WO2000060159A1 - Leather-like sheet and method for preparing the same - Google Patents

Leather-like sheet and method for preparing the same Download PDF

Info

Publication number
WO2000060159A1
WO2000060159A1 PCT/JP2000/001744 JP0001744W WO0060159A1 WO 2000060159 A1 WO2000060159 A1 WO 2000060159A1 JP 0001744 W JP0001744 W JP 0001744W WO 0060159 A1 WO0060159 A1 WO 0060159A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
yarn
fiber
fabric
leather
Prior art date
Application number
PCT/JP2000/001744
Other languages
French (fr)
Japanese (ja)
Inventor
Sumito Kiyooka
Tomohiro Hayakawa
Tamemaru Esaki
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Publication of WO2000060159A1 publication Critical patent/WO2000060159A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0013Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using multilayer webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)

Definitions

  • the present invention relates to a fibrous structure in which a reinforcing fabric is firmly integrated with an ultrafine fiber aggregate, in which an elastic resin is impregnated. More specifically, an ultrafine nonwoven fabric having a high fiber density has a low strain range.
  • the present invention relates to a leather-like sheet provided with high anti-deformation property, a method for producing the same, and a reinforcing cloth used therefor. Background art
  • Japanese Patent Publication No. 4-111113 discloses a knitted fabric made of a strongly twisted yarn having a twist number of 100 T / m or more. This technique is intended to minimize damage to the reinforcing fabric due to the needle punch when the staple web and the reinforcing fabric are integrated using a needle punch. And a method for producing a soft leather-like sheet.
  • Japanese Patent Application Laid-Open No. H10-2738885 discloses a high strength and particularly stretchy using a knitted woven fabric composed of a strongly twisted yarn as a reinforcing material, as in Japanese Patent Publication No. 4-11113. There has been proposed a fiber nap sheet having properties.
  • the staple web and the reinforcing fabric are laminated and integrated by needle punch, a slight shrinkage is applied to the obtained composite sheet, and then PVA (polyvinyl alcohol) is impregnated and adhered to the composite sheet. Is extracted and removed, and then an elastic resin is impregnated to produce a leather-like sheet.
  • Japanese Patent Application Laid-Open No. 55-57059 discloses a filler having latent shrinkage.
  • This paper describes a reinforcing fabric consisting of a reinforced material, in which a papermaking web made of short fibers having a fiber length of 10 mm or less and a laminate of the reinforcing fabric are entangled and integrated by a high-pressure water flow, and then the reinforcing fabric shrinks. It describes a method for improving the apparent fiber density of a sheet.
  • reinforcing cloth there is a cloth known as a so-called backing material in which after the entanglement of the fiber web alone is completed, the reinforcing cloth is attached to the back.
  • the reinforcing fabric is integrated with the ultrafine fiber web,
  • the purpose is to produce a structure with cutting strength and flexibility, and the strength value when cutting a sheet is relatively high, and it is certainly due to the effect of the reinforcing material compared to the state of only the fibrous web.
  • the deformability of the sheet is low, the deformability is still very high when the distortion is in the range of about 10%.
  • Japanese Patent Application Laid-Open No. 55-57959 discloses a fabric obtained by hydroentanglement of a reinforcing fabric made of latently shrinkable filaments and a papermaking machine made of fibers having a fiber length of 10 mm or less.
  • the entanglement between the constituent fibers is small and the entanglement with the reinforcing fabric is also low.
  • the adhesion of the elastic resin is very small, when the sheet is distorted, the web hardly contributes to the anti-deformation property, and the degree of deformability naturally achieved must be low. There is a fate.
  • the fibers are easily dropped from the sheet due to the above-mentioned manufacturing method.
  • the deformation resistance of the sheet can be controlled by selecting a backing material. Since shrinkage treatment can be performed only in a state, a high apparent density can be manufactured by using a shrinkable web.However, the bonding between the fiber web and the reinforcing fabric is weak, and peeling occurs during processing. Therefore, there is a drawback that a manufacturing process is required and the manufacturing cost is increased.
  • the bonding of the fiber ⁇ ⁇ and the reinforcing fabric is performed by laminating the reinforcing ⁇ ⁇ fabric when the fiber ⁇ ⁇ itself has a low degree of entanglement, and mechanically joining the two by water flow or needle punching. It is desirable that the entanglement is very strong. In this way, by laminating and intensifying the strong fabric, In particular, sufficient selection of reinforcing fabrics not only gives the finished product sheet anti-deformation properties in the low strain region, but also changes the morphology of the fiber sheet during many manufacturing processes (especially elongation due to process tension). Is suppressed.
  • the fiber-to-fiber distance is maintained at a relatively short state, and a structure is easily suppressed in shape change during subsequent impregnation of the elastic resin.
  • the surface fiber density is a very important factor that determines the product quality.
  • Important points to increase the apparent density of the composite sheet are: 1 It is important to increase the apparent density by shrinking the fibrous web, and 2 It is important to prevent the sheet from elongating due to tension during the manufacturing process. .
  • conventional techniques cannot suppress deformation in a low distortion region and have a high apparent density. Disclosure of the invention
  • the present invention is a leather-like sheet in which an ultrafine fiber web and a reinforcing fabric are integrated, suppressing the occurrence of elongation and curling during the manufacturing process, and increasing the apparent density of the leather-like sheet by shrinkage treatment. It provides a leather-like sheet that achieves high resistance to deformation in the final sheet, has high commercial value, and is less expensive to manufacture than conventional bonded products.
  • the present invention relates to a fiber in which a nonwoven fabric made of an ultrafine fiber of 0.3 denier (abbreviated as dr) or less and a reinforcing fabric are entangled and integrated, and the entangled integrated product contains an elastic polymer.
  • dr ultrafine fiber of 0.3 denier
  • the entangled integrated product contains an elastic polymer.
  • the strain up to the first peak in the horizontal direction is 20% or more
  • break length is calculated by the following equation.
  • the present invention also relates to a preferred method for producing the leather-like sheet, specifically, a yarn composed of a fiber having a shrinkage of 10 to 30% in hot water of 90 C, At least one side of a reinforced fabric with a fiber strength of 6 kgZcm or more at 20% elongation and a horizontal strength of 4 kgZcm or more, an ultrafine fiber with a fiber length of 3 to 150 mm or ultrafine
  • the fibers are made of a possible fiber, and the shrinkage in hot water at 90 ° C after entanglement is in the range of 10% to 30% for both fibers, so that the fabric and the fibers are combined.
  • a hydrophilic polymer is applied. This is a method for producing a characteristic leather-like sheet.
  • the present invention provides a reinforcing fabric constituting a fiber sheet used in the above method, comprising a yarn composed of a fiber having a shrinkage of 10 to 30% in hot water at 90,
  • An artificial leather reinforced fabric characterized in that the strength at 20% elongation is 6 kgZcm or more and the horizontal strength is 4 kgZcm or more.
  • Figure 1 shows the breaking length-strain curve in the horizontal direction
  • Figure 2 shows the breaking length-strain curve in the horizontal direction.
  • the first peak referred to in the present invention is the tear length-strain curve of the sheet, when the strain is applied from 0, the tear length increases as the strain increases, and the tear length reaches the peak. After this, a falling phenomenon is usually seen, which means this peak.
  • the cleavage point means the peak referred to in the present invention.
  • the leather-like sheet / reinforced fabric is manufactured as a long sheet which is continuous in the length direction.
  • the evening direction is defined as the length direction of the sheet / reinforced fabric, that is, in general, the mechanical direction.
  • direction refers to a direction
  • horizontal direction refers to a direction (width direction) perpendicular to the evening direction.
  • the leather-like sheet having high morphological stability of the present invention it is important that deformation is difficult in a low strain region, which is caused by a sheet crack corresponding to a stress-strain curve during deformation.
  • the shape of the length-strain curve is important. In other words, the curve from the beginning of the fracture length-strain curve to the location where the first peak is present is shown in the direction of the evening and the direction of the horizontal, respectively.
  • the sunset is within the area between the straight line passing through 0 and A and the straight line passing through ⁇ and C, and the strain elongation to the first peak is 15% or more, more preferably the curve Is in the range between the straight line passing through ⁇ (0, 0) and A ⁇ 2 (3 0, 3.0) and the straight line passing through ⁇ C. Also, the '' co exists in the area between the straight line passing through O and A 'and the straight line passing through 0 and C'. J
  • Fig. 7 and the strain elongation up to the first peak is 20% or more, and more preferably, the area where the curve exists is 0 (0, 0) and A'12 (40, 2.0). It is within the range between the straight line passing through and the straight line passing through ⁇ C '.
  • Fig. 1 shows the breaking length-strain curve in the horizontal direction
  • Fig. 2 shows the breaking length-strain curve in the horizontal direction.
  • the apparent density of the leather-like sheet of the present invention which is a composite sheet
  • the composite sheet of the present invention is basically composed of ultrafine fibers as main fibers, reinforced fabric, and It is a composite made of elastic resin to be made.
  • the sheet density needs to be 0.4 g / cm 3 or more, and more preferably 0.43 to 0.5 lg / cm 3. It is.
  • the density is less than 0.4 g / cm 3 , the entanglement between the fibers is insufficient, the distance between the fibers during entanglement is slightly large, and the bonding state with the elastic resin is also insufficient. Therefore, it is not enough to obtain high deformation resistance of the sheet, and a sheet having such a density has a low breaking length and a large elongation. That is, it is very important and indispensable that the density of the sheet be 0.4 gZ cm 3 or more specified in the present invention in order to achieve the object of the invention.
  • the apparent density of the natural leather still is usually 0. 5 gZcm 3 back and forth from the top to obtain the fulfillment of a natural leather-like also to the apparent density of the leather-like sheet of the present invention and 0. 4 gZcm 3 or more is important.
  • Most of the conventionally known suede-like artificial leathers have an apparent density of less than 0.4 g / cm 3 , and hardly satisfy the 0.4 g / cm 3 or more specified in the present
  • the fiber is not particularly limited as long as it has such a hot water shrinkage rate.
  • the polymer constituting the fiber may or may not be modified, but the above-mentioned shrinkage rate is not increased in hot water at 90 ° C.
  • polyester fibers for example, those having an amorphous substituent such as isofluoric acid introduced therein, or perhydrodimethanonaphthalenediethanol (MNDM), since these can be easily obtained.
  • Polyester fibers are the most preferable in that fibers having the most desired shrinkage can be easily obtained among many fibers, and the shrinkage is stable. Alamid fiber and natural fiber do not satisfy both fiber strength and shrinkage in hot water in a well-balanced manner, and are not preferred.
  • the shrinkage ratio of the fibers constituting the reinforcing cloth is 10 to 30% in hot water at 90 ° C., and preferably 15 to 30%. If the shrinkage ratio is less than 10%, the shrinkage ratio of the woven or knitted fabric is insufficient. If it exceeds 30%, the fabric hardens due to the thickening of the fibers due to shrinkage, or the physical properties of the fabric are reduced due to embrittlement of the constituent resin, and the fabric is not used as a reinforcing fabric.
  • the shrinkage of the reinforcing fabric is preferably approximately the same as the shrinkage of the ultra-fine fibers or ultra-fine fibers to be combined. ⁇ If the shrinkage is significantly different, curl and wrinkles during shrinkage In some cases, sheet surface irregularities may occur. According to the research results of the present inventors, the shrinkage ratio (90.C in hot water) of ultrafine fibers or ultrafine fibers that provide excellent product surface quality and tactile sensation is 10 times for both Yoko and Yoko. The fiber density is insufficient when it is less than 10%, and the sheet becomes hard when it exceeds 30%.
  • the 90 ° C. hot water shrinkage ratio of the fibers constituting the reinforcing fabric is 10 to 30 ° C. %.
  • the difference in shrinkage ratio between the reinforcing fabric and the entangled fiber web in hot water at 90 ° C is lower, and when the fiber length of the web is 20 mm or more, It is preferable that the difference in shrinkage ratio is in the range of 0 to 10% in the evening direction and the difference in shrinkage ratio in the horizontal direction is 0 to 6%.
  • the fiber length is less than 20 mm, It is preferable to suppress the difference in shrinkage within a range of 0 to 20% in the direction and 0 to 15% in the horizontal direction.
  • the difference between the vertical direction and the horizontal direction is a difference due to the process tension, and in the vertical direction, even if the difference in the shrinkage ratio is slightly high, it is difficult for curl or the like to occur.
  • the difference in shrinkage due to the fiber length if it is less than 20 mm, the entanglement between the fibers is weak, and even if there is a relatively large difference in shrinkage, the above-mentioned problem is relatively unlikely to occur.
  • the polymers used for the fibers constituting the reinforcing fabric include, for example, low heat shrinkage control, good color development during dyeing, good color fastness, and general and low cost.
  • a polyester such as polyethylene terephthalate fiber or modified polyester fiber is preferable.
  • the reinforcing fabric of the present invention preferably controls delicate shrinkage in accordance with the shrinkage of the fibers to be combined, and polyester fibers are particularly preferable in this regard.
  • polyester fibers are particularly preferable in this regard.
  • other than polyester for example, nylon-based fiber, vinylon-based fiber, polyolefin-based fiber, and acrylic-based fiber can also be used.
  • the thickness of the fibers constituting the reinforcing fabric is preferably 0.1 to 2.5 dr (0.11 to 2.8 dtex) in terms of single fiber fineness.
  • the thickness of the single fiber is in this range, even after heat shrinking after forming the fabric, the fineness is not too large and the sheet does not become too hard.
  • any yarn such as a multifilament yarn or a spun yarn can be used as long as the yarn satisfies the above-described shrinkage ratio. It is preferable to make it consist of.
  • the yarn is twisted for bundling, but the preferred range of the number of twists of the yarn is in the range of 550 to 200 TZm before the shrinkage treatment, and more preferably The range is from 65 to 900 TZ m.
  • the shrinkage of the fiber used is taken into consideration, and after the shrinkage treatment, the number of twists falls within the following range. It is preferable to set the number of twists of the yarn before shrinking so as to fit.
  • the number of twists of the yarn constituting the reinforcing fabric after the shrinkage treatment is preferably at least 65 T / m, and no more than 2800 T / m, and more preferably at most 800 T / m. It is in the range of up to 1200 T / m.
  • the number of twists of the yarn after the shrinkage treatment exceeds 280 TZm, the fibers constituting the yarn are easily embrittled by shrinkage, the apparent density of the shrinkable sheet, the anti-deformation property in a low strain region, Although the tensile strength and the like are improved, the cured sheet has a low tear strength, which is not preferable. This tendency is particularly remarkable in the case of spun yarn.
  • the number of twists of the yarn after the shrinkage treatment is less than 6 ⁇ 0 T / m, the effect of the anti-deformation property of the sheet expected as a reinforcing fabric is not sufficiently exhibited, which is not preferable.
  • the number of twists of the yarn is 800 to 1200 TZm, an excellent leather-like sheet with a good balance between the texture and the deformability in the low distortion range can be obtained.
  • the entanglement of the reinforcing fabric and the web made of ultrafine fibers or ultrafine fibers can be performed by any method that can be effectively entangled, such as a hydroentanglement process or a needle punching process.
  • This is a method using needle punching, which is a method for obtaining high entanglement.
  • the reinforcing fabric is damaged by the needle punching process, but the number of twists is 550 T / m to 200 TZm, especially 65 to 9
  • the yarn damage is small, sufficient entanglement with the fiber web can be achieved, a higher apparent density can be obtained, and a morphological change in a low strain region can be prevented.
  • the yarn in the reinforcing fabric is subjected to a certain degree of damage by the needle punching process performed when the web and the fabric are intertwined with each other.
  • damage can be greatly reduced.
  • the spun yarn is composed of discontinuous fibers, even if the constituent fibers are damaged or slipped by the needle punch, the effect on the total yarn strength drop is small, and the present inventors' research has According to this, this effect is remarkably obtained when the number of twists is 200 OT Zm or less, preferably 900 T Zm or less before the shrinkage treatment.
  • the reinforcing fabric of the present invention is preferably a yarn having a high shrinkage of not more than 200 TZm before the shrinkage treatment.
  • it is made of spun yarn.
  • the most preferable is a highly shrinkable spun yarn having a twist number in the range of 600 T / m to 900 TZm.
  • the number of twists of the yarn is too high, the yarn becomes too tight and the looseness between the single fibers disappears, thereby reducing the entanglement between the fiber and the fabric, and particularly the papermaking web.
  • the fiber detachment increases.
  • the number of twists is less than 200 OTZ m before the shrinkage treatment, especially in the case of spun yarn, the entanglement of the web with the fluff peculiar to the spun yarn works effectively. There is also a moderately loose part between them, and this part is entangled, and the phenomenon that the entanglement of the web fiber and the reinforcing fabric becomes effective is observed.
  • the reinforcing fabric is converted from the multifilament yarn. Easy to occur when the fabric is The detachment of the web fibers can be eliminated.
  • the degree of heat shrinkage of the yarn can be adjusted by mixing fibers having different shrinkages, and in this sense, the use of spun yarn is useful.
  • the yarn count of 30 to 45 is the number of cotton, the yarn strength, the handleability as a fabric, the needle punch, and the diameter at the time of water entanglement. It is preferable in terms of entanglement and yarn damage.
  • the fiber length of the fiber constituting the spun yarn is preferably 30 to 100 mm, and the fiber length is less than 30 mm. In such a case, the strength of the yarn is low and the strength required as a reinforcing fabric is reduced. When the fiber length exceeds 100 mm, there is a defect similar to the case where a filament yarn is used.
  • a method of forming the reinforcing cloth into a fabric will be described.
  • knitted fabrics such as a sheet knitted fabric and a tricot knitted fabric and a plain woven fabric are preferred.
  • a woven fabric is desirable because the shrinkage of the yarn is directly reflected on the reinforcing cloth and the processability in the subsequent steps.
  • the structure of the woven fabric may be any structure as long as it can be later subjected to needle punching or water entanglement, but it is easy to obtain strength, easy to balance, tensile strength in the vertical direction, shrinkage of yarn Plain weave is preferred because the properties appear more directly and are easier to adjust.
  • the warp yarn and the weft yarn may be of the same type or different types, as long as they conform to the content of the present invention, but the shrinkage of the yarn is low. It is preferable that the shrinkage of the knitting yarn is in the range of 0.3 to 0.95 times. Because of the process tension during the manufacturing process, the warp direction is less likely to shrink.
  • the shrinkage rate in the fabric direction must be reduced to some extent compared to the weft direction when designing the fabric, distortion during the shrinkage treatment will remain in the fiber, and the strain will relax under more severe thermal conditions such as dyeing. Shrinks vertically and is perpendicular to the sheet length (width Wrinkles will be formed. Therefore, it is preferable to set the shrinkage ratio of the evening yarn and the weft yarn within the above-mentioned range.
  • any material can be used as long as it is satisfactory as a reinforcing cloth, but the length is preferably 40 to 100 yarns / inch, and the horizontal is 30 to 90 yarns, and more preferably Z-inch.
  • the range is 50-80 inches per inch, and 40-70 inches per inch.
  • the anti-deformation property of the final sheet and the anti-deformation property in the manufacturing process are considered. It is also excellent in handleability. It is preferable to set the yarn density higher than the weft yarn density in order to prevent the sheet from being deformed by process tension.
  • Examples of the loom used for weaving the reinforcing cloth include known looms such as a Chiltour loom, a fly loom, a war trowel loom, a rapier loom, and an air jet loom.
  • the strength value of the reinforcing fabric used in the present invention at 20% elongation is as follows: vertical strength is 6 kgZcm or more, horizontal strength is 4 kgZcm or more, and preferably 10 to 20 kN. gZcm, horizontal strength is 5 ⁇ 15 kg / cm.
  • vertical strength is 6 kgZcm or more
  • horizontal strength is 4 kgZcm or more, and preferably 10 to 20 kN.
  • gZcm horizontal strength is 5 ⁇ 15 kg / cm.
  • the strength value of the reinforcing fabric alone is within the above range. It is.
  • the deformation resistance of the reinforced fabric depends on the morphological change during the manufacturing process and the leather-like sheet of the final product.
  • the strength at the time of low distortion is high.
  • a fabric with a sufficient strength value must be used.
  • the reinforcing fabric thus produced is laminated with a fiber web having high shrinkage and entangled without being heat-set in order to maintain heat shrinkability later.
  • the other web made of entangled ultrafine fibers or ultrafine fibers can be made by laminating a plurality of thin webs opened by a card to a specified weight with a cross wrapper, or by using a random webber. Make it. In order to more tightly entangle with the reinforcing cloth, it is preferable that both are laminated and entangled in a state of a low degree of entanglement. Specifically, the two - when using entangling treatment by the Dorupanchi, about 3 0 0 punches Z cm 2 or less, also in the case of using a hydroentanglement is 1 0 0 by stacking the non entangled state web The treatment is preferably performed at a high water pressure of kgf / cm 2 or more.
  • the shrinkage rate of the fiber web must be in the range of 10 to 30% in both the horizontal direction and the horizontal direction.
  • the shrinkability of the fiber web is related to the sheet structure and the number of surface fluffs that give the product deformation resistance, and is an important value that determines both the high resistance to deformation and the product quality aimed at by the present invention.
  • the fact that the product surface is sufficiently dense with ultrafine fibers greatly affects polishing accuracy and the like. If the shrinkage is less than 10%, the fiber density is coarse and the product is low quality in terms of surface nap. If it exceeds 30%, the sheet becomes too hard.
  • measure the length of the fiber web in the horizontal and horizontal directions It means the ratio that each length becomes smaller before and after immersion.
  • the fibers constituting the fiber web have a fiber length of 3 to 150 mm, preferably within a range of 20 to 150 mm. If the fiber length is less than 3 mm, an effective fiber entangled state cannot be obtained by the hydroentanglement or the needle punch method, resulting in poor surface wear when the product is obtained. On the other hand, if it exceeds 150 mm, it becomes easy to become a nep when playing a card, and it is difficult to obtain a clean diamond.
  • any fiber can be used as long as it satisfies these conditions, or any fiber that can be made ultrafine, and is preferably a fiber that can be made ultrafine.
  • These fibers may be any of fibers composed of a single polymer, composite fibers composed of a plurality of polymers, and mixed spun fibers.
  • the ultra-fine-thinning fiber is a polymer fiber or a mixed spun fiber comprising at least one polymer extracted and removed or decomposed and removed, or the polymer is exfoliated at the interface between the fiber constituent polymers. This is a general term for fibers that can be used to obtain ultrafine fibers.
  • the ultrafine fibers or the ultrafine fibers obtained by ultrafine-refining the ultrafine fibers are preferably 0.3 dr (0.33 decitex) or less, and when the ultrafine fibers are thicker than 0.3 dr, Since the fibers are too thick, they can only be obtained with a low fiber density and a poor sense of fulfillment. Especially when the surface is finished in a fluffy shape, a high-quality suede-like product cannot be obtained.
  • two or more polymers are mixed-spun or composite-spun to produce a fiber having a sea-island cross section, and the sea-component polymer is extracted or decomposed and removed from the fiber to leave only the island-component polymer.
  • An ultrafine fiber obtained by dividing the polymer interface of a fiber composed of a multi-component polymer by a method such as water flow, or by heat-treating and exfoliating the interface due to differences in shrinkage strain of the polymer, swelling in a specific solution, and solubility differences. Fiber may be used.
  • Ultra-fine fibers or ultra-fine fibers The more preferable fineness of the ultrafine fibers after the formation is 0.1 to 0.001 dr (0.11 to 0.00001 decitex).
  • the polymer constituting the ultrafine fiber examples include polyesters represented by polyethylene terephthalate or a copolymer having ethylene terephthalate as a main repeating unit, 6-nylon, 66-nylon, 6-nylon, and the like. Polyesters are preferred in order to achieve a high anti-deformation property on a leather-like sheet after force production, such as polyamides represented by 10-nylon and the like.
  • the sea component-forming polymer includes polyethylene, polystyrene, and the like.
  • the above-mentioned ultrafine fiber-constituting polymer is, of course, a preferred example.
  • the method for imparting latent shrinkage to the ultrafine fibers or ultrafine fibers is the same as in the case of the above-described reinforcing cloth.
  • As the thickness of the ultrafine-thinning fiber before the ultrafineness treatment l to 5 dr (1.11 to 5.55 decitex) is preferable in terms of entanglement of the fiber as a web.
  • the basis weight of the fiber web is preferably from 200 to 550 gZm 2 after the ultrafine treatment in terms of the basis weight of only the ultrafine fibers in the sheet after dyeing.
  • the entanglement treatment of the reinforcing cloth and the fiber web may be performed by a high-pressure water jet method, a needle punch method, or a combination of both. Twenty-one Dorupanchi in the case of using the method, it respectively 4 0 0-1 8 0 0 punch Zc m 2 from one side to punch 8 0 0-3 6 0 0 punches Z cm number of punches 2 together sided Is preferred.
  • the entangled laminate of the reinforcing fabric and the fiber web is subjected to a heat shrink treatment to improve the apparent fiber density of the sheet and the sheet strength.
  • the apparent fiber density of the fiber web in the highly entangled state is further improved.
  • the distance between the fibers is shortened, and the synergistic effect with the elastic resin impregnated later.
  • the result is ultimately important in achieving high sheet deformation resistance.
  • the shrinkage of the laminated sheet is preferably 10 to 30% in both the machine direction and the transverse direction. If the shrinkage is less than 10%, the effect of improving the apparent density of the fiber and the sheet strength is not seen, and if it exceeds 30%, the sheet is excessively shrunk and the entire sheet hardens. Not good.
  • the thermal shrinkage ratio of the web and the reinforcing cloth be substantially the same as described above.
  • the shrinkage in hot water at ° C is also preferably in the range of 10 to 30% in both the horizontal direction and the horizontal direction, as in the case of the fiber ⁇ . If the shrinkage differs greatly between the two, the sheet will curl with the layer with the highest shrinkage inside during the heat shrink treatment, making post-processing difficult in such a state.
  • the shrinkage treatment method a laminated integrated product of the reinforcing cloth and the fiber web is immersed in hot water at 80 to 100 ° C.
  • the heat shrinkage improves the apparent fiber density in the fiber sheet and the strength of the fiber sheet, enables processing that maximizes the shrinkage properties of the shrinkable fiber web, and makes the product quality surprisingly good.
  • the sheet which has achieved high deformation resistance mainly by the reinforcing fabric and high fiber density by the shrinkage treatment, is then used to obtain a desired leather-like sheet.
  • the elastic polymer is wet- or heat-sensitive coagulated, and the fibers are made of ultrafine fibers, the fibers are extracted with an extractant. And ultrafine fibers by treating with a decomposing agent.
  • applying high-pressure water flow treatment, shrinkage distortion treatment, etc. before applying the elastic polymer and dividing the fibers by a mechanical method is advantageous in terms of division. Surface and the texture of the leather-like sheet.
  • the elastic polymer used in the present invention may be any polymer having rubber-like elasticity, such as polyurethane, SBR, NBR, polyamino acid, and acrylic resin. Polyurethane is most preferred in terms of physical properties.
  • the elastic polymer is preferably used in the form of a solution and is preferably subjected to wet coagulation. However, although the texture is slightly inferior, depending on the application, a polyurethane-based acryl-based polymer alone or an aqueous emulsion obtained by mixing these may be used.
  • the amount of the rubbery elastic polymer to be applied is preferably 10 to 25% of the weight of the constituent fibers of the leather-like sheet.
  • suede-like artificial leather can be obtained by buffing the surface of the obtained sheet on the fiber-to-etch side with sandpaper or the like. Also, instead of shaving the surface, a resin is applied to the surface and embossed or flattened to obtain a natural leather-like surface unevenness, whereby an artificial leather with a silver surface can be obtained.
  • the obtained artificial leather can be further subjected to a dyeing process and other finishing processes as necessary.
  • the required deformability behavior of the final leather-like sheet in the low-strain region is determined by using a reinforcing fabric as described above, and tangling the web made of ultrafine fibers or ultrafine fibers and the reinforcing fabric together.
  • the resulting laminate can be obtained by shrinking the resulting laminate to increase the apparent density of the fibers in the structure, and applying an elastic resin.
  • the shrinkage of the fiber in hot water at 90 ° C is the length measured when a load of 1/500 g / dr is applied to the fiber, and 90 ° C in the free state. It is obtained from the difference from the length measured under a load of 1/500 g / dr again after immersion in warm water for 5 minutes and air drying.
  • the shrinkage ratio of the fabric in hot water at 90 ° C means the area reduction ratio before and after immersing the fabric in hot water at 90 for 5 minutes in a free state. ing.
  • the strain-break length curve of the leather-like sheet and the strength in the machine direction and transverse direction when the fabric is stretched by 20% were measured by a stripron sample cut in a width of 1 cm in each direction using an instron.
  • Polyethylene terephthalate is used as the sea component
  • polyethylene terephthalate is used as the island component
  • the ratio of the sea component to the island component is 35:65. mm, the number of islands: 16)
  • a fibrous web of 350 gZm 2 with a hot water shrinkage of 15.0% at 90 ° C is a 51 mm long polyethylene terephthalate.
  • a 70 g / m 2 reinforcing cloth made from spun yarn of fibers was laminated.
  • the shrinkage rate of ultrafine fibers in hot water at 90 ° C is 23%.
  • the web made of these fibers is a cross-wrapping machine that uses a low-weight web that has been opened with a card.
  • the reinforcing fabric is made of a spun yarn of 40th count, and the final twist applied to the yarn is 800 TZm. This spun yarn is used as a raw, unset yarn, and is used for warp and weft yarns to produce plain weaves (weaving density: 60-inch inch, 50-inch Z inch). .
  • the vertical tenacity of this plain fabric at 20% elongation was 10 kgZcm, and the horizontal tenacity was 5.7 kg / cm.
  • the laminate of the reinforcing fabric and the fiber web was subjected to a needle punching process of 1300 punches / cm 2 from the fiber web side and 1300 punches / cm 2 from the back side to obtain an entangled sheet.
  • the sheet containing the reinforcing fabric was in a state in which both were tightly entangled integrally.
  • the sheet is preheated to a semi-molten state of the polyethylene, passed through a flat roll having a predetermined clearance, pressed, cooled, and simultaneously with the use of the fusion effect of the polyethylene to smooth the sheet surface and further reduce the sheet thickness.
  • the fiber density in the bulk was improved.
  • this sheet is immersed in a polyurethane urethane dimethylformamide (DMF) solution with a polyurethane concentration of 15% to impregnate the fibers and fiber spaces in the sheet with the polyurethane, and then coagulated in water. I let it. After that, the polyethylene component was extracted in a hot toluene to make the fibers ultrafine. The fiber after ultra-fine-tuning was 0.19 dr. At this time, the sheet is affected by the effect of the reinforcing fabric. It was possible to maintain a very small state of morphological change during the process.
  • DMF polyurethane urethane dimethylformamide
  • the entangled body of the ultrafine fiber web and the reinforcing cloth was brushed on the surface with sandpaper and then dyed to give a suede-like artificial leather-like sheet.
  • the basis weight of the sheet was 519 g / m 2 and the density was 0.45 gZcm 3 .
  • the tear length-strain curve calculated from the stress-strain curve per 1 cm width of both the sheet and the box on this sheet has the general shape shown in Fig. 1 and Fig. 2, and the deformation in the low strain region It was small and very excellent in form stability.
  • the dyed sheet was immersed in a DMF solution kept at 50 ° C, and the attached polyurethane resin was dissolved and removed. The microfibers that had joined were peeled off.
  • the number of twists of the spun yarn was 100 T / m in the evening yarn and 110 T / m in the weft yarn.
  • a shrinkage ratio in hot water at 90 C using a fiber web similar to that of Example 1 and a modified polyester having isophthalic acid changeability of 12 mo 1% as a reinforcing cloth was obtained at 90 C.
  • a needle punch sheet was produced by performing the same operation as in Example 1 with a plain woven fabric produced by using a spun yarn having a twist number of 800 TZm in the horizontal direction.
  • the strength of the plain fabric at 20% elongation was 11 kg / 'cm
  • the strength of the flat was 6.1 kg / cm
  • the hot water shrinkage at 90 ° C was 20%
  • the horizontal direction was 22%.
  • Example 3 The weight and density of the obtained sheet after dyeing were 559 g nom 2 , 0.47 g, and '' cm 3 , respectively.
  • the distortion curves were within the scope of the present invention.
  • the breaking length-strain curve calculated from the stress-strain curve per 1 cm width of both the sheet and the side of this sheet has the approximate shape shown in Fig. 1 and Fig. 2. And small and very excellent in form stability.
  • the number of twists of the spun yarn in this sheet was measured, it was 1950 TZm in the evening yarn and 1.060 TZm in the weft yarn.
  • the second leather-like sheet was excellent in form stability and had a soft texture as artificial leather.
  • the shrinkable fiber web is made of nylon and polyethylene terephthalate. Nylon and polyethylene terephthalate are alternately present in layers in a total of 11 layers. The thickness is 2 dr and the length is 5 1
  • the fiber web and the polyester reinforcing fabric of Example 1 were used with a fiber weight of 160 g / cm 2 and a twist of 7500 T Zm. 0% elongation at Yute strong 8. 9 k gZ cm, ® co potent 5. 0 kgcm, Yute shrinkage 1 5% stacking a ® co shrinkage 1-8%), 5 0 punches / "cm 2
  • Example 4 Thereafter, the same processing as in Example 1 was performed except that the extraction step was not performed. And a sheet density 0. 4 0 8 gZ cm 3 in basis weight 4 9 0/2. The processability of this sheet was not particularly problematic, and the quality of the final sheet was excellent, and it was a high-quality suede tone.
  • the number of twists of the spun yarn in the final sheet is 850 T / m, weft 903 TZm, and the tear length-distortion curve of the sheet is within the scope of the present invention as shown in FIGS. 1 and 2. The stability was excellent.
  • Example 4 The processability of this sheet was not particularly problematic, and the quality of the final sheet was excellent, and it was a high-quality suede tone.
  • the number of twists of the spun yarn in the final sheet is 850 T / m, weft 903 TZm, and the tear length-distortion curve of the sheet is within the scope of the present invention as shown in FIGS. 1 and 2. The stability was excellent.
  • the shrinkable fiber is made of nylon and polyethylene terephthalate, and the nylon and polyethylene terephthalate are alternately present in layers in a total of 11 layers, with a thickness of 1.3 dr and a length of 3
  • a fiber binder was mixed with the composite spun fiber having a thickness of 40 mm / mm 2 to make paper of 40 g / cm 2 .
  • the conjugate spun fibers were made to be easily dispersed in water.
  • This papermaking web and the same fabric as the modified polyester reinforcing fabric of Example 2 were sandwiched between papermaking webs and subjected to the same hydroentanglement treatment as in Example 3. When this sheet was treated in hot water at 90 ° C for 5 minutes, it shrank by 18% in the evening and 17% in the horizontal direction.
  • the shrinkage ratio of only papermaking ⁇ etu was 12% in the evening and 10% in the width.
  • the sheet was impregnated with a 2 °% solution of the emulsion and solidified by dry heat. After drying and curing at 130 ° C, the subsequent finishing treatment was performed in the same manner as in Example 2 to obtain a suede-like sheet.
  • the number of twists of the spun yarn in this sheet was 11032 T / m, and the weft was 970 TZm. Comparative Example 1
  • the treatment was performed in the same manner as in Example 1 except that the number of twists of the spun yarn for the reinforcing fabric was set at 600 T / m.
  • the shrinkage of the used web alone in hot water at 90 ° C was 8% in the evening direction and 7% in the weft direction.
  • the shrinkage in hot water at 0 ° C is 5% in the evening direction and 5% in the horizontal direction.
  • the laminated sheet consisting of both is well entangled by needle punching, but the shrinkage rate is 90% in hot water at 90 ° C, and the shrinkage rate is 6% in the horizontal direction. %Met.
  • the surface is smoothed by pressing and then impregnated with a polyurethane solution and wet-solidified, then the surface is brushed and further dyed, and the resulting sheet has a basis weight of 470 g Zm 2 , apparent density was 0. 3 6 2 g / ' cm 3.
  • the tear length-strain curve of this sheet is out of the range of the present invention, and although it is flexible, the change in shape in the low strain range is slightly. It was big.
  • the apparent density was probably due to the low density, it did not have the richness and luxury of natural leather.
  • the number of twists of the spun yarn in the reinforcing fabric taken out by the above-described method is as follows.
  • the artificial leather thus produced is used, for example, for intellectual material use.
  • it can be suitably used for surface materials such as chairs and sofas that require the anti-deformation property of the reinforcing cloth, and for materials that require high strength and high anti-deformation property, such as mechanical belts and abrasives. it can.

Abstract

A leather-like sheet comprising a fiber structure which is formed by entangling in one piece a nonwoven fabric comprising superfine fibers having a fineness of 0.3 denier or less and a reinforcing cloth and also contains an elastomeric polymer together with the resulting entangled material, wherein a stress of the structure up to the first peak in the longitudinal direction is 15 % or more and a stress thereof up to the first peak in the transverse direction is 20 % or more, and also a tear length in the longitudinal direction - strain curve and a tear length in the transverse direction - strain curve are each in a specific range, the sheet having a density of 0.4 g/cm3 or more. The sheet has a high resistance to deformation in a low strain region and, due to its high fiber density, provides a sense of fulfillment extremely similar to that of natural leather.

Description

明 細 書 皮革様シ一トおよびその製造方法 技術分野  Description Leather-like sheet and its manufacturing method
本発明は、 極細繊維集合体に補強用布帛を強固に一体化した繊維構造 体に弾性樹脂を含浸させたもので、 より詳細には、 高い繊維密度を有す る極細繊維不織布に低歪み域での高抗変形性を付与した皮革様シート、 およびそれの製造方法、 さらにそれに用いられる補強布帛に関するもの である。 背景技術  The present invention relates to a fibrous structure in which a reinforcing fabric is firmly integrated with an ultrafine fiber aggregate, in which an elastic resin is impregnated. More specifically, an ultrafine nonwoven fabric having a high fiber density has a low strain range. The present invention relates to a leather-like sheet provided with high anti-deformation property, a method for producing the same, and a reinforcing cloth used therefor. Background art
従来より織編物により補強された人工皮革は公知であり、 例えば特公 平 4— 1 1 1 3号公報には、 撚数 1 0 0 0 T /m以上の強撚糸からなる 編織物を補強材として用いる技術が示されており、 この技術は、 ステー プルウエッブと補強布帛をニードルパンチを用いて一体化する際に、 二 ―ドルパンチによる補強布帛の損傷を最小限に抑えることを目的とし、 高強力で柔軟な皮革様シートの製造方法が提案されている。 また特開平 1 0— 2 7 3 8 8 5号公報には、 上記特公平 4— 1 1 1 3号公報と同じ く、 強撚糸からなる編織物を補強材として用いた高強力で特にストレツ チ性を有する繊維立毛シートが提案されている。 これら両技術は、 ステ —プルウエッブと補強布帛をニードルパンチにより積層一体化し、 得ら れた複合シートにわずかな収縮を与えた後、 さらに P V A (ポリビニル アルコール) を含浸付着させ、 そしてその後に主体繊維の一成分を抽出 除去し、 さらに弾性樹脂を含浸して皮革様シートを製造するものである。 また特開昭 5 5— 5 7 0 5 9号公報には、 潜在収縮性を有するフィラ メントよりなる補強布帛が記載されており、 ここでは繊維長 1 0 mm以 下の短繊維からなる抄紙ウエッブと該補強布帛の積層品を高圧水流によ り交絡一体化させた後に補強布帛を収縮させ、 シートの見掛け繊維密度 を向上させる方法が記載されている。 Conventionally, artificial leather reinforced with a woven or knitted material is known. For example, Japanese Patent Publication No. 4-111113 discloses a knitted fabric made of a strongly twisted yarn having a twist number of 100 T / m or more. This technique is intended to minimize damage to the reinforcing fabric due to the needle punch when the staple web and the reinforcing fabric are integrated using a needle punch. And a method for producing a soft leather-like sheet. Also, Japanese Patent Application Laid-Open No. H10-2738885 discloses a high strength and particularly stretchy using a knitted woven fabric composed of a strongly twisted yarn as a reinforcing material, as in Japanese Patent Publication No. 4-11113. There has been proposed a fiber nap sheet having properties. In both of these technologies, the staple web and the reinforcing fabric are laminated and integrated by needle punch, a slight shrinkage is applied to the obtained composite sheet, and then PVA (polyvinyl alcohol) is impregnated and adhered to the composite sheet. Is extracted and removed, and then an elastic resin is impregnated to produce a leather-like sheet. In addition, Japanese Patent Application Laid-Open No. 55-57059 discloses a filler having latent shrinkage. This paper describes a reinforcing fabric consisting of a reinforced material, in which a papermaking web made of short fibers having a fiber length of 10 mm or less and a laminate of the reinforcing fabric are entangled and integrated by a high-pressure water flow, and then the reinforcing fabric shrinks. It describes a method for improving the apparent fiber density of a sheet.
また他の補強用布帛として、 繊維ウエッブ単独での絡合が終了した後 に、 この裏に補強布帛を貼りつける、 いわゆる裏張り材として知られる ものもある。  Further, as another reinforcing cloth, there is a cloth known as a so-called backing material in which after the entanglement of the fiber web alone is completed, the reinforcing cloth is attached to the back.
しかしながら、 これらは何れも以下の様な一長一短を有している。 す なわち、 特公平 4— 1 1 1 3号公報ゃ特開平 1 0— 2 7 3 8 8 5号公報 に記載の技術の場合には、 補強布帛が極細繊維ウエッブと一体化された、 高い切断強力を有し、 かつ柔軟性を有する構造体の製造を目的とするも のであり、 シート切断時の強力値は比較的高く、 繊維ウエッブのみの状 態に比べれば確かに補強材の効果によりシートの変形性は低くなつてい るが、 それでも歪みが数 1 0 %程度の範囲での変形性は非常に高い。 す なわち、 前述の技術の場合には、 確かにニードルパンチングの際に生じ る補強布帛の損傷は抑えられ、 絡合後のシ一トの高強力化は達成される ものの、 絡合後の繊維ウエッブの見掛け密度の点では好適とはいえない。 すなわち、 一般に見掛け密度を向上させる目的で絡合後ウエッブを熱収 縮させる手法を用いても、 この公報の技術では、 繊維ウエッブはほとん ど収縮性を有していないため、 熱処理により補強布帛の構成糸である強 撚フイラメント糸のトルク解除に相当するようなわずかな形態変化処理 しか得られない。 実際にゥエツブと布帛の一枚ずつの積層物の見掛け密 度を上げるために、 仮にウエッブ、 布帛の一方を熱処理して収縮させた としても、 熱処理により積層シートにはカールや皺、 表面の凹凸等が発 生し、 後の工程でトラブルを発生したり、 また製品品位を低下させてし まう。 またウエッブ Z布帛 /ウエッブの 3層積層'形態にすると、 収縮は するものの、 その程度は非常に小さくなり、 見掛け密度はほとんど向上 しない。 また前記公報には、 P V Aを付着させることが記載されている が、 P V Aを付与した場合には、 繊維空間部が P V Aにより充填され、 このようなシー卜中の繊維間の空間部が大きくなり、 従って出来上がつ たシートの見掛け密度は低くなり、 引張歪み時にも変形しやすいシート 構造となる。 However, each of them has the following advantages and disadvantages. In other words, in the case of the technique described in Japanese Patent Publication No. Hei 4-4-1113 and Japanese Patent Laid-Open No. Hei 10-2738885, the reinforcing fabric is integrated with the ultrafine fiber web, The purpose is to produce a structure with cutting strength and flexibility, and the strength value when cutting a sheet is relatively high, and it is certainly due to the effect of the reinforcing material compared to the state of only the fibrous web. Although the deformability of the sheet is low, the deformability is still very high when the distortion is in the range of about 10%. In other words, in the case of the above-described technique, damage to the reinforcing fabric caused by needle punching is certainly suppressed, and although the sheet after intertwining is strengthened, the strength after intertwining is achieved. It is not preferable in terms of the apparent density of the fiber web. In other words, in general, even if a technique of heat shrinking the entangled web for the purpose of improving the apparent density is used, in the technique of this publication, the fiber web has almost no shrinkage, Only a slight morphological change equivalent to the torque release of the high-twisted filament yarn, which is a constituent yarn, can be obtained. Actually, even if one of the web and the fabric is heat-treated and contracted in order to increase the apparent density of the laminate of each one of the web and the fabric, the heat treatment will cause the laminated sheet to have curls, wrinkles, and surface irregularities. Will occur, causing troubles in later processes and degrading the product quality. In addition, when the web Z fabric / web three layer lamination ' However, the degree becomes very small, and the apparent density hardly improves. Although the above publication describes that PVA is adhered, when PVA is applied, the fiber space is filled with PVA, and the space between fibers in such a sheet becomes large. Therefore, the apparent density of the finished sheet is low, and the sheet structure is easily deformed even under tensile strain.
また特開昭 5 5 - 5 7 0 5 9号公報の技術は、 潜在収縮性フィラメン トよりなる補強布帛と繊維長 1 0 mm以下の繊維からなる抄紙ゥエツブ とを水流絡合させて得られる布帛に関するものであるが、 抄紙ゥェッブ のため、 構成各繊維間の絡合が小さく且つ補強布帛との絡合も低い。 ま た、 弾性樹脂の付着も僅かであることから、 シートに歪みがかかった時 にウエッブは抗変形性に殆ど寄与せず、 自ずと達成される変形性の程度 も低いものとならざるを得ないという宿命がある。 また、 製品性能の一 つを見た場合、 上記のような製法のため繊維がシートより脱落しやすい 等の欠点もある。  Further, the technology disclosed in Japanese Patent Application Laid-Open No. 55-57959 discloses a fabric obtained by hydroentanglement of a reinforcing fabric made of latently shrinkable filaments and a papermaking machine made of fibers having a fiber length of 10 mm or less. However, because of the papermaking web, the entanglement between the constituent fibers is small and the entanglement with the reinforcing fabric is also low. Also, since the adhesion of the elastic resin is very small, when the sheet is distorted, the web hardly contributes to the anti-deformation property, and the degree of deformability naturally achieved must be low. There is a fate. In addition, when looking at one of the product performances, there is a drawback that the fibers are easily dropped from the sheet due to the above-mentioned manufacturing method.
また繊維ゥエツブ単独での絡合が終了した後に補強用布帛を裏貼りす る方法の場合には、 裏張り材を選択すればいく らでもシ一トの抗変形性 を制御できる点、 更にゥエツブのみの状態で収縮処理できるため収縮性 のウエッブを用いれば高い見掛け密度のものが製造可能であるが、 繊維 ウエッブと補強布帛との接合が弱く、 加工時に剥離してしまうこと、 お よび貼り合わせのための工程が必要でそのため製造コス卜が高くなつて しまうという欠点を有している。  Further, in the case of a method of backing a reinforcing cloth after the entanglement of the fiber and the web alone is completed, the deformation resistance of the sheet can be controlled by selecting a backing material. Since shrinkage treatment can be performed only in a state, a high apparent density can be manufactured by using a shrinkable web.However, the bonding between the fiber web and the reinforcing fabric is weak, and peeling occurs during processing. Therefore, there is a drawback that a manufacturing process is required and the manufacturing cost is increased.
より効果的に高抗変形性シートを作製するには、 繊維ゥエツブと補強 用布帛の接合は繊維ゥエツブ自身の絡合度の低い状態時に補強布帛を積 層させ、 水流やニードルパンチにより両者を機械的に非常に強固に絡合 させることが望ましい。 このように铺強布帛を積層絡合することにより、 特に補強布帛を十分に選択することにより最終製品シートの低歪み域で の抗変形性の特性が付与されるだけでなく、 数多い製造工程中で、 繊維 シートの形態変化 (特に工程張力による伸び) が抑えられる。 これによ り繊維間距離が比較的近い状態に維持され、 後の弾性樹脂含浸時に形態 変化を抑制し易い構造となる。 また、 特にスエード調皮革様シートとし た場合には、 表面繊維密度は、 製品品位を決定する非常に重要なファク 夕一である。 複合シートの見掛け密度を高くするための重要な点は、 ① 繊維ウエッブの収縮により見かけ密度を上げること、 および②製造工程 中の張力などによるシ一卜が伸びないようにすることが重要となる。 しかし、 上述したように、 これまでの技術では、 低歪み域での変形が 抑制され、 且つ見掛け密度が高いものは得られない。 発明の開示 In order to more effectively produce a high anti-deformability sheet, the bonding of the fiber 補強 ブ and the reinforcing fabric is performed by laminating the reinforcing 時 に fabric when the fiber ゥ 自身 itself has a low degree of entanglement, and mechanically joining the two by water flow or needle punching. It is desirable that the entanglement is very strong. In this way, by laminating and intensifying the strong fabric, In particular, sufficient selection of reinforcing fabrics not only gives the finished product sheet anti-deformation properties in the low strain region, but also changes the morphology of the fiber sheet during many manufacturing processes (especially elongation due to process tension). Is suppressed. As a result, the fiber-to-fiber distance is maintained at a relatively short state, and a structure is easily suppressed in shape change during subsequent impregnation of the elastic resin. In particular, in the case of a suede-like leather-like sheet, the surface fiber density is a very important factor that determines the product quality. Important points to increase the apparent density of the composite sheet are: ① It is important to increase the apparent density by shrinking the fibrous web, and ② It is important to prevent the sheet from elongating due to tension during the manufacturing process. . However, as described above, conventional techniques cannot suppress deformation in a low distortion region and have a high apparent density. Disclosure of the invention
本発明は、 極細繊維ウエッブと補強布帛が一体化された皮革様シ一ト であって、 製造工程中の伸びやカールの発生が抑制され、 かつ収縮処理 により皮革様シートの見掛け密度が高められており、 最終シートでの高 抗変形性が達成された、 高い商品価値を有する、 従来の貼り合わせ品に 比べより製造コス卜が低廉な皮革様シー卜を提供するものである。  The present invention is a leather-like sheet in which an ultrafine fiber web and a reinforcing fabric are integrated, suppressing the occurrence of elongation and curling during the manufacturing process, and increasing the apparent density of the leather-like sheet by shrinkage treatment. It provides a leather-like sheet that achieves high resistance to deformation in the final sheet, has high commercial value, and is less expensive to manufacture than conventional bonded products.
本発明者らは、 前述の問題点を解決するために鋭意検討した結果、 本 発明に至った。 すなわち本発明は、 0 . 3デニール (d rと略す) 以下 の極細繊維からなる不織布と補強布帛とが絡合一体化されており、 かつ 該絡合一体化物中に弾性重合体が含有された繊維構造体であって、 かつ 該構造体の夕テ方向の第一ピークまでの歪が 1 5 %以上で、 且つ、 第一 ピークまでの裂断長一歪み曲線が下記の O Aを通過する直線と O Cを通 過する直線に挟まれる範囲にあり、 ョコ方向の第一ピークまでの歪が 2 0 %以上で、 且つ、 第一ピークまでの裂断長一歪み曲線が下記の〇Α ' を通過する直線と〇 C'を通過する直線に挟まれる範囲にあり、 シ一ト密 度が 0. 4 g/ cm3以上であることを特徴とする皮革様シートである。 夕テ (歪み (%) , 裂断長 (km) ) =0(0, 0)、 A(3 0, 2. 0)、 C(5 , 3. 5) The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention. That is, the present invention relates to a fiber in which a nonwoven fabric made of an ultrafine fiber of 0.3 denier (abbreviated as dr) or less and a reinforcing fabric are entangled and integrated, and the entangled integrated product contains an elastic polymer. A structure having a strain of at least 15% up to the first peak in the evening direction of the structure, and a breaking length-strain curve up to the first peak being a straight line passing through the following OA. It is in the range between the straight lines passing through the OC, the strain up to the first peak in the horizontal direction is 20% or more, and the breaking length-strain curve up to the first peak is as follows: And a straight line passing through 範 囲 C ′, and having a sheet density of 0.4 g / cm 3 or more. Evening (strain (%), breaking length (km)) = 0 (0, 0), A (30, 2.0), C (5, 3.5)
ョコ (歪み (%) , 裂断長 (km) ) =〇(0, 0)、 A'(40, 1. 5)、 C'(20 , 2. 5) Horizontal (strain (%), breaking length (km)) = 〇 (0, 0), A '(40, 1.5), C' (20, 2.5)
尚、 ここでいう "裂断長" とは以下の数式により算出される。 Here, the "break length" is calculated by the following equation.
裂断長 (km) 二シ一卜強力 (gZc m) Zシート目付 (gZm2〉 / 1 0 Breaking length (km) Double sheet strength (gZc m) Z sheet weight (gZm 2 ) / 10
また本発明は、 上記皮革様シートの好適な製造方法に関するもので、 具体的には、 90 Cの熱水中で 1 0〜 3 0 %の収縮率を有する繊維から 構成された糸からなり、 2 0 %伸長時の夕テ強力が 6 k gZcm以上で、 且つョコ強力が 4 k gZ c m以上である補強布帛の少なくとも片面に、 繊維長が 3〜 1 5 0 mmの極細繊維または極細化可能繊維よりなり、 絡 合後の 90 °Cの熱水中での収縮率が夕テ、 ョコとも 1 0〜3 0 %の範囲 である繊維ゥエツブが重ね合わされ、 該布帛と該繊維ゥエツブが絡合一 体化されている繊維シートを加熱収縮させた後、 弹性重合体を付与し、 そして極細化可能繊維が海島構造繊維である場合には、 海成分を除去し て極細化することを特徴とする皮革様シー卜の製造方法である。  The present invention also relates to a preferred method for producing the leather-like sheet, specifically, a yarn composed of a fiber having a shrinkage of 10 to 30% in hot water of 90 C, At least one side of a reinforced fabric with a fiber strength of 6 kgZcm or more at 20% elongation and a horizontal strength of 4 kgZcm or more, an ultrafine fiber with a fiber length of 3 to 150 mm or ultrafine The fibers are made of a possible fiber, and the shrinkage in hot water at 90 ° C after entanglement is in the range of 10% to 30% for both fibers, so that the fabric and the fibers are combined. After heat-shrinking the entangled and integrated fiber sheet, a hydrophilic polymer is applied. This is a method for producing a characteristic leather-like sheet.
さらに本発明は、 上記方法に用いられる繊維シートを構成している補 強布帛であって、 90での熱水中で 1 0〜 30 %の収縮率を有する繊維 から構成された糸からなり、 2 0 %伸長時の夕テ強力が 6 k gZc m以 上で、 且つョコ強力が 4 k gZc m以上であることを特徴とする人工皮 革補強布帛である。 図面の簡卓な説明 第 1図は夕テ方向の裂断長一歪み曲線を示し、 第 2図はョコ方向の裂 断長一歪み曲線を示す。 なお本発明で言う第一ピークとは、 シートの裂 断長一歪み曲線において、 歪みを 0から加えていったときに歪みの増加 に伴い裂断長が増加し、 裂断長がピークに達した後、 下降する現象が通 常見られるが、 このピークを意味する。 なお切断に至るまでピークが実 質的に存在しない場合には、 切断点が本発明で言うピークを意味する。 また皮革様シートゃ補強布帛は、 長さ方向に連続する長尺のシ一トとし て製造され、 本発明において夕テ方向とはシ一トゃ補強布帛の長さ方向、 すなわち一般的に機械方向と称されている方向を意味し、 そしてョコ方 向とは夕テ方向に対して直角な方向 (幅方向) を意味する。 発明を実施するための最良の形態 Further, the present invention provides a reinforcing fabric constituting a fiber sheet used in the above method, comprising a yarn composed of a fiber having a shrinkage of 10 to 30% in hot water at 90, An artificial leather reinforced fabric characterized in that the strength at 20% elongation is 6 kgZcm or more and the horizontal strength is 4 kgZcm or more. Brief description of drawings Figure 1 shows the breaking length-strain curve in the horizontal direction, and Figure 2 shows the breaking length-strain curve in the horizontal direction. The first peak referred to in the present invention is the tear length-strain curve of the sheet, when the strain is applied from 0, the tear length increases as the strain increases, and the tear length reaches the peak. After this, a falling phenomenon is usually seen, which means this peak. In addition, when a peak does not substantially exist until the cleavage, the cleavage point means the peak referred to in the present invention. Further, the leather-like sheet / reinforced fabric is manufactured as a long sheet which is continuous in the length direction. In the present invention, the evening direction is defined as the length direction of the sheet / reinforced fabric, that is, in general, the mechanical direction. The term “direction” refers to a direction, and the term “horizontal direction” refers to a direction (width direction) perpendicular to the evening direction. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の高い形態安定性を有する皮革様シ一トにおいて、 まず第一に 低歪み領域で変形のし難いことが重要であって、 これは変形時の応力一 歪み曲線に相当するシートの裂断長一歪み曲線の形状が重要である。 す なわちこの裂断長一歪み曲線の初期から第一ピークの存在する所までの 曲線が夕テ方向、 ョコ方向それぞれ  In the leather-like sheet having high morphological stability of the present invention, it is important that deformation is difficult in a low strain region, which is caused by a sheet crack corresponding to a stress-strain curve during deformation. The shape of the length-strain curve is important. In other words, the curve from the beginning of the fracture length-strain curve to the location where the first peak is present is shown in the direction of the evening and the direction of the horizontal, respectively.
夕テ (歪み (%) , 裂断長 (km) )=〇(0, 0)、 A(30, 2. 0)、 C ( 5, 3. 5)  Evening (strain (%), breaking length (km)) = 〇 (0, 0), A (30, 2.0), C (5, 3.5)
ョコ (歪み (%) . 裂断長 (km) )=Ο(0 , 0)、 A'(40, 1. 5)、 C'(20, 2. 5)  Horizontal (strain (%). Break length (km)) = Ο (0, 0), A '(40, 1.5), C' (20, 2.5)
で示される、 夕テは 0と Aを通る直線と〇と Cを通る直線で挟まれる領 域内にありかつ第一ピークまでの歪み伸度が 1 5 %以上であること、 よ り好ましくは曲線の存在域が〇 (0, 0) と A— 2 (3 0, 3. 0) を 通る直線と〇 Cを通る直線で挟まれる範囲にあることである。 また、 ョ ' コは Oと A' を通る直線と 0と C' を通る直線で挟まれる領域内に存在 J The sunset is within the area between the straight line passing through 0 and A and the straight line passing through 〇 and C, and the strain elongation to the first peak is 15% or more, more preferably the curve Is in the range between the straight line passing through 〇 (0, 0) and A− 2 (3 0, 3.0) and the straight line passing through 〇 C. Also, the '' co exists in the area between the straight line passing through O and A 'and the straight line passing through 0 and C'. J
7 しかつ第一ピークまでの歪み伸度が 2 0 %以上であること、 より好まし くは曲線の存在域が 0 ( 0 , 0 ) と A ' 一 2 ( 4 0, 2 . 0 ) を通る直 線と〇C ' を通る直線で挟まれる範囲にあることである。 上記したよう に、 第 1図は夕テ方向の裂断長一歪み曲線を示し、 第 2図はョコ方向の 裂断長一歪み曲線を示す。  7 and the strain elongation up to the first peak is 20% or more, and more preferably, the area where the curve exists is 0 (0, 0) and A'12 (40, 2.0). It is within the range between the straight line passing through and the straight line passing through 〇C '. As described above, Fig. 1 shows the breaking length-strain curve in the horizontal direction, and Fig. 2 shows the breaking length-strain curve in the horizontal direction.
この曲線が、 夕テ、 ョコのいずれか一方でも、 より低伸度で高裂断長 側にずれた場合には (第 1図、 第 2図中の領域 I、 レ' ) 、 シートの高 強力性は非常に優れたものとなるが伸度があまりにも低く、 変形性があ まりにも乏しいシートとなってしまう。 このようなシートは、 引裂強力 等のいくつかの物性値が劣り、 また 2次加工を施そうとしてもシートが 硬すぎて成型性が悪く、 各種の用途に用いようとしても非常に不都合の 多いシートとなってしまう。 また逆に曲線が高伸度で低裂断長側 (第 1 図、 第 2図中の領域 III、 ΠΓ) に入る場合には、 シートの柔軟性の点では 優れ、 また 2次加工などもしやすいものの、 変形性が大きすぎて、 2次 加工時に伸び過ぎたり、 製品化後、 使用中に形態変化が生じたりして好 ましいシートとは言えない。 すなわち、 本発明で示す範囲内 (Π、 Π ' ) に前述の曲線を存在させることが重要である。 従来の収縮させない場合 や、 収縮させてもその程度が少ない場合や、 さらに繊維ウエッブと布帛 のいずれか一方のみを収縮させる場合は、 いずれも、 通常、 HIと ΠΓ の 領域に入る。 またタテ方向及びョコ方向のいずれか一方のみを収縮させ る場合にも、 収縮させなかった方向は、 通常、 領域 mや nr に入ること となる。  If this curve is shifted to the higher fracture length side with lower elongation in either one of the two sides (region I in Fig. 1 and Fig. 2), the sheet High strength is very good, but the elongation is too low, resulting in a sheet with poor deformability. Such sheets are poor in some physical properties such as tear strength, and the sheets are too hard to be subjected to secondary processing and have poor moldability, and are very inconvenient when used in various applications. It becomes a sheet. On the other hand, if the curve is on the low elongation side with high elongation (region III, ΠΓ in Figs. 1 and 2), the sheet is excellent in terms of flexibility and secondary processing is also required. Although it is easy to deform, it is not a good sheet because it is too deformable and stretches too much during secondary processing, or changes its form during use after commercialization. That is, it is important that the above-mentioned curve exists within the range (Π, Π ′) shown in the present invention. In the case where conventional shrinkage is not performed, when the degree of shrinkage is small, or when only one of the fibrous web and the fabric is shrunk, each of them usually falls in the region of HI and ΠΓ. Also, when only one of the vertical direction and the horizontal direction is contracted, the direction not contracted usually falls within the region m or nr.
次に、 上記したような範囲内 (Π、 Π ' ) となるように該曲線を調整 する上で今一つ重要なことは、 複合シートである本発明の皮革様シート の見掛け密度を特定の範囲内とすることである。 本発明の複合シートは、 基本的には、 主体繊維である極細繊維、 補強布帛、 およびこれらを接着 させる弾性榭脂からなる複合体である。 本発明のシートに前述のような 効果を発現させるには、 シートの密度が 0. 4 g/c m3以上であるこ とが必要であり、 より好ましくは 0. 43〜0. 5 l g/ cm3である。 密度が 0. 4 g/ c m3未満の場合には、 繊維同士の絡合が不十分で、 かつ絡合時の繊維間距離がやや大きくなり弾性樹脂での接着状態も不足 する。 従って、 シートの高抗変形性を得るには不十分で、 このような密 度のシートは、 低裂断長で伸度の大きなものである。 すなわち、 シート の密度を本発明で規定する 0. 4 gZ c m3以上にすることは発明の目 的を達成するためには非常に重要で必要不可欠なことである。 さらに天 然皮革の見掛け密度は、 通常 0. 5 gZcm3前後であり、 天然皮革調 の充実感を得る上からも、 本発明の皮革様シートの見掛け密度を 0. 4 gZcm3以上とすることが重要である。 従来公知のスエード調人工皮 革の殆どが見掛け密度 0. 4 g/cm3未満であり、 本発明で規定する 0. 4 g/c m3以上を満足するものでは殆どない。 Next, in adjusting the curve so as to be within the above range (Π, Π ′), another important point is that the apparent density of the leather-like sheet of the present invention, which is a composite sheet, is within a specific range. It is to be. The composite sheet of the present invention is basically composed of ultrafine fibers as main fibers, reinforced fabric, and It is a composite made of elastic resin to be made. In order for the sheet of the present invention to exhibit the above-described effects, the sheet density needs to be 0.4 g / cm 3 or more, and more preferably 0.43 to 0.5 lg / cm 3. It is. If the density is less than 0.4 g / cm 3 , the entanglement between the fibers is insufficient, the distance between the fibers during entanglement is slightly large, and the bonding state with the elastic resin is also insufficient. Therefore, it is not enough to obtain high deformation resistance of the sheet, and a sheet having such a density has a low breaking length and a large elongation. That is, it is very important and indispensable that the density of the sheet be 0.4 gZ cm 3 or more specified in the present invention in order to achieve the object of the invention. The apparent density of the natural leather still is usually 0. 5 gZcm 3 back and forth from the top to obtain the fulfillment of a natural leather-like also to the apparent density of the leather-like sheet of the present invention and 0. 4 gZcm 3 or more is important. Most of the conventionally known suede-like artificial leathers have an apparent density of less than 0.4 g / cm 3 , and hardly satisfy the 0.4 g / cm 3 or more specified in the present invention.
次に、 前述の様な適度な伸度と高い裂断長を有するシートの製造方法 について詳細に説明する。  Next, a method for producing a sheet having a suitable elongation and a high breaking length as described above will be described in detail.
まず、 本発明における補強布帛を構成する繊維は、 布帛とした時点に おいて 9 0 =Cの熱水中で 1 0〜 3 0 %の収縮率を有するものであらねば ならない。 このような熱水収縮率を有する繊維であれば特に限定されず、 繊維を構成するポリマーは変性されていてもいなくても構わないが、 9 0 °Cの熱水中で前述の収縮率を有するものが容易に得られることから、 好ましくはポリエステル系繊維であって、 例えばイソフ夕ル酸等の非晶 性の置換基を導入したものや、 パーヒドロジメタノナフタレンジメタノ ール (MNDM) 、 ノルボルナン一 2, 3—ジメタノール (NDM) 、 トリシクロデカンジメタノール (TC DDM) などの脂環骨格系の置換 基を導入したもの、 また変性されていなくてもポリエステルの溶 粘度 や紡糸、 延伸、 熱処理条件を調整して繊維の結晶性を制御することによ り収縮率を上記範囲としたもの等が用いられる。 ポリエステル繊維は、 多くの繊維の中で、 もっとも所望する収縮率の繊維が得られやすく、 し かも、 収縮率が安定している点で最も好ましい。 ァラミ ド繊維や天然繊 維等は繊維強力、 熱水での収縮性の両者をバランス良く満足するもので はなく、 好ましくない。 First, the fibers constituting the reinforcing fabric in the present invention must have a shrinkage of 10 to 30% in hot water of 90 = C at the time of forming the fabric. The fiber is not particularly limited as long as it has such a hot water shrinkage rate.The polymer constituting the fiber may or may not be modified, but the above-mentioned shrinkage rate is not increased in hot water at 90 ° C. It is preferable to use polyester fibers, for example, those having an amorphous substituent such as isofluoric acid introduced therein, or perhydrodimethanonaphthalenediethanol (MNDM), since these can be easily obtained. , Norbornane-1,2,3-dimethanol (NDM), tricyclodecanedimethanol (TC DDM), etc., which have introduced alicyclic skeleton-based substituents, and the solution viscosity of polyester even without modification By adjusting the conditions of spinning, drawing, and heat treatment to control the crystallinity of the fiber, a shrinkage ratio in the above range is used. Polyester fibers are the most preferable in that fibers having the most desired shrinkage can be easily obtained among many fibers, and the shrinkage is stable. Alamid fiber and natural fiber do not satisfy both fiber strength and shrinkage in hot water in a well-balanced manner, and are not preferred.
本発明において、 補強用布帛を構成する繊維の収縮率は 9 0 °Cの熱水 中で 1 0〜 3 0 %であるが、 好ましくは 1 5〜 3 0 %の範囲である。 収 縮率が 1 0 %未満の場合には、 織編物などの布帛とした場合に布帛での 収縮率が不足する。 また 3 0 %を越える場合には、 収縮による繊維の太 化で布帛が硬化したり構成樹脂の脆化により布帛の物性が低下してしま い、 補強布としての用をなさない。  In the present invention, the shrinkage ratio of the fibers constituting the reinforcing cloth is 10 to 30% in hot water at 90 ° C., and preferably 15 to 30%. If the shrinkage ratio is less than 10%, the shrinkage ratio of the woven or knitted fabric is insufficient. If it exceeds 30%, the fabric hardens due to the thickening of the fibers due to shrinkage, or the physical properties of the fabric are reduced due to embrittlement of the constituent resin, and the fabric is not used as a reinforcing fabric.
補強用布帛の収縮率は、 組み合わせる極細繊維又は極細化可能な繊維 ゥエツブの収縮性とほぼ近似のものにするのが好ましく、 両者の収縮率 が大きく離れている場合には、 収縮時にカール、 皺、 シート表面凹凸等 が発生することがある。 本発明者等の研究結果では、 優れた製品表面品 位、触感をもたらす極細繊維又は極細化可能な繊維ゥエツブの収縮率( 9 0。C熱水中) は、 夕テ、 ョコとも 1 0〜 3 0 %の範囲であり、 1 0 %未 満の場合には繊維密度が不足し、 3 0 %を超えるとシー卜が硬くなる。 したがって補強布帛を積層する本発明において、 ウエッブの前記の収縮 率範囲を支障なく実現させるために、 本発明では補強布帛を構成する繊 維の 9 0 °C熱水収縮率を 1 0〜 3 0 %にする。 このことからも明らかな ように、 補強布帛と絡合後の繊維ウエッブとの 9 0 °C熱水中での収縮率 差は低い方が好ましく、 ウエッブの繊維長が 2 0 mm以上の場合には、 夕テ方向で収縮率差が 0〜 1 0 %、 ョコ方向で収縮率差が 0〜 6 %の範 囲内にあるのが好ましい。 また繊維長が 2 0 mm未満の場合には、 タテ 方向で 0〜 2 0 %、 ョコ方向で 0〜 1 5 %の範囲内に収縮率差を押さえ ることが好ましい。 なおタテ方向とョコ方向での差は工程張力による差 であり、 夕テ方向は、 収縮率差がやや高くてもカールなどが発生しにく いからである。 また繊維長による収縮率差に関しては、 2 0 mm未満の 場合は繊維同士の絡合性が弱く、 やや大きな収縮率差があっても前述の 様な問題が比較的発生し難いからである。 The shrinkage of the reinforcing fabric is preferably approximately the same as the shrinkage of the ultra-fine fibers or ultra-fine fibers to be combined. ツ If the shrinkage is significantly different, curl and wrinkles during shrinkage In some cases, sheet surface irregularities may occur. According to the research results of the present inventors, the shrinkage ratio (90.C in hot water) of ultrafine fibers or ultrafine fibers that provide excellent product surface quality and tactile sensation is 10 times for both Yoko and Yoko. The fiber density is insufficient when it is less than 10%, and the sheet becomes hard when it exceeds 30%. Therefore, in the present invention in which the reinforcing fabric is laminated, in order to realize the above-mentioned shrinkage ratio range of the web without any trouble, in the present invention, the 90 ° C. hot water shrinkage ratio of the fibers constituting the reinforcing fabric is 10 to 30 ° C. %. As is evident from this, it is preferable that the difference in shrinkage ratio between the reinforcing fabric and the entangled fiber web in hot water at 90 ° C is lower, and when the fiber length of the web is 20 mm or more, It is preferable that the difference in shrinkage ratio is in the range of 0 to 10% in the evening direction and the difference in shrinkage ratio in the horizontal direction is 0 to 6%. If the fiber length is less than 20 mm, It is preferable to suppress the difference in shrinkage within a range of 0 to 20% in the direction and 0 to 15% in the horizontal direction. Note that the difference between the vertical direction and the horizontal direction is a difference due to the process tension, and in the vertical direction, even if the difference in the shrinkage ratio is slightly high, it is difficult for curl or the like to occur. Regarding the difference in shrinkage due to the fiber length, if it is less than 20 mm, the entanglement between the fibers is weak, and even if there is a relatively large difference in shrinkage, the above-mentioned problem is relatively unlikely to occur.
補強布帛を構成する繊維に用いられるポリマーとしては、 前記したよ うに、 熱による収縮性の制御のしゃすさ、 染色時の発色性、 染色堅牢度 のよさ、 且つ汎用的で安価であること等の点よりポリエチレンテレフ夕 レート系繊維あるいは変性ポリエステル系繊維等のポリエステル系が望 ましい。 特に後述するように、 本発明の補強布帛は、 組み合わせる繊維 ゥエツブの収縮性に応じて微妙な収縮性を制御することが好ましく、 こ の点で特にポリエステル系繊維が好ましい。 もちろんポリエステル以外 の、 例えばナイロン系繊維、 ビニロン系繊維、 ポリオレフイン系繊維、 アクリル系繊維なども用いることができる。  As described above, the polymers used for the fibers constituting the reinforcing fabric include, for example, low heat shrinkage control, good color development during dyeing, good color fastness, and general and low cost. From the viewpoint, a polyester such as polyethylene terephthalate fiber or modified polyester fiber is preferable. As described later in particular, the reinforcing fabric of the present invention preferably controls delicate shrinkage in accordance with the shrinkage of the fibers to be combined, and polyester fibers are particularly preferable in this regard. Of course, other than polyester, for example, nylon-based fiber, vinylon-based fiber, polyolefin-based fiber, and acrylic-based fiber can also be used.
補強布帛を構成する繊維の太さは、 単繊維繊度で 0 . 1〜 2 . 5 d r ( 0 . 1 1〜 2 . 8デシテックス) が好ましい。 単繊維の太さがこの範 囲であれば、 布帛とした後の熱収縮加工後においても繊度が大き過ぎて シ一卜が硬くなりすぎたりせず良好なものとすることができる。  The thickness of the fibers constituting the reinforcing fabric is preferably 0.1 to 2.5 dr (0.11 to 2.8 dtex) in terms of single fiber fineness. When the thickness of the single fiber is in this range, even after heat shrinking after forming the fabric, the fineness is not too large and the sheet does not become too hard.
本発明において、 補強布帛を構成する糸は、 前述の収縮率を満足する ものであればマルチフィラメント糸ゃ紡績糸等のどの様なものでも用い ることができるが、 後述する理由から、 紡績糸で構成させることが好ま しい。 糸には、 束ねるために撚が付与されているが、 糸の撚数の好適範 囲としては、 収縮処理の前で、 5 5 0〜 2 0 0 0 T Zmの範囲であり、 より好ましくは 6 5 0〜 9 0 0 T Z mの範囲である。 そして本発明にお いて、 用いる繊維の収縮率を考慮して収縮処理後に以下の撚数範囲内に 収まるように、 収縮前の糸の撚数を設定することが好ましい。 In the present invention, as the yarn constituting the reinforcing fabric, any yarn such as a multifilament yarn or a spun yarn can be used as long as the yarn satisfies the above-described shrinkage ratio. It is preferable to make it consist of. The yarn is twisted for bundling, but the preferred range of the number of twists of the yarn is in the range of 550 to 200 TZm before the shrinkage treatment, and more preferably The range is from 65 to 900 TZ m. In the present invention, the shrinkage of the fiber used is taken into consideration, and after the shrinkage treatment, the number of twists falls within the following range. It is preferable to set the number of twists of the yarn before shrinking so as to fit.
具体的には、 収縮処理後の補強布帛を構成する糸の撚数は 6 5 0 T / m以上、 2 8 0 0 T /m以下であることが好ましく、 より好ましくは 8 0 0 T /m〜 1 2 0 0 T /mの範囲である。 収縮処理後の糸の撚数が 2 8 0 0 T Zmを超える場合には、 収縮により糸を構成する繊維の脆化も 起こりやすく、 収縮シートの見掛け密度、 低歪み域での抗変形性、 引張 強力等は向上するが、 引裂強力の弱い硬化したシー卜となってしまい、 好ましくない。 特に紡績糸の場合にはこの傾向が顕著となる。 また、 収 縮処理後の糸の撚数が 6 δ 0 T /mに満たない場合には、 補強布帛とし て期待されるシートの抗変形性の効果が十分には発揮されず好ましくな い。 特に収縮処理後において、 糸の撚数が 8 0 0〜 1 2 0 0 T Zmの場 合に、 風合いと低歪み域での変形性とのバランスの取れた優れた皮革様 シ一卜が得られる。  Specifically, the number of twists of the yarn constituting the reinforcing fabric after the shrinkage treatment is preferably at least 65 T / m, and no more than 2800 T / m, and more preferably at most 800 T / m. It is in the range of up to 1200 T / m. When the number of twists of the yarn after the shrinkage treatment exceeds 280 TZm, the fibers constituting the yarn are easily embrittled by shrinkage, the apparent density of the shrinkable sheet, the anti-deformation property in a low strain region, Although the tensile strength and the like are improved, the cured sheet has a low tear strength, which is not preferable. This tendency is particularly remarkable in the case of spun yarn. If the number of twists of the yarn after the shrinkage treatment is less than 6δ0 T / m, the effect of the anti-deformation property of the sheet expected as a reinforcing fabric is not sufficiently exhibited, which is not preferable. In particular, after the shrinkage treatment, when the number of twists of the yarn is 800 to 1200 TZm, an excellent leather-like sheet with a good balance between the texture and the deformability in the low distortion range can be obtained. Can be
補強布帛と極細繊維または極細化可能な繊維からなるウエッブの絡合 は、 水流絡合処理やニードルパンチ処理などの、 有効に絡合を行うこと が出来る方法ならいずれの方法でもよいが、 好ましくは高絡合が得られ る方法であるニードルパンチ処理による方法である。 このとき、 ニード ルパンチ処理による補強布帛の損傷が問題となるが、 撚数が、 収縮処理 前で、 前述したように 5 5 0 T /m〜 2 0 0 0 T Z m、 特に 6 5 0〜 9 0 0 T Zmであることにより、' 糸損傷が少なく、 かつ繊維ウエッブとの 十分な絡合が達成でき、 更に高い見掛け密度が得られ且つ低歪み域での 形態変化を防ぐことができることから、 好ましく、 本発明の繊維シート の製造に適する。 より詳細に説明すると、 ウエッブと布帛の積層絡合時 に行うニードルパンチ処理により補強用布帛中の糸はある程度の損傷を 受ける力 撚数を上記範囲とすることにより損傷を低減することができ、 特に撚数の低い紡績糸の場'合に損傷を大きく低減することができる。 な ぜならば、 紡績糸は非連続繊維で構成されているため、 構成繊維がニー ドルパンチにより傷ついたり、 す抜けを生じても、 全糸強力降下に与え る影響は小さく、 本発明者らの研究によれば、 撚数が収縮処理前で、 2 0 0 O T Zm以下、 好ましくは 9 0 0 T Zm以下の時にこの効果が顕著 に得られる。 すなわち撚数が、 収縮処理前で 2 0 0 0 T Z mを超えると、 糸中の繊維の拘束力が増し、 自由度が失われているため繊維がニードル のパーブに引つかかった時に逃げにくく傷つきやすくなることと単繊維 同士の間隔が狭くなるためにニードル針のパーブに複数本が引つかかり やすくなるためと推定される。 繊維の微少な損傷によりニードルパンチ 直後の補強布帛そのものの強力は一時若干低下するが、 後の収縮処理に より繊維太さが増大化して望まれるシート物性を実現させることができ る。 したがって、 前述の様な収縮処理後の撚数の影響を考慮すると、 本 発明における補強用布帛は、 収縮処理前において撚数 2 0 0 0 T Zm以 下の高収縮を有する糸が好ましく、 より好ましくは紡績糸で構成されて いる場合である。 しかし撚数が 5 5 0 T Z m未満の場合には、 低歪み域 での形態変化の大きなものとなりやすく、 且つ収縮処理を行っても十分 に見掛け密度が向上しない。 以上のことから、 もっとも好ましくは、 撚 数 6 5 0 T / m〜 9 0 0 T Z mの範囲の高収縮性紡績糸である。 The entanglement of the reinforcing fabric and the web made of ultrafine fibers or ultrafine fibers can be performed by any method that can be effectively entangled, such as a hydroentanglement process or a needle punching process. This is a method using needle punching, which is a method for obtaining high entanglement. At this time, the reinforcing fabric is damaged by the needle punching process, but the number of twists is 550 T / m to 200 TZm, especially 65 to 9 By being 0 0 T Zm, the yarn damage is small, sufficient entanglement with the fiber web can be achieved, a higher apparent density can be obtained, and a morphological change in a low strain region can be prevented. Preferably, it is suitable for producing the fiber sheet of the present invention. More specifically, the yarn in the reinforcing fabric is subjected to a certain degree of damage by the needle punching process performed when the web and the fabric are intertwined with each other. Particularly in the case of a spun yarn having a low twist number, damage can be greatly reduced. What In other words, since the spun yarn is composed of discontinuous fibers, even if the constituent fibers are damaged or slipped by the needle punch, the effect on the total yarn strength drop is small, and the present inventors' research has According to this, this effect is remarkably obtained when the number of twists is 200 OT Zm or less, preferably 900 T Zm or less before the shrinkage treatment. In other words, if the number of twists exceeds 200 TZm before the shrinkage treatment, the binding force of the fibers in the yarn increases, and the degree of freedom is lost, so that the fibers are less likely to escape when caught on the needle pub. This is presumed to be due to the fact that the needle fibers are more likely to be caught in the needle pub due to the fact that they are easily damaged and the spacing between the single fibers is narrower. Although the strength of the reinforcing fabric itself immediately after needle punching temporarily decreases slightly due to minute damage to the fibers, the desired sheet physical properties can be realized by increasing the fiber thickness by the subsequent shrinkage treatment. Therefore, in consideration of the influence of the number of twists after the above-described shrinkage treatment, the reinforcing fabric of the present invention is preferably a yarn having a high shrinkage of not more than 200 TZm before the shrinkage treatment. Preferably, it is made of spun yarn. However, if the number of twists is less than 550 TZm, the morphological change in the low strain region tends to be large, and the apparent density does not sufficiently improve even after the shrinkage treatment. From the above, the most preferable is a highly shrinkable spun yarn having a twist number in the range of 600 T / m to 900 TZm.
また絡合法に水流方式を用いた場合、 糸の撚数が高すぎると糸が締ま りすぎて単繊維間に緩みがなくなることが繊維と布帛の絡合性を低下さ せ、 特に抄紙ウエッブとの積層時は繊維抜けが多くなる。 しかし、 撚数 が収縮処理前で 2 0 0 O T Z m以下であれば、 特に紡績糸の場合には、 ウエッブと紡績糸特有の毛羽との絡合が有効に働き、 また糸を構成する 繊維の同士の間の緩み部も適度に存在し、 この部分への絡合もなされ、 ウエッブ繊維と補強布帛との絡合が有効になる現象がみられ、 その結果、 補強布帛がマ チフィラメン ト糸からなる布帛である場合に起こり易い ウエッブ繊維の脱落を解消することができる。 また紡績糸の場合には、 収縮性の異なる繊維を混綿することにより糸の熱収縮の程度を調整する ことが可能で、 この意味でも紡績糸の使用は有用である。 In addition, when the water entanglement method is used for the entanglement method, if the number of twists of the yarn is too high, the yarn becomes too tight and the looseness between the single fibers disappears, thereby reducing the entanglement between the fiber and the fabric, and particularly the papermaking web. At the time of lamination with, the fiber detachment increases. However, if the number of twists is less than 200 OTZ m before the shrinkage treatment, especially in the case of spun yarn, the entanglement of the web with the fluff peculiar to the spun yarn works effectively. There is also a moderately loose part between them, and this part is entangled, and the phenomenon that the entanglement of the web fiber and the reinforcing fabric becomes effective is observed. As a result, the reinforcing fabric is converted from the multifilament yarn. Easy to occur when the fabric is The detachment of the web fibers can be eliminated. In the case of spun yarn, the degree of heat shrinkage of the yarn can be adjusted by mixing fibers having different shrinkages, and in this sense, the use of spun yarn is useful.
本発明に用いられる補強布帛を構成する糸の太さとしては、 綿番手と して 3 0〜4 5番手が、 糸強力、 布帛としての取り扱い性、 ニードルパ ンチゃ水流絡合時のゥエツブとの絡合性、 糸損傷等の面で好ましい。 また本発明に用いられる補強布帛を紡績糸で構成する場合には、 紡績 糸を構成する繊維の繊維長としては、 3 0〜 1 0 0 mmが好ましく、 繊 維長が 3 0 mm未満の場合には、 糸の強度が低く補強布帛として要求さ れる強度が低下する。 また繊維長が 1 0 0 mmを越える場合には、 フィ ラメント糸を用いる場合に類似した欠点を有することとなる。  Regarding the thickness of the yarn constituting the reinforcing fabric used in the present invention, the yarn count of 30 to 45 is the number of cotton, the yarn strength, the handleability as a fabric, the needle punch, and the diameter at the time of water entanglement. It is preferable in terms of entanglement and yarn damage. When the reinforcing fabric used in the present invention is composed of spun yarn, the fiber length of the fiber constituting the spun yarn is preferably 30 to 100 mm, and the fiber length is less than 30 mm. In such a case, the strength of the yarn is low and the strength required as a reinforcing fabric is reduced. When the fiber length exceeds 100 mm, there is a defect similar to the case where a filament yarn is used.
次に補強布帛の布帛化の方法について述べると、 一般的な公知の天竺 編、 トリコッ ト編などの編物、 平織などの織物が好ましい。 特に糸の収 縮が直接的に補強用布帛に反映される点や後の工程性の点等から織物が 望ましい。  Next, a method of forming the reinforcing cloth into a fabric will be described. Generally known knitted fabrics such as a sheet knitted fabric and a tricot knitted fabric and a plain woven fabric are preferred. In particular, a woven fabric is desirable because the shrinkage of the yarn is directly reflected on the reinforcing cloth and the processability in the subsequent steps.
織物の構造は、 後でのニードルパンチや水流絡合処理が可能なものな らば何れの構造でもかまわないが、 強度の出しやすさ、 バランスの取り 易さ、 縦方向の抗張力、 糸の収縮性がより直接的に現れ、 調整しやすい などの点から平織が好ましい。 また織物の場合, タテ糸とョコ糸は同種 のものであっても異なる種類のものであっても、 本発明の内容に沿うも のであれば差し支えないが、 夕テ糸の収縮率がョコ糸の収縮率の 0 . 3 〜 0 . 9 5倍の範囲であることが好ましい。 なぜならば、 製造工程中の 工程張力のためにタテ方向は、 やや収縮が入りにく くなる。 そのため布 帛設計時に夕テ方向の収縮率をョコ方向に比しある程度低く してやらな いと繊維内に収縮処理時の歪みが残り、 染色などのより厳しい熱条件下 で歪みの緩和が発生して縦方向に収縮し、 シートの縦方向に垂直 (巾方 向に並行に) 皺が入ってしまう。 従って前述の範囲に夕テ糸、 ョコ糸の 収縮率比を設定することが好ましい。 The structure of the woven fabric may be any structure as long as it can be later subjected to needle punching or water entanglement, but it is easy to obtain strength, easy to balance, tensile strength in the vertical direction, shrinkage of yarn Plain weave is preferred because the properties appear more directly and are easier to adjust. In the case of woven fabrics, the warp yarn and the weft yarn may be of the same type or different types, as long as they conform to the content of the present invention, but the shrinkage of the yarn is low. It is preferable that the shrinkage of the knitting yarn is in the range of 0.3 to 0.95 times. Because of the process tension during the manufacturing process, the warp direction is less likely to shrink. For this reason, if the shrinkage rate in the fabric direction must be reduced to some extent compared to the weft direction when designing the fabric, distortion during the shrinkage treatment will remain in the fiber, and the strain will relax under more severe thermal conditions such as dyeing. Shrinks vertically and is perpendicular to the sheet length (width Wrinkles will be formed. Therefore, it is preferable to set the shrinkage ratio of the evening yarn and the weft yarn within the above-mentioned range.
織密度に関しては、 補強用布帛として満足されるものであれば良いが、 タテは 4 0〜 1 0 0本/ィンチ、 ョコは 3 0〜 9 0本 Zィンチが好まし く、 より好ましくはタテ 5 0〜 8 0本 Ζインチ、 ョコ 4 0〜 7 0本ノィ ンチの範囲であり、 この好適範囲の場合には、 最終シートの抗変形性お よび製造工程での抗変形性の面で、 また取り扱い性の面でも優れている。 夕テ糸密度は、 ョコ糸密度より多く しておくことが、 工程張力によりシ 一トが変形することを防ぐ点で好ましい。 本発明者等の研究結果では 夕テが伸びると、 ョコが多少縮んでも、 総合的に面積的には拡大してゆ き、 シート中の繊維の見かけ密度は低下してしまう現象が生じる。 その 結果、 製品となった時に繊維間隔の開いた変形性の大きなシ一トとなり かつ表面品位が悪くなる。 したがって、 補強用布帛の織密度を前述のよ うに調整することが好ましい。  Regarding the weaving density, any material can be used as long as it is satisfactory as a reinforcing cloth, but the length is preferably 40 to 100 yarns / inch, and the horizontal is 30 to 90 yarns, and more preferably Z-inch. The range is 50-80 inches per inch, and 40-70 inches per inch. In this preferred range, the anti-deformation property of the final sheet and the anti-deformation property in the manufacturing process are considered. It is also excellent in handleability. It is preferable to set the yarn density higher than the weft yarn density in order to prevent the sheet from being deformed by process tension. According to the research results of the inventors of the present invention, when the length is increased, even if the width is slightly shrunk, the overall area is expanded, and the apparent density of the fibers in the sheet is reduced. As a result, when it becomes a product, it becomes a sheet with large fiber spacing and large deformability, and the surface quality deteriorates. Therefore, it is preferable to adjust the weaving density of the reinforcing cloth as described above.
補強用布帛の製織に用いられる織機としては、 ズルツアー織機ゃフラ ィ織機、 ウォー夕一ジェッ ト織機、 レピア織機、 エア一ジェッ ト織機な ど公知の織機が挙げられる。  Examples of the loom used for weaving the reinforcing cloth include known looms such as a Chiltour loom, a fly loom, a war trowel loom, a rapier loom, and an air jet loom.
本発明に用いられる補強布帛の 2 0 %伸長時の強力値は、 タテ強力が 6 k gZc m以上、 ョコ強力が 4 k gZ c m以上であり、 好ましくは夕 テ強力が 8〜 2 0 k gZcm、 ョコ強力が 5〜 1 5 k g/ cmである。 ウエッブとの複合シートでは補強布帛の物性、 繊維ウエッブの絡合性、 弾性樹脂の接着状態や存在状態などが相互に関係し合って皮革様シー ト の物性値が決定されるが、 本発明者等の研究によれば、 低歪み域での高 抗変形性を有する皮革様シートを作製するためには補強布帛単体での強 力値が前述の範囲内にあることが重要な点の一つである。 また、 補強布 帛の抗変形性は、 製造工程中の形態変化と最終製品の皮革様シートでの 変形性の低さに関連する。 製品として椅子やソファー等の表面材、 研磨 材、 産業用資材などに該皮革様シートを用いた場合、 低歪み時の強力が 高いことが要求され、 したがって前記の夕テ方向およびョコ方向の強力 値が満たされている布帛を用いなければならない。 The strength value of the reinforcing fabric used in the present invention at 20% elongation is as follows: vertical strength is 6 kgZcm or more, horizontal strength is 4 kgZcm or more, and preferably 10 to 20 kN. gZcm, horizontal strength is 5 ~ 15 kg / cm. In the case of a composite sheet with a web, the physical properties of a reinforcing sheet, the entanglement of a fibrous web, the state of adhesion and presence of an elastic resin, and the like are interrelated to determine the physical properties of a leather-like sheet. One of the important points of the study is that in order to produce a leather-like sheet having high resistance to deformation in the low strain range, the strength value of the reinforcing fabric alone is within the above range. It is. In addition, the deformation resistance of the reinforced fabric depends on the morphological change during the manufacturing process and the leather-like sheet of the final product. Related to low deformability. When the leather-like sheet is used as a surface material such as chairs and sofas, abrasives, industrial materials, etc., it is required that the strength at the time of low distortion is high. A fabric with a sufficient strength value must be used.
このようにして作製された補強布帛は、 後での熱収縮性を維持させる ために熱セットせずに生機のまま、 高収縮性を有する繊維ウエッブと積 層し絡合処理される。  The reinforcing fabric thus produced is laminated with a fiber web having high shrinkage and entangled without being heat-set in order to maintain heat shrinkability later.
もう一方の、 絡合される極細繊維または極細化可能な繊維からなるゥ ェッブは、 カードにより開繊した薄ゥェッブをクロスラッパーにより所 定目付まで複数枚積層させて作製したり、 ランダムウエッバーにより作 製する。 補強布帛とより緊密に絡合させるために、 絡合度の低いゥエツ ブの状態で両者を積層し絡合処理するのがが好ましい。 具体的には、 二 ―ドルパンチによる絡合処理を用いる時には、 約 3 0 0パンチ Z c m 2 以下、 また水流絡合を用いる場合には、 未絡合状態のウエッブと積層さ せて 1 0 0 k g f / c m 2以上の高水圧で処理するのが好ましい。 The other web made of entangled ultrafine fibers or ultrafine fibers can be made by laminating a plurality of thin webs opened by a card to a specified weight with a cross wrapper, or by using a random webber. Make it. In order to more tightly entangle with the reinforcing cloth, it is preferable that both are laminated and entangled in a state of a low degree of entanglement. Specifically, the two - when using entangling treatment by the Dorupanchi, about 3 0 0 punches Z cm 2 or less, also in the case of using a hydroentanglement is 1 0 0 by stacking the non entangled state web The treatment is preferably performed at a high water pressure of kgf / cm 2 or more.
上述したように繊維ウエッブの収縮率は、 夕テ方向、 ョコ方向ともに 1 0〜 3 0 %の範囲にあることが必要である。 この繊維ウエッブの収縮 性は、 製品での抗変形性を与えるシート構造及び表面毛羽数に関連し、 本発明の目的とする高抗変形性と製品品位の両面を決める重要な値であ る。 特に研磨材などの用途には製品表面が極細繊維で十分に密になって いることが研磨精度などに大きく影響する。 収縮が 1 0 %未満では繊維 密度が粗で表面立毛の面で低品位の製品となる。 また 3 0 %を超えると シートは硬くなりすぎる。 本発明でいう繊維ウエッブの収縮率とは、 補 強用布帛と繊維ウエッブとを絡合一体化する際の絡合処理を繊維ゥエツ ブ単独に行い、 得られる絡合不織布を 9 0 eCの熱水中にフリーな状態で 5分間浸漬したのち、 繊維ウエッブの夕テ方向及びョコ方向の長さ 測 定し、 それぞれの長さが浸漬前と後とで小さくなつた割合を意味する。 また繊維ウエッブを構成する繊維は、 繊維長が 3〜 1 5 0 mmで、 好 ましくは 2 0〜 1 5 0 mmの範囲内である。 繊維長が 3 mm未満の場合 には、 水流絡合やニードルパンチ法によっては有効な繊維の絡合状態が 得られず、 製品となった時の表面摩耗性が悪いものになる。 一方、 1 5 0 mmを越える場合にはカード時にネップとなりやすくきれいなゥエツ ブが得難い。 As described above, the shrinkage rate of the fiber web must be in the range of 10 to 30% in both the horizontal direction and the horizontal direction. The shrinkability of the fiber web is related to the sheet structure and the number of surface fluffs that give the product deformation resistance, and is an important value that determines both the high resistance to deformation and the product quality aimed at by the present invention. In particular, for applications such as abrasives, the fact that the product surface is sufficiently dense with ultrafine fibers greatly affects polishing accuracy and the like. If the shrinkage is less than 10%, the fiber density is coarse and the product is low quality in terms of surface nap. If it exceeds 30%, the sheet becomes too hard. The shrinkage of the fibrous web in the present invention, the entangling treatment at the time of entangling integrate the fabric and the fibrous web for reinforcement performed on fibers Uetsu blanking alone obtained entangled nonwoven fabric of 9 0 e C After immersion in hot water for 5 minutes in a free state, measure the length of the fiber web in the horizontal and horizontal directions It means the ratio that each length becomes smaller before and after immersion. The fibers constituting the fiber web have a fiber length of 3 to 150 mm, preferably within a range of 20 to 150 mm. If the fiber length is less than 3 mm, an effective fiber entangled state cannot be obtained by the hydroentanglement or the needle punch method, resulting in poor surface wear when the product is obtained. On the other hand, if it exceeds 150 mm, it becomes easy to become a nep when playing a card, and it is difficult to obtain a clean diamond.
繊維ゥヱッブを構成する繊維としては、 これらの条件を満足する極細 繊維または極細化可能な繊維であれば何でも良く、 好ましくは極細化可 能繊維である。 これら繊維は、 単一ポリマーよりなる繊維、 複数のポリ マーからなる複合繊維や混合紡糸繊維のいずれでもよい。 なお極細化可 能繊維とは、 複数のポリマーからなる複合繊維や混合紡糸繊維から少な くともひとつのポリマーを抽出除去または分解除去することにより、 あ るいは繊維構成ポリマーの界面でボリマーを剥離させることにより極細 繊維が得られることとなる繊維の総称である。 本発明において、 極細繊 維または極細化可能繊維を極細化した後の極細繊維としては、 0 . 3 d r ( 0 . 3 3デシテックス) 以下が好ましく、 0 . 3 d rを越えて太い 場合には、 繊維が太すぎて、 繊維密度の低い充実感の劣るものとしか得 られず、 特に表面を毛羽状に仕上げる場合には高級感あるスエード調の ものが得られない。 好ましくは、 2種以上のポリマーを混合紡糸または 複合紡糸して、 海島構造の断面を有する繊維を製造し、 この繊維から海 成分ポリマーを抽出または分解除去することにより島成分ポリマーだけ を残し、 その結果、 極細繊維を得る方法である。 複数成分のポリマーよ りなる繊維のポリマー界面を水流等の方法で分割したり、 熱処理してポ リマーの収縮歪み差や特定溶液中での膨潤、 溶解性差などで界面剥離さ せて得られる極細繊維でもよい。 極細繊維または極細^可能繊維を極細 化した後の極細繊維のより好ましい繊度は、 0. 1〜 0. 0 0 1 d r ( 0. 1 1〜0. 0 0 1 1デシテックス) である。 As the fiber constituting the fiber tube, any fiber can be used as long as it satisfies these conditions, or any fiber that can be made ultrafine, and is preferably a fiber that can be made ultrafine. These fibers may be any of fibers composed of a single polymer, composite fibers composed of a plurality of polymers, and mixed spun fibers. The ultra-fine-thinning fiber is a polymer fiber or a mixed spun fiber comprising at least one polymer extracted and removed or decomposed and removed, or the polymer is exfoliated at the interface between the fiber constituent polymers. This is a general term for fibers that can be used to obtain ultrafine fibers. In the present invention, the ultrafine fibers or the ultrafine fibers obtained by ultrafine-refining the ultrafine fibers are preferably 0.3 dr (0.33 decitex) or less, and when the ultrafine fibers are thicker than 0.3 dr, Since the fibers are too thick, they can only be obtained with a low fiber density and a poor sense of fulfillment. Especially when the surface is finished in a fluffy shape, a high-quality suede-like product cannot be obtained. Preferably, two or more polymers are mixed-spun or composite-spun to produce a fiber having a sea-island cross section, and the sea-component polymer is extracted or decomposed and removed from the fiber to leave only the island-component polymer. As a result, this is a method for obtaining ultrafine fibers. An ultrafine fiber obtained by dividing the polymer interface of a fiber composed of a multi-component polymer by a method such as water flow, or by heat-treating and exfoliating the interface due to differences in shrinkage strain of the polymer, swelling in a specific solution, and solubility differences. Fiber may be used. Ultra-fine fibers or ultra-fine fibers The more preferable fineness of the ultrafine fibers after the formation is 0.1 to 0.001 dr (0.11 to 0.00001 decitex).
また極細繊維を構成するポリマ一としては、 ポリエチレンテレフタレ ―トあるいはエチレンテレフ夕レート単位を主たる繰返単位とする共重 合体等で代表されるポリエステル類、 6—ナイロン、 6 6—ナイロン、 6 1 0—ナイロン等で代表されるポリアミ ド類などが挙げられる力 製 品化後の皮革様シートに高抗変形性を達成させるためにはポリエステル 類が好ましい。 また極細化可能繊維として海島断面繊維を用いる場合の 海成分形成ポリマーとしては、 ポリエチレン、 ポリスチレン等が挙げら れ、 島成分形成ポリマーとしては、 もちろん上記極細繊維構成ポリマー が好適例として挙げられる。 極細繊維または極細化可能繊維に潜在収縮 性を付与するための方法としては、 前記した補強用布帛の場合と同様で ある。 極細化処理前の極細化可能繊維の太さとしては l〜 5 d r ( 1. 1 1〜 5. 5 5デシテックス) がウエッブとして繊維を絡合させる上で 好ましい。 繊維ウエッブの目付としては、 染色後のシート中の極細繊維 のみの目付に換算して極細処理後において 2 0 0〜 5 5 0 gZm2が好 ましい。 Examples of the polymer constituting the ultrafine fiber include polyesters represented by polyethylene terephthalate or a copolymer having ethylene terephthalate as a main repeating unit, 6-nylon, 66-nylon, 6-nylon, and the like. Polyesters are preferred in order to achieve a high anti-deformation property on a leather-like sheet after force production, such as polyamides represented by 10-nylon and the like. When the sea-island cross-section fiber is used as the micronizable fiber, the sea component-forming polymer includes polyethylene, polystyrene, and the like. As the island component-forming polymer, the above-mentioned ultrafine fiber-constituting polymer is, of course, a preferred example. The method for imparting latent shrinkage to the ultrafine fibers or ultrafine fibers is the same as in the case of the above-described reinforcing cloth. As the thickness of the ultrafine-thinning fiber before the ultrafineness treatment, l to 5 dr (1.11 to 5.55 decitex) is preferable in terms of entanglement of the fiber as a web. The basis weight of the fiber web is preferably from 200 to 550 gZm 2 after the ultrafine treatment in terms of the basis weight of only the ultrafine fibers in the sheet after dyeing.
補強用布帛と繊維ウエッブの絡合処理は、 高圧水流法であっても、 ま たニードルパンチ法であっても、 あるいはこの両者を組み合わせたもの であってもよい。 二一ドルパンチ方法を用いる場合には、 片面からそれ ぞれ 4 0 0〜 1 8 0 0パンチ Zc m2、 両面あわせて 8 0 0〜 3 6 0 0 パンチ Z c m 2のパンチ数でパンチングするのが好ましい。 The entanglement treatment of the reinforcing cloth and the fiber web may be performed by a high-pressure water jet method, a needle punch method, or a combination of both. Twenty-one Dorupanchi in the case of using the method, it respectively 4 0 0-1 8 0 0 punch Zc m 2 from one side to punch 8 0 0-3 6 0 0 punches Z cm number of punches 2 together sided Is preferred.
絡合処理された補強用布帛と繊維ウエッブの積層体は、 シー卜の見掛 け繊維密度向上とシート強力の向上等のために熱収縮処理される。 この 時、 高絡合状態の繊維ウエッブの見掛け繊維密度をより向上させておく 二とは、 各繊維間の距離が短くなり、 後で含浸する弾性樹脂との相乗効 果によって最終的にはシートの高抗変形性を達成する上で重要となる。 この時に上記したような、 優れた性能を達成するためには、 積層シー 卜の収縮は、 夕テ方向、 ョコ方向とも 1 0〜 3 0 %であることが好まし い。 1 0 %未満の収縮率の場合には、 繊維の見掛け密度やシート強力の 向上効果は見られず、 また 3 0 %を越える場合には、 収縮し過ぎてかえ つてシート全体が硬化してしまい良くない。 The entangled laminate of the reinforcing fabric and the fiber web is subjected to a heat shrink treatment to improve the apparent fiber density of the sheet and the sheet strength. At this time, the apparent fiber density of the fiber web in the highly entangled state is further improved. The reason for this is that the distance between the fibers is shortened, and the synergistic effect with the elastic resin impregnated later. The result is ultimately important in achieving high sheet deformation resistance. At this time, in order to achieve excellent performance as described above, the shrinkage of the laminated sheet is preferably 10 to 30% in both the machine direction and the transverse direction. If the shrinkage is less than 10%, the effect of improving the apparent density of the fiber and the sheet strength is not seen, and if it exceeds 30%, the sheet is excessively shrunk and the entire sheet hardens. Not good.
また、 積層シートの熱処理時の工程性と良好なシート品位を得るため にウエッブと補強用布帛の熱収縮率は前記したように、 ほぼ一致してい るのが好ましく、 したがって補強用布帛の 9 0 °C温水中での収縮率も、 繊維ゥエツブと同等に夕テ方向およびョコ方向ともに 1 0〜 3 0 %の範 囲内にあるのが好ましい。 両者間で収縮率が大きく異なる場合には、 シ ―トは熱収縮処理時に収縮率の高い層を内側にしてカールしてしまい、 このような状態では後加工が困難になってしまう。 本発明において、 収 縮処理方法としては、 補強用布帛と繊維ウエッブとの積層一体化物を 8 0〜 1 0 0 °Cの熱水中に浸漬して、 積層物として夕テ方向およびョコ方 向ともに 1 0〜 3 0 %の収縮を起こさせる方法や、 また 1 0 0〜 1 8 0での温風中に放置させることにより積層物として夕テ方向およびョコ 方向ともに 1 0〜 3 0 %の収縮を起こさせる方法などがある。 均一な収 縮が得られる点で好ましくは前者の方法である。  Further, in order to obtain processability during heat treatment of the laminated sheet and good sheet quality, it is preferable that the thermal shrinkage ratio of the web and the reinforcing cloth be substantially the same as described above. The shrinkage in hot water at ° C is also preferably in the range of 10 to 30% in both the horizontal direction and the horizontal direction, as in the case of the fiber ゥ. If the shrinkage differs greatly between the two, the sheet will curl with the layer with the highest shrinkage inside during the heat shrink treatment, making post-processing difficult in such a state. In the present invention, as the shrinkage treatment method, a laminated integrated product of the reinforcing cloth and the fiber web is immersed in hot water at 80 to 100 ° C. In the direction of 10 to 30% in both directions, and by leaving it in warm air at 100 to 180, it can be used as a laminated product in the direction of 10 to 30 in both the horizontal and horizontal directions. There is a method of causing the contraction of%. The former method is preferred because uniform shrinkage can be obtained.
熱収縮により繊維シート中の見掛け繊維密度や繊維シートの強力が向 上し、 収縮繊維ウエッブの収縮特性が最大限に生かせる加工ができ、 製 品品位が驚くほど良好となる。 主に補強布帛により高い抗変形性、 およ び収縮処理により高繊維密度が達成されたシ一トは、 この後さらに目的 の皮革様シートとするために 弹性重合体溶液又は弾性重合体のェマル ジョン液を含浸し、 弾性重合体を湿式凝固又は感熱凝固させ、 更に繊維 ゥエツブとして極細化可能繊 を用いている場合には、 該繊維を抽出剤 や分解剤などで処理して極細繊維とする。 剥離型の極細化可能繊維が用 いられている場合には、 弾性重合体付与前に高圧水流処理、 収縮歪み処 理等を付与し機械的方法により繊維分割をしておくことが分割性の面、 皮革様シートの風合いの面でも好ましい。 The heat shrinkage improves the apparent fiber density in the fiber sheet and the strength of the fiber sheet, enables processing that maximizes the shrinkage properties of the shrinkable fiber web, and makes the product quality surprisingly good. The sheet, which has achieved high deformation resistance mainly by the reinforcing fabric and high fiber density by the shrinkage treatment, is then used to obtain a desired leather-like sheet. When the elastic polymer is wet- or heat-sensitive coagulated, and the fibers are made of ultrafine fibers, the fibers are extracted with an extractant. And ultrafine fibers by treating with a decomposing agent. When exfoliation-type ultrafine fibers are used, applying high-pressure water flow treatment, shrinkage distortion treatment, etc. before applying the elastic polymer and dividing the fibers by a mechanical method is advantageous in terms of division. Surface and the texture of the leather-like sheet.
本発明で使用される弾性重合体としては、 ポリウレタン、 S B R、 N B R、 ポリアミノ酸、 アクリル系などのゴム状弾性を有するものなら何 でも良いが、 得られる皮革様シートの風合いの点で、 さらに諸物性の点 でポリウレタンが最も好ましい。 弾性重合体は溶液で用い、 湿式凝固さ せるのが好ましいが、 風合い的にはやや劣るものの、 用途によってはポ リウレタン系ゃァクリル系単独あるいはこれらを混合した水性ェマルジ ヨン等を用いてもよい。 付与するゴム状弾性重合体の量としては、 皮革 様シート構成繊維重量の 1 0〜 2 5 %が好ましい。  The elastic polymer used in the present invention may be any polymer having rubber-like elasticity, such as polyurethane, SBR, NBR, polyamino acid, and acrylic resin. Polyurethane is most preferred in terms of physical properties. The elastic polymer is preferably used in the form of a solution and is preferably subjected to wet coagulation. However, although the texture is slightly inferior, depending on the application, a polyurethane-based acryl-based polymer alone or an aqueous emulsion obtained by mixing these may be used. The amount of the rubbery elastic polymer to be applied is preferably 10 to 25% of the weight of the constituent fibers of the leather-like sheet.
更に、 得られたシー卜の繊維ゥエツブ側の表面をサンドペーパーでバ ッフィングなどして毛羽立てることによりスエード調の人工皮革が得ら れる。 また表面を毛羽立てる代わりに表面に樹脂を塗布し、 天然皮革調 の表面凹凸となるようにエンボス処理やフラッ トに処理することにより 銀面付人工皮革が得られる。  Furthermore, suede-like artificial leather can be obtained by buffing the surface of the obtained sheet on the fiber-to-etch side with sandpaper or the like. Also, instead of shaving the surface, a resin is applied to the surface and embossed or flattened to obtain a natural leather-like surface unevenness, whereby an artificial leather with a silver surface can be obtained.
得られた人工皮革に対して、 さらに必要に応じ染色加工や、 他の仕上 げ加工を行なうことも可能である。  The obtained artificial leather can be further subjected to a dyeing process and other finishing processes as necessary.
必要とする最終皮革様シートの低歪み域での変形性挙動は、 これまで 説明してきたような補強布帛を使用し、 極細繊維または極細化可能な繊 維からなるウエッブと補強布帛を一体に絡合し、 得られる積層体を収縮 処理して構造体中の繊維見掛け密度を高め、 そして弾性樹脂を付与する ことにより得ることができる。  The required deformability behavior of the final leather-like sheet in the low-strain region is determined by using a reinforcing fabric as described above, and tangling the web made of ultrafine fibers or ultrafine fibers and the reinforcing fabric together. The resulting laminate can be obtained by shrinking the resulting laminate to increase the apparent density of the fibers in the structure, and applying an elastic resin.
次に実施例により本発明を詳細に説明するが、 本発明の内容は以下の 実施例により制限されるものではない。 本発明でいう、 繊維の 9 0°C熱水中での収縮率は、 繊維に 1 /5 0 0 g/d rの荷重をかけた状態で測定した長さと、 フリーな状態で 9 0°C の温水中に 5分間浸漬し風乾した後に再度 1/ 500 g/d rの荷重下 で測定した長さとの差より求められる。 また布帛の 9 0°C熱水中での収 縮率は、 該布帛を 90での熱水中にフリーな状態で 5分間浸漬した場合 の浸漬前と後とでの面積減少割合を意味している。 Next, the present invention will be described in detail with reference to examples, but the content of the present invention is not limited to the following examples. In the present invention, the shrinkage of the fiber in hot water at 90 ° C is the length measured when a load of 1/500 g / dr is applied to the fiber, and 90 ° C in the free state. It is obtained from the difference from the length measured under a load of 1/500 g / dr again after immersion in warm water for 5 minutes and air drying. The shrinkage ratio of the fabric in hot water at 90 ° C means the area reduction ratio before and after immersing the fabric in hot water at 90 for 5 minutes in a free state. ing.
また皮革様シートの歪み一裂断長曲線、 及び布帛の 2 0 %伸長時の夕 テ方向及びョコ方向強力は、 それぞれの方向に 1 cm幅で切出した短冊 状試料をィンス トロン等により測定した応力一歪み曲線及び曲線の 2 0 %伸長時の強力値として測定される。 裂断長を算出する際のシート強 力は、 この応力一歪み曲線の所定伸度での応力値が用いられ、 裂断長 (km) = シート強力 (gZcm) Zシート目付 (g/m2) / 1 0 In addition, the strain-break length curve of the leather-like sheet and the strength in the machine direction and transverse direction when the fabric is stretched by 20% were measured by a stripron sample cut in a width of 1 cm in each direction using an instron. The measured stress-strain curve and the strength at 20% elongation of the curve. The sheet strength at the time of calculating the tear length is the stress value at a predetermined elongation of the stress-strain curve, and the tear length (km) = sheet strength (gZcm) Z sheet weight (g / m 2 ) / Ten
により算出される。 またシートの見掛け密度は、 シート目付をシート厚 さで割り gZ c m3単位で表したものである。 シート厚さは、 J I S K 6 5 50 に準じて測定した。 実施例 1 Is calculated by The apparent density of a sheet is obtained by dividing the sheet basis weight by the sheet thickness and expressing the unit in gZ cm 3 . The sheet thickness was measured according to JISK65550. Example 1
海成分としてポリエチレン、 島成分としてポリエチレンテレフタレ一 トを用い、 海成分と島成分の比率が 3 5 : 65で複合紡糸により作製し た抽出タイプの極細化可能繊維 ( 3. δ d r X δ 1 mm、 島本数: 1 6 本) よりなる目付 3 5 0 gZm2の繊維ウエッブに、 9 0°Cでの熱水収 縮率が 1 5. 0 %である 5 1mm長のポリエチレンテレフタレ一ト繊維 の紡績糸より作製した 7 0 g/m 2の補強用布帛を積層させた。 極細化 可能な繊維の 9 0 °C熱水中での収縮率は 2 3 %で、 この繊維よりなるゥ ェッブはカードにより開繊処理した低目付ウエッブをクロスラップ装置 により多枚数積層することにより作製し、 プレパンチ直後に補強用布帛 と重ね合わせた。 この繊維ウエッブを単独に絡合処理したものの 90°C 熱水中でのタテ方向収縮率は 2 2 %、 ョコ方向収縮率は 2 3 %であった。 一方、 補強用布帛は、 40番手の紡績糸より作製され、 糸に施した最 終撚数は 800 TZmである。 この紡績糸をノーセッ トの生糸のまま使 用し、 タテ糸、 ョコ糸に用い平織物 (織密度は夕テ 6 0本 Zインチ、 ョ コ 5 0本 Zインチ) を作製したものである。 この平織物の 2 0 %伸長時 のタテ強力は 1 0 k gZ c mであり、 ョコ強力は 5. 7 k g/cmであ つた。 Polyethylene terephthalate is used as the sea component, polyethylene terephthalate is used as the island component, and the ratio of the sea component to the island component is 35:65. mm, the number of islands: 16) A fibrous web of 350 gZm 2 with a hot water shrinkage of 15.0% at 90 ° C is a 51 mm long polyethylene terephthalate. A 70 g / m 2 reinforcing cloth made from spun yarn of fibers was laminated. The shrinkage rate of ultrafine fibers in hot water at 90 ° C is 23%. The web made of these fibers is a cross-wrapping machine that uses a low-weight web that has been opened with a card. , And laminated with the reinforcing cloth immediately after the pre-punch. Although the fiber web was entangled alone, the shrinkage in the vertical direction in hot water at 90 ° C was 22% and the shrinkage in the horizontal direction was 23%. On the other hand, the reinforcing fabric is made of a spun yarn of 40th count, and the final twist applied to the yarn is 800 TZm. This spun yarn is used as a raw, unset yarn, and is used for warp and weft yarns to produce plain weaves (weaving density: 60-inch inch, 50-inch Z inch). . The vertical tenacity of this plain fabric at 20% elongation was 10 kgZcm, and the horizontal tenacity was 5.7 kg / cm.
補強用布帛と繊維ウエッブとの積層物を繊維ウエッブ側から 1 30 0 パンチ/ cm2、 裏面側から 1 30 0パンチ/ c m2のニードルパンチ処 理を行い、 絡合シートを得た。 この時補強布帛入りシートは両者が一体 に緊密に絡合した状態であった。 The laminate of the reinforcing fabric and the fiber web was subjected to a needle punching process of 1300 punches / cm 2 from the fiber web side and 1300 punches / cm 2 from the back side to obtain an entangled sheet. At this time, the sheet containing the reinforcing fabric was in a state in which both were tightly entangled integrally.
これらのシートを 9 0°Cの熱水中で処理してタテ、 ョコとも 20 %の 収縮させた。 この時、 高収縮により極細繊維化可能な繊維は、 シート全 体にわたって繊維密度が向上したシ一トとなった。 収縮によりシ一卜が カールしたり皺が生じたりすることはなかった。  These sheets were treated in hot water at 90 ° C to shrink both vertical and horizontal by 20%. At this time, the fibers that could be converted to ultrafine fibers due to high shrinkage had a sheet with improved fiber density over the entire sheet. The sheet did not curl or wrinkle due to shrinkage.
そしてこのシー卜をポリエチレンの半溶融状態まで余熱し所定のクリ ァランスを有するフラッ トロール間を通過させてプレスして冷却と同時 にポリエチレンの融着効果を利用してシート表面の平滑化とさらにシ一 卜中の繊維密度を向上させた。  Then, the sheet is preheated to a semi-molten state of the polyethylene, passed through a flat roll having a predetermined clearance, pressed, cooled, and simultaneously with the use of the fusion effect of the polyethylene to smooth the sheet surface and further reduce the sheet thickness. The fiber density in the bulk was improved.
次に、 このシートを、 ポリウレタン濃度が 1 5 %のボリウレタン一ジ メチルホルムアミ ド (DMF) 溶液中に浸漬させて、 シ一ト中の繊維、 繊維空間にポリウレタンを含浸後、 水中で凝固させた。 その後、 熱トル ェン中でポリエチレン成分を抽出させて繊維の極細化を行った。 極細化 後の繊維は 0. 1 9 d rであった。 この時シートは補強布帛の効果でェ 程中の形態変化の非常に小さな状態を維持することが可能であった。 極細繊維ウエッブと補強用布帛との絡合体は表面をサンドペーパーに より起毛処理した後、 染色しスエード調人工皮革様シートとした。 この 時、 シー卜の目付は、 5 1 9 g/m2、 密度は 0. 4 5 gZcm3であつ た。 Next, this sheet is immersed in a polyurethane urethane dimethylformamide (DMF) solution with a polyurethane concentration of 15% to impregnate the fibers and fiber spaces in the sheet with the polyurethane, and then coagulated in water. I let it. After that, the polyethylene component was extracted in a hot toluene to make the fibers ultrafine. The fiber after ultra-fine-tuning was 0.19 dr. At this time, the sheet is affected by the effect of the reinforcing fabric. It was possible to maintain a very small state of morphological change during the process. The entangled body of the ultrafine fiber web and the reinforcing cloth was brushed on the surface with sandpaper and then dyed to give a suede-like artificial leather-like sheet. At this time, the basis weight of the sheet was 519 g / m 2 and the density was 0.45 gZcm 3 .
このシートの夕テ、 ョコ双方の 1 c m巾当たりの応力—歪み曲線より 換算した裂断長一歪み曲線は 第 1図、 第 2図に示すような概形となり、 低歪み域での変形性が小さく非常に形態安定性に優れるものであった。 二のシート中の補強用布帛を構成する紡績糸の撚り数を測定するため に、 染色後のシートを 5 0°Cに保温した DMF液中に浸漬させ付着した ポリウレタン樹脂を溶解除去した後に絡合している極細繊維を剥し取つ た。 紡績糸の撚り数は、 夕テ糸 1 0 0 0 T/m、 ョコ糸 1 0 1 0 T/m であった。 実施例 2  The tear length-strain curve calculated from the stress-strain curve per 1 cm width of both the sheet and the box on this sheet has the general shape shown in Fig. 1 and Fig. 2, and the deformation in the low strain region It was small and very excellent in form stability. In order to measure the number of twists of the spun yarn constituting the reinforcing fabric in the second sheet, the dyed sheet was immersed in a DMF solution kept at 50 ° C, and the attached polyurethane resin was dissolved and removed. The microfibers that had joined were peeled off. The number of twists of the spun yarn was 100 T / m in the evening yarn and 110 T / m in the weft yarn. Example 2
実施例 1 と同様の繊維ウエッブと、 補強用布帛としてイソフタル酸変 性度が 1 2 mo 1 %の変性ポリエステルを用いた 9 0 Cの熱水中での収 縮率が 1 9. 0 %である撚数 8 0 0 TZmの紡績糸を夕テ、 ョコに用い 作製した平織物とを実施例 1 と同様な作業を行いニードルパンチシ一ト を作製した。 なお該平織物の 2 0 %伸長時の夕テ強力は 1 1 k g /' c m で、 ョコ強力は 6. 1 k g / c mで、 9 0 °C熱水収縮率は夕テ方向 2 0 %、 ョコ方向 2 2 %であった。  A shrinkage ratio in hot water at 90 C using a fiber web similar to that of Example 1 and a modified polyester having isophthalic acid changeability of 12 mo 1% as a reinforcing cloth was obtained at 90 C. A needle punch sheet was produced by performing the same operation as in Example 1 with a plain woven fabric produced by using a spun yarn having a twist number of 800 TZm in the horizontal direction. The strength of the plain fabric at 20% elongation was 11 kg / 'cm, the strength of the flat was 6.1 kg / cm, and the hot water shrinkage at 90 ° C was 20% The horizontal direction was 22%.
このシートの 9 (TC熱水中での収縮率は、 夕テ方向 2 1 %、 ョコ方向 2 4 %であった。  The shrinkage of this sheet in 9 (TC hot water was 21% in the evening direction and 24% in the horizontal direction.
これ以後の操作も実施例 1 と同様に行い、 得られたシートの染色後の 目付、 密度はそれぞれ 5 5 9 gノ m2、 0. 4 7 g,'' c m3で、 裂断長— 歪み曲線は本発明の範囲内であった。 このシートの夕テ、 ョコ 双方の 1 c m巾当たりの応力 歪み曲線より換算した裂断長一歪み曲線は 第 1図、 第 2図に示すような概形となり、 低歪み域での変形性が小さく非 常に形態安定性に優れるものであった。 このシート中の紡績糸の撚り数 を測定すると夕テ糸 1 0 9 5 T Zm、 ョコ糸 1 0 6 0 TZmであった。 二の皮革様シートは、 形態安定性に優れ、 且つ人工皮革としての柔軟な 風合いを有するものであった。 実施例 3 Subsequent operations were performed in the same manner as in Example 1. The weight and density of the obtained sheet after dyeing were 559 g nom 2 , 0.47 g, and '' cm 3 , respectively. The distortion curves were within the scope of the present invention. The breaking length-strain curve calculated from the stress-strain curve per 1 cm width of both the sheet and the side of this sheet has the approximate shape shown in Fig. 1 and Fig. 2. And small and very excellent in form stability. When the number of twists of the spun yarn in this sheet was measured, it was 1950 TZm in the evening yarn and 1.060 TZm in the weft yarn. The second leather-like sheet was excellent in form stability and had a soft texture as artificial leather. Example 3
収縮繊維ウエッブとして、 ナイロンとポリエチレンテレフ夕レートか らなり、 ナイロンとポリエチレンテレフタレ一卜が交互に層状に合計 1 1層の積層状態で存在している、 太さ 2 d rで、 長さ 5 1 mmの複合紡 糸繊維からなる目付け 1 6 0 g / c m2の繊維ゥエツブを用い、 この繊 維ウエッブと、 実施例 1のポリエステル補強用布帛の撚り数を 7 5 0 T Zmとしたもの ( 2 0 %伸長時夕テ強力 8. 9 k gZ c m、 ョコ強力 5. 0 k g c m, 夕テ収縮率 1 5 %、 ョコ収縮率 1 8 %) を積層し、 5 0 パンチ/" c m2のブレニードルパンチング処理をした。 この後水流絡合 処理により、 繊維の分割と追絡合を行った。 このシートを 9 0=C熱水中 で 5分間処理したところ、 補強布帛入りシートの収縮率は夕テ方向 1 4 %、 ョコ方向 1 7 %であり、 またウエッブ単独を同一条件で絡合処理 して得られる不織布の 9 0 °C温水中での 5分間処理後の収縮率は、 夕テ 方向 1 1 %、 ョコ方向 1 3 %であった。 The shrinkable fiber web is made of nylon and polyethylene terephthalate. Nylon and polyethylene terephthalate are alternately present in layers in a total of 11 layers. The thickness is 2 dr and the length is 5 1 The fiber web and the polyester reinforcing fabric of Example 1 were used with a fiber weight of 160 g / cm 2 and a twist of 7500 T Zm. 0% elongation at Yute strong 8. 9 k gZ cm, ® co potent 5. 0 kgcm, Yute shrinkage 1 5% stacking a ® co shrinkage 1-8%), 5 0 punches / "cm 2 The fiber was split and re-entangled by water entanglement, and the sheet was treated in 90 = C hot water for 5 minutes. Is 14% in the evening direction and 17% in the horizontal direction, and the web alone is entangled under the same conditions. Shrinkage rate after 5 minutes treatment with 9 0 ° C warm water of the resulting non-woven fabric, Yute direction 1 1% was ® co direction 1 3%.
その後は抽出工程を行わない以外は実施例 1 と同様な処理を行った。 目付 4 9 0 / 2で密度 0. 4 0 8 gZ c m3のシートとした。 このシ 一卜の工程性は、 特に問題はなく、 最終シートの品位も優れた、 高級感 あるスエード調のものであった。 最終シート中の紡績糸撚り数は、 夕テ 糸 8 5 0 T/m、 ョコ糸 9 0 3 TZmであり、 シートの裂断長一歪み曲 線は、 第 1図および第 2図に示すように、 本発明の範囲内にある、 形態 安定性の優れたものであった。 実施例 4 Thereafter, the same processing as in Example 1 was performed except that the extraction step was not performed. And a sheet density 0. 4 0 8 gZ cm 3 in basis weight 4 9 0/2. The processability of this sheet was not particularly problematic, and the quality of the final sheet was excellent, and it was a high-quality suede tone. The number of twists of the spun yarn in the final sheet is 850 T / m, weft 903 TZm, and the tear length-distortion curve of the sheet is within the scope of the present invention as shown in FIGS. 1 and 2. The stability was excellent. Example 4
収縮繊維ゥエツブとして、 ナイロンとポリエチレンテレフ夕レートか らなり、 ナイロンとポリエチレンテレフ夕レートが交互に層状に合計 1 1層の積層状態で存在している、 太さ 1. 3 d rで、 長さ 3 mmの複合 紡糸繊維に繊維バインダーを混ぜ 4 0 g/ c m2の抄紙を行った。 複合 紡糸繊維は水中で容易に分散するように作成した。 この抄紙ウエッブと、 実施例 2の変性ポリエステル補強用布帛と同じ物を抄紙ゥェッブの間に 挟み実施例 3と同様の水流絡合処理を行った。 このシー卜を 9 0°Cの熱 水中で 5分間処理すると夕テ 1 8 %、 ョコ 1 7 %収縮した。 抄紙ゥエツ ブのみの収縮率は、 夕テ 1 2 %、 ョコ 1 0 %であった。 このシートにゥ レ夕ンェマルジヨンの 2 ◦ %溶液を含浸させ乾熱凝固させた。 1 3 0°C で乾燥 · キュアをして、 この後の仕上げ処理は実施例 2と同様に処理し スエード調シートとした。 目付け 2 6 0 gZm2、 見掛け密度 0. 4 2 g c m3で薄くかつ形態安定性に優れ、 縦方向裂断長一歪みの関係お よび横方向裂断長一歪みの関係はそれぞれ第 1図および第 2図に示すよ うに、 本発明の範囲内にあるシートであった。 このシート中の紡績糸の 撚数は夕テ糸 1 0 3 2 T/m、 ョコ糸 9 7 0 TZmであった。 比較例 1 The shrinkable fiber is made of nylon and polyethylene terephthalate, and the nylon and polyethylene terephthalate are alternately present in layers in a total of 11 layers, with a thickness of 1.3 dr and a length of 3 A fiber binder was mixed with the composite spun fiber having a thickness of 40 mm / mm 2 to make paper of 40 g / cm 2 . The conjugate spun fibers were made to be easily dispersed in water. This papermaking web and the same fabric as the modified polyester reinforcing fabric of Example 2 were sandwiched between papermaking webs and subjected to the same hydroentanglement treatment as in Example 3. When this sheet was treated in hot water at 90 ° C for 5 minutes, it shrank by 18% in the evening and 17% in the horizontal direction. The shrinkage ratio of only papermaking ゥ etu was 12% in the evening and 10% in the width. The sheet was impregnated with a 2 °% solution of the emulsion and solidified by dry heat. After drying and curing at 130 ° C, the subsequent finishing treatment was performed in the same manner as in Example 2 to obtain a suede-like sheet. Basis weight 2 6 0 gZm 2, excellent apparent density 0.4 2 thin in gcm 3 and shape stability, the first view longitudinal breaking length one strain relationship Contact and relationship transverse breaking length one strain respectively and As shown in FIG. 2, the sheet was within the scope of the present invention. The number of twists of the spun yarn in this sheet was 11032 T / m, and the weft was 970 TZm. Comparative Example 1
補強布帛用の紡績糸撚数を 6 0 0 T/mにして実施例 1 と同様な方法 で処理を行なった。 但し、 用いたウエッブのみの 9 0°C熱水中での収縮 率は夕テ方向が 8 %でョコ方向が 7 %であり、'そして補強布帛のみの 9 0 °C熱水中での収縮率は、 夕テ方向が 5 %でョコ方向が 5 %である。 こ の両者からなる積層シ一トは、 ニードルパンチすることにより両者がよ く絡合しているが、 9 0 °C熱水中でも収縮率は夕テ方向が 5 %で、 ョコ 方向が 6 %であった。 予熱後プレス処理して表面を平滑化し、 そしてボ リウレ夕ン溶液を含浸し、 湿式凝固したのち、 表面を起毛し、 さらに染 色し、 得られるシートの目付は 4 7 0 g Z m 2、 見掛け密度が 0 . 3 6 2 g /' c m 3であった。 このシートの裂断長—歪み曲線は、 第 1図およ び第 2図に示すように、 本発明の範囲を外れるものであり、 柔軟ではあ るが、 低歪み域での形態変化のやや大きいものであった。 また見掛け密 度が低いことが原因と思われるが、 天然皮革調の充実感と高級感を有す る物ではなかった。 The treatment was performed in the same manner as in Example 1 except that the number of twists of the spun yarn for the reinforcing fabric was set at 600 T / m. However, the shrinkage of the used web alone in hot water at 90 ° C was 8% in the evening direction and 7% in the weft direction. The shrinkage in hot water at 0 ° C is 5% in the evening direction and 5% in the horizontal direction. The laminated sheet consisting of both is well entangled by needle punching, but the shrinkage rate is 90% in hot water at 90 ° C, and the shrinkage rate is 6% in the horizontal direction. %Met. After preheating, the surface is smoothed by pressing and then impregnated with a polyurethane solution and wet-solidified, then the surface is brushed and further dyed, and the resulting sheet has a basis weight of 470 g Zm 2 , apparent density was 0. 3 6 2 g / ' cm 3. As shown in FIGS. 1 and 2, the tear length-strain curve of this sheet is out of the range of the present invention, and although it is flexible, the change in shape in the low strain range is slightly. It was big. In addition, although the apparent density was probably due to the low density, it did not have the richness and luxury of natural leather.
前述の方法により取り出した補強布帛中の紡績糸の撚数は、 夕テ糸が The number of twists of the spun yarn in the reinforcing fabric taken out by the above-described method is as follows.
6 3 2 T Zmで、 ョコ糸が 6 4 0 T Z mであった。 産業上の利用可能性 At 632 TZm, the weft was 640 TZm. Industrial applicability
以上、 実施例等で詳細に説明してきたように、 本発明によれば、 人工 皮革としてのシート風合いを維持しつつ低歪み域での高抗変形性を有す る形態安定性に優れた、 品位の高い皮革様繊維シートが得られる。 この ようにして作製された人工皮革は、 例えばィンテリァゃ資材用途などに 使用される。 特に補強布による抗変形性を必要とする、 椅子、 ソファ一 などの表面材とか、 機械ベルト、 研磨材等の高強力、 高抗変形性を必要 とする資材用途等に好適に使用することができる。  As described above in detail in the examples and the like, according to the present invention, excellent morphological stability having high anti-deformation property in a low strain range while maintaining the sheet texture as artificial leather, A high quality leather-like fiber sheet can be obtained. The artificial leather thus produced is used, for example, for intellectual material use. In particular, it can be suitably used for surface materials such as chairs and sofas that require the anti-deformation property of the reinforcing cloth, and for materials that require high strength and high anti-deformation property, such as mechanical belts and abrasives. it can.

Claims

請 求 の 範 囲 The scope of the claims
1. 0.3 デニール以下の極細繊維からなる不織布と補強布帛とが絡 合一体化されており、 かつ該絡合一体化物中に弾性重合体が含有されて いる繊維構造体であって、 かつ該構造体の夕テ方向の第一ピークまでの 歪が 1 5 %以上で、 且つ、 第一ピークまでの裂断長一歪み曲線が下記の 〇 Aを通過する直線と〇 Cを通過する直線に挟まれる範囲にあり、 ョコ 方向の第一ピークまでの歪が 2 0 %以上で、 且つ、 第一ピークまでの裂 断長一歪み曲線が下記の OA'を通過する直線と〇 C'を通過する直線に 挟まれる範囲にあり、 シ一ト密度が 0.4g/cm3以上であることを特徴とす る皮革様シート。 1. A fibrous structure in which a nonwoven fabric made of ultrafine fibers of 0.3 denier or less and a reinforcing fabric are entangled and integrated, and the entangled integrated product contains an elastic polymer; The strain up to the first peak in the evening direction of the body is 15% or more, and the breaking length-strain curve up to the first peak is sandwiched between the straight line passing through 〇A and the straight line passing through 〇C below. The strain up to the first peak in the horizontal direction is 20% or more, and the breaking length-strain curve up to the first peak passes through the following straight line passing through OA 'and 〇C' A leather-like sheet having a sheet density of 0.4 g / cm 3 or more in a range between straight lines.
夕テ(歪み (%),裂断長 (km))=O(0, 0)、 A(3 0, 2.0)、 C(5, 3,5) ョコ(歪み (%),裂断長 (km))=O(0, 0)、 A,(4 0, 1.5)、 C'(20 , 2.5) 尚、 ここでいう "裂断長" とは以下の数式により算出される。 D (strain (%), breaking length (km)) = O (0, 0), A (30, 2.0), C (5, 3, 5) horizontal (strain (%), breaking length (km)) = O (0, 0), A, (40, 1.5), C '(20, 2.5) The "break length" here is calculated by the following formula.
裂断長 (km)= シート強力(g/cm) /シート目付 (g/m2)Z 1 0 Breaking length (km) = Sheet strength (g / cm) / Sheet weight (g / m2) Z 10
2. 夕テ方向の第一ピークまでの裂断長一歪み曲線が〇と A— 2 ( 3 0, 3.0) を通過する直線と O Cを通過する直線に挟まれる範囲にある請 求項 1記載の皮革様シート。  2. Claim 1, in which the fracture length-strain curve up to the first peak in the evening direction is in the range between the straight line passing through 〇 and A-2 (30, 3.0) and the straight line passing through OC. Leather-like sheet.
3. ョコ方向の第一ピークまでの裂断長一歪み曲線が〇と A'— 2 (4 0, 2.0) を通過する直線と〇 Cを通過する直線に挟まれる範囲にあ る請求項 1記載の皮革様シート。  3. The breaking length-strain curve up to the first peak in the horizontal direction is in the range between the straight line passing through 〇 and A'-2 (40, 2.0) and the straight line passing through 〇C. The leather-like sheet according to 1.
4. シ一卜の密度が 0.43〜0.51g/cm3の範囲である請求項 1記載の 皮革様シート。 4. The leather-like sheet according to claim 1, wherein the density of the sheet one Bok is in the range of 0.43~0.51g / cm 3.
5. 弾性重合体の量が、 皮革様シートを構成する繊維の重量の 1 0 〜 2 5 %である請求項 1記載の皮革様シート。  5. The leather-like sheet according to claim 1, wherein the amount of the elastic polymer is 10 to 25% of the weight of the fibers constituting the leather-like sheet.
6. 補強布帛が'撚数 6 5 0〜2 8 0 0 T / mの糸により構成されて いる請求項 1記載の皮革様シート。 6. The reinforcing fabric is composed of yarn with a twist number of 650 to 280 T / m The leather-like sheet according to claim 1.
7 . 補強布帛が撚数 8 0 0〜 1 2 0 0 T / mの糸により構成されてい る請求項 1記載の皮革様シート。  7. The leather-like sheet according to claim 1, wherein the reinforcing fabric is formed of a yarn having a number of twists of 800 to 1200 T / m.
8 . 補強布帛が紡績糸により構成されている請求項 1記載の皮革様 ンー卜。  8. The leather-like net according to claim 1, wherein the reinforcing fabric is made of spun yarn.
9 . 9 0 °Cの熱水中での収縮率が 1 0〜 3 0 %である繊維から構成 された糸からなり、 2 0 %伸長時の夕テ強力が 6 kg/cm以上で、 且つョ コ強力が 4 kg m以上である補強布帛の少なくとも片面に、 繊維長が 3 〜 1 5 0 m mの極細繊維または極細化可能繊維よりなり、 絡合後の 9 0での熱水中での収縮率が夕テ、 ョコとも 1 0〜 3 0 %の範囲である繊 維ウエッブが重ね合わされ、 該布帛と該繊維ウエッブが絡合一体化され ている繊維シートを加熱収縮させた後、 弾性重合体を付与し、 そして極 細化可能繊維が海島構造繊維である場合には、 海成分を除去して極細化 することを特徴とする皮革様シートの製造方法。  It consists of yarn composed of fibers whose shrinkage in hot water at 9.9 ° C is 10 to 30%, and its tensile strength at 20% elongation is 6 kg / cm or more, and At least one side of a reinforced fabric with a cohesive strength of 4 kgm or more is made of ultrafine fibers or ultrafine fibers having a fiber length of 3 to 150 mm, and is immersed in hot water at 90 after entanglement. Fiber webs having a shrinkage ratio of 10 to 30% in both cases are superimposed, and after heating and shrinking the fiber sheet in which the fabric and the fiber web are entangled and integrated, the elasticity is increased. A method for producing a leather-like sheet, comprising applying a polymer and, when the ultrafine-refinable fiber is a sea-island structure fiber, removing a sea component and ultrafine-refining.
10. 補強布帛を構成する糸の撚数が 5 5 0〜 2 0 0 0 T/mである請 求項 9に記載の製造方法。  10. The method according to claim 9, wherein the number of twists of the yarn constituting the reinforcing fabric is 550 to 2000 T / m.
11. 補強布帛を構成する糸の撚数が 6 5 0〜 9 0 0 T/mである請求 項 9に記載の製造方法。  11. The production method according to claim 9, wherein the number of twists of the yarn constituting the reinforcing fabric is from 65 to 900 T / m.
12. 補強布帛を構成する糸が紡績糸である請求項 9に記載の製造方法。  12. The production method according to claim 9, wherein the yarn constituting the reinforcing fabric is a spun yarn.
13. ウエッブの繊維長が 2 0 mm以上の場合には、 補強布帛と絡合 後の繊維ゥエツブとの 9 0 °C熱水中での収縮率差が、 タテ方向で 0〜 1 0 %、 ョコ方向で 0〜 6 %の範囲内にあり、 繊維長が 2 0 nun未満の場 合には、 同収縮率差が、 夕テ方向で 0〜2 0 %、 ョコ方向で 0〜 1 5 % の範囲にある請求項 9に記載の製造方法。 13. If the fiber length of the web is 20 mm or more, the difference in shrinkage in hot water at 90 ° C between the reinforcing fabric and the entangled fiber ゥWhen the fiber length is within the range of 0 to 6% in the horizontal direction and the fiber length is less than 20 nun, the difference in shrinkage is 0 to 20% in the horizontal direction and 0 to 1 in the horizontal direction. 10. The production method according to claim 9, which is in a range of 5%.
14. 補強布帛を構成する糸の太さが、 綿番手として 3 0〜4 5番手 である 求項 9に記載の製造方法。 14. The method according to claim 9, wherein the yarn constituting the reinforcing cloth has a cotton count of 30 to 45.
15. 補強布帛を構成する夕テ糸の収縮率がョコ糸の収縮率の 0.3〜 0.95倍の範囲である請求項 9に記載の製造方法。 15. The production method according to claim 9, wherein the shrinkage rate of the yarn forming the reinforcing fabric is in the range of 0.3 to 0.95 times the shrinkage rate of the weft yarn.
16. 補強布帛の織密度が、 夕テ 4 0〜 1 0 0本/インチ、 ョコ 3 0 〜 9 0本/ィンチの範囲で且つ夕テ糸密度がョコ糸密度より多い請求項 9に記載の製造方法。  16. The woven fabric according to claim 9, wherein the woven density of the reinforcing fabric is in the range of 40 to 100 yarns / inch and the weft is 30 to 90 yarns / inch, and the yarn density of the yarn is higher than the weft yarn density. The manufacturing method as described.
17. 補強布帛の 2 0 %伸長時の強力値が、 夕テ強力 6 kg/cm以上、 ョコ強力 4 kg/cm以上である請求項 9に記載の製造方法。  17. The production method according to claim 9, wherein the strength value of the reinforced fabric at 20% elongation is 6 kg / cm or more, and 4 kg / cm or more.
18. 9 の熱水中で 1 0〜 3 0 %の収縮率を有する繊維から構成 された糸からなり、 2 0 %伸長時のタテ強力が 6 kg/cm以上で、 且つョ コ強力が 4 kg/cm以上であることを特徴とする人工皮革補強布帛。  It is composed of yarn composed of fibers having a shrinkage of 10 to 30% in hot water of 18.9.The vertical strength at 20% elongation is 6 kg / cm or more, and the horizontal strength is 4 An artificial leather reinforced fabric characterized by being at least kg / cm.
19. 補強布帛を構成する糸の撚数が 5 5 0〜 2 0 0 0 T/mである請 求項 1 8に記載の人工皮革補強布帛。  19. The artificial leather reinforcing fabric according to claim 18, wherein the number of twists of the yarns constituting the reinforcing fabric is 550 to 2000 T / m.
20. 補強布帛を構成する糸の撚数が 6 5 0〜 9 0 0 T/mである請求 項 1 8に記載の人工皮革補強布帛。  20. The artificial leather reinforcing cloth according to claim 18, wherein the number of twists of the yarns constituting the reinforcing cloth is from 65 to 900 T / m.
21. 補強布帛を構成する糸の太さが、 綿番手として 3 0〜 4 5番手 である請求項 1 8に記載の人工皮革補強用布帛。  21. The artificial leather reinforcing fabric according to claim 18, wherein the yarn constituting the reinforcing fabric has a cotton count of 30 to 45.
22. 補強布帛を構成する夕テ糸の収縮率がョコ糸の収縮率の 0.3〜 0.95倍の範囲である請求項 1 8に記載の人工皮革補強用布帛。  22. The artificial leather reinforcing fabric according to claim 18, wherein the shrinkage ratio of the yarn forming the reinforcing fabric is in the range of 0.3 to 0.95 times the shrinkage ratio of the weft yarn.
23. 補強布帛の織密度が、 夕テ 4 0〜 1 0 0本 Zィンチ、 ョコ 3 0 〜 9 0本 Zインチの範囲で且つタテ糸密度がョコ糸密度より多い請求項 23. The weaving density of the reinforcing fabric is in the range of 40 to 100 yarns per inch, 30 to 90 fibers per inch, and the warp yarn density is higher than the weft yarn density.
1 8に記載の人工皮革補強用布帛。 18. The fabric for reinforcing artificial leather according to item 18.
PCT/JP2000/001744 1999-03-31 2000-03-22 Leather-like sheet and method for preparing the same WO2000060159A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9066199 1999-03-31
JP11/90661 1999-03-31
JP2000/5005 2000-01-04
JP2000005005 2000-01-04

Publications (1)

Publication Number Publication Date
WO2000060159A1 true WO2000060159A1 (en) 2000-10-12

Family

ID=26432122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001744 WO2000060159A1 (en) 1999-03-31 2000-03-22 Leather-like sheet and method for preparing the same

Country Status (1)

Country Link
WO (1) WO2000060159A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1437440A4 (en) * 2001-09-20 2009-09-16 Toray Industries Artificial leather excellent in expandability and method for production thereof
EP1536056A3 (en) * 2003-11-25 2009-09-30 Kuraray Co., Ltd. Artificial leather sheet substrate and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034676A (en) * 1983-08-05 1985-02-22 Toray Ind Inc Silvered artificial leather and its production
JPH03174074A (en) * 1989-12-01 1991-07-29 Toray Ind Inc Antistatic high-strength suede-like artificial leather and production thereof
JPH04240274A (en) * 1991-01-24 1992-08-27 Toray Ind Inc Melange-toned raised sheet-like product and production thereof
JPH05132878A (en) * 1991-11-06 1993-05-28 Toray Ind Inc Production of leather-like material having excellent napping property, softness and high strength

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034676A (en) * 1983-08-05 1985-02-22 Toray Ind Inc Silvered artificial leather and its production
JPH03174074A (en) * 1989-12-01 1991-07-29 Toray Ind Inc Antistatic high-strength suede-like artificial leather and production thereof
JPH04240274A (en) * 1991-01-24 1992-08-27 Toray Ind Inc Melange-toned raised sheet-like product and production thereof
JPH05132878A (en) * 1991-11-06 1993-05-28 Toray Ind Inc Production of leather-like material having excellent napping property, softness and high strength

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1437440A4 (en) * 2001-09-20 2009-09-16 Toray Industries Artificial leather excellent in expandability and method for production thereof
EP1536056A3 (en) * 2003-11-25 2009-09-30 Kuraray Co., Ltd. Artificial leather sheet substrate and production method thereof

Similar Documents

Publication Publication Date Title
US7132024B2 (en) Artificial leather composite reinforced with ultramicrofiber nonwoven fabric
CA1302067C (en) Composite sheet for artificial leather and method for its production
AU2007315535B2 (en) Leather-like sheet and process for production thereof
EP1806448B1 (en) Nonwoven fabric for artificial leather and process for producing artificial leather substrate
JP2003516244A (en) How to make a cut and abrasion resistant laminate
KR20070001126A (en) Leather-like sheeting and process for production thereof
TWI447281B (en) Substrate for artificial leather and process for manufacturing it
WO1997040230A1 (en) Non-impregnated base material useful as a base fabric for artificial leather, artificial leather thereof and process for their production
WO2008013206A1 (en) Synthetic leather, base to be used in the leather, and processes for production of both
US5256429A (en) Composite sheet for artificial leather
JP2000336581A (en) Stretchable leathery material
EP1867779B1 (en) Artificial leather and base therefor, and processes for production of both
JP5540731B2 (en) Artificial leather and method for producing the same
JP4005364B2 (en) Leather-like sheet and manufacturing method thereof
JP3778750B2 (en) Synthetic leather with elasticity
WO2000060159A1 (en) Leather-like sheet and method for preparing the same
JP2000054250A5 (en)
JP2001254279A (en) Leather-like sheet and method for producing the same
JP2739517B2 (en) Felt for papermaking
JPH10273885A (en) Fiber piled sheetlike material and its production
JP6709059B2 (en) Wide and stretchable artificial leather
JPH0316427B2 (en)
TW201925573A (en) Napped artificial leather
JPH0380909B2 (en)
JP2009287142A (en) Leather-like sheet and method for producing leather-like sheet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase