JP4800048B2 - Method for measuring isotope content - Google Patents

Method for measuring isotope content Download PDF

Info

Publication number
JP4800048B2
JP4800048B2 JP2006021871A JP2006021871A JP4800048B2 JP 4800048 B2 JP4800048 B2 JP 4800048B2 JP 2006021871 A JP2006021871 A JP 2006021871A JP 2006021871 A JP2006021871 A JP 2006021871A JP 4800048 B2 JP4800048 B2 JP 4800048B2
Authority
JP
Japan
Prior art keywords
isotope
mass
ionization
chromatogram
labeled compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006021871A
Other languages
Japanese (ja)
Other versions
JP2007205745A (en
Inventor
昌之 辻下
祐子 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Chemical Analysis Service Ltd
Original Assignee
Sumika Chemical Analysis Service Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Chemical Analysis Service Ltd filed Critical Sumika Chemical Analysis Service Ltd
Priority to JP2006021871A priority Critical patent/JP4800048B2/en
Publication of JP2007205745A publication Critical patent/JP2007205745A/en
Application granted granted Critical
Publication of JP4800048B2 publication Critical patent/JP4800048B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、同位体標識化合物などの化合物における所望の同位体含有率を正確に測定する方法に関する。   The present invention relates to a method for accurately measuring a desired isotope content in a compound such as an isotope-labeled compound.

同位体標識化合物は、例えば、環境科学研究、薬物動態研究などの分野において、任意の対象化合物の移動を追跡するために該対象化合物の同位体を調製し、該同位体の移動を追跡する手法が汎用されている。このような同位体は同位体標識化合物と呼ばれ、通常、対象化合物の1分子内の軽水素1〜10個を重水素に置換した同位体標識化合物、対象化合物の1分子内の炭素原子(質量数12)1〜10個を質量数13の炭素原子に置換した同位体標識化合物、対象化合物の1分子内の窒素原子(質量数14)1〜5個を質量数15の窒素原子に置換した同位体標識化合物など用いられている。
同位体標識化合物において、例えば、対象化合物1分子に重水素4個が置換された同位体(d4体)を主成分とする同位体標識化合物を用いる場合、調製された同位体標識化合物には、d4体の他、通常、対象化合物1分子に重水素2個が置換された同位体(d2体)、重水素3個が置換された同位体(d3体)、あるいは、全く重水素が置換されていない同位体(d0体)が含まれる可能性がある。このように、通常、同位体標識化合物において所望の同位体の他、質量数の異なる同位体が含まれる場合、用いる同位体標識化合物における所望の同位体の含有率を予め正確に測定しなければ、同位体標識化合物の移動を十分に正確に追跡することができないという問題がある。
同位体標識化合物を用いた対象化合物の移動を追跡する手法としては、例えば、ビタミンD誘導体1分子内に3つの軽水素が重水素に置換された同位体を内部標準物質として用い、ガスクロマトグラフ質量分析法(GC-MS)による分子イオンピーク面積比から測定する方法が挙げられる。
For example, in the field of environmental science research, pharmacokinetic research, and the like, an isotope-labeled compound is a method of preparing an isotope of the target compound to track the movement of the target compound and tracking the movement of the isotope Is widely used. Such an isotope is called an isotope-labeled compound. Usually, an isotope-labeled compound obtained by substituting 1-10 light hydrogens in one molecule of the target compound with deuterium, a carbon atom in one molecule of the target compound ( An isotope-labeled compound in which 1 to 10 carbon atoms are substituted with 13 carbon atoms, and 1 to 5 nitrogen atoms (mass 14) in one molecule of the target compound are substituted with 15 nitrogen atoms. Isotope-labeled compounds.
In isotopically-labeled compounds, for example, the isotope-labeled compound when, prepared using the isotopically labeled compounds of the subject compounds 1 molecule four deuterium substituted isotope of (d 4 bodies) as a main component , D 4 isomers, usually isotopes in which two molecules of deuterium are substituted in one molecule of the target compound (d 2 isomers), isotopes in which 3 deuteriums are substituted (d 3 isomers), or completely deuterium There is a possibility that an isotope in which hydrogen is not substituted (d 0 form) is included. As described above, in general, when the isotope-labeled compound contains isotopes having different mass numbers in addition to the desired isotope, the content of the desired isotope in the isotope-labeled compound to be used must be accurately measured in advance. However, there is a problem that the movement of the isotope-labeled compound cannot be traced sufficiently accurately.
As a method for tracking the movement of a target compound using an isotope-labeled compound, for example, an isotope in which three light hydrogens are substituted with deuterium in one molecule of vitamin D 3 derivative is used as an internal standard substance, and a gas chromatograph is used. The method of measuring from the molecular ion peak area ratio by mass spectrometry (GC-MS) is mentioned.

特開平6−341980号[請求項1、実施例]JP-A-6-341980 [Claim 1, Example]

特許文献1には、ビタミンD誘導体の同位体標識化合物において、分子内に3つの軽水素が重水素に置換された所望の同位体、1分子内の2個が置換された質量数の異なる同位体などの含有率については開示されていない。
本発明者らは、市販されているフタル酸エステルの1分子内に重水素が4個置換された同位体標識化合物について、該同位体標識化合物における重水素が4個置換された同位体(d4体)の含有率を測定することを試みた。具体的には、まず、該同位体標識化合物を液体クロマトグラフィーで分離したのち質量分析(LC−MS)し、得られたトータルイオンクロマトグラムをデータ処理してマススペクトルを求めた。しかしながら、重水素が全く置換されていない同位体(d0体)に相当する質量数を示すピークから重水素が3個置換された同位体(d3体)に相当する質量数を示すピークについてはそれぞれのS/N比が悪く、フタル酸エステル由来(d0体〜d3体)のピークであるか、バックグラウンド由来のピークであるかの判断できず、9割以上のd4体を含むと考えられる該同位体標識化合物について、d4体の含有率を%単位まで正確に測定することができなかった。
本発明の目的は、所望の同位体とは質量数の異なる同位体が含まれる化合物において、所望の同位体の含有率を正確に測定する方法を提供することである。
In Patent Document 1, in an isotope-labeled compound of a vitamin D 3 derivative, a desired isotope in which three light hydrogens are substituted with deuterium in the molecule, and a mass number in which two in the molecule are substituted is different. The content of isotopes and the like is not disclosed.
For the isotope-labeled compound in which four deuteriums are substituted in one molecule of a commercially available phthalate ester, the present inventors have prepared an isotope (d) in which four deuteriums in the isotope-labeled compound are substituted. We tried to measure the content of 4 bodies. Specifically, first, the isotope-labeled compound was separated by liquid chromatography and then subjected to mass spectrometry (LC-MS), and the obtained total ion chromatogram was subjected to data processing to obtain a mass spectrum. However, from the peak indicating the mass number corresponding to the isotope (d 3 body) substituted with 3 deuteriums from the peak indicating the mass number corresponding to the isotope (d 0 body) in which no deuterium is substituted at all. poor respective S / N ratio, or the peak derived from phthalic acid ester (d 0 bodies to d 3 body) can not determination of whether a peak derived from the background, more than 90% of d 4 body to for the isotope-labeled compounds believed to contain, could not be accurately measured content of d 4 body to percent.
An object of the present invention is to provide a method for accurately measuring the content of a desired isotope in a compound containing an isotope having a mass number different from that of the desired isotope.

本発明は、下記(1)〜(4)のステップを含むことを特徴とする化合物における任意の同位体の含有率を測定する方法である。
(1)化合物を含む試料をクロマトグラフィーによって分離後、質量分析するステップ
(2)(1)の質量分析によって得られたトータルイオンクロマトグラムをデータ処理して、任意の同位体を含む成分のマススペクトルを採取するステップ
(3)(2)で得られたマススペクトルをデータ処理して、各同位体のそれぞれのマスクロマトグラムを採取するステップ
(4)(3)で得られたマスクロマトグラムに基づいて、化合物における任意の同位体の含有率を算出するステップ。
The present invention is a method for measuring the content of any isotope in a compound comprising the following steps (1) to (4).
(1) Step of performing mass analysis after separating a sample containing the compound by chromatography (2) Processing the data of the total ion chromatogram obtained by the mass analysis of (1) to obtain the mass of the component containing any isotope Steps (3) and (2) for collecting spectra Data processing is performed on the mass spectra obtained in steps (3) and (2), and the mass chromatograms obtained in steps (4) and (3) are collected. And calculating the content of any isotope in the compound based on the above.

本発明によれば、同位体標識化合物などの化合物において、所望の同位体とは質量数の異なる同位体が含まれていても、所望の同位体含有率を正確に測定することができる。例えば、1H(軽水素)と2H(重水素)との含有比率、12Cと13Cとの含有比率、14Nと15Nとの含有比率などを正確に定量することができる。また、質量数の相違する同位体が微量で含まれていてもバックグラウンドと区別できることから、試料が高純度の同位体からなる化合物でも正確に定量できる。さらに、イオントラップ型、四重極型などの分解能の低い質量分析計を用いても、十分正確に定量することができる。 According to the present invention, even if a compound such as an isotope-labeled compound contains an isotope having a mass number different from that of the desired isotope, the desired isotope content can be accurately measured. For example, the content ratio of 1 H (light hydrogen) and 2 H (deuterium), the content ratio of 12 C and 13 C, the content ratio of 14 N and 15 N can be accurately quantified. In addition, even if a small amount of isotopes having different mass numbers are contained, it can be distinguished from the background, so that even a compound consisting of a high-purity isotope can be accurately quantified. Furthermore, even if a mass spectrometer with a low resolution such as an ion trap type or a quadrupole type is used, it can be quantified sufficiently accurately.

以下、本発明を詳細に説明する。
(1)は、化合物を含む試料をクロマトグラフィーによって分離後、質量分析するステップであり、クロマトグラフィーとしては、例えば、液体クロマトグラフィー、ガスクロマトグラフィー、ゲルパーミエーションクロマトグラフィーなどが挙げられる。中でも、液体クロマトグラフィーやガスクロマトグラフィーは質量分析計に直結して分析できることから好ましい。
The present invention will be described in detail below.
(1) is a step of performing mass spectrometry after separating a sample containing a compound by chromatography, and examples of the chromatography include liquid chromatography, gas chromatography, gel permeation chromatography and the like. Of these, liquid chromatography and gas chromatography are preferable because they can be directly connected to a mass spectrometer for analysis.

本発明の方法で測定される化合物は、前記クロマトグラフィーで分離できる化合物であればよい。中でも、重水素、14C、15Nなどの同位体を主成分として含む化合物は、同位体含有率を正確に定量できることから好ましい。 The compound measured by the method of the present invention may be any compound that can be separated by the chromatography. Among these, compounds containing isotopes such as deuterium, 14 C, and 15 N as main components are preferable because the isotope content can be accurately quantified.

質量分析におけるイオン化方法としては、電子イオン化(EI)法、化学イオン化(CI)法、電界イオン化(FI)法、高速原子衝突(FAB)法、マトリックス支援レーザー脱離イオン化(MALDI)法、エレクトロスプレーイオン化(ESI)法、大気圧化学イオン化(APCI)法、大気圧光イオン化(APPI)法などが例示される。中でも、電子イオン化(EI)法、化学イオン化(CI)法は、ガスクロマトグラフィーのイオン化方法に好適であり、エレクトロスプレーイオン化(ESI)法、大気圧化学イオン化(APCI)法は、液体クロマトグラフィーのイオン化方法に好適である。   As ionization methods in mass spectrometry, electron ionization (EI) method, chemical ionization (CI) method, field ionization (FI) method, fast atom collision (FAB) method, matrix-assisted laser desorption ionization (MALDI) method, electrospray Examples include ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI). Among them, the electron ionization (EI) method and the chemical ionization (CI) method are suitable as gas chromatography ionization methods, and the electrospray ionization (ESI) method and atmospheric pressure chemical ionization (APCI) method are suitable for liquid chromatography. Suitable for ionization method.

質量分析における分析計としては、例えば、磁場偏向型、四重極型、イオントラップ型、飛行時間型、タンデム型、フーリエ変換イオンサイクロトロン共鳴型などが挙げられる。中でも、四重極型、イオントラップ型、飛行時間型が好適である。
実施例では、Di-2-ethylhexyl Phthalate-3,4,5,6-d4を液体クロマトグラフィーで分離し(保持時間2.59分、図1参照)、エレクトロスプレーイオン化法(ESI)によってイオン化し、イオントラップ型の質量分析計で分析した。
Examples of the analyzer in mass spectrometry include a magnetic field deflection type, a quadrupole type, an ion trap type, a time-of-flight type, a tandem type, and a Fourier transform ion cyclotron resonance type. Among these, a quadrupole type, an ion trap type, and a time-of-flight type are preferable.
In the examples, Di-2-ethylhexyl Phthalate-3,4,5,6-d 4 was separated by liquid chromatography (retention time 2.59 minutes, see FIG. 1) and ionized by electrospray ionization (ESI). Then, it was analyzed with an ion trap type mass spectrometer.

(2)は(1)の質量分析によって得られたトータルイオンクロマトグラムをデータ処理して、任意の同位体を含む成分のマススペクトルを採取するステップである。
トータルイオンクロマトグラムとは、全イオンを検出、記録するクロマトグラムであり、そのデータ処理は、トータルイオンクロマトグラムより任意の同位体を含む成分を検出する時間帯における検出、記録されたイオンをマススペクトルで現す操作である。実施例のトータルイオンクロマトグラムは図2に示し、実施例のマスクロマトグラフを図3に示した。本実施例ではトータルイオンクロマトグラムにおけるd4体(質量数395、[M+H]+)は395.21をピークトップとするピークで示される。
(2) is a step of processing the total ion chromatogram obtained by the mass spectrometry of (1) and collecting a mass spectrum of a component containing an arbitrary isotope.
A total ion chromatogram is a chromatogram that detects and records all ions, and its data processing involves the detection and recording of ions that are detected and recorded in the time zone in which components containing any isotope are detected from the total ion chromatogram. This is the operation that appears in the spectrum. The total ion chromatogram of the example is shown in FIG. 2, and the mass chromatograph of the example is shown in FIG. In this example, the d 4 isomer (mass number 395, [M + H] + ) in the total ion chromatogram is shown as a peak having a peak top of 395.21.

任意の同位体を含む成分とは、通常、同位体標識化合物などの化合物における同位体含有率の測定対象となる任意の同位体(以下、対象同位体という場合がある)の質量数を含む成分であり、具体的には、対象同位体の質量数の±10u、好ましくは、±5uの質量数の範囲である。イオントラップ型や四重極型のような分解能の低い質量分析計では、スキャン範囲を絞り込み、狭い質量範囲で分析することにより、対象同位体及び対象同位体とは異なる質量数の同位体のそれぞれに相当する質量数のピークの分解能を高めることにより、フルスキャン法に比べてマススペクトルの分解能を向上させ、より正確に定量することができる。   The component containing an arbitrary isotope is a component containing the mass number of an arbitrary isotope (hereinafter, sometimes referred to as a target isotope) that is a measurement target of an isotope content rate in a compound such as an isotope-labeled compound. Specifically, the mass range of the target isotope is ± 10 u, preferably ± 5 u. In mass spectrometers with low resolution, such as ion trap type and quadrupole type, each of the target isotopes and isotopes with different mass numbers from the target isotope are analyzed by narrowing the scan range and analyzing in a narrow mass range. By increasing the resolution of the peak corresponding to the mass number, the resolution of the mass spectrum can be improved as compared with the full scan method, and quantification can be performed more accurately.

(3)は(2)で得られたマススペクトルをデータ処理して、各同位体のそれぞれのマスクロマトグラムを採取するステップである。
具体的にはまず、(2)のマススペクトルの最も大きなピークトップのm/z=±0.1u〜±0.3uの範囲のピーク、好ましくはm/z=±0.2uの範囲のピークについて、マスクロマトグラムを求める。続いて、同位体は質量数が1ずつ異なるから、ピークトップの質量数からm/z=±10〜±1程度のマスクロマトグラムを採取する
実施例では、ベースピークであるm/z=395.21±0.2(d4体、質量数395、[M+H]+)のマスクロマトグラムを図4に、m/z=394.21±0.2(d3体、質量数394、[M+H]+)のマスクロマトグラムを図5に、m/z=393.21±0.2(d2体、質量数393、[M+H]+)のマスクロマトグラムを図6に、m/z=392.21±0.2(d1体、質量数392、[M+H]+)のマスクロマトグラムを図7に、m/z=391.21±0.2(d0体、質量数391、[M+H]+)のマスクロマトグラムを図8に示した。
(3) is a step of collecting the mass chromatogram of each isotope by processing the mass spectrum obtained in (2).
Specifically, first, the peak in the range of m / z = ± 0.1u to ± 0.3u of the largest peak in the mass spectrum of (2), preferably the peak in the range of m / z = ± 0.2u. The mass chromatogram is obtained for. Subsequently, since the mass numbers of the isotopes differ by one, a mass chromatogram of about m / z = ± 10 ± 1 is collected from the mass number of the peak top. In the example, m / z = 395 which is the base peak. .21 ± 0.2 (d 4 body, mass number 395, [M + H] + ) mass chromatograms in Figure 4, m / z = 394.21 ± 0.2 (d 3 bodies, mass number 394 , [M + H] + ), and FIG. 5 shows a mass chromatogram of m / z = 393.21 ± 0.2 (d 2 bodies, mass number 393, [M + H] + ). 6, the mass chromatogram of m / z = 392.21 ± 0.2 (d 1 body, mass number 392, [M + H] + ) is shown in FIG. 7, m / z = 391.21 ± 0.2. A mass chromatogram of (d 0 isomer, mass number 391, [M + H] + ) is shown in FIG.

(4)は(3)で得られたマスクロマトグラムに基づいて、化合物における任意の同位体の含有率を算出するステップである。具体的には、得られたマスクロマトグラムから、それぞれの同位体のピーク面積などの出力値を求め、対象同位体及び対象同位体とは異なる同位体のそれぞれの出力値の和に対する対象同位体の出力値の割合が、化合物における任意の同位体の含有率として求めることができる。
マスクロマトグラムの出力値は、通常、マスクロマトグラムのピーク面積あるいはそれに相当する電気信号の値が用いられる。
(4) is a step of calculating the content of any isotope in the compound based on the mass chromatogram obtained in (3). Specifically, output values such as the peak area of each isotope are obtained from the obtained mass chromatogram, and the target isotope for the sum of the output values of the target isotope and the isotope different from the target isotope The ratio of the output value can be determined as the content of any isotope in the compound.
As the output value of the mass chromatogram, a peak area of the mass chromatogram or an electric signal value corresponding to the peak area is usually used.

図6〜8のマスクロマトグラムから明らかなように、一定のベースラインが観測されない場合、ピークは存在しないと判断され、d2体(質量数393、[M+H]+)、d1体(質量数392、[M+H]+)、d0体(質量数391、[M+H]+)の同位体は存在しないことがわかる。
このように、本発明によれば、(2)のマススペクトルではピークが存在するのか判断できない微量の同位体についても、一定のベースラインが観測されないことでかかる同位体は存在しないことが明瞭に判断できる。
As is apparent from the mass chromatograms of FIGS. 6 to 8, when a certain baseline is not observed, it is determined that no peak exists, and d 2 bodies (mass number 393, [M + H] + ), d 1 bodies It can be seen that there is no isotope of (mass number 392, [M + H] + ), d 0 form (mass number 391, [M + H] + ).
As described above, according to the present invention, it is clear that even if a small amount of isotopes cannot be determined whether a peak exists in the mass spectrum of (2), such a isotope does not exist because a certain baseline is not observed. I can judge.

さらに、(1)〜(4)のステップを実施することによってカラム、ライン、オートサンプラー、イオン化部分などに化合物や不純物が残存する場合があるので、1測定ごとに溶媒のみのブランクを用いて(1)〜(4)のステップを実施することにより、洗浄することが好ましい。   Furthermore, by carrying out the steps (1) to (4), compounds and impurities may remain in the column, line, autosampler, ionized portion, etc., so use a solvent-only blank for each measurement ( It is preferable to perform washing by carrying out steps 1) to (4).

<試料の調製>
Di-2-ethylhexyl Phthalate-3,4,5,6-d4(以下、d4体という)を主成分とする試料(関東化学(株)、環境分析用)0.5mgを正確に量り取り、アセトニトリル5mLで溶解させたものを試料A(濃度:約100ppm)とした。試料A 1.25mLを正確に量り、アセトニトリルを加えて正確に5mLとしたものを試料B(濃度:約25ppm溶液)とした。

Figure 0004800048
<Preparation of sample>
Weigh accurately 0.5 mg of a sample (Kanto Chemical Co., Ltd., for environmental analysis) whose main component is Di-2-ethylhexyl Phthalate-3,4,5,6-d 4 (hereinafter referred to as d 4 bodies) Sample A (concentration: about 100 ppm) was dissolved in 5 mL of acetonitrile. Sample A 1.25 mL was accurately weighed and acetonitrile was added to make exactly 5 mL, which was designated as Sample B (concentration: about 25 ppm solution).
Figure 0004800048

<ステップ(1)>
試料Aについて、(1)は下記液体クロマトグラフィーの条件で実施した。試料Aの液体クロマトグラムを図1に示した。保持時間が2.6分の成分についてステップ(2)の質量分析を実施した。
システム:Agilent 1100シリーズ(アジレント・テクノロジー、ステップ(2)の質量
分析計を含むシステム)
カラム :ZORBAX SB-C18 Rapid Resolution Cartridge(3.5μm、2.1mmφ×30mm)
移動相 :水/アセトニトリル(0.1%酢酸含有)=1:9(容積比)
流量 :0.2ml/min
測定波長 :254nm(UV)
カラム温度:40℃
注入量 :5μl
データ処理 :LC-MSワークステーション(Qual Browser Ver.1.3)
<Step (1)>
For sample A, (1) was carried out under the following liquid chromatography conditions. The liquid chromatogram of Sample A is shown in FIG. Mass spectrometry of step (2) was performed on the component having a retention time of 2.6 minutes.
System: Agilent 1100 Series (Agilent Technology, step (2) mass
System including analyzer)
Column: ZORBAX SB-C18 Rapid Resolution Cartridge (3.5μm, 2.1mmφ × 30mm)
Mobile phase: Water / acetonitrile (containing 0.1% acetic acid) = 1: 9 (volume ratio)
Flow rate: 0.2 ml / min
Measurement wavelength: 254 nm (UV)
Column temperature: 40 ° C
Injection volume: 5 μl
Data processing: LC-MS workstation (Qual Browser Ver.1.3)

<ステップ(2)>
試料Aの上記成分について、下記条件で質量分析を行った。
質量分析計:LCQ DECA XP plus(サーモエレクトロン、イオントラップ型)
イオン化法:エレクトロスプレーイオン化法(ESI)
イオン極性:Positive
測定モード:m/z=388.5〜398.5のズームスキャン法
データ処理:LC-MSワークステーション(Qual Browser Ver.1.3)
<Step (2)>
About the said component of the sample A, mass spectrometry was performed on the following conditions.
Mass spectrometer: LCQ DECA XP plus (Thermoelectron, ion trap type)
Ionization method: Electrospray ionization method (ESI)
Ion polarity: Positive
Measurement mode: Zoom scan method with m / z = 388.5 to 398.5 Data processing: LC-MS workstation (Qual Browser Ver.1.3)

<ステップ(3)>
前記で得られたデータから、d4体(質量数395、[M+H]+)のマスクロマトグラムを図4に、d3体(質量数394、[M+H]+)のマスクロマトグラムを図5に、d2体(質量数393、[M+H]+)のマスクロマトグラムを図6に、d1体(質量数392、[M+H]+)のマスクロマトグラムを図7に、d0体(質量数391、[M+H]+)のマスクロマトグラムを図8に示した。
図6〜8は、ベースラインに対する正のピークが認められないことから、d2体(質量数393、[M+H]+)、d1体(質量数392、[M+H]+)、d0体(質量数391、[M+H]+)の同位体は存在しないと判断された。
<Step (3)>
Wherein the data obtained in, d 4 body (mass number 395, [M + H] + ) mass chromatograms in Figure 4, d 3 body (mass number 394, [M + H] + ) mass chromatogram of 5 shows the mass chromatogram of d 2 (mass number 393, [M + H] + ), and FIG. 6 shows the mass chromatogram of d 1 body (mass 392, [M + H] + ). FIG. 7 shows a mass chromatogram of d 0 isomer (mass number 391, [M + H] + ).
In FIGS. 6 to 8, since no positive peak with respect to the baseline is observed, d 2 body (mass number 393, [M + H] + ), d 1 body (mass number 392, [M + H] + ) , D 0 form (mass number 391, [M + H] + ) was determined not to exist.

<ステップ(4)>
ステップ(2)のデータ処理装置を用いて、ピーク面積が観測されたd0〜d4体の[M+H]+に相当するマスクロマトグラムのピーク面積値より、次式に従ってd4体含有率(%)を定量した。

Figure 0004800048
<Step (4)>
From the peak area value of the mass chromatogram corresponding to [M + H] + of d 0 to d 4 bodies in which the peak area was observed using the data processing apparatus of step (2), d 4 bodies were contained according to the following formula: The rate (%) was quantified.
Figure 0004800048

d0〜d4体の[M+H]+に相当するマスクロマトグラムのピーク面積値及びd4体含有率を表1に示した。 The d 0 to d 4 body of [M + H] peak area of mass chromatogram value corresponding to + and d 4 body content shown in Table 1.

Figure 0004800048
Figure 0004800048

<検出の確認>
溶媒としてアセトニトリルを用いてステップ(1)〜(4)を繰り返して洗浄(以下、ステップ(5)という)したのち、試料Bについてもステップ(1)〜(5)で定量した。
試料Bのd4体(質量数395、[M+H]+)のマスクロマトグラムにおけるピーク面積値が、試料Aの定量結果から得たd4体(質量数395、[M+H]+)のピーク面積値の28.2%になることを確認した。結果を表2に示した。
<Confirmation of detection>
After repeating steps (1) to (4) using acetonitrile as a solvent and washing (hereinafter referred to as step (5)), Sample B was also quantified in steps (1) to (5).
D 4 body sample B (mass number 395, [M + H] + ) peak area values in the mass chromatogram of, d 4 body obtained from the quantitative results of Sample A (mass number 395, [M + H] + ) Was found to be 28.2% of the peak area value. The results are shown in Table 2.

Figure 0004800048
Figure 0004800048

<システムの再現性>
試料Aの定量(ステップ(1)〜(5)を6回繰り返し、d4体(質量数395、[M+H]+)のピーク面積値の相対標準偏差が1.7%になることを確認した。結果を表3に示した。
<Reproducibility of the system>
Determination of Sample A (step (1) to repeated six times (5), d 4 body (mass number 395, to be a relative standard deviation of 1.7% of the peak area value of [M + H] +) The results are shown in Table 3.

Figure 0004800048
Figure 0004800048

本発明の測定方法を用いれば、同位体標識化合物の純度測定、環境科学研究、薬物動態研究などの分野において利用される同位体標識化合物の定量測定、放射性同位体の半減期測定などに用いることができる。   If the measurement method of the present invention is used, it should be used for the measurement of purity of isotope-labeled compounds, quantitative measurement of isotope-labeled compounds used in fields such as environmental science research and pharmacokinetic research, and measurement of the half-life of radioisotopes. Can do.

Di-2-ethylhexyl Phthalate-3,4,5,6-d4の液体クロマトグラフィーによるクロマトグラムである。It is a chromatogram by liquid chromatography of Di-2-ethylhexyl Phthalate-3,4,5,6 -d 4. Di-2-ethylhexyl Phthalate-3,4,5,6-d4の質量分析によるトータルイオンクロマトグラムである。Is a total ion chromatogram obtained by mass spectrometry of Di-2-ethylhexyl Phthalate-3,4,5,6 -d 4. 前記トータルイオンクロマトグラムをデータ処理して、Di-2-ethylhexyl Phthalate-3,4,5,6-d4を含む成分のマススペクトルである。Said total ion chromatogram and data processing, is a mass spectrum of a component containing Di-2-ethylhexyl Phthalate-3,4,5,6 -d 4. m/z=395.21±0.2(d4体相当)のマスクロマトグラムである。It is a mass chromatogram of m / z = 395.21 ± 0.2 (equivalent to 4 d-forms). m/z=394.21±0.2(d3体相当)のマスクロマトグラムである。It is a mass chromatogram of m / z = 394.21 ± 0.2 (equivalent to 3 d bodies). m/z=393.21±0.2(d2体相当)のマスクロマトグラムである。It is a mass chromatogram of m / z = 393.21 ± 0.2 (corresponding to d 2 isomers). m/z=392.21±0.2(d1体相当)のマスクロマトグラムである。It is a mass chromatogram of m / z = 392.21 ± 0.2 (equivalent to 1 d body). m/z=391.21±0.2(d0体相当)のマスクロマトグラムである。It is a mass chromatogram of m / z = 391.21 ± 0.2 (equivalent to d 0 isomer).

Claims (7)

下記(1)〜(4)のステップを含むことを特徴とする同位体標識化合物における任意の同位体の含有率を測定する方法。
(1)同位体標識化合物を含む試料をクロマトグラフィーによって分離後、質量分析するステップ
(2)(1)の質量分析によって得られたトータルイオンクロマトグラムをデータ処理して、任意の同位体を含む成分のマススペクトルを採取するステップ
(3)(2)で得られたマススペクトルをデータ処理して、各同位体のそれぞれの、ピークトップのm/z=±0.1u〜±0.3uの範囲のピークについて、マスクロマトグラムを採取するステップ
(4)(3)で得られたマスクロマトグラムに基づいて、該同位体標識化合物における任意の同位体の含有率を算出するステップ
A method for measuring the content of any isotope in an isotope-labeled compound, comprising the following steps (1) to (4):
(1) Step of performing mass analysis after separating sample containing isotope-labeled compound by chromatography (2) Processing the total ion chromatogram obtained by mass analysis of (1) to include any isotope Steps (3) and (2) for collecting mass spectra of the components are processed , and the peak top m / z = ± 0.1u to ± 0.3u for each isotope is obtained. the range of peak, steps on the basis of the mass chromatogram obtained in step (4) (3) collecting a mass chromatogram, and calculates the content of any isotopes in the isotope-labeled compound
(1)のクロマトグラフィーが液体クロマトグラフィー、ガスクロマトグラフィー又はゲルパーミエーションクロマトグラフィーであることを特徴とする請求項1に記載の測定方法。 The method according to claim 1, wherein the chromatography of (1) is liquid chromatography, gas chromatography, or gel permeation chromatography. (2)の質量分析のイオン化方法が、電子イオン化(EI)法、化学イオン化(CI)法、電界イオン化(FI)法、高速原子衝突(FAB)法、マトリックス支援レーザー脱離イオン化(MALDI)法、エレクトロスプレーイオン化(ESI)法、大気圧化学イオン化(APCI)法、または大気圧光イオン化(APPI)法であることを特徴とする請求項1又は2に記載の測定方法。 The ionization method of mass spectrometry (2) includes electron ionization (EI) method, chemical ionization (CI) method, field ionization (FI) method, fast atom collision (FAB) method, matrix-assisted laser desorption ionization (MALDI) method. The measurement method according to claim 1, which is an electrospray ionization (ESI) method, an atmospheric pressure chemical ionization (APCI) method, or an atmospheric pressure photoionization (APPI) method. (2)の質量分析を、磁場偏向型、四重極型、イオントラップ型、飛行時間型、タンデム型又はフーリエ変換イオンサイクロトロン共鳴型で分析することを特徴とする請求項1〜3のいずれかに記載の測定方法。 The mass spectrometry of (2) is analyzed by a magnetic field deflection type, a quadrupole type, an ion trap type, a time of flight type, a tandem type, or a Fourier transform ion cyclotron resonance type. The measuring method as described in. 同位体標識化合物が、重水素、質量数14の炭素原子及び質量数15の窒素原子からなる群から選ばれる少なくとも1種を含む同位体標識化合物であることを特徴とする請求項1〜4のいずれかに記載の測定方法。 The isotope-labeled compound is an isotope-labeled compound containing at least one selected from the group consisting of deuterium, a carbon atom having a mass number of 14 and a nitrogen atom having a mass number of 15. The measuring method in any one. (4)のステップにおいて、ベースラインの安定しないマスクロマトグラムの同位体を含有率なしと判断するステップをさらに含むことを特徴とする請求項1〜5のいずれかに記載の測定方法。 The measurement method according to claim 1, further comprising the step of determining that the content rate of the isotope of the unstable mass chromatogram of the baseline is not present in the step of (4). さらに下記(5)のステップを含むことを特徴とする請求項1〜6のいずれかに記載の測定方法。
(5):試料の溶解に用いられた溶媒のみで(1)〜(4)のステップを実施するステップ。
The measurement method according to claim 1, further comprising the following step (5).
(5): A step of performing steps (1) to (4) with only the solvent used for dissolving the sample.
JP2006021871A 2006-01-31 2006-01-31 Method for measuring isotope content Expired - Fee Related JP4800048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006021871A JP4800048B2 (en) 2006-01-31 2006-01-31 Method for measuring isotope content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006021871A JP4800048B2 (en) 2006-01-31 2006-01-31 Method for measuring isotope content

Publications (2)

Publication Number Publication Date
JP2007205745A JP2007205745A (en) 2007-08-16
JP4800048B2 true JP4800048B2 (en) 2011-10-26

Family

ID=38485358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006021871A Expired - Fee Related JP4800048B2 (en) 2006-01-31 2006-01-31 Method for measuring isotope content

Country Status (1)

Country Link
JP (1) JP4800048B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878998B2 (en) * 2006-11-24 2012-02-15 大陽日酸株式会社 Analysis method of stable isotope concentration
JP4857148B2 (en) * 2007-02-28 2012-01-18 大陽日酸株式会社 Analysis method of stable isotope concentration
WO2012172593A1 (en) * 2011-06-14 2012-12-20 Empire Technology Development Llc Food management system and food management method
KR20220017746A (en) * 2020-08-05 2022-02-14 주식회사 엘지화학 Method for analyzing deuterated benzene, method for selecting deuterated benzene for manufacturing deuterated compound and method for manufacturing deuterated compound
US20230141364A1 (en) * 2020-08-05 2023-05-11 Lg Chem, Ltd. Composition, and Electronic Device and Organic Light-Emitting Device Comprising Same
KR20220017749A (en) * 2020-08-05 2022-02-14 주식회사 엘지화학 Method for analyzing deuterated compound, for selecting deuterated compound for manufacturing device and for manufacturing electronic device
JP2023537167A (en) * 2020-08-05 2023-08-31 エルジー・ケム・リミテッド Composition, electronic device and organic light-emitting device containing the same
CN116413326A (en) * 2021-12-31 2023-07-11 中国石油天然气股份有限公司 Method for determining crude oil source based on thioethyl noradamantane
CN114624319B (en) * 2022-04-02 2023-09-01 中国工程物理研究院材料研究所 Method for quantitatively obtaining ppm-level hydrogen isotope content in material based on thermal analysis-quadrupole mass spectrometry measurement principle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277050A (en) * 1985-05-31 1986-12-08 Shimadzu Corp Apparatus for analyzing isotope
JPH04160361A (en) * 1990-10-24 1992-06-03 Hitachi Ltd Method and apparatus for analyzing and measuring isotope gas
JPH06341980A (en) * 1993-02-24 1994-12-13 Kureha Chem Ind Co Ltd Determination method for vitamin d3 derivative
JP4151144B2 (en) * 1998-08-20 2008-09-17 株式会社島津製作所 Chromatograph mass spectrometer
JP2000065797A (en) * 1998-08-20 2000-03-03 Shimadzu Corp Method for forming calibration curve of chromatographic mass spectroscope
JP3867426B2 (en) * 1999-01-07 2007-01-10 株式会社島津製作所 Chromatograph mass spectrometer
JP4019152B2 (en) * 2004-07-07 2007-12-12 大学共同利用機関法人自然科学研究機構 Trace hydrogen molecule and hydrogen isotope molecular separation analyzer

Also Published As

Publication number Publication date
JP2007205745A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4800048B2 (en) Method for measuring isotope content
Clarke Mass spectrometry in the clinical laboratory: Determining the need and avoiding pitfalls
Theodoridis et al. Mass spectrometry‐based holistic analytical approaches for metabolite profiling in systems biology studies
Vogeser et al. Pitfalls associated with the use of liquid chromatography–tandem mass spectrometry in the clinical laboratory
Makarov et al. Coupling liquid chromatography to Orbitrap mass spectrometry
Peng et al. Liquid–liquid extraction combined with differential isotope dimethylaminophenacyl labeling for improved metabolomic profiling of organic acids
Qi et al. On the isobaric space of 25‐hydroxyvitamin D in human serum: potential for interferences in liquid chromatography/tandem mass spectrometry, systematic errors and accuracy issues
Erve et al. Rapid metabolite identification with sub parts‐per‐million mass accuracy from biological matrices by direct infusion nanoelectrospray ionization after clean‐up on a ZipTip and LTQ/Orbitrap mass spectrometry
JP2020502544A (en) Mass spectrometry assay method for detection and quantification of renal function metabolites
Hodyss et al. Spontaneous chiral separation in noncovalent molecular clusters
Wright Metabolite identification by mass spectrometry: forty years of evolution
Du et al. Qualitative–(semi) quantitative data acquisition of artemisinin and its metabolites in rat plasma using an LTQ/Orbitrap mass spectrometer
Feuerstein et al. Novel acquisition strategies for metabolomics using drift tube ion mobility-quadrupole resolved all ions time-of-flight mass spectrometry (IM-QRAI-TOFMS)
Mirnaghi et al. Challenges of analyzing different classes of metabolites by a single analytical method
Trötzmüller et al. Characteristics and origins of common chemical noise ions in negative ESI LC–MS
Higashi et al. Application of 4-(4-nitrophenyl)-1, 2, 4-triazoline-3, 5-dione to analysis of 25-hydroxyvitamin D3 in human plasma by liquid chromatography/electron capture atmospheric pressure chemical ionization-mass spectrometry
Maroto et al. Ion trap MS using high trapping gas pressure enables unequivocal structural analysis of three isobaric compounds in a mixture by using energy‐resolved mass spectrometry and the survival yield technique
Qin et al. Determination of nimodipine in human plasma by ultra performance liquid chromatography–tandem mass spectrometry and pharmacokinetic application
Wagner et al. Isotope‐labeled differential profiling of metabolites using N‐benzoyloxysuccinimide derivatization coupled to liquid chromatography/high‐resolution tandem mass spectrometry
Hakala et al. Feasibility of different mass spectrometric techniques and programs for automated metabolite profiling of tramadol in human urine
Gornischeff et al. A systematic approach toward comparing electrospray ionization efficiencies of derivatized and non‐derivatized amino acids and biogenic amines
Stenson et al. Ion molecule reaction H/D exchange as a probe for isomeric fractionation in chromatographically separated natural organic matter
Chen et al. Development and validation of a liquid chromatographic/tandem mass spectrometric method for the determination of sertraline in human plasma
Jaiswal et al. SWATH: A Data-Independent Tandem Mass Spectrometry Method to Quantify 13 C Enrichment in Cellular Metabolites and Fragments
Yu et al. An ultraperformance liquid chromatography–tandem mass spectrometry method for determination of anastrozole in human plasma and its application to a pharmacokinetic study

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees