WO2000057548A1 - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter Download PDF

Info

Publication number
WO2000057548A1
WO2000057548A1 PCT/JP1999/005208 JP9905208W WO0057548A1 WO 2000057548 A1 WO2000057548 A1 WO 2000057548A1 JP 9905208 W JP9905208 W JP 9905208W WO 0057548 A1 WO0057548 A1 WO 0057548A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
surface acoustic
reflector
idt
wave filter
Prior art date
Application number
PCT/JP1999/005208
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Tsutsumi
Takashi Matsuda
Osamu Ikata
Yoshio Satoh
Original Assignee
Fujitsu Limited
Fujitsu Media Devices Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited, Fujitsu Media Devices Limited filed Critical Fujitsu Limited
Publication of WO2000057548A1 publication Critical patent/WO2000057548A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6426Combinations of the characteristics of different transducers

Definitions

  • the present invention relates to a surface acoustic wave filter, and more particularly, to a surface acoustic wave filter having a plurality of surface acoustic wave transmission paths.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • the IF (Intermediate Frequency) filter used in the CDMA system is required to have frequency characteristics that are extremely excellent in squareness as compared with conventional mobile phone systems.
  • the squareness is the ratio of the bandwidth (the first bandwidth and the second bandwidth) at a certain two attenuations (the second bandwidth / the first bandwidth). Width).
  • the bandwidths for two attenuations are, for example, a 3 dB bandwidth and a 10 dB bandwidth. It is said that the closer the ratio of the bandwidths of these two attenuation amounts to 1, the better the squareness, and therefore, the better the squareness indicates that the filter characteristics change sharply.
  • Figure 9 shows a transversal filter, which is one of the conventionally used surface acoustic wave filters.
  • One of the filters is an IDT (In-Digital Digital Transducer) for signal input, and the other is an IDT for signal output.
  • the IDT on the right side of Fig. 9 extends vertically.
  • the IDT on the left is an apodized weighted electrode in which the length of each electrode finger differs according to a fixed rule.
  • the squareness of the frequency characteristics of a surface acoustic wave filter was improved by weighting the IDT, as in the case of such an apodized weighted electrode.
  • An object of the present invention is to provide a surface acoustic wave filter having a small length in the direction of propagation of a surface acoustic wave and having excellent frequency characteristics with excellent squareness, using an IDT having a small number of electrode pairs.
  • the present invention includes a piezoelectric substrate, a plurality of surface acoustic wave propagation paths arranged on the piezoelectric substrate, and a reflector arranged so as to traverse the plurality of surface acoustic wave propagation paths.
  • An incoming digital transmitter is arranged on the surface acoustic wave propagation path, and an outgoing digital transducer is arranged on at least one of the other surface acoustic wave propagation paths.
  • Digital Transducer and Output In The term "digital transducer" provides a surface acoustic wave filter which is disposed on the same side as the reflector. According to this, it is possible to provide a small surface acoustic wave filter having frequency characteristics with excellent squareness.
  • FIG. 1 is a configuration diagram of a surface acoustic wave filter according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a surface acoustic wave filter according to a second embodiment of the present invention.
  • FIG. 3 is a configuration diagram of a surface acoustic wave filter according to a third embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a surface acoustic wave filter according to a fourth embodiment of the present invention.
  • FIG. 5 is a configuration diagram of a surface acoustic wave filter according to a fifth embodiment of the present invention.
  • FIG. 6 shows a surface acoustic wave filter according to a second embodiment of the present invention.
  • FIG. 9 is a configuration diagram when the length of T is different.
  • FIG. 7 is a configuration diagram of a specific example of the surface acoustic wave filter according to the present invention.
  • FIG. 8 is a frequency characteristic diagram of a specific example of the surface acoustic wave filter of FIG. 7 of the present invention.
  • FIG. 9 is a configuration diagram of a conventional transversal surface acoustic wave filter.
  • FIG. 10 is an explanatory diagram of squareness. BEST MODE FOR CARRYING OUT THE INVENTION
  • interdigital transducer is called IDT (Interdigital Transduser)
  • S AW Surface Acoustic Wave
  • a plurality of interdigital transducers are provided, of which electric signals are input.
  • the input interdigital transducer (input IDT) used for inputting and the output digital converter (output IDT) used for outputting an electric signal need only be one each.
  • the number is not limited to one, and a plurality may be provided as needed.
  • the input IDT and the output IDT are arranged so as to be parallel to a direction perpendicular to the propagation direction of the surface acoustic wave.
  • the present invention comprises a piezoelectric substrate and a plurality of surface acoustic wave propagation paths arranged on the piezoelectric substrate, and each of the surface acoustic wave propagation paths has one IDT and a reflection at a predetermined interval.
  • one of the IDTs may be an input IDT and one of the other IDTs may be an output IDT.
  • the number of input IDTs and output IDTs is not limited to one, and there may be more than one.
  • a surface acoustic wave waveguide may be formed on the piezoelectric substrate between any IDT formed on the surface acoustic wave propagation path and the reflector.
  • At least one of the input IDT and the output IDT may be weighted.
  • weighting can improve the squareness of the frequency characteristics of the surface acoustic wave filter.
  • a unidirectional IDT may be used for at least one of the input IDT and the output IDT. Elastic surface with unidirectional IDT Wave fill loss can be reduced.
  • Weighting such as thinning weighting may be applied to the reflector. Further, one reflector may be divided into a plurality in the propagation direction of the surface acoustic wave. This weighting and division can improve the squareness of the frequency characteristics of the surface acoustic wave filter. Further, twice the period of the electrode of the reflector may be slightly different from the period of the electrode fingers of the input ID ⁇ and the output ID ⁇ . By doing so, the frequency characteristics of the surface acoustic wave filter can be improved.
  • FIG. 1 shows a configuration diagram of a surface acoustic wave filter according to a first embodiment of the present invention.
  • Figure 1 shows the configuration of a surface acoustic wave filter composed of four surface acoustic wave propagation paths (first propagation path 5, second propagation path 6, third propagation path 7, and fourth propagation path 8). I have.
  • the present invention is not limited to this. In general, ⁇ ( ⁇ ⁇ 2) surface acoustic wave propagation paths may be provided.
  • a plurality of IDTs 1, 2, and 3 made of a metal film (such as Cu and A1) and a reflector 4 are formed on a piezoelectric substrate 9 such as a quartz crystal.
  • the reflector 4 is arranged so as to traverse all the surface acoustic wave propagation paths 5 to 8, and the IDT is arranged on each propagation path.
  • the IDT does not need to be placed on all propagation paths, and it is sufficient if there is at least one input IDT1 and at least one output IDT2 on any propagation path.
  • the other IDTs 3 may be for input or output.
  • the input IDT 1 and the output IDT 2 are arranged in a direction perpendicular to the SAW propagation direction, and are arranged on the same side with respect to the reflector 4. However, the distance between the input IDT and the reflector 4 and the distance between the output IDT 2 and the reflector 4 need not necessarily be the same.
  • the four surface acoustic wave propagation paths 5 to 8 are areas in which the SAW excited by the input IDT 1 propagates in the left and right direction on the paper, but the two adjacent propagation paths are separated by a predetermined distance, and the piezoelectric substrate 9 Present on.
  • Each IDT 1, 2, 3 is composed of two comb-shaped electrodes having a large number of electrode fingers, and each electrode finger extends in a direction substantially perpendicular to the SAW propagation direction. Are arranged alternately from above and below.
  • FIG. 2 shows a configuration diagram of a surface acoustic wave filter according to a second embodiment of the present invention.
  • FIG. 2 shows an embodiment of the special form of FIG. 1, that is, a surface acoustic wave filter having the simplest configuration.
  • the DT is composed of one input IDT 1 and one output IDT 2.
  • the input IDT 1 is connected to the reflector 4 on the first propagation path 5 and the output IDT 2 is connected to the reflector 4 on the second propagation path 6. Formed on the same side.
  • the reflector 4 is disposed transversely so as to straddle the two propagation paths 5 and 6.
  • SAW surface acoustic waves
  • the SAW intensity distribution 11 immediately after being radiated from the input I D T 1 is confined inside the first propagation path 5 as shown in FIG.
  • the SAW emitted to the right of the input IDT 1 travels on the surface of the piezoelectric substrate 9 in the direction 13 of the reflector 4.
  • the reflector 4 When the SAW reaches the reflector 4, the reflector 4 is straddled on the two propagation paths 5 and 6, so that the 38 intensity distributions 12 spread over the entire area of the reflector 4. I get cramped. That is, the SAW is also propagated on the second propagation path 6. Then, a part of the SAW that has propagated on the second propagation path 6 is reflected by the reflector 4, travels toward the output IDT 2 (in the direction of reference numeral 14), and reaches the output IDT 2. Detected as a signal.
  • the input IDT 1, the output IDT 2, and the reflector 4 each have a frequency characteristic of easily transmitting only a signal in a specific frequency band depending on the logarithm and period of the electrode finger. Since SAW having characteristics obtained by synthesizing the frequency characteristics of IDT 1 and reflector 4 is input from reflector 4 to output IDT 2, a filter having excellent squareness characteristics can be obtained.
  • FIG. 6 shows a SAW filter having the same configuration as that of FIG. 2, but in the case where the length of the input IDT 1 in the SAW propagation direction is longer than the length of the output IDT 2 in the SAW propagation direction.
  • the length in the SAW propagation direction is mainly the sum of the length L 1 of the input IDT 1 and the length L 2 of the output IDT 2 (L 1 + L 2) Determined by
  • the length L 3 of the longer IDT of the input IDT 1 (length L 1) or the output IDT 2 (length L 2) in the S AW propagation direction is mainly used.
  • the length L4 of the reflector in the SAW propagation direction (L3 + L4).
  • L 3 is L 1 or L 2.
  • the length of the SAW filter of the present invention in the SAW propagation direction is the same as that of the conventional transformer. It is shorter than the Versal-type Phil evening.
  • FIG. 3 shows a configuration diagram of a surface acoustic wave filter according to a third embodiment of the present invention.
  • the input IDT 1 and the output IDT 2 are It is arranged in a direction perpendicular to the SAW propagation direction (left-right direction on the paper), but differs in that a plurality of reflectors are divided and arranged on each propagation path. That is, a plurality of reflectors 411, 412, and 4-2 are arranged on the same side in the SAW propagation direction with respect to IDTs 1 and 2.
  • a configuration having two input IDTs is shown.
  • the surface acoustic waves radiated from the two inputs IDT 1 are reflected from the reflectors 411 and 413 due to the acoustic coupling between the reflectors.
  • FIG. 3 shows an embodiment including three IDTs and reflectors, but the number of IDTs and the like is not limited to this.
  • FIG. 4 shows a surface acoustic wave filter according to a fourth embodiment of the present invention, which shows a minimum configuration of the surface acoustic wave filter shown in FIG.
  • one input I DT 1 and one output I DT 2 are arranged on the same side in the SAW propagation direction of each IDT, and the reflectors 4 — 1, 4-2 arranged on the SAW propagation path It is composed of
  • the surface acoustic wave filter having the configuration shown in FIGS. 3 and 4 can make the length in the SAW propagation direction smaller than that of the transversal type filter. Excellent fill evening.
  • the input IDT 1 and the reflector 4-1 and the output IDT 2 and the reflector 4-2 are located on the SAW propagation path that is not displaced in the vertical direction of the drawing in terms of reducing loss. Is preferred.
  • the DT 2 and the reflectors 4-1 and 2 need not necessarily be on the same SAW propagation path.
  • the input IDT 1 and the reflectors 4-1 may be arranged at positions shifted vertically in the drawing. You may.
  • FIG. 5 shows a configuration diagram of a surface acoustic wave filter according to a fifth embodiment of the present invention.
  • the configuration of the IDT and the reflector 4 is the same as that shown in FIG. 1.
  • the SAW waveguide 21 1 In each SAW propagation path between each IDT 1, 2, 3 and the reflector 4, the SAW waveguide 21 1, The difference is that 22, 23, and 24 are formed.
  • the SAW waveguide need not be formed in the entire region between the IDT and the reflector, and the SAW waveguide may be provided in any region between the IDT and the reflector.
  • This SAW waveguide can avoid SAW diffraction loss on the propagation path from the input IDT 1 to the reflector 4 or on the propagation path from the reflector 4 to the output IDT 2, reducing insertion loss at the SAW filter. can do.
  • a SAW waveguide may be provided in a region between each IDT and each reflector.
  • the SAW waveguide can be formed of a metal film with a uniform surface structure, an insulating film with a uniform surface structure, a metal film with a grating structure, or an insulating film with a grating structure.
  • FIG. 7 shows a specific example of the surface acoustic wave filter according to the present invention.
  • This surface acoustic wave filter includes one input IDT 1, one output IDT 2, one reflector 4, and two SAW waveguides 21, 22.
  • the SAW waveguides 21 and 22 each having a grating structure are arranged in the first stage.
  • the period of this grating structure is 14 m.
  • the distance between the input IDT 1 and the output IDT 2 is about 100 ⁇ m, and the input IDT 1 and the reflector 4 have a structure that is slightly displaced in the vertical direction from the same SAW propagation path. However, in order to avoid loss in the area between the input IDT 1 and the reflector 4, the SAW waveguide 21 is bent halfway so as to connect the SAW propagation path connecting the input IDT and the reflector. It has a shape.
  • the input I DT 1, the output I DT 2, the reflector 4, and the SAW waveguides 21, 22 are all formed of a metal film having a thickness of about 1 zm. Paining is done.
  • the material of the metal film for example, aluminum can be used.
  • the surface acoustic wave filter having the above structure can be formed as a chip with a length of about 1.5 mm in the vertical direction and about 7.5 mm in the horizontal direction.
  • FIG. 8 shows a graph of the insertion loss versus frequency characteristic in the specific example of the surface acoustic wave filter of the present invention shown in FIG.
  • the center frequency was set to 85.5 MHz, and a surface acoustic wave filter having excellent frequency characteristics with squareness was obtained.
  • a surface acoustic wave filter having excellent frequency characteristics with squareness was obtained.
  • the total length in the AW propagation direction is 15.624 mm, which is considerably longer than the length of the specific example shown in FIG. 7 of the present invention shown in FIG.
  • the length in the SAW propagation direction can be reduced as compared with the related art, and the surface acoustic wave filter itself can be reduced in size.
  • a surface acoustic wave filter that can reduce the length of the surface acoustic wave in the propagation direction as compared with the related art and has a frequency characteristic with excellent squareness.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

A surface acoustic wave filter comprises a piezoelectric substrate, a plurality of surface acoustic wave channels arranged on the piezoelectric susbtrate, and reflector arranged across the surface acoustic wave channels. An input interdigital transducer is arranged on at least one of the surface acoustic wave channels. An output interdigital transducer is arranged on at least one of the other surface acoustic wave channels. The input interdigital transducer and output interdigital transducer are arranged on the same side with respect to the reflector. As a result, this surface acoustic wave filter is short in the direction of propagation and has a frequency characteristic of good squareness ratio.

Description

明細書 弾性表面波フィルタ 技術分野  Description Surface acoustic wave filter Technical field
この発明は、 弾性表面波フィル夕に関し、 特に、 複数の弾性表面波伝 搬路を持つ弾性表面波フィル夕に関する。 背景技術  The present invention relates to a surface acoustic wave filter, and more particularly, to a surface acoustic wave filter having a plurality of surface acoustic wave transmission paths. Background art
近年、 携帯電話等の移動通信システムにおいて、 TDMA (Time Division Multiple Access ) 方式に加えて、 C DMA (Code Division Multiple Access ) 方式という新しいデジタルシステムが採用されつつ ある。  2. Description of the Related Art In recent years, in mobile communication systems such as mobile phones, a new digital system called a CDMA (Code Division Multiple Access) system has been adopted in addition to a TDMA (Time Division Multiple Access) system.
この CDMA方式に用いられる I F (Intermediate Frequency;中間 周波数) フィルタは、 従来の携帯電話システムと比較して極めて角形性 に優れた周波数特性が要求されている。 ここで角形性とは、 図 10に示 すように、 ある 2つの減衰量での帯域幅 (第 1の帯域幅と第 2の帯域幅) の比 (第 2の帯域幅/第 1の帯域幅) である。 ある 2つの減衰量での帯 域幅とは、 例えば 3 dB帯域幅と 10 dB帯域幅である。 そして、 この 2つの減衰量での帯域幅の比が 1に近い程、 角形性に優れるといい、 従 つて、 角形性に優れるとはフィルタ特性が急峻な変化をしていることを 示す。  The IF (Intermediate Frequency) filter used in the CDMA system is required to have frequency characteristics that are extremely excellent in squareness as compared with conventional mobile phone systems. Here, as shown in Fig. 10, the squareness is the ratio of the bandwidth (the first bandwidth and the second bandwidth) at a certain two attenuations (the second bandwidth / the first bandwidth). Width). The bandwidths for two attenuations are, for example, a 3 dB bandwidth and a 10 dB bandwidth. It is said that the closer the ratio of the bandwidths of these two attenuation amounts to 1, the better the squareness, and therefore, the better the squareness indicates that the filter characteristics change sharply.
図 9に、 従来から用いられている弾性表面波フィルタの一つであるト ランスバーサル型フィルタを示す。 このフィルタは、 一方が信号入力用 の I DT (イン夕一ディジタルトランスデューサ) であり、 他方が信号 出力用の I D Tである。 図 9の右側の I D Tは、 上下方向に延びてい る電極指の長さが一定である正規電極であるが、 左側の I D Tは、 各電 極指の長さが一定の規則で異なっているアポタイズ重みづけ電極である。 従来は、 このようなアポタイズ重みづけ電極のように、 I D Tを重み づけすることによって、 弾性表面波フィルタの周波数特性の角形性を向 上させていた。 Figure 9 shows a transversal filter, which is one of the conventionally used surface acoustic wave filters. One of the filters is an IDT (In-Digital Digital Transducer) for signal input, and the other is an IDT for signal output. The IDT on the right side of Fig. 9 extends vertically. The IDT on the left is an apodized weighted electrode in which the length of each electrode finger differs according to a fixed rule. In the past, the squareness of the frequency characteristics of a surface acoustic wave filter was improved by weighting the IDT, as in the case of such an apodized weighted electrode.
しかし、 アポタイズ重み付け電極のように I D Tを重み付けすること で、 十分優れた角形性を持つ弾性表面波フィルタを実現するためには、 極めて多くの電極対数が必要となり、 弾性表面波の伝搬方向 (図 9では、 紙面の左右方向) の長さが長くなるという問題点がある。 従って、 携帯 電話等ではその携帯性 ·小型化を満足させるために弾性表面波フィル夕 も小さくする必要があるが、 角形性をよくするために弾性表面波フィル 夕のサイズが大きくなつたのでは、 小型化の要求に反することになる。 ゆえに、 図 9に示すような従来の I D Tを重み付けして角形性を向上 させるものでは、 小型かつ角形性に優れた特性を持つ弾性表面波フィル 夕を実現することは困難である。 発明の開示  However, in order to realize a surface acoustic wave filter with sufficiently excellent squareness by weighting the IDT like an apotize weighted electrode, an extremely large number of electrode pairs is required, and the propagation direction of the surface acoustic wave ( In the case of 9, there is a problem in that the length (in the horizontal direction of the paper) becomes long. Therefore, in mobile phones, etc., it is necessary to reduce the surface acoustic wave filter in order to satisfy its portability and miniaturization, but if the size of the surface acoustic wave filter is increased in order to improve the squareness, However, this is contrary to the demand for miniaturization. Therefore, it is difficult to realize a surface acoustic wave filter having a small size and excellent squareness characteristics by weighting the conventional IDT as shown in FIG. 9 to improve the squareness. Disclosure of the invention
この発明は、 少ない電極対数の I D Tを用いて、 弾性表面波の伝搬方 向の長さが小型で、 かつ角形性に優れた周波数特性を持つ弾性表面波フ ィル夕を提供することを課題とする。  An object of the present invention is to provide a surface acoustic wave filter having a small length in the direction of propagation of a surface acoustic wave and having excellent frequency characteristics with excellent squareness, using an IDT having a small number of electrode pairs. And
この発明は、 圧電基板と、 圧電基板上に配置された複数の弾性表面波 伝搬路と、 複数の弾性表面波伝搬路を横断するように配置された反射器 とから構成され、 少なくとも 1つの弾性表面波伝搬路上には入カイン夕 一ディジタルトランスデューザが配置され、 他の弾性表面波伝搬路上の 少なくとも 1つには出カイン夕一ディジタルトランスデューザが配置さ れ、 さらに、 前記入力インタ一ディジタルトランスデューザと出力イン タ一ディジ夕ルトランスデューザとは、 前記反射器に対して同じ側に配 置されたことを特徴とする弾性表面波フィルタを提供するものである。 これによれば、 小型かつ角形性に優れた周波数特性を持つ弾性表面波 フィルタを提供できる。 図面の簡単な説明 The present invention includes a piezoelectric substrate, a plurality of surface acoustic wave propagation paths arranged on the piezoelectric substrate, and a reflector arranged so as to traverse the plurality of surface acoustic wave propagation paths. An incoming digital transmitter is arranged on the surface acoustic wave propagation path, and an outgoing digital transducer is arranged on at least one of the other surface acoustic wave propagation paths. Digital Transducer and Output In The term "digital transducer" provides a surface acoustic wave filter which is disposed on the same side as the reflector. According to this, it is possible to provide a small surface acoustic wave filter having frequency characteristics with excellent squareness. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 この発明の第 1実施例の弾性表面波フィル夕の構成図である。 図 2は、 この発明の第 2実施例の弾性表面波フィル夕の構成図である。 図 3は、 この発明の第 3実施例の弾性表面波フィル夕の構成図である。 図 4は、 この発明の第 4実施例の弾性表面波フィル夕の構成図である。 図 5は、 この発明の第 5実施例の弾性表面波フィルタの構成図である。 図 6は、 この発明の第 2実施例の弾性表面波フィルタで、 2つの I D FIG. 1 is a configuration diagram of a surface acoustic wave filter according to a first embodiment of the present invention. FIG. 2 is a configuration diagram of a surface acoustic wave filter according to a second embodiment of the present invention. FIG. 3 is a configuration diagram of a surface acoustic wave filter according to a third embodiment of the present invention. FIG. 4 is a configuration diagram of a surface acoustic wave filter according to a fourth embodiment of the present invention. FIG. 5 is a configuration diagram of a surface acoustic wave filter according to a fifth embodiment of the present invention. FIG. 6 shows a surface acoustic wave filter according to a second embodiment of the present invention.
Tの長さが異なる場合の構成図である。 FIG. 9 is a configuration diagram when the length of T is different.
図 7は、 この発明の弾性表面波フィル夕の具体例の構成図である。 図 8は、 この発明の図 7の弾性表面波フィル夕の具体例の周波数特性 図である。  FIG. 7 is a configuration diagram of a specific example of the surface acoustic wave filter according to the present invention. FIG. 8 is a frequency characteristic diagram of a specific example of the surface acoustic wave filter of FIG. 7 of the present invention.
図 9は、 従来のトランスバーサル型の弾性表面波フィル夕の構成図で ある。  FIG. 9 is a configuration diagram of a conventional transversal surface acoustic wave filter.
図 1 0は、 角形性の説明図である。 発明を実施するための最良の形態  FIG. 10 is an explanatory diagram of squareness. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 インターディジタルトランスデューサを I D T ( Interdigital Transduser ) と呼び、 弾性表面波を S AW (Surface Acoustic Wave ) と呼ぶ。  Hereinafter, the interdigital transducer is called IDT (Interdigital Transduser), and the surface acoustic wave is called S AW (Surface Acoustic Wave).
この発明の弾性表面波フィル夕において、 インターディジタルトラン スデューサ (I D T ) は複数個設けられるが、 そのうち、 電気信号を入 力するために用いられる入カインターディジタルトランスデューサ (入 力 I D T) と電気信号を出力するために用いられる出カイン夕一ディジ タルトランスデューサ (出力 I DT) とは、 それぞれ 1つあればよいが、 1つに限定するものではなく、 必要に応じてそれそれ複数個設けてもよ い。 In the surface acoustic wave filter of the present invention, a plurality of interdigital transducers (IDTs) are provided, of which electric signals are input. The input interdigital transducer (input IDT) used for inputting and the output digital converter (output IDT) used for outputting an electric signal need only be one each. The number is not limited to one, and a plurality may be provided as needed.
また、 この発明においては、 入力 I DTと出力 IDTとは、 弾性表面 波の伝搬方向に対して垂直な方向に並行するように配置される。  Further, in the present invention, the input IDT and the output IDT are arranged so as to be parallel to a direction perpendicular to the propagation direction of the surface acoustic wave.
また、 この発明は、 圧電基板と、 圧電基板上に配置された複数の弾性 表面波伝搬路とからなり、 各弾性表面波伝搬路上には、 それぞれ所定の 間隔をあけて 1つの I DTと反射器とが配置され、 各 I DTは、 弾性表 面波の伝搬方向に対して垂直な方向であって、 前記各反射器に対して同 じ側に配置されたことを特徴とする弾性表面波フィル夕を提供するもの である。  Further, the present invention comprises a piezoelectric substrate and a plurality of surface acoustic wave propagation paths arranged on the piezoelectric substrate, and each of the surface acoustic wave propagation paths has one IDT and a reflection at a predetermined interval. A surface acoustic wave, wherein each IDT is arranged in a direction perpendicular to the direction of propagation of the surface acoustic wave and on the same side with respect to each of the reflectors. It offers a Phil evening.
ここで特に、 前記 I DTのうち 1つが入力 I DTとなり、 他の I DT のうち 1つが出力 I DTとなるようにしてもよい。 ただし、 入力 I DT と出力 I DTとはそれぞれ 1つに限るものではなく、 複数個あってもよ レ^  Here, in particular, one of the IDTs may be an input IDT and one of the other IDTs may be an output IDT. However, the number of input IDTs and output IDTs is not limited to one, and there may be more than one.
さらに、 前記弾性表面波伝搬路上に形成される任意の I D Tと反射器 との間の圧電基板上に弾性表面波導波路を形成してもよい。  Further, a surface acoustic wave waveguide may be formed on the piezoelectric substrate between any IDT formed on the surface acoustic wave propagation path and the reflector.
また、 入力 I DTと、 出力 I D Tに関して、 少なくともどちらか一方 に重み付けをしてもよい。  Also, at least one of the input IDT and the output IDT may be weighted.
たとえば重み付けとしては、 「アポタイズ重み付け」 あるいは 「間引き 重み付け」 等がある。 重み付けをすれば、 弾性表面波フィル夕の周波数 特性の角形性を改善できる。  For example, as the weight, there is “apotize weight” or “thinning weight”. Weighting can improve the squareness of the frequency characteristics of the surface acoustic wave filter.
さらに、 入力 I DT及び出力 I DTのうち少なくともどちらか一方に、 一方向性 I D Tを用いてもよい。 一方向性 I DTを用いれば、 弾性表面 波フィル夕の損失を低減できる。 Further, a unidirectional IDT may be used for at least one of the input IDT and the output IDT. Elastic surface with unidirectional IDT Wave fill loss can be reduced.
反射器についても、 間引き重み付けのような重み付けをしてもよい。 また、 一つの反射器を、 弾性表面波の伝搬方向に複数個に分割して構 成してもよい。 この重み付けや分割により、 弾性表面波フィルタの周波 数特性の角形性を向上できる。 さらに、 反射器の電極の周期の 2倍と、 入力 I D Τ及び出力 I D Τの電極指の周期とをわずかに異ならせてもよ い。 このようにすれば、 弾性表面波フィルタの周波数特性の改善ができ る。  Weighting such as thinning weighting may be applied to the reflector. Further, one reflector may be divided into a plurality in the propagation direction of the surface acoustic wave. This weighting and division can improve the squareness of the frequency characteristics of the surface acoustic wave filter. Further, twice the period of the electrode of the reflector may be slightly different from the period of the electrode fingers of the input ID Τ and the output ID Τ. By doing so, the frequency characteristics of the surface acoustic wave filter can be improved.
以下、 図面に示す実施の形態に基づいてこの発明を詳述する。 なお、 これによつてこの発明が限定されるものではない。  Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. However, the present invention is not limited by this.
図 1に、 この発明の第 1実施例の弾性表面波フィル夕の構成図を示す。 図 1においては、 4つの弾性表面波伝搬路 (第 1伝搬路 5, 第 2伝搬 路 6, 第 3伝搬路 7, 第 4伝搬路 8 ) からなる弾性表面波フィル夕の構 成を示している。 しかし、 これに限定するものではなく、 一般に η個(η ≥2 ) の弾性表面波伝搬路を備えてもよい。  FIG. 1 shows a configuration diagram of a surface acoustic wave filter according to a first embodiment of the present invention. Figure 1 shows the configuration of a surface acoustic wave filter composed of four surface acoustic wave propagation paths (first propagation path 5, second propagation path 6, third propagation path 7, and fourth propagation path 8). I have. However, the present invention is not limited to this. In general, η (η ≥2) surface acoustic wave propagation paths may be provided.
また、 水晶などの圧電基板 9上に、 金属膜 (C u , A 1など) からな る複数の I D T 1, 2 , 3と反射器 4とが形成されている。  Further, a plurality of IDTs 1, 2, and 3 made of a metal film (such as Cu and A1) and a reflector 4 are formed on a piezoelectric substrate 9 such as a quartz crystal.
反射器 4はすべての弾性表面波伝搬路 5〜 8を横断するように配置さ れ、 I D Tは各伝搬路上に配置される。 I D Tは、 すべての伝搬路上に 配置される必要はなく、 任意の伝搬路上に、 少なくとも 1つの入力 I D T 1と少なくとも 1つの出力 I D T 2があればよい。 他の I D T 3は、 入力用であるか出力用であるかは問わない。  The reflector 4 is arranged so as to traverse all the surface acoustic wave propagation paths 5 to 8, and the IDT is arranged on each propagation path. The IDT does not need to be placed on all propagation paths, and it is sufficient if there is at least one input IDT1 and at least one output IDT2 on any propagation path. The other IDTs 3 may be for input or output.
また、 入力 I D T 1と出力 I D T 2とは、 S AWの伝搬方向に対して 垂直な方向に配置され、 反射器 4に対して同じ側に配置される。 ただし、 入力 I D Tと反射器 4との距離と、 出力 I D T 2と反射器 4との距離と は必ずしも同じとする必要はない。 4つの弾性表面波伝搬路 5〜8は、 入力 I D T 1によって励振された SAWが紙面の左右方向に伝搬する領域であるが、 隣接する 2つの伝搬 路は所定の間隔をあけて、 圧電基板 9上に存在する。 The input IDT 1 and the output IDT 2 are arranged in a direction perpendicular to the SAW propagation direction, and are arranged on the same side with respect to the reflector 4. However, the distance between the input IDT and the reflector 4 and the distance between the output IDT 2 and the reflector 4 need not necessarily be the same. The four surface acoustic wave propagation paths 5 to 8 are areas in which the SAW excited by the input IDT 1 propagates in the left and right direction on the paper, but the two adjacent propagation paths are separated by a predetermined distance, and the piezoelectric substrate 9 Present on.
また、 各 I DT 1 , 2, 3は、 多数の電極指を有するくし形形状の 2 つの電極から構成され、 各電極指は、 SAWの伝搬方向に対してほぼ垂 直な方向に延び、 紙面の上下方向から、 交互に配置される。  Each IDT 1, 2, 3 is composed of two comb-shaped electrodes having a large number of electrode fingers, and each electrode finger extends in a direction substantially perpendicular to the SAW propagation direction. Are arranged alternately from above and below.
また、 図 1の I DT 1 , 2, 3はいわゆる正規電極であるが、 必要に 応じて間引き重みづけ、 あるいはアポタイズ重みづけ等をしてもよい。 反射器 4は、 グレーティング構造を有する複数の電極指から構成される。 図 2に、 この発明の第 2実施例の弾性表面波フィルタの構成図を示す。 図 2は、 図 1の特殊な形態、 すなわち最も簡易な構成の弾性表面波フ ィル夕の実施例を示している。  In addition, although IDTS 1, 2, and 3 in FIG. 1 are so-called normal electrodes, they may be weighted by thinning out or weighted by apoptosis if necessary. The reflector 4 includes a plurality of electrode fingers having a grating structure. FIG. 2 shows a configuration diagram of a surface acoustic wave filter according to a second embodiment of the present invention. FIG. 2 shows an embodiment of the special form of FIG. 1, that is, a surface acoustic wave filter having the simplest configuration.
ェ DTは、 1つの入力 I DT 1と 1つの出力 I D T 2とから構成され、 入力 I DT 1は第 1伝搬路 5上, 出力 I DT 2は第 2伝搬路 6上の反射 器 4に対して同じ側に形成される。 反射器 4は、 2つの伝搬路 5, 6を またぐように横断的に配置される。  The DT is composed of one input IDT 1 and one output IDT 2. The input IDT 1 is connected to the reflector 4 on the first propagation path 5 and the output IDT 2 is connected to the reflector 4 on the second propagation path 6. Formed on the same side. The reflector 4 is disposed transversely so as to straddle the two propagation paths 5 and 6.
ここで、 図 2を用いて、 この発明の弾性表面波フィルタの弾性表面波 (SAW) の伝搬原理について説明する。  Here, the principle of propagation of surface acoustic waves (SAW) of the surface acoustic wave filter of the present invention will be described with reference to FIG.
まず、 入力 I D T 1の電極に外部から入力信号が印加されると、 SA Wが励起され、 入力 I DT 1の左右方向に SAWが進行する。  First, when an input signal is externally applied to the electrode of the input IDT 1, the SAW is excited, and the SAW proceeds in the left-right direction of the input IDT 1.
入力 I D T 1から放射された直後の SAWの強度分布 1 1は、 図 2の 図中に示すように、 第 1伝搬路 5内部に閉じ込められている。 入力 I D T 1の右方向に放射された SAWは、 圧電基板 9の表面上を反射器 4の 方向 13へ進行する。  The SAW intensity distribution 11 immediately after being radiated from the input I D T 1 is confined inside the first propagation path 5 as shown in FIG. The SAW emitted to the right of the input IDT 1 travels on the surface of the piezoelectric substrate 9 in the direction 13 of the reflector 4.
この SAWが反射器 4に到達すると、 反射器 4は 2つの伝搬路 5, 6 上にまたがつているため、 3八 の強度分布12は反射器 4の全域に広 がってしまう。 すなわち、 第 2伝搬路 6上にも、 SAWが伝搬される。 そして、 第 2伝搬路 6上に伝搬した SAWの一部は、 反射器 4で反射 され、 出力 I DT 2へ向かって進行し (符号 14の方向)、 出力 I DT 2 に到達した後、 電気信号として検出される。 When the SAW reaches the reflector 4, the reflector 4 is straddled on the two propagation paths 5 and 6, so that the 38 intensity distributions 12 spread over the entire area of the reflector 4. I get cramped. That is, the SAW is also propagated on the second propagation path 6. Then, a part of the SAW that has propagated on the second propagation path 6 is reflected by the reflector 4, travels toward the output IDT 2 (in the direction of reference numeral 14), and reaches the output IDT 2. Detected as a signal.
また、 入力 I DT 1, 出力 I DT 2及び反射器 4は、 それそれ、 電極 指の対数や周期によって、 ある特定周波数帯域の信号のみを伝搬しやす いという周波数特性を持っているが、 入力 I DT 1と反射器 4のそれそ れの周波数特性を合成した特性を持つ SAWが反射器 4から出力 I DT 2へ入力されるので、 角形性に優れた特性を持つフィル夕が得られる。 図 6に、 図 2と同様の構成の弾性表面波フィル夕であるが、 入力 I D T 1の S A W伝搬方向の長さが、 出力 I D T 2の S A W伝搬方向の長さ よりも長い場合の実施例の構成図を示す。  In addition, the input IDT 1, the output IDT 2, and the reflector 4 each have a frequency characteristic of easily transmitting only a signal in a specific frequency band depending on the logarithm and period of the electrode finger. Since SAW having characteristics obtained by synthesizing the frequency characteristics of IDT 1 and reflector 4 is input from reflector 4 to output IDT 2, a filter having excellent squareness characteristics can be obtained. FIG. 6 shows a SAW filter having the same configuration as that of FIG. 2, but in the case where the length of the input IDT 1 in the SAW propagation direction is longer than the length of the output IDT 2 in the SAW propagation direction. FIG.
図 9に示した従来のトランスバーサル型フィルタでは、 SAW伝搬方 向の長さは、 主として入力 I DT 1の長さ L 1と出力 I DT 2の長さ L 2との合計 (L 1 +L 2) で決まる。  In the conventional transversal filter shown in FIG. 9, the length in the SAW propagation direction is mainly the sum of the length L 1 of the input IDT 1 and the length L 2 of the output IDT 2 (L 1 + L 2) Determined by
一方、 図 6のこの発明の弾性表面波フィルタでは、 主として入力 I D T 1 (長さ L 1 ) あるいは出力 I DT 2 (長さ L 2) の長い方の I D T の S AW伝搬方向の長さ L 3と反射器の S AW伝搬方向の長さ L 4の合 計 (L 3+L4) によって決まる。 ここで L 3は、 L 1または L 2であ る。  On the other hand, in the surface acoustic wave filter of the present invention shown in FIG. 6, the length L 3 of the longer IDT of the input IDT 1 (length L 1) or the output IDT 2 (length L 2) in the S AW propagation direction is mainly used. And the length L4 of the reflector in the SAW propagation direction (L3 + L4). Here, L 3 is L 1 or L 2.
したがって、 反射器の SAW伝搬方向の長さ L 4が、 短い方の I DT の SAW伝搬方向の長さよりも短い場合、 この発明の弾性表面波フィル 夕の SAW伝搬方向の長さは従来のトランスバーサル型フィル夕よりも 短くなる。  Therefore, when the length L 4 of the reflector in the SAW propagation direction is shorter than the shorter IDT of the SADT in the SAW propagation direction, the length of the SAW filter of the present invention in the SAW propagation direction is the same as that of the conventional transformer. It is shorter than the Versal-type Phil evening.
図 3に、 この発明の第 3実施例の弾性表面波フィル夕の構成図を示す。 ここで、 第 1, 第 2実施例と同様に、 入力 I DT 1と出力 I DT 2は、 SAW伝搬方向 (紙面の左右方向) に対して垂直な方向に配置されるが、 反射器が各伝搬路上に分割されて複数個配置される点で異なる。 すなわ ち、 複数個の反射器 4一 1 , 4一 2, 4— 3が、 I DT 1及び 2に対し て、 SAW伝搬方向の同じ側に配置される。 この第 3実施例では、 入力 I DTを 2つ備えた構成を示している。 FIG. 3 shows a configuration diagram of a surface acoustic wave filter according to a third embodiment of the present invention. Here, as in the first and second embodiments, the input IDT 1 and the output IDT 2 are It is arranged in a direction perpendicular to the SAW propagation direction (left-right direction on the paper), but differs in that a plurality of reflectors are divided and arranged on each propagation path. That is, a plurality of reflectors 411, 412, and 4-2 are arranged on the same side in the SAW propagation direction with respect to IDTs 1 and 2. In the third embodiment, a configuration having two input IDTs is shown.
このように、 反射器 4を分割した構成にした場合でも、 反射器どうし の音響的結合により、 2つの入力 I DT 1から放射された弾性表面波は 反射器 4一 1及び 4一 3から反射器 4— 2へと伝達し、 さらに出力 I D T 2へ伝搬される。  Thus, even when the reflector 4 is divided, the surface acoustic waves radiated from the two inputs IDT 1 are reflected from the reflectors 411 and 413 due to the acoustic coupling between the reflectors. To the output unit 4-2, and further to the output IDT2.
図 3では、 3つの I D Tと反射器とから構成される実施例を示してい るが、 I DT等の個数は、 これに限定されるものではない。  FIG. 3 shows an embodiment including three IDTs and reflectors, but the number of IDTs and the like is not limited to this.
また、 入力 I DT 1と出力 IDT 2は、 それそれ少なくとも 1つあれ ばよく、 図 3のように、 入力 I DTが 2つに限定されるものではない。 図 4は、 この発明の第 4実施例の弾性表面波フィル夕であり、 図 3に 示した弾性表面波フィルタの最小構成を示したものである。 ここで 1つ の入力 I DT 1と 1つの出力 I DT 2と、 それぞれの I D Tの S AW伝 搬方向について同じ側であって、 S A W伝搬路上に配置された反射器 4 — 1 , 4-2とから構成される。  Also, at least one input IDT 1 and one output IDT 2 are required, and the number of input IDTs is not limited to two as shown in FIG. FIG. 4 shows a surface acoustic wave filter according to a fourth embodiment of the present invention, which shows a minimum configuration of the surface acoustic wave filter shown in FIG. Here, one input I DT 1 and one output I DT 2 are arranged on the same side in the SAW propagation direction of each IDT, and the reflectors 4 — 1, 4-2 arranged on the SAW propagation path It is composed of
図 3及び図 4に示した構成の弾性表面波フィルタでも、 図 1及び図 2 の弾性表面波フィルタと同様に、 トランスバーサル型フィル夕よりも S AW伝搬方向の長さを小さくでき、 角形性に優れたフィル夕が得られる。 なお、 図 4において、 入力 I DT 1と反射器 4一 1, 出力 IDT 2と 反射器 4— 2とは、 損失を少なくする点においては、 紙面の上下方向に ずれていない SAW伝搬路上にあることが好ましい。 しかし、 入力 I D Τ 1と反射器 4 - 1との間及び出力 I D Τ 2と反射器 4 _ 2との間に、 SAW導波路を設けた場合には、 入力 I DT 1と反射器 4— 1, 出力ェ D T 2と反射器 4一 2とは必ずしも同一の SAW伝搬路上になくてもよ く、 たとえば、 入力 I D T 1と反射器 4— 1とが紙面の上下方向にずれ た位置に配置されるようにしてもよい。 Similarly to the surface acoustic wave filters shown in FIGS. 1 and 2, the surface acoustic wave filter having the configuration shown in FIGS. 3 and 4 can make the length in the SAW propagation direction smaller than that of the transversal type filter. Excellent fill evening. In Fig. 4, the input IDT 1 and the reflector 4-1 and the output IDT 2 and the reflector 4-2 are located on the SAW propagation path that is not displaced in the vertical direction of the drawing in terms of reducing loss. Is preferred. However, if a SAW waveguide is provided between the input ID Τ1 and the reflector 4-1 and between the output ID Τ2 and the reflector 4_2, the input IDT1 and the reflector 4 1, output The DT 2 and the reflectors 4-1 and 2 need not necessarily be on the same SAW propagation path. For example, the input IDT 1 and the reflectors 4-1 may be arranged at positions shifted vertically in the drawing. You may.
図 5に、 この発明の第 5実施例の弾性表面波フィル夕の構成図を示す。 ここでは、 I D T及び反射器 4の構成は、 図 1に示したものと同様で ある力 各 I D T 1, 2, 3と反射器 4との間の各 SAW伝搬路中に S A W導波路 2 1 , 2 2, 2 3, 2 4を形成する点が異なる。  FIG. 5 shows a configuration diagram of a surface acoustic wave filter according to a fifth embodiment of the present invention. Here, the configuration of the IDT and the reflector 4 is the same as that shown in FIG. 1. In each SAW propagation path between each IDT 1, 2, 3 and the reflector 4, the SAW waveguide 21 1, The difference is that 22, 23, and 24 are formed.
ただし、 I D Tと反射器の間の領域のすべてに S A W導波路を形成す る必要はなく、 任意の I D Tと反射器との間の領域に SAW導波路を設 ければよい。 この SAW導波路は入力 I D T 1から反射器 4までの伝搬 経路上または反射器 4から出力 I D T 2までの伝搬経路上の SAWの回 折損失を回避できるので、 S AWフィル夕における挿入損失を低減する ことができる。  However, the SAW waveguide need not be formed in the entire region between the IDT and the reflector, and the SAW waveguide may be provided in any region between the IDT and the reflector. This SAW waveguide can avoid SAW diffraction loss on the propagation path from the input IDT 1 to the reflector 4 or on the propagation path from the reflector 4 to the output IDT 2, reducing insertion loss at the SAW filter. can do.
また、 図 2 , 図 3及び図 4についても、 各 I D Tと各反射器との間の 領域にそれそれ SAW導波路を設けてもよい。 SAW導波路は、 均一な 表面構造の金属膜, 均一な表面構造の絶縁膜, グレーティング構造の金 属膜、 またはグレーティング構造の絶縁膜等によって形成することがで きる。  Also, in FIGS. 2, 3, and 4, a SAW waveguide may be provided in a region between each IDT and each reflector. The SAW waveguide can be formed of a metal film with a uniform surface structure, an insulating film with a uniform surface structure, a metal film with a grating structure, or an insulating film with a grating structure.
図 7に、 この発明の弾性表面波フィル夕の具体例を示す。  FIG. 7 shows a specific example of the surface acoustic wave filter according to the present invention.
この弾性表面波フィルタは、 1つの入力 I D T 1 , 1つの出力 I D T 2, 1つの反射器 4, 2つの SAW導波路 2 1 , 2 2とから構成される。 ここで、 入力 I D T 1及び出力 I D T 2は、 ともに電極指の周期入 1 = 3 Q jum, 電極指の対数 = 5 5対とする。  This surface acoustic wave filter includes one input IDT 1, one output IDT 2, one reflector 4, and two SAW waveguides 21, 22. Here, the input IDT 1 and the output IDT 2 are both assumed to have a period of electrode fingers 1 = 3 Q jum and the number of pairs of electrode fingers = 55 pairs.
反射器 4はグレーティング構造とし、 電極指の周期久 2 = 1 8 ja , 電極指の本数 = 1 6 0本とする。  The reflector 4 has a grating structure, the period of the electrode fingers 2 = 18 ja, and the number of electrode fingers = 160.
入力 I D T 1と反射器 4との間、 及び出力 I D T 2と反射器 4との間 には、 それぞれグレーティング構造の SAW導波路 2 1, 22を配置す る。 このグレーティング構造の周期は 14〃mとする。 Between input IDT 1 and reflector 4 and between output IDT 2 and reflector 4 The SAW waveguides 21 and 22 each having a grating structure are arranged in the first stage. The period of this grating structure is 14 m.
また、 入力 I DT 1と出力 I DT 2との間の距離を 100〃m程度と し、 入力 I DT 1と反射器 4とは同一の SAW伝搬路上から上下方向に 少しずれた構造としている。 ただし、 入力 I DT 1と反射器 4との間の 領域における損失を回避するために、 入力 I D Tと反射器とを結ぶ S A Wの伝搬経路をつなぐように、 SAW導波路 2 1は途中で折れ曲がった 形状としている。  The distance between the input IDT 1 and the output IDT 2 is about 100 μm, and the input IDT 1 and the reflector 4 have a structure that is slightly displaced in the vertical direction from the same SAW propagation path. However, in order to avoid loss in the area between the input IDT 1 and the reflector 4, the SAW waveguide 21 is bent halfway so as to connect the SAW propagation path connecting the input IDT and the reflector. It has a shape.
出力 I DT 2と反射器 4の位置関係、 SAW導波路 22の形状につい ても同様である。  The same applies to the positional relationship between the output IDT 2 and the reflector 4 and the shape of the SAW waveguide 22.
また、 入力 I DT 1 , 出力 I DT 2 , 反射器 4 , SAW導波路 2 1 , 22はすべて膜厚 1 zm程度の金属膜で形成され、 圧電基板 9上にそれ それの形状となるようにパ夕一ニングされる。 金属膜の材料はたとえば アルミニウムを用いることができる。  The input I DT 1, the output I DT 2, the reflector 4, and the SAW waveguides 21, 22 are all formed of a metal film having a thickness of about 1 zm. Paining is done. As the material of the metal film, for example, aluminum can be used.
上記のような構造の弾性表面波フィルタは、 縦方向の長さ約 1. 5m m, 横方向の長さ約 7. 5 mm程度の大きさのチップとして形成するこ とができる。  The surface acoustic wave filter having the above structure can be formed as a chip with a length of about 1.5 mm in the vertical direction and about 7.5 mm in the horizontal direction.
図 8に、 図 7に示したこの発明の弾性表面波フィルタの具体例におけ る挿入損失一周波数特性のグラフを示す。  FIG. 8 shows a graph of the insertion loss versus frequency characteristic in the specific example of the surface acoustic wave filter of the present invention shown in FIG.
このグラフによれば、 中心周波数を 85. 5MHzとして、 角形性に 優れた周波数特性を持つ弾性表面波フィル夕が得られたことがわかる。 参考として、 図 9に示した従来のトランスバーサル型のフィル夕では、 入力 I D Tをアポ夕ィズ重みづけし、 出力 I D T 2を間引き重みづけし た場合、 図 8と同等の周波数特性を持つ弾性表面波フィルタとするため には、 入力 I D Tの電極対数 = 295対, 出力 I D Tの電極対数 = 13 9対が必要となる。 このとき、 入力 I D Tの S AW伝搬方向の長さ = 1 0 · 6 2 mm , 出 力 I D Tの S AW伝搬方向の長さ = 5 . 0 0 4 mmであり、 トランスバ —サル型のフィルタの S AW伝搬方向の長さは合計 1 5 . 6 2 4 mmと なり、 この発明の図 7に示した具体例の長さ 7 . 5 mmよりもかなり長 い。 According to this graph, the center frequency was set to 85.5 MHz, and a surface acoustic wave filter having excellent frequency characteristics with squareness was obtained. For reference, in the conventional transversal type filter shown in Fig. 9, when the input IDT is weighted by the apoise and the output IDT 2 is weighted by thinning, the elasticity with the same frequency characteristics as in Fig. 8 is obtained. In order to use a surface acoustic wave filter, the number of input IDT electrode pairs = 295 pairs and the number of output IDT electrode pairs = 139 pairs are required. At this time, the length of the input IDT in the S AW propagation direction = 10 · 62 mm, and the length of the output IDT in the S AW propagation direction = 5.04 mm. The total length in the AW propagation direction is 15.624 mm, which is considerably longer than the length of the specific example shown in FIG. 7 of the present invention shown in FIG.
したがって、 この発明の構造の弾性表面波フィルタでは、 従来に比べ て、 S AW伝搬方向の長さを小さくできるため、 弾性表面波フィルタ自 体の小型化が可能である。  Therefore, in the surface acoustic wave filter having the structure of the present invention, the length in the SAW propagation direction can be reduced as compared with the related art, and the surface acoustic wave filter itself can be reduced in size.
この発明によれば、 従来に比べて、 弾性表面波の伝搬方向の長さを小 さくでき、 さらに角形性に優れた周波数特性を持つ弾性表面波フィルタ を提供することができる。  According to the present invention, it is possible to provide a surface acoustic wave filter that can reduce the length of the surface acoustic wave in the propagation direction as compared with the related art and has a frequency characteristic with excellent squareness.

Claims

請求の範囲 The scope of the claims
1 . 圧電基板と、 圧電基板上に配置された複数の弾性表面波伝搬路と、 複数の弾性表面波伝搬路を横断するように配置された反射器とから構成 され、 少なくとも 1つの弾性表面波伝搬路上には入カインタ一ディジ夕 ルトランスデューザが配置され、 他の弾性表面波伝搬路上の少なくとも 1つには出カインターディジタルトランスデューザが配置され、 さらに、 前記入カインタ一ディジタルトランスデューザと出カイン夕一ディジタ ルトランスデューザとは、 前記反射器に対して同じ側に配置されたこと を特徴とする弾性表面波フィル夕。 1. At least one surface acoustic wave comprising a piezoelectric substrate, a plurality of surface acoustic wave propagation paths arranged on the piezoelectric substrate, and a reflector arranged to traverse the plurality of surface acoustic wave propagation paths An input interdigital transducer is arranged on the propagation path, an output interdigital transducer is arranged on at least one of the other surface acoustic wave propagation paths, and the input interdigital transducer is further arranged. The surface acoustic wave filter and the output transducer are arranged on the same side with respect to the reflector.
2 . 前記入カイン夕ーディジタルトランスデューザと前記出カインタ一 ディジタルトランスデューサとが、 それそれ 1つであることを特徴とす る請求項 1記載の弾性表面波フィルタ。  2. The surface acoustic wave filter according to claim 1, wherein the input and output digital transducers and the output and output digital transducer are one each.
3 . 前記入力インターディジタルトランスデューザと反射器の間、 前記 出カイン夕一ディジタルトランスデューザと反射器の間のうち少なくと も一方の圧電基板上に弾性表面波導波路を形成したことを特徴とする請 求項 1または 2記載の弾性表面波フィル夕。  3. A surface acoustic wave waveguide is formed on at least one of the piezoelectric substrates between the input interdigital transducer and the reflector, and between the output interdigital transducer and the reflector. Surface acoustic wave filter according to claim 1 or 2.
4 . 圧電基板と、 圧電基板上に配置された複数の弾性表面波伝搬路とか らなり、 各弾性表面波伝搬路上には、 それぞれ所定の間隔をあけて 1つ のインタ一ディジタルトランスデューザと反射器とが配置され、 各イン タ一ディジ夕ルトランスデューサは、 弾性表面波の伝搬方向に対して垂 直な方向であって、 前記各反射器に対して同じ側に配置されたことを特 徴とする弾性表面波フィル夕。  4. Composed of a piezoelectric substrate and a plurality of surface acoustic wave propagation paths arranged on the piezoelectric substrate, and each of the surface acoustic wave propagation paths is provided with one interdigital transducer at a predetermined interval. A reflector is arranged, and each interdigital transducer is arranged in a direction perpendicular to the propagation direction of the surface acoustic wave and on the same side as each of the reflectors. Surface acoustic wave fill
5 . 前記ィンタ一ディジタルトランスデューサが 1つの入カインタ一デ イジ夕ルトランスデューサと、 1つの出力インタ一ディジタルトランス デューザとからなることを特徴とする請求項 4記載の弾性表面波フィル 夕。 5. The surface acoustic wave filter according to claim 4, wherein the interdigital transducer comprises one input interdigital transducer and one output interdigital transducer. evening.
6 . 前記弾性表面波伝搬路上に形成される任意のィンターディジタルト ランスデューザと反射器との間の圧電基板上に弾性表面波導波路を形成 したことを特徴とする請求項 4または 5記載の弾性表面波フィル夕。  6. The surface acoustic wave waveguide according to claim 4 or 5, wherein a surface acoustic wave waveguide is formed on a piezoelectric substrate between any interdigital transducer formed on the surface acoustic wave propagation path and a reflector. Surface wave fill evening.
7 . 前記弾性表面波導波路が、 均一な表面構造の金属膜, 均一な表面構 造の絶縁膜, グレーティング構造の金属膜、 またはグレーティング構造 の絶縁膜のうちいずれかを用いて形成されたことを特徴とする請求項 6 記載の弾性表面波フィル夕。 7. The surface acoustic wave waveguide is formed using any one of a metal film having a uniform surface structure, an insulating film having a uniform surface structure, a metal film having a grating structure, and an insulating film having a grating structure. 7. The surface acoustic wave filter according to claim 6, wherein:
PCT/JP1999/005208 1999-03-24 1999-09-22 Surface acoustic wave filter WO2000057548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11080091A JP2000278083A (en) 1999-03-24 1999-03-24 Surface acoustic wave filter
JP11/80091 1999-03-24

Publications (1)

Publication Number Publication Date
WO2000057548A1 true WO2000057548A1 (en) 2000-09-28

Family

ID=13708540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005208 WO2000057548A1 (en) 1999-03-24 1999-09-22 Surface acoustic wave filter

Country Status (2)

Country Link
JP (1) JP2000278083A (en)
WO (1) WO2000057548A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140252A (en) * 1976-05-18 1977-11-22 Matsushita Electric Ind Co Ltd Surface supersonic delay line
JPS5789321A (en) * 1980-11-25 1982-06-03 Nec Corp Surface acoustic wave device
JPS57208719A (en) * 1981-06-19 1982-12-21 Hitachi Ltd Surface acoustic wave device
JPS58191519A (en) * 1982-05-01 1983-11-08 Victor Co Of Japan Ltd Multi-channel filter
JPH03102906A (en) * 1989-09-18 1991-04-30 Hitachi Ltd Surface acoustic wave device, its manufacture and communication equipment using the device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140252A (en) * 1976-05-18 1977-11-22 Matsushita Electric Ind Co Ltd Surface supersonic delay line
JPS5789321A (en) * 1980-11-25 1982-06-03 Nec Corp Surface acoustic wave device
JPS57208719A (en) * 1981-06-19 1982-12-21 Hitachi Ltd Surface acoustic wave device
JPS58191519A (en) * 1982-05-01 1983-11-08 Victor Co Of Japan Ltd Multi-channel filter
JPH03102906A (en) * 1989-09-18 1991-04-30 Hitachi Ltd Surface acoustic wave device, its manufacture and communication equipment using the device

Also Published As

Publication number Publication date
JP2000278083A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP7292100B2 (en) Surface acoustic wave devices, filter circuits and electronic components
KR100397743B1 (en) Surface acoustic wave device
JP3695353B2 (en) Transversal surface acoustic wave filter
JP4607572B2 (en) Surface acoustic wave filter
JP2001094393A (en) Surface acoustic wave device and communication equipment
JP2000124762A (en) Surface acoustic wave filter
JP4696312B2 (en) Dual track SAW reflector filter using weighted reflective grating
WO2000057548A1 (en) Surface acoustic wave filter
JP3419949B2 (en) Vertically coupled dual mode SAW filter
JP4843862B2 (en) Surface acoustic wave device
RU2308799C1 (en) Saw filter
JPH05121996A (en) Surface acoustic wave filter
JP2000124768A (en) 2-stage cascade connection type transversal saw filter
JP4546652B2 (en) Surface acoustic wave filter
JPH05308242A (en) Surface acoustic wave transducer and surface acoustic wave device
JP2003069371A (en) Surface acoustic wave converter and saw filter employing the same
JP3901879B2 (en) Surface acoustic wave filter
JP2004235676A (en) Transversal saw filter
JP2004363824A (en) Surface acoustic wave filter
JP2005117508A (en) Transversal surface acoustic wave filter
JPH10327041A (en) Surface acoustic wave device
JP2012034082A (en) Surface acoustic wave device
JPH0918282A (en) Surface acoustic wave device
JP2008124703A (en) Surface acoustic wave filter
JP2001267876A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase