JP2004363824A - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter Download PDF

Info

Publication number
JP2004363824A
JP2004363824A JP2003158502A JP2003158502A JP2004363824A JP 2004363824 A JP2004363824 A JP 2004363824A JP 2003158502 A JP2003158502 A JP 2003158502A JP 2003158502 A JP2003158502 A JP 2003158502A JP 2004363824 A JP2004363824 A JP 2004363824A
Authority
JP
Japan
Prior art keywords
electrode
acoustic wave
surface acoustic
idt
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003158502A
Other languages
Japanese (ja)
Inventor
Kunihito Yamanaka
国人 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003158502A priority Critical patent/JP2004363824A/en
Publication of JP2004363824A publication Critical patent/JP2004363824A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transversal SAW (Surface Acoustic Wave) filter in which two IDT electrodes are adjacently arranged, ripples in a pass band are reduced and insertion loss is reduced. <P>SOLUTION: In the transversal surface acoustic wave filter, the two IDT electrodes are arranged on a piezoelectric substrate along the transmission direction of a surface wave by leaving a prescribed interval. When the waveguide length of the IDT electrode is set to be Wo and an electrode finger intersection length to be W, they are set to be 0.86≤W/Wo≤0.96. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、弾性表面波フィルタに関し、特にリップル及び挿入損失を改善した弾性表面波フィルタに関する。
【0002】
【従来の技術】近年、弾性表面波(Surface Acoustic Wave:以下、SAW)フィルタは移動体通信分野で広く利用され、高性能、小型、量産性等の優れた特徴があることから特に携帯電話等に多く用いられている。また、近年、携帯電話が急速に普及してきており、中でも画像などのデータ通信の需要増により、従来のPDC、AMPS方式等の狭帯域なキャリアを用いる通信方式から、高速で大容量に適した広帯域なキャリアを使うW−CDMA方式が普及され始めている。このようなW‐CDMA方式の携帯電話に使われるIFフィルタにおいては、低挿入損失で、且つ、通過帯域内リップルが小さいフィルタ特性が強く要求されており、具体的には、挿入損失10(dB)以下、リップル1.0(dB)以下の仕様が要求されている。
【0003】
図4は従来のIFフィルタに用いられるトランスバーサルSAWフィルタの構造を示す平面図である。圧電基板11の主面上にSAWの伝搬方向に沿って2個のIDT電極12、13を所定の間隙を空けて配置すると共に、該IDT電極12、13の間に入出力端子間の直達波を遮蔽するためのベタ電極14を配設する。IDT電極12、13はそれぞれ互いに間挿し合う電極指を有する一対のくし型電極により構成されており、IDT電極12の一方のくし形電極を入力端子INに接続すると共に、他方のくし形電極を接地する。また、IDT電極13の一方のくし形電極を出力端子OUTに接続すると共に、他方のくし形電極を接地する。そして、圧電基板11の長辺方向(SAWの伝搬方向)の両端部に、不要反射波を抑圧するための吸音材15、15を塗布してトランスバーサルSAWフィルタを形成する。
【0004】
しかしながら、図4に示すようなくし形電極を正、負、正と順番に並べた所謂正規型IDT電極の場合、SAWは伝搬方向に沿って左右に等しく伝搬するためフィルタの挿入損失が大きくなってしまうという問題があった。そこで、この問題を解決すべく、電極に方向性を持たせた所謂一方向性電極が用いられる。前記一方向性電極は、SAWの反射を利用するために電極幅の異なる複数の電極を組み合わせた単相一方向性変換器(Single Phase Uni−Directional Transducer:以下、SPUDTと称す)がよく知られている。図5(a)は、前記SPUDTの電極周期λの基本区間20の平面図及び断面図を示しており、電極周期λに対して3λ/8の電極幅を有する電極指とλ/8の電極幅を有する電極指から構成され、3λ/8電極指とλ/8電極指の位置を図示のように定めることで、SAWを反射させ励振を一方向性にする。前記SPUDTをトランスバーサルSAWフィルタに組み込んだ構造が図5(b)である。
【0005】
しかしながら、図5(b)のようにIDT電極22、23をSPUDTのみで構成すると、挿入損失は低減するもののIDT電極の方向性が強すぎるため、フィルタ特性に位相歪みが発生するという問題があった。そこで、トランスバーサルSAWフィルタの入出力IDT電極を、SAWの反射を打ち消して方向性を持たない電極(以下、反射間引き電極と称す)と、前述のSAWを反射させて方向性を持たせたSPUDTとを組み合わせることにより、IDT電極全体として適度な方向性を持たせ、低挿入損失と位相直線性とを同時に実現する設計手法が試みられてきた。図6(a)は前記反射間引き電極の電極周期λの基本区間30の平面図及び断面図を示しており、λ/8の電極幅を有する電極指を図示のように配置した構造である。該反射間引き電極のSAWの伝搬は双方向であり電極内でSAWの反射は起こらない。図6(b)は、前記反射間引き電極と前記SPUDTとをIDT電極32、33に適用したトランスバーサルSAWフィルタの構造を示しており、このような構造にすることで低挿入損失で、且つ、位相直線性に優れたフィルタ特性が得られる。
【0006】
また、米国特許5703427号に、方向性の異なるSPUDT基本区間を組み合わせて、IDT電極内部に幾つかの局所的な共振キャビティを生じさせ、IDT電極全体としては一方向性を持たせた変換器、所謂内部共振形一方向性変換器(以下、Resonant Single Phase Uni−Directional Transducer:RSPUDTと称す)が開示されている。前記RSPUDTの簡略図を図7に示す。図中の右矢印方向への伝搬方向を順方向、左矢印方向への伝搬方向を逆方向とすると、順方向にIDT電極を重み付けしたSPUDT基本区間41を50λ形成した第一のグループと、逆方向にIDT電極を重み付けしたSPUDT基本区間42を20λ形成した第二のグループと、更に順方向にIDT電極を重み付けしたSPUDT基本区間43を20λ形成した第三のグループから形成されている。従来は正と零の反射の重み付けをIDT電極に施すだけであったが、このような方向性の異なる基本区間を組み合わせたRSPUDTにすることにより、IDT電極に正と負と零の反射の重み付けを施すことができ、低挿入損失化、高減衰化、広帯域化したフィルタ特性が得られる。
【0007】
更に、トランスバーサルSAWフィルタのカットオフ特性を急峻にするためには、入出力IDT電極のどちらか一方、もしくは両方に、上述の反射の重み付けに加えて、励振の重み付けを施すことが一般的に行われている。
【0008】
【発明が解決しようとする課題】
図8は、前記RSPUDTを用いてIDT電極を構成したトランスバーサルSAWフィルタの実測フィルタ特性を示したものである。なお、圧電基板に45°回転X板Z方向伝搬Liを用いている。同図から分かるように、通過帯域内に周期的な細かいリップルが生じており、W−CDMA用IFフィルタとして要求されているリップル1.0dB以内の規格に対して余裕がないため、製造歩留まりが大きく劣化してしまうという問題があった。
【0009】
前記リップルが生じる原因としては、SAWの励振の際に生じる高次横モードのスプリアスの影響が考えられる。横モードのスプリアスを抑圧する手段として、特公平6−85492号及び特開平9−260996号にて、IDT電極の導波路長に対する電極指交差長の比率を変えることで2次の横モードのスプリアスを抑圧したSAW共振子及びフィルタが開示されている。図9は、前記先行技術に開示されているIDT電極の拡大図を示しており、IDT電極50の導波路部51において、電極指交差部52の上下にダミー電極部53、53を設けている。導波路部51の導波路長をWo、電極指交差部52の交差長をWとした時、特公平6−85492号では0.65≦W/Wo≦0.75の比率にすることで、2次の横モードのスプリアスを抑圧したSAW共振子が開示されている。また、特開平9−260996号においては、0.75<W/Wo≦0.85の比率にすることで、2次の横モードのスプリアスを抑圧したSAW装置が開示されている。しかしながら、いずれの先行技術においても、W−CDMA用IFフィルタに要求されるリップルの仕様を満たすことが困難であった。
【0010】
本発明は、以上述べた問題を解決すべくなされたものであり、トランスバーサルSAWフィルタにおいて、通過帯域内のリップルを低減すると共に挿入損失を小さくしたトランスバーサルSAWフィルタを提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために本発明に係るSAWフィルタの請求項1記載の発明は、圧電基板上に表面波の伝搬方向に沿って2つのIDT電極を所定の間隔をおいて配置してなるトランスバーサル弾性表面波フィルタにおいて、該IDT電極の導波路長をWo、電極指交差長をWとした時、0.86≦W/Wo≦0.96としたことを特徴とする弾性表面波フィルタである。請求項2記載の発明は、前記IDT電極は、電極周期の一波長分を基本区間とした時、一方向性を有する基本区間、反射機能を有する基本区間、反射機能を有さない基本区間、のうち少なくとも一つ以上の基本区間を有していることを特徴とする請求項1に記載の弾性表面波フィルタである。請求項3記載の発明は、前記圧電基板は、45°回転X板Z方向伝搬Liであることを特徴とする請求項1乃至2のいずれかに記載の弾性表面波フィルタである。請求項4記載の発明は、前記弾性表面波フィルタは、W−CDMA用IFフィルタであることを特徴とする請求項1乃至3のいずれかに記載の弾性表面波フィルタである。
【0012】
【発明の実施の形態】
以下、本発明を図面に図示した実施の形態例に基づいて詳細に説明する。図1は、本発明に係るトランスバーサルSAWフィルタの平面図である。圧電基板の主面上にSAWの伝搬方向に沿って2つのIDT電極2、3を所定の間隙をあけて配置すると共に、該IDT電極2、3の間に入出力端子間の直達波を遮蔽する為のベタ電極4を配設する。IDT電極2,3はそれぞれ互いに間挿し合う複数の電極指を有する一対のくし形電極により構成されており、IDT電極2の一方のくし形電極を入力端子INに接続すると共に、他方のくし型電極は接地し、IDT電極3の一方のくし形電極を出力端子OUTに接続すると共に、他方のくし型電極を接地する。そして、圧電基板のSAWの伝搬方向の両端部に、不要反射波を抑圧するための吸音材を塗布してトランスバーサルSAWフィルタを形成する。前記IDT電極2、3の電極設計方法としては、方向性が異なるSPUDT基本区間を組み合わせて、IDT電極内部に幾つかの局所的な共振キャビティを生じさせ、IDT電極全体として一方向性を持たせたRSPUDTを用いている。本発明の特徴は、図1に示すようにIDT電極2、3の電極指の導波路部6において、電極指交差部7の上下にダミー電極部8を設け、且つ、IDT電極の導波路長をWo、電極指交差長をWとした時、0.86≦W/Wo≦0.96の範囲に設定したことである。
【0013】
ここで、導波路長と電極指交差長の関係について述べる。従来のトランスバーサルSAWフィルタにおいては、導波路長Woと電極指交差長WはW=Wo、即ちW/Wo=1.00とした設計であったため高次横モードが生じ、通過帯域を形成する基本次のモード(0次モード)と高次横モードが干渉してリップルが生じ、挿入損失が劣化すると考えられる。そこで、本発明においては、導波路長Woと電極指交差長Wの比率W/Woを変化させることで、リップル及び挿入損失の改善を図った。図2は、図1のトランスバーサルSAWフィルタにおいて、中心周波数をW−CDMA方式に用いられる380MHzとして、導波路長Woと電極指交差長Wの比率W/Woとリップル及び挿入損失の関係をシミュレーションにより求めたグラフである。なお、W/Woは電極交差部の幅Wを400(μm)に固定した状態で、ダミー電極長Dを変化させることにより比率を変えた。(a)はW/Woとリップルの関係を示しており、W/W=0.86においてリップルは0.47(dB)と最小値をとり、従来のW/Wo=1.00と比較するとリップルが大幅に改善されている。(b)はW/Woと挿入損失の関係を示しており、W/Wo=0.86〜0.88において挿入損失は7.8(dB)と最小値をとり、従来のW/Wo=1.00と比較して大幅に改善されている。特に、0.86≦W/Wo≦0.96の範囲内においては、リップル及び挿入損失共に数値のばらつきが小さく安定して低い値をとることが分かる。
【0014】
ここで、従来の特公平6−85492号及び特開平9−260996号に開示されている0.65≦W/Wo≦0.75及び0.75<W/Wo≦0.85について着目すると、図2より、リップル及び挿入損失とも数値にばらつきが生じ不安定であり、特に、リップルについてはW−CDMA用IFフィルタに要求されるリップル1.0dB以内の仕様に対して余裕がないことが分かる。
【0015】
また、電極指交差長Wを400(μm)に固定した時、従来の0.65≦W/Wo≦0.75及び0.75<W/Wo≦0.85の場合は導波路長Woが471〜615(μm)であるのに対し、本発明の0.86≦W/Wo≦0.96においては、導波路長Woが416〜465(μm)と小さいので、チップサイズの小型化に有利である。また、導波路長Woを450(μm)で固定した時、従来の0.65≦W/Wo≦0.75及び0.75<W/Wo≦0.85の場合は電極指交差長Wが292〜382(μm)であるのに対し、本発明の0.86≦W/Wo≦0.96においては、電極指交差長Wが382〜432(μm)と大きいので、低インピーダンス化が容易にでき、周辺回路と整合し易い利点がある。
【0016】
以上のことから、トランスバーサルSAWフィルタにおいてIDT電極の導波路長Woと電極指交差長Wの比率を0.86≦W/Wo≦0.96の範囲に設定することにより、通過帯域内のリップルを低減すると共に挿入損失を小さくし、且つ、小型化及び低インピーダンス化に有利であることが判明した。
【0017】
図3は、図1に示す本発明に係るトランスバーサルSAWフィルタの実測フィルタ特性を示したものである。なお、中心周波数はW−CDMA用IFフィルタに適用される380MHzとし、圧電基板は45°回転X板Z方向伝搬Liを用いている。そして、IDT電極2,3はRSPUDTで形成し、電極指交差長Wを400(μm)、導波路長Woを440(μm)、即ちW/Wo=0.91とした。同図から明らかなように、図8に示した従来のフィルタ特性と比較して通過帯域内のリップルが低減し、最小挿入損失も従来の約7.8dBから約6.6dBと大幅に改善されていることが分かる。
【0018】
なお、本実施例においては、トランスバーサルSAWフィルタのIDT電極にRSPUDTを用いたが、それ以外の構造でもよく、重み付けを施さない正規型IDTや、反射と励振のどちらか一方、もしくは反射と励振の両方に重み付けを施したIDT電極においても、本発明が適用できることは言うまでもない。また、圧電基板においては、45°回転X板Z方向伝搬Liを適用した例について説明してきたが他のカットアングルでもよく、また、他の圧電材料、例えばニオブ酸リチウム、水晶、ランガサイト、四方酸リチウム等に適用できることは言うまでもない。
【0019】
【発明の効果】
以上説明した如く本発明によれば、トランスバーサルSAWフィルタにおいて、IDT電極の導波路長Woと電極指交差長Wの比率を、0.86≦W/Wo≦0.96とすることにより、通過帯域内のリップル及び挿入損失を低減できたので、製造歩留まりを改善することができる。
【図面の簡単な説明】
【図1】本発明に係るトランスバーサルSAWフィルタの平面図を示す。
【図2】本発明に係るトランスバーサルSAWフィルタのW/Woとリップルの関係を(a)に、W/Woと挿入損失の関係を(b)に示す。
【図3】本発明に係るトランスバーサルSAWフィルタの実測フィルタ特性を示す。
【図4】従来のトランスバーサルSAWフィルタの平面図を示す。
【図5】SPUDTを説明する図であり、(a)にSPUDTの基本区間、(b)にSPUDTを適用したトランスバーサルSAWフィルタの平面図を示す。
【図6】反射間引き電極を説明する図であり、(a)に反射間引き電極の基本区間、(b)にSPUDT及び反射間引き電極を適用したトランスバーサルSAWフィルタの平面図を示す。
【図7】RSPUDTの概略図を示す。
【図8】従来のトランスバーサルSAWフィルタの実測フィルタ特性を示す。
【図9】ダミー電極を設けたIDT電極の拡大図を示す。
【符号の説明】
1:圧電基板
2、3:IDT電極
4:ベタ電極
6:導波路部
7:電極指交差部
8:ダミー電極部
[0001]
The present invention relates to a surface acoustic wave filter, and more particularly to a surface acoustic wave filter with improved ripple and insertion loss.
[0002]
2. Description of the Related Art In recent years, surface acoustic wave (SAW) filters have been widely used in the field of mobile communication and have excellent characteristics such as high performance, small size, mass productivity, and the like. Many are used. In recent years, mobile phones have been rapidly spreading, and in particular, due to an increase in demand for data communication such as images, a communication system using a narrow band carrier such as a conventional PDC or AMPS system has been adapted to high speed and large capacity. The W-CDMA system using a wideband carrier has begun to spread. In an IF filter used in such a W-CDMA mobile phone, a filter characteristic with low insertion loss and small ripple in a pass band is strongly required. Specifically, an insertion loss of 10 (dB) is required. Hereafter, a specification of ripple 1.0 (dB) or less is required.
[0003]
FIG. 4 is a plan view showing the structure of a transversal SAW filter used for a conventional IF filter. Two IDT electrodes 12 and 13 are arranged on the main surface of the piezoelectric substrate 11 along the SAW propagation direction with a predetermined gap therebetween, and a direct wave between the input and output terminals is provided between the IDT electrodes 12 and 13. Is provided with a solid electrode 14 for shielding the light. Each of the IDT electrodes 12 and 13 is formed of a pair of comb-shaped electrodes having electrode fingers interposed therebetween, and connects one of the IDT electrodes 12 to the input terminal IN and connects the other to the input terminal IN. Ground. Further, one of the IDT electrodes 13 is connected to the output terminal OUT, and the other IDT electrode 13 is grounded. Then, sound absorbing materials 15 for suppressing unnecessary reflected waves are applied to both ends of the piezoelectric substrate 11 in the long side direction (the SAW propagation direction) to form a transversal SAW filter.
[0004]
However, as shown in FIG. 4, in the case of a so-called regular IDT electrode in which comb electrodes are arranged in the order of positive, negative, and positive, SAW propagates equally to the left and right along the propagation direction, so that the insertion loss of the filter increases. There was a problem that it would. Therefore, in order to solve this problem, a so-called unidirectional electrode in which the electrode has directionality is used. As the unidirectional electrode, a single-phase unidirectional transducer (hereinafter, referred to as SPUDT) in which a plurality of electrodes having different electrode widths are combined to utilize SAW reflection is well known. ing. FIG. 5A shows a plan view and a sectional view of the basic section 20 of the electrode period λ of the SPUDT. It is composed of electrode fingers having a width, and by determining the positions of the 3λ / 8 electrode fingers and the λ / 8 electrode fingers as shown in the figure, the SAW is reflected and the excitation is made unidirectional. FIG. 5B shows a structure in which the SPUDT is incorporated in a transversal SAW filter.
[0005]
However, if the IDT electrodes 22 and 23 are composed of only SPUDTs as shown in FIG. 5B, the insertion loss is reduced, but the directionality of the IDT electrodes is too strong, causing a problem that phase distortion occurs in the filter characteristics. Was. Therefore, an input / output IDT electrode of a transversal SAW filter is composed of an electrode having no directionality by canceling the reflection of the SAW (hereinafter, referred to as a reflection thinning electrode) and a SPUDT having the directionality by reflecting the SAW. By combining the above, a design method has been attempted in which the IDT electrode as a whole has an appropriate directionality and realizes low insertion loss and phase linearity at the same time. FIG. 6A shows a plan view and a cross-sectional view of a basic section 30 of the reflective thinning electrode having an electrode period λ, and has a structure in which electrode fingers having an electrode width of λ / 8 are arranged as shown. The propagation of the SAW of the reflection thinning electrode is bidirectional, and no reflection of the SAW occurs in the electrode. FIG. 6B shows a structure of a transversal SAW filter in which the reflection thinning electrode and the SPUDT are applied to the IDT electrodes 32 and 33. By adopting such a structure, low insertion loss and Filter characteristics with excellent phase linearity can be obtained.
[0006]
Also, U.S. Pat. No. 5,703,427 discloses a converter in which SPUDT basic sections having different directions are combined to generate several local resonant cavities inside the IDT electrode, and the IDT electrode as a whole has one direction. A so-called internal resonance type unidirectional converter (hereinafter referred to as Resonant Single Phase Uni-Directional Transducer: RSPUDT) is disclosed. FIG. 7 shows a simplified diagram of the RSPUDT. Assuming that the propagation direction in the right arrow direction in the drawing is the forward direction, and the propagation direction in the left arrow direction is the reverse direction, the first group in which the SPUDT basic section 41 in which the IDT electrode is weighted in the forward direction is formed at 50λ, A second group is formed by forming a SPUDT basic section 42 in which the IDT electrodes are weighted in the direction by 20λ, and a third group is formed by forming a SPUDT basic section 43 in which the IDT electrodes are weighted in the forward direction by 20λ. Conventionally, only positive and zero reflection weights are applied to the IDT electrode. However, the IDT electrode is weighted with positive, negative and zero reflections by using an RSPUDT combining basic sections having different directions. And a filter characteristic with low insertion loss, high attenuation, and wide band can be obtained.
[0007]
Furthermore, in order to sharpen the cut-off characteristic of the transversal SAW filter, it is general that one or both of the input and output IDT electrodes are weighted by excitation in addition to the above-mentioned weighting of reflection. Is being done.
[0008]
[Problems to be solved by the invention]
FIG. 8 shows measured filter characteristics of a transversal SAW filter in which an IDT electrode is formed by using the above RSPUDT. It should be noted that Li 2 B 4 O 7 propagating in the Z direction in a 45 ° rotation X plate is used for the piezoelectric substrate. As can be seen from the figure, periodic fine ripples are generated in the pass band, and there is no margin for the specification within 1.0 dB of the ripple required as the IF filter for W-CDMA. There was a problem that it deteriorated greatly.
[0009]
A possible cause of the ripple is considered to be the influence of higher-order transverse mode spurious generated when exciting the SAW. As means for suppressing the spurious response in the transverse mode, Japanese Patent Publication No. Hei 6-85492 and Japanese Patent Application Laid-Open No. 9-260996 disclose a second-order transverse mode spurious response by changing the ratio of the electrode finger cross length to the waveguide length of the IDT electrode. Discloses a SAW resonator and a filter that suppress the above. FIG. 9 shows an enlarged view of the IDT electrode disclosed in the prior art. In the waveguide portion 51 of the IDT electrode 50, dummy electrode portions 53, 53 are provided above and below an electrode finger intersection 52. . Assuming that the waveguide length of the waveguide portion 51 is Wo and the intersection length of the electrode finger intersection portion 52 is W, the ratio of 0.65 ≦ W / Wo ≦ 0.75 in JP-B-6-85492 is obtained. A SAW resonator in which spurious of a second-order transverse mode is suppressed is disclosed. Japanese Patent Application Laid-Open No. 9-260996 discloses a SAW device in which the ratio of 0.75 <W / Wo ≦ 0.85 is suppressed to suppress the spurious in the second-order transverse mode. However, in any of the prior arts, it has been difficult to satisfy the ripple specification required for the W-CDMA IF filter.
[0010]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a transversal SAW filter that reduces ripple in a pass band and reduces insertion loss in a transversal SAW filter. .
[0011]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a SAW filter according to the present invention, comprising: a transformer in which two IDT electrodes are arranged on a piezoelectric substrate at a predetermined interval along a propagation direction of a surface acoustic wave. In the versal surface acoustic wave filter, when the waveguide length of the IDT electrode is Wo and the electrode finger intersection length is W, 0.86 ≦ W / Wo ≦ 0.96. is there. In the invention according to claim 2, the IDT electrode has a basic section having one direction, a basic section having a reflecting function, a basic section having no reflecting function, when a basic section is one wavelength of an electrode cycle. 2. The surface acoustic wave filter according to claim 1, wherein the surface acoustic wave filter has at least one or more basic sections. According to a third aspect of the present invention, in the surface acoustic wave filter according to any one of the first to second aspects, the piezoelectric substrate is made of Li 2 B 4 O 7 propagated in a 45-degree rotation X-plate Z direction. is there. The invention according to claim 4 is the surface acoustic wave filter according to any one of claims 1 to 3, wherein the surface acoustic wave filter is an IF filter for W-CDMA.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on an embodiment illustrated in the drawings. FIG. 1 is a plan view of a transversal SAW filter according to the present invention. The two IDT electrodes 2 and 3 are arranged on the main surface of the piezoelectric substrate along the SAW propagation direction with a predetermined gap therebetween, and a direct wave between the input and output terminals is shielded between the IDT electrodes 2 and 3. The solid electrode 4 for performing the operation is provided. Each of the IDT electrodes 2 and 3 is constituted by a pair of comb-shaped electrodes having a plurality of electrode fingers interposed between each other. The electrode is grounded, and one comb-shaped electrode of the IDT electrode 3 is connected to the output terminal OUT, and the other comb-shaped electrode is grounded. Then, a sound absorbing material for suppressing unnecessary reflected waves is applied to both ends of the piezoelectric substrate in the SAW propagation direction to form a transversal SAW filter. The electrode design method of the IDT electrodes 2 and 3 is to combine SPUDT basic sections having different directions so as to generate some local resonance cavities inside the IDT electrode and to make the entire IDT electrode unidirectional. RSPUDT is used. A feature of the present invention is that, as shown in FIG. 1, in the waveguide portions 6 of the electrode fingers of the IDT electrodes 2 and 3, dummy electrode portions 8 are provided above and below the electrode finger intersection portions 7 and the waveguide length of the IDT electrodes Is Wo and the electrode finger intersection length is W, the range of 0.86 ≦ W / Wo ≦ 0.96 is set.
[0013]
Here, the relationship between the waveguide length and the electrode finger intersection length will be described. In the conventional transversal SAW filter, the waveguide length Wo and the electrode finger intersection length W are designed to be W = Wo, that is, W / Wo = 1.00, so that a higher-order transverse mode is generated and a pass band is formed. It is considered that the fundamental-order mode (0-order mode) and the higher-order transverse mode interfere with each other to generate ripples, thereby deteriorating insertion loss. Therefore, in the present invention, the ripple and the insertion loss are improved by changing the ratio W / Wo of the waveguide length Wo and the electrode finger intersection length W. FIG. 2 simulates the relationship between the ratio W / Wo of the waveguide length Wo and the electrode finger cross length W and the relationship between the ripple and the insertion loss in the transversal SAW filter of FIG. 1 with the center frequency set to 380 MHz used in the W-CDMA system. 6 is a graph obtained by the following. The ratio of W / Wo was changed by changing the length D of the dummy electrode while the width W of the electrode intersection was fixed at 400 (μm). (A) shows the relationship between W / Wo and the ripple. When W / W = 0.86, the ripple has a minimum value of 0.47 (dB), and is compared with the conventional W / Wo = 1.00. The ripple has been greatly improved. (B) shows the relationship between W / Wo and insertion loss. When W / Wo = 0.86 to 0.88, the insertion loss takes a minimum value of 7.8 (dB), and the conventional W / Wo = This is greatly improved compared to 1.00. In particular, it can be seen that within the range of 0.86 ≦ W / Wo ≦ 0.96, both the ripple and the insertion loss have a small variation in numerical values and take a stable low value.
[0014]
Here, paying attention to 0.65 ≦ W / Wo ≦ 0.75 and 0.75 <W / Wo ≦ 0.85 disclosed in the conventional Japanese Patent Publication No. 6-85492 and JP-A-9-260996, From FIG. 2, it can be seen that the ripple and the insertion loss are unstable due to variations in the numerical values, and in particular, there is no room for the ripple within 1.0 dB of the ripple required for the IF filter for W-CDMA. .
[0015]
When the electrode finger intersection length W is fixed to 400 (μm), the waveguide length Wo is reduced in the conventional cases of 0.65 ≦ W / Wo ≦ 0.75 and 0.75 <W / Wo ≦ 0.85. In the case of 0.86 ≦ W / Wo ≦ 0.96 of the present invention, the waveguide length Wo is as small as 416 to 465 (μm), whereas the chip length is 471 to 615 (μm). It is advantageous. Further, when the waveguide length Wo is fixed at 450 (μm), the electrode finger intersection length W is 0.65 ≦ W / Wo ≦ 0.75 and 0.75 <W / Wo ≦ 0.85 in the related art. In the case of 0.86 ≦ W / Wo ≦ 0.96 of the present invention, the electrode finger intersection length W is as large as 382 to 432 (μm), so that the impedance can be easily reduced. Therefore, there is an advantage that matching with peripheral circuits is easy.
[0016]
As described above, by setting the ratio of the waveguide length Wo of the IDT electrode to the electrode finger intersection length W in the transversal SAW filter in the range of 0.86 ≦ W / Wo ≦ 0.96, the ripple in the pass band can be reduced. It has been found that this is advantageous for reducing the insertion loss and for reducing the size and impedance.
[0017]
FIG. 3 shows measured filter characteristics of the transversal SAW filter according to the present invention shown in FIG. The center frequency is set to 380 MHz applied to the IF filter for W-CDMA, and the piezoelectric substrate is made of Li 2 B 4 O 7 propagating in the Z direction in a 45 ° rotating X-plate. The IDT electrodes 2 and 3 were formed of RSSPUDT, and the electrode finger intersection length W was 400 (μm) and the waveguide length Wo was 440 (μm), that is, W / Wo = 0.91. As is apparent from FIG. 8, the ripple in the pass band is reduced as compared with the conventional filter characteristic shown in FIG. 8, and the minimum insertion loss is greatly improved from about 7.8 dB to about 6.6 dB. You can see that.
[0018]
In the present embodiment, the RSPUDT is used for the IDT electrode of the transversal SAW filter. However, other structures may be used, such as a normal type IDT without weighting, one of reflection and excitation, or reflection and excitation. Needless to say, the present invention can be applied to an IDT electrode in which both are weighted. Further, in the piezoelectric substrate, an example has been described in which a 45 ° rotation X-plate Z-direction propagation Li 2 B 4 O 7 is applied. However, other cut angles may be used, and other piezoelectric materials such as lithium niobate, quartz It is needless to say that the present invention can be applied to, for example, langasite, lithium tetraoxide and the like.
[0019]
【The invention's effect】
As described above, according to the present invention, in the transversal SAW filter, the ratio between the waveguide length Wo of the IDT electrode and the electrode finger crossing length W is set to 0.86 ≦ W / Wo ≦ 0.96, thereby allowing the transit. Since the in-band ripple and insertion loss can be reduced, the manufacturing yield can be improved.
[Brief description of the drawings]
FIG. 1 shows a plan view of a transversal SAW filter according to the present invention.
FIGS. 2A and 2B show the relationship between W / Wo and ripple in the transversal SAW filter according to the present invention, and FIG. 2B shows the relationship between W / Wo and insertion loss.
FIG. 3 shows measured filter characteristics of a transversal SAW filter according to the present invention.
FIG. 4 shows a plan view of a conventional transversal SAW filter.
FIGS. 5A and 5B are diagrams illustrating SPUDT, wherein FIG. 5A is a plan view of a basic section of SPUDT, and FIG. 5B is a plan view of a transversal SAW filter using SPUDT.
6A and 6B are diagrams illustrating a reflection thinning electrode, wherein FIG. 6A is a plan view of a transversal SAW filter in which a basic section of the reflection thinning electrode is applied, and FIG.
FIG. 7 shows a schematic diagram of an RSPUDT.
FIG. 8 shows measured filter characteristics of a conventional transversal SAW filter.
FIG. 9 is an enlarged view of an IDT electrode provided with a dummy electrode.
[Explanation of symbols]
1: Piezoelectric substrate 2, 3: IDT electrode 4: Solid electrode 6: Waveguide portion 7: Electrode finger intersection 8: Dummy electrode portion

Claims (4)

圧電基板上に弾性表面波の伝搬方向に沿って2つのIDT電極を所定の間隔をおいて配置してなるトランスバーサル弾性表面波フィルタにおいて、該IDT電極の導波路長をWo、電極指交差長をWとした時、0.86≦W/Wo≦0.96としたことを特徴とする弾性表面波フィルタ。In a transversal surface acoustic wave filter in which two IDT electrodes are arranged at predetermined intervals along a propagation direction of a surface acoustic wave on a piezoelectric substrate, the waveguide length of the IDT electrode is Wo, and the electrode finger intersection length is Where W is 0.85 ≦ W / Wo ≦ 0.96. 前記IDT電極は、電極周期の一波長分を基本区間とした時、一方向性を有する基本区間、反射機能を有する基本区間、反射機能を有さない基本区間、のうち少なくとも一つ以上の基本区間を有していることを特徴とする請求項1に記載の弾性表面波フィルタ。The IDT electrode has at least one of a basic section having one direction, a basic section having a reflecting function, and a basic section having no reflecting function, when a basic section is one wavelength of the electrode period. The surface acoustic wave filter according to claim 1, wherein the surface acoustic wave filter has a section. 前記圧電基板は、45°回転X板Z方向伝搬Liであることを特徴とする請求項1乃至2のいずれかに記載の弾性表面波フィルタ。The piezoelectric substrate, surface acoustic wave filter according to any one of claims 1 to 2, characterized in that a 45 ° rotation X plate Z-propagating Li 2 B 4 O 7. 前記弾性表面波フィルタは、W−CDMA用IFフィルタであることを特徴とする請求項1乃至3のいずれかに記載の弾性表面波フィルタ。The surface acoustic wave filter according to any one of claims 1 to 3, wherein the surface acoustic wave filter is a W-CDMA IF filter.
JP2003158502A 2003-06-03 2003-06-03 Surface acoustic wave filter Withdrawn JP2004363824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158502A JP2004363824A (en) 2003-06-03 2003-06-03 Surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158502A JP2004363824A (en) 2003-06-03 2003-06-03 Surface acoustic wave filter

Publications (1)

Publication Number Publication Date
JP2004363824A true JP2004363824A (en) 2004-12-24

Family

ID=34051884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158502A Withdrawn JP2004363824A (en) 2003-06-03 2003-06-03 Surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP2004363824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016960A (en) * 2007-06-29 2009-01-22 Nippon Dempa Kogyo Co Ltd Acoustic wave device
CN102571025A (en) * 2012-01-20 2012-07-11 东华大学 Wavelet transformation device for small low-insertion-loss single-scaling surface acoustic wave

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016960A (en) * 2007-06-29 2009-01-22 Nippon Dempa Kogyo Co Ltd Acoustic wave device
CN102571025A (en) * 2012-01-20 2012-07-11 东华大学 Wavelet transformation device for small low-insertion-loss single-scaling surface acoustic wave

Similar Documents

Publication Publication Date Title
JPH09167936A (en) Surface acoustic wave device
CN109787579B (en) SAW resonator with reduce spurious function
JP2007019710A (en) Surface acoustic wave device
JP3419339B2 (en) Surface acoustic wave filters, duplexers, communication equipment
WO2000076067A1 (en) Saw filter
JP3435638B2 (en) Surface acoustic wave device and method of manufacturing the same
JP2019125856A (en) Acoustic wave resonator, filter and multiplexer
JP2001308675A (en) Surface wave filter and common device, communication device
US7772942B2 (en) Elastic wave filter utilizing a sub-propagation mode response to increase out of band attenuation
JP4821079B2 (en) Comb electrode section for surface acoustic wave, surface acoustic wave device, communication device
JPWO2005036743A1 (en) Boundary acoustic wave device
EP0930703A2 (en) Surface acoustic wave filter having improved frequency characteristic
JP4457914B2 (en) Unidirectional surface acoustic wave transducer and surface acoustic wave device using the same
JP2004363824A (en) Surface acoustic wave filter
JP2001127580A (en) Surface acoustic wave device
JP2004260402A (en) Surface acoustic wave device and communication device having it
JP4548305B2 (en) Dual-mode surface acoustic wave filter
JP2004165879A (en) Surface acoustic wave element
JP3597483B2 (en) Surface acoustic wave device
JP2003218665A5 (en)
JP3456810B2 (en) Surface acoustic wave filter
JP3597454B2 (en) Surface acoustic wave device
JP4506394B2 (en) Unidirectional surface acoustic wave transducer and surface acoustic wave device using the same
JP2000224003A (en) Cascade connection dual-mode saw filter
JP2006157557A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

RD03 Notification of appointment of power of attorney

Effective date: 20060525

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Effective date: 20060809

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A977 Report on retrieval

Effective date: 20081127

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20081209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090205