WO2000058977A1 - Magnetic inlay structure - Google Patents

Magnetic inlay structure Download PDF

Info

Publication number
WO2000058977A1
WO2000058977A1 PCT/JP2000/001817 JP0001817W WO0058977A1 WO 2000058977 A1 WO2000058977 A1 WO 2000058977A1 JP 0001817 W JP0001817 W JP 0001817W WO 0058977 A1 WO0058977 A1 WO 0058977A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
substrate
buried
magnetic material
structure according
Prior art date
Application number
PCT/JP2000/001817
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Nakatani
Original Assignee
Japan As Represented By Director General Of National Research Institute For Metals
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan As Represented By Director General Of National Research Institute For Metals, Japan Science And Technology Corporation filed Critical Japan As Represented By Director General Of National Research Institute For Metals
Publication of WO2000058977A1 publication Critical patent/WO2000058977A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure

Definitions

  • the invention of this application relates to a magnetic inlay structure. More specifically, the invention of this application relates to a magnetic inlay structure that is useful as a novel magnetically functional element or member, a micromachine, or the like. Background art
  • magnetic materials have been treated as playing a central role in electronics technology, and in recent years, in particular, magnetic materials have become indispensable in information recording technology. Can play a significant role.
  • the fine structure using magnetic material is composed of a continuous thin film of magnetic material, as seen in the technology related to recording media up to now.
  • the formation of recording bits on this thin film by means of magnetic or magneto-optical control has been almost limited.
  • the S / N ratio decreases due to the statistical fluctuation of the number of crystal grains contained in the bit as the bit volume decreases.
  • the invention of this application overcomes the above-mentioned limitations of the prior art, and enables large-capacity, high-accuracy information recording by high-density integration of magnetic materials.
  • the task is to provide a new approach to magnetic microstructuring. Disclosure of the invention
  • a magnetic material is embedded in a surface layer portion of a base plate made of a different material.
  • at least a part of the buried magnetic material is exposed to the substrate surface to provide a magnetic inlay structure characterized by forming a finely arranged structure of the magnetic material. I do.
  • the invention of this application includes, secondly, a magnetic inlay structure in which the exposed portion of the magnetic material forms a flat surface together with the substrate, and thirdly, a different magnetic material is superimposed.
  • a magnetic weather-inlaid structure embedded with a magnetic material and a non-magnetic material superimposed fourth, a magnetic weather-inlaid structure embedded with a magnetic material and a non-magnetic material superimposed, and fifth, a substrate Provided is a magnetic inlay structure in which the same or different magnetic materials, or a combination of a magnetic material and a non-magnetic material, is embedded in a plurality of planar positions on the surface.
  • the planar size of the exposed portion of the embedded material is 1
  • the seventh is a magnetic inlay structure with a buried depth of 10 m or less from the surface of the embedded material.
  • the eighth is a magnetic inlay structure with a buried depth of 10 m or less from the substrate surface.
  • the present invention also provides a magnetic inlay structure in which the plane distance between the exposed portion of the material and the exposed portion of the material buried adjacent thereto is 10 / m or less.
  • the invention of the present application is directed to a ninth aspect of the present invention, in any of the above structures, wherein the exposed portion of the buried material or the exposed portion and the surface
  • a magnetic inlay structure characterized by having a coating layer, and a tenth aspect is a magnetic inlay characterized in that any one of the structures is multi-layered. Structures are also provided.
  • the invention of this application is, in a eleventh aspect, a method of manufacturing a structure according to any one of the first to eighth aspects, wherein a trench is formed by etching a substrate surface.
  • the present invention provides a method for manufacturing a magnetic inlay structure, characterized by forming and embedding a magnetic material in a torch.
  • a magnetic recording medium characterized by comprising the structure of the first or 10th aspect.
  • FIG. 1 is a schematic cross-sectional view illustrating the structure of the present invention.
  • FIG. 2 is a cross-sectional view illustrating the superposition of magnetic materials having different configurations of (A) and (B).
  • 1A and 1B show magnetic materials having different magnetic characteristics.
  • , 2 indicate a substrate.
  • FIG. 3 is a perspective view illustrating the pattern media.
  • FIG. 4 is a diagram illustrating a procedure for forming the structure of the present invention.
  • Fig. 5 shows a specific example of the structure of the present invention using a scanning electron microscope (S
  • FIG. 6 is a diagram exemplifying a specific example of a trench in creating the structure of the present invention as a SEM image.
  • FIG. 7 is a diagram illustrating a specific example of the structure of the present invention as an SEM image.
  • Figure 8 shows a specific example of the structure of the present invention using an atomic force microscope (A
  • FIG. 2 is a diagram exemplarily illustrated as an FM) image.
  • the magnetic inlay structure of the present invention will be described with reference to FIG. That is, in the present invention, as illustrated in the cross-sectional view of FIG. 1, for example, the magnetic material (1) is embedded in the surface layer of the substrate (2) made of a different material. In addition, at least a part of the buried magnetic material (1) is exposed on the surface of the substrate (2) to form a finely arranged structure of the magnetic material. A featured magnetic inlay structure is provided.
  • the magnetic material (1) is embedded and integrated in the substrate (2). Then, at least a part of the magnetic material (1) is exposed as shown in FIG. This exposure may be a flat surface together with the substrate as shown in Fig. 1, or it may be bulging out from the surface of the substrate. It may be good or it may be in a depressed state.
  • the buried structure is considered in various ways. For example, magnetic materials (1A) and (1B) having different magnetic characteristics, such as magnetic materials (A) and (B) having different magnetic characteristics shown in FIGS. 2 (A) and (B), are used. , May be superimposed. It should be noted that one material (1A) may be a non-magnetic material and the other material (1B) may be a magnetic material. Also, as shown in FIG. 1 or FIG. 3, the same or different magnetic material, or a combination of a magnetic material and a non-magnetic material is buried at a plurality of plane positions on the substrate surface. You may be done.
  • the magnetic inlay structure of the present invention as described above is used, for example, for a high-density magnetic recording medium. This provides a new recording medium structure.
  • the binary bits of information are written and read out by magnetic heads for each microparticle of the magnetic material embedded along the track on the magnetic disk surface. It will be.
  • a magnetic recording medium separated by one bit is different from a conventional recording medium using a continuous magnetic thin film, for example, as shown in FIG. It becomes a high-density recording medium called pattern media.
  • the structure of the present invention includes an MRAM (magnetic memory that can be written and read at any time), a spin diode, a spin transistor, and a spin field effect. It gives the basic and rational structure of transistors and their high-density integrated circuits.
  • the invention also provides the basic and rational structure of microtransformers and microcoils, and their high-density integrated circuits.
  • the magnetic inlay structure of the present invention this is constituted.
  • the type of the magnetic material, the non-magnetic material, and the substrate There is no particular limitation on the type of the magnetic material, the non-magnetic material, and the substrate. Basically, it suffices that the magnetic material and the substrate have different substances or different compositions.
  • the magnetic material may be a metal, an alloy, an inorganic substance, an organic or organometallic complex, or one or more of these composites.
  • Permalloy Sendast, Ferrite, and many other things.
  • Non-magnetic materials do not show strong magnetism and have a relative magnetic permeability close to unity, such as metals, alloys, inorganic substances, organic or organic metal complexes, and composites of them. It may be of two or more types, for example, a variety of materials such as an austenitic stainless steel or a titanium alloy.
  • the substrate may be a metal, an alloy, a semiconductor, a ceramic, a glass, a carbon, a resin, or a composite thereof.
  • the combination of magnetic material, non-magnetic material and substrate will be selected according to the use of the magnetic inlay structure and the desired function and performance.
  • the embedding state of the material (1) embedded in the structure of the present invention may vary.
  • the embedded material (1) may be the same magnetic material, a different magnetic material, or a combination of a magnetic material and a non-magnetic material.
  • the plane size (W) of the exposed portion of the buried material (1) must be 1 Om or less.
  • the table of the board (2) An appropriate example is that the burial depth (D) from the surface is less than 10 m and even less than 1 m. It is also appropriate to set the plane distance (L) between the exposed part and the adjacent one to less than 10 ⁇ m and even less than 2 ⁇ m. It is. In magnetic recording and the like, such a size (w) and depth (D) are to better express the characteristics of a single magnetic domain structure.
  • the exposed portion of the buried material (1) may have various planar shapes, such as a circle, an ellipse, and a polygon.
  • the manufacture of the magnetic inlay structure of the present invention as described above is possible as various means.
  • the decorative technique of the craft has been known for a long time.
  • the surface of a metal such as bronze or iron, pottery, or lacquered base material is carved or cut out, and a material (inlay material) different from the base material is set in the decoration.
  • This is the technology to be used.
  • Ornaments manufactured using this technique are called inlays.
  • This method has been known for a long time, and its origin is thought to be the ancient Oriental Damascus. It is called the Damasin Law because of its place name.
  • Inlaying is a method of enhancing the decorative effect of objects by contrasting different materials on the same plane, and has been used for various materials since ancient times.
  • Gold or silver against bronze or iron, gold and silver thin on lacquered base are the most preferred combinations.
  • Raden which embeds shells in wood and sharpens it, is one of the derivative technologies.
  • the main techniques are (1) wire inlay using a wire-like metal wire as an inlay material, and (2) plate-like on a flat carved substrate. (3) Placing a vertical and horizontal stripe on the substrate with a chisel and fixing other metal from above with a metal inlay. There is a law.
  • a trench is formed by etching a substrate surface, and a magnetic material is formed. It is appropriate to bury the inside of the torch by means such as vapor deposition, sputtering or reflow.
  • the etching can be performed, for example, as a dry (gas phase) etching.
  • Electron beam drawing and development are performed according to a predetermined pattern.
  • the surface of the glassy carbon of the substrate, for example, of the magnetic material permalloy, is made flat by chemical mechanical polishing.
  • the magnetic material permalloy is exposed on the surface as having a predetermined plane size.
  • a coating cap layer serving as a protective layer, etc., is provided on the exposed surface of the magnetic material permanent magnet and the substrate.
  • this cap layer may be formed in a gas phase or wet process, in addition to sputtering, or in a spin coat or laminate, depending on the material. Etc. are performed as appropriate.
  • a second substrate layer is provided as a cap layer, and a magnetic material is further buried in the second substrate layer to form a multilayered magnetic inlay structure. May be formed.
  • FIG. 5 shows a magnetic inlay structure of the present invention formed using a glass-like carbon substrate as a substrate and a magnetic material Co—Cr alloy as an example. The case is shown by SEM images.
  • FIG. 6 illustrates an example of the shape of the torch of the magnetic inlay structure of the present invention by using an SEM image.
  • a 0.8-m long, 0.25-m wide, 0.24-m deep torrent is arranged on the glass-carbon substrate, and each torrent is fine.
  • the base of the torch is flat and the slope angle is about 75 degrees.
  • the substrate of the magnetic inlay structure of the present invention is made of an amorphous material having a dense structure, and is provided with accurate reactive ion etching without re-adhesion or residue. As a result, it was confirmed that a trench having such a fine shape can be obtained.
  • Figure 7 shows (a) a damascene structure in which columnar particles of a 21 at% Cr-Co alloy with a diameter of 0.8 m are arranged in a close-packed manner, and (b) a width of about 0.4 / m, 1.6 ⁇ 01, 80% 1 ⁇ 1; — “This is an example of a plan view of a damascene structure in which elliptical particles of the 6 alloy are arranged in an orthogonal lattice by SEM images. Their depth is 0.24 jum, the surface irregularity is a uniform plane in the range of 7 to 15 nm, and the shape and size of each particle are uniform. Was also confirmed.
  • Figure 8 shows a close-packed array of 21 at ⁇ 1 ⁇ 2Cr-Co alloy with magnetic anisotropy perpendicular to the array plane in Fig. 7 (a). They are shown as images.
  • (A) shows the positive remanent magnetization state (+ M r)
  • (b) shows the demagnetization state
  • (c) shows the negative remanence state (one M r).
  • This figure shows that each particle reflects the direction of magnetization of each particle. From this figure, it is confirmed that each particle can be obtained as the minimum unit of a bit.
  • the magnetization is non- It showed simultaneous parallelism, and several magnetization bonoretecs were observed. For particles with a width of 0.25 ⁇ m or less, nearly parallel magnetization was observed, and it was confirmed that the particles were close to a single domain state.
  • a new magnetic microscopic device capable of high-capacity, high-accuracy information recording by high-density integration of magnetic materials. Structure is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

A method for implementing a novel magnetic microstructure capable of a large-volume, high-precision information recording by means of a high-density integration of magnetic materials. A magnetic inlay structure in which a finely-arranged structure of magnetic materials is formed by embedding magnetic materials in the front layer of a substrate consisting of materials different from the magnetic materials, and by exposing at least part of the embedded magnetic materials to the front surface of the substrate.

Description

明細書 磁気象嵌構造体 技術分野  Description Magnetic inlay structure Technical field
こ の出願の発明は、磁気象嵌構造体に関す る もので あ る。 さ ら に詳 し く は、 こ の出願の発明は、 新規な磁気機能性の 素子ゃ部材並びに微小機械等 と し て有用な、 磁気象嵌構造 体に関す る もので ある。 背景技術  The invention of this application relates to a magnetic inlay structure. More specifically, the invention of this application relates to a magnetic inlay structure that is useful as a novel magnetically functional element or member, a micromachine, or the like. Background art
従来よ り 、 磁性材料は、 エ レク ト ロ ニク ス技術の 中核的 役割 を果たす も の と し て取扱われて き てお り 、 特に、 近年 では、 磁性材料は、 情報記録技術に お いて不可欠な役割 を 果た して も しゝる。  Traditionally, magnetic materials have been treated as playing a central role in electronics technology, and in recent years, in particular, magnetic materials have become indispensable in information recording technology. Can play a significant role.
し か し なが ら 、 磁性材料 を用 いた微細構造 と し て は、 こ れまでの記録媒体に関す る 技術に見 られる よ う に、 磁性材 料を連続 し た薄膜 と し て構成 し、 こ の薄膜上に記録 ビ ッ 卜 を磁気、 あ る いは光磁気特性の コ ン ト ロ ールに よ っ て形成 する こ と にほ と ん ど限 られて いた。 こ の よ う な連続す る磁 性材料薄膜にお いては、 ビ ッ ト体積の減少に伴 う ビ ッ ト 中 に含まれる結晶粒数の統計的変動に よ っ て S N 比が低下 す る こ と 、 ビ ッ ト間に有限な幅を持ち ジグザグ形状を し た 磁気遷移層が存在す る こ と 、 媒体を微細粒化する際の ビ ッ 卜 の磁化の熱揺 ら ぎによ っ て磁気余効が生 じ る こ と か ら 、 ビ ッ ト相互間の影響が大き く 左右 し、 高密度、 高精度記録 の点において は制約があ っ た。 However, the fine structure using magnetic material is composed of a continuous thin film of magnetic material, as seen in the technology related to recording media up to now. The formation of recording bits on this thin film by means of magnetic or magneto-optical control has been almost limited. In such a continuous magnetic material thin film, the S / N ratio decreases due to the statistical fluctuation of the number of crystal grains contained in the bit as the bit volume decreases. The presence of a zigzag magnetic transition layer with a finite width between the bits, and the thermal fluctuation of the magnetization of the bits when the medium is made finer. Since magnetic aftereffects occur, the influence between bits greatly affects, and high density, high precision There were restrictions on this point.
だが、 半導体、 L S I の技術分野での高密度集積化技術 の急展開 と は対照的に、 磁性材料の微細構造化技術につ い ては大 き な進展が見 られな いで いた。  However, in contrast to the rapid development of high-density integration technology in the semiconductor and LSI technology fields, no significant progress has been made in microstructuring technology for magnetic materials.
そ こ で、 こ の出願の発明は、 以上の よ う な従来技術の限 界を克服 し て、 磁性材料の高密度集積化に よ る大容量、 高 精度の情報記録を も可能 と する、 新 し い磁気微細構造化の ための方策 を提供す る こ と を課題と し て いる。 発明の開示  Thus, the invention of this application overcomes the above-mentioned limitations of the prior art, and enables large-capacity, high-accuracy information recording by high-density integration of magnetic materials. The task is to provide a new approach to magnetic microstructuring. Disclosure of the invention
こ の出願の発明は、 上記の課題を解決す る もの と して、 まず第 1 には、 磁性材料が、 これ と 異な る材料か ら な る基 板の表層部に埋設されて い る と と も に、 埋設された磁性材 料の少 く と も 一部分が基板表面に露出 さ れて磁性材料の微 細配置構造が形成されて いる こ と を特徴 と す る磁気象嵌構 造体を提供する。  The invention of this application is intended to solve the above-mentioned problems.First of all, a magnetic material is embedded in a surface layer portion of a base plate made of a different material. In addition, at least a part of the buried magnetic material is exposed to the substrate surface to provide a magnetic inlay structure characterized by forming a finely arranged structure of the magnetic material. I do.
また、 こ の出願の発明は、 第 2 には、 磁性材料の露出部 が基板 と と も に平坦表面 を構成 し て いる磁気象嵌構造体を、 第 3 には、 異な る磁性材料が重畳 さ れて埋設 さ れて いる磁 気象嵌構造体を、 第 4 には、 磁性材料 と 非磁性材料 と が重 畳さ れて埋設さ れて いる磁気象嵌構造体を、 第 5 には、 基 板表面の複数の平面位置に、 同一または異な る磁性材料、 ある いは磁性材料 と 非磁性材料 と が組み合わ さ れて埋設さ れて いる磁気象嵌構造体を提供する。  In addition, the invention of this application includes, secondly, a magnetic inlay structure in which the exposed portion of the magnetic material forms a flat surface together with the substrate, and thirdly, a different magnetic material is superimposed. Fourth, a magnetic weather-inlaid structure embedded with a magnetic material and a non-magnetic material superimposed, and fifth, a substrate Provided is a magnetic inlay structure in which the same or different magnetic materials, or a combination of a magnetic material and a non-magnetic material, is embedded in a plurality of planar positions on the surface.
そ し て、 こ の出願の発明は、 前記いずれかの発明に関 し て、 第 6 には、 埋設さ れた材料の露出部の平面大 き さ が 1 0 m以下で ある磁気象嵌構造体を、 第 7 には、 埋設 さ れ た材料の基板表面か ら の埋設深 さ が 1 0 m以下で ある磁 気象嵌構造体を、 第 8 には、 埋設さ れた材料の露出部 と こ れに隣接 し て埋設さ れた材料の露出部 と の平面距離が 1 0 / m以下で あ る磁気象嵌構造体を も 提供す る。 The invention of this application relates to any one of the above inventions. Sixth, the planar size of the exposed portion of the embedded material is 1 The seventh is a magnetic inlay structure with a buried depth of 10 m or less from the surface of the embedded material.The eighth is a magnetic inlay structure with a buried depth of 10 m or less from the substrate surface. The present invention also provides a magnetic inlay structure in which the plane distance between the exposed portion of the material and the exposed portion of the material buried adjacent thereto is 10 / m or less.
さ ら に こ の出願の発明は、 第 9 には、 前記いずれかの構 造体において、 埋設 さ れた材料の露出部、 も し く は こ の露 出部 と 基板の表面の上には被覆層が配設されて いる こ と を 特徴 と す る磁気象嵌構造体 と 、 第 1 0 には、 前記いずれか の構造体が多層化 さ れて い る こ と を特徴 と す る磁気象嵌構 造体 も提供す る。  Ninth, the invention of the present application is directed to a ninth aspect of the present invention, in any of the above structures, wherein the exposed portion of the buried material or the exposed portion and the surface A magnetic inlay structure characterized by having a coating layer, and a tenth aspect is a magnetic inlay characterized in that any one of the structures is multi-layered. Structures are also provided.
こ の出願の発明は、 第 1 1 には、 前記第 1 な い し第 8 の いずれかの発明の構造体の製造方法で あ っ て、 基板表面 を エ ッ チ ング して ト レ ンチ を形成 し、 磁性材料を ト レ ンチ内 に埋設す る こ と を特徴 と す る磁気象嵌構造体の製造方法 を 提供す る。  The invention of this application is, in a eleventh aspect, a method of manufacturing a structure according to any one of the first to eighth aspects, wherein a trench is formed by etching a substrate surface. The present invention provides a method for manufacturing a magnetic inlay structure, characterized by forming and embedding a magnetic material in a torch.
第 1 2 には、 前記第 1 な い し第 1 0 の いずれかの発明の 構造体 を具備 し て いる こ と を特徴 と する磁気記録媒体を提 供す る。 図面の簡単な説明  According to a 12th aspect, there is provided a magnetic recording medium characterized by comprising the structure of the first or 10th aspect. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、こ の発明の構造体を例示 し た概要断面図で あ る。 図 2 は、 ( A ), ( B ) の異な る構成 と し ての磁性材料の 重畳を例示 し た断面図で あ り 、 1 A お よ び 1 B は、 異な る 磁気特性の磁性材料を、 2 は基板 を示 し て いる。  FIG. 1 is a schematic cross-sectional view illustrating the structure of the present invention. FIG. 2 is a cross-sectional view illustrating the superposition of magnetic materials having different configurations of (A) and (B). 1A and 1B show magnetic materials having different magnetic characteristics. , 2 indicate a substrate.
図 3 は、 パタ ー ン ド メ デ ィ ア を例示 し た斜視図で ある。 図 4 は、こ の発明の構造の形成手順を例示 し た図で ある。 図 5 は、こ の発明の構造の具体例 を走査型電子顕微鏡( SFIG. 3 is a perspective view illustrating the pattern media. FIG. 4 is a diagram illustrating a procedure for forming the structure of the present invention. Fig. 5 shows a specific example of the structure of the present invention using a scanning electron microscope (S
E M ) 像 と し て例示 した図で ある。 It is a figure illustrated as an EM) image.
図 6 は、 こ の発明の構造の作成に お け る ト レ ンチの具体 例 を S E M像と し て例示 し た図で あ る。  FIG. 6 is a diagram exemplifying a specific example of a trench in creating the structure of the present invention as a SEM image.
図 7 は、 こ の発明の構造の具体例 を S E M像 と し て例示 した図で ある。  FIG. 7 is a diagram illustrating a specific example of the structure of the present invention as an SEM image.
図 8 は、 こ の発明の構造の具体例 を原子間力顕微鏡 ( A Figure 8 shows a specific example of the structure of the present invention using an atomic force microscope (A
F M ) 像と して例示 し た図で ある。 発明 を実施する ための最良の形態 FIG. 2 is a diagram exemplarily illustrated as an FM) image. BEST MODE FOR CARRYING OUT THE INVENTION
こ の出願の発明は、 上記の と お り の特徴を有す る もので あるが、 以下にその実施の形態につ いて説明す る。  The invention of this application has the features described above, and the embodiments thereof will be described below.
まず、 こ の発明の磁気象嵌構造体につ いて図 1 に沿 っ て 説明する。 すなわち、 こ の発明においては、 た と えば図 1 の断面図 に例示 し た よ う に、 磁性材料 ( 1 ) が、 これ と 異 な る材料か ら な る基板 ( 2 ) の表層部に埋設 さ れて いる と と も に、 埋設された磁性材料 ( 1 ) の少 く と も 一部分が基 板 ( 2 ) 表面に露出 さ れて磁性材料の微細配置構造が形成 さ れて いる こ と を特徴と す る磁気象嵌構造体が提供 さ れる。  First, the magnetic inlay structure of the present invention will be described with reference to FIG. That is, in the present invention, as illustrated in the cross-sectional view of FIG. 1, for example, the magnetic material (1) is embedded in the surface layer of the substrate (2) made of a different material. In addition, at least a part of the buried magnetic material (1) is exposed on the surface of the substrate (2) to form a finely arranged structure of the magnetic material. A featured magnetic inlay structure is provided.
磁性材料 ( 1 ) は基板 ( 2 ) に埋設一体化 さ れて いる。 そ し て、 磁性材料 ( 1 ) は、 少 く と も その一部が、 図 1 の よ う に露出 されて いる。 こ の露出は、 図 1 の よ う に、 基板 と と も に平坦表面 を構成 し て いて も よ しゝ し、 ある いは、 基 板の表面よ り も膨出 し た状態で あ っ て も よ い し、 窪んだ状 態で あ っ て も よ い。 埋設の構造 は様 々 に考慮 さ れ る 。 た と え ば図 2 ( A ) ( B ) に示 し た異な る磁気特性の磁性材料 ( A ) ( B ) の よ う に、 異な る磁気特性の磁性材料 ( 1 A ) ( 1 B ) が、 重畳 さ れて いて も よ い。 な お、 一方の材料 ( 1 A ) が非磁 性材料で、 他方の材料 ( 1 B ) が磁性材料 と い う 組み合わ せで も よ い。 また、 図 1 、 ある いは図 3 の よ う に、 基板表 面の複数の平面位置に、 同一 も し く は異な る磁性材料、 あ る いは磁性材料 と 非磁性材料 と の組み合わせが埋設 されて しヽて も よ い。 The magnetic material (1) is embedded and integrated in the substrate (2). Then, at least a part of the magnetic material (1) is exposed as shown in FIG. This exposure may be a flat surface together with the substrate as shown in Fig. 1, or it may be bulging out from the surface of the substrate. It may be good or it may be in a depressed state. The buried structure is considered in various ways. For example, magnetic materials (1A) and (1B) having different magnetic characteristics, such as magnetic materials (A) and (B) having different magnetic characteristics shown in FIGS. 2 (A) and (B), are used. , May be superimposed. It should be noted that one material (1A) may be a non-magnetic material and the other material (1B) may be a magnetic material. Also, as shown in FIG. 1 or FIG. 3, the same or different magnetic material, or a combination of a magnetic material and a non-magnetic material is buried at a plurality of plane positions on the substrate surface. You may be done.
上記の よ う な こ の発明の磁気象嵌構造は、 た と えば高密 度磁気記録媒体に用 い られる こ と にな る。 これによ つ て、 新規な記録媒体の構造が提供 される こ と にな る。  The magnetic inlay structure of the present invention as described above is used, for example, for a high-density magnetic recording medium. This provides a new recording medium structure.
すなわち磁気デ ィ ス ク 面の ト ラ ッ ク に沿 っ て埋め込まれ た磁性体の微小粒子一個一個に情報のバイ ナ リ ー ビ ッ ト が 磁気へ ッ ドで書き込まれ、かつ読みだ出 さ れる こ と にな る。 こ の よ う な一 ビ ッ ト づっ切 り 離さ れた磁気記録媒体は、 従 来の連続 し た磁性薄膜 を用 いた記録媒体 と 異な り 、 た と え ば図 3 に例示 し た よ う なパタ ーン ド メ デ ィ ア と 呼ばれる高 密度記録媒体 と な る。 また、 こ の発明の構造体は、 M R A M (随時書き 込み読み出 し可能な磁気 メ モ リ ー)、 ス ピ ン ダイ オー ド、 ス ピ ン ト ラ ン ジス タ ー、 及びス ピ ン電界効果 ト ラ ン ジス タ ー、 並びにそれ ら の高密度集積回路の基本的 かつ合理的な構造を与え て いる。 さ ら に こ の発明は、 マ イ ク ロ ト ラ ンスやマ イ ク ロ コ イ ル、 並びにそれ ら の高密度集 積回路の基本的かつ合理的な構造も 与え て いる。  In other words, the binary bits of information are written and read out by magnetic heads for each microparticle of the magnetic material embedded along the track on the magnetic disk surface. It will be. Such a magnetic recording medium separated by one bit is different from a conventional recording medium using a continuous magnetic thin film, for example, as shown in FIG. It becomes a high-density recording medium called pattern media. In addition, the structure of the present invention includes an MRAM (magnetic memory that can be written and read at any time), a spin diode, a spin transistor, and a spin field effect. It gives the basic and rational structure of transistors and their high-density integrated circuits. In addition, the invention also provides the basic and rational structure of microtransformers and microcoils, and their high-density integrated circuits.
こ の発明の磁気象嵌構造体にお いては、 これを構成す る 磁性材料、 非磁性材料お よ び基板につ いては、 その種類に 特に限定はな い。 基本的には、 磁性材料 と 基板 と が異な る 物質や異な る組成の も ので あればよ い。 In the magnetic inlay structure of the present invention, this is constituted. There is no particular limitation on the type of the magnetic material, the non-magnetic material, and the substrate. Basically, it suffices that the magnetic material and the substrate have different substances or different compositions.
磁性材料につ いては、 金属、 合金、 無機物、 さ ら には有 機物ある いは有機金属錯体や、 それ ら の複合体の 1 種も し く は 2 種以上で あ っ て よ く 、 た と えばパーマ ロ イ 、 セ ンダ ス ト、 フ ェ ラ イ 卜 、 その他、 各種の も ので あ っ て よ い。  The magnetic material may be a metal, an alloy, an inorganic substance, an organic or organometallic complex, or one or more of these composites. For example, Permalloy, Sendast, Ferrite, and many other things.
非磁性材料につ いては、 強い磁性を示 さ ず、 比透磁率が 1 に近い金属、 合金、 無機物、 さ ら には有機物ある いは有 機金属錯体や、 それ ら の複合体の 1 種も し く は 2 種以上で あ っ て よ く 、 た と えば、 ォーズ亍ナイ ト 系ステ ン レス鋼や チタ ン合金な ど各種の もので あ っ て よ い。  Non-magnetic materials do not show strong magnetism and have a relative magnetic permeability close to unity, such as metals, alloys, inorganic substances, organic or organic metal complexes, and composites of them. It may be of two or more types, for example, a variety of materials such as an austenitic stainless steel or a titanium alloy.
基板につ いて も 、 金属、 合金、 半導体、 セ ラ ミ ッ ク ス、 ガラ ス、 カーボン、 樹脂、 ある いはそれ ら の複合体で あ つ てよ い。 磁気象嵌構造体の用途、 望ま し い機能や性能に応 じ て磁性材料、 非磁性材料およ び基板の組合わせが選択 さ れる こ と にな る。  The substrate may be a metal, an alloy, a semiconductor, a ceramic, a glass, a carbon, a resin, or a composite thereof. The combination of magnetic material, non-magnetic material and substrate will be selected according to the use of the magnetic inlay structure and the desired function and performance.
また、 当然の こ と である が、 た と えば図 1 に示 し た よ う に、 こ の発明の構造体に埋設された材料 ( 1 ) の埋設状態 について も 態様は様々 で あ っ て よ い。 埋設さ れた材料 ( 1 ) と は、 同一の磁性材料であ っ た リ 、 異な る磁性材料で あ つ た り 、 ある いは磁性材料 と 非磁性材料と が組み合わ されて しゝ て も よ しヽ。  Naturally, as shown in FIG. 1, for example, the embedding state of the material (1) embedded in the structure of the present invention may vary. No. The embedded material (1) may be the same magnetic material, a different magnetic material, or a combination of a magnetic material and a non-magnetic material. Shuu.
ただ、 これまで にな い微細磁気構造体 を構成する もの と し ては、 埋設さ れた材料 ( 1 ) の露出部の平面大き さ ( W ) は、 1 O m以下で あ る こ と 、 そ し て その基板 ( 2 ) の表 面か ら の埋設深 さ ( D ) は、 1 0 m以下、 さ ら に は 1 m以下で ある こ と が適当 な例 と し て示 さ れる。 さ ら に、 露 出部の隣接す る もの と の平面距離 ( L ) につ いては 1 0 μ m以下、 さ ら に は 2 u m以下 と す る こ と も 適当 な例 と し て 示 さ れる。 磁気記録等にお いて も、 こ の よ う な大き さ ( w )、 深さ ( D ) は、 単磁区構造 と し ての特徴 を よ り 良 く 発現す こ と に , る。 However, to constitute an unprecedented micromagnetic structure, the plane size (W) of the exposed portion of the buried material (1) must be 1 Om or less. And the table of the board (2) An appropriate example is that the burial depth (D) from the surface is less than 10 m and even less than 1 m. It is also appropriate to set the plane distance (L) between the exposed part and the adjacent one to less than 10 μm and even less than 2 μm. It is. In magnetic recording and the like, such a size (w) and depth (D) are to better express the characteristics of a single magnetic domain structure.
も ち ろん、 埋設 された材料 ( 1 ) の露出部の平面形状も 各種で よ く 、 円形、 楕円形、 多角形等々 で あ っ て よ い。  Of course, the exposed portion of the buried material (1) may have various planar shapes, such as a circle, an ellipse, and a polygon.
た と えば以上の よ う な この発明の磁気象嵌構造体の製造 は様々 な手段 と し て可能で ある。  For example, the manufacture of the magnetic inlay structure of the present invention as described above is possible as various means.
も と も と 、 象嵌法 ( ダマ シ ン法) と い う 工芸の装飾技法 は古 く よ り 知 ら れて いる。 青銅や鉄な どの金属、 陶器、 あ る いは漆塗の素地な どの表面 を彫 り 下げ、 ある いは切 リ 抜 いて、 そ こ に素地 と 異な る材料 (象嵌材) をはめ込んで装 飾 と す る技術で あ る。 こ の技術に よ り 製造 さ れた装飾品 は 象嵌細工 と 呼ばれて いる。 こ の方法は古 く か ら知 ら れて お リ 、発祥は古代オ リ エ ン トの ダマス カ ス と 考え られて いる。 ダマ シ ン法 と 呼ばれて いるのはその地名 に由来 し て いる。  Originally, the decorative technique of the craft called the inlay method (Damashin method) has been known for a long time. The surface of a metal such as bronze or iron, pottery, or lacquered base material is carved or cut out, and a material (inlay material) different from the base material is set in the decoration. This is the technology to be used. Ornaments manufactured using this technique are called inlays. This method has been known for a long time, and its origin is thought to be the ancient Oriental Damascus. It is called the Damasin Law because of its place name.
象嵌は異種の素材を同一平面に対照 さ せる こ と に よ っ て 器物の装飾効果 を高める方法で、 古 く か ら さ ま ざまな材料 に用 い られて きた。 青銅や鉄に対す る金 あ る いは銀、 漆塗 り の素地に金銀薄な どは最も 好まれた組み合わせで ある。 木材に貝片 を埋め込んで研ぎ出す螺鈿も派生技術の一つで あ る。 お も な技法 と し ては ( 1 ) 針金状の金属線を象嵌材 と し て用 い る 糸象嵌、 ( 2 ) 平 ら に彫 り 下 げた素地に板状 の象嵌材 を はめ込んで表層 を平滑に整え る 平象嵌、 ( 3 ) たがねで素地に縦横の細かい縞 目 をつ け、 他の金属 を上か ら たた いて固着 さ せ る布 目 象嵌法な どがある。 Inlaying is a method of enhancing the decorative effect of objects by contrasting different materials on the same plane, and has been used for various materials since ancient times. Gold or silver against bronze or iron, gold and silver thin on lacquered base are the most preferred combinations. Raden, which embeds shells in wood and sharpens it, is one of the derivative technologies. The main techniques are (1) wire inlay using a wire-like metal wire as an inlay material, and (2) plate-like on a flat carved substrate. (3) Placing a vertical and horizontal stripe on the substrate with a chisel and fixing other metal from above with a metal inlay. There is a law.
しか し これ ら の古来よ リ 知 られて い る古典的象嵌技術は 装飾品や美術品 に用 い られて いる も ので あ っ て、 先端技術 への、 高い生産的経済効果 を も つ ものではな い。  However, these classical inlay technologies, which have been known since ancient times, are used for ornaments and fine arts, and do not have a high productive economic effect on advanced technologies. Absent.
こ の出願の発明においては、 高密度で高精度な、 微細磁 気象嵌構造体を実現す る ための方法 と し て、 基板表面をェ ツ チ ング し て ト レ ンチ を形成 し、 磁性材料を ト レ ンチ内に 気相蒸着、 スパ ッ タ リ ングある いは リ フ ロ ー等の手段に よ つ て埋設す る こ と を適当 と し て いる。 エ ッ チ ングは、 た と えば ドラ イ (気相) エ ッ チ ングと し て実施する こ と がで き る。 磁性材料を所定の平面パタ ーンで埋設す る場合には、 レ ジス ト樹脂 と 電子線描画お よ び現像の方法に よ リ パタ ー ニ ング し て、 ドラ イ エ ッ チ ングで ト レ ンチ を形成す る こ と がで き る。  In the invention of this application, as a method for realizing a high-density, high-precision, fine magnetic weather-fitting structure, a trench is formed by etching a substrate surface, and a magnetic material is formed. It is appropriate to bury the inside of the torch by means such as vapor deposition, sputtering or reflow. The etching can be performed, for example, as a dry (gas phase) etching. When embedding a magnetic material in a predetermined planar pattern, repattern the resist resin using electron beam drawing and developing methods, and perform dry cutting. Can be formed.
た と え ば図 4 のパーマ ロ イ を埋設 し た磁気象嵌構造の形 成の例に沿 っ て さ ら に説明 し てみる。  For example, further explanation will be given along the example of the configuration of the magnetic inlay structure in which the permalloy is buried in Fig. 4.
こ の図 4 の例に おいては、以下の手順が実行 さ れて いる。  In the example of FIG. 4, the following steps are performed.
( a ) ガラ ス状カ ーボン を基板 と し、 その表面に レ ジス ト 樹脂 を塗布する。  (a) Glass resin is used as a substrate, and resist resin is applied to the surface.
( b ) 所定のパタ ーンに従 っ て、 電子線描画 し、 現像を行 ラ 。  (b) Electron beam drawing and development are performed according to a predetermined pattern.
( c ) 酸素プラ ズマ中 にお ける反応性イ オ ンエ ッ チ ングを 行 う こ と に よ り 、 基板の ガラ ス状カ ーボンに ト レ ンチ を形 成す る。 ( d ) スパ ッ タ リ ン グお よ びノまたは リ フ ロ ーに よ り 基板 全面にパーマ ロ イ 膜を成膜する。 こ の際に、 卜 レ ンチ内部 に もパーマ ロ イ が充填される よ う にする。 (c) Form a torch on the glassy carbon of the substrate by performing reactive ion etching in oxygen plasma. (d) A permalloy film is formed on the entire surface of the substrate by sputtering and / or reflow. At this time, the permalloy is also filled inside the trench.
( e ) 化学的機械的研磨 を行 う こ と に よ り 、 た と え ば磁性 材料パーマ ロ イ と 基板の ガラ ス状カ ーボンの表面が平坦に な る よ う にする。  (e) The surface of the glassy carbon of the substrate, for example, of the magnetic material permalloy, is made flat by chemical mechanical polishing.
磁性材料パーマ ロ イ は、 所定の平面大き さ を有す る も の と し て表面に露出 さ れる こ と にな る。  The magnetic material permalloy is exposed on the surface as having a predetermined plane size.
( f ) なお、 必要に応 じ て、 露出 さ れた磁性材料パーマ 口 ィ と 基板の表面には、 保護層の役割 り な どを果たす被覆キ ヤ ッ プ層 を配設する。  (f) If necessary, a coating cap layer serving as a protective layer, etc., is provided on the exposed surface of the magnetic material permanent magnet and the substrate.
こ のキャ ッ プ層の形成は、 素材に応 じ て、 スパ ッ タ リ ン グの他、 気相で、 ある いは湿式で、 さ ら にはス ピ ン コ ー ト やラ ミ ネー ト等に よ り 適宜に行われる。  Depending on the material, this cap layer may be formed in a gas phase or wet process, in addition to sputtering, or in a spin coat or laminate, depending on the material. Etc. are performed as appropriate.
場合によ っ ては、 キャ ッ プ層 と し て第 2 の基板層 を配設 し、 これに さ ら に磁性材料 を埋設す る こ と に よ っ て、 多層 化 さ れた磁気象嵌構造 を形成 し て も よ い。  In some cases, a second substrate layer is provided as a cap layer, and a magnetic material is further buried in the second substrate layer to form a multilayered magnetic inlay structure. May be formed.
よ り 具体的に例示す る と 、 図 5 は、 こ の発明の磁気象嵌 構造体を、 ガラ ス状カ ーボン を基板 と し、 磁性材料 C o — C r 合金を例に し て形成 し た場合を S E M像に よ り 示 し て いる。  More specifically, FIG. 5 shows a magnetic inlay structure of the present invention formed using a glass-like carbon substrate as a substrate and a magnetic material Co—Cr alloy as an example. The case is shown by SEM images.
こ の図 5 では、 :  In this Figure 5:
( a ) 反応性イ オ ン エ ッ チ ングに よ り 、 基板に 0 . 8 μ ηη 径、 深さ 0 . 2 4 mの ト レ ンチ を形成 し た状態  (a) A state in which a 0.8 μηη diameter and 0.24 m deep trench has been formed on the substrate by reactive ion etching.
( b ) ( a ) の状態の基板表面に磁性材料 C o — C r 合金 をスパ ッ タ リ ン グによ り 成膜 した状態 ( c ) 基板表面 を研磨 し て、 C o — C r 象嵌構造 と し た状 態 (図中の 白丸部が C o — C r 合金の露出部を示す) を S E M像 と し て例示 し て いる。 (b) The magnetic material Co—Cr alloy is deposited by sputtering on the substrate surface in the state of (a). (c) The SEM image of the state in which the substrate surface is polished to form a Co-Cr inlaid structure (open circles in the figure indicate the exposed portions of the Co-Cr alloy). I have.
また、 図 6 は、 こ の発明の磁気象嵌構造体の ト レ ンチの 形状の一例 を S E M像に よ り 例示 し て いる。 ガラ ス状カ ー ボンの基板上に、 長 さ 0 . 8 m、 幅 0 . 2 5 m、 深 さ 0 . 2 4 mの ト レ ンチが配列 し て お り 、 各 ト レ ンチは細 密な形状を持ち、 ト レ ンチの底面は平坦で、 斜面の角度は 約 7 5 度で ある。  FIG. 6 illustrates an example of the shape of the torch of the magnetic inlay structure of the present invention by using an SEM image. A 0.8-m long, 0.25-m wide, 0.24-m deep torrent is arranged on the glass-carbon substrate, and each torrent is fine. The base of the torch is flat and the slope angle is about 75 degrees.
こ の発明の磁気象嵌構造体の基板 と し て緻密な構造を も つ非晶質 を用 い、 再付着や残滓の無い的確な反応性イ オ ン エ ッ チ ングを行 う こ と によ っ て、 こ のよ う な細密な形状の 卜 レ ンチ を得る こ と で き る こ と が確認さ れた。  The substrate of the magnetic inlay structure of the present invention is made of an amorphous material having a dense structure, and is provided with accurate reactive ion etching without re-adhesion or residue. As a result, it was confirmed that a trench having such a fine shape can be obtained.
図 7 には、 ( a ) 直径 0 . 8 mの 2 1 a t % C r - C o 合金の円柱状微粒子が最密充填配列 し た ダマ シ ン構造 と 、 ( b ) 巾 Ϊ 0 . 4 // m、 長 さ 1 . 6 〃 01の 8 0 % 1\1 ; — 「 6 合金の長円状微粒子が直交格子配列 した ダマ シ ン構造 と の S E M像に よ る平面図 を例示 した。 これ ら の深さ はいずれ も 0 . 2 4 ju mで あ り 、 表面の凹凸は 7 〜 1 5 n mの範囲 で一様平面で ある。 また、 各粒子の形状 と サイ ズが均一で ある こ と も確認さ れた。  Figure 7 shows (a) a damascene structure in which columnar particles of a 21 at% Cr-Co alloy with a diameter of 0.8 m are arranged in a close-packed manner, and (b) a width of about 0.4 / m, 1.6 〃 01, 80% 1 \ 1; — “This is an example of a plan view of a damascene structure in which elliptical particles of the 6 alloy are arranged in an orthogonal lattice by SEM images. Their depth is 0.24 jum, the surface irregularity is a uniform plane in the range of 7 to 15 nm, and the shape and size of each particle are uniform. Was also confirmed.
図 8 は、 図 7 ( a ) の配列面に垂直な磁気異方性を持つ 2 1 a t <½ C r 一 C o 合金の最密充填配列 ダマ シ ン を、 原 子間 力顕微鏡 ( A F M ) 像で例示 し た も ので あ る。 ( a ) は正残留磁化状態 ( + M r ) を、 ( b ) は消磁状態を、 ( c ) は負残留磁化状態 ( 一 M r ) を示 し て お り 、 A F M像の コ ン 卜 ラ ス 卜 はそれぞれの粒子の磁化の 向 き を反映 し て いる こ の図か ら 、 各粒子がそれぞれ ビ ッ 卜 の最小単位にな リ 得 る こ と が確 れた。 Figure 8 shows a close-packed array of 21 at <½Cr-Co alloy with magnetic anisotropy perpendicular to the array plane in Fig. 7 (a). They are shown as images. (A) shows the positive remanent magnetization state (+ M r), (b) shows the demagnetization state, and (c) shows the negative remanence state (one M r). This figure shows that each particle reflects the direction of magnetization of each particle. From this figure, it is confirmed that each particle can be obtained as the minimum unit of a bit.
また、 図 7 ( b ) の 8 0 % N i 一 F e 合金の長円状微粒 子の直交格子配列 ダマ シ ン につ いて は、 幅が 0 . 4 m以 上の粒子では、 磁化は非一斉平行性を示 し、 数個の磁化ボ ノレテ ッ ク スが観測 さ れた。 幅 0 . 2 5 μ m以下の粒子では、 ほぼ一斉平行の磁化が観測 されて、 単磁区状態に近い も の で ある が確認 さ れた。  In addition, in the case of the damascene, which is an orthogonal lattice array of elliptical fine particles of the 80% Ni-Fe alloy shown in Fig. 7 (b), the magnetization is non- It showed simultaneous parallelism, and several magnetization bonoretecs were observed. For particles with a width of 0.25 μm or less, nearly parallel magnetization was observed, and it was confirmed that the particles were close to a single domain state.
も ち ろん の出願の発明は、 以上の例示に限 ら れる こ と な し に様々 な細部の態様が可能で ある こ と は言 う まで も な い 産業上の利用性  It goes without saying that the invention of the application of the present application is not limited to the above-mentioned examples, and various details are possible.
以上詳 し く 説明 し た と お り 、 こ の出願の発明に よ っ て、 磁性材料の高密度集積化に よ る大容量、 高精度の情報記録 を も可能 と する、 新 し い磁気微細構造が提供 さ れる。  As described in detail above, according to the invention of the present application, a new magnetic microscopic device capable of high-capacity, high-accuracy information recording by high-density integration of magnetic materials. Structure is provided.

Claims

請求の範囲 The scope of the claims
1 . 磁性材料が、 これと 異な る材料か ら な る基板の表層部 に埋設 さ れて いる と と も に、 埋設さ れた磁性材料の少 く と も 一部分が基板表面に露出 さ れて磁性材料の微細配置構造 が形成されて いる こ と を特徴 と す る磁気象嵌構造体。 1. The magnetic material is buried in the surface layer of the substrate made of a different material, and at least a part of the buried magnetic material is exposed on the substrate surface. A magnetic inlay structure characterized in that a finely arranged structure of a magnetic material is formed.
2 . 磁性材料の露出部が基板 と と も に平坦表面 を構成 し て い る請求項 1 の磁気象嵌構造体。 2. The magnetic inlay structure according to claim 1, wherein the exposed portion of the magnetic material forms a flat surface together with the substrate.
3 . 異な る磁性材料が重畳 さ れて埋設さ れて いる請求項 1 また は 2 の磁気象嵌構造体。 3. The magnetic inlay structure according to claim 1 or 2, wherein different magnetic materials are buried in an overlapping manner.
4 . 磁性材料 と 非磁性材料 と が重畳 さ れて埋設されて いる 請求項 1 な い し 3 の いずれかの磁気象嵌構造体。 4. The magnetic inlay structure according to any one of claims 1 to 3, wherein the magnetic material and the non-magnetic material are embedded so as to overlap with each other.
5 . 基板表面の複数の平面位置に、 同一また は異な る磁性 材料ある いは磁性材料と 非磁性材料 と が埋設さ れて いる請 求項 1 な い し 4 の いずれかの磁気象嵌構造体。 5. The magnetic inlay structure according to claim 1 or 4, wherein the same or different magnetic material, or a magnetic material and a non-magnetic material are embedded in a plurality of plane positions on the substrate surface. .
6 . 埋設 さ れた材料の露出部の平面大 き さ が 1 0 m以下 で ある請求項 1 な い し 5 の いずれかの磁気象嵌構造体。 6. The magnetic inlay structure according to any one of claims 1 to 5, wherein the exposed portion of the embedded material has a plane size of 10 m or less.
7 . 埋設さ れた材料の基板表面か ら の埋設深 さ が 1 O m 以下で ある請求項 1 ない し 6 の いずれかの磁気象嵌構造体。 7. The magnetic inlay structure according to any one of claims 1 to 6, wherein the buried depth of the buried material from the substrate surface is 1 Om or less.
8 . 埋設さ れた材料の露出部 と これに隣接 し て埋設 された 材料の露出部 と の平面距離が 1 0 t m以下で ある請求項 1 ない し 7 の いずれかの磁気象嵌構造体。 8. The magnetic inlay structure according to any one of claims 1 to 7, wherein a planar distance between the exposed portion of the buried material and the exposed portion of the material buried adjacent thereto is 10 tm or less.
9 . 請求項 1 ない し 8 の いずれかの構造体において、 埋設 された材料の露出部、 も し く は こ の露出部 と 基板の表面上 には被覆層が配設 さ れて い る こ と を特徴 と する磁気象嵌構 造体。 9. The structure according to any one of claims 1 to 8, wherein a coating layer is provided on the exposed portion of the buried material or on the exposed portion and the surface of the substrate. A magnetic inlay structure characterized by and.
1 0 . 請求項 1 な い し 9 の いずれかの構造体が多層化 さ れ て いる こ と を特徴 と す る磁気象嵌構造体。 10. A magnetic inlay structure, wherein the structure according to any one of claims 1 to 9 is multilayered.
1 1 . 請求項 1 な い し 8 の いずれかの構造体の製造方法で あ っ て、 基板表面 をエ ッ チ ング し て ト レ ンチ を形成 し、 磁 性材料を ト レ ン チ内 に埋設する こ と を特徴と す る磁気象嵌 構造体の製造方法。 11. The method for manufacturing a structure according to any one of claims 1 to 8, wherein a trench is formed by etching a substrate surface, and a magnetic material is provided in the trench. A method for manufacturing a magnetic inlay structure characterized by being buried.
1 2 . 請求項 1 な い し 1 0 の いずれかの構造体 を具備 し て いる こ と を特徴 と す る磁気記録媒体。 12. A magnetic recording medium comprising the structure according to any one of claims 1 to 10.
PCT/JP2000/001817 1999-03-29 2000-03-24 Magnetic inlay structure WO2000058977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11086118A JP2000277330A (en) 1999-03-29 1999-03-29 Magnetic damascene structure
JP11/86118 1999-03-29

Publications (1)

Publication Number Publication Date
WO2000058977A1 true WO2000058977A1 (en) 2000-10-05

Family

ID=13877792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001817 WO2000058977A1 (en) 1999-03-29 2000-03-24 Magnetic inlay structure

Country Status (2)

Country Link
JP (1) JP2000277330A (en)
WO (1) WO2000058977A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174787A (en) * 2018-03-28 2019-10-10 太陽インキ製造株式会社 Photosensitive resin composition, two-liquid type photosensitive resin composition, dry film and printed wiring board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073002B2 (en) 2002-03-27 2008-04-09 キヤノン株式会社 Method for producing magnetic recording medium
JP4136653B2 (en) 2002-12-27 2008-08-20 キヤノン株式会社 Manufacturing method of structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10320772A (en) * 1997-05-22 1998-12-04 Hitachi Ltd Production of high density magnetic recording medium and high density magnetic recording medium by the method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10320772A (en) * 1997-05-22 1998-12-04 Hitachi Ltd Production of high density magnetic recording medium and high density magnetic recording medium by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174787A (en) * 2018-03-28 2019-10-10 太陽インキ製造株式会社 Photosensitive resin composition, two-liquid type photosensitive resin composition, dry film and printed wiring board
JP2020204774A (en) * 2018-03-28 2020-12-24 太陽インキ製造株式会社 Photosensitive resin composition, two-liquid type photosensitive resin composition, dry film and printed wiring board
JP7027496B2 (en) 2018-03-28 2022-03-01 太陽インキ製造株式会社 Photosensitive resin composition, two-component photosensitive resin composition, dry film and printed wiring board

Also Published As

Publication number Publication date
JP2000277330A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
US7067207B2 (en) Magnetic recording medium having a patterned soft magnetic layer
New et al. Submicron patterning of thin cobalt films for magnetic storage
AU737624B2 (en) Magnetic etching process, especially for magnetic or magnetooptic recording
US20080176109A1 (en) Method of manufacturing nano-template for a high-density patterned medium and high-density magnetic storage medium using the same
JP2003204095A (en) Magnetoresistive device, its manufacturing method, magnetic reproducing device, and magnetic memory
US6749904B1 (en) Patterned magnetic media via thermally induced phase transition
US7767255B2 (en) Information storage medium with laterally magnetised dot array, and process for producing said medium
JP2010102757A (en) Magnetic storage medium, magnetic storage medium manufacturing method, and information storage device
JP2009129501A (en) Magnetic recording medium, method and device for manufacturing magnetic recording medium, and magnetic recording apparatus
Hu et al. Magnetic and recording properties of Co/Pd islands on prepatterned substrates
JP2004110917A (en) Magnetic recording medium, and magnetic disc device using the same and method for manufacturing the same
WO2000058977A1 (en) Magnetic inlay structure
JP2005109499A (en) Magnetoresistance effect element, device having magnetoresistance effect element, device comprising nanocontact structure, and manufacturing method of nano contact structure
JP4946500B2 (en) Nanohole structure and manufacturing method thereof, and magnetic recording medium and manufacturing method thereof
Kumar et al. Modification of structural and magnetic properties of masked Co–Pt films induced by high-energy ion implantation
JP2001167431A (en) High density magnetic recording medium and its manufacturing method
CN1307617C (en) Magnetic storage medium and its prepn
Gulyaev et al. Advanced inorganic materials for hard magnetic media
KR100688861B1 (en) Manufacturing method of magnetic storage element
US20020018916A1 (en) Magnetic thin film and process for producing the same
JP5321479B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
Rasic Nanostructured Magnetic Thin Films and Coatings
RU2169399C1 (en) Magnetic medium heating method
Choi et al. Control of MH loop shape in perpendicular recording media by ion implantation
US20070188917A1 (en) Layered magnetic film and magnetic head

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)