/ zに従って分離するためのアナライザー及び分離されたイオンの検出 Z記 録部から構成される。具体的には、イオントラップ質量分析計( I TM S )、 四重極質量分析計 (QMS) 、 二重収束質量分析計、 飛行時間質量分析計 (T〇F— MS) 、 イオンサイクロトロン共鳴質量分析計 ( I CR— MS) 等、 当該分野で使用されている種々のものが挙げられる。 また、 質量分析 計のイオン源としては、 どのような種類のものであってもよいが、 液状の 試料をイオン化することができるものであることが好ましい。 例えば、 ェ レク卜ロスプレーイオン化 (ES I) 法、 大気圧化学イオン化 (APC I) 法、 高速原子衝撃 (FAB) 法等によってイオン化することができるィォ ン源が挙げられる。 A mass spectrometer used in the present invention; a device which can be generally used for performing mass spectrometry, mainly after ionizing a sample and separating the sample according to a mass Z charge number (m / z); Means a device for measuring a mass spectrum by electrically detecting a target or detecting a specific ion. General The mass spectrometer is composed of an ion source for ionizing a sample, an analyzer for separating ions according to m / z, and a Z recording unit for detecting separated ions. Specifically, ion trap mass spectrometer (ITMS), quadrupole mass spectrometer (QMS), double focusing mass spectrometer, time-of-flight mass spectrometer (T〇F-MS), ion cyclotron resonance mass There are various analyzers used in this field, such as analyzers (ICR-MS). The ion source of the mass spectrometer may be of any type, but is preferably of a type capable of ionizing a liquid sample. For example, ion sources that can be ionized by the electrospray ionization (ESI) method, the atmospheric pressure chemical ionization (APCI) method, the fast atom bombardment (FAB) method, and the like.
本発明において、 電気化学的処理に付すとは、 通常、 分析対象である化 学物質を含有する試料に所定の電圧を印加することにより、 電気化学的な 酸化又は還元反応を行わせることを意味する。 かかる電気化学的処理は、 一般的には、 従来から LCの検出器として使用されている電気化学的検出 器 (ECD) に付すことにより行われる。 ECDとしては、 反応率が 10 0%近いクーロメトリック型検出器が好ましいが、 例えば、 アンべロメト リック型検出器等、 当該分野で使用されている種々のものを使用すること ができる。 これらの E CDは、 主として、 試料を含有する電解液中に一対 の不活性電極が設置され、 電極間に所定の電圧を印加できるように設定さ れたセルにより構成されている。 ここで、 印加する電圧の大きさは、 電極 の種類、 使用される溶剤、 使用するセルの構成、 試料中に含有される分析 対象である化学物質の性質等に応じて適宜調整することができ、 試料が酸 化又は還元されるのに適した電圧に設定することが好ましい。具体的には、 E S A社製のクーロメトリック型のセルを使用する場合には、 ± 200〜 100 OmV程度の電圧が印加される。  In the present invention, the term “electrochemical treatment” generally means that an electrochemical oxidation or reduction reaction is performed by applying a predetermined voltage to a sample containing a chemical substance to be analyzed. I do. Such an electrochemical treatment is generally performed by applying to an electrochemical detector (ECD) which has been conventionally used as an LC detector. As the ECD, a coulometric detector having a reaction rate close to 100% is preferable. For example, various detectors used in this field, such as an amberometric detector, can be used. These ECDs are mainly composed of cells in which a pair of inert electrodes are placed in an electrolyte solution containing a sample and a predetermined voltage is applied between the electrodes. Here, the magnitude of the applied voltage can be appropriately adjusted according to the type of the electrode, the solvent used, the configuration of the cell used, and the properties of the chemical substance to be analyzed contained in the sample. Preferably, the voltage is set to a value suitable for the sample to be oxidized or reduced. Specifically, when a coulometric cell manufactured by ESA is used, a voltage of about ± 200 to 100 OmV is applied.
本発明においては、 試料を電気化学的に処理した後に、 この試料を質量 分析計に付すことにより、 通常、 質量分析計において得られる分子量情報 及び構造情報を、 より安定にかつより高感度で得ることができる。 また、 試料中の特定の化学物質が有する官能基の種類及びその官能基の結合位置 に関する情報を得ることができる。 特に、 本発明においては、 試料を電気化学的に処理した後に質量分折計 に付してマススペクトルを得、 得られたマススペクトルを、 試料を電気化 学的処理に付さないで質量分析計に付して得られたマススぺクトルと対比 することにより、 電気化学的処理によって変化したマススぺクトルの質量 数 (mZ z ) 及びイオン強度に基づいて、 試料中に含有される化学物質の 構造に関する種々の情報を得ることができる。 In the present invention, by subjecting a sample to electrochemical treatment and then subjecting the sample to a mass spectrometer, the molecular weight information and structural information normally obtained in the mass spectrometer can be obtained more stably and with higher sensitivity. be able to. In addition, it is possible to obtain information on the types of functional groups of a specific chemical substance in a sample and the bonding positions of the functional groups. In particular, in the present invention, a sample is electrochemically treated and then subjected to mass spectrometry to obtain a mass spectrum, and the obtained mass spectrum is analyzed by mass spectrometry without subjecting the sample to electrochemical treatment. By comparing with the mass spectrum obtained by the measurement, the mass number of the mass spectrum (mZz) and the ionic strength changed by the electrochemical treatment and the ionic strength Various information about the structure can be obtained.
具体的には、 試料を電気化学的処理に付すことにより、 酸化又は還元さ れやすい又はされにくい化学物質を、 電気化学的処理に付さないで質量分 析計に付した場合に比べて、 マススぺクトルのイオン強度が増加して又は ピークが安定して得られ、 安定なフラグメンテーションを観察することが できる。 また、 電気化学的処理に付すことにより、 電気化学的に酸化又は 還元されやすい化合物、 あるいは前記のような酸化又は還元されやすい官 能基等が、 脱離、 変化等する場合には、 試料を電気化学的処理に付す前後 において、 質量数の増減等が起こり、 これによつて、 化合物又は官能基を 特定する際の指標とすることができる。 また、 同じ質量の化学物質の場合 でも、 電気化学的処理に付すことにより、 電気化学的に酸化又は還元され やすい官能基の位置やその官能基近傍の原子の結合状態、 他の官能基の存 在等により、 酸化又は還元のされ易さが変化したり、 異なる質量数の増減 等が起こるため、 官能基の位置に関する情報を得ることもできる。  Specifically, by subjecting a sample to electrochemical treatment, the mass of the chemical substance, which is easily or less likely to be oxidized or reduced, is compared with a mass spectrometer not subjected to the electrochemical treatment. The ionic strength of the vector increases or the peak is obtained stably, and stable fragmentation can be observed. In addition, when the compound which is liable to be oxidized or reduced electrochemically or the functional group which is liable to be oxidized or reduced is desorbed or changed by the electrochemical treatment, the sample is removed. Before and after the electrochemical treatment, the mass number increases and decreases, and thus can be used as an index when specifying a compound or a functional group. In addition, even for chemical substances of the same mass, by subjecting them to electrochemical treatment, the positions of functional groups that are easily oxidized or reduced electrochemically, the bonding state of atoms near those functional groups, and the presence of other functional groups Depending on the presence or the like, the degree of oxidization or reduction is changed, or the number of different masses is increased / decreased. Therefore, information on the position of the functional group can be obtained.
なお、 本発明においては、 試料は、 電気化学的処理に付した後、 質量分 析計に 1回だけ付してもよいし、 2回以上連続的に付してもよい。 特に、 質量分析計に 2回以上連続的に付す場合には、 より安定なフラグメンテ一 ションを観察することができる。  In the present invention, after the sample has been subjected to the electrochemical treatment, the sample may be applied only once to the mass spectrometer, or may be applied continuously two or more times. In particular, more stable fragmentation can be observed when the sample is continuously applied to the mass spectrometer two or more times.
本発明の分析方法は、 例えば、 後述するような質量分析計の試料導入部 に、 試料を電気化学的に処理し得る機器を組み込んで構成される分析装置 により、 容易に実施することができる。 具体的には、 分析対象となる化学 物質を含有する試料を、 所望により、 この化学物質と反応しないような組 成を有する移動相とともに、 一定の流量で所定時間、 電気化学的に処理し 得る機器に導入するとともに、 導入された試料に所定の電圧を印加する。 この際、 試料に対して安定的に電圧を印加するために、 あらかじめ試料を 含まない移動相のみを電気化学的に処理し得る機器に導入しながら、 所定 の電圧を印加しておき、 その後に、 移動相とともに試料を電気化学的に処 理し得る機器に導入することが好ましい。 なお、 試料の導入は、 当該分野 で公知のシリンジインフユ一ジョンや、 市販されている質量分析計に装備 されたシリンジインフユ一ジョン等を使用して行ってもよいし、 電気化学 的に処理し得る機器の導入部に液体クロマトグラフ等が組み込まれてなる 分析装置を使用する場合には、 液体クロマトグラフの移動相を一定の流量 に保持しながら、 液体クロマトグラフから排出された試料を直接電気化学 的に処理し得る機器に導入してもよい。 The analysis method of the present invention can be easily implemented by, for example, an analyzer configured by incorporating a device capable of electrochemically processing a sample into a sample introduction portion of a mass spectrometer described later. Specifically, a sample containing a chemical substance to be analyzed can be electrochemically treated with a mobile phase having a composition that does not react with the chemical substance at a constant flow rate for a predetermined time, if desired. The sample is introduced into the instrument and a predetermined voltage is applied to the introduced sample. At this time, in order to stably apply a voltage to the sample, the specified phase was introduced in advance to a device that can electrochemically process only the mobile phase not containing the sample It is preferable to apply this voltage beforehand and then introduce the sample together with the mobile phase into an apparatus capable of electrochemically processing the sample. The sample may be introduced using a syringe infusion known in the art, a syringe infusion provided in a commercially available mass spectrometer, or may be electrochemically introduced. When using an analyzer that incorporates a liquid chromatograph, etc. in the introduction part of the equipment that can be processed, the sample discharged from the liquid chromatograph is kept while maintaining the mobile phase of the liquid chromatograph at a constant flow rate. It may be introduced into equipment that can be processed directly electrochemically.
電気化学的に処理し得る機器に付され、この機器から排出された試料は、 そのまま質量分析計のインターフェイスであるイオン源に導入する。 この 際の試料の導入は、 一定の流量で所定時間行えるものであれば、 どのよう な手段であってもよい。 例えば、 質量分析計に通常装備される導入手段を 利用してもよいし、 液体ク口マトグラフからの移動相の排出手段を利用し てもよい。  The sample, which is attached to a device that can be processed electrochemically and discharged from this device, is directly introduced into the ion source, which is the interface of the mass spectrometer. At this time, the sample may be introduced by any means as long as the sample can be introduced at a constant flow rate for a predetermined time. For example, the introduction means usually provided in the mass spectrometer may be used, or the mobile phase discharge means from the liquid chromatograph may be used.
また、 本発明における化学物質の分析装置は、 質量分析計の試料導入部 に、 好ましくは、 質量分析計のイオン源の直前に、 試料を電気化学的に処 理し得る機器を組み込んで構成される。 ここで使用される質量分析計及び 電気化学的処理を行うことができる装置としては、 上記したように、 当該 分野で公知の質量分析計及び電気化学的検出器等を使用することができる。 さらに、 本発明の分析装置においては、 電気化学的に処理し得る機器の導 入部に、 好ましくはこの機器の直前に、 試料を分離、 精製するための液体 クロマトグラフがさらに組み込まれて構成されることが好ましい。 このよ うな構成により、 本発明の分析装置に付す試料を、 より純粋な状態に、 容 易に精製等することができるからである。 なお、 本発明の分析装置におい ては、 電気化学的に処理し得る機器と質量分析計とを、 通常当該分野で使 用されている管、例えば、 P E E K管、 ステンレススチール管等(例えば、 内径 0 . 1 3〜0 . 2 5 mm、 外径 1 . 6 mm) を用いて接続することが でき、 液体クロマトグラフがさらに組み込まれている場合には、 液体クロ マトグラフと電気化学的に処理し得る機器を、 上記のような管を用いて接 続することができる。 以下に、 本発明の試料の分析方法の実施の形態を説明する。 Further, the chemical substance analyzer according to the present invention is configured by incorporating a device capable of electrochemically processing a sample into a sample introduction part of a mass spectrometer, preferably immediately before an ion source of the mass spectrometer. You. As described above, a mass spectrometer and an electrochemical detector known in the art can be used as the mass spectrometer and the device capable of performing the electrochemical treatment used here. Furthermore, in the analyzer of the present invention, a liquid chromatograph for separating and purifying a sample is further incorporated in the introduction portion of the device capable of electrochemical processing, preferably immediately before the device. Is preferred. With such a configuration, the sample to be applied to the analyzer of the present invention can be easily purified to a more pure state. In the analyzer of the present invention, a device which can be electrochemically processed and a mass spectrometer are connected to tubes generally used in the field, for example, PEEK tubes, stainless steel tubes, etc. (0.13 to 0.25 mm, outer diameter 1.6 mm) .If a liquid chromatograph is further incorporated, it is processed electrochemically with the liquid chromatograph. The resulting device can be connected using a tube as described above. Hereinafter, embodiments of the sample analysis method of the present invention will be described.
実施の形態 1 Embodiment 1
図 1に示したように、 高速液体クロマトグラフ (HPLC) 10から移 動相 Lを一定量流し、 測定試料 Mをシリンジ 1 1によって、 T字管 12を 介して移動相 Lに混合した後、 電気化学的処理を行う装置 (電気化学検出 器、 ECD) 13のセル 14に導入し、 次いで、 連続的に質量分析計 (M S) 15に導入することによって、 測定試料 Mの測定を行った。 なお、 E CD 13のセル 14には、 印加電圧の制御等を行うためのコントロール部 16が接続されている。  As shown in Fig. 1, a fixed amount of the mobile phase L was flowed from the high-performance liquid chromatograph (HPLC) 10, and the sample M was mixed with the mobile phase L via the T-tube 12 using the syringe 11 and then mixed. The measurement sample M was measured by introducing it into the cell 14 of an electrochemical processing device (electrochemical detector, ECD) 13 and then continuously introducing it into a mass spectrometer (MS) 15. Note that a control unit 16 for controlling an applied voltage and the like is connected to the cell 14 of the ECD 13.
測定試料 Measurement sample
以下の構造式で示される化合物 (1) 、 化合物 (1) の代謝物である化 合物 (2) 及び (3) 、 化合物 (2) のフエノール性水酸基がメトキシ基 に変換された化合物 (4) を測定試料として使用した。 なお、 化合物 (1) は特開平 2— 1 11774号公報に、化合物(2)及び(3)は、 J. Pharm. Biomed. Anal. , 17 (1998) ρ138卜 1392に記載されている化合物であり、 化 合物 (4) は、 特開平 2— 111774号公報に記載されている方法に準 じて製造されたものである。  Compounds (1) represented by the following structural formulas, compounds (2) and (3) which are metabolites of compound (1), and compounds (4) in which the phenolic hydroxyl group of compound (2) is converted to a methoxy group ) Was used as a measurement sample. Compound (1) is a compound described in JP-A-2-111774, and compounds (2) and (3) are compounds described in J. Pharm. Biomed. Anal., 17 (1998) ρ1381392. Yes, the compound (4) was produced according to the method described in JP-A-2-111774.
Figure imgf000010_0001
測定装置
Figure imgf000010_0001
measuring device
HP L C: Waters社製の Model 2690 Alliance  HP L C: Waters Model 2690 Alliance
ECD: Esa社製の Coulochem IIと Analyt ical Cell Model 5010 ECD: Esa Coulochem II and Analytical Cell Model 5010
(クーロメトリック型、セルは 2段階の内の 1段目のみに DCモードで電圧 を印加して使用)  (Coolometric type, cell is used by applying voltage in DC mode to only the first of two stages)
MS :サーモクエスト社製の LCQ (イオントラップ型) 、 イン夕一フエ ースとしてはエレクトロスプレー法 (ES I) を使用した。  MS: LCQ (ion trap type) manufactured by ThermoQuest, Inc. Electrospray method (ESI) was used as the interface.
また、 シリンジインフュージョンは M Sに付属のものを使用した。  In addition, the syringe infusion used was attached to MS.
測定方法及び結果 Measurement method and results
HPLCの移動相に、 以下の A及び Bの 2液を用い、 Bが 50%となる ように設定した。  The following two solutions A and B were used as mobile phases for HPLC, and B was set to 50%.
A: 5%のァセトニトリルを含む 2 OmMのギ酸アンモニゥム水溶液 B :ァセトニトリルのみ  A: 2 OmM ammonium formate aqueous solution containing 5% acetonitrile B: only acetonitrile
脱気は、 HP LCに付属のオンラインデガッサーで行った。 カラムは使 用せず、 移動相の流量を 0. 2 mL/分に設定した。  Degassing was performed with the online degasser attached to HP LC. The column was not used and the mobile phase flow rate was set to 0.2 mL / min.
測定試料は、 上記各化合物の濃度が 5 O AiMとなるようにァセトニトリ ルで溶解後、 約 40%ァセトニトリル水溶液で希釈して調製し、 シリンジ を用いて、 5 L/分の速度で E CDに導入される前の移動相に注入した。  The measurement sample was prepared by dissolving with acetonitrile so that the concentration of each of the above compounds would be 5 O AiM, then diluting with about 40% aqueous solution of acetonitrile, and using a syringe at a rate of 5 L / min. Injected into the mobile phase before it was introduced.
MSは、 インターフェースとしてエレクトロスプレー法 (E S I ) を用 レ 、 加熱キヤピラリー温度 250°C、 シースガス量 75 p s i、 オダジュ ァリーガス量 1 O p s iに設定した。 スプレー電圧は、 正イオンモード時 4. 5 kV、 負イオンモード時 4 kVとした。 また、 チューブレンズ電圧 等の最適化は機器付属のォートチューンプログラムを用いて行った。  The MS used an electrospray method (ESI) as the interface, set the heating capillary temperature to 250 ° C, the sheath gas volume to 75 psi, and the auxiliary gas volume to 1 Opsi. The spray voltage was 4.5 kV in the positive ion mode and 4 kV in the negative ion mode. Optimization of the tube lens voltage, etc. was performed using the autotune program attached to the equipment.
•化合物 ( 1 ) の測定  • Measurement of compound (1)
まず、 化合物 (1) を、 E CDの電圧を印加せずに、 MSに導入し、 正 イオンモードのフルスキャンで測定したところ、 分子量関連ィオンである [M + H] +が m/z 439に認められた (図 2 (a) ) 。 First, compound (1) was introduced into MS without applying the ECD voltage, and was measured by full scan in positive ion mode. The molecular weight-related ion [M + H] + was found to be m / z 439 (Fig. 2 (a)).
また、 化合物 (1) を、 ECDの電圧を 80 OmV又は 90 OmVの酸 化電位、あるいは一 80 OmVの還元電位にして、 MSで測定したところ、 mZz 439のピークに変化はなかった (図 2 (b) 〜 (d) ) 。  When the compound (1) was measured by MS with the ECD voltage set to an oxidation potential of 80 OmV or 90 OmV or a reduction potential of 180 OmV, there was no change in the peak of mZz439 (Fig. 2). (b) to (d)).
さらに、 化合物 ( 1) を、 負イオンモードでも同様に測定したところ、 分子量関連イオンである [M— H] —が観察されたが、 イオン強度が弱か つた。 Furthermore, when compound (1) was similarly measured in negative ion mode, [M—H] —, a molecular weight-related ion, was observed, but the ionic strength was weak.
•化合物 ( 2 ) の測定  • Measurement of compound (2)
次に、 フエノール性水酸基を有する化合物 (2) を、 E CDの電圧を印 加せずに、 正イオンモードのフルスキャンで測定したところ、 分子量関連 イオンである [M + H] +が mZz 455に認められた (図 3 (a) ) 。  Next, the compound (2) having a phenolic hydroxyl group was measured by full scan in the positive ion mode without applying the ECD voltage, and the molecular weight-related ion [M + H] + was found to be mZz455. (Fig. 3 (a)).
また、 化合物 (2) を、 ECDの電圧を 45 OmVの酸化電位にして測 定しても、 mZz 455のピークは変化しなかったが、 50 OmV付近か ら減少しはじめた。 55 OmVでは mZz 455のピークは完全に消滅し、 代わりに質量数が 14多い mZz 469及びその他のピークが出現した (図 3 ( ) ) 。 80 OmVでは m/z 469のピークが主となった (図 3 (c) ) 。 一 80 OmVの還元電位では、 化合物 (1) と同様に、 分子 量関連イオンである [M + H] +が mZz 455のピークに変化は認められ なかった。 When the compound (2) was measured at an oxidation potential of 45 OmV with the ECD voltage, the peak of mZz 455 did not change, but started to decrease from around 50 OmV. At 55 OmV, the peak of mZz 455 completely disappeared, and instead mZz 469 and other peaks having a mass number of 14 increased (FIG. 3 ()). At 80 OmV, the peak at m / z 469 was dominant (Fig. 3 (c)). At a reduction potential of one 80 OmV, as in the case of compound (1), no change was observed in the peak of mZz455 for the molecular weight-related ion [M + H] + .
さらに、 化合物 (2) を、 負イオンモードでも同様に測定したところ、 分子量関連イオンである [M— H] —が mZz 453に認められた (図 4 Furthermore, when compound (2) was measured in the negative ion mode in the same manner, [M—H] —, a molecular weight-related ion, was observed in mZz 453 (Fig. 4
(a) ) 。 (a)).
また、 化合物 (2) を、 ECDの電圧を 55 OmVにして測定すると、 正イオンモード時と同様に、 mZz 453のピークは完全に消滅し、 代わ りに質量数が 14多い mZz 467及びその他のピークが出現した (図 4 When compound (2) was measured with the ECD voltage set to 55 OmV, the peak of mZz 453 disappeared completely as in the positive ion mode, and instead, mZz 467 and 14 A peak appears (Figure 4
(b) ) 。 70 OmVでは mZz 467のピークが主となり、 かつイオン 強度も増加した (図 4 (c) ) 。 (b)). At 70 OmV, the peak at mZz 467 was dominant and the ionic strength also increased (Fig. 4 (c)).
-化合物 ( 3 ) の測定  -Measurement of compound (3)
化合物( 2 )と結合位置が異なるフ二ノール性水酸基を有する化合物( 3 ) を、 E CDの電圧を印加せずに、 正イオンモードのフルスキャンで測定し たところ、 分子量関連イオンである [M + H] +が m/z 455に認めら れた (図 5 (a) ) 。 When the compound (3) having a fuminolic hydroxyl group at a binding position different from that of the compound (2) was measured by a full scan in the positive ion mode without applying an ECD voltage, the molecular weight-related ion was measured. M + H] + was found at m / z 455 (FIG. 5 (a)).
また、 化合物 (3) を、 ECDの電圧を 50 OmVの酸化電位にして測 定すると、 質量数が 14多い mZz 469及びダイマー関連ピークである m/z 951及びその他のピークが出現した (図 5 (b) ) 。 電圧を 55 OmVにすると、 mZz 455のピークはさらに減少する力 化合物 (2) の場合とは異なり、 完全には消滅せず (図 5 (c) ) 、 700mVまで電 圧を印加しても同様であった。一 80 OmVの還元電位にして測定すると、 化合物 (1) と同様に、 分子量関連イオンである [M + H] +が mZz 4 55のピークに変化は認められなかった (図 5 (cl) ) 。 When compound (3) was measured with an ECD voltage of 50 OmV oxidation potential, mZz469 with a large mass number of 14, m / z 951 which is a dimer-related peak, and other peaks appeared (Fig. 5). (b)). When the voltage is set to 55 OmV, the peak of mZz 455 further decreases. Compound (2) Unlike the case of (1), it did not completely disappear (Fig. 5 (c)), and was the same even when the voltage was applied up to 700mV. When measured at a reduction potential of one 80 OmV, as in the case of compound (1), no change was observed in the peak of mZz 455 for the molecular weight-related ion [M + H] + (Fig. 5 (cl)). .
さらに、 化合物 (3) を、 負イオンモードでも同様に測定したところ、 分子量関連イオンである [M— H] —が mZz 453に認められた (図 6 (a) ) 。  Furthermore, when compound (3) was similarly measured in negative ion mode, [M—H] —, a molecular weight-related ion, was found in mZz 453 (FIG. 6 (a)).
また、 化合物 (3) を、 ECDの電圧を 50 OmVにして測定すると、 正イオンモード時とは異なり、 mZz 453のピークはほとんど消滅し、 代わりに質量数が 14多い mZz 467及びダイマー関連ピークである m Zz 92.1及びその他のピークが出現した (図 6 (b) ) 。 70 OmVで ダイマー関連ピークがやや大きくなつた (図 6 (c-) ) 。  When compound (3) was measured at an ECD voltage of 50 OmV, unlike the positive ion mode, the peak of mZz 453 almost disappeared, and instead, the peak of mZz 467 and the dimer-related peak with a mass number of 14 increased. Certain mZz 92.1 and other peaks appeared (Fig. 6 (b)). At 70 OmV, the dimer-related peak became slightly larger (Fig. 6 (c-)).
'化合物 (4) の測定  '' Measurement of compound (4)
化合物 (2) のフエノール性水酸基の代わりにメトキシ基を有する化合 物 (4) の測定を行った。  The compound (4) having a methoxy group instead of the phenolic hydroxyl group of the compound (2) was measured.
まず、 化合物 (4) を、 ECDの電圧を印加せずに、 正イオンモードのフ ルスキャンで測定したところ、 分子量関連イオンである [M + H] +が m /z 469に認められた (図 7 (a) ) 。 First, when compound (4) was measured by full-scan in positive ion mode without applying ECD voltage, [M + H] + , a molecular weight-related ion, was observed at m / z 469 (Fig. 7 (a)).
また、 化合物 (4) を、 ECDの電圧を 80 OmV又は 90 OmVの酸 化電位、 あるいは— 80 OmVの還元電位にして測定したところ、 mZz 469のピークに変化はなかった (図 7 (b) 〜 (d) ) 。  When the compound (4) was measured with an ECD voltage of 80 OmV or 90 OmV oxidation potential or -80 OmV reduction potential, there was no change in the peak of mZz 469 (Fig. 7 (b) ~ (D)).
さらに、 化合物 (4) を、 負イオンモードでも同様に測定したところ、 分子量関連イオンである [M_H] —が観察されたが、 イオン強度が弱か つた。  Furthermore, when compound (4) was similarly measured in negative ion mode, [M_H] —, a molecular weight-related ion, was observed, but the ionic strength was weak.
以上の測定結果から明らかなように、 電気化学的に酸化されやすい官能 基であるフエノール性水酸基を有する化合物 (2) 及び (3) は、 酸化電 位を印加することにより、質量数が 14大きい化合物に変化したことから、 MS単独では得られない構造情報が得られた。 すなわち、 電気化学的に酸 化又は還元されやすい化合物であるかどうかの構造情報が簡便なオンライ ンの測定で得られた。  As is clear from the above measurement results, the compounds (2) and (3) having a phenolic hydroxyl group, which is a functional group that is easily oxidized electrochemically, have a mass number of 14 by applying an oxidation potential. The change to a compound provided structural information that could not be obtained with MS alone. That is, structural information as to whether or not the compound is easily oxidized or reduced electrochemically was obtained by simple online measurement.
また、 化合物 (2) においては、 特に負イオンモード時の EC Dの電圧 を 70 OmV印加することにより、 mZz 467のピーク力 OmV印加 の mZ z 453に対して約 15倍となり、 イオン強度の増強効果が認めら れた。 In addition, for compound (2), the voltage of the ECD especially in the negative ion mode By applying 70 OmV, the peak force of mZz 467 was about 15 times that of mZz 453 when OmV was applied, and the effect of enhancing ionic strength was recognized.
さらに、 化合物 (2) 及び (3) の測定結果が示すように、 フエノール 性水酸基を有していても、 結合位置が異なればピークに違いが認められた ことから、 このようなデ一夕を蓄積することにより、 位置情報も得られる 可能性が示唆された。  Furthermore, as shown in the measurement results of compounds (2) and (3), even if the compound has a phenolic hydroxyl group, a difference was observed in the peak if the bonding position was different. It was suggested that the location information could be obtained by the accumulation.
実施の形態 2 Embodiment 2
実施の形態 1と同様に試料の測定を行った。  The sample was measured in the same manner as in the first embodiment.
測定試料 Measurement sample
以下の構造式で示すゾテピン (化合物 (5) ) を測定試料として使用し た。  Zotepine (compound (5)) represented by the following structural formula was used as a measurement sample.
Figure imgf000014_0001
Figure imgf000014_0001
化合物 ( 5 )  Compound (5)
測定装置 measuring device
実施の形態 1で用いた装置と同様の装置を使用した。  The same device as that used in the first embodiment was used.
測定方法及び結果 Measurement method and results
HP L Cの移動相及び移動相の流量は、実施の形態 1と同.様に設定した。 脱気は、 HP L Cに付属のオンラインデガッサーで行った。  The mobile phase of HPLC and the flow rate of the mobile phase were set in the same manner as in the first embodiment. Degassing was performed with an online degasser attached to HP LC.
測定試料は、 上記の化合物 (5) の濃度が 50 /xMとなるようにァセト 二トリルで溶解後、 約 40%ァセトニトリル水溶液で希釈して調製し、 シ リンジを用いて、 5 L/分の速度で EC Dに導入される前の移動相に注 入した。  The measurement sample was prepared by dissolving the above compound (5) in acetonitrile so that the concentration of the compound (5) became 50 / xM, diluting it with about 40% acetonitrile aqueous solution, and using a syringe to prepare 5 L / min. The mobile phase was injected before it was introduced into the ECD at a rate.
MSは、 インターフェースとしてエレクトロスプレー法 (ES I) を用 い、 実施の形態 1と同様の条件で使用した。 •化合物 ( 5 ) の測定 The MS used the electrospray method (ESI) as an interface under the same conditions as in the first embodiment. • Measurement of compound (5)
まず、 化合物 (5) を、 E CDを通さずに MSに導入し、 正イオンモード のフルスキャンで測定したところ、 分子量関連イオンである [M + H] + が mZz 332に認められた (図 8) 。 First, compound (5) was introduced into MS without passing through ECD, and was measured by full scan in positive ion mode. As a result, [M + H] +, a molecular weight-related ion, was found in mZz332 (Fig. 8).
また、 化合物 (5) を、 負イオンモードでも同様に測定したところ、 分 子量関連イオンである [M— H] —が観察されなかった。  When compound (5) was measured in the negative ion mode in the same manner, [M—H] —, which is a molecular weight-related ion, was not observed.
次に、 E CDを通さずに、 構造情報を得るためのコリジョンによる MS /MSを行って、 ドー夕 Γオンを測定したところ、 コリジョンパワーを 1 5 %程度に変化させても一定のフラグメントピークが得られなかった (図 9 (a) 〜 (d) ) 。  Next, without passing through the ECD, MS / MS by collision for obtaining structural information was performed, and the dominant ion was measured. Even when the collision power was changed to about 15%, a constant fragment peak was observed. Was not obtained (FIGS. 9 (a) to 9 (d)).
化合物.(5) を、 電圧を印加せずに EC Dのセルに通して、 コリジョン による MSZMSを行って、 ドーターイオンを測定したところ、 コリジョ ンパワーを 15%程度に変化させると、 mZz 317のフラグメントピー クが観察されるようになった (図 10) 。  Compound (5) was passed through an ECD cell without applying voltage, and MSZMS by collision was performed to measure the daughter ions. When the collision power was changed to about 15%, the fragment of mZz 317 was detected. Peaks have been observed (Fig. 10).
このフラグメントをさらに MSZMSZMSに導入 (コリジョンパヮ一 18%) したところ、 所定のフラグメンテーションが観察されるようにな つた (図 1 1 (a;) 〜 (c) 及び図 12) 。 なお、 図 11 (a) 〜 (c) は個々に測定したマススぺクトルを示しており、 図 12は 104個の連続 マススぺクトルをコンピュータ上で平均したものを示す。  When this fragment was further introduced into MSZMSZMS (collision path: 18%), predetermined fragmentation was observed (FIGS. 11 (a;) to (c) and FIG. 12). 11 (a) to 11 (c) show mass spectra measured individually, and FIG. 12 shows an average of 104 continuous mass spectra on a computer.
化合物 (5) を、 ECD電圧を 70 OmV印加し、 MSに導入して、 正 イオンモードで測定したところ、 分子量関連ィオンとして新たに質量数が 2小さい mZz 330にピークが認められた。 このピークは電圧を 800 mV以上にすると主ピークになり (図 13 (a) 及び (b) ) 、 イオン強 度も、 ECDのセルに通さないとき (図 8参照) に比較して約 10倍大き くなつた。  Compound (5) was applied to the MS at an ECD voltage of 70 OmV, measured in the positive ion mode, and a new peak was found at mZz 330, which has a smaller mass number by 2 as a molecular weight-related ion. This peak becomes the main peak when the voltage is increased to 800 mV or more (Figs. 13 (a) and (b)), and the ion intensity is about 10 times that of when not passing through the ECD cell (see Fig. 8). It's big.
また、 E CD電圧を 80 OmV印加し、 コリジョンによる M S /M Sを 行って、 ドー夕 Γオンを測定したところ、 コリジョンパワーを 1 5 %程 度に変化させると mZz 315のフラグメントピークが観察されるように なった (図 14) 。  When the ECD voltage was applied at 80 OmV and MS / MS by collision was performed to measure the dormancy, a fragment peak of mZz 315 was observed when the collision power was changed to about 15%. (Fig. 14).
このフラグメントをさらに MSZMSZMSに導入 (コリジョンパワー 18%) したところ、 フラグメントピークのイオン強度が大きく、 安定し て得られるようになった (図 1 5 (a) 〜 (c) 及び図 1 6) 。 なお、 図 1 5 (a) 〜 (c) は個々に測定したマススペクトルを示しており、 図 1 6は 3 5個の連続マススぺクトルをコンピュータ上で平均したものを示す。 以上の測定結果から明らかなように、 E CDのセルに通し、 さらに電圧 を印加することにより、 E C Dに付さずに測定したときの M Sのピークに 比べて、 強度の増加、 すなわち感度の向上を図ることができた。 When this fragment was further introduced into MSZMSZMS (collision power 18%), the ion intensity of the fragment peak was large and stable. (Figs. 15 (a) to (c) and Fig. 16). FIGS. 15 (a) to 15 (c) show mass spectra measured individually, and FIG. 16 shows an average of 35 continuous mass spectra on a computer. As is evident from the above measurement results, by passing the voltage through the ECD cell and further applying a voltage, the intensity is increased, that is, the sensitivity is improved, as compared to the MS peak measured without applying the ECD. I was able to plan.
また、 MSZMSによるフラグメンテーションが安定して得にくい化合 物でも、 E CDのセルに通し、 さらに電圧を印加することにより、 構造情 報としてのフラグメンテ一ションを安定化するとともにピーク強度を増加 することができた。  In addition, even for compounds where MSZMS fragmentation is difficult to obtain stably, the fragmentation as structural information can be stabilized and the peak intensity can be increased by applying a voltage to the cell through the ECD cell and further applying a voltage. Was completed.
さらに > E CDのセルに通し、 電圧を印加することにより、 分子量関連 イオンとして新たに質量数が 2小さいピークが出現し、 イオン強度の大き いピークが得られたため、 L C一 M S / M Sによる定量での特異性及び感 度を飛躍的に向上させることができた。  Furthermore, a voltage was applied to the cell through the ECD cell, and a new peak with a small mass number of 2 appeared as a molecular weight-related ion, and a peak with a high ionic strength was obtained. The singularity and sensitivity of the device were dramatically improved.
実施の形態 3 Embodiment 3
実施の形態 1と同様に試料の測定を行った。  The sample was measured in the same manner as in the first embodiment.
測定試料 Measurement sample
以下の構造式で示される、 水酸基の位置の異なるヒドロキシァセトァ二 リド (化合物 (6) 、 (7) 、 (8) ) を測定試料として使用した。  Hydroxyacetamides having different hydroxyl positions (compounds (6), (7) and (8)) represented by the following structural formulas were used as measurement samples.
Figure imgf000016_0001
Figure imgf000016_0001
0 、NH 0, NH
化合物 (8) 実施の形態 1で用いた装置と同様の装置を使用した。 Compound (8) The same device as that used in the first embodiment was used.
測定方法及び結果 Measurement method and results
HP L Cの移動相及び移動相の流量は、実施の形態 1と同様に設定した 脱気は、 H P L Cに付属のオンラインデガッサ一で行つた。  The mobile phase of HPLC and the flow rate of the mobile phase were set in the same manner as in Embodiment 1. Degassing was performed using an online degasser attached to HPLC.
測定試料は、 上記各化合物の濃度が 1 mMとなるようにァセトニト で溶解後、 約 40%ァセトニトリル水溶液で希釈して調製し、 シリンジを 用いて、 5 LZ分の速度で EC Dに導入される前の移動相に注入した。  The measurement sample is prepared by dissolving with acetonitrile so that the concentration of each of the above compounds becomes 1 mM, then diluting with about 40% aqueous acetonitrile solution, and introducing it into the CCD at a rate of 5 LZ using a syringe. Injected into the previous mobile phase.
MSは、 イン夕一フェースとしてエレクトロスプレー法 (E S I ) を用 い、 実施の形態 1と同様の条件で使用した。  The MS used an electrospray method (ESI) as an in-face, and was used under the same conditions as in the first embodiment.
•化合物 (6) の測定  • Measurement of compound (6)
まず、 2位 (o位) に水酸基を有する化合物 (6) を、 E CDの電圧を 印加せずに、 正イオンモードのフルスキャンで測定したところ、 分子量関 連イオンである [M + H] +が mノ z 1 52に認められた(図 17 (a) )。  First, when a compound (6) having a hydroxyl group at the 2-position (o-position) was measured by full scan in the positive ion mode without applying an ECD voltage, it was found that the molecular weight-related ion [M + H] + Was found in m-z 152 (FIG. 17 (a)).
次に、 E CD電圧を 30 OmVの酸化電位にすると、 mZz 1 52のピ —クに変化はなかったが、 40 OmVにすると、 mZz 1 52のピークの 代わりに、 mZz 299、 257、 2 1 5の 3本のピークが観察されるよ うになるとともに、 イオン強度が約 10倍となった (図 17 b) 。  Next, when the ECD voltage was set to the oxidation potential of 30 OmV, the peak of mZz 152 did not change, but when the ECD voltage was set to 40 OmV, mZz 299, 257, and 2 1 were used instead of the peak of mZz 152. 5 peaks began to be observed, and the ionic strength increased about 10 times (Fig. 17b).
•化合物 ( 7 ) の測定  • Measurement of compound (7)
まず、 3位 (m位) に水酸基を有する化合物 (7) を、 E CDの電圧を 印加せずに、 正イオンモードのフルスキャンで測定したところ、 分子量関 連イオンである [M + H] +が mZz 1 52に認められた(図 18 (a) )。  First, when a compound (7) having a hydroxyl group at the 3-position (m-position) was measured by full scan in the positive ion mode without applying an ECD voltage, it was found that the molecular weight-related ion [M + H] + Was found in mZz 152 (FIG. 18 (a)).
次に、 化合物 (7) を、 E CD電圧を 55 OmVの酸化電位まで印加し て測定したところ、 化合物 (6) とは異なり、 そのマススペクトルはほと んど変化しなかった (図 18 (c) ) 。  Next, when the compound (7) was measured by applying an ECD voltage up to an oxidation potential of 55 OmV, unlike the compound (6), the mass spectrum was hardly changed (Fig. 18 ( c)).
ECD電圧を 70 OmVまで上げると、 m/z 1 52のピークの代わり に、 mZz 299及びその他のピークが観察されるようになるとともにィ オン強度が約 4倍になった (図 18 b) 。  When the ECD voltage was increased to 70 OmV, mZz 299 and other peaks were observed instead of the peak at m / z 152, and the ion intensity increased about 4 times (Fig. 18b).
-化合物 ( 8 ) の測定  -Measurement of compound (8)
まず、 4位 (p位) に水酸基を有する化合物 (8) を、 E CDの電圧を 印加せずに、 正イオンモードのフルスキャンで測定したところ、 分子量関 連イオンである [M + H] +が m/z 152に認められた(図 19 (a) )。 次に、 化合物 (8) を、 ECD電圧を 20 OmV印加して測定したとこ ろ、 mZz 1 52のピークに変化はなかった (図 19 (b) ) 力、 300 mVの酸化電位にすると、 化合物 (6) 及び (7) で観察された mZz 2First, a compound (8) having a hydroxyl group at the 4-position (p-position) was measured by full scan in positive ion mode without applying an ECD voltage. A linked ion, [M + H] +, was observed at m / z 152 (FIG. 19 (a)). Next, when the compound (8) was measured by applying an ECD voltage of 20 OmV, there was no change in the peak of mZz 152 (FIG. 19 (b)). MZz 2 observed in (6) and (7)
99よりも質量数が 2大きい mZz 301のピークが観察されるようにな つた (図 19 (c) ) 。 また、 40 OmVでのイオン強度は約 6倍であつ た (図 19 (d) ) 。 The peak of mZz 301 having a mass number 2 larger than 99 was observed (FIG. 19 (c)). The ionic strength at 40 OmV was about 6 times (Fig. 19 (d)).
以上の測定結果から明らかなように、 電気化学的に酸化されやすい官能 基であるフエノール性水酸基の結合位置が異なる化合物 (6) 、 (7) 、 (8) は、 そのピークが変化する酸化電位および変化した化合物の質量数 に違いが認められ、 MS単独では得られない結合位置に関する構造情報を 得ることができた。  As is clear from the above measurement results, the compounds (6), (7), and (8), which have different phenolic hydroxyl groups, which are functional groups that are easily oxidized electrochemically, have oxidation potentials whose peaks change. In addition, differences were found in the mass numbers of the changed compounds, and it was possible to obtain structural information on binding positions that cannot be obtained by MS alone.
また、 ECDの酸化電位を印加することにより、 得られるピークのィォ ン強度が増加したことから、 L C _ M Sによる定量での感度を向上させる ことができることがわかつた。  In addition, it was found that the application of the oxidation potential of the ECD increased the ion intensity of the obtained peak, thereby improving the sensitivity in quantification by LC_MS.
産業上の利用の可能性 Industrial applicability
本発明によれば、 試料を質量分析計に付して分析する方法において、 試 料を電気化学的に処理した後に、 質量分析計に付すことにより、 質量分析 計によって測定されるフラグメントイオンから分子の構造 (構造情報) を 安定して得ることができ、 特異性及び感度の点からも、 より精度が高い分 析方法を提供することができる。  According to the present invention, in a method of subjecting a sample to a mass spectrometer for analysis, the sample is electrochemically treated and then subjected to a mass spectrometer, whereby a molecule is converted from a fragment ion measured by the mass spectrometer. The structure (structural information) can be stably obtained, and an analysis method with higher accuracy can be provided in terms of specificity and sensitivity.
また、 本発明によれば、 試料を質量分析計に付して分析する方法におい て、 試料を電気化学的に処理した後に質量分析計に付してマススぺクトル を得、 該マススぺクトルを、 試料を電気化学的処理に付さないで質量分析 計に付して得られたマススぺクトルと対比することにより、 電気化学的処 理により影響を受けやすい、 すなわち、 酸化又は還元されやすい官能基を 有することが質量数の変化として表され、 質量分析計に付すのみでは得ら れない分子の構造情報を得ることができるとともに、 感度の点からもより 信頼性、 有用性の高い分析方法を提供することができる。  Further, according to the present invention, in a method of subjecting a sample to a mass spectrometer for analysis, the sample is electrochemically treated and then subjected to a mass spectrometer to obtain a mass spectrum. By comparing the sample with a mass spectrum obtained by subjecting the sample to a mass spectrometer without subjecting the sample to electrochemical treatment, the sample is susceptible to the electrochemical treatment, that is, a function that is easily oxidized or reduced. The presence of a group is expressed as a change in mass number, so that it is possible to obtain structural information on molecules that cannot be obtained by simply attaching it to a mass spectrometer, and to provide a more reliable and useful analytical method in terms of sensitivity. Can be provided.

Claims

請求の範囲 The scope of the claims
1 . 試料を質量分析計に付して分析する方法において、 該試料を電気化学 的に処理した後に、 質量分析計に付すことを特徴とする試料の分析方法。 1. A method for analyzing a sample by subjecting the sample to a mass spectrometer, comprising subjecting the sample to electrochemical treatment and then subjecting the sample to a mass spectrometer.
2 . 試料を質量分析法に付して分析する方法において、 該試料を電気化学 的に処理した後に質量分析計に付してマススぺクトルを得、 該マススぺク トルを、 前記試料を直接質量分析計に付すことにより得られたマススぺク トルと対比することからなる試料の分析方法。 2. In a method of subjecting a sample to mass spectrometry for analysis, the sample is electrochemically treated and then subjected to a mass spectrometer to obtain a mass spectrum, and the mass spectrum is directly transferred to the sample. A method for analyzing a sample consisting of comparing it with a mass spectrum obtained by applying it to a mass spectrometer.
3 . 電気化学的検出器を用いて試料を電気化学的に処理することからなる 請求項 1又は 2記載の試料の分析方法。 3. The sample analysis method according to claim 1 or 2, wherein the sample is electrochemically treated using an electrochemical detector.
4 . 試料が、 液体クロマトグラフに付して得られたものである請求項 1〜 3のいずれかに記載の試料の分析方法。 4. The method for analyzing a sample according to any one of claims 1 to 3, wherein the sample is obtained by liquid chromatography.
5 . 試料を、 液状で質量分析計に付す請求項 1〜4のいずれかに記載の方 法。 5. The method according to any one of claims 1 to 4, wherein the sample is applied to a mass spectrometer in a liquid state.
6 . 質量分析計の試料導入部に、 試料を電気化学的に処理し得る機器を組 み込んでなる試料の分析装置。 6. A sample analyzer that incorporates a device capable of electrochemically processing a sample into the sample inlet of the mass spectrometer.
7 . 試料を電気化学的に処理し得る機器の導入部に、 液体クロマ卜グラフ をさらに組み込んでなる請求項 6記載の試料の分析装置。 7. The sample analyzer according to claim 6, wherein a liquid chromatograph is further incorporated into an introduction portion of an apparatus capable of electrochemically processing the sample.
PCT/JP2000/001514 1999-04-07 2000-03-13 Method and device for analyzing chemical substances WO2000062052A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10020499 1999-04-07
JP11/100204 1999-04-07

Publications (1)

Publication Number Publication Date
WO2000062052A1 true WO2000062052A1 (en) 2000-10-19

Family

ID=14267788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001514 WO2000062052A1 (en) 1999-04-07 2000-03-13 Method and device for analyzing chemical substances

Country Status (1)

Country Link
WO (1) WO2000062052A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308411A (en) * 2005-04-28 2006-11-09 Asahi Breweries Ltd Inspection or evaluation method of pollinosis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007888A1 (en) * 1987-04-06 1988-10-20 Battelle Memorial Institute Combined electrophoresis-electrospray interface and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007888A1 (en) * 1987-04-06 1988-10-20 Battelle Memorial Institute Combined electrophoresis-electrospray interface and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEO IWAHASHI ET. AL.: "Detection of the oxidative products of 3-hydroxykynurenine using (.....) absorption detection-mass spectrometry", JOURNAL OF CHROMATOGRAPHY, vol. 773, no. 1, 1997, pages 23 - 31, XP002928786 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308411A (en) * 2005-04-28 2006-11-09 Asahi Breweries Ltd Inspection or evaluation method of pollinosis

Similar Documents

Publication Publication Date Title
Jamari et al. Novel non-target analysis of fluorine compounds using ICPMS/MS and HPLC-ICPMS/MS
US8563322B2 (en) Method for separation of molecules
Zhou et al. Reactive paper spray mass spectrometry for in situ identification of quinones
Schilling et al. Detection of positive and negative ions from a flowing atmospheric pressure afterglow using a Mattauch-Herzog mass spectrograph equipped with a Faraday-strip array detector
Xie et al. Determination of acetone, 2-butanone, diethyl ketone and BTX using HSCC-UV-IMS
Proctor et al. Atmospheric pressure ionization mass spectrometry
JP4800048B2 (en) Method for measuring isotope content
Qu et al. Quantitative performance of online SPE-LC coupled to Q-Exactive for the analysis of sofosbuvir in human plasma
Pröfrock et al. Determination of phosphorus in phosphorylated deoxyribonucleotides using capillary electrophoresis and high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry with an octopole reaction cell
CN113711030A (en) Methods and systems for detection of 11-oxoandrogens by LC-MS/MS
Kaye et al. The sensitive determination of abanoquil in blood by high‐performance liquid chromatography/atmospheric pressure ionization mass spectrometry
Hoegg et al. Proof-of-concept: Interfacing the liquid sampling-atmospheric pressure glow discharge ion source with a miniature quadrupole mass spectrometer towards trace metal analysis in cell culture media
JP7205322B2 (en) Simultaneous analysis method for blood anticoagulants
US11360058B2 (en) Method and device for chemical quantification using electrochemical mass spectrometry without the use of standard target compounds
JPWO2007029431A1 (en) Detection mass calibration method of mass spectrometer
WO2000062052A1 (en) Method and device for analyzing chemical substances
Koyanagi et al. Applications of extractive electrospray ionization (EESI) in analytical chemistry
CN104991027B (en) The method for reducing fixedness buffer salt content in LC MS testers
Moini Capillary electrophoresis-electrospray ionization mass spectrometry of amino acids, peptides, and proteins
Garofolo et al. Rapid quantitative determination of 2, 4, 6‐trinitrotoluene by ion mobility spectrometry
Dytrtová et al. An electrochemical device generating metal ion adducts of organic compounds for electrospray mass spectrometry
Selby et al. Direct quantification of alkaloid mixtures by electrospray ionization mass spectrometry
CN104991028B (en) The reduction method of fixedness buffer salt content in LC MS testers
WO2005019815A2 (en) Improvements to liquid chromatography coupled to mass spectrometry in the investigation of selected analytes
US20240053306A1 (en) Quantitative determination method for reactive sulfur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP