WO2000061745A1 - Method for screening g protein-coupled receptor ligand and method for expression cloning g protein-coupled receptor - Google Patents

Method for screening g protein-coupled receptor ligand and method for expression cloning g protein-coupled receptor Download PDF

Info

Publication number
WO2000061745A1
WO2000061745A1 PCT/JP2000/002416 JP0002416W WO0061745A1 WO 2000061745 A1 WO2000061745 A1 WO 2000061745A1 JP 0002416 W JP0002416 W JP 0002416W WO 0061745 A1 WO0061745 A1 WO 0061745A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
gene
substance
sample
receptor
Prior art date
Application number
PCT/JP2000/002416
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Naito
Yutaka Saito
Mitsuhiro Morita
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Priority to AU36780/00A priority Critical patent/AU3678000A/en
Publication of WO2000061745A1 publication Critical patent/WO2000061745A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants

Definitions

  • the present invention provides (1) a method wherein the desired substance is an agonist of a G protein-coupled receptor,
  • the present invention relates to a method for identification by an expression cloning method.
  • the G protein-coupled receptor is a receptor on the cell membrane, has seven transmembrane sites, and acts as a ligand via a GTP (guanosine 5'-triphosphate) binding regulatory protein (G protein). Of information to the effector system.
  • GTP guanosine 5'-triphosphate binding regulatory protein
  • G protein is a trimer consisting of three subunits, G, G, Go, Gq, etc., depending on the type of G subunit, and has receptor specificity (G The types of protein receptors) and effector systems (enzymes and ion channels) are different.
  • glucagon-like receptor 1 and / or 2-adrenergic receptor cooperate with Gs to promote the effector system adenylate cyclase system and increase cyclic AMP (cAMP).
  • the adrenergic receptor also couples with G i to suppress the adenylate cyclase system and reduce cAMP.
  • HI histamine Conjugation with Gq promotes the effector system, phospholipase C system, to increase diacylglycerol and inositol triphosphate, and to increase intracellular Ca 2+ .
  • the main types of effector systems are the adenylate cyclase system, the phospholipase C system, and the cGMP phosphodiesterase system.
  • G protein has GDP (guanosine 5, monophosphate) bound to the subunit and is associated with the? Subunit and the asubunit.
  • GDP guanosine 5, monophosphate
  • the state in which ⁇ , ⁇ ⁇ and GDP are associated is inactive, and when a ligand binds to the receptor, GDP bound to ⁇ is replaced by GTP, and ⁇ -GTP with GTP bound to ⁇ ⁇ subunits. , ⁇ - ⁇ .
  • GTP and / or -G act on the effector system to transmit signals.
  • the GDP leaves the effector system and associates with // and becomes inactive again. By repeating this reaction, information is amplified and transmitted.
  • G protein-coupled receptors The biodistribution of G protein-coupled receptors is often localized in specific organs, but G proteins are widely distributed in living organisms. And, as mentioned above, the G protein triggers a series of intracellular phosphorylation reactions through the G protein-coupled receptor, and regulates a wide range of cell and organ functions, from transcriptional regulation at the gene level to muscle contraction. Has been implemented.
  • 11 adrenergic receptor is localized in the heart, adipose tissue, cerebral cortex, etc., and Gs promotes the adenylate cyclase system, resulting in increased heart rate, increased cardiac contractility, and lipolysis. .
  • the signal transduction system controlled by the G-coupled receptor / G protein is a mechanism essential for the control of the physiological functions of organisms.
  • the signal transduction system is involved in various diseases. It is widely involved in the onset. Therefore, if a G protein-coupled receptor involved in the onset of a certain disease is identified, it is necessary to develop drugs (eg, agonist, angonist, agonist inhibitor) that regulate the physiological function of the receptor. By The drug makes it possible to treat the disease.
  • drugs eg, agonist, angonist, agonist inhibitor
  • G protein-coupled receptor The most important thing to elucidate the physiological function of G protein-coupled receptor is to identify the ligand of the receptor, that is, to identify the agonist of the receptor. It is carried out.
  • Identify ligands of G protein-coupled receptors for which ligands have not been identified ie, orphan G protein-coupled receptors
  • ligands ie, agonists and angonists that interact with the receptor
  • the Atsusei quantitatively detects the presence or absence of an interaction between a test substance and the receptor, and quantitatively detects an increase or a decrease in activation or suppression of a second messenger induced through a G protein to which the receptor is coupled. Therefore, there is a need for an access method that can detect the increase or decrease of the message with high sensitivity.
  • the following method is known as a conventional access method.
  • test sample test substance
  • known agonist and a test sample are allowed to act on cells expressing the desired G protein-coupled receptor, and a second messenger generated by the action of the effector system, such as Gs or Gi-coupled receptor
  • Gs or Gi-coupled receptor a second messenger generated by the action of the effector system, such as Gs or Gi-coupled receptor
  • the amount of cAMP linked to the change in the activity of adenylate cyclase and in the case of the Gq-coupled receptor, the concentration of inositol 3-phosphate ⁇ Ca 2+ linked to the change in the activity of phospholipase C Measurement techniques are widely used.
  • the secondary message induced by coupling of the receptor to Gi is the decrease in cAMP due to suppression of adenylate cyclase.
  • a reagent such as forskolin
  • the amount of cAMP decrease by the test substance with respect to the increase in cAMP which is extremely complicated. Needed operation.
  • an atsey system using a repo overnight gene (Repo overnight at Gene Atsey) has been developed (International Patent Application Publication W092 / 02639, And Tokuyohei 6-502527).
  • an excellent method is to introduce a reporter gene containing a CRE (cAMP response element) as a promoter into a cell and to introduce a reporter gene product that changes when a test substance is brought into contact with the cell.
  • the reporter gene product induced by contacting a test substance with cells was The degree of the increase is about 5 to 10 times that of the case where the test substance is not brought into contact, and it is judged that the test substance interacts with the receptor. Too low to determine.
  • the signal ratio (S / N ratio) detected before and after stimulation with the test substance is as low as about 5 times.
  • Atsushi system using the increase / decrease of intracellular Ca 2+ as an index still has a problem that only the presence or absence of signal transmission via Gq can be measured.
  • a first object of the present invention is to provide an agonist for a G protein-coupled receptor
  • Atsushi system that can detect the change in signal when a nyst or agonist action inhibitor is acted on as a large absolute value, with a high S / N ratio, and with a large signal absolute value.
  • the second objective is to establish an Atssey system that can detect the presence or absence of signal transduction via one of Gs, Gi, and Gq in one type of cell regardless of the type of G protein coupled to the receptor.
  • the third purpose is not only signals that act on Gs or Gq-mediated effector systems but also signals that act on Gi-mediated effector systems (signals that suppress cAMP production). This is the establishment of an Atsushi system that can be detected as signal enhancement.
  • the fourth object is to use the above-mentioned Atsey method to (1) determine whether the desired substance is an agonist, an antagonist, or a substance that inhibits the agonist action of the agonist of the G protein-coupled receptor. And (2) screening for a agonist, an engonist, and / or a substance that inhibits the agonist action of the agonist, which is a ligand of the G protein-coupled receptor, in a rapid and simple manner. It is to be.
  • a fifth object is to provide a method for easily identifying a receptor (for example, a G protein-coupled receptor) that interacts with a certain substance using the above-mentioned Atsey method, using an expression cloning method. is there.
  • a receptor for example, a G protein-coupled receptor
  • the present inventors have enthusiastically described a host cell, a promoter region, and a combination thereof used in a method for identifying a ligand of a G protein receptor by an Atsey method using a repo sequence gene.
  • a host cell a promoter region, and a combination thereof used in a method for identifying a ligand of a G protein receptor by an Atsey method using a repo sequence gene.
  • the expression of the reporter gene product was extremely remarkably observed by addition of agonist.
  • zif268 promoter region hereinafter sometimes simply referred to as zif268
  • signaling of both Gs and Gq can be considered as an increase in the expression of the reporter gene product. It was discovered that detection was possible with the highest sensitivity.
  • the host cell may have any of the following genes:
  • the present invention has led to the invention of an Atsey method capable of quickly and easily identifying an angonist or a substance having an activity of inhibiting the agonist action of the agonist.
  • determining whether a substance is an agonist of a desired G protein-coupled receptor and (2) determining an agonist of a desired G protein-coupled receptor
  • a rapid and simple screening of a large number of test substances to identify a substance having an activity of inhibiting the agonist action of the receptor and / or the agonist action of the agonist (3) expression cleaning Rapid and simple screening of a large number of test proteins (cDNA and cDNA libraries) to identify (cloning) receptors that interact with a substance (eg, G-protein type receptors) , Can achieve.
  • the present invention is a method or a cell as described in the following ⁇ 1> to ⁇ 22>.
  • a method for determining whether or not a substance is an agonist of a desired G protein-coupled receptor comprising the following steps (a) to (c):
  • step (c) comparing the amounts of the respective signals determined in step (b).
  • a method for screening a substance for identifying an agonist of a desired G protein-coupled receptor comprising the following steps ( a ) to (c):
  • step (b) contacting each sample contacted with the substance in step (a) with a detectable signal generated by the repo-all-over-gene expressed in each cell in the sample, and Quantitatively determining each of the detectable signals produced by the repo-gene expressed in each cell of the unsampled sample;
  • step (c) comparing the amounts of the respective signals determined in step (b).
  • step (c) comparing the amounts of the respective signals determined in step (b).
  • a method for screening a substance for identifying an agonist of a desired G protein-coupled receptor or an inhibitor of the agonist action of an agonist of the G protein-coupled receptor comprising: ) Through (c). (a) At least the following exogenous genes (1) and (2):
  • step (b) contacting each sample contacted with the substance in step (a) with a detectable signal generated by the repo-all-over-gene expressed in each cell in the sample, and Quantitatively determining each of the detectable signals generated by said repo overnight gene expressed in each of the vesicles of said unsampled sample;
  • step (c) comparing the amounts of the respective signals determined in step (b).
  • EGR-1 zif268
  • ⁇ 6> The method according to any one of ⁇ 1> to ⁇ 4> above, wherein the overnight promoter region is a zif268 (EGR-1) promoter overnight region.
  • EGR-1 zif268
  • the PC12-derived cell further comprises an exogenous gene of any one of the following (a) to (c): The method described in:
  • a reporter gene operably linked to a promoter overnight region of a gene whose expression is induced by stimulation through a G protein.
  • the promoter region is any one of a zif268 promoter region, a promoter region including an SRE and a CRE, and a C-fos promoter region. A cell as described.
  • ⁇ 11> The cell according to ⁇ 9>, wherein the promoter region is a zif268 promoter region.
  • the PC12-derived cell further has any one of the following exogenous genes (a) to (c): Described cells:
  • a method for identifying a receptor that interacts with a substance comprising: A method characterized by comprising the step of (d) wherein the substance acts as an aco'nist on the receptor.
  • a reporter gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein.
  • step (b) for each sample contacted with the substance in step (a), providing a detectable signal produced by the repo overnight gene expressed in each cell in the sample, and, if desired, Quantitatively determining each of the detectable signals produced by the reporter gene expressed in each cell of the respective sample not contacted;
  • step (c) comparing the amount of signal for each sample determined in step (b) with each other, and selecting one or more samples from the plurality of samples tested in step (a);
  • step (d) the step of determining the nucleotide sequence of the gene encoding the protein according to (1) in step (a) of the cells in the selected sample;
  • a method for identifying a receptor that interacts with a substance comprising the following steps (a) to (g) (where the substance is Acts as an agonist.):
  • step (b) for each sample contacted with the substance in step (a), contacting the detectable signal produced by the reporter gene expressed in each cell in the sample with the substance, if desired; Quantitatively determining each of the detectable signals produced by said reporter gene expressed in each cell of said respective sample;
  • step (c) comparing the amount of signal for each sample determined in step (b) with each other and selecting one or more samples from the plurality of samples tested in step (a);
  • step (a) One or more genes encoding the protein described in (1) of step (a), which are exogenous genes of the cells in the sample selected in step (c); and
  • step (e) for each sample contacted with the substance in step (d), contacting the detectable signal produced by the reporter gene expressed in each cell in the sample with the substance, if desired; Determining quantitatively each of the detectable signals produced by the repo-gene expressed in each cell of the respective sample;
  • step (f) comparing the amount of signal for each of the samples determined in step (e) with each other; Selecting one or more of said plurality of samples tested in step (d);
  • step (g) the step of determining the nucleotide sequence of the gene encoding the protein according to (1) in step (d) of the cells in the selected sample;
  • the method is characterized in that the method includes one or more times of the same operation consisting of the steps (d) to (f) between the step (f) and the step (g), if desired.
  • ⁇ 15> The method according to ⁇ 15>.
  • ⁇ 18> The method according to any one of ⁇ 14> to ⁇ 16>, wherein the promoter region is a zif268 promoter region.
  • One or more genes encoding the protein are cDNA or cDNA live The method according to any one of ⁇ 14> to ⁇ 20>, wherein the receptor is a G protein-coupled receptor. 21. The method according to any one of the above 21>.
  • the ⁇ PC12-derived cell '' in the present invention is a rat adrenal pheochromocytoma-derived PC12 cell line (ATCC CRL-1721; Pro Natl. Acad. Sci. USA., Vol. 73, p. 2424-2426, 1976; Science, Vol. 229, p. 393-395, 1985; EMBO J., Vol. 2, p. 643-648, 198 3) or any cell line subcloned from the PC12 cell line. You.
  • the subcloned cells have the following properties.
  • a gene encoding a desired G protein-coupled receptor in the cells, (1) a gene encoding a desired G protein-coupled receptor, and (2) a promoter / region of a gene whose expression is induced by stimulation through a G protein described later.
  • the G protein-coupled receptor ligand is brought into contact with a recombinant cell obtained by exogenously introducing an “expressably linked reporter gene”, the reporter gene is induced to be expressed.
  • Preferred examples of the subcloned cells include the PC12h cell line (Brain Research, 222, p.225-233, 1981) and various cells subcloned from the PC12h cell line. .
  • G protein-coupled receptor and “gene encoding G protein-coupled receptor”
  • the “G protein-coupled receptor” in the present invention is a receptor existing on the cell membrane, and is a GTP (guanosine). 5, -trinic acid)
  • GTP guanosine
  • 5 -trinic acid A function to transmit information on ligands interacting with the receptor to a series of effectors via a regulatory protein (G protein) for binding.
  • G protein regulatory protein
  • the G protein-coupled receptor in the present invention is an endogenous receptor naturally expressed in a cell or a receptor expressed in a cell by introducing a gene encoding a desired G protein-coupled receptor into the cell. Mean any of the body.
  • the “G protein-coupled receptor” in the present invention includes both known receptors and unidentified receptors.
  • G protein-coupled receptors examples include those whose structure and function have already been elucidated (for example, para-adrenergic receptor,? -Adrenergic receptor, dopamine receptor, muscarinic acetylcholine receptor, Serotonin receptor, histamine receptor, evening kikinin receptor, glutamate receptor, endothelin receptor, platelet activator (PAF) receptor, thrombin receptor, FSH receptor, etc., and their structures are known.
  • the ligand and / or receptor whose physiological function is unknown for example, various orphan G protein-coupled receptors can be mentioned.
  • G protein-coupled receptor ligand means any agonist that interacts with a G protein-coupled receptor or any agonist of the receptor.
  • the “chimeric G protein G subunit” in the present invention refers to a subunit of a certain G protein subunit (for example, Grq or Gas) obtained by substituting a partial subunit of a different type of G protein. It means a G protein subunit having a structure in which a part of the amino acid sequence of (for example, G subunit i) is substituted.
  • the “chimeric G protein G qi” refers to a protein in which a part of the C-terminal amino acid sequence of Ghi q (a sub-unit of the G q protein) is replaced with a part of the C-terminal amino acid sequence of Ghi i. Means a chimeric G protein subunit having a modified structure.
  • "Chimeric G protein Gsi” is a chimera having a structure in which part of the C-terminal amino acid sequence of Gas (subunit of Gs protein) is replaced with the C-terminal amino acid sequence of Gai. Means G protein subunit.
  • G proteins G shed G protein G shed substituted with ⁇ amino acid C-terminal of the i 2 Tahi q / non i 2 chimeric G protein corresponding to the C-terminal amino acids of q is conjugated with G i coupled receptors G q signaling system activating, arrangement Nihi i 2 subunit C-terminal amino acid sequence # 3 of glycine Rukoto believed to contribute to the conversion of receptor specificity knowledge of (Nature, Vol.363, p.274-276, 1993).
  • the part of the C-terminal amino acid sequence of G-q to be substituted be in a range including the glycine at position 3.
  • the number of amino acids to be substituted is at least about 3 to about 23 amino acids, preferably about 3 to about 11 amino acids, and more preferably about 4 to about 9 amino acids.
  • Ghi q and Ghii each constitute a group of families. These families have different organizational distributions by type.
  • G i family members Hi 2 and Hi 3 are widely distributed in tissues, while Hi and Hi 2 are mainly expressed in brain and nerve tissues, respectively.
  • aq and h11 of the Ghi q family are widely distributed, while h14 is mainly expressed in lung, kidney and liver tissues.
  • the chimeric G protein q / Go: i subunit is preferably a chimeric G protein protein subunit consisting of G aq and Ghi i 2 .
  • Ghs also has at least about 3 to about 23, preferably about 3 to about 11, and more preferably about 3 to about 23 C-terminal amino acid sequences to be substituted. Four to about nine amino acids may be substituted with the corresponding amino acid sequence at the C-terminal of G protein Ghi.
  • the configuration of the chimeric G protein G subunit is not limited to the above.
  • the G protein of the present invention has the ability to couple to any G protein-coupled receptor, and converts the signal received by the receptor by the coupling into a signal transmission pathway through G q, that is, a phosphorivator. It is a G protein that has the ability to transmit further downstream in the form of activation of ZeC.
  • Preferred embodiments include, for example, G15 and G16 (J. Biol. Chem., Vol. 270, p. 16175-16180, 1995), but are not limited thereto.
  • the promoter region of the present invention includes the promoter region of the immediate-early gene (i-throat ediate-early gene). Can be
  • Examples of the promoter of the immediate-early gene used in the present invention include a c-fos promoter motor region and a zif268 promoter overnight region (Pro Natl. Acad. Sci. USA., Vo 1.86, p.377-381, 1989; also referred to as "EGR-1", “NGF1-A”, “Krox24", “Tis8” or “cef5").
  • a particularly preferred embodiment includes the zif268 (EGR-1) promoter region.
  • the promoter used in the present invention also includes a counterpart of any animal species of the promoter.
  • promoter region refers to an arbitrary region containing a minimum nucleotide sequence essential for expressing a promoter activity. For example, part or all of a region of about 500 bp to about 2 kb upstream of the transcription site of the gene can be used.
  • examples of the title promoter region in the present invention include a promoter region having a transcription factor binding sequence SRE (serum response element) and / or CRE (cAMP response element) upstream of the minimal promoter region. 7. "Repo One Night One Gene"
  • the “reporter gene” in the present invention means a gene encoding a reporter protein that emits detectable fluorescence. Specifically, for example, luciferase derived from fireflies or Mississippi or GFP (Green Fluorescence Protein) derived from jellyfish can be mentioned. Further, for example, a gene encoding 5-galactosidase, a gene encoding chloramphenic acid acetyltransferase, and a gene encoding lactamase can be mentioned.
  • Agonist action inhibitory substance / "A substance that inhibits agonist action of agonist”
  • the termed substance in the present invention means a substance which acts directly on agonist to inhibit or lose the activity of agonist. It means antibodies against agonists.
  • reporter gene assay means the following method.
  • test substance is brought into contact with the cells according to ⁇ 9> to ⁇ 13>, which are a part of the present invention, and the amount of repo overnight protein expressed depending on the action of the compound is determined.
  • the presence or absence of interaction of the test substance with a G protein-coupled receptor is analyzed by indirectly measuring the amount of emitted fluorescence (for example, see US Pat. No. 5,436, No. 128 and U.S. Pat. No. 5,401,629).
  • a “substance” identified or screened by the method of the present invention refers to existing natural substances (proteins, antibodies, peptides, natural compounds, etc.) or any artificially prepared substances.
  • any “compound” chemically synthesized can be mentioned.
  • the type and molecular weight of the compound are not particularly limited. It has a molecular weight of from about 100 to about 2000, and more typically from about 100 to about 1000.
  • the substance when the substance is a protein, antibody or peptide, it also includes those isolated from living tissue cells and those prepared by genetic recombination or chemical synthesis. Furthermore, those chemical modifications are also included.
  • Examples of the peptide include a peptide consisting of about 3 to about 500 amino acids, preferably about 3 to about 300 amino acids, and more preferably about 3 to about 200 amino acids.
  • genes used in the present invention can be obtained by any method. There may be.
  • known nucleotide sequence information can be used, or a completely new cloning can be performed.
  • cDNA complementary DNA
  • genomic DNA DNA prepared from genomic DNA
  • DNA obtained by chemical synthesis DNA obtained by amplifying the RNA or DNA by PCR as a Combining methods appropriately It also encompasses all of the DNAs that have been constructed.
  • the DNA encoding a protein used in the present invention can be obtained by a method of cloning cDNA from mRNA encoding the protein according to a conventional method, a method of isolating genomic DNA and splicing it, and a method of chemical synthesis. Etc.
  • the following method is exemplified as a method for cloning cDNA from mRNA encoding the protein.
  • mRNA encoding the protein is prepared from the above-mentioned tissues or cells that express and produce the desired protein.
  • total RNA prepared by a known method such as the guanidine thiosocyanate method (Chirgwin et al., Biochemistry, Vol. 18, p. 5294, 1979), the hot phenol method or the AGP C method is oligo- d T) It can be carried out by affinity chromatography with cellulose or poly-U-Sepharose.
  • the obtained mRNA is used as type ⁇ , and a known method such as, for example, using reverse transcriptase, for example, the method of Okayama et al. (Mol. Cell. Biol., Vol. 2, p. 161, 1982; Mol. Ce 11 Biol., Vol. 3, p. 280, 1983) and the method of Hoffman et al. (Gene, Vol. 25, p. 263, 1983) synthesize cDNA strands and convert them into double-stranded cDNAs. Is converted.
  • a known method such as, for example, using reverse transcriptase, for example, the method of Okayama et al. (Mol. Cell. Biol., Vol. 2, p. 161, 1982; Mol. Ce 11 Biol., Vol. 3, p. 280, 1983) and the method of Hoffman et al. (Gene, Vol. 25, p. 263, 1983) synthesize cDNA strands and convert them into double-stranded cDNAs
  • This cDNA is incorporated into a plasmid vector, phage vector or cosmid vector, and transformed into Escherichia coli, or after in vitro packaging, transfected into Escherichia coli to produce a cDNA library.
  • the plasmid vector used here is not particularly limited as long as it can be replicated and maintained in the host, and any phage vector used can be used as long as it can be propagated in the host.
  • Examples of a cloning vector used in a conventional manner include pUC19, human gtlO, and human gtll.
  • a promoter capable of expressing the gene encoding the protein in the host is used. It is preferable that the vector is a one-time vector.
  • Examples of a method for incorporating cDNA into a plasmid include the method described in Maniatis et al. (Molecular Cloning, A Laooratory Manual, second edition, Cold Spring Harbor Laboratory, p. 1.53, 1989).
  • a method of incorporating cDNA into a phage vector the method of Hyunh et al. (DNA Cloning, a practical approach, Vol. 1, p. 49, 1985) and the like can be mentioned.
  • a commercially available closing kit for example, Takara Shuzo
  • the recombinant plasmid vector obtained in this manner is introduced into a suitable host such as a prokaryotic cell (for example, E. coli: HB101, DH5 or MC1061 / P3).
  • a prokaryotic cell for example, E. coli: HB101, DH5 or MC1061 / P3
  • Methods for introducing a plasmid into a host include a calcium chloride method, a calcium chloride / rubidium chloride method, and a Lipofi method described in (Molecular Cloning, A Laboratory Manual, second edition, Cold Spring Harbor Laboratory, Vol. 1.74, 1989). Examples include the extrusion method and the elect opening method. Examples of a method for introducing the phage vector into a host include a method in which phage DNA is packaged in vitro and then introduced into a grown host. In vitro packaging can be easily performed by using a commercially available in vitro packaging kit (eg, manufactured by Stratagene, Amersham, etc.).
  • cDNA gene encoding a protein whose expression is enhanced in response to a certain kind of stimulus (for example, stimulus by a cytokine)
  • mRNA derived from the cell to which the stimulus is given is used.
  • a cDNA library tester cDNA library
  • a cDNA library dri ver cDNA library
  • mRNA from unstimulated cells for example, the inhibitory PCR effect Suc. (Supression subtract hybridization (S SH)) using the Subtraction Subtraction Neutralization Method (Nucleic Acids Res., Vol. 23, p. 1087-1088, 1995) (Proc. Natl. Acad.
  • a commercially available kit for example, a PCR-Select Subtraction Kit (manufactured by CL0NTECH, catalog number: K1804-1) can be used.
  • the experimental operation can be performed according to the experimental operation manual attached to the kit.
  • RNA was prepared in the same manner as previously reported (Nucleic Acids Res., Vol. 26, No. 4, p. 911-918, 1998). I do.
  • cDNA is prepared from each polyANA sample using a reverse transcriptase according to a conventional method.
  • CDNA prepared from stimulated cells is used as tester cDNA, and cMA from unstimulated cells is used as driver cDNA.
  • the driver cDNA is added to the test DNA to perform subtraction. The efficiency of the subtraction is monitored by adding a small amount of appropriate exogenous DNA to the cDNA as a control.
  • the exogenous DNA is concentrated.
  • the subtracted cDNA is cloned into an appropriate plasmid expression vector according to a conventional method to prepare a plasmid library.
  • a large number of colonies of the library are screened by the differential hybridization method (Nucleic Acids Res., Vo 1.26, No. 4, p. 911-918, 1998; Clinical Immunity, Vol. 29). , No. Suppl. 17, p. 451-459, 1997).
  • the hybridization probe those obtained by radioactively labeling each of the above-mentioned TES cDNA and driver cDNA can be used.
  • the clone containing the target DNA and the clone containing the exogenous DNA can be distinguished by hybridizing the exogenous DNA with a replicant filter.
  • a radiolabeled driver A clone that produces a stronger signal with a radiolabeled tester cDNA probe than with a cDNA probe can be identified, and the desired cDNA or cDNA fragment can be obtained.
  • the cDNA encoding any protein of the present invention can be isolated by using other general cDNA screening methods.
  • a commercially available or known cDNA or cDNA fragment Amino acid sequence and nucleotide sequence also encodes its own isolated protein based, or separately oligonucleotides corresponding to the chemically synthesized amino acid sequence of the protein 32 Labeled with P and used as a probe, the well-known colony hybridization method (Crunstein et al., Proc. Natl. Acid. Sci. USA, Vol. 72, p. 3961, 1975) or plaque hybridization. It can be obtained by screening a commercially available or originally prepared cDNA library by the Chillon method (Molecular Cloning, A Laboratory Manual, second edition, Cold Spring Harbor Laboratory, p. 2.108, 1989). .
  • a pair of PCR primers is prepared based on the nucleotide sequence of the cDNA or cDNA fragment encoding the protein, and a cDNA encoding the protein is obtained by PCR using the full-length cDNA library as a type III primer and the primers.
  • a method for amplifying MA can be mentioned.
  • a target clone When a cDNA library prepared using an expression vector capable of expressing cDNA is used, a target clone may be selected by utilizing an antigen-antibody reaction using an antibody reactive with the protein. it can. When a large number of clones are processed, it is preferable to use a screening method using the PCR method.
  • the gene encoding any protein in the present invention can be obtained by cutting out all or a part of the clone obtained as described above using restriction enzymes or the like. it can.
  • examples of a method for preparing a gene encoding a desired protein by isolating it from a genomic DNA derived from a cell that expresses the protein include the following methods.
  • the cells are preferably lysed using SDS or proteinase K or the like, and the DNA is deproteinized by repeating extraction with phenol.
  • the RNA is digested, preferably by ribonuclease.
  • the obtained DNA is partially digested with an appropriate restriction enzyme, and the obtained DNA fragment is amplified with an appropriate phage or cosmid to prepare a library.
  • a clone having the target sequence is detected by, for example, a method using a radiolabeled DNA probe, and all or a part of the gene encoding the protein is cut out from the clone with a restriction enzyme or the like and obtained.
  • Kosumi Dry Slurry into which human genomic DNA (chromosomal DNA) has been introduced is also prepared ("Labo Manual Human Genome Matching", edited by Masaaki Hori and Yusuke Nakamura, Maruzen)
  • a positive clone containing the DNA of the coding region of the target protein is obtained.
  • the cDNA library described above is used. It can also be prepared by screening rallies.
  • Examples of the vector used in cloning of the gene encoding any of the above-mentioned proteins and / or the expression vector for expressing the gene encoding the protein include various prokaryotic and / or eukaryotic host cells. There is no particular limitation as long as it can maintain replication or self-reproduce in it, and includes plasmid vector and phage vector. However, in the above-mentioned embodiments ⁇ 1> to ⁇ 22>, the gene encoding the protein is limited to a vector that can be expressed in the “PC12-derived cell” as defined above.
  • the recombinant vector can be simply prepared by ligating the DNA encoding the protein to a recombinant vector (plasmid DNA and bacterial phage DNA) available in the art in a conventional manner. it can.
  • telomeres derived from Escherichia coli such as pBR322, pBR325, pUC12, pUC13 and pUC19, and plasmids derived from yeast such as pSH19 and pSH15, and plasmids derived from Bacillus subtilis.
  • pUB110, pTP5, and PC194 are exemplified.
  • the phage include pacteriophage such as input phage, and animal and insect viruses (pVL1393, manufactured by Invitrogen) such as retrovirus, puccinia virus, and nucleopolyhedrovirus.
  • Expression vectors are useful for the purpose of expressing DNA encoding the protein in “PC12-derived cells” as defined above.
  • the expression vector is not particularly limited as long as it has a function of expressing the gene in the cell.
  • pMAL C2 pEF-BOS (Nucleic Acid Research) ⁇ 18 Volume, p. 532, p. 1992, etc.) or pME18S (Experimental Medicine separate volume, “Genetic Engineering Handbook”, p. 1992, etc.).
  • the expression vector preferably contains at least a promoter, an initiation codon, DNA encoding the protein of interest, and a stop codon.
  • DNA encoding a signal peptide, enhancer sequence, untranslated regions at the 5 and 3 sides of the gene encoding the protein, splicing junction, polyadenylation site, selective binding region, or replicable unit Etc. may be included. Further, it may contain a gene amplification gene (maichmatichi) usually used depending on the purpose.
  • Suitable initiation codons include methionine codon (ATG).
  • stop codon examples include commonly used stop codons (eg, TAG, TGA, TAA).
  • the evening / mine / night area is usually used natural or synthetic evening / mine One can be used.
  • a replicable unit is DNA that has the ability to replicate its entire DNA sequence in a host cell, and is composed of natural plasmids, artificially modified plasmids (prepared from natural plasmids). DNA fragments) and synthetic plasmids.
  • plasmid pBR322 or an artificially modified product thereof is used in E. coli
  • plasmid pRSVneo is used in mammalian cells. ATCC 37198, plasmid pSV2dhfr ATCC 37145, plasmid pdBPV-MMMTneo ATCC 37224, and plasmid pSV2neo ATCC 37149.
  • polyadenylation site and slicing junction site those commonly used by those skilled in the art can be used.
  • selection marker a commonly used marker can be used by a conventional method. Examples thereof include antibiotic resistance genes such as neomycin, tetracycline, ambicillin, hygromycin, and kanamycin.
  • Gene amplification genes include dihydrofolate reductase (DHFR) gene, thymidine kinase gene, neomycin resistance gene, glutamate synthase gene, adenosine deminase gene, ordinine decarboxylase gene, hygromycin B — A phosphotransferase gene, an aspartalate transcarbamylase gene, and the like.
  • DHFR dihydrofolate reductase
  • thymidine kinase gene thymidine kinase gene
  • neomycin resistance gene glutamate synthase gene
  • adenosine deminase gene amino acid deminase gene
  • ordinine decarboxylase gene ordinine decarboxylase gene
  • hygromycin B A phosphotransferase gene, an aspartalate transcarbamylase gene, and the like.
  • the expression vector used in the present invention can appropriately and continuously replicate at least the above-mentioned promoter, start codon, DNA encoding the desired protein, stop codon, and overnight-mine area. It can be prepared by linking to units. At this time, if necessary, an appropriate DNA fragment (for example, a linker, another restriction enzyme cleavage site, etc.) can be used by a conventional method such as digestion with a restriction enzyme or ligation using T4 DNA ligase.
  • an appropriate DNA fragment for example, a linker, another restriction enzyme cleavage site, etc.
  • the transformed cell prepared in the present invention is prepared by transforming the above-described expression vector into a host cell (immediately). That is, it can be prepared by introduction into the “PC12-derived cell” defined above.
  • the cells (including wild-type cells, cell lines, non-transformed cells, and transformed cells) used in the present invention can survive, maintain, and / or proliferate by culturing in a nutrient medium.
  • the nutrient medium preferably contains a carbon source, an inorganic nitrogen source or an organic nitrogen source necessary for the growth of the host cell (transformant).
  • the carbon source include glucose, dextran, soluble starch, and sucrose
  • examples of the inorganic or organic nitrogen source include ammonium salts, nitrates, amino acids, corn chips, peptone, casein, and meat extract. , Soybean meal, potato extract and the like.
  • other nutrients eg, inorganic salts (eg, calcium chloride, sodium dihydrogen phosphate, magnesium chloride), bimins, antibiotics (eg, tetracycline, neomycin, ambibicin, kanamycin, etc.), etc.) May be included.
  • the culturing is performed by a method known in the art. Culture conditions, such as temperature, pH of the medium, and culture time are appropriately selected.
  • a MEM medium containing about 5 to 20% fetal bovine serum (Science, Vol. 122, p. 501, 1952), a DMEM medium (Virology, Vol. 8, p. 396, 1959), RPMI1640 medium (J. Am. Med. Assoc., Vol. 199, p. 519, 1967), 199 medium (proc. Soc. Exp. Biol. Med., Vol. 73, p. L) , 1950)
  • the pH of the medium can be set to about 6 to 8, and the culture is usually performed at about 30 to 40 ° C, and if necessary, aeration and stirring can be performed.
  • the chimeric G protein subunit used in the present invention for example, a gene encoding Ghi qi consisting of Ghi i and G aq or a gene encoding G asi consisting of G hi i and G his is
  • the base sequence of mMA encoding each of aq and G Can be prepared by PCR using the following pair of primers.
  • Fourth primer A primer having a nucleotide sequence complementary to the nucleotide sequence encoding the N-terminal amino acid sequence of each of Gq and Gs.
  • Reverse primer A nucleotide sequence complementary to the nucleotide sequence encoding the C-terminal amino acid sequence of Gi downstream of the nucleotide sequence complementary to the nucleotide sequence encoding a part of the amino acid at the C-terminal side of each of Gq and Gs A primer having
  • the various reporter genes used in the present invention as defined above can be cloned using the existing gene cloning method as described above. However, commercially available expression vectors into which the gene has been inserted can be used. It is convenient to use a cutter.
  • Transformation of host cells by various gene expression vectors in the present invention is performed by the above-described general method (eg, lipofection method or electroporation method). Can be performed.
  • the transformants used in the present invention include c- transformants, which include both transient transformants and stable transformants, as described above.
  • Host cells are transformed with various marker genes (for example, a drug resistance gene such as a neomycin resistance gene), and the cells are then cultured in the presence of the drug to obtain clones resistant to the drug. it can.
  • the invention ⁇ 1> is as follows.
  • a method for determining whether or not a substance is an agonist of a desired G protein-coupled receptor comprising the following steps (a) to (c): ) At least the following exogenous genes (1) and (2): (1) a gene encoding the desired G protein-coupled receptor; and
  • step (c) comparing the amounts of the respective signals determined in step (b).
  • the present invention can be implemented, for example, as follows.
  • PC12-derived cells eg, PC12h cell line
  • PC12h cell line are transformed into one or more expression vectors in which the following genes (i) and (ii) or (i) to (iii) have been inserted so that they can be expressed in host cells.
  • a transformed cell preferably a stable transformed cell into which all the genes have been introduced is obtained.
  • a gene (preferably cDNA) encoding a desired G protein-coupled receptor.
  • a promoter overnight region of a gene whose expression is induced by a signal mediated by a G protein preferably, a promoter region containing a zif268 (EGR-1) promoter region, a c-fos promoter region, or an SRE and / or a CRE.
  • EGR-1 zif268
  • c-fos promoter region preferably a promoter region containing a zif268 (EGR-1) promoter region, a c-fos promoter region, or an SRE and / or a CRE.
  • the amino acid sequence at the C-terminal side of the Gq subunit from about 3 to about 23 (preferably 9) consecutive amino acid sequences including glycine at position 3 is converted to the C-subunit of the Gi subunit.
  • a gene (preferably cDNA) encoding a chimeric G protein subunit obtained by substitution with the corresponding amino acid sequence at the terminal side.
  • the number of the obtained transformed cells (for example, l to lx l0 lfl , lxlO ⁇ lxlO 9 pieces, lxl0 2 ⁇ lxl0 8 pieces, lxl0 3 ⁇ lxl0 7 atoms, lxl0 4 ⁇ lxl0 7 amino, 1 xl0 4 ⁇ lxl0 6 pieces, Ixl0 4 ⁇ 5xl0 5 pieces) capable desired cell culture
  • a desired nutrient medium eg, D-MEM medium
  • the desired reagents eg, serum, antibiotics, etc.
  • instruments eg, petri dishes, microplates with multiple wells, microtubes, etc.
  • At least one of the samples contains the desired concentration of the substance (eg, compound) to be tested (eg, about ⁇ . ⁇ to about 1.0 ⁇ , and in the following order of preference, about ⁇ . ⁇ to about 100 mM, Add about ⁇ to about 10 mM, about ⁇ . ⁇ to about 1.0 mM, about ⁇ to about 500 M, about ⁇ to about 500 / M), and add the desired time at about 37 ° C (for example, about 1 to 24 hours). ) Incubate.
  • the desired concentration of the substance (eg, compound) to be tested eg, about ⁇ . ⁇ to about 1.0 ⁇ , and in the following order of preference, about ⁇ . ⁇ to about 100 mM, Add about ⁇ to about 10 mM, about ⁇ . ⁇ to about 1.0 mM, about ⁇ to about 500 M, about ⁇ to about 500 / M), and add the desired time at about 37 ° C (for example, about 1 to 24 hours). ) Incubate.
  • the cells contained in the cell sample cultured in the presence of the substance are lysed with a desired cell lysis reagent, and the amount of luciferase contained in a certain amount of the cell lysate of the sample is determined by using commercially available luciferase. Determine quantitatively using an I-lase activity measuring device to obtain the measured value [A].
  • cells contained in the cell sample of the above (2) cultured without adding the substance are also lysed in the same manner, and the amount of luciferase contained in a certain amount of the cell lysate is determined by using commercially available luciferase. Quantitatively, using an activity measuring device to obtain the measured value [B].
  • the measured value [A] is compared with the measured value [B], and based on the degree of the difference, whether or not the substance is an agonist of the G protein-coupled receptor (interaction with the receptor) Is determined).
  • the invention 2 is as follows.
  • step (b) for each sample contacted with the substance in step (a), the detectable signal produced by the reporter gene expressed in each cell in the sample; and Quantitatively determining each of the detectable signals produced by the repo overnight gene expressed in each cell of the sample;
  • step (c) comparing the amounts of the respective signals determined in step (b).
  • the present invention can be implemented, for example, as follows.
  • PC12-derived cells eg, PC12h cell line
  • PC12h cell line are transformed into one or more expression vectors in which the following genes (i) and (ii) or (i) to (ii) have been inserted so that they can be expressed in host cells.
  • a transformed cell preferably a stable transformed cell into which all the genes have been introduced is obtained.
  • a gene (preferably cDNA) encoding a desired G protein-coupled receptor.
  • Promoter region of a gene whose expression is induced by a signal mediated by a G protein preferably, zif268 (EGR-1) Promoter region, c-fos Promoter region, or SRE and / or CRE Repro overnight gene (preferably, luciferase derived from fireflies or mimics, GFP (Green Fluorescence Protein) derived from jellyfish, CDNA encoding zeolites).
  • the amino acid sequence at the C-terminal side of Gq Encodes a chimeric G protein subunit obtained by replacing about 3 to about 23 (preferably 9) contiguous amino acid sequences with the corresponding amino acid sequence at the C-terminal side of Gi subunit. (Preferably cDNA).
  • the resulting constants of the transformed cell e.g., L ⁇ lxl0 1 () number, in order of preference below nine lxlO ⁇ lxlO, 1 10 2 ⁇ 1 10 8 pieces, 1 10 3 to 1 10 7, Lxl0 4 ⁇ lxl0 7 amino, 1 xl0 4 ⁇ lxl0 6 pieces, Ixl0 4 to ⁇ 5Xl0 5 pieces), a number of Ueru (e.g., 24 holes, 48 holes, 96 holes, each of the microplates with 364 like holes) Ueru
  • the cells are cultured in a desired nutrient medium (eg, D-MEM medium) containing the desired reagents (eg, serum, antibiotics, etc.).
  • a desired nutrient medium eg, D-MEM medium
  • the desired reagents eg, serum, antibiotics, etc.
  • Each of a plurality of samples set in each well of the microplate has a desired concentration (for example, about 1.0 pM to about 1.0 M) of a different substance to be tested (for example, a compound).
  • a desired concentration for example, about 1.0 pM to about 1.0 M
  • a different substance to be tested for example, a compound.
  • a desired cell lysis reagent is added to each sample cultured in the presence of a different test substance to lyse the cells, and the luciferase contained in a fixed amount of the cell lysate of each sample is determined.
  • the amount was quantitatively determined using a commercially available luciferase activity measuring instrument, and multiple measured values [A], [B], [C], [D], [E] ⁇ ⁇ -[X ].
  • cells contained in the cell sample of the above (2) cultured without adding the substance are also lysed in the same manner, and the amount of luciferase contained in a certain amount of the cell lysate is measured using a commercially available luciferase activity assay. Determine quantitatively using the instrument and obtain one or more measured values [Control].
  • the invention of 3> is as follows.
  • a method for determining whether or not a substance is an antagonist of the desired G protein-coupled receptor or an inhibitor of the agonist action of an agonist of the G protein-coupled receptor A method characterized by including the following steps (a) to (c):
  • step (c) comparing the amounts of the respective signals determined in step (b).
  • the present invention can be implemented, for example, as follows.
  • a PC12-derived cell for example, a PC12h cell line
  • a PC12-derived cell is transformed into one or more expression vectors in which the following genes (i) and (ii) or (i) to (iii) have been inserted so that they can be expressed in host cells.
  • a transformed cell preferably a stable transformed cell into which all the genes have been introduced is obtained.
  • a gene (preferably cDNA) encoding a desired G protein-coupled receptor.
  • Promoting genes whose expression is induced by G protein-mediated signals A repo overnight gene (preferably a zif268 (EGR-l) promoter overnight region, a c-fos promoter overnight region, or a promoter region containing SRE and / or CRE) Are luciferases derived from fireflies or mimic, GFP (Green Fluorescence Protein) derived from jellyfish, and cDNA encoding laccase.
  • EGR-l zif268
  • CRE Green Fluorescence Protein
  • the resulting constants of the transformed cell e.g., L ⁇ lxl0 1Q pieces, in order of preference below, lxlO 'lxlO 9 pieces, lxl0 2 ⁇ lxl0 8 fli, Ixl0 3 ⁇ lxl0 7 atoms, 1 10 4 to 1 10 7 pieces, 1 xl0 4 ⁇ lxl0 6 pieces, Ixl0 4 ⁇ 5xl0 5 pieces
  • the desired cell culture instrument e.g., a petri dish, a microplate having many Ueru, etc. microtube
  • the desired reagents used For example, culture in a desired nutrient medium (eg, D-MEM medium) containing serum, antibiotics, etc.).
  • a desired nutrient medium eg, D-MEM medium
  • a desired concentration of a known agonist of the G protein-coupled receptor e.g., about l.Op M to about 1.0 M, preferably in the order of about ⁇ ⁇ ⁇ ⁇ . ⁇ to about 100 mM, about ⁇ to about 10 mM, About 1.OnM to about 1.0mM, about ⁇ to about 500M, about ⁇ to about 500 ⁇ M).
  • the desired concentration of the substance to be tested for example, a compound (for example, about ⁇ . ⁇ to about 1.0 M, and in the preferred order, about ⁇ . ⁇ to about 100 mM, about ⁇ to about 10 mM, about 1.0 nM About 1.0 mM, about 10 nM to about 500 ⁇ M, about ⁇ to about 500 / M).
  • a desired concentration of the known agonist of the G protein-coupled receptor for example, about l. Op M to about 1.0 M, and in the following order of preference, about ⁇ . ⁇ to about 100 mM, about ⁇ to about 10 mM, About 1. OnM to about 1.0 mM, about ⁇ to about 500 ⁇ M, about ⁇ to about 500 ⁇ M).
  • the cells contained in the cell sample cultured in the absence of any of the agonist and the test substance are similarly lysed, and the luciferase contained in a certain amount of the cell lysate is similarly lysed.
  • the amount is quantitatively determined using a commercially available luciferase activity measuring instrument, and the measured value [C] is obtained.
  • the measured values [A], [B] and [C] are compared, and based on the degree of the difference, whether or not the substance is an agonite of the G protein-coupled receptor, or Is a substance having an activity of inhibiting the agonist action of the agonist.
  • the invention of 4> is as follows.
  • a method for screening a substance for identifying an agonist of the desired G protein-coupled receptor or an inhibitor of the agonist action of an agonist of the G protein-coupled receptor comprising the following (a) And (c): (a) at least the following exogenous genes (1) and (2):
  • a plurality of samples consisting of a constant of PC12-derived cells having Contacting a substance different from the agonist of the G protein receptor;
  • step (b) contacting each sample contacted with the substance in step (a) with a detectable signal generated by the repo-all-over-gene expressed in each cell in the sample, and Quantitatively determining each of the detectable signals produced by the repo-gene expressed in each cell of the unsampled sample;
  • step (c) comparing the amounts of the respective signals determined in step (b).
  • the present invention can be implemented, for example, as follows.
  • PC12-derived cells eg, PC12h cell line
  • PC12h cell line are transformed into one or more expression vectors in which the following genes (i) and (ii) or (i) to (ii) have been inserted so that they can be expressed in host cells.
  • a transformed cell preferably a stable transformed cell into which all the genes have been introduced is obtained.
  • a gene (preferably cDNA) encoding a desired G protein-coupled receptor.
  • a promoter region of a gene whose expression is induced by a signal mediated by a G protein preferably, a zif268 (EGR-1) promoter region, a c-fos promoter overnight region, or a promoter region containing SRE and / or CRE.
  • a G protein preferably, a zif268 (EGR-1) promoter region, a c-fos promoter overnight region, or a promoter region containing SRE and / or CRE.
  • luciferase preferably luciferase derived from fireflies or escherichia
  • GFP Green Fluorescence Protein
  • the amino acid sequence at the C-terminal side of the Gq subunit from about 3 to about 23 (preferably 9) consecutive amino acid sequences including glycine at position 3 is converted to the C-terminal of the Gi subunit.
  • a gene (preferably C DNA) encoding a chimeric G protein subunit obtained by substituting the corresponding amino acid sequence on the side.
  • the resulting constants of the transformed cell e.g., L ⁇ lxl0 1Q pieces, in order of preference below nine lxlO ⁇ lxlO, lxl0 2 ⁇ lxl0 8 pieces, lxl0 3 ⁇ lxl0 7 atoms, lxl0 4 ⁇ lxl0 7 carbon atoms, 1 xl0 4 ⁇ lxl0 6 pieces, the lxl0 4 ⁇ 5xl0 5 pieces), a number of Ueru (e.g., 24-well, 48-well, 96-well, microplate of 1 or more (preferably a plurality) having a 364 like holes)
  • the cells are plated on each of the cells, and the cells are cultured in a desired nutrient medium (eg, D-MEM medium) containing a desired reagent (eg, serum, antibiotic, etc.).
  • a desired reagent eg, serum, antibiotic, etc.
  • a desired concentration of a known agonist of the G protein-coupled receptor e.g., about l.Op M to about 1.0 M, preferably in the order of about ⁇ ⁇ ⁇ ⁇ . ⁇ to about 100 mM, about ⁇ to about 10 mM, About 1.OnM to about 1.0mM, about ⁇ to about 500 ⁇ M, about ⁇ to about 500 / M).
  • the desired concentration of the substance to be tested for example, a compound
  • the desired concentration of the substance to be tested for example, a compound
  • the desired concentration of the substance to be tested for example, a compound
  • the desired concentration of the substance to be tested for example, a compound
  • the desired concentration of the substance to be tested for example, a compound
  • the desired concentration of the substance to be tested for example, a compound
  • the desired concentration of the substance to be tested for example, a compound which is different from each other (for example, about ⁇ . ⁇ to about 1.0 ⁇ , and in the following order of preference, about ⁇ . ⁇ to about 100 mM, about ⁇ to about 10 mM, about ⁇ . ⁇ to about 1.0 mM, about ⁇ to about 500 M, about ⁇ to about 500 ⁇ M).
  • a desired concentration of a known agonist of the G protein-coupled receptor e.g., about l.Op M to about 1.0 M, and in a preferred order, about ⁇ . ⁇ to about 100 mM, about ⁇ to about 10 mM, about 1. OnM to about 1.0 mM, about ⁇ to about 500 ⁇ M, about ⁇ to about 500 ⁇ M).
  • cells contained in the cell sample cultured in the absence of any of the agonist and the test substance are similarly lysed, and the luciferase contained in a certain amount of the cell lysate is similarly lysed.
  • the amount is quantitatively determined using a commercially available luciferase activity measuring device to obtain one or more measured values [Control].
  • 6Plural measured values [A], [B], [C], [D], ⁇ E ⁇ ⁇ [X] are converted to measured values [], [B,], [C,], [ D,], [ ⁇ ,] ⁇ ⁇ ⁇ ⁇ [ ⁇ ,], and the measured value [Control], and based on the degree of the difference, a substance that is an angoneist of the G protein-coupled receptor; Alternatively, a substance having an activity of inhibiting the agonist action of the agonist is selected and identified. (10) Methods for identifying receptors that interact with a substance (eg, G protein-coupled receptors)
  • a method for identifying a receptor that interacts with a substance comprising the following steps (a) to (d) (where the substance is an agonist for the receptor: Acts as :):
  • Preparing a plurality of samples comprising PC12-derived cells having the following steps: contacting each of the samples with the substance (wherein the cells in each of the samples are different from each other for each sample). Has the following genes :);
  • step (b) for each sample that has been contacted with the substance in step (a), contacting the detectable signal produced by the reporter gene expressed in each cell in the sample with the substance, if desired; Quantitatively determine each of the detectable signals produced by the repo gene expressed in each cell of the respective sample About;
  • step (c) comparing the amount of signal for each sample determined in step (b) with each other, and selecting one or more samples from the plurality of samples tested in step (a);
  • step (d) the step of determining the nucleotide sequence of the gene encoding the protein according to (1) in step (a) of the cells in the selected sample;
  • the invention of ⁇ 15> is as follows.
  • a method for identifying a receptor that interacts with a substance comprising the following steps (a) to (f) (wherein the substance is an agonist for the receptor: Acts as :):
  • Preparing a plurality of samples consisting of PC12-derived cells having the following steps: contacting each of the samples with the substance (wherein the cells in each of the samples are different from each other for each sample) (1) Has the following genes :);
  • step (b) for each sample contacted with the substance in step (a), providing a detectable signal produced by the repo overnight gene expressed in each cell in the sample, and, if desired, Quantitatively determining each of the detectable signals generated by said repo-all-night gene expressed in each cell of said respective sample not contacted;
  • step (c) comparing the amount of signal for each sample determined in step (b) with each other and selecting one or more samples from the plurality of samples tested in step (a);
  • step (d) At least the following exogenous genes (1) and (2): (1) one or more genes encoding the protein described in (1) of step (a), which are exogenous genes of the vesicles in the sample selected in step (c); and
  • Providing a plurality of samples comprising PC12-derived cells having the following steps: contacting each of the samples with the substance (where the cells in each of the samples are different from each other for each sample; Gene));
  • step (e) for each sample contacted with the substance in step (d), providing a detectable signal produced by the repo overnight gene expressed in each cell in the sample, and, if desired, Quantitatively determining each of the detectable signals produced by the reporter gene expressed in each cell of the respective sample not contacted;
  • step (f) comparing the amount of signal for each of the samples determined in step (e) with each other, and selecting one or more samples from the plurality of samples tested in step (d);
  • step (g) the step of determining the nucleotide sequence of the gene encoding the protein according to (1) in step (d) of the cells in the selected sample;
  • the invention of the above item 16> is as follows.
  • the method comprises, if desired, between the step (f) and the step (g), one or more times of the same operation comprising the steps (d) to (f). 15>.
  • the present invention can be implemented, for example, as follows.
  • PC12-derived cells eg, PC12h cell line
  • PC12h cell line are transformed into one or more expression vectors in which the following genes (i) and (ii) or (i) to (ii) have been inserted so that they can be expressed in host cells.
  • a transformed cell preferably inexpensive into which all the genes have been introduced
  • a plurality of types of transformed cells having the following gene (i) are prepared for each transformed cell.
  • genes encoding any protein.
  • a cDNA or cDNA group consisting of one or more kinds in a cDNA library consisting of various kinds of cDNAs encoding the full-length amino acid sequences of various human-derived proteins.
  • Promoter region of a gene whose expression is induced by a signal mediated by a G protein preferably, a promoter region of zif268 (EGR-l), a c-fos promoter region, or a promoter region containing SRE and / or CRE.
  • CDNA encoding a reporter gene preferably luciferase from fireflies or peaches, GFP (Green Fluorescence Protein) from jellyfish, or luciferase) ).
  • the C-terminal amino acid sequence of the C-terminal of the G subunit comprising about 3 to about 23 (preferably 9) contiguous amino acid sequences including glycine at position 3;
  • a gene preferably cDNA
  • a chimeric G protein subunit obtained by substitution with the corresponding amino acid sequence on the side.
  • each of the constants of the transformed cell e.g., L ⁇ lxl0 1Q pieces, in order of preference below nine lxlO ⁇ lxlO, 1 10 2 ⁇ 1 10 8 pieces, lxl0 3 ⁇ lxl0 7 carbon atoms, 1 xl0 4 ⁇ lxl0 7 atoms, lxl0 4 ⁇ lxl0 6 pieces, the lxl0 4 ⁇ 5xl0 5 pieces), if e numerous Ueru (e.g., 24 holes, 48 holes, 96 holes, each of the microplates having 364 such holes)
  • a desired nutrient medium e.g, D-MEM medium
  • a desired reagent eg, serum, antibiotic, etc.
  • the desired concentration (for example, about ⁇ . ⁇ ⁇ to about 1. 1.) of the desired substance to be tested is added to each of a plurality of samples set in each microplate of the microplate.
  • 0M in the following order of preference, about ⁇ . ⁇ to about 100 mM, about ⁇ to about 10 mM, about ⁇ . ⁇ to about 1.OmM, about ⁇ to about 500 / M, about ⁇ to about 500 / M), and Incubate at about 37 ° C for the desired time (eg, about 1 to 24 hours).
  • a desired cell lysis reagent is added to each sample cultured in the presence of the test substance to lyse the cells, and the amount of luciferase contained in a fixed amount of the cell lysate of each sample is determined. Quantitatively determined using a commercially available luciferase activity measuring device, and multiple measurements [A], [B], [C], [D], [E]... ' ]. Also, if desired, the cells contained in each cell sample of the above (1) cultured without adding the substance are similarly lysed, and the luciferase contained in a certain amount of the cell lysate is similarly lysed. The amount is quantitatively determined using a commercially available luciferase activity measuring device to obtain one or more measured values [Control].
  • the gene of (i) of (2) introduced into the cells contained in each sample is used for each sample.
  • the nucleotide sequence is determined, and the gene (i) interacting with the substance can be identified based on the nucleotide sequence.
  • Selected sample 1 Genes introduced into cells in (i) above: Genes A, B,
  • FIG. 1 is a diagram showing the responsiveness of PC12h cells transfected with a zif-luciferase gene and a histamine H1 receptor gene to histamine at various concentrations.
  • FIG. 2 shows the responsiveness of PC12h cells transfected with zif-luciferase gene and GLP1 receptor gene to GLP at various concentrations.
  • FIG. 3 is a diagram showing the responsiveness of PC12h cells, into which zif-luciferase gene and adrenaline A2 receptor gene have been introduced, to forskolin and / or UK14304.
  • Figure 4 shows (1) responsiveness to histamine of PC12h cells transfected with genes encoding zif-luciferase gene, histamine H1 receptor gene and Gqi chimeric molecule, (2) zif-luciferase gene, GLP1 Responsiveness to GLP of PC12h cells transfected with the gene encoding the receptor gene and Gqi chimera molecule, and (3) transfection of zif-luciferase gene, adrenergic A2 receptor gene, and genes encoding Gqi chimera molecule The figure which shows each response of UK12304 of the obtained PC12h cell.
  • H1 histamine receptor pME-H1R
  • pME-H1R H1 histamine receptor
  • PCR PCR was performed using ⁇ brain-derived cDNA (Bovine QUICK-Clone cDNA; manufactured by CLONTECH) as type ⁇ with primer F 3 (5, -GCGAATTCCAATGACCTGTCCCAACTCC-3 ') and primer R 3 (5'-GCGCGGCCGCAGGCTTCCTCCTTCACTTCC-3 ').
  • primer F 3 5, -GCGAATTCCAATGACCTGTCCCAACTCC-3 '
  • primer R 3 5'-GCGCGGCCGCAGGCTTCCTCCTTCACTTCC-3 '
  • GLP1 receptor pEF-GLPR
  • An expression vector for the adrenaline 2A receptor (pME-AR2AR) was constructed as follows.
  • the adrenaline 2A receptor gene was obtained from ATCC (American Type Culture Collection), and its coding region was incorporated into the pME18S expression vector according to the following procedure. That is, the upstream (5 ,;) side of the coding region of human 2A was digested with restriction enzymes PvuII and Sacl, and this DNA fragment was cloned into the pBluescript II Smal-Sacl site (pBlue- Hi 2A5,).
  • the downstream (3 ') side of the 2A coding region was digested with the restriction enzyme Accl to obtain a DNA fragment that partially overlaps the upstream side described above, and this was placed on the Accl site of pBluescript II. It was cloned (pBlue-H2A3,).
  • pBlue-hi 2A5 was digested with the restriction enzymes EcoRI (restriction enzyme site on vector) and Fspl (restriction enzyme site on ⁇ 2A coding), and the upstream (5) The DNA fragment on the ') side was obtained.
  • pBlue-hi 2A3 was digested with the restriction enzymes Fspl (restriction enzyme site at the same position on the 2A coding of pBlue-hi 2A5) and Notl (restriction enzyme site on the vector).
  • a DNA fragment downstream (3 ') of the coding region of was obtained.
  • the DNA fragments upstream and downstream of the coding region of human 2A thus obtained were ligated at the Fspl site and cloned into the EcoRI-Notl site of pMel8S.
  • the zif268 (EGR-l) promoter overnight luciferase reporter plasmid (pGL2-zif, hereinafter sometimes referred to as zif-luciferase) was prepared by the following procedure.
  • the rat genomic DNA was designated as type II, and the primers F1 (5, AGAGAGGGTACCAGCCTCAGCTCTACGCGCCT-3 ') and R-1 (5,-
  • the amplified DNA fragment was digested with the restriction enzyme SacII, blunt-ended, and then digested with the restriction enzyme Kpnl to obtain a fragment of -526 to +97.
  • SacII restriction enzyme
  • Kpnl restriction enzyme
  • the zif268 promoter fragment was cloned upstream of the luciferase gene in pGL2-basic vector.
  • c-fos Promo overnight Luciferase repo overnight plasmid (pGL2-fos, hereinafter sometimes referred to as fos promo overnight Lucifera zelepo overnight) was constructed as follows.
  • primer F2 (5'-TCTCTCGGTACCGCAGGAACAGTGCTAGTATT-3 ') and primer R2 (5, -TCTCTCGAGATCTTGAAGCAGAGCTGGGTAGGA-3') were used.
  • primer R2 5, -TCTCTCGAGATCTTGAAGCAGAGCTGGGTAGGA-3'
  • the amplified DNA fragment was digested with restriction enzymes Bglll and Kpnl.
  • the expression vector pGL2-basic vector (PR0MEGA) was digested with restriction enzymes Bgl11 and Kpnl, and the above DNA fragment was cloned into pGL2-basic vector.
  • PR0MEGA restriction enzymes Bgl11 and Kpnl
  • the pure mouth mycin resistance vector (pCMV-Pur) used in the following examples was prepared as follows.
  • pPUR plasmid (manufactured by CLONTECH) was digested with restriction enzymes HindI II and Xbal to obtain a DNA fragment containing a buromycin resistance structural gene. This DNA fragment is The clone was cloned into Hindl l-Xbal site of Kuta-pIRESIhyg (manufactured by CLONTECH).
  • Activation of the reporter gene by a ligand / receptor that activates the Gq signaling system activation of zif-luciferase through HI histamine receptor (H 1 R) by histamine.
  • PC12h cells were seeded on a collagen-coated 24-well plate (manufactured by IWAKI) at a concentration of 1 ⁇ 10 5 cells / ⁇ l.
  • the medium used was D-MEM (10% horse serum, 5% fetal bovine serum, penicillin 50 units / ml, streptomycin 50 // g / ml).
  • D-MEM 10% horse serum, 5% fetal bovine serum, penicillin 50 units / ml, streptomycin 50 // g / ml.
  • a receptor expression vector pME-HIR; 200 ng / Pell
  • a repo-plasmid plasmid were prepared using a ribofectamine reagent (manufactured by GIBCO BRL) according to the manufacturer's instructions.
  • pME-HIR a receptor expression vector
  • a repo-plasmid plasmid were prepared using a ribofectamine reagent (manufactured by
  • the transfection solution is discarded, and low serum D-MEM medium (0.5% horse serum, 0.25% fetal bovine serum, penicillin 50 units / ml, streptomycin 50 g / ml) is added per ml to each well. added.
  • low serum D-MEM medium (0.5% horse serum, 0.25% fetal bovine serum, penicillin 50 units / ml, streptomycin 50 g / ml
  • histamine was added to a final concentration of 10 nM to ImM.
  • discard the medium wash the cells twice with phosphate buffered saline, add cell lysis buffer (reporter lysis buffer; manufactured by PR0MEGA), add lOOAd per gel, and lyse the cells.
  • Luciferase activity was measured using Lucifer-Zeatsy System (PR0MEGA) as a substrate and LUMINOUS CT-9000D (DIA-IATR0N) as a measuring instrument.
  • PR0MEGA Lucifer-Zeatsy System
  • LUMINOUS CT-9000D DIA-IATR0N
  • GLP Glucagon-like peptide
  • Example 7 Other conditions were the same as in Example 7, except that the receptor expression vector used (pEF-GLPI and ligand were different) GLP (7-37, manufactured by WAK0) stimulation was performed at 1 pM to: LOnM. As shown in Fig. 2, the luciferase activity was increased in a GLP concentration-dependent manner, for example, the luciferase activity was increased 12-fold in ⁇ and 50-fold in ⁇ .
  • the receptor expression vector used pEF-GLPI and ligand were different
  • GLP (7-37, manufactured by WAK0) stimulation was performed at 1 pM to: LOnM.
  • the luciferase activity was increased in a GLP concentration-dependent manner, for example, the luciferase activity was increased 12-fold in ⁇ and 50-fold in ⁇ .
  • UK14304 one of the ligands for the adrenergic ⁇ 2 ⁇ receptor, is known to activate the Gi signal transduction system at about ⁇ . It is also known that the Gs signaling system activated by forskolin, which is an activator of the Gs signaling system adenylate cyclase, is suppressed by about ⁇ of UK14304. An example in which this phenomenon is evaluated using the Atsushi system of the present invention is shown below.
  • Example 7 The procedure was performed under the same conditions as in Example 7, except that the drug stimulation conditions and the adrenaline 2A receptor expression vector (pME-hi2AR) were used as the receptor expression vector.
  • Drug stimulation Phonorescholine (RBI Research Biochemicals International; ⁇ ) Performed at 37 ° C for 10 minutes with certain t ⁇ (or forskolin (10 ⁇ M) and UK14304 (RBI Research Biochemicals International; ⁇ ). After changing to -MEM medium (0.5% equine serum, 0.25% fetal calf serum, penicillin 50 units / ml, streptomycin 50 / g / ml), culture at 37 ° C for about 6 hours, and luciferase Activity was measured.
  • -MEM medium 0.5% equine serum, 0.25% fetal calf serum, penicillin 50 units / ml, streptomycin 50 / g / ml
  • luciferase activity was increased about 10-fold by stimulation of forskolin, an adenylate cyclase activator, and Gn inhibition (Gi activation) by 10 nM UK14304 was luciferase activity. It was shown to be reduced by about 40%.
  • the Gqi chimera G protein expression vector pME-Gqi was constructed as follows.
  • CDNA was synthesized from RNA prepared from mouse brain using oligo dT primer. Using this cDNA as a ⁇ type, PCR was performed using primer F5 (5'-GGACTAGTGAGGCACTTCGGAAGAATGACTCTGGA-3 ') and primer R5 (5, -GGACTAGTTAGAACAGACCGCAATCCTTCAGGTTATTCTGCAGG-3' :) and amplified. The widened DNA fragment was digested with a restriction enzyme Spel.
  • the complementary strand sequence of a part of the primer R5 (GAACAGACCGCAATCCTTCAGGTTATT) encodes the C-terminal amino acid sequence of G i, and the complementary strand sequence of the other part of the nucleotide sequence (CTGCAGG-3 ′) is Gq Encodes an amino acid sequence of
  • the expression vector PME18S was digested with the restriction enzyme Xhol, and an expression vector containing no Xhol fragment (stuffer fragment) was prepared by a self-ligation reaction. So Thereafter, the expression vector was digested with the restriction enzyme Spel, and the DNA fragment amplified by the above PCR was cloned into the Spel site of PME18S.
  • Xhol restriction enzyme
  • Spel restriction enzyme
  • Receptor / repo / Irichi / Gqi chimera Activation of the repo / original gene via Gs, Gq, Gi coupled receptors by combining G proteins.
  • Gs and Gq information transmission can be obtained with high sensitivity in the form of an increase in luciferase activity, and G i information transmission using G Combined with activation of the signal transduction system, it can be captured in the form of suppression of luciferase activity.
  • Gqi chimeric G protein
  • Gs and Gq are obtained by forcibly expressing in a cell a chimeric G protein of Gqi in which the C-terminal 9 residues of the Gq protein subunit are replaced with the G protein subunit.
  • the following is an example in which not only signal transduction through a receptor coupled to any of Gi but also in the form of increased luciferase activity is shown below.
  • a receptor expression vector 100 ng
  • a reporter plasmid pGL2-zif; 20 ng
  • a Gqi expression vector pME-Gqi; 30 mg
  • luciferase activity was enhanced about 18-fold by UK14304 stimulation of ⁇ , which activates the Gi signaling system, indicating that the Gi signaling system can be perceived as an increase in luciferase activity with high sensitivity.
  • HI receptor expression vector Gq signal transduction system
  • GLP receptor expression vector Gs signal transduction system
  • GIBC0 BRL repo overnight plasmid
  • pGL2-zif or pGL2-fos repo overnight plasmid
  • 6 zg repo overnight plasmid
  • pBK-CMV drug-resistant plasmid
  • STRATAGENE neomycin resistance gene
  • pCMV-pur puro Co-transformation with mycin resistance gene
  • D-MEM medium (10% horse serum, 5% fetal calf serum, penicillin 50 units / ml, streptomycin 50 g / ml) was added at 10 ml per petri dish. After culturing at 37 ° C for 2 days, the cells were diluted to 1/3, and a selective drug (G418; GIBC0 BRL or puromycin; SIGMA) was added. After one to two weeks, the colonies formed in the petri dish were picked up on a collagen-coated 24-well plate (manufactured by IWAKI).
  • each clone is seeded on a 24-well plate in the same manner as in Example 7, and transfected. : No cushion operation was performed, NGF stimulation was performed 2 days later, and luciferase activity was measured 6 hours later. Then, a clone showing low luciferase activity without stimulation and showing high response to NGF stimulation was selected. With respect to the selected clones, the cells were cloned again by the limiting dilution method to establish stable transformants of the repo overnight gene.
  • a colony was picked up in the same manner as above, and the responsiveness to histamine was measured for each clone of the obtained H1 histamine receptor / zif268-repo overnight gene stable transformant. Clones were selected.
  • the responsiveness of the repo-gene to the signal was determined using various host cells (PC12h Cells, PC12 cells, CH0 cells or COS cells) and various promoter / reporter genes (zif-lucifera-zelepo overnight / fOS-luciferase reporter gene).
  • fos fos luciferase plasmid, that is, zi f-lucifera-zelepo overnight shows highest response in PC12h cells, but also ligand-specific response in other cells, and fos-lucifera.
  • Each and every single zelepo showed ligand-specific responsiveness in various cells including PC12h cells, indicating that any combination of these multiple species can be used for ligand assay.
  • MAP kinase mitogen activated protein kinase activation
  • PathDetect Elkltrans Reporting System including pFR Luc plasmid; repo overnight plasmid; pFA2 Elkl plasmid; and Fusion Transactivator overnight plasmid; manufactured by STRATAGENE.
  • PC12h cells, CH0 cells, CV1 cells, and HEK293 cells 0.5 to 2 x 10 5 cells / ⁇ l are spread on a collagen-coated 24-well plate (manufactured by IWAKI) and pFR Luc (40 to 200 ng / ⁇ l) is applied to each cell.
  • PFA2 Elkl (10-300 ng / ⁇ ⁇ ) and receptor expression vector (pME-HIR; 200-400 ng / ⁇ ) were transfected and luciferase activation in response to histamine stimulation was measured.
  • Cotransfection was carried out using a SuperFect transfection reagent (1.5 to 5/1 / L; manufactured by QUAGEN, # 301307) according to the manufacturer's instructions. The number of cells, the amount of various plasmids, and the amount of the transfusion reagent used in the test were set to optimal conditions for each cell examined in advance.
  • the MAP kinase activity was measured using STR ATAGENE's patDetectElktltrans-ReportIngsSystem.
  • the zif268 (EGR-l) promoter contains four SREs (serum response elements) every night.
  • SREs serum response elements
  • the SRE-luciferase-zelepo overnight gene when used, it responds to signal transmission in the histamine / H1 histamine receptor-expressing cell line, but to a lesser extent the zif-luciferase reporter.
  • the ratio was about 1/2 compared with the case where the gene was used, and the response to signal transduction in cells expressing the GLP / GLP1 receptor was low.
  • the zif268 (EGR-l) promoter contains important elements other than SRE involved in responsiveness, and zif268 cannot be substituted with SRe It was shown that.
  • the promoter used in the present invention is preferably the zif268 (EGR-1) promoter, and it is a promoter other than zif268, and This does not mean that a portal containing a CRE cannot be used in the present invention. It goes without saying that a promotion including an SRE and / or a CRE is also an embodiment of the present invention.
  • a promoter region of a gene whose expression is induced by a signal through a G protein preferably, a promoter region of zif268 (EGR-1) promoter is used as a promoter for controlling the expression of the reporter gene.
  • a PC12 cell or a cell subcloned therefrom eg, a PC12h cell and a cell subcloned from the PC12h cell
  • activation of the G protein-mediated signal transduction system repo The level of the signal, which is detected by an increase in the expression of a gene every night, can be detected with extremely high sensitivity. .
  • the absolute value of the value of the signal detected by contacting the ligand for the receptor with the G protein-coupled receptor-expressing PC12-derived cell used in the assay of the present invention becomes extremely large.
  • the ratio to the signal detected when not contacted with the ligand ie, the S / N ratio
  • a gene encoding a chimeric G protein G hysubunit consisting of each of Gq or Gs and a giant subunit or (2) By activating phospholipase C by coupling to receptor without receptor specificity like G15 and G16 By introducing a gene that encodes a G protein that transduces a signal, Gi-mediated signal transduction can be detected with extremely high sensitivity using an increase in the expression of a repo overnight gene as an index. became.
  • the presence or absence of signal transduction through any G protein can be determined by using one type of cell, without being restricted by the coupled G protein. Can be detected with extremely high sensitivity.
  • the following (1) to (4) can be carried out extremely easily and quickly by using the Atsey method of the present invention and the cells having the above-mentioned characteristics used in the Atsey.
  • G protein-coupled receptors such as histamine receptor, adrenergic receptor, and serotonin receptor are closely related to various diseases, and such G protein-coupled receptors are Many drugs have been developed and marketed to control the function of the receptor.
  • the implementation of the above (1) to (4) is a method for identifying and screening a drug targeting any G protein-coupled receptor, and is an essential step in drug development. That is, the method and cell of the present invention are essential and extremely useful in drug development.
  • the atsie method of the present invention and the above-mentioned features used in the atsee are provided.
  • the following (5) can be performed extremely simply and quickly.
  • G protein-coupled receptors are closely related to the onset of various diseases, the possibility of the above (5) will enable the development of pharmaceuticals for the treatment of various diseases.
  • the receptor as a target can be easily identified.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method for screening a G protein-coupled receptor ligand characterized by comprising treating with a test sample PC12h cells having a gene encoding a foreign G protein-coupled receptor and a reporter gene bonded in an expressible manner to the promoter of a gene capable of undergoing expression by a stimulus mediated by G protein of the cells, and comparing the expression dose of the reporter gene product with a level in the absence of the test sample.

Description

明細 Ϊ  Details Ϊ
G蛋白質共役型受容体リガンドのスクリーニング法並びに G蛋白質共役型受容体のェクスプレツシヨンクローニング法 技術分野 Screening method of G protein-coupled receptor ligand and expression cloning method of G protein-coupled receptor
本発明は、 ( 1 )所望の物質が G蛋白質共役型受容体のァゴニスト、  The present invention provides (1) a method wherein the desired substance is an agonist of a G protein-coupled receptor,
ストまたは該ァゴニス卜のァゴニスト作用の阻害する物質であるか否かを決定す る方法、 (2) G蛋白質共役型受容体のリガンドであるァゴニスト、 アン夕ゴニス ト及び/または該ァゴニス卜のァゴニスト作用を阻害する物質のスクリーニング する方法、 (3)該いずれかの方法に用いられる PC 12由来細胞、 及び(4)あ る物質と相互作用する受容体 (例えば、 G蛋白質共役型受容体) をェクスプレツ シヨンクローニング法により同定する方法に関する。 背景技術 (2) a G protein-coupled receptor ligand such as agonist, and gonist, and / or an agonist of the agonist. (3) PC12-derived cells used in any of the methods, and (4) a receptor (eg, a G protein-coupled receptor) that interacts with a substance. The present invention relates to a method for identification by an expression cloning method. Background art
G蛋白質共役型受容体は、 細胞膜上の受容体であり、 7ケ所の細胞膜貫通部を 有し、 GTP (グアノシン 5' —三リン酸) 結合性の制御蛋白質 (G蛋白質) を 介して、 リガンドの情報をエフェクター系に伝える役割を担っている。  The G protein-coupled receptor is a receptor on the cell membrane, has seven transmembrane sites, and acts as a ligand via a GTP (guanosine 5'-triphosphate) binding regulatory protein (G protein). Of information to the effector system.
G蛋白質は、 ひ、 ?及びァの 3つのサブユニットからなる 3量体で、 ひサブュ ニッ トの種類によって Gs、 Gi、 Go及び Gq等に大別され、 各々受容体特異 性 (共役する G蛋白質受容体) 及びエフヱクタ一系 (酵素やイオンチャンネル) の種類が異なっている。  G protein is a trimer consisting of three subunits, G, G, Go, Gq, etc., depending on the type of G subunit, and has receptor specificity (G The types of protein receptors) and effector systems (enzymes and ion channels) are different.
例えば、 グルカゴン様べプチド 1受容体や/? 2アドレナリン受容体は Gsと共 役してエフェクター系であるアデ二ル酸シクラ一ゼ系を促進させ、 サイクリック AMP (c AMP) を増加さる。 また、 ひ 2アドレナリン受容体は G iと共役し てアデ二ル酸シクラ一ゼ系を抑制し、 c AMPを減少させる。 H Iヒスタミン受 容体は G qと共役してエフェクター系であるホスホリパーゼ C系を促進して、 ジ ァシルグリセロールとイノシトール 3リン酸を増加させ、 細胞内 C a 2 +を増加さ せる。エフェクター系の種類は、 アデ二ル酸シクラーゼ系、 ホスホリパーゼ C系、 及び c G M Pホスホジエステラーゼ系などが主要なものである。 For example, glucagon-like receptor 1 and / or 2-adrenergic receptor cooperate with Gs to promote the effector system adenylate cyclase system and increase cyclic AMP (cAMP). The adrenergic receptor also couples with G i to suppress the adenylate cyclase system and reduce cAMP. HI histamine Conjugation with Gq promotes the effector system, phospholipase C system, to increase diacylglycerol and inositol triphosphate, and to increase intracellular Ca 2+ . The main types of effector systems are the adenylate cyclase system, the phospholipase C system, and the cGMP phosphodiesterase system.
G蛋白質は、 ひサブユニッ トに G D P (グアノシン 5, 一二リン酸) が結合し、 ?サブユニット及びアサブユニットと会合している。 ひ、 ?及びァが会合した状 態は不活性型で、 受容体にリガンドが結合すると、 ひに結合していた G D Pが G T Pに置換され、 そしてひサブユニッ トに G T Pが結合したひ- GTP と、 β - Ύの 結合体とに乖離する。 ひ- GTP および/? -ァはエフェクター系に作用してシグナル を伝達する。この間にひサブュニヅトの持つ GTPase活性によって G T Pが分解さ れ G D Pになると、 ひ一 G D Pはエフェクター系を離れて/?及びァと会合し、 再 び不活性型となる。 この反応を繰り返すことにより、 情報の増幅、 伝達が行なわ れる。  G protein has GDP (guanosine 5, monophosphate) bound to the subunit and is associated with the? Subunit and the asubunit. The state in which 、, 及 び and GDP are associated is inactive, and when a ligand binds to the receptor, GDP bound to に is replaced by GTP, and ひ -GTP with GTP bound to サ ブ subunits. , Β-乖. GTP and / or -G act on the effector system to transmit signals. During this time, when GTP is decomposed into GDP by the GTPase activity of the subunit, the GDP leaves the effector system and associates with // and becomes inactive again. By repeating this reaction, information is amplified and transmitted.
G蛋白質共役型受容体の生体内分布は特定の器官に局在しているものが多いが、 G蛋白質は生体内に広く分布している。 そして、 前述したように G蛋白質は G蛋 白質共役型受容体を通じて、 主に一連の細胞内リン酸化反応の引き金となって、 遺伝子レベルでの転写調節から筋収縮まで幅広く細胞および臓器機能の制御を行 なっている。  The biodistribution of G protein-coupled receptors is often localized in specific organs, but G proteins are widely distributed in living organisms. And, as mentioned above, the G protein triggers a series of intracellular phosphorylation reactions through the G protein-coupled receptor, and regulates a wide range of cell and organ functions, from transcriptional regulation at the gene level to muscle contraction. Has been implemented.
例えば、 ? 1アドレナリン受容体は、 心臓、 脂肪組織、 大脳皮質などに局在し、 G sによってアデ二ル酸シクラーゼ系が促進され、 心拍増加、 心収縮力増加、 脂 肪分解といった効果をもたらす。  For example, 11 adrenergic receptor is localized in the heart, adipose tissue, cerebral cortex, etc., and Gs promotes the adenylate cyclase system, resulting in increased heart rate, increased cardiac contractility, and lipolysis. .
このように、 G共役型受容体/ G蛋白質によって制御される情報伝達系は、 生 体の生理機能の制御に必須のメ力ニズムであり、換言すれば、該情報伝達系は種々 の疾病の発症に広く関与するものである。 従って、 ある疾患の発症に関与する G 蛋白質共役受容体が同定されれば、 該受容体の生理機能を調節する薬剤 (ァゴ二 スト、 アン夕ゴニスト、 ァゴニスト作用阻害物質など) を開発することにより、 該薬剤によりその疾患を治療することが可能となる。 Thus, the signal transduction system controlled by the G-coupled receptor / G protein is a mechanism essential for the control of the physiological functions of organisms. In other words, the signal transduction system is involved in various diseases. It is widely involved in the onset. Therefore, if a G protein-coupled receptor involved in the onset of a certain disease is identified, it is necessary to develop drugs (eg, agonist, angonist, agonist inhibitor) that regulate the physiological function of the receptor. By The drug makes it possible to treat the disease.
一方、 最近、 多数の新規な G蛋白質共役型受容体 (ォーファン G蛋白質共役型 受容体) が単離されてきている (例えば、 特開平 9一 2 6 8号公報、 特開平 9一 5 1 7 9 5号等。)。 しかしながら、 それらの中には該受容体と相互作用するリガ ンドが未知のもの、 即ちォ一ファン G蛋白質受容体のものがほとんどである。 前述したとおり、 G蛋白質共役型受容体は生体の生理機能の制御及び種々の疾 患の発症に深く関与することから、 該受容体の生理機能を明らかにすることは、 種々の疾患の発症の原因を解明することにおいて極めて重要である。  On the other hand, recently, a large number of novel G protein-coupled receptors (orphan G protein-coupled receptors) have been isolated (for example, see JP-A-9-12688 and JP-A-9-151717). 95, etc.). However, most of them do not have a ligand that interacts with the receptor, that is, the receptor for the protein G protein. As described above, since the G protein-coupled receptor is deeply involved in the control of the physiological functions of living organisms and the onset of various diseases, clarifying the physiological functions of the receptors is important for the onset of various diseases. It is extremely important in elucidating the cause.
G蛋白質共役型受容体の生理機能を明らかにするために最も重要なことは、 該 受容体のリガンド、 即ち、 該受容体のァゴニストを同定することであり、 多くの 科学者が精力的に研究を行っている。  The most important thing to elucidate the physiological function of G protein-coupled receptor is to identify the ligand of the receptor, that is, to identify the agonist of the receptor. It is carried out.
リガンドが同定されていない G蛋白質共役型受容体 (即ち、 ォーファン G蛋白 質共役型受容体) のリガンド (即ち、 該受容体と相互作用する物質であるァゴニ ストやアン夕ゴニストなど) を同定するためには、 数万種以上の多数の候補物質 を試験によりスクリーニングする必要があり、 該スクリーニングを迅速を行うこ とが可能なアツセィ系が必要である。  Identify ligands of G protein-coupled receptors for which ligands have not been identified (ie, orphan G protein-coupled receptors) (ie, agonists and angonists that interact with the receptor) To do so, it is necessary to screen a large number of tens of thousands of candidate substances by tests, and an Atsey system capable of performing the screening rapidly is required.
また、 該アツセィは、 被験物質と該受容体との相互作用の有無を、 該受容体が 共役する G蛋白質を介して誘導される 2次メッセンジャーの活性化若しくは抑制 の増減を定量的に検出する必要があることから、 該メッセージの増減を高感度で 検出可能なアツセィ方法が必要である。  In addition, the Atsusei quantitatively detects the presence or absence of an interaction between a test substance and the receptor, and quantitatively detects an increase or a decrease in activation or suppression of a second messenger induced through a G protein to which the receptor is coupled. Therefore, there is a need for an access method that can detect the increase or decrease of the message with high sensitivity.
従来のアツセィ方法としては次のような方法が知られている。  The following method is known as a conventional access method.
即ち、 目的の G蛋白質共役型受容体を発現する細胞に試験試料 (被験物質) あ るいは既知ァゴニスト及び試験試料を作用させ、 エフヱクタ一系の作用によって 生ずるセカンドメッセンジャー、 例えば Gsあるいは Gi共役型受容体の場合には アデ二ル酸シクラ一ゼの活性変動に連携した cAMPの量、 Gq共役型受容体の場合 にはホスホリパーゼ Cの活性変動に連携したィノシトール 3 リン酸ゃ Ca2+濃度を 測定する手法が汎用されている。 That is, a test sample (test substance) or a known agonist and a test sample are allowed to act on cells expressing the desired G protein-coupled receptor, and a second messenger generated by the action of the effector system, such as Gs or Gi-coupled receptor In the case of the body, the amount of cAMP linked to the change in the activity of adenylate cyclase, and in the case of the Gq-coupled receptor, the concentration of inositol 3-phosphate ゃ Ca 2+ linked to the change in the activity of phospholipase C Measurement techniques are widely used.
しかしながら、 これらの測定方法は極めて煩雑な操作を必要とし大量の被験物 質を迅速に評価することは極めて困難であった。 また、 これらの方法は、 目的と する受容体が共役する G蛋白質の種類によって、 測定されるべきセカンドメッセ ンジャーを選択する必要がある。 従って、 該受容体と共役する G蛋白質が不明の 場合には、 Gs、 Gi、 及び Gqの各々を介するメヅセージを測定可能な各々のアツセ ィ系で複数種類ののアツセィを行う必要があった。  However, these measurement methods require extremely complicated operations, and it is extremely difficult to quickly evaluate a large amount of test substances. In addition, these methods require that the second messenger to be measured be selected depending on the type of G protein to which the target receptor is coupled. Therefore, when the G protein coupled to the receptor is unknown, it is necessary to perform a plurality of types of assays in each assay system capable of measuring a message via each of Gs, Gi, and Gq.
さらに、 Gi と共役する受容体については、 該受容体と Gi との共役により誘導 される 2次メッセージは、アデ二ル酸シクラーゼの抑制による cAMPの減少である ことから、 この減少を定量的に捕らえるためには、 Gsを活性化し cAMP を増加さ せる試薬 (フオルスコリンなど) により予め cAMP量を増加させ、 該 cAMPの増加 に対する被験物質による cAMP量減少量として評価する必要があり、極めて煩雑な 操作を必要とした。  Furthermore, for the receptor that is coupled to Gi, the secondary message induced by coupling of the receptor to Gi is the decrease in cAMP due to suppression of adenylate cyclase. In order to capture cAMP, it is necessary to increase the amount of cAMP in advance with a reagent (such as forskolin) that activates Gs and increase cAMP, and to evaluate the amount of cAMP decrease by the test substance with respect to the increase in cAMP, which is extremely complicated. Needed operation.
最近になって、 多数の被験物質を迅速に試験するための方法として、 レポ一夕 一遺伝子を用いたアツセィ系 (レポ一夕一ジーンアツセィ) が開発された (国際 特許出願公開 W092/02639号、及び特表平 6-502527など)。それらの中で優れた方 法としては、 CRE (cAMP レスポンスエレメント) をプロモーターとして含むレポ 一夕一遺伝子を細胞内に導入し、 該細胞に被験物質を接触させることにより変動 するレポーター遺伝子産物の程度を定量することにより Gsや Gi系のシグナル伝 達の有無として捕らえる方法や、 SRE (シーラムレスポンスエレメント) をプロモ 一夕一として含むレポーター遺伝子を用いて前記と同様に Gq 系からのシグナル 伝達の有無を検出する方法がある。  Recently, as a method for rapidly testing a large number of test substances, an atsey system using a repo overnight gene (Repo overnight at Gene Atsey) has been developed (International Patent Application Publication W092 / 02639, And Tokuyohei 6-502527). Among them, an excellent method is to introduce a reporter gene containing a CRE (cAMP response element) as a promoter into a cell and to introduce a reporter gene product that changes when a test substance is brought into contact with the cell. Quantification of Gs or Gi signal transduction, or the use of a reporter gene containing SRE (serum response element) as a promoter all at once. There is a method of detecting the presence or absence.
本方法により比較的大量のサンプルを処理することは可能になつたが、 例えば 従来の SREを用いた Gq系のシグナル伝達評価系では、被験物質を細胞に接触させ て誘導されるレポーター遺伝子産物の増加の程度は、 被験物質を接触させない場 合もそれの約 5〜10倍程度であり、該被験物質が該受容体との相互作用すると判 定するにはあまりに低い程度である。 Although this method has made it possible to process relatively large amounts of samples, for example, in a conventional Gq-based signal transduction evaluation system using SRE, the reporter gene product induced by contacting a test substance with cells was The degree of the increase is about 5 to 10 times that of the case where the test substance is not brought into contact, and it is judged that the test substance interacts with the receptor. Too low to determine.
また、 セカンドメッセンジャーの 1つである細胞内 Ca2+濃度の増減を測定する 方法に関しても、 大量の被験物質を短時間で測定できる方法が最近開発されてき ている。 しかしながら、 この方法も、 被験物質による刺激の前後で検出されるシ グナルの比 (S/N比) は約 5倍程度と低いものである。 In addition, as a method for measuring the increase or decrease of intracellular Ca 2+ concentration, which is one of the second messengers, a method capable of measuring a large amount of a test substance in a short time has recently been developed. However, also in this method, the signal ratio (S / N ratio) detected before and after stimulation with the test substance is as low as about 5 times.
被験物質の受容体に対する相互作用の有無を明確に決定でき、 多数の被験物質 を迅速にスクリーニングすることが可能なアツセィ系をミニチュア化するために は、 細胞当たりでより大きなシグナルを誘導し、 該シグナルの誘導を高い S/N比 で得られるアツセィ系を開発する必要がある。  In order to miniaturize an Atssey system that can clearly determine the presence or absence of an interaction of a test substance with a receptor and rapidly screen a large number of test substances, a larger signal per cell must be induced, It is necessary to develop an Atssey system that can obtain signal induction at a high S / N ratio.
また、 この細胞内 Ca2+の増減を指標としたアツセィ系では、 Gqを介するシグナ ル伝達の有無しか測定できないという問題を有したままである。 In addition, the Atsushi system using the increase / decrease of intracellular Ca 2+ as an index still has a problem that only the presence or absence of signal transmission via Gq can be measured.
また、 同様に、 上述したレポータージーンアツセィ系においても、 目的とする 受容体が共役する G蛋白質の種類によってレポ一夕一を選択する必要があるとい う問題点、 ならびに Gi と共役する受容体のリガンドの探索においては、被験物質 と該受容体との相互作用の有無を、 Gsを介するシグナル伝達により増加させた c AMPの増加に対する cAMPの増加の抑制の程度を指標として評価しなくてはいけな い問題点は残されたままであった。  Similarly, also in the reporter gene atsey system described above, it is necessary to select a repo all at once according to the type of G protein to which the target receptor is coupled, and also, it is necessary to select a receptor coupled to Gi. In the search for ligand, the presence or absence of interaction between the test substance and the receptor must be evaluated using the degree of suppression of cAMP increase relative to cAMP increase caused by Gs-mediated signal transmission as an index. None of the problems remained.
従って、 所望の G蛋白質共役型受容体のリガンド (該受容体と相互作用する物 質) を同定するために、 被験物質と該受容体の相互作用により伝達されるシグナ ルにより誘導される 2次メッセージを大きな絶対値として及び高い感度(高い S/ N 比) で検出でき、 且つ多数種類の被験物質を迅速にスクリーニングできるアツ セィ方法の開発が熱望されている。 さらにまた、 1種類のアツセィ系で、 Gs、 Gi、 及び Gq の任意を介するシグナル伝達の有無を同時に捕えられるアツセィ系の樹 立が求められている。 発明の闊示 本発明の第 1の目的は、 G蛋白質共役型受容体に対してァゴニスト、 Therefore, in order to identify the ligand of the desired G protein-coupled receptor (the substance that interacts with the receptor), the secondary signal induced by the signal transmitted by the interaction between the test substance and the receptor is used. The development of an assay method that can detect a message as a large absolute value and with high sensitivity (high S / N ratio) and rapidly screen a large number of test substances is eagerly desired. Furthermore, there is a need for the establishment of an Atssey system that can simultaneously detect the presence or absence of signal transmission via any of Gs, Gi, and Gq in one type of Atssey system. Open invention A first object of the present invention is to provide an agonist for a G protein-coupled receptor,
ニストあるいはァゴニスト作用阻害物質を作用させた場合のシグナルの変化を、 大きな絶対値として、 また高い S/N比でしかも大きなシグナルの絶対値で検出で きるアツセィ系の樹立である。 It is the establishment of an Atsushi system that can detect the change in signal when a nyst or agonist action inhibitor is acted on as a large absolute value, with a high S / N ratio, and with a large signal absolute value.
第 2の目的は、 受容体に共役する G蛋白質の種類に関わらず Gs、 Gi、 Gqのいず れかを介するシグナル伝達の有無を 1種類の細胞で検出可能なアツセィ系の樹立 である。  The second objective is to establish an Atssey system that can detect the presence or absence of signal transduction via one of Gs, Gi, and Gq in one type of cell regardless of the type of G protein coupled to the receptor.
第 3の目的は、 Gsまたは Gqを介するエフェクター系に対して促進的に働くシ グナルはもちろんのこと、 Giを介するエフェクター系に対して抑制的に働くシグ ナル (cAMP産生を抑制させるシグナル) もシグナルの増強として検出できるアツ セィ系の樹立である。  The third purpose is not only signals that act on Gs or Gq-mediated effector systems but also signals that act on Gi-mediated effector systems (signals that suppress cAMP production). This is the establishment of an Atsushi system that can be detected as signal enhancement.
第 4の目的は、上記のアツセィ方法を用いて、 ( 1 )所望の物質が G蛋白質共役 型受容体のァゴニスト、 アン夕ゴニストまたは該ァゴニス卜のァゴニスト作用の 阻害する物質であるか否かの決定、 及び (2 ) G蛋白質共役型受容体のリガンド であるァゴニスト、 アン夕ゴニスト及び/または該ァゴニストのァゴニスト作用 を阻害する物質のスクリーニング、 を迅速且つ簡便に実施することが可能な方法 を提供することである。  The fourth object is to use the above-mentioned Atsey method to (1) determine whether the desired substance is an agonist, an antagonist, or a substance that inhibits the agonist action of the agonist of the G protein-coupled receptor. And (2) screening for a agonist, an engonist, and / or a substance that inhibits the agonist action of the agonist, which is a ligand of the G protein-coupled receptor, in a rapid and simple manner. It is to be.
第 5の目的は、 上記のアツセィ方法を用いて、 ある物質と相互作用する受容体 (例えば、 G蛋白質共役型受容体) を、 エクスプレッションクローニング法を用 いて簡便に同定する方法を提供することである。  A fifth object is to provide a method for easily identifying a receptor (for example, a G protein-coupled receptor) that interacts with a certain substance using the above-mentioned Atsey method, using an expression cloning method. is there.
本発明者らは、 上記目的を達成するために、 レポ一夕一遺伝子を用いるアツセ ィ方法により G蛋白質受容体のリガンドを同定する方法において用いる宿主細胞、 プロモー夕一領域及びそれらの組み合わせについて鋭意検討した結果、 所望の G 蛋白質共役型受容体を発現する宿主細胞として PC12h細胞を用いた場合に、 ァゴ ニスト添加によりレポーター遺伝子産物の発現が極めて顕著に見られることを発 見した。 また、レポーター遺伝子を発現を制御するプロモー夕一として zif268プロモー 夕一領域 (以下、 単に zif268ということもある。) を用いることにより、 Gs及び Gq の両者のシグナル伝達をレポーター遺伝子産物の発現増加として最も感度よ く検出できることを発見した。 In order to achieve the above object, the present inventors have enthusiastically described a host cell, a promoter region, and a combination thereof used in a method for identifying a ligand of a G protein receptor by an Atsey method using a repo sequence gene. As a result of the investigation, it was found that when PC12h cells were used as host cells expressing the desired G protein-coupled receptor, the expression of the reporter gene product was extremely remarkably observed by addition of agonist. In addition, by using the zif268 promoter region (hereinafter sometimes simply referred to as zif268) as the promoter region for controlling the expression of the reporter gene, signaling of both Gs and Gq can be considered as an increase in the expression of the reporter gene product. It was discovered that detection was possible with the highest sensitivity.
さらに、 宿主細胞として PC12由来細胞 (特に、 PC12h細胞) を、 またレポ一夕 —遺伝子発現の制御プロモーターとして zif268 プロモー夕一領域を用いた場合 に、 Gs及び Gqの両者のシグナル伝達を極めて高い感度で検出できることを見出 した。  Furthermore, when PC12-derived cells (particularly, PC12h cells) are used as host cells and zif268 promoter region is used as a repo overnight-regulatory promoter, gene signaling of both Gs and Gq is extremely sensitive. It was found that it could be detected by.
加えて、 該宿主細胞に、 下記いずれかの遺伝子:  In addition, the host cell may have any of the following genes:
( a ) Gひ qの C末端アミノ酸配列の一部が Gひ iの C末端アミノ酸配列の一 部に置換されてなるキメラ G蛋白質 G aサブュニットをコードする遺伝 子;  (a) a gene encoding a chimeric G protein Ga subunit in which a part of the C-terminal amino acid sequence of Ghiq is replaced by a part of the C-terminal amino acid sequence of Ghii;
( b ) Gひ sの C末端アミノ酸配列の一部が Gひ iの C末端アミノ酸配列の一 部に置換されてなるキメラ G蛋白質 Gひサブュニットをコ一ドする遺伝 子; または、  (b) a gene encoding a chimeric G protein G subunit obtained by substituting a part of the C terminal amino acid sequence of G column with a part of the C terminal amino acid sequence of G column; or
( c ) 受容体特異性を有さずに受容体と共役し、 フォスフォリパーゼ Cを活性 化することによりシグナルを伝達する G蛋白質をコードする遺伝子。 を導入しておくことにより、 Giを介するシグナル伝達もレポ一夕一遺伝子の発現 の増加を指標として極めて高い感度で検出可能であることを見出した。  (c) A gene encoding a G protein that couples to a receptor without receptor specificity and transduces a signal by activating phospholipase C. It has been found that, by introducing, the signal transduction through Gi can be detected with extremely high sensitivity using an increase in the expression of the repo overnight gene as an index.
上記新規知見に基づき、 Gs、 Gi及び Gqの任意の G蛋白質を介するシグナル伝 達を高感度で検出でき、 所望の G蛋白質共役型受容体と相互作用する物質 (ァゴ ニスト)、該物質のアン夕ゴニスト、 または該ァゴニス卜のァゴニスト作用を阻害 する活性を有する物質などを迅速且つ簡便に同定できるアツセィ方法を発明する に到った。  Based on the above-mentioned novel findings, it is possible to detect signal transmission via any G protein of Gs, Gi and Gq with high sensitivity, and to interact with a desired G protein-coupled receptor (agonist). The present invention has led to the invention of an Atsey method capable of quickly and easily identifying an angonist or a substance having an activity of inhibiting the agonist action of the agonist.
本発明のアツセィ方法を用いれば、 ( 1 )ある物質が所望の G蛋白質共役型受容 体のァゴニス卜であるか否かの決定、 (2 )所望の G蛋白質共役型受容体のァゴニ スト、 該受容体のアン夕ゴニス卜及び/または該ァゴニス卜のァゴニスト作用を 阻害する活性を有する物質を同定するための多数の被験物質の迅速且つ簡便なス クリーニング、 (3)エクスプレッションクロ一ニング法を用いて、ある物質と相 互作用する受容体 (例えば、 G蛋白質型受容体) を同定 (クローニング) するた めの多数の被験蛋白質 (cDNAや cDNAライブラリ一) の迅速且つ簡便なスクリ一 ニング、 を達成することができる。 Using the Atsey method of the present invention, (1) determining whether a substance is an agonist of a desired G protein-coupled receptor, and (2) determining an agonist of a desired G protein-coupled receptor A rapid and simple screening of a large number of test substances to identify a substance having an activity of inhibiting the agonist action of the receptor and / or the agonist action of the agonist, (3) expression cleaning Rapid and simple screening of a large number of test proteins (cDNA and cDNA libraries) to identify (cloning) receptors that interact with a substance (eg, G-protein type receptors) , Can achieve.
即ち、 本発明は下記 <1>乃至く 22>に記載されるとおりの方法または細胞である。 く 1>ある物質が所望の G蛋白質共役型受容体のァゴニス卜であるか否かを決定 する方法であって、 下記 (a) 乃至 (c) の工程を含むことを特徴とする方法: That is, the present invention is a method or a cell as described in the following <1> to <22>. <1> A method for determining whether or not a substance is an agonist of a desired G protein-coupled receptor, comprising the following steps (a) to (c):
(a) 少なくとも下記 ( 1) 及び (2) の外来性遺伝子: (a) At least the following exogenous genes (1) and (2):
( 1 ) 該所望の G蛋白質共役型受容体をコードする遺伝子;及び  (1) a gene encoding the desired G protein-coupled receptor; and
( 2 ) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモータ 一領域に発現可能に連結されたレポーター遺伝子;  (2) a reporter gene operably linked to one region of a promoter of a gene whose expression is induced by stimulation through a G protein;
を有する PC 12由来細胞の定数からなる試料に該物質を接触させる工程;Contacting the substance with a sample consisting of a constant number of PC12-derived cells having
(b) 該物質に接触させた該試料中の各細胞において発現した該レポ一夕一 遺伝子が生ずる検出可能なシグナル、 及び該物質に接触させていない該試料の各 細胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルの各々を 定量的に決定する工程;及び、 (b) a detectable signal produced by the repo gene expressed in each cell in the sample that has been contacted with the substance, and the repo gene expressed in each cell of the sample that has not been contacted with the substance. Quantitatively determining each of the detectable signals produced by the gene;
(c) 工程 (b) で決定した該各々のシグナルの量を比較する工程。  (c) comparing the amounts of the respective signals determined in step (b).
く 2>所望の G蛋白質共役型受容体のァゴニストを同定するために物質をスクリ —ニングする方法であって、 下記 (a) 乃至 (c) の工程を含むことを特徴とす る方法: <2> A method for screening a substance for identifying an agonist of a desired G protein-coupled receptor, the method comprising the following steps ( a ) to (c):
(a) 少なくとも下記 ( 1) 及び (2) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1 ) 該所望の G蛋白質共役型受容体をコードする遺伝子;及び  (1) a gene encoding the desired G protein-coupled receptor; and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモータ 一領域に発現可能に連結されたレポ一ター遺伝子; を有する PC 12由来細胞の定数からなる試料の複数を準備し、 該試料の各々に 異なる物質を接触させる工程; (2) a reporter gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein; Preparing a plurality of samples consisting of a constant number of PC12-derived cells having: and contacting each of the samples with a different substance;
(b) 工程 (a) で該物質に接触させた各々の試料について、 該試料中の各 細胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルを、 及び いずれの物質にも接触させていない該試料の各細胞において発現した該レポ一夕 —遺伝子が生ずる検出可能なシグナルの各々を定量的に決定する工程;及び、 (b) contacting each sample contacted with the substance in step (a) with a detectable signal generated by the repo-all-over-gene expressed in each cell in the sample, and Quantitatively determining each of the detectable signals produced by the repo-gene expressed in each cell of the unsampled sample; and
(c) 工程 (b) で決定した該各々のシグナルの量を比較する工程。 (c) comparing the amounts of the respective signals determined in step (b).
<3>ある物質が所望の G蛋白質共役型受容体のアン夕ゴニス卜であるか否か、ま たは該 G蛋白質共役型受容体のァゴニス卜のァゴニスト作用の阻害物質であるか 否かを決定する方法であって、 下記 (a) 乃至 (c) の工程を含むことを特徴と する方法:  <3> Whether the substance is an agonist of the desired G protein-coupled receptor or whether it is an inhibitor of the agonist action of the agonist of the G protein-coupled receptor A method for determining, characterized by including the following steps (a) to (c):
(a) 少なくとも下記 ( 1)及び (2) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1 ) 該所望の G蛋白質共役型受容体をコ一ドする遺伝子;及び  (1) a gene encoding the desired G protein-coupled receptor; and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモ一夕 一領域に発現可能に連結されたレポ一夕一遺伝子; を有する PC 12由来細胞の定数からなる試料に該 G蛋白質受容体のァゴニスト 及び該物質を接触させる工程;  (2) a sample consisting of a constant number of PC12-derived cells having a repo overnight gene operably linked to a promoter overnight region of a gene whose expression is induced by stimulation through a G protein; Contacting the body agonist and the substance;
(b) 該物質に接触させた該試料中の各細胞において発現した該レポ一夕一 遺伝子が生ずる検出可能なシグナル、 及び該物質に接触させていない該試料の各 細胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルの各々を 定量的に決定する工程;及び、  (b) a detectable signal produced by the repo gene expressed in each cell in the sample that has been contacted with the substance, and the repo gene expressed in each cell of the sample that has not been contacted with the substance. Quantitatively determining each of the detectable signals produced by the gene;
(c) 工程 (b) で決定した該各々のシグナルの量を比較する工程。  (c) comparing the amounts of the respective signals determined in step (b).
く 4>所望の G蛋白質共役型受容体のアン夕ゴニストまたは該 G蛋白質共役型受 容体のァゴニストのァゴニスト作用の阻害物質を同定するために物質をスクリ一 ニングする方法であって、 下記 (a) 乃至 (c) の工程を含むことを特徴とする 方法: (a) 少なくとも下記 ( 1)及び (2) の外来性遺伝子: 4> A method for screening a substance for identifying an agonist of a desired G protein-coupled receptor or an inhibitor of the agonist action of an agonist of the G protein-coupled receptor, the method comprising: ) Through (c). (a) At least the following exogenous genes (1) and (2):
( 1 ) 該所望の G蛋白質共役型受容体をコードする遺伝子;及び  (1) a gene encoding the desired G protein-coupled receptor; and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモータ 一慮域に発現可能に連結されたレポーター遺伝子; を有する PC 12由来細胞の定数からなる試料の複数を準備し、 該試料の各々に 該該 G蛋白質受容体のァゴニストと異なる物質を接触させる工程;  (2) a promoter of a gene whose expression is induced by stimulation through a G protein; a reporter gene operably linked to a region of interest; a plurality of samples consisting of a constant number of PC12-derived cells having: Contacting each with a substance different from the agonist of the G protein receptor;
(b) 工程 (a) で該物質に接触させた各々の試料について、 該試料中の各 細胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルを、 及び いずれの物質にも接触させていない該試料の各棚胞において発現した該レポ一夕 一遺伝子が生ずる検出可能なシグナルの各々を定量的に決定する工程;及び、 (b) contacting each sample contacted with the substance in step (a) with a detectable signal generated by the repo-all-over-gene expressed in each cell in the sample, and Quantitatively determining each of the detectable signals generated by said repo overnight gene expressed in each of the vesicles of said unsampled sample; and
(c) 工程 (b) で決定した該各々のシグナルの量を比較する工程。 (c) comparing the amounts of the respective signals determined in step (b).
く 5>該プロモー夕一領域が、 zif268 (EGR-1) プロモーター領域、 SREと CREと を含むプロモー夕一領域または c-fosプロモ一夕一領域のいずれかであることを 特徴とする前記く 1>乃至前記 <2>のいずれかに記載の方法。 Ku 5> the promoter evening one region, characterized in that it is either a promoter evening one region or c -f os promoter Isseki a region including the zif268 (EGR-1) promoter region, SRE and CRE said <1> The method according to any one of <2>.
く 6>該プロモ一夕一領域が、 zif268 (EGR-1) プロモ一夕一領域であることを特 徴とする前記 <1>乃至前記 <4>のいずれかに記載の方法。  <6> The method according to any one of <1> to <4> above, wherein the overnight promoter region is a zif268 (EGR-1) promoter overnight region.
く 7>該 PC 12由来細胞が、 さらに下記(a)乃至 (c)のいずれかの外来性遺 伝子を有するものであることを特徴とする前記く 1>乃至前記く 6>のいずれかに記載 の方法:  <7> The PC12-derived cell further comprises an exogenous gene of any one of the following (a) to (c): The method described in:
(a) Gひ qの C末端アミノ酸配列の一部が Gひ iの C末端アミノ酸配列の 一部に置換されてなるキメラ G蛋白質 Gひサブュニットをコードする 遺伝子;  (a) a gene encoding a chimeric G protein G subunit in which a portion of the C-terminal amino acid sequence of Ghi q is substituted with a portion of the C-terminal amino acid sequence of Ghi;
(b) Gひ sの C末端アミノ酸配列の一部が Go: iの C末端アミノ酸配列の 一部に置換されてなるキメラ G蛋白質 Gひサブュニッ トをコードする 遺伝子; または、  (b) a gene encoding a chimeric G protein G subunit in which a part of the C terminal amino acid sequence of Gs is replaced by a part of the C terminal amino acid sequence of Go: i; or
(c) 受容体特異性を有さずに受容体と共役し、 フォスフオリパ一ゼ Cを活 性化することによりシグナルを伝達する G蛋白質をコードする遺伝子 c <8>前記 (c ) に記載の G蛋白質が、 G16または G15であることを特徴とする前 記く 7>に記載の方法。 (c) Activate phospholipase C by conjugated to the receptor without receptor specificity A gene c encoding a G protein that transmits a signal upon sexualization <8> The method according to the above 7>, wherein the G protein according to the above (c) is G16 or G15.
<9>少なくとも下記( 1 )及び(2 )の外来性遺伝子を有する P C 1 2由来細胞: <9> PC12-derived cells having at least the following exogenous genes (1) and (2):
( 1 ) 所望の G蛋白質共役型受容体をコードする遺伝子;及び (1) a gene encoding a desired G protein-coupled receptor; and
( 2 ) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモ一夕 一領域に発現可能に連結されたレポーター遺伝子。  (2) A reporter gene operably linked to a promoter overnight region of a gene whose expression is induced by stimulation through a G protein.
く 10>該プロモータ一領域が、 zif268プロモーター領域、 SREと CREとを含むプ ロモ一夕一領域または C- f osプロモー夕一領域のいずれかであることを特徴とす る前記く 9>に記載の細胞。  The promoter region is any one of a zif268 promoter region, a promoter region including an SRE and a CRE, and a C-fos promoter region. A cell as described.
く 11>該プロモー夕一領域が、 zif268プロモーター領域であることを特徴とする 前記く 9>に記載の細胞。  <11> The cell according to <9>, wherein the promoter region is a zif268 promoter region.
く 12>該 P C 1 2由来細胞が、 さらに下記 (a ) 乃至 (c ) のいずれかの外来性 遺伝子を有するものであることを特徴とする前記く 9>乃至前記く 11>のいずれかに 記載の細胞:  <12> The PC12-derived cell further has any one of the following exogenous genes (a) to (c): Described cells:
( a ) G a qの C末端アミノ酸配列の一部が G o: iの C末端アミノ酸配列の 一部に置換されてなるキメラ G蛋白質 Gひサブュニットをコードする 遺伝子;  (a) a gene encoding a chimeric G protein G subunit in which a part of the C-terminal amino acid sequence of G aq is replaced with a part of the C-terminal amino acid sequence of G o: i;
( b ) Gひ sの C末端アミノ酸配列の一部が Gひ iの C末端アミノ酸配列の 一部に置換されてなるキメラ G蛋白質 Gひサブュニヅトをコ一ドする 遺伝子;または、  (b) a gene encoding a chimeric G protein G subunit obtained by substituting a part of the C terminal amino acid sequence of G subunit with a part of the C terminal amino acid sequence of G subunit; or
( c ) 受容体特異性を有さずに受容体と共役し、 フォスフォリパーゼ Cを活 性化することによりシグナルを伝達する G蛋白質をコードする遺伝子 c く 13>前記 (c ) に記載の G蛋白質が、 G16 または G15であることを特徴とする 前記く 12>に記載の細胞。  (c) a gene encoding a G protein that couples to a receptor without receptor specificity and that transmits a signal by activating phospholipase C c> 13> the above-mentioned (c) The cell according to <12>, wherein the G protein is G16 or G15.
<14>ある物質と相互作用する受容体を同定する方法であって、 下記 (a ) 乃至 (d) の工程を含むことを特徴とする方法 (ここで、 該物質は該受容体に対して アコ'ニストとして作用する。): <14> A method for identifying a receptor that interacts with a substance, comprising: A method characterized by comprising the step of (d) wherein the substance acts as an aco'nist on the receptor.
(a) 少なくとも下記 ( 1) 及び (2) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1 ) 蛋白質をコ一ドする 1または複数の遺伝子;及び  (1) one or more genes encoding a protein; and
( 2 ) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一領域に発現可能に連結されたレポーター遺伝子; を有する PC 12由来細胞からなる試料の複数を準備し、 該試料の各々に該物質 を接触させる工程 (ここで、 該各々の試料中の該細胞は、 試料毎に互いに異なる 前記 ( 1) の遺伝子を有する。);  (2) A reporter gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein. Contacting the substance (where the cells in each of the samples have the gene of (1) different from each other for each sample);
(b) 工程 (a) で該物質に接触させた各々の試料について、 該試料中の各 細胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルを、 及び 所望に応じて該物質に接触させていない該各々の試料の各細胞において発現した 該レポーター遺伝子が生ずる検出可能なシグナルの各々を定量的に決定するェ 程;  (b) for each sample contacted with the substance in step (a), providing a detectable signal produced by the repo overnight gene expressed in each cell in the sample, and, if desired, Quantitatively determining each of the detectable signals produced by the reporter gene expressed in each cell of the respective sample not contacted;
(c) 工程 (b) で決定した該各々試料についてのシグナルの量を互いに比 較し、 工程 (a) で試験された該複数の試料から 1または複数の試料を選択する 工程;及び  (c) comparing the amount of signal for each sample determined in step (b) with each other, and selecting one or more samples from the plurality of samples tested in step (a); and
(d) 該選択された試料中の細胞が有する工程 (a) の ( 1) に記載の該蛋 白質をコ一ドする遺伝子を塩基配列を決定する工程。  (d) the step of determining the nucleotide sequence of the gene encoding the protein according to (1) in step (a) of the cells in the selected sample;
く 15>ある物質と相互作用する受容体を同定する方法であって、 下記 (a) 乃至 (g) の工程を含むことを特徴とする方法 (ここで、 該物質は該受容体に対して ァゴニストとして作用する。) :  15> A method for identifying a receptor that interacts with a substance, comprising the following steps (a) to (g) (where the substance is Acts as an agonist.):
(a) 少なくとも下記 ( 1) 及び (2) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1 ) 蛋白質をコードする 1または複数の遺伝子;及び  (1) one or more genes encoding a protein; and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモ一夕 一領域に発現可能に連結されたレポ一夕一遺伝子; を有する PC 12由来細胞からなる試料の複数を準備し、 該試料の各々に該物質 を接触させる工程 (ここで、 該各々の試料中の該細胞は、 試料毎に互いに異なる 前記 ( 1) の遺伝子を有する。); (2) a repo overnight gene operably linked to a promoter overnight region of a gene whose expression is induced by stimulation through a G protein; Providing a plurality of samples comprising PC12-derived cells having the following steps: contacting each of the samples with the substance (where the cells in each of the samples are different from each other for each sample; Gene));
(b) 工程 (a) で該物質に接触させた各々の試料について、 該試料中の各 細胞において発現した該レポーター遺伝子が生ずる検出可能なシグナルを、 及び 所望に応じて該物質に接触させていない該各々の試料の各細胞において発現した 該レポーター遺伝子が生ずる検出可能なシグナルの各々を定量的に決定するェ 程;  (b) for each sample contacted with the substance in step (a), contacting the detectable signal produced by the reporter gene expressed in each cell in the sample with the substance, if desired; Quantitatively determining each of the detectable signals produced by said reporter gene expressed in each cell of said respective sample;
(c) 工程 (b) で決定した該各々試料についてのシグナルの量を互いに比 較し、 工程 (a) で試験された該複数の試料から 1または複数の試料を選択する 工程;  (c) comparing the amount of signal for each sample determined in step (b) with each other and selecting one or more samples from the plurality of samples tested in step (a);
(d) 少なくとも下記 ( 1) 及び (2) の外来性遺伝子:  (d) At least the following exogenous genes (1) and (2):
( 1) 工程 (c) で選択された該試料中の細胞が有する外来性遺伝子であ つて、 工程 (a) の ( 1) に記載の該蛋白質をコードする 1または 複数の遺伝子;及び  (1) One or more genes encoding the protein described in (1) of step (a), which are exogenous genes of the cells in the sample selected in step (c); and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一領域に発現可能に連結されたレポ一夕一遺伝子; を有する PC 12由来細胞からなる試料の複数を準備し、 該試料の各々に該物質 を接触させる工程 (ここで、 該各々の試料中の該細胞は、 試料毎に互いに異なる 前記 ( 1) の遺伝子を有する。);  (2) preparing a plurality of samples consisting of PC12-derived cells having a repo overnight gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein; Contacting the substance with each of the above (where the cells in each of the samples have the gene of (1) different from each other for each sample);
(e) 工程 (d) で該物質に接触させた各々の試料について、 該試料中の各 細胞において発現した該レポーター遺伝子が生ずる検出可能なシグナルを、 及び 所望に応じて該物質に接触させていない該各々の試料の各細胞において発現した 該レポ—夕—遺伝子が生ずる検出可能なシグナルの各々を定量的に決定するェ 程;  (e) for each sample contacted with the substance in step (d), contacting the detectable signal produced by the reporter gene expressed in each cell in the sample with the substance, if desired; Determining quantitatively each of the detectable signals produced by the repo-gene expressed in each cell of the respective sample;
(f ) 工程 (e) で決定した該各々試料についてのシグナルの量を互いに比 較し、 工程 (d ) で試験された該複数の試料から 1または複数の試料を選択する 工程;及び (f) comparing the amount of signal for each of the samples determined in step (e) with each other; Selecting one or more of said plurality of samples tested in step (d); and
( g ) 該選択された試料中の細胞が有する工程 (d ) の ( 1 ) に記載の該蛋 白質をコードする遺伝子を塩基配列を決定する工程。  (g) the step of determining the nucleotide sequence of the gene encoding the protein according to (1) in step (d) of the cells in the selected sample;
く 16>該方法が、 所望に応じ前記工程 (f ) と工程 (g ) の間に、 前記工程 (d ) 乃至 (f ) からなる同様の操作の 1乃至複数回を含むことを特徴とする前記く 15> に記載の方法。  16> The method is characterized in that the method includes one or more times of the same operation consisting of the steps (d) to (f) between the step (f) and the step (g), if desired. <15> The method according to <15>.
く 17>該プロモーター領域が、 Zif268 (EGR-1) プロモーター領域、 SREと CREと を含むプロモー夕一領域または c- f osプロモー夕一領域のいずれかであることを 特徴とする前記く 14>乃至前記く 16>のいずれかに記載の方法。 Ku 17> the promoter region, Z if268 (EGR-1) promoter region, rather the which is characterized in that either a promoter evening one region or c- f os promoter evening one region including the SRE and CRE 14 > The method according to any one of <16>.
く 18>該プロモーター領域が、 zif268プロモー夕一領域であることを特徴とする 前記く 14>乃至前記く 16>のいずれかに記載の方法。  <18> The method according to any one of <14> to <16>, wherein the promoter region is a zif268 promoter region.
く 19>該 ( 1 2由来細胞が、 さらに下記 (a ) 乃至 (c ) のいずれかの外来性 遺伝子を有するものであることを特徴とする前記く 14>乃至前記く 18>のいずれかに 記載の方法:  19> wherein the (12) -derived cell further has an exogenous gene of any one of the following (a) to (c): Described method:
( a ) Gひ qの C末端アミノ酸配列の一部が Gひ iの C末端アミノ酸配列の 一部に置換されてなるキメラ G蛋白質 Gひサブュニッ トをコ一ドする 遺伝子;  (a) a gene encoding a chimeric G protein G subunit obtained by substituting a part of the C-terminal amino acid sequence of G subunit Q with a part of the C-terminal amino acid sequence of G subunit;
( b ) Gひ sの C末端アミノ酸配列の一部が Gひ iの C末端アミノ酸配列の 一部に置換されてなるキメラ G蛋白質 Gひサブュニッ トをコ一ドする 遺伝子;または、  (b) a gene encoding a chimeric G protein G subunit obtained by substituting a part of the C-terminal amino acid sequence of G subunit with a part of the C-terminal amino acid sequence of G subunit; or
( c ) 受容体特異性を有さずに受容体と共役し、 フォスフォリパーゼ Cを活 性化することによりシグナルを伝達する G蛋白質をコードする遺伝子 c く 20>前記 (c ) に記載の G蛋白質が、 G15 または G16であることを特徴とする 前記く 19>に記載の方法。  (c) a gene encoding a G protein that couples to a receptor without receptor specificity and transduces a signal by activating phospholipase C. The method according to <19>, wherein the G protein is G15 or G16.
く 21>該蛋白質をコ一ドする 1または複数の遺伝子が、 cDNAまたは cDNAライブ ラリーであることを特徴とする前記く 14>乃至前記く 20>のいずれかに記載の方法 く 22>該受容体が、 G蛋白質共役型受容体であることを特徴とする前記 <14>乃至 前記く 21>のいずれかに記載の方法。 21> One or more genes encoding the protein are cDNA or cDNA live The method according to any one of <14> to <20>, wherein the receptor is a G protein-coupled receptor. 21. The method according to any one of the above 21>.
以下、 本発明で用いる語句の意味及び本発明の具体的態様を明らかにすること により本発明をさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail by clarifying the meanings of phrases used in the present invention and specific embodiments of the present invention.
1. 「P C 1 2由来細胞」  1. "PC12-derived cells"
本発明における 「P C 1 2由来細胞」 とは、 ラッ ト副腎褐色細胞腫由来の PC12 細胞株 (ATCC CRL-1721; Pro Natl. Acad. Sci.USA., Vol.73, p.2424-2426, 1976; Science, Vol.229, p.393-395, 1985; EMBO J., Vol.2, p.643-648, 198 3) または該 PC12細胞株からからサブクローニングされた任意の細胞株を意味す る。  The `` PC12-derived cell '' in the present invention is a rat adrenal pheochromocytoma-derived PC12 cell line (ATCC CRL-1721; Pro Natl. Acad. Sci. USA., Vol. 73, p. 2424-2426, 1976; Science, Vol. 229, p. 393-395, 1985; EMBO J., Vol. 2, p. 643-648, 198 3) or any cell line subcloned from the PC12 cell line. You.
好ましくは、 該サブクローニングされた細胞であって、 且つ下記の性質を有す るものである。  Preferably, the subcloned cells have the following properties.
即ち、 該細胞に、 ( 1 )所望の G蛋白質共役型受容体をコードする遺伝子、 並び に (2) 後述する 「G蛋白質を介する刺激により発現が誘導される遺伝子のプロ モ一夕一領域に発現可能に連結されたレポーター遺伝子」 を外来的に導入して得 た組換え細胞に、 該 G蛋白質共役型受容体のリガンドを接触させた場合に、 発現 が誘導される該レポ一夕一遺伝子産物の量が、宿主細胞として該 PC12細胞株を用 いて検出されるレポーターの量よりも高い値が得られる細胞である。  That is, in the cells, (1) a gene encoding a desired G protein-coupled receptor, and (2) a promoter / region of a gene whose expression is induced by stimulation through a G protein described later. When the G protein-coupled receptor ligand is brought into contact with a recombinant cell obtained by exogenously introducing an “expressably linked reporter gene”, the reporter gene is induced to be expressed. This is a cell in which the amount of the product is higher than the amount of the reporter detected using the PC12 cell line as a host cell.
該サブクロ一ニングされた細胞としては、 例えば、 PC12h細胞株(Brain Resea rch, 222, p.225-233, 1981)並びに該 PC12h細胞株からサブクローニングされた 種々細胞を好ましい態様として例示することができる。  Preferred examples of the subcloned cells include the PC12h cell line (Brain Research, 222, p.225-233, 1981) and various cells subcloned from the PC12h cell line. .
2. 「G蛋白質共役型受容体」 及び 「G蛋白質共役型受容体をコードする遺伝子」 本発明における 「G蛋白質共役型受容体」 は、 細胞膜上に存在する受容体であ つて、 GTP (グアノシン 5,—三りン酸) 結合性の制御蛋白質 (G蛋白質) を介 して、 該受容体と相互作用するリガンドの情報をエフヱクタ一系に伝える機能を 有する蛋白質を意味する。 これまでに同定されているほとんどの G蛋白質共役型 受容体は細胞膜を 7回貫通する構造を有している。 2. “G protein-coupled receptor” and “gene encoding G protein-coupled receptor” The “G protein-coupled receptor” in the present invention is a receptor existing on the cell membrane, and is a GTP (guanosine). 5, -trinic acid) A function to transmit information on ligands interacting with the receptor to a series of effectors via a regulatory protein (G protein) for binding. Means a protein having Most G protein-coupled receptors identified so far have a structure that penetrates the cell membrane seven times.
本発明における G蛋白質共役型受容体は、細胞が生来発現する内在性の受容体、 または所望の G蛋白質共役型受容体をコードする遺伝子を該細胞に導入すること により該細胞に発現させた受容体のいずれかを意味する。  The G protein-coupled receptor in the present invention is an endogenous receptor naturally expressed in a cell or a receptor expressed in a cell by introducing a gene encoding a desired G protein-coupled receptor into the cell. Mean any of the body.
本発明における 「G蛋白質共役型受容体」 には、 既知の該受容体及び未だ同定 されていない該受容体のいずれもが包含される。  The “G protein-coupled receptor” in the present invention includes both known receptors and unidentified receptors.
既知の G蛋白質共役型受容体の一例としては、 既に構造及び機能が解明されて いる受容体 (例えば、 ひ-アドレナリン受容体、 ? -アドレナリン受容体、 ドパミ ン受容体、 ムスカリン性アセチルコリン受容体、 セロ トニン受容体、 ヒスタミン 受容体、 夕キキニン受容体、 グルタミン酸受容体、 エンドセリン受容体、 血小板 活性化因子 (P A F ) 受容体、 トロンビン受容体、 F S H受容体等)、 及び構造は 知られているがそのリガンド及び/または生理機能が不明の受容体(例えば、種々 のォーファン G蛋白質共役型受容体) を挙げることができる。  Examples of known G protein-coupled receptors include those whose structure and function have already been elucidated (for example, para-adrenergic receptor,? -Adrenergic receptor, dopamine receptor, muscarinic acetylcholine receptor, Serotonin receptor, histamine receptor, evening kikinin receptor, glutamate receptor, endothelin receptor, platelet activator (PAF) receptor, thrombin receptor, FSH receptor, etc., and their structures are known The ligand and / or receptor whose physiological function is unknown (for example, various orphan G protein-coupled receptors) can be mentioned.
3 . 「G蛋白質共役型受容体リガンド」  3. "G protein coupled receptor ligand"
本明細書中で用いる 「G蛋白質共役型受容体リガンド」 とは、 G蛋白質共役型 受容体と相互作用する任意のァゴニストまたは該受容体の任意のアン夕ゴニスト を意味する。  As used herein, "G protein-coupled receptor ligand" means any agonist that interacts with a G protein-coupled receptor or any agonist of the receptor.
4 . 「キメラ G蛋白質 Gひサブュニッ ト」  4. "Chimeric G Protein G Subunit"
本発明における 「キメラ G蛋白質 Gひサブユニッ ト」 とは、 ある種の G蛋白質 のひサブユニット (例えば、 G r qあるいは G a s ) の一部のアミノ酸配列を、 異なる種類の G蛋白質のひサブユニット (例えば、 Gひ i ) の一部のアミノ酸配 列に置き換えた構造を有する G蛋白質ひサブュニッ トを意味する。  The “chimeric G protein G subunit” in the present invention refers to a subunit of a certain G protein subunit (for example, Grq or Gas) obtained by substituting a partial subunit of a different type of G protein. It means a G protein subunit having a structure in which a part of the amino acid sequence of (for example, G subunit i) is substituted.
本発明における 「キメラ G蛋白質 G q i」 とは、 Gひ q ( G q蛋白質のひサブ ユニッ ト) の C末端アミノ酸配列の一部が、 Gひ iの C末端アミノ酸配列の一部 に置換えられた構造を有するキメラ G蛋白質ひサブュニットを意味する。 また、 「キメラ G蛋白質 G s i」 とは、 同様に G a s ( G s蛋白質のひサブユニット) の C末端ァミノ酸配列の一部が、 G a iの C末端アミノ酸配列と置換えられた構 造を有するキメラ G蛋白質ひサブュニッ トを意味する。 In the present invention, the “chimeric G protein G qi” refers to a protein in which a part of the C-terminal amino acid sequence of Ghi q (a sub-unit of the G q protein) is replaced with a part of the C-terminal amino acid sequence of Ghi i. Means a chimeric G protein subunit having a modified structure. Also, "Chimeric G protein Gsi" is a chimera having a structure in which part of the C-terminal amino acid sequence of Gas (subunit of Gs protein) is replaced with the C-terminal amino acid sequence of Gai. Means G protein subunit.
G蛋白質 Gひ qの C末端のアミノ酸を対応する G蛋白質 Gひ i 2の C末端のァ ミノ酸に置換したひ q /ひ i 2キメラ G蛋白質は、 G i共役型受容体と共役して G q情報伝達系を活性化すること、並びにひ i 2サブユニットの C末端アミノ酸配列 中の第 3位のグリシンが受容体特異性を変換することに寄与していると考えられ ることが知られている (Nature, Vol.363, p.274-276, 1993)。 G proteins G shed G protein G shed substituted with § amino acid C-terminal of the i 2 Tahi q / non i 2 chimeric G protein corresponding to the C-terminal amino acids of q is conjugated with G i coupled receptors G q signaling system activating, arrangement Nihi i 2 subunit C-terminal amino acid sequence # 3 of glycine Rukoto believed to contribute to the conversion of receptor specificity knowledge of (Nature, Vol.363, p.274-276, 1993).
従って、 置換されるべき Gひ qの C末端アミノ酸配列の一部は、 この 3位のグ リシンを含む範囲であることが特に望ましい。 置換されるべきアミノ酸の数とし ては、 少なくと約 3乃至約 23個のアミノ酸、 好ましくは約 3乃至約 11個のアミ ノ酸、 さらに好ましくは約 4乃至約 9個のアミノ酸である。  Therefore, it is particularly desirable that the part of the C-terminal amino acid sequence of G-q to be substituted be in a range including the glycine at position 3. The number of amino acids to be substituted is at least about 3 to about 23 amino acids, preferably about 3 to about 11 amino acids, and more preferably about 4 to about 9 amino acids.
Gひ q及び Gひ iは各々一群のフアミリーを構成している。 これらのファミリ —は、 その種類によって、 組織分布が異なっている。  Ghi q and Ghii each constitute a group of families. These families have different organizational distributions by type.
例えば、 G iファミリ一であるひ i 2及びひ i 3は広く組織に分布するが、 ひ 及びひ o2は各々主に脳及び神経組織に発現している。一方、 Gひ qファミリーの a q、 ひ 11は広く分布するが、 ひ 14は主に肺、 腎臓、 肝臓組織に発現している。 上述の 「キメラ G蛋白質 Gひサブュニット」 を構成する Gひ q及び Gひ iとし ては、 各々のファミリーに属するいずれの Gひ q及び Gひ iを用いてもよく、 受 容体の発現する組織に応じて選択することができる。 好ましくは、 広く組織に分 布するものである。本発明におけるキメラ Gひ q/G o: iサブュニッ トとしては、 G a qと Gひ i 2とからなるキメラ G蛋白質ひサブュニッ卜が好ましい。 For example, G i family members Hi 2 and Hi 3 are widely distributed in tissues, while Hi and Hi 2 are mainly expressed in brain and nerve tissues, respectively. On the other hand, aq and h11 of the Ghi q family are widely distributed, while h14 is mainly expressed in lung, kidney and liver tissues. As Ghi q and Ghi i constituting the above-mentioned “chimeric G protein G hysubunit”, any Ghi q and Ghi i belonging to each family may be used, and the tissue in which the receptor is expressed Can be selected according to Preferably, it is widely distributed to tissues. In the present invention, the chimeric G protein q / Go: i subunit is preferably a chimeric G protein protein subunit consisting of G aq and Ghi i 2 .
上述した Gひ q と同様に、 Gひ sについても、 置換されるべき C末端アミノ酸 配列としては、 少なくと約 3乃至約 23個、 好ましくは約 3個乃至約 11個、 さら に好ましくは約 4個乃至約 9個のアミノ酸を対応する G蛋白質 Gひ iの C末端の ァミノ酸配列に置換すればよい。 なお、 キメラ G蛋白質 Gひサブュニッ 卜の構成は上記に限定されるものではな い。 As in the case of Ghq described above, Ghs also has at least about 3 to about 23, preferably about 3 to about 11, and more preferably about 3 to about 23 C-terminal amino acid sequences to be substituted. Four to about nine amino acids may be substituted with the corresponding amino acid sequence at the C-terminal of G protein Ghi. The configuration of the chimeric G protein G subunit is not limited to the above.
5 . 「受容体特異性を有さずに受容体と共役し、 フォスフォリパーゼ Cを活性化 することによりシグナルを伝達する G蛋白質」  5. "A G protein that couples to a receptor without receptor specificity and transduces a signal by activating phospholipase C"
本発明における標記の G蛋白質は、 任意の G蛋白質共役型受容体と共役する能 力を有し、 該共役により受容体がら受けたシグナルを、 G qを介するシグナル伝 達絰路、 即ちフォスフオリバ一ゼ Cのの活性化という形でさらに下流に伝達する 能力を有する G蛋白質である。  The G protein of the present invention has the ability to couple to any G protein-coupled receptor, and converts the signal received by the receptor by the coupling into a signal transmission pathway through G q, that is, a phosphorivator. It is a G protein that has the ability to transmit further downstream in the form of activation of ZeC.
好ましい態様としては、 例えば、 G 1 5や G 1 6 (J. Biol . Chem. , Vol .270, p. 16175-16180, 1995) を挙げることができるが、 この限りではない。  Preferred embodiments include, for example, G15 and G16 (J. Biol. Chem., Vol. 270, p. 16175-16180, 1995), but are not limited thereto.
6 . 「G蛋白質を介した刺激により発現が誘導される遺伝子のプロモータ一領域」 本発明における標記プロモーター領域としては、 最初期遺伝子 (i腿 ediate-ea rly gene) のプロモ一夕一領域が挙げられる。 6. “Promoter region of gene whose expression is induced by stimulation through G protein” The promoter region of the present invention includes the promoter region of the immediate-early gene (i-throat ediate-early gene). Can be
本発明で用いられる最初期遺伝子のプロモーターとしては、 例えば、 c-fos プ 口モータ一領域や zif268プロモ一夕一領域 (Pro Natl . Acad. Sci . USA. , Vo 1.86, p.377-381, 1989 ;「EGR-1」、 「NGF1- A」、 「Krox24」、 「Tis8」 または 「cef5」 とも称される。) が挙げられる。特に好ましい態様としては、 zif268(EGR-l) プロ モーター領域が挙げられる。 また、 本発明で使用されるプロモー夕としてには、 前記プロモーターの任意の動物種の対応物も包含される。  Examples of the promoter of the immediate-early gene used in the present invention include a c-fos promoter motor region and a zif268 promoter overnight region (Pro Natl. Acad. Sci. USA., Vo 1.86, p.377-381, 1989; also referred to as "EGR-1", "NGF1-A", "Krox24", "Tis8" or "cef5"). A particularly preferred embodiment includes the zif268 (EGR-1) promoter region. The promoter used in the present invention also includes a counterpart of any animal species of the promoter.
ここで 「プロモーター領域」 とは、 プロモー夕一活性を発現するために必須な 最小の塩基配列を含む任意の領域を意味しする。 例えば、 該遺伝子の転写部位に 対して上流約 500bp乃至約 2 kbの領域の一部または全部を用いることが可能であ る。  As used herein, the term "promoter region" refers to an arbitrary region containing a minimum nucleotide sequence essential for expressing a promoter activity. For example, part or all of a region of about 500 bp to about 2 kb upstream of the transcription site of the gene can be used.
さらに本発明における標記プロモーター領域としては、 ミニマルプロモー夕一 の上流に転写因子結合配列である SRE (serum response element)及び/または C RE (cAMP response element) を有するプロモー夕一領域が挙げられる。 7 . 「レポ一夕一遺伝子」 Further, examples of the title promoter region in the present invention include a promoter region having a transcription factor binding sequence SRE (serum response element) and / or CRE (cAMP response element) upstream of the minimal promoter region. 7. "Repo One Night One Gene"
本発明における 「レポーター遺伝子」 は、 検出可能な蛍光を発するレポーター 蛋白質をコードする遺伝子を意味する。 具体的には、 例えば、 蛍若しくはゥミシ ィ夕ケなどに由来するルシフェラ一ゼ、 またはクラゲ由来の G F P (Green Fluo rescence Protein) などを挙げることができる。 さらには、 例えば、 5ガラク ト シダーゼをコ一ドする遺伝子、 クロラムフエニコ一ルァセチルトランスフェラー ゼをコ一ドする遺伝子、 及び/?ラク夕マーゼをコ一ドする遺伝子を挙げることが できる。  The “reporter gene” in the present invention means a gene encoding a reporter protein that emits detectable fluorescence. Specifically, for example, luciferase derived from fireflies or Mississippi or GFP (Green Fluorescence Protein) derived from jellyfish can be mentioned. Further, for example, a gene encoding 5-galactosidase, a gene encoding chloramphenic acid acetyltransferase, and a gene encoding lactamase can be mentioned.
8 . 「ァゴニスト作用阻害物質」/「ァゴニス卜のァゴニスト作用を阻害する物質」 本発明における標記物質は、 ァゴニス卜に直接作用してァゴニス卜の活性を阻 害あるいは喪失させる物質を意味し、 例えばァゴニストに対する抗体等を意味す る。  8. "Agonist action inhibitory substance" / "A substance that inhibits agonist action of agonist" The termed substance in the present invention means a substance which acts directly on agonist to inhibit or lose the activity of agonist. It means antibodies against agonists.
9 . 「レポ一夕一ジーンアツセィ」  9. "Repo One Night One Gene Atsushi"
発明で吕っ 厂レポ一夕一ジエーンァッセィ (reporter gene assay)」 とは、 下記のような方法を意味する。  In the invention, "reporter gene assay" means the following method.
本発明の一部である前記 <9>乃至く 13>に記載の細胞に、被験物質を接触させ、該 化合物の作用に依存して発現されるレポ一夕一蛋白質の量を、 該蛋白質が発する 蛍光の量を測定することにより間接的に測定することにより、 該被験物質の G蛋 白質共役型受容体との相互作用の有無を分析する方法である (例えば、 米国特許 第 5,436, 128号及び米国特許第 5,401,629号を参照できる)。  A test substance is brought into contact with the cells according to <9> to <13>, which are a part of the present invention, and the amount of repo overnight protein expressed depending on the action of the compound is determined. In this method, the presence or absence of interaction of the test substance with a G protein-coupled receptor is analyzed by indirectly measuring the amount of emitted fluorescence (for example, see US Pat. No. 5,436, No. 128 and U.S. Pat. No. 5,401,629).
また、 該レポ一夕一ジーンアツセィは、 マニュアル作業でも可能であるが、 機 械 (ロボット) を用いて自動で行う所謂ハイスル一プッ トスクリーニング (High Throughput Screening) (組織培養工学, Vol .23, No.13, p.521-524;米国特許 第 5, 670, 113号) を用いることによりより迅速、 簡便に行うことができる。  In addition, the repo overnight can be performed manually, but what is called High Throughput Screening (Tissue Culture Engineering, Vol. 23, No. .13, p.521-524; U.S. Pat. No. 5,670,113) can be carried out more quickly and conveniently.
1 0 . 「物質」  10. "Material"
本発明の方法により同定またはスクリーニングされる 「物質」 とは、 自然界に 存在する天然の物質 (蛋白質、 抗体、 ペプチド、 天然化合物など) あるいは人工 的に調製される任意の物質を意味する。 A “substance” identified or screened by the method of the present invention It refers to existing natural substances (proteins, antibodies, peptides, natural compounds, etc.) or any artificially prepared substances.
具体的には、 例えば、 化学的に合成された任意の 「化合物」 を挙げることがで きる。 該化合物の種類及び分子量などについては特に限定されないが、 分子量に ついて言えば、 医薬品として用いられる可能性のある化合物の分子量は、 分子量 約 50乃至約 3000以下であり、さらに一般的には分子量約 100乃至約 2000であり、 さらに一般的には分子量約 100乃至約 1000である。  Specifically, for example, any “compound” chemically synthesized can be mentioned. The type and molecular weight of the compound are not particularly limited. It has a molecular weight of from about 100 to about 2000, and more typically from about 100 to about 1000.
該物質が、 蛋白質、 抗体またはペプチドである場合には、 生体組識ゃ細胞から 単離されるもの、 及び遺伝子組換えや化学的合成により調整されるものも包含す る。 さらにまた、 それらの化学修飾体も包含する。  When the substance is a protein, antibody or peptide, it also includes those isolated from living tissue cells and those prepared by genetic recombination or chemical synthesis. Furthermore, those chemical modifications are also included.
ペプチドとしては、 例えば、 約 3乃至約 500個のアミノ酸、 好ましくは約 3乃 至約 300個のアミノ酸、 さらに好ましくは約 3乃至約 200個のアミノ酸からなる ぺプチドを挙げることができる。  Examples of the peptide include a peptide consisting of about 3 to about 500 amino acids, preferably about 3 to about 300 amino acids, and more preferably about 3 to about 200 amino acids.
以下に本発明で用いられる各種実験ツールの意味及び/またはその調製のため の一般的な方法を例示する。 しかしながら、 本発明で用いられる該ツールは、 下 記に例示される方法で調製されるものに限定されるものではないことは言うまで もない。  Hereinafter, the meaning of various experimental tools used in the present invention and / or general methods for their preparation will be exemplified. However, it goes without saying that the tools used in the present invention are not limited to those prepared by the methods exemplified below.
( 1 ) 各種遺伝子のクローニング及び単離  (1) Cloning and isolation of various genes
本発明で用いられる各種遺伝子 (例えば、 所望の G蛋白質共役型受容体をコー ドする遺伝子、 所望の蛋白質をコードする遺伝子、 レポーター遺伝子、 プロモー 夕一領域など) は、 いかなる方法で得られるものであってもよい。 また、 その取 得においては、 既知の塩基配列情報を用いることもできるし、 また全く新たにク ローニングすることもできる。  Various genes (eg, a gene encoding a desired G protein-coupled receptor, a gene encoding a desired protein, a reporter gene, a promoter region, etc.) used in the present invention can be obtained by any method. There may be. In addition, in the acquisition, known nucleotide sequence information can be used, or a completely new cloning can be performed.
例えば mR N Aから調製される相補 D N A ( c D N A)、ゲノム D N Aから調製 される D N A、 化学合成によって得られる D N A、 R N Aまたは D N Aを錡型と して P C R法で増幅させて得られる D N Aおよびこれらの方法を適当に組み合わ せて構築される DN Aをも全て包含するものである。 For example, complementary DNA (cDNA) prepared from mRNA, DNA prepared from genomic DNA, DNA obtained by chemical synthesis, DNA obtained by amplifying the RNA or DNA by PCR as a Combining methods appropriately It also encompasses all of the DNAs that have been constructed.
本発明で用いられるある蛋白質をコードする DN Aは、 常法に従って該蛋白質 をコードする mRN Aから c DNAをクローン化する方法、 ゲノム DN Aを単離 してスプライシング処理する方法、 化学合成する方法等により取得することがで きる。  The DNA encoding a protein used in the present invention can be obtained by a method of cloning cDNA from mRNA encoding the protein according to a conventional method, a method of isolating genomic DNA and splicing it, and a method of chemical synthesis. Etc.
例えば、 該蛋白質をコードする mRNAから cDNAをクローン化する方法と しては、 以下の方法が例示される。  For example, the following method is exemplified as a method for cloning cDNA from mRNA encoding the protein.
まず、 所望の蛋白質を発現 ·産生する前述のような組織あるいは細胞から該蛋 白質をコードする mRNAを調製する。 mRNAの調製は、 例えばグァニジンチ オシァネート法 (Chirgwinら、 Biochemistry, Vol.18, p.5294, 1979)、 熱フエノ 一ル法もしくは AGP C法等の公知の方法を用いて調製した全 RNAをオリゴ (d T) セルロースやポリ U—セファロース等によるァフィ二ティクロマトグラ フィ一にかけることによって行うことができる。  First, mRNA encoding the protein is prepared from the above-mentioned tissues or cells that express and produce the desired protein. For preparation of mRNA, total RNA prepared by a known method such as the guanidine thiosocyanate method (Chirgwin et al., Biochemistry, Vol. 18, p. 5294, 1979), the hot phenol method or the AGP C method is oligo- d T) It can be carried out by affinity chromatography with cellulose or poly-U-Sepharose.
次いで得られた mRN Aを錶型として、 例えば逆転写酵素を用いる等の公知の 方法、 例えばォカャマらの方法 (Mol. Cell. Biol., Vol.2, p.161, 1982; Mol.Ce 11. Biol., Vol.3, p.280, 1983) や Hoffmanらの方法 (Gene, Vol.25, p.263, 1983)等により c DNA鎖を合成し、 c D N Aの二本鎖 c D N Aへの変換を行う。 この cDNAをブラスミ ドベクター、 ファージベクターまたはコスミ ドベクター に組み込み、 大腸菌を形質転換して、 あるいはインビトロパッケージング後、 大 腸菌に形質移入 (トランスフエクト) することにより cDNAライブラリ一を作 製する。  Then, the obtained mRNA is used as type 、, and a known method such as, for example, using reverse transcriptase, for example, the method of Okayama et al. (Mol. Cell. Biol., Vol. 2, p. 161, 1982; Mol. Ce 11 Biol., Vol. 3, p. 280, 1983) and the method of Hoffman et al. (Gene, Vol. 25, p. 263, 1983) synthesize cDNA strands and convert them into double-stranded cDNAs. Is converted. This cDNA is incorporated into a plasmid vector, phage vector or cosmid vector, and transformed into Escherichia coli, or after in vitro packaging, transfected into Escherichia coli to produce a cDNA library.
ここで用いられるプラスミ ドベクターとしては、 宿主内で複製保持されるもの であれば特に制限されず、 また用いられるファージベクタ一としても宿主内で増 殖できるものであれば良い。 常法的に用いられるクローニング用べクタ一として pUC19、 人 gtlO、 人 gtll等が例示される。 ただし、 後述の免疫学的スクリーニン グに供する場合は、 宿主内で該蛋白質をコードする遺伝子を発現させうるプロモ 一夕一を有したベクタ一であることが好ましい。 The plasmid vector used here is not particularly limited as long as it can be replicated and maintained in the host, and any phage vector used can be used as long as it can be propagated in the host. Examples of a cloning vector used in a conventional manner include pUC19, human gtlO, and human gtll. However, when subjected to immunological screening described below, a promoter capable of expressing the gene encoding the protein in the host is used. It is preferable that the vector is a one-time vector.
プラスミ ドに c D N Aを組み込む方法としては、 例えば Maniatisらの方法 (M olecular Cloning, A Laooratory Manual, second edition, Cold Spring Harbo r Laboratory, p.1.53, 1989) に記載の方法などが挙げられる。 また、 ファージ ベクターに c D N Aを組み込む方法としては、 Hyunhらの方法(DNA Cloning, a practical approach, Vol.1, p.49, 1985) などが挙げられる。簡便には、 市販の クロ一ニングキッ ト (例えば、 宝酒造製等) を用いることもできる。 このように して得られる組換えプラスミ ドゃファ一ジベクタ一は、 原核細胞 (例えば、 E. co li : HB101, DH5ひまたは MC1061/P3等) 等の適当な宿主に導入する。  Examples of a method for incorporating cDNA into a plasmid include the method described in Maniatis et al. (Molecular Cloning, A Laooratory Manual, second edition, Cold Spring Harbor Laboratory, p. 1.53, 1989). As a method of incorporating cDNA into a phage vector, the method of Hyunh et al. (DNA Cloning, a practical approach, Vol. 1, p. 49, 1985) and the like can be mentioned. For convenience, a commercially available closing kit (for example, Takara Shuzo) can be used. The recombinant plasmid vector obtained in this manner is introduced into a suitable host such as a prokaryotic cell (for example, E. coli: HB101, DH5 or MC1061 / P3).
プラスミ ドを宿主に導入する方法としては、 (Molecular Cloning, A Laborato ry Manual , second edition, Cold Spring Harbor Laboratory, Vol. 1.74, 198 9)に記載の塩化カルシウム法または塩化カルシウム/塩化ルビジウム法、 リポフ ェクシヨン法、 エレクト口ポレーシヨン法等が挙げられる。 また、 ファージべク 夕一を宿主に導入する方法としてはファージ D N Aをインビトロパッケージング した後、 増殖させた宿主に導入する方法等が例示される。 インビトロパッケージ ングは、 市販のインビトロパッケージングキッ ト (例えば、 ストラタジーン製、 アマシャム製等) を用いることによって簡便に行うことができる。  Methods for introducing a plasmid into a host include a calcium chloride method, a calcium chloride / rubidium chloride method, and a Lipofi method described in (Molecular Cloning, A Laboratory Manual, second edition, Cold Spring Harbor Laboratory, Vol. 1.74, 1989). Examples include the extrusion method and the elect opening method. Examples of a method for introducing the phage vector into a host include a method in which phage DNA is packaged in vitro and then introduced into a grown host. In vitro packaging can be easily performed by using a commercially available in vitro packaging kit (eg, manufactured by Stratagene, Amersham, etc.).
一方、 例えば、 ある種の刺激 (例えば、 サイ トカインなどによる刺激) に依存 して発現が増強される蛋白質をコードする遺伝子 (cDNA) を取得する場合には、 該刺激を与えた細胞由来の mRNAを基に作製した cDNAライブラリ一 (tester cDN A library) と未刺激の細胞由来の mRNAを基に作製した cDNAライブラリー (dri ver cDNA library)の 2つの cDNAライブラリ一を用い、例えば、抑制 PCR効果(N ucleic Acids Res. , Vol .23, p.1087-1088, 1995) を利用したサブレッシヨンサ ブ卜ラク卜ノヽイブリダィゼ一シヨン法 (supression subtract hybridization ( S SH)) (Proc. Natl . Acad. Sci . USA, Vol.93, p.6025-6030, 1996; Anal . Bioch em. , Vol.240, p.90-97, 1996) により同定することができる。 サブトラクシヨンクローニングに必要な cDNAライブラリ一の調製は、市販のキ ヅ ト、 例えば、 PCR-Select Subtraction Kit (CL0NTECH製、 カタログ番号: K180 4-1) を用いることができる。実験操作は、該キッ 卜に添付の実験操作手順書に従 つて行うことができる。 On the other hand, for example, when obtaining a gene (cDNA) encoding a protein whose expression is enhanced in response to a certain kind of stimulus (for example, stimulus by a cytokine), mRNA derived from the cell to which the stimulus is given is used. Using two cDNA libraries, a cDNA library (tester cDNA library) based on DNA and a cDNA library (dri ver cDNA library) based on mRNA from unstimulated cells, for example, the inhibitory PCR effect Suc. (Supression subtract hybridization (S SH)) using the Subtraction Subtraction Neutralization Method (Nucleic Acids Res., Vol. 23, p. 1087-1088, 1995) (Proc. Natl. Acad. Sci. USA, Vol. 93, p. 6025-6030, 1996; Anal. Biochem., Vol. 240, p. 90-97, 1996). For preparing a cDNA library required for subtraction cloning, a commercially available kit, for example, a PCR-Select Subtraction Kit (manufactured by CL0NTECH, catalog number: K1804-1) can be used. The experimental operation can be performed according to the experimental operation manual attached to the kit.
具体的実験操作の一例を以下に概略する。  An example of a specific experimental operation is outlined below.
適切な刺激物質で刺激した細胞、 及び未刺激の細胞の各々から、 既報 (Nuclei c Acids Res. , Vol .26, No.4, p.911-918, 1998)と同様にして polyA+RNAをする。 次いで、各々の polyA NA試料を基に逆転写酵素を用い常法に従って cDNAを調製 する。 刺激した細胞から調製した cDNAをテスタ一 cDNA (tester cDNA) として、 また未刺激の細胞由来の cMAをドライバー cDNA (driver cDNA) として用いる。 前記既報及び該市販のキットに添付の実験操作マ二ュアルに従って、テス夕一 c DNAにドライバー cDNAを加えサブトラクシヨンを行う。 なお、 サブトラクシヨン の効率は、 テス夕一 cDNAに、 コントロールとして適当な外来性 DNAを少量加える ことによりモニタ一する。 サブトラクシヨンの後、 該外来性 DNAを濃縮する。 サブトラクシヨンされた cDNA (subtracted cDNA) を、 常法に従って適当なプ ラスミ ド発現べクタ一中にクロ一ニングしプラスミ ドライブラリーを作製する。 既報と同様にして、 該ライブラリーの多数のコロニーを、 ディファレンシャル ハイブリダィゼ一シヨン法によりスクリーニングする (Nucleic Acids Res. , Vo 1.26, No.4, p.911-918, 1998; 臨床免疫, Vol .29, No. Suppl .17, p.451-459, 1 997)。 ここで、 ハイブリダィゼ一シヨンプローブとしては、 前記テス夕一 cDNA及 びドライバ一 cDNAの各々を放射性標識したものを用いることができる。 なお、 目 的の DNAを含むクローンと前記外来性 DNAを含むクローンの区別は、 レプリカン トフルターに該外来性 DNAをハイブリダィズさせることにより行うことができる。 放射性標識ドライバ一 cDNA プローブよりも放射性標識テスター cDNA プローブ に対してより強いシグナルを発するクローンを同定し、 目的の cDNAまたは cDNA 断片を得ることができる。 また、本発明における任意の蛋白質をコードする cDNAの単離は、他の一般的な c DNAのスクリーニング法を用いることによつても行うことができる。 From each of cells stimulated with an appropriate stimulant and unstimulated cells, polyA + RNA was prepared in the same manner as previously reported (Nucleic Acids Res., Vol. 26, No. 4, p. 911-918, 1998). I do. Next, cDNA is prepared from each polyANA sample using a reverse transcriptase according to a conventional method. CDNA prepared from stimulated cells is used as tester cDNA, and cMA from unstimulated cells is used as driver cDNA. According to the experimental report described in the above-mentioned report and the commercially available kit, the driver cDNA is added to the test DNA to perform subtraction. The efficiency of the subtraction is monitored by adding a small amount of appropriate exogenous DNA to the cDNA as a control. After the subtraction, the exogenous DNA is concentrated. The subtracted cDNA is cloned into an appropriate plasmid expression vector according to a conventional method to prepare a plasmid library. As described previously, a large number of colonies of the library are screened by the differential hybridization method (Nucleic Acids Res., Vo 1.26, No. 4, p. 911-918, 1998; Clinical Immunity, Vol. 29). , No. Suppl. 17, p. 451-459, 1997). Here, as the hybridization probe, those obtained by radioactively labeling each of the above-mentioned TES cDNA and driver cDNA can be used. The clone containing the target DNA and the clone containing the exogenous DNA can be distinguished by hybridizing the exogenous DNA with a replicant filter. A radiolabeled driver—A clone that produces a stronger signal with a radiolabeled tester cDNA probe than with a cDNA probe can be identified, and the desired cDNA or cDNA fragment can be obtained. In addition, the cDNA encoding any protein of the present invention can be isolated by using other general cDNA screening methods.
例えば、 市販または既知のァミノ酸配列や塩基配列も基に独自に単離した該蛋 白質をコードする cDNA若しくは cDNA断片、 あるいは別個に化学合成した該蛋白 質のアミノ酸配列に対応するオリゴヌクレオチドを 32 Pでラベルしてプローブと なし、 公知のコロニーハイブリダィゼ一シヨン法(Crunsteinら, Proc. Natl . A cid. Sci . USA, Vol .72, p.3961 , 1975)またはプラークハイブリダィゼーシヨン 法 (Molecular Cloning, A Laboratory Manual , second edition , Cold Spring Harbor Laboratory, p.2. 108, 1989)により、市販または所望に応じ独自に調製 した cDNAライブラリーをスクリーニングすることにより取得することができる。 さらに、 該蛋白質をコードする cDNA若しくは cDNA断片の塩基配列を基に一対 の PCRプライマーを作製し、全長 cDNAライブラリ一を銪型として該プライマーを 用いた PCRにより該蛋白質をコ一ドする cDNAを含む MAを増幅する方法を挙げる ことができる。 For example, a commercially available or known cDNA or cDNA fragment Amino acid sequence and nucleotide sequence also encodes its own isolated protein based, or separately oligonucleotides corresponding to the chemically synthesized amino acid sequence of the protein 32 Labeled with P and used as a probe, the well-known colony hybridization method (Crunstein et al., Proc. Natl. Acid. Sci. USA, Vol. 72, p. 3961, 1975) or plaque hybridization. It can be obtained by screening a commercially available or originally prepared cDNA library by the Chillon method (Molecular Cloning, A Laboratory Manual, second edition, Cold Spring Harbor Laboratory, p. 2.108, 1989). . Furthermore, a pair of PCR primers is prepared based on the nucleotide sequence of the cDNA or cDNA fragment encoding the protein, and a cDNA encoding the protein is obtained by PCR using the full-length cDNA library as a type III primer and the primers. A method for amplifying MA can be mentioned.
cDNAを発現しうる発現べクタ一を用いて作製した cDNAライブラリーを用いる 場合には、 該蛋白質に反応性を有する抗体を用いる抗原抗体反応を利用して、 目 的のクローンを選択することもできる。 大量にクローンを処理する場合には、 PC R法を利用したスクリーニング法を用いることが好ましい。  When a cDNA library prepared using an expression vector capable of expressing cDNA is used, a target clone may be selected by utilizing an antigen-antibody reaction using an antibody reactive with the protein. it can. When a large number of clones are processed, it is preferable to use a screening method using the PCR method.
この様にして得られた D N Aの塩基配列はマキサム ·ギルバート法 (マキサム The DNA sequence obtained in this manner is based on the Maxam-Gilbert method (Maxam
(Maxajn ら、 Proc. Natl . Acad. Sci . USA. , Vol .74, p.560, 1977) あるいはフ ァ一ジ M13を用いたジデォキシヌクレオチド合成鎖停止の方法(Sangerら、 Proc.Natl. Acad. Sci. USA., Vol. 74, p. 560, 1977) or a method of terminating dideoxynucleotide synthesis using F13 M13 (Sanger et al., Proc.
Natl . Acad. Sci. USA. , Vol .74, p.5463-5467, 1977)によって決定することが できる。 市販の DNAシークェンサ一を用いると簡便に塩基配列を決定することが 可能である。 Natl. Acad. Sci. USA., Vol. 74, p. 5463-5467, 1977). When a commercially available DNA sequencer is used, the nucleotide sequence can be easily determined.
本発明における任意の蛋白質をコードする遺伝子は、 その全部または一部を上 記のようにして得られるクローンから制限酵素等により切り出すことにより取得 できる。 The gene encoding any protein in the present invention can be obtained by cutting out all or a part of the clone obtained as described above using restriction enzymes or the like. it can.
また、 所望の蛋白質をコードする遺伝子を、 該蛋白質を発現する細胞に由来す るゲノム DN Aから単離することによる調製方法としては、 例えば以下の方法が 例示される。  In addition, examples of a method for preparing a gene encoding a desired protein by isolating it from a genomic DNA derived from a cell that expresses the protein include the following methods.
該細胞を好ましくは SD Sまたはプロテナ一ゼ K等を用いて溶解し、 フエノー ルによる抽出を反復して DN Aの脱蛋白質を行う。 RNAを好ましくはリボヌク レアーゼにより消化する。 得られる DNAを適当な制限酵素により部分消化し、 得られる DN A断片を適当なファージまたはコスミ ドで増幅しライブラリーを作 成する。 そして目的の配列を有するクローンを、 例えば放射性標識された DNA プローブを用いる方法等により検出し、 該クローンから該蛋白質をコードする遺 伝子の全部または一部を制限酵素等により切り出し取得する。  The cells are preferably lysed using SDS or proteinase K or the like, and the DNA is deproteinized by repeating extraction with phenol. The RNA is digested, preferably by ribonuclease. The obtained DNA is partially digested with an appropriate restriction enzyme, and the obtained DNA fragment is amplified with an appropriate phage or cosmid to prepare a library. Then, a clone having the target sequence is detected by, for example, a method using a radiolabeled DNA probe, and all or a part of the gene encoding the protein is cut out from the clone with a restriction enzyme or the like and obtained.
例えば、 ヒト由来タンパクをコードする cDNAを取得する場合には、 さらに ヒトゲノム DNA (染色体 DNA)が導入されたコスミ ドライスラリーを作製(「ラ ボマニュアルヒトゲノムマツビング」、 堀雅明及び中村祐輔 編、 丸善 出版) し、 該コスミ ドライブラリーをスクリーニングすることにより、 該目的とする蛋白質 のコーディング領域の DN Aを含む陽性クローンを得、 該陽性クローンから切り 出したコーディング DNAをプローブとして用い、 前述の cDNAライブラリー をスクリーニングすることにより調製することもできる。  For example, when obtaining cDNAs encoding human-derived proteins, Kosumi Dry Slurry into which human genomic DNA (chromosomal DNA) has been introduced is also prepared ("Labo Manual Human Genome Matching", edited by Masaaki Hori and Yusuke Nakamura, Maruzen) Then, by screening the cosmid library, a positive clone containing the DNA of the coding region of the target protein is obtained. Using the coding DNA cut out from the positive clone as a probe, the cDNA library described above is used. It can also be prepared by screening rallies.
(2)発現ベクターの調製及び該ベクタ一による細胞の形質転換  (2) Preparation of expression vector and transformation of cells with the vector
上述した任意の蛋白質をコードする遺伝子のクローニングにおいて用いられる ベクタ一、 及び/または該蛋白質をコードする遺伝子を発現させるための発現べ クタ一としては、 原核細胞及び/または真核細胞の各種の宿主内で複製保持また は自己増殖できるものであれば特に制限されず、 プラスミ ドベクタ一およびファ ージベクターが包含される。但し、前述した本発明の <1>乃至く 22>の実施において は、 該蛋白質をコードする遺伝子が、 前記で定義した 「PC12由来細胞」 中で発現 可能なベクターに限られる。 当該組換えべクタ一は、 簡便には当業界において入手可能な組換え用べクタ一 (プラスミ ド D N Aおよびバクテリアファージ D N A ) に該蛋白質コードする D N Aを常法により連結することによって調製することができる。 Examples of the vector used in cloning of the gene encoding any of the above-mentioned proteins and / or the expression vector for expressing the gene encoding the protein include various prokaryotic and / or eukaryotic host cells. There is no particular limitation as long as it can maintain replication or self-reproduce in it, and includes plasmid vector and phage vector. However, in the above-mentioned embodiments <1> to <22>, the gene encoding the protein is limited to a vector that can be expressed in the “PC12-derived cell” as defined above. The recombinant vector can be simply prepared by ligating the DNA encoding the protein to a recombinant vector (plasmid DNA and bacterial phage DNA) available in the art in a conventional manner. it can.
用いられる組換え用べクタ一として具体的には、 大腸菌由来のプラスミ ドとし て例えば pBR322、 pBR325、 pUC12、 pUC13、 pUC19など、 酵母由来プラスミ ドとし て例えば pSH19、 pSH15など、 枯草菌由来プラスミ ドとして例えば pUB110、 pTP5、 PC194 などが例示される。 また、 ファージとしては、 入ファージなどのパクテリ オファージが、 さらにレトロウイルス、 ヮクシニヤウィルス、 核多角体ウィルス などの動物や昆虫のウィルス (pVL1393、 インビトロゲン製) が例示される。 該蛋白質をコ一ドする D N Aを前記で定義した「PC12由来細胞」 中で発現させ る目的においては、 発現ベクターが有用である。 発現べクタ一としては、 該細胞 中で該遺伝子を発現する機能を有するものであれば特に制限されないが、例えば、 pMAL C2 、 pEF-BOS (ヌクレイックアシッドリサーチ(Nucleic Acid Research)^ 第 1 8巻、 第 5 3 2 2頁、 1 9 9 0年等) あるいは pME18S (実験医学別冊「遺伝 子工学ハンドブック」、 1 9 9 2年等) 等を挙げることができる。  Specific examples of the recombination vector used include plasmids derived from Escherichia coli such as pBR322, pBR325, pUC12, pUC13 and pUC19, and plasmids derived from yeast such as pSH19 and pSH15, and plasmids derived from Bacillus subtilis. For example, pUB110, pTP5, and PC194 are exemplified. Examples of the phage include pacteriophage such as input phage, and animal and insect viruses (pVL1393, manufactured by Invitrogen) such as retrovirus, puccinia virus, and nucleopolyhedrovirus. Expression vectors are useful for the purpose of expressing DNA encoding the protein in “PC12-derived cells” as defined above. The expression vector is not particularly limited as long as it has a function of expressing the gene in the cell. For example, pMAL C2, pEF-BOS (Nucleic Acid Research) ^ 18 Volume, p. 532, p. 1992, etc.) or pME18S (Experimental Medicine separate volume, “Genetic Engineering Handbook”, p. 1992, etc.).
宿主として動物細胞を用いる場合、 発現べクタ一は少なくともプロモーター、 開始コドン、 目的の該蛋白質をコードする D N A、 終止コドンを含んでいること が好ましい。 またシグナルペプチドをコードする D N A、 ェンハンサー配列、 該 蛋白質をコードする遺伝子の 5, 側および 3, 側の非翻訳領域、 スプライシング 接合部、 ポリアデニレーシヨン部位、 選択マ一力一領域または複製可能単位など を含んでいてもよい。 また、 目的に応じて通常用いられる遺伝子増幅遺伝子 (マ 一力一) を含んでいてもよい。  When an animal cell is used as a host, the expression vector preferably contains at least a promoter, an initiation codon, DNA encoding the protein of interest, and a stop codon. DNA encoding a signal peptide, enhancer sequence, untranslated regions at the 5 and 3 sides of the gene encoding the protein, splicing junction, polyadenylation site, selective binding region, or replicable unit Etc. may be included. Further, it may contain a gene amplification gene (maichiriichi) usually used depending on the purpose.
好適な開始コドンとしては、 メチォニンコドン (ATG) が例示される。  Suitable initiation codons include methionine codon (ATG).
終止コドンとしては、 常用の終止コドン (例えば、 TAG、 TGA、 TAA) が例示され る。  Examples of the stop codon include commonly used stop codons (eg, TAG, TGA, TAA).
夕一ミネ一夕一領域としては、 通常用いられる天然または合成の夕一ミネ一夕 一を用いることができる。 The evening / mine / night area is usually used natural or synthetic evening / mine One can be used.
複製可能単位とは、 宿主細胞中でその全 D N A配列を複製することができる能 力をもつ D N Aを言い、 天然のプラスミ ド、 人工的に修飾されたプラスミ ド (天 然のプラスミ ドから調製された D N Aフラグメント) および合成プラスミ ド等が 含まれる。 例えば、 E. col i ではプラスミ ド p B R 3 2 2、 もしくはその人工的 修飾物(P B R 3 2 2を適当な制限酵素で処理して得られる D N Aフラグメント) が、 また哺乳動物細胞ではプラスミ ド pRSVneo ATCC 37198、 プラスミ ド pSV2dhf r ATCC 37145、 プラスミ ド pdBPV- MMTneo ATCC 37224、 プラスミ ド pSV2neo ATCC 37149等があげられる。  A replicable unit is DNA that has the ability to replicate its entire DNA sequence in a host cell, and is composed of natural plasmids, artificially modified plasmids (prepared from natural plasmids). DNA fragments) and synthetic plasmids. For example, plasmid pBR322 or an artificially modified product thereof (a DNA fragment obtained by treating PBR322 with an appropriate restriction enzyme) is used in E. coli, and plasmid pRSVneo is used in mammalian cells. ATCC 37198, plasmid pSV2dhfr ATCC 37145, plasmid pdBPV-MMMTneo ATCC 37224, and plasmid pSV2neo ATCC 37149.
ェンハンサー配列、 ポリアデ二レーション部位およびスブライシング接合部位 については、 当業者において通常使用されるものを用いることができる。  As the enhancer sequence, polyadenylation site and slicing junction site, those commonly used by those skilled in the art can be used.
選択マーカーとしては、通常使用されるものを常法により用いることができる。 例えば、 ネオマイシン、 テトラサイクリン、 アンビシリン、 ハイグロマイシン、 またはカナマイシン等の抗生物質耐性遺伝子等が例示される。  As the selection marker, a commonly used marker can be used by a conventional method. Examples thereof include antibiotic resistance genes such as neomycin, tetracycline, ambicillin, hygromycin, and kanamycin.
遺伝子増幅遺伝子としては、 ジヒドロ葉酸レダク夕一ゼ (DHFR) 遺伝子、 チミ ジンキナーゼ遺伝子、 ネオマイシン耐性遺伝子、 グルタミン酸合成酵素遺伝子、 アデノシンデァミナ一ゼ遺伝子、 オル二チンデカルボキシラーゼ遺伝子、 ヒグロ マイシン一 B—ホスホトランスフェラ一ゼ遺伝子、 ァスパルラート トランスカル バミラーゼ遺伝子等を例示することができる。  Gene amplification genes include dihydrofolate reductase (DHFR) gene, thymidine kinase gene, neomycin resistance gene, glutamate synthase gene, adenosine deminase gene, ordinine decarboxylase gene, hygromycin B — A phosphotransferase gene, an aspartalate transcarbamylase gene, and the like.
本発明で用いられる発現べクタ一は、 少なくとも、 上述のプロモーター、 開始 コドン、 所望の蛋白質をコードする D N A、 終止コ ドンおよび夕一ミネ一夕ー領 域を連続的かつ環状に適当な複製可能単位に連結することによつて調製すること ができる。またこの際、所望により制限酵素での消化や T4 DNAリガ一ゼを用いる ライゲーシヨン等の常法により適当な D N Aフラグメント (例えば、 リンカ一、 他の制限酵素切断部位など) を用いることができる。  The expression vector used in the present invention can appropriately and continuously replicate at least the above-mentioned promoter, start codon, DNA encoding the desired protein, stop codon, and overnight-mine area. It can be prepared by linking to units. At this time, if necessary, an appropriate DNA fragment (for example, a linker, another restriction enzyme cleavage site, etc.) can be used by a conventional method such as digestion with a restriction enzyme or ligation using T4 DNA ligase.
本発明において調製される形質転換細胞は、上述の発現ベクターを宿主細胞 (即 ち、 前記で定義した 「PC12 由来細胞」) に導入することにより調製することがで さる ο The transformed cell prepared in the present invention is prepared by transforming the above-described expression vector into a host cell (immediately). That is, it can be prepared by introduction into the “PC12-derived cell” defined above.
本発明において使用される細胞 (野生型細胞、 株化細胞、 非形質転換細胞、 形 質転換細胞を含む) は、 栄養培地で培養することによって生存、 維持及び/また は増殖させることができる。  The cells (including wild-type cells, cell lines, non-transformed cells, and transformed cells) used in the present invention can survive, maintain, and / or proliferate by culturing in a nutrient medium.
栄養培地は、 宿主細胞 (形質転換体) の生育に必要な炭素源、 無機窒素源もし くは有機窒素源を含でいることが好ましい。炭素源としては、例えばグルコース、 デキストラン、 可溶性デンプン、 ショ糖などが、 無機窒素源もしくは有機窒素源 としては、 例えばアンモニゥム塩類、 硝酸塩類、 アミノ酸、 コーンスチープ ' リ 力一、 ペプトン、 カゼイン、 肉エキス、 大豆粕、 バレイショ抽出液などが例示さ れる。 また所望により他の栄養素 (例えば、 無機塩 (例えば塩化カルシウム、 リ ン酸ニ水素ナトリゥム、 塩化マグネシウム)、 ビ夕ミン類、 抗生物質(例えばテト ラサイクリン、 ネオマイシン、 アンビシリン、 カナマイシン等) など) を含んで いてもよい。  The nutrient medium preferably contains a carbon source, an inorganic nitrogen source or an organic nitrogen source necessary for the growth of the host cell (transformant). Examples of the carbon source include glucose, dextran, soluble starch, and sucrose, and examples of the inorganic or organic nitrogen source include ammonium salts, nitrates, amino acids, corn chips, peptone, casein, and meat extract. , Soybean meal, potato extract and the like. If desired, other nutrients (eg, inorganic salts (eg, calcium chloride, sodium dihydrogen phosphate, magnesium chloride), bimins, antibiotics (eg, tetracycline, neomycin, ambibicin, kanamycin, etc.), etc.) May be included.
培養は当業界において知られている方法により行われる。 培養条件、 例えば温 度、 培地の p Hおよび培養時間は適宜選択される。  The culturing is performed by a method known in the art. Culture conditions, such as temperature, pH of the medium, and culture time are appropriately selected.
宿主が動物細胞の場合には、 培地として例えば約 5〜20%の胎児牛血清を含む MEM培地 (Science, Vol.122, p.501, 1952)、 DMEM培地 (Virology, Vol .8, p.3 96, 1959)、 RPMI1640 培地 (J. Am. Med. Assoc. , Vol.199, p.519, 1967)、 199 培地(proc. Soc. Exp. Biol . Med. , Vol.73, p. l, 1950)等を用いることができ る。 培地の pHは約 6〜 8に設定することができ、 培養は通常約 30〜40°Cでなわ れ、 必要により通気や撹拌を行うこともできる。  When the host is an animal cell, for example, a MEM medium containing about 5 to 20% fetal bovine serum (Science, Vol. 122, p. 501, 1952), a DMEM medium (Virology, Vol. 8, p. 396, 1959), RPMI1640 medium (J. Am. Med. Assoc., Vol. 199, p. 519, 1967), 199 medium (proc. Soc. Exp. Biol. Med., Vol. 73, p. L) , 1950) can be used. The pH of the medium can be set to about 6 to 8, and the culture is usually performed at about 30 to 40 ° C, and if necessary, aeration and stirring can be performed.
( 3 ) キメラ遺伝子の構築と発現ベクターの構築  (3) Construction of chimeric gene and construction of expression vector
本発明で用いられるキメラ G蛋白質ひサブユニッ ト、 例えば、 Gひ i と G aq からなる Gひ qiをコードする遺伝子あるいは Gひ iと Gひ sからなる G asiをコ 一ドする遺伝子は、 G aq及び Gひ sの各々をコードする mMAの塩基配列を錡型 として下記一対のプライマ一を用いた PCRにより調製することができる。 The chimeric G protein subunit used in the present invention, for example, a gene encoding Ghi qi consisting of Ghi i and G aq or a gene encoding G asi consisting of G hi i and G his is The base sequence of mMA encoding each of aq and G Can be prepared by PCR using the following pair of primers.
フォーヮ一ドプライマ一: Gq及び Gsの各々の N末端アミノ酸配列をコ一ド する塩基配列に相補的な塩基配列を有するプライマー。  Fourth primer: A primer having a nucleotide sequence complementary to the nucleotide sequence encoding the N-terminal amino acid sequence of each of Gq and Gs.
リバースプライマー: Gq及び Gsの各々の C末端側のアミノ酸の一部をコ一 ドする塩基配列に相補的な塩基配列の下流に Gi の C末端アミノ酸配列をコード する塩基配列に相補的な塩基配列を有するプライマー。  Reverse primer: A nucleotide sequence complementary to the nucleotide sequence encoding the C-terminal amino acid sequence of Gi downstream of the nucleotide sequence complementary to the nucleotide sequence encoding a part of the amino acid at the C-terminal side of each of Gq and Gs A primer having
( 4 ) レポーター遺伝子発現ベクター  (4) Reporter gene expression vector
前記で定義した本発明で用いられる各種のレポーター遺伝子は、 上述したよう な既存の遺伝子クロ一ニング法を用いてクロ一ニングすることもできるが、 該遺 伝子が挿入された市販の発現べクタ一を用いるのが簡便である。  The various reporter genes used in the present invention as defined above can be cloned using the existing gene cloning method as described above. However, commercially available expression vectors into which the gene has been inserted can be used. It is convenient to use a cutter.
( 5 ) 細胞の形質転換  (5) Cell transformation
本発明における宿主細胞 (例えば、 前記で定義した 「PC12 -由来細胞」) の種々 遺伝子発現べクタ一による形質転換は、 上述した一般的な方法 (例えばリポフエ クシヨン法あるいはエレクトロポレーシヨン法など) により行うことができる。 本発明で使用される形質転換体には、 一過性形質転換体 (transient transfor mant)あるいは安定形質転換体(stable transformant)のいずれもが包含される c 安定形質転換体は、 前述したとおり、 宿主細胞を種々のマーカー遺伝子 (例え ばネオマイシン耐性遺伝子等の薬剤耐性遺伝子) で形質転換し、 次いで、 該細胞 を、 該薬剤存在下で培養して該薬剤に耐性のクローンを選択することにより取得 できる。 Transformation of host cells (eg, “PC12-derived cells” as defined above) by various gene expression vectors in the present invention is performed by the above-described general method (eg, lipofection method or electroporation method). Can be performed. The transformants used in the present invention include c- transformants, which include both transient transformants and stable transformants, as described above. Host cells are transformed with various marker genes (for example, a drug resistance gene such as a neomycin resistance gene), and the cells are then cultured in the presence of the drug to obtain clones resistant to the drug. it can.
( 6 ) G蛋白質共役型受容体のァゴニストを同定する方法  (6) Method for identifying agonist of G protein-coupled receptor
本発明の 1つである下記発明 (前記く 1>) の態様の一例を挙げる。  An example of an embodiment of the following invention (1) as one of the present invention will be described.
前記く 1>の発明は即ち下記のとおりである。  The invention <1> is as follows.
「ある物質が所望の G蛋白質共役型受容体のァゴニス卜であるか否かを決定す る方法であって、 下記 (a ) 乃至 (c ) の工程を含むことを特徴とする方法: ( a ) 少なくとも下記 ( 1 ) 及び ( 2 ) の外来性遺伝子: ( 1 ) 該所望の G蛋白質共役型受容体をコ一ドする遺伝子;及び "A method for determining whether or not a substance is an agonist of a desired G protein-coupled receptor, comprising the following steps (a) to (c): ) At least the following exogenous genes (1) and (2): (1) a gene encoding the desired G protein-coupled receptor; and
( 2 ) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 —領域に発現可能に連結されたレポーター遺伝子;  (2) a reporter gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein;
を有する P C 1 2由来細胞の定数からなる試料に該物質を接触させる工程; Contacting the substance with a sample consisting of a constant number of PC12-derived cells having:
( b ) 該物質に接触させた該試料中の各細胞において発現した該レポ一夕一 遺伝子が生ずる検出可能なシグナル、 及び該物質に接触させていない該試料の各 細胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルの各々を 定量的に決定する工程;及び、  (b) a detectable signal produced by the repo gene expressed in each cell in the sample contacted with the substance, and the repo gene expressed in each cell of the sample not contacted with the substance Quantitatively determining each of the detectable signals produced by the gene;
( c ) 工程 (b ) で決定した該各々のシグナルの量を比較する工程。」 本発明は例えば、 下記のように実施することができる。  (c) comparing the amounts of the respective signals determined in step (b). The present invention can be implemented, for example, as follows.
① PC12由来細胞 (例えば、 PC12h細胞株) を下記(i )及び(ii )または(i )乃至(i ii )の遺伝子が宿主細胞内で発現可能なように挿入された 1または複数の発現べ クタ一で形質転換し、 該全ての遺伝子が導入された形質転換細胞 (好ましくは安 定形形質転換細胞) を取得する。  (1) PC12-derived cells (eg, PC12h cell line) are transformed into one or more expression vectors in which the following genes (i) and (ii) or (i) to (iii) have been inserted so that they can be expressed in host cells. A transformed cell (preferably a stable transformed cell) into which all the genes have been introduced is obtained.
i )ある所望の G蛋白質共役型受容体をコ一ドする遺伝子 (好ましくは cDNA)。 ii ) G蛋白質を介するシグナルにより発現が誘導される遺伝子のプロモ一夕一 領域 (好ましくは、 zif268(EGR-l) プロモーター領域、 c-fosプロモーター領域、 または SRE及び/または CREを含むプロモ一夕一領域) に発現可能に連結された レポ一夕一遺伝子 (好ましくは、 蛍若しくはゥミシィタケなどに由来するルシフ エラ一ゼ、 クラゲ由来の G F P (Green Fluorescence Protein)、 ?—ラク夕マ一 ゼをコードする cDNA)。  i) A gene (preferably cDNA) encoding a desired G protein-coupled receptor. ii) A promoter overnight region of a gene whose expression is induced by a signal mediated by a G protein (preferably, a promoter region containing a zif268 (EGR-1) promoter region, a c-fos promoter region, or an SRE and / or a CRE. Encoding a repo overnight gene (preferably luciferase derived from fireflies or P. mushrooms), GFP (Green Fluorescence Protein) derived from jellyfish, CDNA).
iii ) Gqのひサブュニッ卜の C末端側のアミノ酸配列であって 3位のグリシンを 含む約 3乃至約 23個 (好ましくは 9個) の連続するアミノ酸配列を、 Giのひサ ブユニッ トの C末端側の対応するアミノ酸配列で置換して得られるキメラ G蛋白 質ひサブュニッ 卜をコードする遺伝子 (好ましくは、 cDNA)。  iii) The amino acid sequence at the C-terminal side of the Gq subunit, from about 3 to about 23 (preferably 9) consecutive amino acid sequences including glycine at position 3 is converted to the C-subunit of the Gi subunit. A gene (preferably cDNA) encoding a chimeric G protein subunit obtained by substitution with the corresponding amino acid sequence at the terminal side.
②得られた該形質転換細胞の定数 (例えば、 l〜l x l0lfl個、 以下好ましい順に、 lxlO^lxlO9個、 lxl02〜lxl08個、 lxl03〜lxl07個、 lxl04~lxl07個、 1 xl04〜lxl06個、 Ixl04〜5xl05個) を所望の細胞培養が可能な器具 (例えば、 シャーレ、 多数のゥエルを有するマイクロプレート、 マイクロチューブなど) を 用いて所望の試薬 (例えば、 血清、 抗生物質など) を含む所望の栄養培地 (例え ば、 D-MEM培地など) 中で培養する。 この定数の細胞からなる試料を、 少なくと も 2セッ ト以上準備する。 ② The number of the obtained transformed cells (for example, l to lx l0 lfl , lxlO ^ lxlO 9 pieces, lxl0 2 ~lxl0 8 pieces, lxl0 3 ~lxl0 7 atoms, lxl0 4 ~ lxl0 7 amino, 1 xl0 4 ~lxl0 6 pieces, Ixl0 4 ~5xl0 5 pieces) capable desired cell culture In a desired nutrient medium (eg, D-MEM medium) containing the desired reagents (eg, serum, antibiotics, etc.) using instruments (eg, petri dishes, microplates with multiple wells, microtubes, etc.) Incubate with Prepare at least two sets of samples consisting of cells with this constant.
③前記の試料の少なくとも 1つに試験しょうとする物質 (例えば、 化合物) の 所望の濃度 (例えば、 約 Ι.ΟρΜ〜約 1·0Μ、 以下好ましい順で、 約 ΙΟ.ΟρΜ〜約 100 mM、 約 ΙΟΟρΜ〜約 10mM、 約 Ι.ΟηΜ〜約 1.0mM、 約 ΙΟηΜ〜約 500 M、 約 ΙΟΟηΜ〜約 5 00 /M) を加え約 37°C前後で所望の時間 (例えば、 約 1〜24時間) 培養する。 ③ At least one of the samples contains the desired concentration of the substance (eg, compound) to be tested (eg, about Ι.ΟρΜ to about 1.0 ·, and in the following order of preference, about ΙΟ.ΟρΜ to about 100 mM, Add about ΙΟΟρΜ to about 10 mM, about Ι.ΟηΜ to about 1.0 mM, about ΙΟηΜ to about 500 M, about ΙΟΟηΜ to about 500 / M), and add the desired time at about 37 ° C (for example, about 1 to 24 hours). ) Incubate.
④前記で該物質の存在下で培養した細胞試料に含まれる細胞を、 所望の細胞溶 解試薬で細胞溶解し、 該試料の細胞溶解液の一定量中に含まれるルシフェラーゼ の量を市販のルシフ Iラ一ゼ活性測定装置を用いて定量的に決定し、 測定値 [A] を得る。 細胞 The cells contained in the cell sample cultured in the presence of the substance are lysed with a desired cell lysis reagent, and the amount of luciferase contained in a certain amount of the cell lysate of the sample is determined by using commercially available luciferase. Determine quantitatively using an I-lase activity measuring device to obtain the measured value [A].
また、 該物質を加えないで培養した前記②の細胞試料中に含まれる細胞につい ても、 同様にして細胞溶解し、 細胞溶解液の一定量中に含まれるルシフヱラーゼ の量を市販のルシフ ラ一ゼ活性測定装置を用いて定量的に決定し、 測定値 [B] を得る。  In addition, cells contained in the cell sample of the above (2) cultured without adding the substance are also lysed in the same manner, and the amount of luciferase contained in a certain amount of the cell lysate is determined by using commercially available luciferase. Quantitatively, using an activity measuring device to obtain the measured value [B].
⑤測定値 [A]と測定値 [B]を比較し、 その差違の程度に基づいて、 該物質が該 G 蛋白質共役型受容体のァゴニス卜であるか否か (該受容体との相互作用の有無) を決定する。  ⑤ The measured value [A] is compared with the measured value [B], and based on the degree of the difference, whether or not the substance is an agonist of the G protein-coupled receptor (interaction with the receptor) Is determined).
(7) G蛋白質共役型受容体のァゴニストを同定するために物質をスクリーニン グする方法  (7) Screening substances to identify agonists of G protein-coupled receptors
本発明の 1つである下記発明 (前記く 2>) の態様の一例を挙げる。  An example of an embodiment of the following invention (as described above 2), which is one of the present invention, will be described.
前記く 2>の発明は即ち下記のとおりである。  The invention 2) is as follows.
「所望の G蛋白質共役型受容体のァゴニストを同定するために物質のスクリー ニングする方法であって、 下記 (a) 乃至 (c) の工程を含むことを特徴とする 方法: ノ "Screening substances to identify agonists of the desired G protein-coupled receptor A method comprising the following steps (a) to (c):
(a) 少なくとも下記 ( 1) 及び (2) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1 ) 該所望の G蛋白質共役型受容体をコードする遺伝子;及び  (1) a gene encoding the desired G protein-coupled receptor; and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモ一夕 一領域に発現可能に連結されたレポ一夕一遺伝子;  (2) a repo overnight gene operably linked to a promoter overnight region of a gene whose expression is induced by stimulation through a G protein;
を有する PC 12由来細胞の定数からなる試料の複数を準備し、 該試料の各々に 異なる物質を接触させる工程; Preparing a plurality of samples consisting of a constant number of PC12-derived cells having: and contacting each of the samples with a different substance;
(b) 工程 (a) で該物質に接触させた各々の試料について、 該試料中の各 細胞において発現した該レポーター遺伝子が生ずる検出可能なシグナルを、 及び いずれの物質にも接触させていない該試料の各細胞において発現した該レポ一夕 一遺伝子が生ずる検出可能なシグナルの各々を定量的に決定する工程;及び、 (b) for each sample contacted with the substance in step (a), the detectable signal produced by the reporter gene expressed in each cell in the sample; and Quantitatively determining each of the detectable signals produced by the repo overnight gene expressed in each cell of the sample; and
(c) 工程 (b) で決定した該各々のシグナルの量を比較する工程。」 本 ¾明は例えば、 下記のように実施することができる。 (c) comparing the amounts of the respective signals determined in step (b). The present invention can be implemented, for example, as follows.
① PC12由来細胞 (例えば、 PC12h細胞株) を下記(i)及び(ii)または(i)乃至(i ii)の遺伝子が宿主細胞内で発現可能なように挿入された 1または複数の発現べ クタ一で形質転換し、 該全ての遺伝子が導入された形質転換細胞 (好ましくは安 定形形質転換細胞) を取得する。  ① PC12-derived cells (eg, PC12h cell line) are transformed into one or more expression vectors in which the following genes (i) and (ii) or (i) to (ii) have been inserted so that they can be expressed in host cells. A transformed cell (preferably a stable transformed cell) into which all the genes have been introduced is obtained.
i)ある所望の G蛋白質共役型受容体をコードする遺伝子 (好ましくは cDNA)。 ii) G蛋白質を介するシグナルにより発現が誘導される遺伝子のプロモ一夕一 領域 (好ましくは、 zif268(EGR- 1) プロモー夕一領域、 c- fosプロモー夕一領域、 または SRE及び/または CREを含むプロモーター領域) に発現可能に連結された レポ一夕一遺伝子 (好ましくは、 蛍若しくはゥミシィ夕ケなどに由来するルシフ エラ一ゼ、 クラゲ由来の GFP (Green Fluorescence Protein)、 ?—ラク夕マ一 ゼをコードする cDNA)。  i) A gene (preferably cDNA) encoding a desired G protein-coupled receptor. ii) Promoter region of a gene whose expression is induced by a signal mediated by a G protein (preferably, zif268 (EGR-1) Promoter region, c-fos Promoter region, or SRE and / or CRE Repro overnight gene (preferably, luciferase derived from fireflies or mimics, GFP (Green Fluorescence Protein) derived from jellyfish, CDNA encoding zeolites).
i i i ) Gqのひサブュニッ 卜の C末端側のァミノ酸配列であって 3位のグリシンを 含む約 3乃至約 23個 (好ましくは 9個) の連続するアミノ酸配列を、 Giのひサ ブュニットの C末端側の対応するァミノ酸配列で置換して得られるキメラ G蛋白 質ひサブユニットをコードする遺伝子 (好ましくは、 cDNA)。 iii) The amino acid sequence at the C-terminal side of Gq Encodes a chimeric G protein subunit obtained by replacing about 3 to about 23 (preferably 9) contiguous amino acid sequences with the corresponding amino acid sequence at the C-terminal side of Gi subunit. (Preferably cDNA).
②得られた該形質転換細胞の定数 (例えば、 l〜lxl01()個、 以下好ましい順に、 lxlO^lxlO9個、 1 102〜1 108個、 1 103〜1 107個、 lxl04~lxl07個、 1 xl04〜lxl06個、 Ixl04〜5xl05個) を、 多数のゥエル (例えば、 24穴、 48穴、 96穴、 364穴など) を有するマイクロプレートの各々のゥエルに蒔き、 該細胞を 所望の試薬 (例えば、 血清、 抗生物質など) を含む所望の栄養培地 (例えば、 D- MEM培地など) 中で培養する。 (以下、 各ゥエルにセヅ 卜された定数の細胞群を、 試料と称する。) ② The resulting constants of the transformed cell (e.g., L~lxl0 1 () number, in order of preference below nine lxlO ^ lxlO, 1 10 2 ~1 10 8 pieces, 1 10 3 to 1 10 7, Lxl0 4 ~ lxl0 7 amino, 1 xl0 4 ~lxl0 6 pieces, Ixl0 4 to ~5Xl0 5 pieces), a number of Ueru (e.g., 24 holes, 48 holes, 96 holes, each of the microplates with 364 like holes) Ueru And the cells are cultured in a desired nutrient medium (eg, D-MEM medium) containing the desired reagents (eg, serum, antibiotics, etc.). (Hereinafter, a fixed group of cells set in each well is referred to as a sample.)
③マイクロプレートの各ゥエルにセヅトされた複数の試料の各々に、 各々異な る試験しょうとする物質 (例えば、 化合物) の所望の濃度 (例えば、 約 1.0pM〜 約 1.0M、 以下好ましい順で、 約 ΙΟ.ΟρΜ〜約 100mM、 約 ΙΟΟρΜ〜約 10mM、 約 Ι.ΟηΜ 〜約 1.0mM、 約 ΙΟηΜ〜約 500 M、 約 ΙΟΟηΜ〜約 500//M) を加え、 約 37°C前後で所 望の時間 (例えば、 約 1〜24時間) 培養する。  ③ Each of a plurality of samples set in each well of the microplate has a desired concentration (for example, about 1.0 pM to about 1.0 M) of a different substance to be tested (for example, a compound). About ΙΟ.ΟρΙΟ to about 100 mM, about ΙΟΟρΜ to about 10 mM, about Ι.ΟηΜ to about 1.0 mM, about ΙΟηΜ to about 500 M, about ΙΟΟηΜ to about 500 // M) and about 37 ° C. Incubate for about 1 to 24 hours.
④次いで、 各々異なる試験物質の存在下で培養した各試料に、 所望の細胞溶解 試薬を加えて細胞を溶解し、 該各々の試料の細胞溶解液の一定量中に含まれるル シフェラ一ゼの量を市販のルシフヱラーゼ活性測定装置を用いて定量的に決定し、 各々の試料について複数の測定値 [A]、 [B]、 [C]、 [D]、 [E] · · · - [X]を得る。 また、 該物質を加えないで培養した前記②の細胞試料中に含まれる細胞につい ても、 同様にして細胞溶解し、 細胞溶解液の一定量中に含まれるルシフェラーゼ の量を市販のルシフェラーゼ活性測定装置を用いて定量的に決定し、 1または複 数の測定値 [Control]を得る。  Next, a desired cell lysis reagent is added to each sample cultured in the presence of a different test substance to lyse the cells, and the luciferase contained in a fixed amount of the cell lysate of each sample is determined. The amount was quantitatively determined using a commercially available luciferase activity measuring instrument, and multiple measured values [A], [B], [C], [D], [E] · ·-[X ]. In addition, cells contained in the cell sample of the above (2) cultured without adding the substance are also lysed in the same manner, and the amount of luciferase contained in a certain amount of the cell lysate is measured using a commercially available luciferase activity assay. Determine quantitatively using the instrument and obtain one or more measured values [Control].
⑤複数の測定値 [A] 、 [B]、 [C]、 [D]、 [Eレ · · ' [X]の各々を、 測定値 [Cont rol]と比較し、 その差違の程度に基づいて、 該 G蛋白質共役型受容体のァゴニス トである (該受容体と相互作用する) 物質を選別、 同定する。 ( 8 ) G蛋白質共役型受容体のアン夕ゴニストまたはァゴニスト作用阻害物質を 同定する方法 ⑤Compares each of the measured values [A], [B], [C], [D], [E] · [X] with the measured value [Control], and based on the degree of difference Then, a substance that is an agonist of the G protein-coupled receptor (interacts with the receptor) is selected and identified. (8) Method for identifying an agonist or agonist inhibitor of G protein-coupled receptor
本発明の 1つである下記発明 (前記く 3>) の態様の一例を挙げる。  An example of an embodiment of the following invention (as described above 3), which is one of the present invention, will be described.
前記く 3>の発明は即ち下記のとおりである。  The invention of 3> is as follows.
「ある物質が所望の G蛋白質共役型受容体のアン夕ゴニストであるか否か、 ま たは該 G蛋白質共役型受容体のァゴニストのァゴニスト作用の阻害物質であるか 否かを决定する方法であって、 下記 (a ) 乃至 (c ) の工程を含むことを特徴と する方法:  `` A method for determining whether or not a substance is an antagonist of the desired G protein-coupled receptor or an inhibitor of the agonist action of an agonist of the G protein-coupled receptor. A method characterized by including the following steps (a) to (c):
( a ) 少なくとも下記 ( 1 ) 及び (2 ) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1 ) 該所望の G蛋白質共役型受容体をコ一ドする遺伝子;及び  (1) a gene encoding the desired G protein-coupled receptor; and
( 2 ) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一領域に発現可能に連結されたレポーター遺伝子;  (2) a reporter gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein;
を有する P C 1 2由来細胞の定数からなる試料に該 G蛋白質受容体のァゴニスト 及び該物質を接触させる工程; Contacting the G protein receptor agonist and the substance with a sample consisting of a constant number of PC12-derived cells having:
( b ) 該物質に接触させた該試料中の各細胞において発現した該レポ一夕一 遺伝子が生ずる検出可能なシグナル、 及び該物質に接触させていない該試料の各 細胞において発現した該レポーター遺伝子が生ずる検出可能なシグナルの各々を 定量的に決定する工程;及び、  (b) a detectable signal produced by the reporter gene expressed in each cell in the sample contacted with the substance, and the reporter gene expressed in each cell of the sample not contacted with the substance Quantitatively determining each of the detectable signals resulting from;
( c ) 工程 (b ) で決定した該各々のシグナルの量を比較する工程。」 本発明は例えば、 下記のように実施することができる。  (c) comparing the amounts of the respective signals determined in step (b). The present invention can be implemented, for example, as follows.
① PC12由来細胞 (例えば、 PC12h細胞株) を下記(i)及び(ii)または(i)乃至(i ii )の遺伝子が宿主細胞内で発現可能なように挿入された 1または複数の発現べ クタ一で形質転換し、 該全ての遺伝子が導入された形質転換細胞 (好ましくは安 定形形質転換細胞) を取得する。  (1) A PC12-derived cell (for example, a PC12h cell line) is transformed into one or more expression vectors in which the following genes (i) and (ii) or (i) to (iii) have been inserted so that they can be expressed in host cells. A transformed cell (preferably a stable transformed cell) into which all the genes have been introduced is obtained.
i )ある所望の G蛋白質共役型受容体をコードする遺伝子 (好ましくは cDNA)。 i i ) G蛋白質を介するシグナルにより発現が誘導される遺伝子のプロモ一夕一 領域 (好ましくは、 zif268(EGR-l) プロモー夕一領域、 c-fosプロモ一夕一領域、 または SRE及び/または CREを含むプロモーター領域) に発現可能に連結された レポ一夕—遺伝子 (好ましくは、 蛍若しくはゥミシィ夕ケなどに由来するルシフ エラ一ゼ、 クラゲ由来の GFP (Green Fluorescence Protein)、 一ラク夕マー ゼをコードする cDNA)。 i) A gene (preferably cDNA) encoding a desired G protein-coupled receptor. ii) Promoting genes whose expression is induced by G protein-mediated signals A repo overnight gene (preferably a zif268 (EGR-l) promoter overnight region, a c-fos promoter overnight region, or a promoter region containing SRE and / or CRE) Are luciferases derived from fireflies or mimic, GFP (Green Fluorescence Protein) derived from jellyfish, and cDNA encoding laccase.
iii)Gqのひサブュニッ卜の C末端側のアミノ酸配列であって 3位のグリシンを 含む約 3乃至約 23個 (好ましくは 9個) の連続するアミノ酸配列を、 Giのひサ ブユニッ トの C末端側の対応するァミノ酸配列で置換して得られるキメラ G蛋白 質ひサブユニットをコードする遺伝子 (好ましくは、 CDNA)。 iii) The amino acid sequence at the C-terminal side of the Gq subunit, from about 3 to about 23 (preferably 9) consecutive amino acid sequences including glycine at position 3 is substituted with the C sequence of the Gi subunit. A gene (preferably C DNA) encoding a chimeric G protein subunit obtained by substituting the corresponding amino acid sequence at the terminal side.
②得られた該形質転換細胞の定数 (例えば、 l〜lxl01Q個、 以下好ましい順に、 lxlO' lxlO9個、 lxl02〜lxl08fli、 Ixl03〜lxl07個、 1 104〜1 107個、 1 xl04〜lxl06個、 Ixl04〜5xl05個) を所望の細胞培養が可能な器具 (例えば、 シャーレ、 多数のゥエルを有するマイクロプレート、 マイクロチューブなど) を 用いて所望の試薬 (例えば、 血清、 抗生物質など) を含む所望の栄養培地 (例え ば、 D-MEM培地など) 中で培養する。 この定数の細胞からなる試料を、 少なくと も' 2セット以上準備する。 ② The resulting constants of the transformed cell (e.g., L~lxl0 1Q pieces, in order of preference below, lxlO 'lxlO 9 pieces, lxl0 2 ~lxl0 8 fli, Ixl0 3 ~lxl0 7 atoms, 1 10 4 to 1 10 7 pieces, 1 xl0 4 ~lxl0 6 pieces, Ixl0 4 ~5xl0 5 pieces) and capable of the desired cell culture instrument (e.g., a petri dish, a microplate having many Ueru, etc. microtube) the desired reagents used ( For example, culture in a desired nutrient medium (eg, D-MEM medium) containing serum, antibiotics, etc.). Prepare at least two or more sets of samples consisting of cells of this constant.
③前記②の試料の少なくとも 1つ下記(i)及び(ii)を加え、 約 37°C前後で所望 の時間 (例えば、 約 1~24時間) 培養する。  (3) Add at least one of the samples (1) and (2) below, and incubate at about 37 ° C for a desired time (eg, about 1 to 24 hours).
i)該 G蛋白質共役型受容体の既知のァゴニス卜の所望の濃度 (例えば、 約 l.Op M〜約 1.0M、 以下好ましい順で、 約 ΙΟ.ΟρΜ〜約 100mM、 約 ΙΟΟρΜ〜約 10mM、 約 1. OnM〜約 1.0mM、 約 ΙΟηΜ〜約 500 M、 約 ΙΟΟηΜ〜約 500〃M)。  i) a desired concentration of a known agonist of the G protein-coupled receptor (e.g., about l.Op M to about 1.0 M, preferably in the order of about 好 ま し い .ΟρΜ to about 100 mM, about ΙΟΟρΙΟΟ to about 10 mM, About 1.OnM to about 1.0mM, about ΙΟηΙΟ to about 500M, about ΙΟΟηΜ to about 500〃M).
ii)試験しょうとする物質 (例えば、 化合物) の所望の濃度 (例えば、 約 Ι.ΟρΜ 〜約 1.0M、 以下好ましい順で、 約 ΙΟ.ΟρΜ〜約 100mM、 約 ΙΟΟρΜ〜約 10mM、 約 1.0 nM〜約 1.0mM、 約 10nM〜約 500〃M、 約 ΙΟΟηΜ〜約 500 /M)。  ii) The desired concentration of the substance to be tested (for example, a compound) (for example, about Ι.ΟρΜ to about 1.0 M, and in the preferred order, about ΙΟ.ΟρΜ to about 100 mM, about ΙΟΟρΜ to about 10 mM, about 1.0 nM About 1.0 mM, about 10 nM to about 500 〃M, about ΜηΜ to about 500 / M).
④前記②の試料の少なくとも 1つ下記(i)を加え、約 37°C前後で所望の時間(例 えば、 約 1〜24時間) 培養する。 i )該 G蛋白質共役型受容体の既知のァゴニス卜の所望の濃度 (例えば、 約 l . Op M〜約 1.0M、 以下好ましい順で、 約 ΙΟ . ΟρΜ〜約 100mM、 約 ΙΟΟρΜ〜約 10mM、 約 1. OnM〜約 1.0mM、 約 ΙΟηΜ〜約 500〃M、 約 ΙΟΟηΜ〜約 500〃M)。 (4) Add at least one of the samples (1) below and incubate at about 37 ° C for a desired time (for example, about 1 to 24 hours). i) a desired concentration of the known agonist of the G protein-coupled receptor (for example, about l. Op M to about 1.0 M, and in the following order of preference, about ΙΟ. ΜρΜ to about 100 mM, about ΙΟΟρΜ to about 10 mM, About 1. OnM to about 1.0 mM, about ΙΟηΜ to about 500 〃M, about ΙΟΟηΜ to about 500 〃M).
⑤前記③及び④で培養した各々の試料に、 所望の細胞溶解試薬で細胞溶解し、 該各々の試料の細胞溶解液の一定量中に含まれるルシフェラーゼの量を巿販のル シフェラ一ゼ活性測定装置を用いて定量的に決定する。 前記③の試料について測 定値 [ A]を得、 また前記④の試料について測定値 [ B ]を得る。  し In each sample cultured in ③ and 試 薬 above, lyse the cells with the desired cell lysis reagent, and determine the amount of luciferase contained in a certain amount of cell lysate of each sample. Determine quantitatively using a measuring device. Obtain the measured value [A] for the sample (3) and obtain the measured value [B] for the sample (2).
また、 該ァゴニスト及び該試験物質のいずれをもを加えないで培養した前記② の細胞試料中に含まれる細胞についても、 同様にして細胞溶解し、 細胞溶解液の 一定量中に含まれるルシフヱラーゼの量を市販のルシフ Iラ一ゼ活性測定装置を 用いて定量的に決定し、 測定値 [C]を得る。  Further, the cells contained in the cell sample cultured in the absence of any of the agonist and the test substance are similarly lysed, and the luciferase contained in a certain amount of the cell lysate is similarly lysed. The amount is quantitatively determined using a commercially available luciferase activity measuring instrument, and the measured value [C] is obtained.
⑥測定値 [A]、 [B]及び [C]を比較し、 その差違の程度に基づいて、 該物質が該 G 蛋白質共役型受容体のアン夕ゴニス卜であるか否か、 または該物質が該ァゴニス 卜のァゴニスト作用を阻害する活性を有する物質であるか否かを決定する。  ⑥ The measured values [A], [B] and [C] are compared, and based on the degree of the difference, whether or not the substance is an agonite of the G protein-coupled receptor, or Is a substance having an activity of inhibiting the agonist action of the agonist.
( 9 ) G蛋白質共役型受容体のアン夕ゴニストまたはァゴニスト作用阻害物質を 同定するために物質をスクリーニングする方法  (9) A method of screening a G protein-coupled receptor for identification of an agonist or agonist inhibitor
本発明の 1つである下記発明 (前記く 4>) の態様の一例を挙げる。  An example of an embodiment of the following invention (4>) as one of the present invention will be described.
前記く 4>の発明は即ち下記のとおりである。  The invention of 4> is as follows.
「所望の G蛋白質共役型受容体のアン夕ゴニストまたは該 G蛋白質共役型受容 体のァゴニス卜のァゴニスト作用の阻害物質を同定するために物質のスクリ一二 ング方法であって、 下記 (a ) 乃至 (c ) の工程を含むことを特徴とする方法: ( a ) 少なくとも下記 ( 1 ) 及び ( 2 ) の外来性遺伝子:  "A method for screening a substance for identifying an agonist of the desired G protein-coupled receptor or an inhibitor of the agonist action of an agonist of the G protein-coupled receptor, comprising the following (a) And (c): (a) at least the following exogenous genes (1) and (2):
( 1 ) 該所望の G蛋白質共役型受容体をコードする遺伝子;及び  (1) a gene encoding the desired G protein-coupled receptor; and
( 2 ) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一慮域に発現可能に連結されたレポーター遺伝子;  (2) a reporter gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein;
を有する P C 1 2由来細胞の定数からなる試料の複数を準備し、 該試料の各々に 該該 G蛋白質受容体のァゴニストと異なる物質を接触させる工程;A plurality of samples consisting of a constant of PC12-derived cells having Contacting a substance different from the agonist of the G protein receptor;
(b) 工程 (a) で該物質に接触させた各々の試料について、 該試料中の各 細胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルを、 及び いずれの物質にも接触させていない該試料の各細胞において発現した該レポ一夕 —遺伝子が生ずる検出可能なシグナルの各々を定量的に決定する工程;及び、(b) contacting each sample contacted with the substance in step (a) with a detectable signal generated by the repo-all-over-gene expressed in each cell in the sample, and Quantitatively determining each of the detectable signals produced by the repo-gene expressed in each cell of the unsampled sample; and
(c) 工程 (b) で決定した該各々のシグナルの量を比較する工程。」 本発明は例えば、 下記のように実施することができる。 (c) comparing the amounts of the respective signals determined in step (b). The present invention can be implemented, for example, as follows.
① PC12由来細胞 (例えば、 PC12h細胞株) を下記(i)及び(ii)または(i)乃至(i ii)の遺伝子が宿主細胞内で発現可能なように挿入された 1または複数の発現べ クタ一で形質転換し、 該全ての遺伝子が導入された形質転換細胞 (好ましくは安 定形形質転換細胞) を取得する。  ① PC12-derived cells (eg, PC12h cell line) are transformed into one or more expression vectors in which the following genes (i) and (ii) or (i) to (ii) have been inserted so that they can be expressed in host cells. A transformed cell (preferably a stable transformed cell) into which all the genes have been introduced is obtained.
i)ある所望の G蛋白質共役型受容体をコードする遺伝子 (好ましくは cDNA)。 ii) G蛋白質を介するシグナルにより発現が誘導される遺伝子のプロモーター 領域 (好ましくは、 zif268(EGR-l) プロモーター領域、 c-fosプロモ一夕一領域、 または SRE及び/または CREを含むプロモ一夕一領域) に発現可能に連結された レポ一夕一遺伝子 (好ましくは、 蛍若しくはゥミシィ夕ケなどに由来するルシフ エラ一ゼ、 クラゲ由来の GFP (Green Fluorescence Protein)、 一ラク夕マ一 ゼをコードする cDNA)。  i) A gene (preferably cDNA) encoding a desired G protein-coupled receptor. ii) A promoter region of a gene whose expression is induced by a signal mediated by a G protein (preferably, a zif268 (EGR-1) promoter region, a c-fos promoter overnight region, or a promoter region containing SRE and / or CRE. One region) luciferase (preferably luciferase derived from fireflies or escherichia), GFP (Green Fluorescence Protein) derived from jellyfish, CDNA encoding).
iii) Gqのひサブュニッ卜の C末端側のアミノ酸配列であって 3位のグリシンを 含む約 3乃至約 23個 (好ましくは 9個) の連続するアミノ酸配列を、 Giのひサ ブュニットの C末端側の対応するァミノ酸配列で置換して得られるキメラ G蛋白 質ひサブユニットをコードする遺伝子 (好ましくは、 CDNA)。 iii) The amino acid sequence at the C-terminal side of the Gq subunit, from about 3 to about 23 (preferably 9) consecutive amino acid sequences including glycine at position 3 is converted to the C-terminal of the Gi subunit. A gene (preferably C DNA) encoding a chimeric G protein subunit obtained by substituting the corresponding amino acid sequence on the side.
②得られた該形質転換細胞の定数 (例えば、 l〜lxl01Q個、 以下好ましい順に、 lxlO^lxlO9個、 lxl02〜lxl08個、 lxl03〜lxl07個、 lxl04〜lxl07個、 1 xl04〜lxl06個、 lxl04〜5xl05個) を、 多数のゥエル (例えば、 24穴、 48穴、 96穴、 364穴など) を有する 1または複数 (好ましくは複数) のマイクロプレー 卜の各々のゥヱルに蒔き、 該細胞を所望の試薬 (例えば、 血清、 抗生物質など) を含む所望の栄養培地 (例えば、 D- MEM培地など) 中で培養する。 (以下、 各ゥェ ルにセッ トされた定数の細胞群を、 試料と称する。) ② The resulting constants of the transformed cell (e.g., L~lxl0 1Q pieces, in order of preference below nine lxlO ^ lxlO, lxl0 2 ~lxl0 8 pieces, lxl0 3 ~lxl0 7 atoms, lxl0 4 ~lxl0 7 carbon atoms, 1 xl0 4 ~lxl0 6 pieces, the lxl0 4 ~5xl0 5 pieces), a number of Ueru (e.g., 24-well, 48-well, 96-well, microplate of 1 or more (preferably a plurality) having a 364 like holes) The cells are plated on each of the cells, and the cells are cultured in a desired nutrient medium (eg, D-MEM medium) containing a desired reagent (eg, serum, antibiotic, etc.). (Hereinafter, a fixed group of cells set in each well is referred to as a sample.)
③マイクロプレートの各ゥエルにセッ 卜された複数の試料の一部または全部の 各々に、 下記(i)及び(ii)を加えて、 約 37°C前後で所望の時間 (例えば、 約 1~2 4時間) 培養する。  ③ Add the following (i) and (ii) to each or all of the multiple samples set in each well of the microplate, and add them at about 37 ° C for a desired time (for example, 2 4 hours) Incubate.
i)該 G蛋白質共役型受容体の既知のァゴニス卜の所望の濃度 (例えば、 約 l.Op M〜約 1.0M、 以下好ましい順で、 約 ΙΟ.ΟρΜ〜約 100mM、 約 ΙΟΟρΜ〜約 10mM、 約 1. OnM〜約 1.0mM、 約 ΙΟηΜ〜約 500〃M、 約 ΙΟΟηΜ〜約 500 /M)。  i) a desired concentration of a known agonist of the G protein-coupled receptor (e.g., about l.Op M to about 1.0 M, preferably in the order of about 好 ま し い .ΟρΜ to about 100 mM, about ΙΟΟρΙΟΟ to about 10 mM, About 1.OnM to about 1.0mM, about ΙΟηΜ to about 500〃M, about ΙΟΟηΜ to about 500 / M).
ii)各試料に対して各々異なる試験しょうとする物質(例えば、 化合物)の所望 の濃度 (例えば、 約 Ι.ΟρΜ〜約 1·0Μ、 以下好ましい順で、 約 ΙΟ.ΟρΜ〜約 100mM、 約 ΙΟΟρΜ〜約 10mM、 約 Ι.ΟηΜ〜約 1.0mM、 約 ΙΟηΜ〜約 500 M、 約 ΙΟΟη 〜約 500 〃M)。  ii) For each sample, the desired concentration of the substance to be tested (for example, a compound) which is different from each other (for example, about Ι.ΟρΜ to about 1.0 ·, and in the following order of preference, about ΙΟ.ΟρΜ to about 100 mM, about ΙΟΟρΜ to about 10 mM, about Ι.ΟηΜ to about 1.0 mM, about ΙΟηΜ to about 500 M, about ΙΟΟη to about 500 〃M).
④前記③の試験に用いたマイクロプレートとは別の前記②のマイクロブレート の各ゥエルにセッ卜された各々の試料、 または前記③のマイクロプレートにセッ 卜された試料であって前記③の試験に使用しなかった残りのゥエルにセッ 卜さい れた試料の各々前記にセッ卜された複数の試料の各々に、 下記(i)を加えて、 約 3 7°C前後で所望の時間 (例えば、 約 1〜24時間) 培養する。  試 料 Each sample set in each micro-well of the microplate of the above ② different from the microplate used in the test of ③ above, or the sample set in the microplate of ③ above and the test of ③ above Each of the samples set in the remaining wells that were not used in the above-mentioned steps was added to each of the plurality of samples set in the above, and the following (i) was added. , About 1-24 hours).
i)該 G蛋白質共役型受容体の既知のァゴニストの所望の濃度 (例えば、 約 l.Op M〜約 1.0M、 以下好ましい順で、 約 ΙΟ.ΟρΜ〜約 100mM、 約 ΙΟΟρΜ〜約 10mM、 約 1. OnM〜約 1.0mM、 約 ΙΟηΜ〜約 500〃M、 約 ΙΟΟηΜ〜約 500〃M)。  i) a desired concentration of a known agonist of the G protein-coupled receptor (e.g., about l.Op M to about 1.0 M, and in a preferred order, about ΙΟ.ΟρΜ to about 100 mM, about ΙΟΟρΜ to about 10 mM, about 1. OnM to about 1.0 mM, about ΙΟηΜ to about 500 〃M, about ΙΟΟηΜ to about 500 〃M).
⑤前記③及び④で培養した各々の試料に、 所望の細胞溶解試薬で細胞溶解し、 該各々の試料の細胞溶解液の一定量中に含まれるルシフェラーゼの量を市販のル シフェラ一ゼ活性測定装置を用いて定量的に決定する。 前記③の試料について測 定値 [A]、 [B]、 [C]、 [D]、 [E] · · · ' [X]を得、 また前記④の試料について測定 値 [A,]、 [B,]、 [C,]、 [D,]、 [Ε,] · · · ' [Χ']を得る。 また、 該ァゴニスト及び該試験物質のいずれをもを加えないで培養した前記② の細胞試料中に含まれる細胞についても、 同様にして細胞溶解し、 細胞溶解液の 一定量中に含まれるルシフェラーゼの量を市販のルシフヱラーゼ活性測定装置を 用いて定量的に決定し、 1または複数の測定値 [Control]を得る。 (4) Lyse cells in each of the samples cultured in (3) and (4) above using the desired cell lysis reagent, and determine the amount of luciferase contained in a fixed amount of the cell lysate of each sample by measuring the luciferase activity on the market It is determined quantitatively using an apparatus. The measured values [A], [B], [C], [D], [E] · · · '[X] were obtained for the sample of (3), and the measured values [A,], [ B,], [C,], [D,], [Ε,] · · · '[Χ'] are obtained. Further, cells contained in the cell sample cultured in the absence of any of the agonist and the test substance are similarly lysed, and the luciferase contained in a certain amount of the cell lysate is similarly lysed. The amount is quantitatively determined using a commercially available luciferase activity measuring device to obtain one or more measured values [Control].
⑥複数の測定値 [A] 、 [B]、 [C]、 [D]、 〖Eレ · · ' [X]の各々を、 測定値 [ ]、 [B,]、 [C,]、 [D,]、 [Ε,] · · · ·【Χ,]、 及び測定値 [Control]と比較し、 その差違 の程度に基づいて、 該 G蛋白質共役型受容体のアン夕ゴニストである物質、 また は該ァゴニストのァゴニス卜作用を阻害する活性を有する物質を選別、同定する。 (10) ある物質と相互作用する受容体 (例えば、 G蛋白質共役型受容体) を同定 する方法  ⑥Plural measured values [A], [B], [C], [D], 〖E レ · [X] are converted to measured values [], [B,], [C,], [ D,], [Ε,] · · · · [Χ,], and the measured value [Control], and based on the degree of the difference, a substance that is an angoneist of the G protein-coupled receptor; Alternatively, a substance having an activity of inhibiting the agonist action of the agonist is selected and identified. (10) Methods for identifying receptors that interact with a substance (eg, G protein-coupled receptors)
本発明の 1つである下記発明 (前記く 14>乃至く 16>) の態様の一例を挙げる。 前記く 14>の発明は即ち下記のとおりである。  An example of an embodiment of the following invention (14> to 16>) which is one of the present invention will be described. The invention of the above item 14> is as follows.
「ある物質と相互作用する受容体を同定する方法であって、下記(a )乃至(d ) の工程を含むことを特徴とする方法 (ここで、 該物質は該受容体に対してァゴニ ストとして作用する。):  "A method for identifying a receptor that interacts with a substance, comprising the following steps (a) to (d) (where the substance is an agonist for the receptor: Acts as :):
( a ) 少なくとも下記 ( 1 ) 及び (2 ) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1 ) 蛋白質をコ一ドする 1または複数の遺伝子;及び  (1) one or more genes encoding a protein; and
( 2 ) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモータ 一領域に発現可能に連結されたレポーター遺伝子;  (2) a reporter gene operably linked to one region of a promoter of a gene whose expression is induced by stimulation through a G protein;
を有する P C 1 2由来細胞からなる試料の複数を準備し、 該試料の各々に該物質 を接触させる工程 (ここで、 該各々の試料中の該細胞は、 試料毎に互いに異なる 前記 ( 1 ) の遺伝子を有する。); Preparing a plurality of samples comprising PC12-derived cells having the following steps: contacting each of the samples with the substance (wherein the cells in each of the samples are different from each other for each sample). Has the following genes :);
( b ) 工程 (a ) で該物質に接触させた各々の試料について、 該試料中の各 細胞において発現した該レポーター遺伝子が生ずる検出可能なシグナルを、 及び 所望に応じて該物質に接触させていない該各々の試料の各細胞において発現した 該レポ一夕—遺伝子が生ずる検出可能なシグナルの各々を定量的に決定するェ 程; (b) for each sample that has been contacted with the substance in step (a), contacting the detectable signal produced by the reporter gene expressed in each cell in the sample with the substance, if desired; Quantitatively determine each of the detectable signals produced by the repo gene expressed in each cell of the respective sample About;
(c) 工程 (b) で決定した該各々試料についてのシグナルの量を互いに比 較し、 工程 (a) で試験された該複数の試料から 1または複数の試料を選択する 工程;及び  (c) comparing the amount of signal for each sample determined in step (b) with each other, and selecting one or more samples from the plurality of samples tested in step (a); and
(d) 該選択された試料中の細胞が有する工程 (a) の ( 1) に記載の該蛋 白質をコードする遺伝子を塩基配列を決定する工程。」  (d) the step of determining the nucleotide sequence of the gene encoding the protein according to (1) in step (a) of the cells in the selected sample; "
前記く 15〉の発明は即ち下記のとおりである。  The invention of <15> is as follows.
「ある物質と相互作用する受容体を同定する方法であって、下記( a)乃至( f ) の工程を含むことを特徴とする方法 (ここで、 該物質は該受容体に対してァゴニ ストとして作用する。):  "A method for identifying a receptor that interacts with a substance, comprising the following steps (a) to (f) (wherein the substance is an agonist for the receptor: Acts as :):
(a) 少なくとも下記 ( 1) 及び (2) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1 ) 蛋白質をコードする 1または複数の遺伝子;及び  (1) one or more genes encoding a protein; and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一領域に発現可能に連結されたレポーター遺伝子;  (2) a reporter gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein;
を有する PC 12由来細胞からなる試料の複数を準備し、 該試料の各々に該物質 を接触させる工程 (ここで、 該各々の試料中の該細胞は、 ^料毎に互いに異なる 前記 ( 1) の遺伝子を有する。); Preparing a plurality of samples consisting of PC12-derived cells having the following steps: contacting each of the samples with the substance (wherein the cells in each of the samples are different from each other for each sample) (1) Has the following genes :);
(b) 工程 (a) で該物質に接触させた各々の試料について、 該試料中の各 細胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルを、 及び 所望に応じて該物質に接触させていない該各々の試料の各細胞において発現した 該レポ一夕一遺伝子が生ずる検出可能なシグナルの各々を定量的に決定するェ 程;  (b) for each sample contacted with the substance in step (a), providing a detectable signal produced by the repo overnight gene expressed in each cell in the sample, and, if desired, Quantitatively determining each of the detectable signals generated by said repo-all-night gene expressed in each cell of said respective sample not contacted;
(c) 工程 (b) で決定した該各々試料についてのシグナルの量を互いに比 較し、 工程 (a) で試験された該複数の試料から 1または複数の試料を選択する 工程;  (c) comparing the amount of signal for each sample determined in step (b) with each other and selecting one or more samples from the plurality of samples tested in step (a);
(d) 少なくとも下記 ( 1) 及び (2) の外来性遺伝子: (1) 工程 (c) で選択された該試料中の棚胞が有する外来性遺伝子であ つて、 工程 (a) の (1) に記載の該蛋白質をコードする 1または 複数の遺伝子;及び (d) At least the following exogenous genes (1) and (2): (1) one or more genes encoding the protein described in (1) of step (a), which are exogenous genes of the vesicles in the sample selected in step (c); and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一領域に発現可能に連結されたレポーター遺伝子;  (2) a reporter gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein;
を有する PC 12由来細胞からなる試料の複数を準備し、 該試料の各々に該物質 を接触させる工程 (ここで、 該各々の試料中の該細胞は、 試料毎に互いに異なる 前記 ( 1) の遺伝子を有する。); Providing a plurality of samples comprising PC12-derived cells having the following steps: contacting each of the samples with the substance (where the cells in each of the samples are different from each other for each sample; Gene));
(e) 工程 (d) で該物質に接触させた各々の試料について、 該試料中の各 細胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルを、 及び 所望に応じて該物質に接触させていない該各々の試料の各細胞において発現した 該レポーター遺伝子が生ずる検出可能なシグナルの各々を定量的に決定するェ 程;  (e) for each sample contacted with the substance in step (d), providing a detectable signal produced by the repo overnight gene expressed in each cell in the sample, and, if desired, Quantitatively determining each of the detectable signals produced by the reporter gene expressed in each cell of the respective sample not contacted;
(f ) 工程 (e) で決定した該各々試料についてのシグナルの量を互いに比 較し、 工程 (d) で試験された該複数の試料から 1または複数の試料を選択する 工程;及び  (f) comparing the amount of signal for each of the samples determined in step (e) with each other, and selecting one or more samples from the plurality of samples tested in step (d);
(g) 該選択された試料中の細胞が有する工程 (d) の (1) に記載の該蛋 白質をコ一ドする遺伝子を塩基配列を決定する工程。」  (g) the step of determining the nucleotide sequence of the gene encoding the protein according to (1) in step (d) of the cells in the selected sample; "
前記く 16>の発明は即ち下記のとおりである。  The invention of the above item 16> is as follows.
「該方法が、 所望に応じ前記工程 (f ) と工程 (g) の間に、 前記工程 (d) 乃至 (f ) からなる同様の操作の 1乃至複数回を含むことを特徴とする前記 <15> に記載の方法。」  "The method comprises, if desired, between the step (f) and the step (g), one or more times of the same operation comprising the steps (d) to (f). 15>. "
本発明は例えば、 下記のように実施することができる。  The present invention can be implemented, for example, as follows.
① PC12由来細胞 (例えば、 PC12h細胞株) を下記(i)及び(ii)または(i)乃至(i ii)の遺伝子が宿主細胞内で発現可能なように挿入された 1または複数の発現べ ク夕一で形質転換し、 該全ての遺伝子が導入された形質転換細胞 (好ましくは安 定形形質転換細胞) であって、 該形質転換細胞は、 細胞毎に各々異なる下記(i) の遺伝子を有する複数種類の形質転換細胞を調製する。 ① PC12-derived cells (eg, PC12h cell line) are transformed into one or more expression vectors in which the following genes (i) and (ii) or (i) to (ii) have been inserted so that they can be expressed in host cells. A transformed cell (preferably inexpensive) into which all the genes have been introduced Wherein a plurality of types of transformed cells having the following gene (i) are prepared for each transformed cell.
i)任意の蛋白質をコードする 1または複数の遺伝子 (好ましくは cDNA)。 具体 的には、 例えば、 ヒト由来の種々の蛋白質の全長アミノ酸配列をコードする多種 の cDNAからなる cDNAライブラリ一中の 1または複数種類からなる cDNAまたは c DNA群。  i) One or more genes (preferably cDNA) encoding any protein. Specifically, for example, a cDNA or cDNA group consisting of one or more kinds in a cDNA library consisting of various kinds of cDNAs encoding the full-length amino acid sequences of various human-derived proteins.
ii) G蛋白質を介するシグナルにより発現が誘導される遺伝子のプロモー夕一 領域 (好ましくは、 zif268(EGR-l) プロモー夕一領域、 c-fosプロモーター領域、 または SRE及び/または CREを含むプロモ一夕一領域) に発現可能に連結された レポーター遺伝子 (好ましくは、 蛍若しくはゥミシィ夕ケなどに由来するルシフ エラーゼ、 クラゲ由来の GFP (Green Fluorescence Protein)、 ?一ラク夕マ一 ゼをコードする cDNA)。  ii) Promoter region of a gene whose expression is induced by a signal mediated by a G protein (preferably, a promoter region of zif268 (EGR-l), a c-fos promoter region, or a promoter region containing SRE and / or CRE. CDNA encoding a reporter gene (preferably luciferase from fireflies or peaches, GFP (Green Fluorescence Protein) from jellyfish, or luciferase) ).
iii) Gqのひサブュニットの C末端側のアミノ酸配列であって 3位のグリシンを 含む約 3乃至約 23個 (好ましくは 9個) の連続するアミノ酸配列を、 Giのひサ ブユニッ トの C末端側の対応するァミノ酸配列で置換して得られるキメラ G蛋白 質ひサブユニットをコードする遺伝子 (好ましくは、 cDNA)。  iii) the C-terminal amino acid sequence of the C-terminal of the G subunit, comprising about 3 to about 23 (preferably 9) contiguous amino acid sequences including glycine at position 3; A gene (preferably cDNA) encoding a chimeric G protein subunit obtained by substitution with the corresponding amino acid sequence on the side.
②得られた複数種類の該形質転換細胞の各々の定数(例えば、 l〜lxl01Q個、 以下好ましい順に、 lxlO^lxlO9個、 1 102〜1 108個、 lxl03〜lxl07個、 1 xl04〜lxl07個、 lxl04〜lxl06個、 lxl04〜5xl05個) を、 多数のゥエル (例 えば、 24穴、 48穴、 96穴、 364穴など) を有するマイクロプレートの各々のゥェ ルに蒔き、 該細胞を所望の試薬 (例えば、 血清、 抗生物質など) を含む所望の栄 養培地 (例えば、 D-MEM培地など) 中で培養する。 即ち、 各ゥエルには、 各々異 なる前記(i)の遺伝子を有する細胞がセットされる。 (以下、 各ゥエルにセットさ れた定数の細胞群を、 試料と称する。) ② The resulting plurality of types of each of the constants of the transformed cell (e.g., L~lxl0 1Q pieces, in order of preference below nine lxlO ^ lxlO, 1 10 2 ~1 10 8 pieces, lxl0 3 ~lxl0 7 carbon atoms, 1 xl0 4 ~lxl0 7 atoms, lxl0 4 ~lxl0 6 pieces, the lxl0 4 ~5xl0 5 pieces), if e numerous Ueru (e.g., 24 holes, 48 holes, 96 holes, each of the microplates having 364 such holes) Then, the cells are cultured in a desired nutrient medium (eg, D-MEM medium) containing a desired reagent (eg, serum, antibiotic, etc.). That is, cells having different genes (i) are set in each well. (Hereafter, the cell group of a constant set in each well is referred to as a sample.)
③マイクロプレートの各ゥヱルにセッ 卜された複数の試料の各々に、 所望の試 験しょうとする物質 (例えば、 化合物) の所望の濃度 (例えば、 約 Ι.ΟρΜ〜約 1. 0M、以下好ましい順で、約 ΙΟ. ΟρΜ〜約 100mM、約 ΙΟΟρΜ〜約 10mM、約 Ι . ΟηΜ〜約 1. OmM、 約 ΙΟηΜ〜約 500 /M、 約 ΙΟΟηΜ〜約 500 /M) を加え、 約 37°C前後で所望の時 間 (例えば、 約 1〜24時間) 培養する。 ③ The desired concentration (for example, about Ι.Ορ 試 to about 1. 1.) of the desired substance to be tested (for example, compound) is added to each of a plurality of samples set in each microplate of the microplate. 0M, in the following order of preference, about ΙΟ.ΟρΜ to about 100 mM, about ΙΟΟρΜ to about 10 mM, about Ι.ΟηΜ to about 1.OmM, about ΙΟηΜ to about 500 / M, about ΙΟΟηΜ to about 500 / M), and Incubate at about 37 ° C for the desired time (eg, about 1 to 24 hours).
④次いで、 該試験物質の存在下で培養した各々の試料に、 所望の細胞溶解試薬 を加えて細胞を溶解し、 該各々の試料の細胞溶解液の一定量中に含まれるルシフ エラーゼの量を市販のルシフェラ一ゼ活性測定装置を用いて定量的に決定し、 各々の試料について複数の測定値 [A]、 [B]、 [C]、 [D]、 [E] . . . ' [X]を得る。 また、 所望に応じて、 該物質を加えないで培養した前記②の各々の細胞試料中 に含まれる細胞についても、 同様にして細胞溶解し、 細胞溶解液の一定量中に含 まれるルシフヱラーゼの量を市販のルシフヱラ一ゼ活性測定装置を用いて定量的 に決定し、 1または複数の測定値 [Control]を得る。  Next, a desired cell lysis reagent is added to each sample cultured in the presence of the test substance to lyse the cells, and the amount of luciferase contained in a fixed amount of the cell lysate of each sample is determined. Quantitatively determined using a commercially available luciferase activity measuring device, and multiple measurements [A], [B], [C], [D], [E]... ' ]. Also, if desired, the cells contained in each cell sample of the above (1) cultured without adding the substance are similarly lysed, and the luciferase contained in a certain amount of the cell lysate is similarly lysed. The amount is quantitatively determined using a commercially available luciferase activity measuring device to obtain one or more measured values [Control].
⑤複数の測定値 [A] 、 [B]、 [C]、 [D]、 [E] · · · · [X]の各々を互いに比較し、 その差違の程度に基づいて、 該物質と相互作用すると認められる試料を選別、 同 定する。 また、 この選別、 同定においては、 所望に応じて、 該複数の測定値 [A] 、 ⑤Compare each of the measured values [A], [B], [C], [D], [E] · · · [X] with each other. Select and identify samples that are deemed to work. In this selection and identification, the plurality of measured values [A],
[B]、 [C]、 [D]、 [E] · · · · [X]の各々を測定値 [Control]と比較して得られる知 見も参考にすることができる。 The knowledge obtained by comparing each of [B], [C], [D], [E] · · · · [X] with the measured value [Control] can also be referred to.
⑥前記⑤で選別された試料が 1乃至数種類である場合には、 各々の試料中につ いて、該各々の試料中に含まれる細胞中に導入されている前記①の(i )の遺伝子の 塩基配列を決定し、該塩基配列に基づいて、該物質と相互作用した該(i )の遺伝子 を特定することができる。  (1) When the sample selected in (1) is one or several types, for each sample, the gene of (i) of (2) introduced into the cells contained in each sample is used. The nucleotide sequence is determined, and the gene (i) interacting with the substance can be identified based on the nucleotide sequence.
⑦前記⑤で選別された試料が、 多数の種類ある場合には、 当該選別された各々 の試料について、該試料中の細胞に対して導入された前記①の(i )の遺伝子の種類 の情報を基に、 前記①乃至⑤と同様の操作を繰り返した後に前記⑥操作を行うこ とにより該物質と相互作用した該( i )の遺伝子を特定することができる。  場合 When there are many types of samples selected in the above ⑤, for each of the selected samples, information on the type of the gene of (i) of ① introduced into the cells in the samples Based on the above, by repeating the same operation as in the above ① to ⑤ and then performing the above operation 遺 伝 子, the gene of (i) interacting with the substance can be identified.
即ち、例えば、前記⑤で下記 10種類の試料が同定された場合を例に挙げると下 記のような操作を行うことができる。 (1)選別された試料 1 :前記①の(i)で細胞に導入された遺伝子: 遺伝子 A,B,That is, for example, the following operation can be performed, for example, in the case where the following 10 types of samples are identified in the above ①. (1) Selected sample 1: Genes introduced into cells in (i) above: Genes A, B,
C C
(2)選別された試料 2 :前記①の(i)で細胞に導入された遺伝子: 遺伝子 A,D, (2) Selected sample 2: Genes introduced into cells in (i) above: Genes A, D,
E E
(3)選別された試料 3 :前記①の(i)で細胞に導入された遺伝子: 遺伝子 A,F, (3) Sample 3 selected: Genes introduced into cells in (i) above: Genes A, F,
G G
(4)選別された試料 4 :前記①の(i)で細胞に導入された遺伝子: 遺伝子 A,H, (4) Sample 4 selected: Genes introduced into cells in (i) above: Genes A, H,
I I
(5)選別された試料 5 :前記①の(i)で細胞に導入された遺伝子: 遺伝子 A,J, (5) Sample 5 selected: Genes introduced into cells in (i) above: Genes A, J,
K K
(6)選別された試料 6 :前記①の(i)で細胞に導入された遺伝子: 遺伝子 A,L, (6) Sample 6 selected: Genes introduced into the cells in (i) above: Genes A, L,
M M
(7)選別された試料 7 :前記①の(i)で細胞に導入された遺伝子: 遺伝子 A,N, (7) Selected sample 7: Genes introduced into the cells in (i) above: Genes A, N,
0 0
(8)選別された試料 8 :前記①の(i)で細胞に導入された遺伝子: 遺伝子 A,P, (8) Sample 8 selected: Genes introduced into cells in (i) above: Genes A, P,
Q Q
(9)選別された試料 9 :前記①の(i)で細胞に導入された遺伝子: 遺伝子 A,R. (9) Selected sample 9: Genes introduced into cells in (i) above: Genes A and R.
S S
(10)選別された試料 10:前記①の(i)で細胞に導入された遺伝子: 遺伝子 A, T,U  (10) Selected sample 10: Genes introduced into cells in (i) above: Genes A, T, U
上記のような場合には、前記①の(i)の遺伝子を、遺伝子 A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T,及び Uに限定する。次いで、これらの 遺伝子から選ばれる 1または複数を前記①と同様にして PC12 由来細胞に導入す る。 以下、 前記①乃至⑤と同様の操作を繰り返し行う。 図面の簡単な説明 図 1は、 zif-ルシフヱラーゼ遺伝子及びヒスタミン H 1受容体遺伝子を導入し た PC12h細胞の各種濃度のヒスタミンに対する応答性を示す図。 In the above case, the gene of (i) above is replaced with the genes A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P , Q, R, S, T, and U. Next, one or more selected from these genes are introduced into PC12-derived cells in the same manner as in (1) above. Hereinafter, the same operations as the above ① to ⑤ are repeated. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a diagram showing the responsiveness of PC12h cells transfected with a zif-luciferase gene and a histamine H1 receptor gene to histamine at various concentrations.
図 2は、 zif-ルシフヱラーゼ遺伝子及び GLP1 受容体遺伝子を導入した PC12h 細胞の各種濃度の GLPに対する応答性を示す図。  FIG. 2 shows the responsiveness of PC12h cells transfected with zif-luciferase gene and GLP1 receptor gene to GLP at various concentrations.
図 3は、 zif-ルシフヱラ一ゼ遺伝子及びァドレナリンひ A2受容体遺伝子を導入 した PC12h細胞のフォルスコリン及び/または UK14304に対する応答性を示す図。 図 4は、 ( 1 ) zif-ルシフェラ一ゼ遺伝子、 ヒスタミン H 1受容体遺伝子及び Gqiキメラ分子をコ一ドする遺伝子を導入した PC12h細胞のヒスタミンに対する 応答性、 (2 ) zif-ルシフヱラーゼ遺伝子、 GLP1受容体遺伝子及び Gqiキメラ分 子をコ一ドする遺伝子を導入した PC12h細胞の GLPに対する応答性、並びに( 3 ) zif-ルシフェラーゼ遺伝子、アドレナリンひ A2受容体遺伝子及び Gqiキメラ分子 をコードする遺伝子を導入した PC12h細胞の UK14304に対する応答性の各々を示 す図。 発明を実施するための最良の形態  FIG. 3 is a diagram showing the responsiveness of PC12h cells, into which zif-luciferase gene and adrenaline A2 receptor gene have been introduced, to forskolin and / or UK14304. Figure 4 shows (1) responsiveness to histamine of PC12h cells transfected with genes encoding zif-luciferase gene, histamine H1 receptor gene and Gqi chimeric molecule, (2) zif-luciferase gene, GLP1 Responsiveness to GLP of PC12h cells transfected with the gene encoding the receptor gene and Gqi chimera molecule, and (3) transfection of zif-luciferase gene, adrenergic A2 receptor gene, and genes encoding Gqi chimera molecule The figure which shows each response of UK12304 of the obtained PC12h cell. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例を以つて本発明をさらに詳細に説明するが、 本発明が該実施例に 記載される態様のみに限定されるものではないことは言うまでもない。 実施例 1  Hereinafter, the present invention will be described in more detail with reference to Examples. However, it goes without saying that the present invention is not limited to only the embodiments described in the Examples. Example 1
H 1ヒス夕ミン受容体発現ベクターの構築  Construction of H1 Hismin Receptor Expression Vector
H 1ヒスタミン受容体(pME- H1R)の発現べクタ一を以下のようにして構築した c なお、 以下 「受容体」 をレセプ夕一と称することもある。  An expression vector for the H1 histamine receptor (pME-H1R) was constructed as follows. C Note that the “receptor” may be hereinafter referred to as a receptor.
ゥシ脳由来 cDNA (Bovine QUICK-Clone cDNA; CLONTECH製) を銪型としてブラ イマ一 F 3 ( 5, -GCGAATTCCAATGACCTGTCCCAACTCC-3' ) 及びプライマー R 3 ( 5' - GCGCGGCCGCAGGCTTCCTCCTTCACTTCC-3' )を用いて P C Rを行い、 H Iヒスタミン受 容体のコーディング領域を含む D N A断片を増幅し、 得られた D N A断片を制限 酵素 EcoRI及び Notlにて消化した。発現ベクター pME18S(Mol . Cell. Biol . , Vol.8, p.466, 1988)を制限酵素 EcoRi及び Notlにて消化し、上記の D N A断片を pME18S にクローン化した。 PCR PCR was performed using 脳 brain-derived cDNA (Bovine QUICK-Clone cDNA; manufactured by CLONTECH) as type を with primer F 3 (5, -GCGAATTCCAATGACCTGTCCCAACTCC-3 ') and primer R 3 (5'-GCGCGGCCGCAGGCTTCCTCCTTCACTTCC-3 '). To amplify the DNA fragment containing the coding region of the HI histamine receptor, and restrict the resulting DNA fragment. It was digested with enzymes EcoRI and Notl. The expression vector pME18S (Mol. Cell. Biol., Vol. 8, p. 466, 1988) was digested with restriction enzymes EcoRi and Notl, and the above DNA fragment was cloned into pME18S.
本実験及び以後の全ての実験においてべクタ一へ P C R断片をクローン化した 後シークェンスを確認した。 実施例 2  In this experiment and all subsequent experiments, the sequence was confirmed after cloning the PCR fragment into the vector. Example 2
グルカゴン様べプチド受容体発現ベクターの構築 Construction of glucagon-like peptide receptor expression vector
グルカゴン様ペプチド (GLP1) 受容体 (pEF- GLPR) 発現ベクターを以下のよう にして構築した。  A glucagon-like peptide (GLP1) receptor (pEF-GLPR) expression vector was constructed as follows.
ヒト脬臓由来 cDNA (Human Pancreas QUICK- Clone cDNA; CLONTECH製) を錡型 として、 プライマ一 F 4 (5, -GCGAATTCCCAGTCCTGAACTCC- 3,)及びプライマ一 R 4 (5' -CGCTCGAGTCTCAGCTGCAGGAGG-3' ) を用いて P C Rを行い、 増幅した D N A断 片を制限酵素 EcoRI及び Xhol にて消化し、 GLP1受容体のコーディング領域を含 む D N A断片を得た。得られた D N A断片を、 pCRI I (TA Cloning Kit; Invitrogen 製) の EcoRI-XhoIサイ 卜にクローン化 (ρΙΤΙΟΙ) した。 ついで、 ρΙΤΙΟΙを Spel 及び Xbalで消化し (両制限酵素サイ トは pCRI I由来)、 得られた D N A断片を、 pEF-BOS (特開平 2-242687号) の Xbal-Xbalサイ 卜にクローン化した。 実施例 3  Using human pancreas-derived cDNA (Human Pancreas QUICK-Clone cDNA; manufactured by CLONTECH) as type III, primer F4 (5, -GCGAATTCCCAGTCCTGAACTCC-3,) and primer R4 (5'-CGCTCGAGTCTCAGCTGCAGGAGG-3 ') were used. Then, the amplified DNA fragment was digested with restriction enzymes EcoRI and Xhol to obtain a DNA fragment containing the coding region of the GLP1 receptor. The obtained DNA fragment was cloned (ρΙΤΙΟΙ) into the EcoRI-XhoI site of pCRI I (TA Cloning Kit; manufactured by Invitrogen). Then, ρΙΤΙΟΙ was digested with Spel and Xbal (both restriction enzyme sites were derived from pCRI I), and the obtained DNA fragment was cloned into the Xbal-Xbal site of pEF-BOS (Japanese Patent Laid-Open No. 2-242687). . Example 3
ァドレナリンひ 2 A受容体発現ベクターの構築 Construction of Adrenaline 2A Receptor Expression Vector
アドレナリンひ 2 A受容体(pME-ひ 2AR)の発現べクタ一を以下のように構築し た。  An expression vector for the adrenaline 2A receptor (pME-AR2AR) was constructed as follows.
ァドレナリンひ 2 A受容体遺伝子を、 ATCC( American Type Culture Collection) から入手し、 以下の手順でそのコーディング領域を pME18S 発現ベクターに組み 込んだ。 すなわち、ひ 2 Aのコ一ディング領域の上流(5,;)側を制限酵素 PvuII及び Sacl で消ィ匕し、 この DN A断片を pBluescript IIの Smal- Saclサイ 卜にクローン化し た (pBlue-ひ 2A5,)。 The adrenaline 2A receptor gene was obtained from ATCC (American Type Culture Collection), and its coding region was incorporated into the pME18S expression vector according to the following procedure. That is, the upstream (5 ,;) side of the coding region of human 2A was digested with restriction enzymes PvuII and Sacl, and this DNA fragment was cloned into the pBluescript II Smal-Sacl site (pBlue- Hi 2A5,).
また、 ひ 2 Aのコーディング領域の下流(3')側を制限酵素 Acclで消化し、 上 記の上流側と一部オーバ一ラップする DN A断片を得、 これを pBluescript II の Acclサイ 卜にクローン化した (pBlue-ひ 2A3,)。  The downstream (3 ') side of the 2A coding region was digested with the restriction enzyme Accl to obtain a DNA fragment that partially overlaps the upstream side described above, and this was placed on the Accl site of pBluescript II. It was cloned (pBlue-H2A3,).
ついで、 pBlue-ひ 2A5'を制限酵素 EcoRI (ベクター上の制限酵素サイ ト) 及び Fspl (α 2 Aコーディング上の制限酵素サイ ト) で消化し、 ひ 2Aのコ一ディン グ領域の上流 (5')側の DN A断片を得た。 一方、 pBlue-ひ 2A3'を制限酵素 Fspl (pBlue-ひ 2A5,のひ 2 Aコーディング上と同一位置の制限酵素サイ ト)及び Notl (ベクター上の制限酵素サイ ト)で消化し、ひ 2 Aのコ一ディング領域の下流 (3' ) 側の DN A断片を得た。 このようにして得られたひ 2 Aのコ一ディング領域の上 流及び下流の DN A断片を Fsplサイ 卜で連結し、 pMel8Sの EcoRI-Notlサイ 卜に クローン化した。 実施例 4  Then, pBlue-hi 2A5 'was digested with the restriction enzymes EcoRI (restriction enzyme site on vector) and Fspl (restriction enzyme site on α2A coding), and the upstream (5) The DNA fragment on the ') side was obtained. On the other hand, pBlue-hi 2A3 'was digested with the restriction enzymes Fspl (restriction enzyme site at the same position on the 2A coding of pBlue-hi 2A5) and Notl (restriction enzyme site on the vector). A DNA fragment downstream (3 ') of the coding region of was obtained. The DNA fragments upstream and downstream of the coding region of human 2A thus obtained were ligated at the Fspl site and cloned into the EcoRI-Notl site of pMel8S. Example 4
zif268プロモ一夕一一ルシフェラ一ゼレポ一夕一プラスミ ドの構築。 Construction of zif268 Promo One-One Lucifera-Zelepo-One-One Plasmid.
zif268(EGR-l)プロモ一夕一一ルシフェラ一ゼレポ一タープラスミ ド(pGL2- zif、 以下 zif-ルシフヱラ一ゼと称することもある) を以下の手順により作成した。 ラ ッ ト ゲ ノ ミ ッ ク D N Aを 銪型 と し て 、 プラ イ マ 一 F 1 ( 5, AGAGAGGGTACCAGCCTCAGCTCTACGCGCCT-3' ) 及びプラ イ マ 一 R 1 (5,- The zif268 (EGR-l) promoter overnight luciferase reporter plasmid (pGL2-zif, hereinafter sometimes referred to as zif-luciferase) was prepared by the following procedure. The rat genomic DNA was designated as type II, and the primers F1 (5, AGAGAGGGTACCAGCCTCAGCTCTACGCGCCT-3 ') and R-1 (5,-
AGAGAGAAGCTTGAAGCTACTGAGGGCACACT-3' ) を用いて PCRを行い、 zif268遺伝子 のプロモー夕一領域 [転写開始部位に対して- 526〜+227 (Proc. Natl. Acad. Sci.PCR using AGAGAGAAGCTTGAAGCTACTGAGGGCACACT-3 ') and the promoter region of the zif268 gene (-526 to +227 relative to the transcription start site (Proc. Natl. Acad. Sci.
USA., Vol.86, p.377-381, 1989)] を増幅した。 増幅された D N A断片を制限酵 素 SacIIにて消化後平滑末端処理を行い、 その後に、 さらに制限酵素 Kpnlにて消 化し、 - 526〜+97の断片を得た。 真核細胞のプロ一モー夕一配列とェンハンサー配列を持たない発現ベクター pGL2-ベーシックベクタ一 (PR0MEGA社) を制限酵素 Hindl l Iで消化後平滑末端処 理を行い、 その後に、 制限酵素 Kpnlにて消化し、 上記の zif268プロモーター断 片 (- 526〜+97) を pGL2-ベーシックベクタ一のルシフェラ一ゼ遺伝子の上流にク ローン化した。 実施例 5 USA., Vol. 86, p. 377-381, 1989)]. The amplified DNA fragment was digested with the restriction enzyme SacII, blunt-ended, and then digested with the restriction enzyme Kpnl to obtain a fragment of -526 to +97. After digestion of the expression vector pGL2-basic vector-1 (PR0MEGA) without the promoter and enhancer sequences of eukaryotic cells with the restriction enzyme Hindl I, blunt-end treatment was performed, followed by restriction enzyme Kpnl The zif268 promoter fragment (-526 to +97) was cloned upstream of the luciferase gene in pGL2-basic vector. Example 5
c-fosプロモー夕——ルシフェラーゼレポ一夕一プラスミ ドの構築 c-fos Promoter-Construction of luciferase repo overnight plasmid
c-fos プロモ一夕——ルシフヱラーゼレポ一夕一プラスミ ド (pGL2-fos、 以下 fos プロモー夕一一ルシフェラ一ゼレポ一夕一と記載することもある) を以下の ようにして構築した。  c-fos Promo overnight—Luciferase repo overnight plasmid (pGL2-fos, hereinafter sometimes referred to as fos promo overnight Lucifera zelepo overnight) was constructed as follows.
ヒ 卜 ゲ ノ ミ ッ ク D N A を铸型 と して 、 プラ イ マ一 F 2 ( 5' - TCTCTCGGTACCGCAGGAACAGTGCTAGTATT-3' ) 及 び プ ラ イ マ 一 R 2 ( 5,- TCTCTCAGATCTTGAAGCAGAGCTGGGTAGGA-3' ) を用いて P C Rを行い、 c-fos遺伝子の プロモータ一領域 [転写開始部位に対して- 733〜+98 (Endocrinology, Vol .136, p.4505-4516, 1995); GenBank Accession No.M16287)] を増幅した。 増幅された D N A断片を制限酵素 Bgl l l及び Kpnlにて消化した。  Using human genomic DNA as type I, primer F2 (5'-TCTCTCGGTACCGCAGGAACAGTGCTAGTATT-3 ') and primer R2 (5, -TCTCTCGAGATCTTGAAGCAGAGCTGGGTAGGA-3') were used. To amplify the c-fos gene promoter region [-733 to +98 relative to the transcription start site (Endocrinology, Vol.136, p.4505-4516, 1995); GenBank Accession No.M16287)] did. The amplified DNA fragment was digested with restriction enzymes Bglll and Kpnl.
発現べク夕一 pGL2-ベ一シックべクタ一(PR0MEGA社)を制限酵素 Bgl 11及び Kpnl にて消化し、 上記の D N A断片を pGL2-ベ一シックべクタ一にクローン化した。 実施例 6  The expression vector pGL2-basic vector (PR0MEGA) was digested with restriction enzymes Bgl11 and Kpnl, and the above DNA fragment was cloned into pGL2-basic vector. Example 6
薬剤耐性ベクターの構築 Construction of drug resistance vector
以下の実施例において使用されるピュー口マイシン耐性ベクター (pCMV- Pur) は以下のようにして調製した。  The pure mouth mycin resistance vector (pCMV-Pur) used in the following examples was prepared as follows.
pPURプラスミ ド (CLONTECH製) を制限酵素 HindI I I、 Xbalにて消化し、 ビュー ロマイシン耐性構造遺伝子を含む D N A断片を得た。 この D N A断片を、 発現べ クタ一 pIRESIhyg (CLONTECH製) の Hindl l l- Xbalサイ 卜にクローン化した。 実施例 7 pPUR plasmid (manufactured by CLONTECH) was digested with restriction enzymes HindI II and Xbal to obtain a DNA fragment containing a buromycin resistance structural gene. This DNA fragment is The clone was cloned into Hindl l-Xbal site of Kuta-pIRESIhyg (manufactured by CLONTECH). Example 7
Gq 情報伝達系を活性化するリガンド /受容体によるレポーター遺伝子の活性化 (ヒスタミンによる H Iヒスタミン受容体(H 1 R )を介した zif-ルシフェラ一 ゼの活性化)。  Activation of the reporter gene by a ligand / receptor that activates the Gq signaling system (activation of zif-luciferase through HI histamine receptor (H 1 R) by histamine).
Gq 情報伝達系を活性化するヒスタミン/ H 1ヒスタミン受容体の、 本発明ァ ッセィ系におけるレポ一夕一遺伝子の活性化の例を以下に示す。  Examples of the activation of the histamine / H1 histamine receptor, which activates the Gq signal transduction system, of the repo overnight gene in the assay system of the present invention are shown below.
PC12h細胞をコラーゲンコート処理済み 24穴プレート (IWAKI 製) に 1 x lO5 細胞/ゥヱルになるように播いた。 培地には D- MEM( 10% 馬血清, 5 %牛胎児血 清,ペニシリン 5 0単位/ ml, ス トレプトマイシン 5 0 //g/ml )を用いた。 該細胞 を 37°Cで 1日培養後に、製造業者の説明書に従いリボフェクトアミン試薬(GIBC0 BRL 製) を用いて、 受容体発現ベクター (pME-HIR; 200ng/ゥエル) 及びレポ一 夕一プラスミ ド (pGL2-zif ; 20ng/ゥエル) で共形質転換 (co-transfection) し た。 PC12h cells were seeded on a collagen-coated 24-well plate (manufactured by IWAKI) at a concentration of 1 × 10 5 cells / μl. The medium used was D-MEM (10% horse serum, 5% fetal bovine serum, penicillin 50 units / ml, streptomycin 50 // g / ml). After culturing the cells at 37 ° C. for 1 day, a receptor expression vector (pME-HIR; 200 ng / Pell) and a repo-plasmid plasmid were prepared using a ribofectamine reagent (manufactured by GIBCO BRL) according to the manufacturer's instructions. Was co-transfected (pGL2-zif; 20 ng / well).
約 6時間後にトランスフヱクション液を捨て、低血清 D-MEM培地 (0.5%馬血清, 0.25%牛胎児血清, ペニシリン 50単位/ ml, ス トレプトマイシン 50 g/ml )をゥ エル当たり l ml加えた。 2日間 37°Cで培養後に、 ヒスタミンを最終濃度 10nM〜 ImMになる様に加えた。 6時間 37°Cで培養後に培地を捨て、 細胞をリン酸緩衝生 理食塩溶液で 2回洗浄後、 細胞溶解バッファー (レポーターリシスバッファー ; PR0MEGA製) をゥヱル当たり lOOAd加え細胞を溶解させ、 溶解液の一部 (10// 1) をルシフェラーゼ活性測定に供した。 ルシフェラ一ゼ活性は、 基質にルシフェラ —ゼアツセィシステム (PR0MEGA 製) を用いて、 測定器に LUMINOUS CT-9000D (DIA-IATR0N製) を用いて行った。  After about 6 hours, the transfection solution is discarded, and low serum D-MEM medium (0.5% horse serum, 0.25% fetal bovine serum, penicillin 50 units / ml, streptomycin 50 g / ml) is added per ml to each well. added. After culturing at 37 ° C for 2 days, histamine was added to a final concentration of 10 nM to ImM. After culturing at 37 ° C for 6 hours, discard the medium, wash the cells twice with phosphate buffered saline, add cell lysis buffer (reporter lysis buffer; manufactured by PR0MEGA), add lOOAd per gel, and lyse the cells. A portion (10 // 1) of was subjected to luciferase activity measurement. Luciferase activity was measured using Lucifer-Zeatsy System (PR0MEGA) as a substrate and LUMINOUS CT-9000D (DIA-IATR0N) as a measuring instrument.
図 1に示す様に、 レポ一夕一遺伝子産物であるルシフェラーゼの活性はリガン ドであるヒスタミンの濃度に依存して増加し、例えばヒスタミン ではヒス 夕ミン非添加の 32倍、 100 zMでは 123倍の増加が認められ、 本アツセィ系が従 来技術に比較してはるかに高い応答性を示すことが示された。 As shown in Figure 1, the activity of luciferase, a repo overnight gene product, increases depending on the concentration of the ligand, histamine. An increase of 32 fold was observed in the case of adding no min, and a 123 fold increase was observed at 100 zM, indicating that the Atsushi system exhibited a much higher response than the conventional technology.
なお、 PC12h細胞を、 該ヒスタミン受容体発現べクタ一の代わりに、 pME18Sベ クタ一プラスミ ドで形質転換した場合には、 ヒスタミンによるレポ一夕一遺伝子 の活性化は見られず、 この反応が強制発現した H 1受容体特異的であることも確 認している。 実施例 8  When PC12h cells were transformed with pME18S vector plasmid instead of the histamine receptor expression vector, histamine did not activate the repo overnight gene. It has also been confirmed that it is specific for the forcedly expressed H1 receptor. Example 8
Gs情報伝達系を活性化するリガンド /受容体によるレポーター遺伝子の活性化。  Activation of reporter gene by ligand / receptor that activates Gs signaling system.
Gs情報伝達系を活性化する、 グルカゴン様ペプチド (GLP) /GLP1受容体の本 発明アツセィ系におけるレポーター遺伝子の活性化の例を以下に示す。  Examples of the activation of the reporter gene of the Glucagon-like peptide (GLP) / GLP1 receptor that activates the Gs signal transduction system in the Atsushi system of the present invention are shown below.
使用した受容体発現ベクター (pEF-GLPI 及びリガンドが異なる以外、 他の条 件は実施例 7と同様に行った。 GLP (7-37、 WAK0製)刺激は 1 pM〜: LOnMで行った。 図 2に示すように、 GLP 濃度依存的にルシフヱラーゼ活性の増加が認められ、 例 えば、 ΙΟρΜで 12倍、 ΙΟηΜで 50倍のルシフェラーゼ活性の増加が認められた。 実施例 9  Other conditions were the same as in Example 7, except that the receptor expression vector used (pEF-GLPI and ligand were different) GLP (7-37, manufactured by WAK0) stimulation was performed at 1 pM to: LOnM. As shown in Fig. 2, the luciferase activity was increased in a GLP concentration-dependent manner, for example, the luciferase activity was increased 12-fold in ΜρΜ and 50-fold in ΙΟηΜ.
G i 情報伝達系を活性化するリガンド /受容体によるレポーター遺伝子活性化の 変化。  Changes in reporter gene activation by ligands / receptors that activate the Gi signaling system.
ァドレナリン α2Α受容体のリガンドの 1つである UK14304は、 ΙΟηΜ程度で G i 情報伝達系を活性化することが知られている。 また、 Gs 情報伝達系のアデニレ 一トシクラ一ゼの活性化剤であるフォルスコリンによって活性化された G s情報 伝達系は、 ΙΟηΜ程度の UK14304で抑制されることが知られている。 この現象を本 発明アツセィ系で評価した例を以下に示す。  UK14304, one of the ligands for the adrenergic α2Α receptor, is known to activate the Gi signal transduction system at about {η}. It is also known that the Gs signaling system activated by forskolin, which is an activator of the Gs signaling system adenylate cyclase, is suppressed by about {η} of UK14304. An example in which this phenomenon is evaluated using the Atsushi system of the present invention is shown below.
薬剤の刺激条件、 及び、 受容体発現べクタ一にアドレナリンひ 2A受容体発現べ クタ一(pME-ひ 2AR) を使用した以外は実施例 7と同じ条件で行った。薬剤刺激は、 フオノレスコリン (RBI Research Biochemicals International ; ΙΟχζΜ) ある tヽ(ま、 フオルスコリン (10〃M) と UK14304 (RBI Research Biochemicals International ; ΙΟ ηΜ) で 10分間、 37°Cで行い、 培地を低血清 D-MEM培地 (0.5%馬血清, 0.25% 牛胎児血清, ペニシリン 50単位/ ml , ス トレプトマイシン 50/ g /ml )に交換後さ らに約 6時間、 37°C培養し、 ルシフヱラ一ゼ活性を測定した。 The procedure was performed under the same conditions as in Example 7, except that the drug stimulation conditions and the adrenaline 2A receptor expression vector (pME-hi2AR) were used as the receptor expression vector. Drug stimulation Phonorescholine (RBI Research Biochemicals International; ΙΟχζΜ) Performed at 37 ° C for 10 minutes with certain t ヽ (or forskolin (10〃M) and UK14304 (RBI Research Biochemicals International; ΜηΜ). After changing to -MEM medium (0.5% equine serum, 0.25% fetal calf serum, penicillin 50 units / ml, streptomycin 50 / g / ml), culture at 37 ° C for about 6 hours, and luciferase Activity was measured.
図 3に示すように、 アデ二レートシクラーゼ活性化剤であるフオルスコリン刺 激によりルシフエラ一ゼ活性は約 10倍増加し、 10nMの UK14304による Gsの阻害 (Giの活性化)はルシフェラ一ゼ活性の約 40%の減少としてとらえられることが 示された。 実施例 1 0  As shown in Fig. 3, luciferase activity was increased about 10-fold by stimulation of forskolin, an adenylate cyclase activator, and Gn inhibition (Gi activation) by 10 nM UK14304 was luciferase activity. It was shown to be reduced by about 40%. Example 10
Gqiキメラ G蛋白質発現ベクターの構築  Construction of Gqi chimera G protein expression vector
Gqiキメラ G蛋白質発現べクタ一 pME-Gqiを以下のようにして構築した。  The Gqi chimera G protein expression vector pME-Gqi was constructed as follows.
G蛋白質 Gq のひサブュニッ卜のカルボキシ末端側 9アミノ酸残基を、 G蛋白 質 Gi のひサブュニットのカルボキシ末端側の 9アミノ酸残基に置き換えたキメ ラ G蛋白質の発現ベクター) を以下のようにして調製した。  A chimera G protein expression vector in which the 9 carboxy terminal amino acid residues of G protein Gq are replaced with the 9 carboxy terminal amino acid residues of G protein Gi subunit as follows: Prepared.
マウスの脳より調製した R N Aから、オリゴ d Tプライマーを用いて cDNAを合 成 し た 。 こ の cDNA を 鎵 型 と し て プ ラ イ マ ー F 5 ( 5' - GGACTAGTGAGGCACTTCGGAAGAATGACTCTGGA-3' ) 及び プラ イ マ 一 R 5 ( 5, - GGACTAGTTAGAACAGACCGCAATCCTTCAGGTTATTCTGCAGG-3':)を用いて P C Rを行い、増 幅した D N A断片を制限酵素 Spelにて消化した。なお、 プライマ一 R 5の一部の 塩基配列 (GAACAGACCGCAATCCTTCAGGTTATT)の相補鎖配列は G iの C末端アミノ酸 配列をコードし、 他の一部の塩基配列 (CTGCAGG-3' ) の相補鎖配列は Gq のアミ ノ酸配列をコードしている。  CDNA was synthesized from RNA prepared from mouse brain using oligo dT primer. Using this cDNA as a 鎵 type, PCR was performed using primer F5 (5'-GGACTAGTGAGGCACTTCGGAAGAATGACTCTGGA-3 ') and primer R5 (5, -GGACTAGTTAGAACAGACCGCAATCCTTCAGGTTATTCTGCAGG-3' :) and amplified. The widened DNA fragment was digested with a restriction enzyme Spel. The complementary strand sequence of a part of the primer R5 (GAACAGACCGCAATCCTTCAGGTTATT) encodes the C-terminal amino acid sequence of G i, and the complementary strand sequence of the other part of the nucleotide sequence (CTGCAGG-3 ′) is Gq Encodes an amino acid sequence of
発現ベクター PME18Sを制限酵素 Xhol にて消化し、 セルフライゲ一シヨン反応 により、 Xhol断片 (スタッファ一断片) を含まない発現べクタ一を作製した。 そ の後、 その発現ベクターを制限酵素 Spelにて消化後、上記の P C Rにて増幅した D N A断片を PME18Sの Spelサイ 卜にクローン化した。 実施例 1 1 The expression vector PME18S was digested with the restriction enzyme Xhol, and an expression vector containing no Xhol fragment (stuffer fragment) was prepared by a self-ligation reaction. So Thereafter, the expression vector was digested with the restriction enzyme Spel, and the DNA fragment amplified by the above PCR was cloned into the Spel site of PME18S. Example 1 1
受容体/レポ一夕一/ Gqiキメラ G蛋白質を組み合わせることによる G s, Gq, G i共役型受容体を介したレポ一夕一遺伝子の活性化。 Receptor / repo / Irichi / Gqi chimera Activation of the repo / original gene via Gs, Gq, Gi coupled receptors by combining G proteins.
実施例 7乃至実施例 9に示したように、本アツセィ系では Gs及び Gqの情報伝 達をルシフェラーゼ活性の増加という形で感度よくとえれられ、 G i の情報伝達 はフォスルコリン等を用いた Gs 情報伝達系の活性化と組み合わせることで、 ル シフェラ一ゼ活性の抑制という形でとらえられる。  As shown in Examples 7 to 9, in the present Atsushi system, Gs and Gq information transmission can be obtained with high sensitivity in the form of an increase in luciferase activity, and G i information transmission using G Combined with activation of the signal transduction system, it can be captured in the form of suppression of luciferase activity.
一方、 Gq蛋白質ひサブュニッ 卜の C末端側の 4から 9残基程度を G i蛋白質の ひサブュニヅトにおきかえたキメラ G蛋白質 (Gqi) は、 G i 共役型受容体に結 合し、 Gq情報伝達系を活性化することがすでに報告されている(Nature, Vol .363, p.274-276, 1993; Molecular Pharmacology, Vol.50, p.923-930, 1996)。  On the other hand, a chimeric G protein (Gqi), in which about 4 to 9 residues at the C-terminal side of the Gq protein subunit are replaced with a G protein subunit, binds to a Gi-coupled receptor and transmits Gq signaling. Activating the system has already been reported (Nature, Vol. 363, p. 274-276, 1993; Molecular Pharmacology, Vol. 50, p. 923-930, 1996).
本発明アツセィ系において、 細胞中にさらに Gq 蛋白質ひサブュニッ 卜の C末 端側の 9残基を G i蛋白質のひサブュニッ 卜におきかえた Gqiのキメラ G蛋白質 を強制発現させることにより、 Gs及び Gqのみならず G iの任意と共役する受容 体を介した情報伝達もルシフェラ一ゼ活性の増加の形でとらえられる例を以下に 示す。  In the Atsushi system of the present invention, Gs and Gq are obtained by forcibly expressing in a cell a chimeric G protein of Gqi in which the C-terminal 9 residues of the Gq protein subunit are replaced with the G protein subunit. The following is an example in which not only signal transduction through a receptor coupled to any of Gi but also in the form of increased luciferase activity is shown below.
トランスフエクシヨンには、 ゥエル当たり、 受容体発現ベクター (100ng)、 レ ポータープラスミ ド (pGL2- zif; 20ng)、 Gqi発現ベクター (pME-Gqi ; 30mg) を 用いた。なお、最終プラスミ ド量をゥエルあたり 200ngにそろえる目的で、 PME18S ベクタ一プラスミ ドを 50ng加えた。 他の条件は実施例 7と同じとした。  For transfection, a receptor expression vector (100 ng), a reporter plasmid (pGL2-zif; 20 ng), and a Gqi expression vector (pME-Gqi; 30 mg) were used per well. For the purpose of adjusting the final plasmid amount to 200 ng per well, 50 ng of PME18S vector-plasmid was added. Other conditions were the same as in Example 7.
図 4に示すように、 G i情報伝達系を活性化する ΙΟηΜの UK14304刺激によりル シフェラーゼ活性は 18倍程度増強され、 G i情報伝達系をルシフェラーゼ活性の 増加として感度良くとらえられることが示された。 また、 H I受容体発現べクタ一 (Gq情報伝達系) あるいは GLP受容体発現べ クタ一 (Gs情報伝達系) を Gqi発現べクタ一及びレポータープラスミ ドで共形 質転換した細胞を、 ヒスタミンあるいは GLPで刺激した場合も、 それそれの情報 伝達系活性化を、 それそれ約 160倍及び 9倍のルシフェラ一ゼ活性の増加として とらえられることが示された。 As shown in Fig. 4, luciferase activity was enhanced about 18-fold by UK14304 stimulation of ΙΟηΜ, which activates the Gi signaling system, indicating that the Gi signaling system can be perceived as an increase in luciferase activity with high sensitivity. Was. In addition, HI receptor expression vector (Gq signal transduction system) or GLP receptor expression vector (Gs signal transduction system) were transformed into cells by Gqi expression vector and reporter plasmid. It was shown that when stimulated with GLP, each activation of the signal transduction system can be regarded as about 160-fold and 9-fold increase in luciferase activity, respectively.
すなわち、 PC12h 細胞を、 受容体発現ベクター、 レポ一夕一プラスミ ド、 及び Gqi発現べクタ一で共形質転換 (co-transfection) することにより、 Gq、 G s、 及び G i の任意を介する情報伝達系活性化の全てをルシフェラーゼ活性の増加と して感度良く検出できることが示された。 実施例 1 2  That is, by co-transfecting PC12h cells with a receptor expression vector, a repo overnight plasmid, and a Gqi expression vector, information via any of Gq, Gs, and Gi can be obtained. It was shown that all the activations of the transduction system can be detected with high sensitivity as an increase in luciferase activity. Example 1 2
受容体遺伝子/レポー夕一遺伝子安定形質転換体の作製及び安定形質転換体のリ ガンドに対する応答性。 Preparation of stable transformant of receptor gene / report gene and response of stable transformant to ligand.
PC12h細胞をコラーゲンコート済みのシャーレ (内径 10cm; IWAKI製) に 3 x 106個捲き 1日培養した後に、 製造業者の説明書に従いリボフェクトァミン試薬Wrap 3 x 10 6 PC12h cells in a collagen-coated Petri dish (10 cm ID; manufactured by IWAKI), incubate for 1 day, and then follow the manufacturer's instructions for Ribofectamine reagent
(GIBC0 BRL製)を用いて、 レポ一夕一プラスミ ド(pGL2-zif あるいは pGL2-fos; 6 z g )及び薬剤耐性ブラスミ ド(pBK-CMV;ネオマイシン耐性遺伝子(STRATAGENE 製) 若しくは pCMV-pur ; ピューロマイシン耐性遺伝子(0.6 g) ) で共形質転換(GIBC0 BRL), repo overnight plasmid (pGL2-zif or pGL2-fos; 6 zg) and drug-resistant plasmid (pBK-CMV; neomycin resistance gene (STRATAGENE) or pCMV-pur; puro Co-transformation with mycin resistance gene (0.6 g)
(co-transfection) した。 約 6時間後にトランスフエクション液を捨て、 D- MEM 培地 (10%馬血清, 5 %牛胎児血清, ペニシリン 50単位/ ml, ストレブトマイシ ン 50 g/ml )をシャーレ当たり 10ml加えた。 2日間 37°Cで培養後に、細胞を 1 / 3に希釈し、 選択薬剤 (G418; GIBC0 BRL製、 あるいはピューロマイシン ; SIGMA 製) を加えた。 1〜2週間後に、 シャーレ内に形成されたコロニーをコラーゲン コート済み 24穴プレート (IWAKI製) にピックアップした。 培養を続け各クロー ン (細胞) が十分に増殖した時点で、 各クローンのレポ一夕一活性を以下の方法 で測定した。 すなわち、 PC12h細胞を NGF (Nerve Growth Factor) で刺激するこ とにより、 本発明アツセィ系で使用しているレポーター遺伝子(pGL2- zif または pGL2-fos ) が活性化される性質を利用して、 各クローンを実施例 7と同様に 24 穴プレートに播き、 トランスフ: クシヨン操作は行わず、 2日後に NGF刺激を行 い、 6時間後にルシフヱラーゼ活性を測定した。 そして、 無刺激でのルシフェラ —ゼ活性が低く、 NGF 刺激で高い応答性を示すクローンを選択した。 選択された クローンについて、 限界希釈法により細胞のクローン化を再度行いレポ一夕一遺 伝子安定形質転換体を樹立した。 (co-transfection). After about 6 hours, the transfection solution was discarded, and D-MEM medium (10% horse serum, 5% fetal calf serum, penicillin 50 units / ml, streptomycin 50 g / ml) was added at 10 ml per petri dish. After culturing at 37 ° C for 2 days, the cells were diluted to 1/3, and a selective drug (G418; GIBC0 BRL or puromycin; SIGMA) was added. After one to two weeks, the colonies formed in the petri dish were picked up on a collagen-coated 24-well plate (manufactured by IWAKI). When culturing was continued and each clone (cell) was sufficiently grown, the repo overnight activity of each clone was measured by the following method. That is, PC12h cells are stimulated with NGF (Nerve Growth Factor). By utilizing the property of activating the reporter gene (pGL2-zif or pGL2-fos) used in the Atsushi system of the present invention, each clone is seeded on a 24-well plate in the same manner as in Example 7, and transfected. : No cushion operation was performed, NGF stimulation was performed 2 days later, and luciferase activity was measured 6 hours later. Then, a clone showing low luciferase activity without stimulation and showing high response to NGF stimulation was selected. With respect to the selected clones, the cells were cloned again by the limiting dilution method to establish stable transformants of the repo overnight gene.
ついで、ネオマイシン耐性遺伝子及び z if268レポーター遺伝子安定形質転換体 の 1クローンである z/n36- 2を、 H 1ヒスタミン受容体発現べクタ一(pME-HIR; 6 ju g ) 及び薬剤耐性プラスミ ド (pBS- pur ; ビューロマイシン耐性; 0.6〃 g ) で 共形質転換した。  Next, one clone of the neomycin resistance gene and a stable transformant of the zif268 reporter gene, z / n36-2, was transformed with the H1 histamine receptor expression vector (pME-HIR; 6 jug) and the drug resistance plasmid ( Cotransformation was carried out with pBS-pur; buromycin resistance; 0.6 g).
上記と同様の方法でコロニーをビックアップし、 得られた H 1ヒスタミン受容 体/ z if 268-レポ一夕一遺伝子安定形質転換体の各クローンについて、ヒスタミン に対する応答性を測定し、 高応答性のクローンを選択した。  A colony was picked up in the same manner as above, and the responsiveness to histamine was measured for each clone of the obtained H1 histamine receptor / zif268-repo overnight gene stable transformant. Clones were selected.
同様の方法で、 アドレナリン α 2Α受容体/ z if268-レポ一夕一遺伝子、 GLP1受 容体/ z if268-レポ一夕一遺伝子をそれそれに発現する安定形質転換体を樹立し た。  In a similar manner, stable transformants expressing the adrenergic α2Α receptor / zif268-repo overnight gene and the GLP1 receptor / zif268-repo overnight gene were established.
これらの安定形質転換体は表 1に示すように、 何れも受容体に対応したリガン ドに対して高い応答性を持つことが示された。 As shown in Table 1, all of these stable transformants were shown to have high responsiveness to the ligand corresponding to the receptor.
表 1 table 1
レセブター レポ一ター (z i f ールシフェラ一ゼ) 安定形質転換体の 各種リガンドに対する反応性 Receptor Reporter (zif luciferase) Reactivity of stable transformants to various ligands
レセブタ一 クローン名 リガンド ルシフェラ一ゼ活性  Receptor pig clone name ligand luciferase activity
(刺激) (刺激時 無刺激時) (Stimulation) (Stimulation unstimulated)
H 1 R Z/H 1-36-7 ヒスタミン (100// M) 1 13 H 1 R Z / H 1-36-7 Histamine (100 // M) 1 13
GL P 1 R Z/g 29- 1 GL P (10 nM) 70 GL P 1 R Z / g 29- 1 GL P (10 nM) 70
2 AR Z/a 36-9 FSK (10 ^M) 14 2 AR Z / a 36-9 FSK (10 ^ M) 14
F S K + UK ( 10 nM) 6. 5  F S K + UK (10 nM) 6.5
(54 %阻害)  (54% inhibition)
実施例 13 Example 13
宿主細胞とレポーター遺伝子発現調節プロモーターとの各種組み合せでのレポ一 夕一遺伝子の応答性の比較 Comparison of responsiveness of reporter genes to various combinations of host cells and reporter gene expression regulatory promoters
ヒス夕ミン /H 1ヒスタミン受容体間の相互作用で誘導されるシグナル伝達の レポ一夕—ジーンァヅセィによる検出において、 該レポ—夕—遺伝子の該シグナ ルに対する応答性を、 各種の宿主細胞 (PC12h細胞、 PC12細胞、 CH0細胞または COS 細胞) と各種のプロモー夕一/レポーター遺伝子 (zif-ルシフェラ一ゼレポ 一夕一遺伝子または f OS-ルシフェラーゼレポーター遺伝子)を組み合せることに より検証した。  In the detection of signal transduction induced by the interaction between the histamine / H1 histamine receptor by repo-gene, the responsiveness of the repo-gene to the signal was determined using various host cells (PC12h Cells, PC12 cells, CH0 cells or COS cells) and various promoter / reporter genes (zif-lucifera-zelepo overnight / fOS-luciferase reporter gene).
PC12h細胞、 PC12細胞、 CH0細胞、 COS細胞、 それそれに、 レポ一夕一プラスミ ド (pGL2-zif あるいは pGL2-fos)、 及び、 受容体発現べクタ一 (pME-HIR) をトラ ンスフェクトし、 ヒスタミン刺激に応答したルシフヱラーゼ活性化を測定した。 トランスフエクシヨンからルシフェラ一ゼ活性測定までの一連の操作及び条件は、 実施例 7に準じた。 Transfect PC12h cells, PC12 cells, CH0 cells, COS cells, repo overnight plasmid (pGL2-zif or pGL2-fos) and receptor expression vector (pME-HIR), and histamine Luciferase activation in response to stimuli was measured. A series of operations and conditions from transfusion to luciferase activity measurement are as follows: According to Example 7.
表 2に示すように、 PC12h細胞/ zif-ルシフェラーゼの組み合わせが最も高い リガンド応答性 (130倍の活性化) を示した。 一方、 他の組み合わせについても 応答性は落ちるものの、 何れの組み合わせにおいてもリガンド (ヒスタミン) に よるレポー夕一遺伝子の活性化が認められた。  As shown in Table 2, the combination of PC12h cells / zif-luciferase showed the highest ligand responsiveness (130-fold activation). On the other hand, although the response was reduced in other combinations, activation of the reporter gene by the ligand (histamine) was observed in all combinations.
表 2  Table 2
細胞株 プロモーター レセプ夕一 ルシフェラ一ゼ活性化 Cell line promoter Receptor Yuichi Luciferase activation
(刺激 無刺激)  (Stimulation no stimulation)
PC 1 2 h z i f H 1 3 0  PC 1 2 h z i f H 1 3 0
P C 1 2 h f o s H 1 65  P C 1 2h f o s H 1 65
PC 1 2 z i f H 1 3 3  PC 1 2 z i f H 1 3 3
P C 1 2 f o s H 1 2 0  P C 1 2 f o s H 1 2 0
CHO z i f H 1 5. 3  CHO z i f H 1 5.3
CHO f o s H 1 6. 6  CHO f o s H 1 6.6
COS z i f H 1 2. 4  COS z i f H 1 2.4
COS f o s H 1 2. 2  COS f o s H 12.2
刺激は全てヒスタミン (1 00 /iM) で行った。  All stimulations were with histamine (100 / iM).
z i f ; z i f ールシフェラーゼプラスミド  zif; zif luciferase plasmid
f o s ; f o sールシフェラーゼプラスミド すなわち、 z i f-ルシフェラ一ゼレポ一夕一は PC 12h細胞で最も高い応答性を示 すが、 他の細胞においてもリガンド特異的応答性を示すこと、 ならびに fos-ルシ フェラ一ゼレポ一夕一も PC12h細胞をはじめとする各種細胞においてリガンド特 異的に応答性を示し、 これら複数の何れの組み合わせもリガンドアッセィに利用 できることが示された。 実施例 1 4 fos; fos luciferase plasmid, that is, zi f-lucifera-zelepo overnight shows highest response in PC12h cells, but also ligand-specific response in other cells, and fos-lucifera. Each and every single zelepo showed ligand-specific responsiveness in various cells including PC12h cells, indicating that any combination of these multiple species can be used for ligand assay. Example 14
MAP キナーゼの活性化を指標としたシグナル伝達の検出とレポ一夕一遺伝子の発 現を指標としたシグナル伝達の検出の比較  Comparison of detection of signal transduction using MAP kinase activation as an index and signal transduction using repo overnight gene expression as an index
ヒス夕ミン / H 1受容体間の相互作用により誘導されるシグナル伝達を、 MAP キナーゼ (mitogen activated protein kinase) の活性化を指標として解析した。 該 HI受容体発現細胞の作製の宿主細胞として、 PC12h細胞、 CH0細胞、 CV1細 胞、及び HEK293細胞を用い、各種細胞での MAPキナーゼの活性化の程度を比較し た。  Signaling induced by the interaction between the Hismin / H1 receptor was analyzed using MAP kinase (mitogen activated protein kinase) activation as an index. PC12h cells, CH0 cells, CV1 cells, and HEK293 cells were used as host cells for producing the HI receptor-expressing cells, and the degree of MAP kinase activation in various cells was compared.
MAPキナーゼ活性化測定には PathDetect Elkltrans Reporting System(pFR Luc プラスミ ド; レポ一夕一プラスミ ド ; pFA2 Elkl プラスミ ド ;及びフユ一ジョン トランスァクティべ一夕一プラスミ ドを含む。 STRATAGENE 製) を用いた。 PC12h 細胞、 CH0細胞、 CV1細胞、 HEK293細胞 (0.5〜 2 x 105細胞/ゥヱル) をコラー ゲンコート済み 24穴プレート (IWAKI製) に撒き、 それそれの細胞に、 pFR Luc (40〜200ng/ゥエル)、 pFA2 Elkl ( 10〜300ng/ゥヱル)、 及び受容体発現べクタ一 (pME-HIR; 200〜400ng/ゥエル) をトランスフエクトし、 ヒスタミン刺激に応答 したルシフェラ一ゼ活性化を測定した。 トランスフエクシヨンには SuperFect ト ランスフエクシヨン試薬(1.5〜5〃1/ゥエル; QUAGEN製、力夕口グ番号: #301307) を用いて、 製造業者の説明書に従いコトランスフエクトした。 なお、 試験に用い た細胞数、 各種プラスミ ド及びトランスフヱクシヨン試薬の量は、 事前に検討し た各細胞に最適な条件に設定した。 For the MAP kinase activation measurement, use PathDetect Elkltrans Reporting System (including pFR Luc plasmid; repo overnight plasmid; pFA2 Elkl plasmid; and Fusion Transactivator overnight plasmid; manufactured by STRATAGENE). Was. PC12h cells, CH0 cells, CV1 cells, and HEK293 cells (0.5 to 2 x 10 5 cells / μl) are spread on a collagen-coated 24-well plate (manufactured by IWAKI) and pFR Luc (40 to 200 ng / μl) is applied to each cell. ), PFA2 Elkl (10-300 ng / ゥ ヱ) and receptor expression vector (pME-HIR; 200-400 ng / ゥ) were transfected and luciferase activation in response to histamine stimulation was measured. Cotransfection was carried out using a SuperFect transfection reagent (1.5 to 5/1 / L; manufactured by QUAGEN, # 301307) according to the manufacturer's instructions. The number of cells, the amount of various plasmids, and the amount of the transfusion reagent used in the test were set to optimal conditions for each cell examined in advance.
ヒスタミン刺激からルシフェラーゼ活性測定までの一連の操作は実施例 7に準 じた。  A series of operations from histamine stimulation to luciferase activity measurement was performed according to Example 7.
表 3に示すように、 リガンドと受容体の相互作用により誘導されるシグナル伝 達の有無を MAPキナーゼ活性化を指標として検出した場合には、 検出の感度は、 前記実施例で示した z i f-ルシフェラ一ゼをレポ一夕一に用いた場合に比べ極め て低いことが示された。 しかしながら、 MAP キナーゼ活性化を指標としたシグナルの検出においても、 該受容体を発現させる宿主細胞については、前記実施例で示した zif-ルシフェラ —ゼを用いるレポ一夕一ジーンアツセィでのシグナル伝達と同様に、 PC12h細胞 を用いた場合に最も感度良くシグナル伝達を捉えられることが示された。 As shown in Table 3, when the presence or absence of signal transmission induced by the interaction between the ligand and the receptor was detected using MAP kinase activation as an index, the sensitivity of the detection was as shown in the above Examples. -It was shown to be much lower than when Luciferase was used for repo overnight. However, even in the detection of a signal using MAP kinase activation as an index, the host cell expressing the receptor can be used for signal transduction in the repo overnight gene access using zif-luciferase described in the above example. Similarly, it was shown that signal transduction was most sensitive when PC12h cells were used.
表 3 各種細胞での H 1 RZヒスタミン刺激に対する MAPキナーゼ活性化応答性 胞株 一 MAPキナーゼ活性化 Table 3 MAP kinase activation responsiveness to H1RZ histamine stimulation in various cells Cell line MAP kinase activation
(刺激 Z無刺激) (No stimulation, no stimulation)
Figure imgf000060_0001
Figure imgf000060_0001
CHO 10  CHO 10
CV 1 16  CV 1 16
HEK 293 3. 1  HEK 293 3.1
刺激は全てヒスタミン (100 ^M) で行った。  All stimuli were given with histamine (100 ^ M).
MAPキナーゼ活性は、 S TR ATAGENE社の P a t hDe t e c t E l k l t r an s— Re p o r t i n g S y s t e mを用いて測定した。  The MAP kinase activity was measured using STR ATAGENE's patDetectElktltrans-ReportIngsSystem.
実施例 15 Example 15
S REをプロモーターに有するレポーター遺伝子と zif268 -レポーター遺伝子の 応答性の比較  Comparison of responsiveness between reporter gene having SRE in promoter and zif268-reporter gene
zif268(EGR-l)プロモ一夕一には SRE( serum response element) が 4力所含ま れている。 そこで、 SREをプロモーターに有するレポーター遺伝子と zif レポ一 夕一遺伝子の応答性を、 ヒスタミン/ H Iヒスタミン受容体発現細胞及び GLP/GLP1受容体発現細胞の各々について比較検討した例を以下に示す。  The zif268 (EGR-l) promoter contains four SREs (serum response elements) every night. Thus, the following is an example in which the responsiveness of a reporter gene having an SRE promoter as a promoter and the responsiveness of a zif repo allele gene were compared and examined for histamine / HI histamine receptor expressing cells and GLP / GLP1 receptor expressing cells.
PC12h細胞に、 レポ一夕一プラスミ ド (pGL2- zif あるいは pSRE- Luc [SREをプ 口モータ一に有するルシフェラ一ゼレポータープラスミ ド; STRATAGENE製、 カタ ログ番号: #219080])、 及び受容体発現ベクター (pME- H1Rあるいは pEF- GLPR) をトランスフヱクトし、 リガンド刺激に応答したルシフヱラーゼ活性化を測定し た。 トランスフエクシヨンからルシフヱラーゼ活性測定までの一連の操作及び条 件は、 実施例 7に準じた。 In PC12h cells, repo overnight plasmid (pGL2-zif or pSRE-Luc [Luciferase reporter plasmid with SRE in the mouth motor; STRATAGENE; Log number: # 219080]) and a receptor expression vector (pME-H1R or pEF-GLPR) were transfected, and luciferase activation in response to ligand stimulation was measured. A series of operations and conditions from transfusion to luciferase activity measurement were the same as in Example 7.
表 4に示すように、 zif-ルシフェラ一ゼレポ一夕一遺伝子を用いた場合には、 ヒスタミン /H 1ヒスタミン受容体発現細胞及び GLP/GLP1 受容体発現細胞のい ずれにおけるシグナル伝達の検出においても高い応答性を示した。  As shown in Table 4, when the zif-lucifera-zelepo overnight gene was used, signal transduction was detected in both histamine / H1 histamine receptor-expressing cells and GLP / GLP1 receptor-expressing cells. It showed high responsiveness.
一方、 SRE-ルシフェラ一ゼレポ一夕一遺伝子を用いた場合には、 ヒスタミン/ H 1ヒス夕ミン受容体発現細胞系でのシグナル伝達には応答するものの、 その程 度は zif-ルシフェラーゼレポー夕一遺伝子を用いる場合に比べると約 1 / 2で あり、また GLP/GLP1受容体発現細胞でのシグナル伝達に対しての応答性は低いも のであった。  On the other hand, when the SRE-luciferase-zelepo overnight gene is used, it responds to signal transmission in the histamine / H1 histamine receptor-expressing cell line, but to a lesser extent the zif-luciferase reporter. The ratio was about 1/2 compared with the case where the gene was used, and the response to signal transduction in cells expressing the GLP / GLP1 receptor was low.
表 4 z i fノルシフェラ一ゼと SREZルシフェラ一ゼレポ一ターのリガンド応答性 レセプター プロモーター リガンド ルシフェラ一ゼ活性化 Table 4 Ligand responsiveness of zif norsiferase and SREZ luciferase reporter Receptor Promoter Ligand luciferase activation
(刺激/無刺激)  (Stimulated / unstimulated)
H 1 R z i f ヒスタミン ( 100 / M) 98 H 1 R z i f Histamine (100 / M) 98
H 1 R SRE ヒスタミン (100 M) 56  H 1 R SRE Histamine (100 M) 56
GL PR z i f GL P (10 nM) 52 GL PR z i f GL P (10 nM) 52
GL PR SRE GL P (10 nM) 3. 0 z i f ; z i f ールシフェラーゼプラスミ ド  GL PR SRE GLP (10 nM) 3.0 zif; zif luciferase plasmid
SRE; SRE—ルシフェラーゼプラスミ ド 以上のことから、 zif268(EGR-l)プロモーターには、応答性に関与する SRE以 外の重要なエレメントが含まれており、 zif268を SReで代用することは出来ない ことが示された。 しかしながら、 この試験結果は、 本発明で使用されるプロモー 夕一としては、 zif268(EGR- 1) プロモーターが好ましいことを単に示すだけのも のであり、 zif268以外のプロモーターであって、 SRE及び/または CREを含むプ 口モー夕一が本発明で使用できないことを意味するものではない。 SRE 及び/ま たは CREを含むプロモー夕一も本発明の態様の一つであることは言うまでもない。 産業上の利用の可能性 SRE; SRE-luciferase plasmid As mentioned above, the zif268 (EGR-l) promoter contains important elements other than SRE involved in responsiveness, and zif268 cannot be substituted with SRe It was shown that. However, this test result merely shows that the promoter used in the present invention is preferably the zif268 (EGR-1) promoter, and it is a promoter other than zif268, and This does not mean that a portal containing a CRE cannot be used in the present invention. It goes without saying that a promotion including an SRE and / or a CRE is also an embodiment of the present invention. Industrial applicability
細胞を用いるレポ一夕一ジーンアツセィ (cel l-based reporter gene assay) を用いて、 G蛋白質共役型受容体とリガンドの相互作用により誘導される G蛋白 質を介する情報伝達系の活性化の程度を解析する方法において、 該レポーター遺 伝子の発現を制御するプロモーターとして G蛋白質を介するシグナルにより発現 が誘導される遺伝子のプロモーター領域 (好ましくは、 zif268(EGR- 1) プロモー 夕一領域)を使用すること、 また宿主細胞として PC12細胞またはそれからサブク ローニングされる細胞 (例えば、 PC12h細胞及び該 PC12h細胞からサブクロー二 ングされる細胞) を用いることにより、 該 G蛋白質を介する情報伝達系の活性化 (レポ一夕一遺伝子の発現の増大を指標に検出されるシグナル) の程度を極めて 高感度で検出することが可能となった。  Using the cell-based repo overnight gene assay (cell l-based reporter gene assay), the degree of activation of the G protein-mediated signal transduction system induced by the interaction between a G protein-coupled receptor and a ligand was determined. In the analysis method, a promoter region of a gene whose expression is induced by a signal through a G protein (preferably, a promoter region of zif268 (EGR-1) promoter) is used as a promoter for controlling the expression of the reporter gene. In addition, by using a PC12 cell or a cell subcloned therefrom (eg, a PC12h cell and a cell subcloned from the PC12h cell) as a host cell, activation of the G protein-mediated signal transduction system (repo The level of the signal, which is detected by an increase in the expression of a gene every night, can be detected with extremely high sensitivity. .
具体的には、 本発明のアツセィで用いられる上記の G蛋白質共役型受容体発現 PC12由来細胞)に該受容体に対するリガンドを接触させることにより検出される 該シグナルの値の絶対値が極めて大きくなり、 該リガンドと接触させない場合に 検出される該シグナルとの比 (即ち、 S/N比) は、 少なくとも約 20乃至 30倍以 上と高いものである。  Specifically, the absolute value of the value of the signal detected by contacting the ligand for the receptor with the G protein-coupled receptor-expressing PC12-derived cell used in the assay of the present invention becomes extremely large. The ratio to the signal detected when not contacted with the ligand (ie, the S / N ratio) is as high as at least about 20 to 30 times or more.
また、 上記レポータージーンアツセィに用いられる宿主細胞中に、 (l )Gq また は Gsの各々のひサブュニッ卜と Giのひサブュニッ トとからなるキメラ G蛋白質 Gひサブュニットをコ一ドする遺伝子、 または(2 )G15や G16などのように受容体 特異性を有さずに受容体と共役しフォスフオリパーゼ Cを活性化することにより シグナルを伝達する G蛋白質をコ一ドする遺伝子、 のいずれかを導入することに より、 Giを介するシグナル伝達もレポ一夕一遺伝子の発現の増加を指標として極 めて高い感度で検出可能となった。 Further, in the host cell used for the reporter gene assay, (l) a gene encoding a chimeric G protein G hysubunit consisting of each of Gq or Gs and a giant subunit, or (2) By activating phospholipase C by coupling to receptor without receptor specificity like G15 and G16 By introducing a gene that encodes a G protein that transduces a signal, Gi-mediated signal transduction can be detected with extremely high sensitivity using an increase in the expression of a repo overnight gene as an index. became.
即ち、 この方法を用いることにより、共役する G蛋白質に拘束されることなく、 任意の G蛋白質 (例えば、 Gq、 Gs及び Gi) を介するシグナル伝達の有無を 1種類 の細胞を用いる 1つのアツセィ系で極めて高感度で検出可能である。  That is, by using this method, the presence or absence of signal transduction through any G protein (for example, Gq, Gs, and Gi) can be determined by using one type of cell, without being restricted by the coupled G protein. Can be detected with extremely high sensitivity.
従って、 本発明のアツセィ方法及び該アツセィに用いられる上記のような特徴 を有する細胞を用いることにより、 下記(1 )乃至 (4)を極めて簡便且つ迅速に実施 することが可能となった。  Therefore, the following (1) to (4) can be carried out extremely easily and quickly by using the Atsey method of the present invention and the cells having the above-mentioned characteristics used in the Atsey.
( 1 ) 所望の物質が G蛋白質共役型受容体のァゴニストであるか否かの決定。 (1) Determine whether the desired substance is an agonist of a G protein-coupled receptor.
( 2 ) 所望の物質が G蛋白質共役型受容体のアン夕ゴニストまたは該受容体の ァゴニス卜のァゴニスト作用を阻害する活性を有する物質であるか否かの決定。 (2) Determination of whether the desired substance is a substance having an activity of inhibiting the agonist action of an agonist of a G protein-coupled receptor or an agonist of the receptor.
( 3 ) 所望の G蛋白質共役型受容体のリガンド (例えば、 ァゴニスト) を同定 するための多数の物質のスクリーニング。  (3) Screening of a large number of substances to identify ligands (eg, agonists) of desired G protein-coupled receptors.
( 4 ) 所望の G蛋白質共役型受容体のアン夕ゴニストまたは該受容体の既知ァ ゴニストのァゴニスト作用を阻害する物質を同定するための多数の物質のスクリ 一二ング。  (4) Screening of a number of substances for identifying a substance that inhibits the agonist action of a desired G protein-coupled receptor agonist or a known agonist of the receptor.
例えば、 ヒスタミン受容体、 アドレナリン受容体、 セロ トニン受容体などのよ うに G蛋白質共役型受容体の多くは種々の疾患と密接に関連しており、 またその ような G蛋白質共役型受容体を医薬品の夕ーゲットし該受容体の機能を制御する 薬剤が多く開発販売されている。  For example, many G protein-coupled receptors such as histamine receptor, adrenergic receptor, and serotonin receptor are closely related to various diseases, and such G protein-coupled receptors are Many drugs have been developed and marketed to control the function of the receptor.
従って、 上記(1 )乃至 (4)の実施は、 即ち、 任意の G蛋白質共役型受容体を夕一 ゲットとする医薬品の同定及びスクリ一ニング方法であり、 医薬品開発において 不可欠なステップである。 即ち、 本発明の方法及び細胞は、 医薬品開発において 必須且つ極めて有用な方法及び細胞である。  Therefore, the implementation of the above (1) to (4) is a method for identifying and screening a drug targeting any G protein-coupled receptor, and is an essential step in drug development. That is, the method and cell of the present invention are essential and extremely useful in drug development.
また、 本発明のアツセィ方法及び該アツセィに用いられる上記のような特徴を 有する細胞を用いることにより、下記 (5)を極めて簡便且つ迅速に実施することが 可能となった。 In addition, the atsie method of the present invention and the above-mentioned features used in the atsee are provided. By using cells having the above, the following (5) can be performed extremely simply and quickly.
(5)ある物質と相互作用する受容体(例えば、 G蛋白質共役型受容体) の、 ェク スプレツシヨンクローニング法を用いた同定。  (5) Identification of a receptor that interacts with a substance (for example, a G protein-coupled receptor) using an expression cloning method.
前述したとおり、 G 蛋白質共役型受容体は種々の疾患の発症と密接に関連して いることから、上記 (5)が可能になることで、種々の疾患の治療のための医薬品開 発の夕ーゲッ 卜としての受容体を容易に同定することが可能となる。  As described above, since G protein-coupled receptors are closely related to the onset of various diseases, the possibility of the above (5) will enable the development of pharmaceuticals for the treatment of various diseases. The receptor as a target can be easily identified.

Claims

請求の範囲 The scope of the claims
1. ある物質が所望の G蛋白質共役型受容体のァゴニス卜であるか否かを決定 する方法であって、 下記 (a) 乃至 (c) の工程を含むことを特徴とする方法:1. A method for determining whether a substance is an agonist of a desired G protein-coupled receptor, comprising the following steps (a) to (c):
(a) 少なくとも下記 ( 1 ) 及び ( 2 ) の外来性遺伝子: (a) At least the following exogenous genes (1) and (2):
( 1 ) 該所望の G蛋白質共役型受容体をコードする遺伝子;及び  (1) a gene encoding the desired G protein-coupled receptor; and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一領域に発現可能に連結されたレポ一夕一遺伝子;  (2) a repo overnight gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein;
を有する PC 12由来細胞の定数からなる試料に該物質を接触させる工程;Contacting the substance with a sample consisting of a constant number of PC12-derived cells having
(b)該物質に接触させた該試料中の各細胞において発現した該レポーター遺 伝子が生ずる検出可能なシグナル、 及び該物質に接触させていない該試料の各細 胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルの各々を定 量的に決定する工程;及び、 (b) a detectable signal generated by the reporter gene expressed in each cell in the sample contacted with the substance, and the reporter signal expressed in each cell of the sample not contacted with the substance. Quantitatively determining each of the detectable signals produced by the gene;
(c) 工程 (b) で決定した該各々のシグナルの量を比較する工程。  (c) comparing the amounts of the respective signals determined in step (b).
2. 所望の G蛋白質共役型受容体のァゴニストを同定するために物質をスクリ —ニングする方法であって、 下記 (a) 乃至 (c) の工程を含むことを特徴とす る方法: 2. A method for screening a substance for identifying an agonist of a desired G protein-coupled receptor, comprising the following steps ( a ) to (c):
(a) 少なくとも下記 ( 1 ) 及び ( 2 ) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1 ) 該所望の G蛋白質共役型受容体をコードする遺伝子;及び  (1) a gene encoding the desired G protein-coupled receptor; and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一領域に発現可能に連結されたレポーター遺伝子; を有する PC 12由来細胞の定数からなる試料の複数を準備し、 該試料の各々に 異なる物質を接触させる工程;  (2) preparing a plurality of samples comprising a constant number of PC12-derived cells having a reporter gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein; Contacting each with a different substance;
(b) 工程 (a) で該物質に接触させた各々の試料について、 該試料中の各細 胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルを、 及びい ずれの物質にも接触させていない該試料の各細胞において発現した該レポーター 遺伝子が生ずる検出可能なシグナルの各々を定量的に決定する工程;及び、 (c) 工程 (b) で決定した該各々のシグナルの量を比較する工程。 (b) for each sample that has been contacted with the substance in step (a), the detectable signal produced by the repo-only gene expressed in each cell in the sample, and any of the substances The reporter expressed in each cell of the sample not contacted Quantitatively determining each of the detectable signals produced by the gene; and (c) comparing the amount of each of the signals determined in step (b).
3. ある物質が所望の G蛋白質共役型受容体のアン夕ゴニス卜であるか否か、 または該 G蛋白質共役型受容体のァゴニス卜のァゴニスト作用の阻害物質である か否かを決定する方法であって、 下記 (a) 乃至 (c) の工程を含むことを特徴 とする方法:  3. A method for determining whether a substance is an agonist of a desired G protein-coupled receptor, or whether it is an inhibitor of the agonist action of an agonist of the G protein-coupled receptor And comprising the following steps (a) to (c):
(a) 少なくとも下記 ( 1 ) 及び ( 2 ) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1 ) 該所望の G蛋白質共役型受容体をコ一ドする遺伝子;及び  (1) a gene encoding the desired G protein-coupled receptor; and
( 2 ) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一領域に発現可能に連結されたレポ一夕一遺伝子; を有する PC 12由来細胞の定数からなる試料に該 G蛋白質受容体のァゴニスト 及び該物質を接触させる工程;  (2) a sample comprising a constant number of PC12-derived cells having a repo overnight gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein; Contacting the agonist and the substance;
(b) 該物質に接触させた該試料中の各細胞において発現した該レポーター遺 伝子が生ずる検出可能なシグナル、 及び該物質に接触させていない該試料の各細 胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルの各々を定 量的に決定する工程;及び、  (b) a detectable signal produced by the reporter gene expressed in each cell in the sample contacted with the substance, and the reporter signal expressed in each cell of the sample not contacted with the substance. Quantitatively determining each of the detectable signals produced by the gene;
(c) 工程 (b) で決定した該各々のシグナルの量を比較する工程。  (c) comparing the amounts of the respective signals determined in step (b).
4. 所望の G蛋白質共役型受容体のアン夕ゴニストまたは該 G蛋白質共役型受 容体のァゴニス卜のァゴニス卜作用の阻害物質を同定するために物質をスクリ一 ニングする方法であって、 下記 (a) 乃至 (c) の工程を含むことを特徴とする 方法:  4. A method for screening a substance for identifying an agonist of a desired G protein-coupled receptor or an inhibitor of the agonist action of an agonist of the G protein-coupled receptor, the method comprising: a) A method comprising the steps of (a) to (c):
(a) 少なくとも下記 ( 1) 及び (2) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1) 該所望の G蛋白質共役型受容体をコードする遺伝子;及び  (1) a gene encoding the desired G protein-coupled receptor; and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモータ 一慮域に発現可能に連結されたレポーター遺伝子;  (2) a promoter of a gene whose expression is induced by stimulation through a G protein; a reporter gene operably linked to one of the gene expression regions;
を有する PC 12由来細胞の定数からなる試料の複数を準備し、 該試料の各々に 該該 G蛋白質受容体のァゴニストと異なる物質を接触させる工程;Prepare a plurality of samples consisting of a constant of PC12-derived cells having Contacting a substance different from the agonist of the G protein receptor;
(b) 工程 (a) で該物質に接触させた各々の試料について、 該試料中の各細 胞において発現した該レポーター遺伝子が生ずる検出可能なシグナルを、 及びい ずれの物質にも接触させていない該試料の各細胞において発現した該レポ一夕一 遺伝子が生ずる検出可能なシグナルの各々を定量的に決定する工程;及び、(b) for each sample contacted with the substance in step (a), contacting a detectable signal produced by the reporter gene expressed in each cell in the sample with any substance; Quantitatively determining each of the detectable signals produced by the repo overnight gene expressed in each of the cells of the sample; and
(c) 工程 (b) で決定した該各々のシグナルの量を比較する工程。 (c) comparing the amounts of the respective signals determined in step (b).
5. 該プロモー夕一領域が、 zif268 (EGR-1) プロモーター領域、 SREと CREと を含むプロモーター領域または c-f0Sプロモーター領域のいずれかであることを 特徴とする請求項 1乃至請求項 4のいずれかに記載の方法。 5. The promoter evening one region is, zif268 (EGR-1) promoter region, claims 1 to 4, characterized in that any one of SRE and promoter region or c -f 0S promoter region which includes a CRE The method according to any of the above.
6. 該プロモーター領域が、 zif268 (EGR-1)プロモーター領域であることを特 徴とする請求項 1乃至請求項 4のいずれかに記載の方法。  6. The method according to any one of claims 1 to 4, wherein the promoter region is a zif268 (EGR-1) promoter region.
7. 該 PC 12由来細胞が、 さらに下記 (a) 乃至 (c) のいずれかの外来性 遺伝子を有するものであることを特徴とする請求項 1乃至請求項 6のいずれかに 記載の方法:  7. The method according to any one of claims 1 to 6, wherein the PC12-derived cell further has an exogenous gene of any one of the following (a) to (c):
(a) Gひ qの C末端ァミノ酸配列の一部が Gひ iの C末端ァミノ酸配列の一 部に置換されてなるキメラ G蛋白質 Gひサブュニッ トをコードする遺伝 子;  (a) a gene encoding a chimeric G protein G subunit in which a part of the C-terminal amino acid sequence of G subunit is replaced by a part of the C-terminal amino acid sequence of G subunit;
(b) Ga sの C末端アミノ酸配列の一部が Go: iの C末端アミノ酸配列の一 部に置換されてなるキメラ G蛋白質 Gひサブュニットをコ一ドする遺伝 子; または、  (b) a gene encoding a chimeric G protein G subunit in which a part of the C-terminal amino acid sequence of Gas is replaced with a part of the C-terminal amino acid sequence of Go: i; or
(c) 受容体特異性を有さずに受容体と共役し、 フォスフォリパーゼ Cを活性 化することによりシグナルを伝達する G蛋白質をコ一ドする遺伝子。 (c) A gene that encodes a G protein that couples to a receptor without receptor specificity and transmits a signal by activating phospholipase C.
8. 前記 (c) に記載の G蛋白質が、 G16または G15であることを特徴とする 請求項 7に記載の方法。 8. The method according to claim 7, wherein the G protein according to (c) is G16 or G15.
9. 少なくとも下記 ( 1 ) 及び (2) の外来性遺伝子を有する P C 12由来細 胞: ( 1 ) 所望の G蛋白質共役型受容体をコードする遺伝子;及び 9. PC12-derived cells having at least the following exogenous genes (1) and (2): (1) a gene encoding a desired G protein-coupled receptor; and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一領域に発現可能に連結されたレポー夕一遺伝子。  (2) A reporter gene that is operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein.
10. 該プロモーター領域が、 zif268プロモ一夕一領域、 SREと CREとを含む プロモーター領域または c_fosプロモ一夕一領域のいずれかであることを特徴と する請求項 9に記載の細胞。 10. The promoter region, zif268 promoter Isseki one region, SRE and cell of claim 9, characterized in that either a promoter region or c_ fos promoter Isseki one region and a CRE.
11. 該プロモー夕一領域が、 zif268プロモータ一領域であることを特徴とす る請求項 9に記載の細胞。  11. The cell according to claim 9, wherein the promoter region is a zif268 promoter region.
12. 該 PC 12由来細胞が、 さらに下記 (a) 乃至 (c) のいずれかの外来 性遺伝子を有するものであることを特徴とする請求項 9乃至請求項 11のいずれ かに記載の細胞:  12. The cell according to any one of claims 9 to 11, wherein the PC12-derived cell further has an exogenous gene of any one of the following (a) to (c):
(a) Gひ qの C末端アミノ酸配列の一部が Go: iの C末端アミノ酸配列の一 部に置換されてなるキメラ G蛋白質 Gひサブュニットをコードする遺伝 子;  (a) a gene encoding a chimeric G protein G subunit in which a part of the C-terminal amino acid sequence of Ghi q is substituted with a part of the C-terminal amino acid sequence of Go: i;
(b) Gひ sの C末端アミノ酸配列の一部が Gひ iの C末端アミノ酸配列の一 部に置換されてなるキメラ G蛋白質 Gひサブュニットをコードする遺伝 子; または、  (b) a gene encoding a chimeric G protein G subunit in which a part of the C terminal amino acid sequence of G sub is replaced with a part of the C terminal amino acid sequence of G sub;
(c) 受容体特異性を有さずに受容体と共役し、 フォスフオリパ一ゼ Cを活性 化することによりシグナルを伝達する G蛋白質をコードする遺伝子。 (c) A gene encoding a G protein that couples to a receptor without receptor specificity and transmits a signal by activating phospholipase C.
13. 前記 (c) に記載の G蛋白質が、 G16または G15であることを特徴とす る請求項 12に記載の細胞。 13. The cell according to claim 12, wherein the G protein according to (c) is G16 or G15.
14. ある物質と相互作用する受容体を同定する方法であって、 下記 (a) 乃 至 (d) の工程を含むことを特徴とする方法 (ここで、 該物質は該受容体に対し てァゴニストとして作用する。):  14. A method for identifying a receptor that interacts with a substance, comprising the following steps (a) to (d) (where the substance is a Acts as an agonist.):
(a) 少なくとも下記 ( 1 ) 及び ( 2 ) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1 ) 蛋白質をコードする 1または複数の遺伝子;及び ( 2 ) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一領域に発現可能に連結されたレポーター遺伝子; (1) one or more genes encoding a protein; and (2) a reporter gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein;
を有する PC 12由来細胞からなる試料の複数を準備し、 該試料の各々に該物質 を接触させる工程 (ここで、 該各々の試料中の該細胞は、 試料毎に互いに異なる 前記 ( 1) の遺伝子を有する。); Providing a plurality of samples comprising PC12-derived cells having the following steps: contacting each of the samples with the substance (where the cells in each of the samples are different from each other for each sample; Gene));
(b) 工程 (a) で該物質に接触させた各々の試料について、 該試料中の各細 胞において発現した該レポ一ター遺伝子が生ずる検出可能なシグナルを、 及び所 望に応じて該物質に接触させていない該各々の試料の各細胞において発現した該 レポーター遺伝子が生ずる検出可能なシグナルの各々を定量的に決定する工程; (b) for each sample contacted with the substance in step (a), the detectable signal produced by the reporter gene expressed in each cell in the sample, and, if desired, the substance Quantitatively determining each of the detectable signals produced by said reporter gene expressed in each cell of said respective sample not contacted with;
(c) 工程 (b) で決定した該各々試料についてのシグナルの量を互いに比較 し、 工程 (a) で試験された該複数の試料から 1または複数の試料を選択するェ 程;及び (c) comparing the amount of signal for each of the samples determined in step (b) with each other and selecting one or more samples from the plurality of samples tested in step (a); and
(d) 該選択された試料中の細胞が有する工程 (a) の ( 1) に記載の該蛋白 質をコードする遺伝子を塩基配列を決定する工程。  (d) the step of determining the nucleotide sequence of the gene encoding the protein according to (1) in step (a) of the cells in the selected sample;
15. ある物質と相互作用する受容体を同定する方法であって、 下記 (a) 乃 至 (g) の工程を含むことを特徴とする方法 (ここで、 該物質は該受容体に対し てァゴニストとして作用する。):  15. A method for identifying a receptor that interacts with a substance, comprising the following steps (a) to (g) (where the substance is a Acts as an agonist.):
(a) 少なくとも下記 ( 1) 及び (2) の外来性遺伝子:  (a) At least the following exogenous genes (1) and (2):
( 1) 蛋白質をコードする 1または複数の遺伝子;及び  (1) one or more genes encoding a protein; and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 —領域に発現可能に連結されたレポ一夕一遺伝子; を有する PC 12由来細胞からなる試料の複数を準備し、 該試料の各々に該物質 を接触させる工程 (ここで、 該各々の試料中の該細胞は、 試料毎に互いに異なる 前記 ( 1) の遺伝子を有する。);  (2) a plurality of samples consisting of PC12-derived cells having a promoter of a gene whose expression is induced by stimulation through a G protein—a repo overnight gene operably linked to a region; Contacting the substance with each of the above (where the cells in each of the samples have the gene of (1) different from each other for each sample);
(b) 工程 (a) で該物質に接触させた各々の試料について、 該試料中の各細 胞において発現した該レポ一ター遺伝子が生ずる検出可能なシグナルを、 及び所 望に応じて該物質に接触させていない該各々の試料の各細胞において発現した該 レポーター遺伝子が生ずる検出可能なシグナルの各々を定量的に決定する工程;(b) for each sample contacted with the substance in step (a), the detectable signal produced by the reporter gene expressed in each cell in the sample, and Optionally quantitatively determining each of the detectable signals produced by said reporter gene expressed in each cell of said respective sample not contacted with said substance;
(c) 工程 (b) で決定した該各々試料についてのシグナルの量を互いに比較 し、 工程 (a) で試験された該複数の試料から 1または複数の試料を選択するェ 程; (c) comparing the amount of signal for each of the samples determined in step (b) with each other and selecting one or more samples from the plurality of samples tested in step (a);
(d) 少なくとも下記 ( 1) 及び (2) の外来性遺伝子:  (d) At least the following exogenous genes (1) and (2):
( 1) 工程 (c) で選択された該試料中の細胞が有する外来性遺伝子であ つて、 工程 (a) の ( 1) に記載の該蛋白質をコードする 1または 複数の遺伝子;及び  (1) One or more genes encoding the protein described in (1) of step (a), which are exogenous genes of the cells in the sample selected in step (c); and
(2) G蛋白質を介する刺激により発現が誘導される遺伝子のプロモー夕 一領域に発現可能に連結されたレポーター遺伝子;  (2) a reporter gene operably linked to a promoter region of a gene whose expression is induced by stimulation through a G protein;
を有する PC 12由来細胞からなる試料の複数を準備し、 該試料の各々に該物質 を接触させる工程 (ここで、 該各々の試料中の該細胞は、 試料毎に互いに異なる 前記 ( 1) の遺伝子を有する。); Providing a plurality of samples comprising PC12-derived cells having the following steps: contacting each of the samples with the substance (where the cells in each of the samples are different from each other for each sample; Gene));
(e) 工程 (d) で該物質に接触させた各々の試料について、 該試料中の各細 胞において発現した該レポ一夕一遺伝子が生ずる検出可能なシグナルを、 及び所 望に応じて該物質に接触させていない該各々の試料の各細胞において発現した該 レポーター遺伝子が生ずる検出可能なシグナルの各々を定量的に決定する工程; (e) for each sample that has been contacted with the substance in step (d), the detectable signal produced by the repo-only gene expressed in each cell in the sample, and, if desired, the signal. Quantitatively determining each of the detectable signals produced by said reporter gene expressed in each cell of said respective sample not contacted with a substance;
(f ) 工程 (e) で決定した該各々試料についてのシグナルの量を互いに比較 し、 工程 (d) で試験された該複数の試料から 1または複数の試料を選択するェ 程;及び (f) comparing the amount of signal for each of the samples determined in step (e) with each other and selecting one or more samples from the plurality of samples tested in step (d); and
(g) 該選択された試料中の細胞が有する工程 (d) の ( 1) に記載の該蛋白 質をコードする遺伝子を塩基配列を決定する工程。  (g) the step of determining the nucleotide sequence of the gene encoding the protein according to (1) in step (d) of the cells in the selected sample;
16. 該方法が、所望に応じ前記工程(f ) と工程(g)の間に、 前記工程(d) 乃至 (f ) からなる同様の操作の 1乃至複数回を含むことを特徴とする請求項 1 5に記載の方法。 16. The method, as desired, comprises between step (f) and step (g) one or more of the same steps comprising steps (d) through (f). Item 15. The method according to Item 15.
17. 該プロモ一夕一領域が、 zif268 (EGR-1) プロモーター領域、 SREと CRE とを含むプロモーター領域または c- fosプロモーター領域のいずれかであること を特徴とする請求項 14乃至請求項 16のいずれかに記載の方法。 17. The promoter overnight region is a zif268 (EGR-1) promoter region, a promoter region containing SRE and CRE, or a c-fos promoter region. The method according to any of the above.
18. 該プロモ一夕一領域が、 zif268プロモ一夕一領域であることを特徴とす る請求項 14乃至請求項 16のいずれかに記載の方法。  18. The method according to any one of claims 14 to 16, wherein the overnight promo area is a zif268 overnight promo area.
19. 該 PC 12由来細胞が、 さらに下記 (a) 乃至 (c) のいずれかの外来 性遺伝子を有するものであることを特徴とする請求項 14乃至請求項 18のいず れかに記載の方法:  19. The PC12-derived cell according to any one of claims 14 to 18, wherein the PC12-derived cell further has an exogenous gene of any one of the following (a) to (c): Method:
(a) Gひ qの C末端アミノ酸配列の一部が Gひ iの C末端アミノ酸配列の一 部に置換されてなるキメラ G蛋白質 Gひサブュニッ トをコ一ドする遺伝 子;  (a) a gene encoding a chimeric G protein G subunit obtained by substituting a part of the C-terminal amino acid sequence of G sub-q with a part of the C-terminal amino acid sequence of G sub-unit;
(b) Gひ sの C末端アミノ酸配列の一部が Gひ iの C末端アミノ酸配列の一 部に置換されてなるキメラ G蛋白質 Gaサブュニッ トをコ一ドする遺伝 子; または、  (b) a gene encoding a chimeric G protein Ga subunit obtained by substituting a part of the C-terminal amino acid sequence of Ghis with a part of the C-terminal amino acid sequence of Ghii;
(c) 受容体特異性を有さずに受容体と共役し、 フォスフオリパーゼ Cを活性 化することによりシグナルを伝達する G蛋白質をコードする遺伝子。 (c) A gene encoding a G protein that couples to a receptor without receptor specificity and transmits a signal by activating phospholipase C.
20. 前記 (c) に記載の G蛋白質が、 G15または G16であることを特徴とす る請求項 19に記載の方法。 20. The method according to claim 19, wherein the G protein according to (c) is G15 or G16.
21. 該蛋白質をコードする 1または複数の遺伝子が、 cDNAまたは cDNAライ ブラリーであることを特徴とする請求項 14乃至請求項 20のいずれかに記載の 方法。  21. The method according to any one of claims 14 to 20, wherein the one or more genes encoding the protein are cDNA or cDNA library.
22. 該受容体が、 G蛋白質共役型受容体であることを特徴とする請求項 14 乃至請求項 22のいずれかに記載の方法。  22. The method according to any one of claims 14 to 22, wherein the receptor is a G protein-coupled receptor.
PCT/JP2000/002416 1999-04-13 2000-04-13 Method for screening g protein-coupled receptor ligand and method for expression cloning g protein-coupled receptor WO2000061745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU36780/00A AU3678000A (en) 1999-04-13 2000-04-13 Method for screening g protein-coupled receptor ligand and method for expressioncloning g protein-coupled receptor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/105631 1999-04-13
JP10563199 1999-04-13

Publications (1)

Publication Number Publication Date
WO2000061745A1 true WO2000061745A1 (en) 2000-10-19

Family

ID=14412829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002416 WO2000061745A1 (en) 1999-04-13 2000-04-13 Method for screening g protein-coupled receptor ligand and method for expression cloning g protein-coupled receptor

Country Status (2)

Country Link
AU (1) AU3678000A (en)
WO (1) WO2000061745A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760342A (en) * 2019-11-05 2021-05-07 珠海联邦制药股份有限公司 Lentiviral vector and cell strain for activity determination of GLP-1 and analogue thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542830A1 (en) * 1990-08-07 1993-05-26 Sibia Neurosciences, Inc. Assay methods and compositions for detecting and evaluating the intracellular transduction of an extracellular signal
US5783402A (en) * 1991-10-01 1998-07-21 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method of identifying ligands and anatgonists of G-protein coupled receptor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542830A1 (en) * 1990-08-07 1993-05-26 Sibia Neurosciences, Inc. Assay methods and compositions for detecting and evaluating the intracellular transduction of an extracellular signal
US5783402A (en) * 1991-10-01 1998-07-21 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method of identifying ligands and anatgonists of G-protein coupled receptor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MURAYAMA, T. ET. AL.: "Pertussis toxin-insensitive effects of mastoparan, a wasp venom peptide, in PC12 cells", JOURNAL OF CELLULAR PHYSIOLOGY, vol. 169, no. 3, 1996, pages 448 - 454, XP002929574 *
SATO, M. ET. AL.: "Factors determining sepecificity of signal transduction by G-protein-coupled receptors", J. BIOL. CHEM., vol. 270, no. 25, 1995, pages 15269 - 15276, XP002929622 *
STABLES, J. ET. AL.: "Development of a dual glow-signal firely and Renilla luciferase assay reagent for the analysis of G-protein coupled receptor signalling", J. OF RECEPTOR & SIGNAL TRANSDUCTION RESEARCH, vol. 19, no. 1-4, January 1999 (1999-01-01), pages 395 - 410, XP002929573 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760342A (en) * 2019-11-05 2021-05-07 珠海联邦制药股份有限公司 Lentiviral vector and cell strain for activity determination of GLP-1 and analogue thereof
CN112760342B (en) * 2019-11-05 2023-03-28 珠海联邦制药股份有限公司 Lentiviral vector and cell strain for activity determination of GLP-1 and analogue thereof

Also Published As

Publication number Publication date
AU3678000A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
US5217867A (en) Receptors: their identification, characterization, preparation and use
US5262300A (en) Receptors: their identification, characterization, preparation and use
CA2531698A1 (en) Method for assaying protein-protein interaction
CN112210017B (en) Group of tar death executor fusion proteins and tar death activity detection method based on luciferase fragment complementation analysis technology
Nguyen et al. Establishment of a NanoBiT-based cytosolic Ca2+ sensor by optimizing calmodulin-binding motif and protein expression levels
CA2627022A1 (en) Detection of intracellular enzyme complex
US6383761B2 (en) Methods and compositions for identifying modulators of G-protein-coupled receptors
JP2003505019A (en) Novel gene sequences encoding steroid and juvenile hormone receptor polypeptides and uses thereof
EP2823044B1 (en) Membrane span-kinase fusion protein and the uses thereof
JP3643288B2 (en) G protein-coupled receptor ligand screening method and G protein-coupled receptor expression cloning method
EP2483696B1 (en) Natural peptide and derivatives as modulators of GPCR GPR1 and uses thereof
WO2000061745A1 (en) Method for screening g protein-coupled receptor ligand and method for expression cloning g protein-coupled receptor
EP1893627A1 (en) Multiplex array useful for assaying protein-protein interaction
US20210340526A1 (en) Novel method for transducing protein-protein interactions
Jain et al. The Adenosine A1 and A2A receptor C-Termini are necessary for activation but not the specificity of downstream signaling
JP2005118050A (en) Screening method of g protein conjugating receptor ligand and expression cloning method of g protein conjugating receptor
Lu et al. Quantitative analysis of G-protein-coupled receptor internalization using DnaE intein-based assay
AU778648B2 (en) Cells and assays
JP4768946B2 (en) Endogenous and non-endogenous forms of the human G protein coupled receptor
JP2002045188A (en) Dioxin receptor gene and its use
EP1544307A1 (en) LAC9 chimeric receptor and uses thereof
JP2011147461A (en) Endogenous and non-endogenous version of human g protein-coupled receptor
US20030148390A1 (en) Dose response-based methods for identifying receptors having alterations in signaling
JP2003525018A6 (en) Non-endogenous constitutively activated human G protein-coupled receptor
JP2004121254A (en) Method of screening antiplatelet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase