WO2000055958A1 - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
WO2000055958A1
WO2000055958A1 PCT/JP1999/001315 JP9901315W WO0055958A1 WO 2000055958 A1 WO2000055958 A1 WO 2000055958A1 JP 9901315 W JP9901315 W JP 9901315W WO 0055958 A1 WO0055958 A1 WO 0055958A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
rotor
slot
electric machine
rotor winding
Prior art date
Application number
PCT/JP1999/001315
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Mori
Ryoichi Shiobara
Kenichi Hattori
Masayuki Kaiho
Akiyoshi Iida
Shigekazu Kieda
Toshio Ootaguro
Shingo Yokoyama
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1999/001315 priority Critical patent/WO2000055958A1/en
Publication of WO2000055958A1 publication Critical patent/WO2000055958A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors

Definitions

  • the present invention relates to a rotating electric machine, and is particularly suitable for a large-capacity gas direct cooling type rotating electric machine, for example, a turbine generator.
  • Generators especially turbine generators, have a plurality of rotor windings and an axially formed winding slot in which the windings are arranged.
  • the winding slots are provided on the outer peripheral surface of the rotor on both sides of the magnetic pole portion of the rotor body at intervals, and a plurality of rotor windings constituting the same magnetic pole are arranged concentrically around the magnetic pole. ing.
  • This rotor winding is formed by stacking a plurality of winding conductors in the radial direction in a radial direction, and an insulating layer is provided between the turns.
  • the rotor winding is firmly edged inside the winding slot in the rotor so that the rotor winding is not jumped in the outer diameter direction of the winding due to the strong centrifugal force caused by the rotation of the rotor.
  • the rotor is fixed and is held at the rotor end by a cylindrical holding ring provided so as to be in contact with the outer periphery of the winding.
  • the insulation layer of the rotor winding is made of a material having high heat resistance such as force, but its heat resistance temperature is limited, and the higher the heat resistance temperature, the higher the cost.
  • the thermal expansion of the wound conductor due to the temperature rise causes a large distortion to the wound wire and the rotor, which may cause rotational vibration. Therefore, as described in Japanese Patent Application Laid-Open No. Hei 9-285502, it has been devised to cool the rotor windings with a cooling fluid in a structure called a radial ventilation flow path cooling method. ing.
  • a sub-slot is provided at the bottom of the winding slot as a ventilation channel from the end of the winding, and a large number of rotor windings are secured while ensuring electrical insulation between the turns.
  • a radial ventilation channel is provided. ⁇
  • a hole is also provided in the edge so that this flow path communicates with the outer diameter side of the rotor, forming a radial ventilation passage. This allows the cooling fluid to flow from the sub-slot to the radial flow path formed in the rotor winding, thereby forcibly cooling the rotor winding in the winding slot. It is common to use air or hydrogen as the cooling fluid.
  • the rotor winding of the winding end located inside the retaining ring is cooled by natural convection or thermosyphon.
  • heat is removed by local flow generated due to the difference in density of the cooling fluid between the portion that receives heat from the rotor winding and the portion that does not.
  • thermosyphon heat transfer in the rotor winding at the winding end located inside the retaining ring increases the temperature of the rotor windings and causes the rotor windings to rotate with each other.
  • the distance between the cooling fluids becomes smaller, the cooling fluid flow caused by the density difference and centrifugal force becomes worse, and the cooling fluid flow becomes lower.
  • the temperature at the end of the rotor winding and at the end of the winding slot is relatively higher than the temperature of the portion having the radial flow path.
  • this portion is a portion where the amount of thermal elongation of the rotor winding is large, and a portion that extends in the circumferential direction of the rotor winding, so that a bending moment is also added thereto. If a large number of cooling channels such as directional cooling channels are provided, the strength of the rotor winding is reduced, which may cause deformation of the winding. For this reason, a large capacity is achieved by reducing the output per generator volume, that is, by increasing the size of the generator and reducing the heat load to secure a large output. I had to do it. Disclosure of the invention
  • An object of the present invention is to provide a rotating electric machine that is inexpensive, has high reliability, and can increase the output in a compact manner.
  • a first feature of the present invention for achieving the above object is that a rotor having a plurality of winding slots on an outer peripheral surface extending in the axial direction at circumferentially spaced intervals on both sides of a magnetic pole portion.
  • a plurality of rotor windings alternately laminated with a conductor and an insulating material so as to extend inside the winding slot and outside the winding slot concentrically with respect to the magnetic pole;
  • a holding ring for holding an end of the rotor winding inside the winding slot and an outer periphery of a portion extending outside the winding slot; and a distribution device for flowing a cooling fluid inside the rotating electric machine.
  • a plurality of radial flow paths are provided so that the cooling fluid flows in a radial direction in a portion of the rotor winding located on the center side in the winding slot.
  • the cooling fluid is applied axially to the part located inside the winding slot inside the retaining ring of
  • An axial flow passage communicating with the radial flow passage is provided between the radial space and a space extending outside the winding slot inside the retaining ring of the rotor winding.
  • the axial flow passage is formed so as to be located at an outer peripheral portion of the rotor winding or at a portion near the outer peripheral portion.
  • an insulation block is arranged on an outer peripheral surface of the rotor winding, and the axial flow passage is formed on an inner surface of an outermost layer of the rotor winding. is there.
  • the block is formed of a thermosetting resin-based composite material reinforced with glass fibers.
  • a holding ring for holding an outer peripheral side of a portion extending outside the winding slot, and a flow device for flowing a cooling fluid inside the rotating electric machine, wherein the rotor winding, the insulating block, and the edge are connected to each other.
  • a portion located inside the winding slot inside a retaining ring of the rotor winding is provided.
  • An axial flow passage through which the cooling fluid flows in the axial direction is provided, and the axial flow passage is provided with a space around a portion extending outside the winding slot inside the holding ring of the rotor winding and the radius as described above.
  • the configuration is such that it is formed at or near the outer peripheral portion of the rotor winding so as to communicate with the directional flow passage.
  • a third feature of the present invention is that a stator having a plurality of winding slots on its outer peripheral surface that extend in the axial direction at circumferentially spaced intervals on both sides of the magnetic pole portion, A plurality of rotor windings in which conductors and insulating materials are alternately stacked so as to extend in the winding slots and outside the winding slots concentrically with respect to the magnetic poles; A rotor holding an end inside the winding slot and an outer periphery of a portion extending outside the winding slot; and a circulation device for flowing a cooling fluid inside the rotating electric machine, In a rotary electric machine having a plurality of radial flow passages provided so that the cooling fluid flows in a radial direction in a portion located on the center side in the winding slot, the rotor winding is continuously wound.
  • the inner turn portion is formed inside the holding ring of the outer turn portion of the rotor winding.
  • the outer turn portion is formed of a single-layered winding, is divided into two portions at a portion extending outside the winding slot, and the divided portions are connected by welding. is there.
  • an auxiliary radial flow passage is provided in the axial flow passage so that the cooling fluid flows in a radial direction in a portion located inside the winding slot inside the retaining ring of the rotor winding.
  • the configuration is such that the communication is provided.
  • the axial flow passage is provided so as to extend along both sides of the conductor of the rotor winding.
  • FIG. 1 is a schematic structural view of an embodiment of an air-cooled turbine generator according to the present invention.
  • FIG. 2 is a perspective view showing a winding structure at the end of the rotor according to the present invention.
  • FIG. 3 is a perspective view showing a partial cross-sectional structure of a winding slot according to the present invention.
  • FIG. 4 is a perspective view showing a slot end rotor winding structure according to the present invention.
  • FIG. 5 is an axial longitudinal sectional view showing a slot end rotor winding structure according to the present invention.
  • FIG. 6 is a perspective view showing a manufacturing process of the rotor winding according to the present invention.
  • FIG. 7 is a perspective view showing a manufacturing process of the split winding of the rotor winding according to the present invention.
  • FIG. 8 is a longitudinal sectional view showing a structure of a slot end rotor winding in a second embodiment of the present invention.
  • FIG. 9 is a sectional view showing a structure of a slot end rotor winding in a third embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional perspective view of a winding slot according to a fourth embodiment of the present invention.
  • the rotor 1 is rotatably supported by a bearing 3 in a stator 2.
  • a plurality of rotor windings 4 constituting the same magnetic pole are fixed concentrically around the magnetic pole.
  • the rotor winding 4 is held by a winding slot formed at an interval on the outer peripheral surface of the rotor 1 with respect to the portion extending in the axial direction, and extends in the circumferential direction at the end of the rotor. Part is retained by retaining ring 5.
  • a fan 7 constituting a fluid circulation device is arranged between the retaining ring 5 and the bearing 3, and the fan 7 circulates the air cooled by the air cooler 8 into the generator. Let it.
  • a duct is provided so that the air sent from fan 7 can be supplied to rotor 1, stator 2 and air gap 9 of rotor 1, end of stator winding 10 and the like. ing.
  • the stator 2 is supported by a stator frame 11 which is fixed to a foundation (not shown).
  • the rotor has two magnetic poles.
  • the number of magnetic poles is often two or four, but other numbers may be used depending on the application and output.
  • the retaining ring 5 is, as shown in FIG. 5, a portion of the rotor winding 4 located at the end of the winding slot 14 of the rotor 1 and a portion protruding from the winding slot. It holds the surface from the outside.
  • Holes 12 on the outer peripheral surface of rotor 1 are holes formed in edge 19 to prevent rotor winding 4 from coming off winding slot 14 due to centrifugal force.
  • the rotor 1 has an axial section 101 in which the air discharge holes 12 of the radial flow path are provided, and an end of the rotor winding 4 coming out of the winding slot 14. It has a section 102 and a winding slot end section 103 sandwiched between them.
  • the end of the winding slot end section 103 is This is a section where the ring 5 is fixed to the rotor 1, and is a section where it is not possible to provide an air discharge hole 12 in the edge 19 to be located inside the ring 5.
  • Fig. 3 shows the winding slot for two slots.
  • a sub-slot 15 is provided at the bottom of the winding slot 14 for accommodating the rotor winding 4, and the air sent from the fan 7 shown in FIG.
  • An axial ventilation channel is provided for ventilation in the axial direction at the center.
  • the width of the sub-slot 15 is slightly smaller than the width of the winding slot 14 so that the wire conductor 16 and the like do not fall into the sub-slot 15. .
  • the rotor winding 4 is composed of winding conductors 16 having a large number of ventilation holes 17 stacked in a plurality of turns in the radial direction.
  • a thin insulating sheet (not shown) is perforated at the same position as 16.
  • the centrifugal force acting on the rotor winding 4 composed of the winding conductor 16 and the insulating sheet is supported by the edge 19 via the insulating block 18.
  • Rotor winding 4 is made of insulation block 18 and slot insulation 2 made of a material with good electrical insulation properties such as FRP (thermosetting resin-based composite material reinforced with glass fiber). It is surrounded by 0 and spacer 21 and is electrically insulated from rotor 1.
  • the cooling fluid guided in the subslot 15 in the axial direction flows through the ventilation hole 17 of the wound conductor 16, the hole of the insulating sheet, the hole 13 of the insulating block 18, and the edge.
  • the radial flow paths 17 1 are provided at a constant pitch in the axial direction of the rotor winding 4, and the pitch or the ventilation area is appropriately adjusted in order to alleviate the air volume distribution in each radial flow path. Is preferred.
  • FIG. 4 shows a rotor winding structure at the end of the rotor of the present invention.
  • FIG. 5 is a longitudinal sectional view in the axial direction showing the slot end rotor winding structure.
  • the slot end has an insulated section 10.3 in which the radial channel 171 is not provided because it overlaps the mounting portion of the retaining ring 5.
  • this part is where the bending moment and the tensile and compressive forces simultaneously act due to the thermal elongation of the rotor winding, and it is also a section where sufficient winding strength is required.
  • the heat generated by the rotor winding 14 in this section is radiated by heat conduction to the cooling fluid flowing through the radial flow path 171, and the heat sink located in the space inside the retaining ring 5 Heat is radiated to the cooling fluid at the cooling surface 24.
  • this heat release alone is not enough, and the temperature of this adiabatic section will be higher than other parts. Therefore, in this embodiment, the axial ventilation passage 23 connecting the space inside the retaining ring 5 and the radial passage 17 1 is provided only on the outer peripheral surface of the outermost turn of the rotor winding 4. Things.
  • the cooling fluid 21 branches off just before the inlet of the subslot 15, flows through the axial ventilation channel 23 while cooling the outer surface of the rotor winding 4, and joins the radial channel 17 1 .
  • the cooling fluid 21 flowing through the axial ventilation passage 23 cools the outermost turn of the heat-insulating section 103, and the thermosyphon cooling surface of the rotor winding 4 near the end of the slot. 24 also has the effect of improving heat transfer.
  • the axial ventilation channel 23 can provide an increase in cooling characteristics larger than the cooling area, and the temperature of the adiabatic section of the other turns without the axial ventilation channel 23 also decreases. It can be done. Also, the strength is sensitive to temperature. Since the temperature of the edge block 18 can be reduced, the life of the insulating block 18 can be further extended. As shown in Fig. 5, the cooling fluid 21 flowing through the axial ventilation passage 23 is used to cool the outermost turn of the rotor winding 4 and the inside of the insulation block 18 thereof. Both merge into the radial channel 171, which is near the slot end.
  • FIG. 6 is a perspective view showing a manufacturing process of the rotor winding according to the present invention.
  • the windings 25 other than the outermost turn winding 26 have holes for the radial flow path by punching or the like while continuously shaping the windings using a winding machine.
  • Reference numeral 17 denotes a perforated continuous winding.
  • the winding 26 of the outermost turn is a divided winding obtained by dividing one winding at the winding end.
  • the pair of split winding wires 26 are electrically connected by brazing the connecting portions 27 before being assembled into the rotor.
  • the split winding wire 26 is formed by forming a cooling hole 17 and an axial ventilation channel 23 as a radial ventilation channel of the slot in a linear conductor 28 as shown in FIG. It is shaped into a winding shape by a bending machine.
  • the conductors 28 are straight, so that processing can be easily performed without using a special machine tool. Since the man-hours required for brazing by combining the split windings 26 are only those for the outermost turns, the effect on the overall manufacturing cost is small.
  • the divided conductor 26 is used only for the outermost turn, but may be used for a plurality of turns if manufacturing cost permits. If the divided conductors 26 are used for all turns, the manufacturing cost and the number of steps increase, and the total ventilation area of each of the axial ventilation passages 23 is increased by the radial passage at the portion where they join. The cooling area is too large with respect to the ventilation area of 17 1, and the amount of air in each of the axial cooling passages 23 is rather small, thereby reducing the cooling effect.
  • Axial ventilation The ratio of the area of the ventilation area of the flow path 23 to the area of the radial ventilation flow path 17 1, that is, the number of turns to provide the axial ventilation flow path 23, reduces the amount of temperature reduction in this part.
  • FIG. 8 is a longitudinal sectional view showing a structure of a slot end rotor winding in a second embodiment of the present invention.
  • a radial ventilation channel 30 is added to the rotor winding 4 located inside the mounting portion of the retaining ring 5, and this is connected to the axial ventilation channel 23, and the shaft is If the direction ventilation passage 23 has the function of the outlet ventilation passage, the temperature of this portion can be further reduced.
  • FIG. 9 is a longitudinal sectional view showing a structure of a rotor winding portion at a slot end in a third embodiment of the present invention.
  • the insulation block 18 is arranged at the end of the rotor winding 4. Since the entire surface is in contact with the outside of the outer diameter turn, the compression surface pressure of the insulation block 18 can be reduced, and the reliability of the insulation block 18 can be further improved.
  • an axial ventilation channel 23 is provided outside the innermost turn of the outermost turn and opposed to the axial ventilation channel 23 inside the outermost turn, the ventilation area can be increased. I can do it. In this case, the split winding 26 is used for two turns, the outermost turn and the inner turn.
  • the same cooling effect can be obtained by providing the above-mentioned axial ventilation channel on the insulation block side instead of on the winding conductor side, but it is sufficient for the insulation block at the end of the slot. Since there is no dimensional allowance for providing a large ventilation area, it is preferable to provide it on the winding conductor side.
  • FIG. 10 is a perspective view showing a partial cross-sectional structure of a winding slot part according to a fourth embodiment of the present invention.
  • the axial ventilation passage 23 shown in FIG. 10 extends along both sides of the conductor of the rotor winding 4. It is provided in. By providing the axial ventilation channel 23 in this way, the processing can be further facilitated. In particular, if the corners on both sides of the conductor are cut obliquely, the calorie is easier. .
  • the temperature distribution of the rotor winding can be reduced and the average temperature can be reduced, so that the life of the insulation block and the insulator between the conductors can be extended, and the reliability can be improved. It becomes possible to obtain a rotor.
  • the cooling fluid flows in the axial direction in the portion located in the winding slot inside the holding ring of the rotor winding, the cooling fluid is provided by the flow device.
  • the portion located inside the winding slot inside the retaining ring of the rotor winding can be forcibly cooled with a cooling fluid, and the rotor winding can be cooled.
  • the temperature rise in this part where the temperature tends to be high can be effectively suppressed.
  • the outlet side of the axial flow passage is communicated with the radial flow passage so as to be able to flow outside the outer peripheral surface of the rotor, an independent flow structure for flowing outside the outer peripheral surface is not required. A simple configuration can be achieved.
  • the inlet side of the axial flow passage communicates with the space surrounding the portion extending outside the winding slot inside the holding ring of the rotor winding, the inside of the holding ring of the rotor winding is formed. Extends outside the winding slot The heat transfer of the thermosyphon cooling surface in the portion to be heated can be further improved.
  • the heat-resistant temperature of the insulating material of the rotor winding can be reduced, an inexpensive rotor winding can be used, and the winding conductor on the inner side of the retaining ring can be used. Can suppress thermal expansion, and can reduce rotational vibration caused by distortion due to thermal expansion.
  • the axial flow passage is formed at the outer peripheral portion of the rotor winding or in the vicinity thereof, it is possible to effectively cool the portion of the rotor winding where the temperature tends to be particularly high, and The heat transfer of the thermosiphon cooling surface in the portion extending outside the winding slot inside the holding ring of the rotor winding can be further improved.
  • the axial flow passage is formed on the inner surface of the outermost layer of the rotor winding having an insulating block disposed on the outer surface of the outer periphery, the insulating block is formed outside the outermost layer of the rotor winding. Full contact with the side surface reduces the compressive surface pressure of the insulating block and effectively cools the insulating block whose strength is sensitive to temperature, thereby improving the reliability of the insulating block. Can be.
  • the rotor winding is formed by an inner turn portion of a multi-layer continuously wound and an outer turn portion formed separately from the inner turn portion, and an outer turn portion of the rotor winding is formed.
  • An axial flow passage through which the cooling fluid flows in the axial direction is provided inside the winding ring inside the retaining ring of the section, so that the winding is continuously wound around the inner turn using a winding machine.
  • a radial flow path can be formed by punching or the like while shaping, and an axial flow path can be easily formed into a predetermined shape in a separate outer turn independently of the formation of the inner turn. As a result, the rotor winding can be manufactured efficiently.
  • the outer turn portion is composed of one layer of one turn, and is divided into two portions extending outside the winding slot, and the divided portions are connected by welding.
  • An auxiliary radial flow passage is provided in the portion located inside the winding slot inside the retaining ring of the rotor winding so as to allow the cooling fluid to flow in the radial direction.
  • the part located inside the winding slot inside the retaining ring can be cooled more strongly.
  • the axial flow passage is provided so as to extend along both sides of the conductor of the rotor winding, the processing of the axial flow passage is facilitated, and the winding is performed inside the holding ring of the rotor winding. It is possible to further improve the heat transfer on both sides of the thermosiphon cooling surface of the portion extending outside the line slot.
  • a rotating electric machine that is inexpensive, has high reliability, and can increase the output in a compact manner is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

A dynamo-electric machine provided with a winding-carrying rotor in a winding slot, wherein axial flow passages in which a cooling fluid is made to flow axially to the portion of the rotor winding which is positioned on the inner side of a ring for retaining an end portion of the rotor winding are provided, the axial flow passages communicating with flow passages extending in the radial direction of the rotor winding, whereby a compact dynamo-electric machine capable of being manufactured inexpensively, obtaining a high reliability and increasing an output level can be attained.

Description

明 細 書  Specification
回転電機 技術分野  Rotating electrical machinery
本発明は、 回転電機に係り、 特に大容量のガス直冷式回転電 機、 例えばタービン発電機に好適な ものである。 背景技術  The present invention relates to a rotating electric machine, and is particularly suitable for a large-capacity gas direct cooling type rotating electric machine, for example, a turbine generator. Background art
発電機、 特に、 タ ー ビン発電機は、 複数の回転子卷線及び卷 線が配置される軸方向に形成した卷線ス ロ ッ ト を持つ。 この卷 線スロ ッ ト は回転子本体の磁極部分の両側で回転子の外周面に 間隔をおいて設けられ、 同じ磁極を構成する複数の回転子巻線 は、 磁極まわ り に同心に配置されている。 この回転子巻線は、 卷線導体を半径方向に複数タ一 ン積み重ねて形成され、 ター ン 間には絶縁層が設けられている。 この回転子卷線に外部から通 電する とそれぞれの磁極に必要な電磁界を発生する。 この回転 子卷線は、 回転子が回転する こ と による強大な遠心力によって 卷線外径方向にとばされないよ う に、 回転子においては卷線ス ロ ッ ト内部にゥエツ ジで強固に固定され、 回転子端部において は卷線外周部に接する よ う に設けられた円筒状の保持環によ り 保持されている。  Generators, especially turbine generators, have a plurality of rotor windings and an axially formed winding slot in which the windings are arranged. The winding slots are provided on the outer peripheral surface of the rotor on both sides of the magnetic pole portion of the rotor body at intervals, and a plurality of rotor windings constituting the same magnetic pole are arranged concentrically around the magnetic pole. ing. This rotor winding is formed by stacking a plurality of winding conductors in the radial direction in a radial direction, and an insulating layer is provided between the turns. When an electric current is applied to the rotor winding from the outside, an electromagnetic field required for each magnetic pole is generated. The rotor winding is firmly edged inside the winding slot in the rotor so that the rotor winding is not jumped in the outer diameter direction of the winding due to the strong centrifugal force caused by the rotation of the rotor. The rotor is fixed and is held at the rotor end by a cylindrical holding ring provided so as to be in contact with the outer periphery of the winding.
回転子巻線に通電する こ と によ り卷線導体にてジユール発熱 が生じる。 回転子卷線の絶縁層はマイ 力などの耐熱性の高い材 料を使用するが、 その耐熱温度には限界があ り 、 耐熱温度が高 く なる程高価になる傾向がある。 また、 温度上昇に伴う卷線導 体の熱膨張は、 卷線および回転子に大き な歪みを与え回転振動 の原因となった りする。 そこで、 特開平 9 一 2 8 5 0 5 2号公報記載のよ う に、 半径 方向通風流路冷却方式と呼ばれる構造にて、 回転子卷線を冷却 流体にて冷却する こ とが案出されている。 この冷却方式は、 卷 線ス ロ ッ ト底部に巻線端部からの通風流路となるサブス ロ ッ ト を設け、 回転子卷線にはター ン間の電気絶縁を確保しながら多 数の半径方向通風流路を設けたものである。 ゥエッ ジにも この 流路と回転子外径側とが連通する よ う に孔が設けられ、 半径方 向通風路を構成している。 これによつて、 冷却流体をサブス口 ッ トから回転子巻線に形成した半径方向流路に流すこ とができ、 巻線ス ロ ッ ト内の回転子卷線を強制冷却している。 なお、 冷却 流体には空気または水素を用いるのが一般的である。 When heat is applied to the rotor windings, joule heat is generated in the winding conductor. The insulation layer of the rotor winding is made of a material having high heat resistance such as force, but its heat resistance temperature is limited, and the higher the heat resistance temperature, the higher the cost. In addition, the thermal expansion of the wound conductor due to the temperature rise causes a large distortion to the wound wire and the rotor, which may cause rotational vibration. Therefore, as described in Japanese Patent Application Laid-Open No. Hei 9-285502, it has been devised to cool the rotor windings with a cooling fluid in a structure called a radial ventilation flow path cooling method. ing. In this cooling method, a sub-slot is provided at the bottom of the winding slot as a ventilation channel from the end of the winding, and a large number of rotor windings are secured while ensuring electrical insulation between the turns. A radial ventilation channel is provided.孔 A hole is also provided in the edge so that this flow path communicates with the outer diameter side of the rotor, forming a radial ventilation passage. This allows the cooling fluid to flow from the sub-slot to the radial flow path formed in the rotor winding, thereby forcibly cooling the rotor winding in the winding slot. It is common to use air or hydrogen as the cooling fluid.
一方、 保持環の内側に位置する巻線ェン ド部の回転子卷線は、 自然対流、 またはサ一モサイ フ ォ ンにて冷却される。 これは、 回転子巻線から熱を受けた部分とそう でない部分の冷却流体の 密度差に起因して発生する局所的な流れによ って熱を除去する ものである。  On the other hand, the rotor winding of the winding end located inside the retaining ring is cooled by natural convection or thermosyphon. In this method, heat is removed by local flow generated due to the difference in density of the cooling fluid between the portion that receives heat from the rotor winding and the portion that does not.
しかしながら、 近年の発電機全体のコ ンパク ト化に伴つて熱 負荷が増大し、 回転子卷線全体の温度が上がってきている。 ま た、 保持環の内側に位置する巻線ェン ド部の回転子巻線におけ るサーモサイ フ ォ ン熱伝達は、 回転子巻線の温度が大き く なつ た り 、 回転子卷線同士の間隔が小さ く なる と、 密度差および遠 心力によって引き起こ される冷却流体の流れが悪く なつて低下 してきている。 これらによ り、 回転子卷線エン ド部および巻線 スロ ッ ト端部における温度が半径方向流路部を有する部分の温 度に対して相対的に高く なつてお り 、 この温度上昇に対する回 転子及び回転子卷線の信頼性を確保する必要があ り、 高価な も のとなつていた。 と こ ろが、 巻線ス ロ ッ ト端部の回転子卷線は、 保持環の取付 け位置の内側に位置し、 半径方向流路の出口部を設ける こ とが でき ない。 また、 この部分は、 回転子巻線の熱伸び量が大きい 部分であ り、 かつ回転子卷線の周方向に延びる部分がある こ と から曲げモーメ ン ト も加わる部分であるために、 半径方向冷却 流路のよ う な冷却流路を多数設ける と、 回転子巻線の強度が低 下し、 巻線変形の原因になった りする。 このため、 発電機体積 当た り の出力を小さ く する こ と、 すなわち大き な出力を確保す るために発電機の大き さを大き く して熱負荷を下げる こ とで大 容量化を達成せざる を得なかった。 発明の開示 However, in recent years, the heat load has increased due to the compactness of the entire generator, and the temperature of the entire rotor winding has increased. In addition, the thermosyphon heat transfer in the rotor winding at the winding end located inside the retaining ring increases the temperature of the rotor windings and causes the rotor windings to rotate with each other. As the distance between the cooling fluids becomes smaller, the cooling fluid flow caused by the density difference and centrifugal force becomes worse, and the cooling fluid flow becomes lower. As a result, the temperature at the end of the rotor winding and at the end of the winding slot is relatively higher than the temperature of the portion having the radial flow path. It is necessary to ensure the reliability of the rotor and the rotor winding, which has been expensive. However, the rotor winding at the end of the winding slot is located inside the mounting position of the retaining ring, and the radial flow passage outlet cannot be provided. In addition, this portion is a portion where the amount of thermal elongation of the rotor winding is large, and a portion that extends in the circumferential direction of the rotor winding, so that a bending moment is also added thereto. If a large number of cooling channels such as directional cooling channels are provided, the strength of the rotor winding is reduced, which may cause deformation of the winding. For this reason, a large capacity is achieved by reducing the output per generator volume, that is, by increasing the size of the generator and reducing the heat load to secure a large output. I had to do it. Disclosure of the invention
本発明の目的は、 安価で高い信頼性が得られ、 コンパク トで出力増大 が可能な回転電機を得ることにある。  An object of the present invention is to provide a rotating electric machine that is inexpensive, has high reliability, and can increase the output in a compact manner.
上記目的を達成するための本発明の第 1の特徴は、 固定子と、 磁極部 分の両側に円周方向に間隔を置いて軸方向に延びる複数の卷線スロッ ト を外周面に有する回転子と, 前記磁極に対して同心状に前記卷線ス口ッ ト内及びその卷線スロッ ト外に延在するように導体と絶縁材を交互に積 層した複数の回転子巻線と, 前記回転子卷線の前記巻線スロッ ト内の端 部とその巻線スロッ ト外に延在するする部分の外周を保持する保持環と, 回転電機内部に冷却流体を流通する流通装置を備え、 前記回転子卷線の 前記卷線スロッ ト内中央側に位置する部分に前記冷却流体が半径方向に 流通するように半径方向流通路を複数設けてなる回転電機において, 前 記回転子巻線の保持環の内側で卷線スロッ ト内に位置する部分に前記冷 却流体を軸方向に流通する軸方向流通路を設け、 前記軸方向流通路は、 前記回転子巻線の保持環の内側で卷線スロッ ト外に延在する部分の周囲 空間と前記半径方向流通路とを連通するように形成された構成にしたこ とにある。 A first feature of the present invention for achieving the above object is that a rotor having a plurality of winding slots on an outer peripheral surface extending in the axial direction at circumferentially spaced intervals on both sides of a magnetic pole portion. A plurality of rotor windings alternately laminated with a conductor and an insulating material so as to extend inside the winding slot and outside the winding slot concentrically with respect to the magnetic pole; A holding ring for holding an end of the rotor winding inside the winding slot and an outer periphery of a portion extending outside the winding slot; and a distribution device for flowing a cooling fluid inside the rotating electric machine. In a rotating electric machine, a plurality of radial flow paths are provided so that the cooling fluid flows in a radial direction in a portion of the rotor winding located on the center side in the winding slot. The cooling fluid is applied axially to the part located inside the winding slot inside the retaining ring of An axial flow passage communicating with the radial flow passage is provided between the radial space and a space extending outside the winding slot inside the retaining ring of the rotor winding. Configuration And there.
好ましくは、 前記軸方向流通路は、 回転子卷線の外周部又はその近傍 部に位置して形成された構成にしたことにある。  Preferably, the axial flow passage is formed so as to be located at an outer peripheral portion of the rotor winding or at a portion near the outer peripheral portion.
また、 好ましくは、 前記回転子卷線の外周面外卿に絶縁プロックを配 置し、 前記回転子卷線の最外周層の内側面に前記軸方向流通路を形成し た構成にしたことにある。  Preferably, an insulation block is arranged on an outer peripheral surface of the rotor winding, and the axial flow passage is formed on an inner surface of an outermost layer of the rotor winding. is there.
また、 好ましくは、 前記絶ブロックをガラス繊維で強化した熱硬化性 樹脂系複合材料で形成した構成にしたことにある。  Further, preferably, the block is formed of a thermosetting resin-based composite material reinforced with glass fibers.
本発明の第 2の特徴は、 固定子と、 磁極部分の両側に円周方向に間隔 を置いて軸方向に延びる複数の卷線スロッ トを外周面に有し、 その卷線 スロッ トの底面に軸方向に延びるサブスロッ トを有する回転子と, 前記 磁極に対して同心状に前記卷線スロッ ト内及びその巻線スロッ ト外に延 在するように導体と絶縁材を交互に積層した複数の回転子巻線と, 前記 回転子卷線の外周面外側に絶縁ブロックを介して配置されたゥエッジと、 前記回転子卷線の前記巻線スロッ ト内の端部及びその外側の絶縁プロッ クとその卷線スロッ ト外に延在するする部分の外周側を保持する保持環 と, 回転電機内部に冷却流体を流通する流通装置を備え、 前記回転子卷 線と前記絶縁プロックと前記ゥェッジの前記卷線スロッ ト内中央側に位 置する部分に前記冷却流体が前記サブスロッ トから半径方向に流通する ように半径方向流通路を複数設けてなる回転電機において, 前記回転子 巻線の保持環の内側で卷線スロッ ト内に位置する部分に前記冷却流体を 軸方向に流通する軸方向流通路を設け、 前記軸方向流通路は、 前記回転 子巻線の保持環の内側で卷線スロッ ト外に延在する部分の周囲空間と前 記半径方向流通路とを連通するように回転子巻線の外周部又はその近傍 部に位置して形成された構成にしたことにある。  A second feature of the present invention is that the outer peripheral surface of the stator has a plurality of winding slots axially spaced apart from each other on both sides of the magnetic pole portion and extending in the axial direction, and a bottom surface of the winding slot. A rotor having sub-slots extending in the axial direction, and a plurality of conductors and insulating materials alternately laminated so as to extend concentrically with respect to the magnetic poles in the winding slots and outside the winding slots. A rotor winding, an edge disposed outside the outer peripheral surface of the rotor winding via an insulating block, an end of the rotor winding inside the winding slot, and an insulating block outside the end. And a holding ring for holding an outer peripheral side of a portion extending outside the winding slot, and a flow device for flowing a cooling fluid inside the rotating electric machine, wherein the rotor winding, the insulating block, and the edge are connected to each other. Part located at the center side in the winding slot In a rotating electric machine provided with a plurality of radial flow passages so that the cooling fluid flows radially from the sub-slot, a portion located inside the winding slot inside a retaining ring of the rotor winding is provided. An axial flow passage through which the cooling fluid flows in the axial direction is provided, and the axial flow passage is provided with a space around a portion extending outside the winding slot inside the holding ring of the rotor winding and the radius as described above. The configuration is such that it is formed at or near the outer peripheral portion of the rotor winding so as to communicate with the directional flow passage.
本発明の第 3の特徴は、 固定子と、 磁極部分の両側に円周方向に間隔 を置いて軸方向に延びる複数の卷線スロッ トを外周面に有する回転子と, 前記磁極に対して同心状に前記卷線スロッ ト内及びその巻線スロッ ト外 に延在するように導体と絶縁材を交互に積層した複数の回転子巻線と, 前記回転子卷線の前記巻線スロッ ト内の端部とその巻線スロッ ト外に延 在するする部分の外周を保持する保持環と, 回転電機内部に冷却流体を 流通する流通装置を備え、 前記回転子卷線の前記卷線スロッ ト内中央側 に位置する部分に前記冷却流体が半径方向に流通するように半径方向流 通路を複数設けてなる回転電機において, 前記回転子卷線は、 連続して 卷回された多数層の内側タ一ン部と、 この内側ターン部とは別体に形成 された外側ターン部とを有し、 前記回転子卷線の外側タ一ン部の保持環 の内側で卷線スロッ ト内に位置する部分に前記冷却流体を軸方向に流通 する軸方向流通路を設けた構成にしたことにある。 A third feature of the present invention is that a stator having a plurality of winding slots on its outer peripheral surface that extend in the axial direction at circumferentially spaced intervals on both sides of the magnetic pole portion, A plurality of rotor windings in which conductors and insulating materials are alternately stacked so as to extend in the winding slots and outside the winding slots concentrically with respect to the magnetic poles; A rotor holding an end inside the winding slot and an outer periphery of a portion extending outside the winding slot; and a circulation device for flowing a cooling fluid inside the rotating electric machine, In a rotary electric machine having a plurality of radial flow passages provided so that the cooling fluid flows in a radial direction in a portion located on the center side in the winding slot, the rotor winding is continuously wound. And an outer turn portion formed separately from the inner turn portion. The inner turn portion is formed inside the holding ring of the outer turn portion of the rotor winding. An axial flow through which the cooling fluid flows in an axial direction in a portion located in the line slot That is, a passage is provided.
好ましくは、 前記外側ターン部は、 ー卷の一層で構成され、 巻線スロ ッ ト外に延在する部分で二つに分割され、 その分割部分が溶接して接続 された構成にしたことにある。  Preferably, the outer turn portion is formed of a single-layered winding, is divided into two portions at a portion extending outside the winding slot, and the divided portions are connected by welding. is there.
また、 好ましくは、 前記回転子卷線の保持環の内側で巻線スロッ ト内 に位置する部分に、 前記冷却流体が半径方向に流通するように補助半径 方向流通路を前記軸方向流通路に連通して設けた構成にしたことにある。 また、 好ましくは、 前記軸方向流通路を回転子巻線の導体の両側に沿 つて延びるように設けた構成にしたことにある。 図面の簡単な説明  Preferably, an auxiliary radial flow passage is provided in the axial flow passage so that the cooling fluid flows in a radial direction in a portion located inside the winding slot inside the retaining ring of the rotor winding. The configuration is such that the communication is provided. Preferably, the axial flow passage is provided so as to extend along both sides of the conductor of the rotor winding. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の空気冷却式ター ビン発電機の一実施例の概 略構造図である。  FIG. 1 is a schematic structural view of an embodiment of an air-cooled turbine generator according to the present invention.
第 2 図は本発明における回転子の端部の卷線構造を示す斜視 図である。  FIG. 2 is a perspective view showing a winding structure at the end of the rotor according to the present invention.
第 3 図は本発明における巻線ス ロ ッ ト部の一部断面構造を示 す斜視図である。 第 4 図は本発明におけるスロ ッ ト端部回転子巻線構造を示す 斜視図である。 FIG. 3 is a perspective view showing a partial cross-sectional structure of a winding slot according to the present invention. FIG. 4 is a perspective view showing a slot end rotor winding structure according to the present invention.
第 5 図は本発明におけるスロ ッ ト端部回転子巻線構造を示す 軸方向縦断面図である。  FIG. 5 is an axial longitudinal sectional view showing a slot end rotor winding structure according to the present invention.
第 6 図は本発明における回転子巻線の製造過程を示す斜視図 である。  FIG. 6 is a perspective view showing a manufacturing process of the rotor winding according to the present invention.
第 7 図は本発明における回転子巻線の分割巻線の製造過程を 示す斜視図である。  FIG. 7 is a perspective view showing a manufacturing process of the split winding of the rotor winding according to the present invention.
第 8 図は本発明の第 2実施例におけるスロ ッ ト端部回転子卷 線の構造を示す縦断面図である。  FIG. 8 is a longitudinal sectional view showing a structure of a slot end rotor winding in a second embodiment of the present invention.
第 9 図は本発明の第 3実施例におけるスロ ッ ト端部回転子卷 線の構造を示す断面図である。  FIG. 9 is a sectional view showing a structure of a slot end rotor winding in a third embodiment of the present invention.
第 1 0 図は本発明の第 4実施例における巻線スロ ッ ト部の一 部断面斜視図である。 発明を実施するための最良の形態  FIG. 10 is a partial cross-sectional perspective view of a winding slot according to a fourth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の回転電機、 具体的にはタ ー ビン発電機の実施 例を図を用いて説明する。  Hereinafter, embodiments of the rotating electric machine of the present invention, specifically, a turbine generator will be described with reference to the drawings.
まず、 第 1 図を用いて本発明の空気冷却式ター ビン発電機の 概略構造を説明する。 なお、 この実施例では、 冷却流体と して 空気を用いたもので説明するが、 空気以外の流体であっても よ い。 回転子 1 は、 固定子 2 中に軸受 3 によって回転自在に支持 されている。 回転子 1 には、 同じ磁極を構成する複数の回転子 卷線 4が磁極まわ り に同心状に配置され固定されている。 この 回転子卷線 4 は、 軸方向に延びる部分については回転子 1 の外 周面に間隔をおいて形成された卷線スロ ッ ト にて保持され、 回 転子端部の周方向に延びる部分については保持環 5 にて保持さ れている。 この保護環 5 は、 第 1 図では回転子 1 に電流を供給 する コ レク タ リ ング 6側しか完全なものを示していないが、 タ 一ビン側にも同様のものがある。 卷線スロ ッ トおよび回転子端 部の巻線の構造については後述する。 保持環. 5 と軸受 3 との間 には、 流体の流通装置を構成するフ ァ ン 7が配置され、 このフ ア ン 7 によ り空気冷却器 8で冷却した空気を発電機内部に循環 させる。 フ ァ ン 7から送られた空気は、 回転子 1 , 固定子 2 と 回転子 1 のエアギャ ッ プ 9, 固定子巻線 1 0 の端部等に供給で きる よ う にダク トが設けられている。 固定子 2 は固定子フ レ一 ム 1 1 によ って支えられ、 この固定子フ レーム 1 1 は基礎 (図 示せず) に固定される。 First, the schematic structure of the air-cooled turbine generator of the present invention will be described with reference to FIG. Note that, in this embodiment, a description is given of a case where air is used as the cooling fluid, but a fluid other than air may be used. The rotor 1 is rotatably supported by a bearing 3 in a stator 2. On the rotor 1, a plurality of rotor windings 4 constituting the same magnetic pole are fixed concentrically around the magnetic pole. The rotor winding 4 is held by a winding slot formed at an interval on the outer peripheral surface of the rotor 1 with respect to the portion extending in the axial direction, and extends in the circumferential direction at the end of the rotor. Part is retained by retaining ring 5. Have been. Although FIG. 1 shows only the collector ring 6 for supplying current to the rotor 1 in FIG. 1, the protection ring 5 is the same as the protection ring 5, but there is a similar one on the bin side. The structure of the winding slot and the winding at the end of the rotor will be described later. A fan 7 constituting a fluid circulation device is arranged between the retaining ring 5 and the bearing 3, and the fan 7 circulates the air cooled by the air cooler 8 into the generator. Let it. A duct is provided so that the air sent from fan 7 can be supplied to rotor 1, stator 2 and air gap 9 of rotor 1, end of stator winding 10 and the like. ing. The stator 2 is supported by a stator frame 11 which is fixed to a foundation (not shown).
次に、 第 2 図から第 7 図を用いて本発明のタービン発電機の 回転子の第 1 実施例について説明する。  Next, a first embodiment of the rotor of the turbine generator according to the present invention will be described with reference to FIGS.
第 2 図に示すよ う に、 回転子の磁極は 2 つである。 タービン 発電機では、 磁極の数は 2 または 4が多いが、 用途, 出力によ つてはこれ以外であっても良い。 保持環 5 は、 第 5 図に示すよ う に、 回転子卷線 4 における回転子 1 の卷線スロ ッ ト 1 4 の端 部に位置する部分及び卷線ス口 ッ トから突き出た部分外周面を 外側から保持する ものである。 回転子 1 の外周面に見える孔 1 2 は、 回転子巻線 4が遠心力で巻線スロ ッ ト 1 4 から外れない よ う にするためのゥエッ ジ 1 9 にあけられた孔で、 後述するサ ブスロ ッ ト 1 5から回転子外周面まで貫通する半径方向流通路 の一部を構成する空気排出孔である。 回転子 1 は、 この半径方 向流路の空気排出孔 1 2が設けられている軸方向区間 1 0 1 と、 卷線スロ ッ ト 1 4 から外にでた回転子卷線 4 のエン ド部区間 1 0 2 と、 この両者に挟まれた卷線スロ ッ ト端部区間 1 0 3 を有 している。 この前記卷線スロ ッ ト端部区間 1 0 3 の部分は、 保 持環 5 を回転子 1 に固定する部分であ り 、 保持環 5 の内側に位 置するためにゥエッ ジ 1 9 に空気排出孔 1 2 を設ける こ とがで きない区間である。 As shown in Fig. 2, the rotor has two magnetic poles. In a turbine generator, the number of magnetic poles is often two or four, but other numbers may be used depending on the application and output. As shown in FIG. 5, the retaining ring 5 is, as shown in FIG. 5, a portion of the rotor winding 4 located at the end of the winding slot 14 of the rotor 1 and a portion protruding from the winding slot. It holds the surface from the outside. Holes 12 on the outer peripheral surface of rotor 1 are holes formed in edge 19 to prevent rotor winding 4 from coming off winding slot 14 due to centrifugal force. This is an air discharge hole that constitutes a part of a radial flow passage that penetrates from the subslot 15 to the rotor outer peripheral surface. The rotor 1 has an axial section 101 in which the air discharge holes 12 of the radial flow path are provided, and an end of the rotor winding 4 coming out of the winding slot 14. It has a section 102 and a winding slot end section 103 sandwiched between them. The end of the winding slot end section 103 is This is a section where the ring 5 is fixed to the rotor 1, and is a section where it is not possible to provide an air discharge hole 12 in the edge 19 to be located inside the ring 5.
第 3 図では、 2 ス ロ ッ ト分の巻線ス ロ ッ ド部を示してある。 回転子卷線 4 を納める巻線ス ロ ッ ト 1 4 の底部には、 サブス ロ ッ ト 1 5が設けられ、 第 1 図に示したフ ァ ン 7から送られる空 気を回転子 1 の中心部側で軸方向に通風するための軸方向通風 流路となっている。 このサブス ロ ッ ト 1 5 の幅は、 巻線ス ロ ッ ト 1 4 の幅よ り も若干狭く され、 卷線導体 1 6 などがサブス口 ッ ト 1 5 に落ち込まないよ う になつている。 回転子卷線 4 は、 多数の通風孔 1 7 を穿った巻線導体 1 6が半径方向に複数ター ン積み重ねたもので構成され、 タ一ン間には卷線導体  Fig. 3 shows the winding slot for two slots. A sub-slot 15 is provided at the bottom of the winding slot 14 for accommodating the rotor winding 4, and the air sent from the fan 7 shown in FIG. An axial ventilation channel is provided for ventilation in the axial direction at the center. The width of the sub-slot 15 is slightly smaller than the width of the winding slot 14 so that the wire conductor 16 and the like do not fall into the sub-slot 15. . The rotor winding 4 is composed of winding conductors 16 having a large number of ventilation holes 17 stacked in a plurality of turns in the radial direction.
1 6 と同じ位置に穿孔した薄い絶縁シー ト (図示せず) が挟ま れている。 巻線導体 1 6 と絶縁シ一トから構成される回転子巻 線 4 に働く 遠心力は、 絶縁ブロ ッ ク 1 8 を介してゥェッ ジ 1 9 で支え られる。 回転子卷線 4 は、 F R P (ガラス繊維で強化し た熱硬化性樹脂系複合材料) などの耐電気絶縁特性が良好な材 料で作った絶縁ブロ ッ ク 1 8 , ス ロ ッ ト絶縁 2 0及びスぺーサ 2 1 で囲まれ、 回転子 1 と電気的に絶縁されている。 サブスロ ッ ト 1 5 内を軸方向に導かれた冷却流体は、 卷線導体 1 6 の通 風孔 1 7, 絶縁シー トの孔, 絶縁ブロ ッ ク 1 8 の孔 1 3及ぴゥ エッ ジ 1 9 の孔 1 2 で構成した半径方向流路 1 7 1 に分流して 流れ、 回転子巻線 4が冷却される。 この半径方向流路 1 7 1 は、 回転子卷線 4 の軸方向に一定ピッチで設けられるが、 各半径方 向流路の風量分布を緩和するため、 前記ピッチまたは通風面積 を適宜調節する こ とが好ま しい。  A thin insulating sheet (not shown) is perforated at the same position as 16. The centrifugal force acting on the rotor winding 4 composed of the winding conductor 16 and the insulating sheet is supported by the edge 19 via the insulating block 18. Rotor winding 4 is made of insulation block 18 and slot insulation 2 made of a material with good electrical insulation properties such as FRP (thermosetting resin-based composite material reinforced with glass fiber). It is surrounded by 0 and spacer 21 and is electrically insulated from rotor 1. The cooling fluid guided in the subslot 15 in the axial direction flows through the ventilation hole 17 of the wound conductor 16, the hole of the insulating sheet, the hole 13 of the insulating block 18, and the edge. The flow splits and flows into the radial flow path 17 1 formed by the holes 12 of 19 to cool the rotor winding 4. The radial flow paths 17 1 are provided at a constant pitch in the axial direction of the rotor winding 4, and the pitch or the ventilation area is appropriately adjusted in order to alleviate the air volume distribution in each radial flow path. Is preferred.
第 4 図は本発明における回転子のス口 ッ ト端部回転子卷線構 造を示す斜視図、 第 5 図はそのスロ ッ ト端部回転子卷線構造を 示す軸方向縦断面図である。 第 2 図の説明で述べたよ う にスロ ッ ト端部には保持環 5 の取り付け部と重なるために半径方向流 路 1 7 1 が設けられない断熱された区間 1 0. 3がある。 また、 この部分は、 回転子巻線の熱伸びで曲げモーメ ン トや引張り や 圧縮の力が同時に働く部分であ り、 十分な卷線強度が必要な区 間でもある。 この区間における回転子卷線 1 4 の発熱は、 熱伝 導によ り半径方向流路 1 7 1 を流れる冷却流体に放熱し、 また 保持環 5 の内側空間に位置されたサ一モサイ フ ォ ン冷却面 2 4 にて冷却流体に放熱される。 しかし、 この放熱だけでは不十分 で、 この断熱区間はどう しても他の部分よ り も温度が高く なる。 そこで、 この実施例では、 保持環 5 内側の空間と半径方向流路 1 7 1 を連通する軸方向通風流路 2 3 を、 回転子巻線 4 の最外 径ターンの外周面のみに設けたものである。 この軸方向通風流 路 2 3 は、 各回転子巻線 4すべてに設ける こ とが冷却上は好ま しい力5'、 最も温度が高く なる外径ターン側にのみ設ける こ と に よ り 、 この部分における回転子卷線 4 の強度をあま り損なう こ とな く 、 効率的な温度低減効果が得られる。 冷却流体 2 1 は、 サブスロ ッ ト 1 5入口の手前で分岐し、 回転子卷線 4 の外表面 を冷却しながら軸方向通風流路 2 3 を流れ、 半径方向流路 1 7 1 に合流する。 この軸方向通風流路 2 3 を流れる冷却流体 2 1 は、 断熱区間 1 0 3 の最外径ターンを冷却する と共に、 スロ ッ ト端部付近の回転子卷線 4 のサーモサイ フ ォ ン冷却面 2 4 の熱 伝達を向上させる効果も有する。 すなわち、 この軸方向通風流 路 2 3 は、 その冷却面積以上の冷却特性の増加を もたらすこ と ができ、 上記軸方向通風流路 2 3がない他のタ一ンの断熱区間 温度も牴減させる こ とができる。 また、 強度が温度に敏感な絶 縁ブロ ッ ク 1 8 の温度を下げる こ とができるので、 絶縁ブ口 ッ ク 1 8 の寿命を一層伸ばすこ とができる。 第 5 図に示すよ う に 軸方向通風流路 2 3 を流れる冷却流体 2 1 は、 回転子巻線 4 の 最外径ターンとその絶縁ブロ ッ ク 1 8 の内側.を冷却しながら も つ と もスロ ッ ト端部に近い半径方向流路 1 7 1 に合流する。 第 6 図は本発明における回転子巻線の製造過程を示す斜視図 である。 最外径ターンの卷線 2 6以外の卷線 2 5 は、 卷線機を 用いて連続して巻線を整形しながら、 パンチングなどの打ち抜 き によ つて半径方向流路のための孔 1 7が穿孔された連続卷線 である。 一方、 最外径ターンの卷線 2 6 は、 一卷の卷線を卷線 ェン ド部で分割した分割巻線である。 一組の分割卷線 2 6 は、 回転子に組み込む前に接続部 2 7 を突き合わせてロウ付けなど によ り電気的に接続される。 分割卷線 2 6 は、 第 7図に示すよ う な直線状の導体 2 8 にスロ ッ ト部の半径方向通風路となる冷 却孔 1 7 と軸方向通風流路 2 3 を形成した後に、 曲げ加工機に て卷線形状に整形される。 これによれば、 冷却孔 1 7 と軸方向 通風流路 2 3 の加工時、 導体 2 8 は直線状なので特殊な工作機 械でな く と も容易に加工が可能である。 分割巻線 2 6 を組み合 わせてロウ付けする と きの工数は、 最外径ターンの部分のみな ので、 全体の製造コス ト に与える影響はわずかである。 FIG. 4 shows a rotor winding structure at the end of the rotor of the present invention. FIG. 5 is a longitudinal sectional view in the axial direction showing the slot end rotor winding structure. As described in the description of FIG. 2, the slot end has an insulated section 10.3 in which the radial channel 171 is not provided because it overlaps the mounting portion of the retaining ring 5. In addition, this part is where the bending moment and the tensile and compressive forces simultaneously act due to the thermal elongation of the rotor winding, and it is also a section where sufficient winding strength is required. The heat generated by the rotor winding 14 in this section is radiated by heat conduction to the cooling fluid flowing through the radial flow path 171, and the heat sink located in the space inside the retaining ring 5 Heat is radiated to the cooling fluid at the cooling surface 24. However, this heat release alone is not enough, and the temperature of this adiabatic section will be higher than other parts. Therefore, in this embodiment, the axial ventilation passage 23 connecting the space inside the retaining ring 5 and the radial passage 17 1 is provided only on the outer peripheral surface of the outermost turn of the rotor winding 4. Things. The axial air flow path 2 3, and this is the cooling provided to all the rotor winding 4 is preferred correct force 5 ', Ri by the and this provided only the most temperature increases the outer diameter of turn side, the An efficient temperature-reducing effect can be obtained without substantially reducing the strength of the rotor winding 4 in the portion. The cooling fluid 21 branches off just before the inlet of the subslot 15, flows through the axial ventilation channel 23 while cooling the outer surface of the rotor winding 4, and joins the radial channel 17 1 . The cooling fluid 21 flowing through the axial ventilation passage 23 cools the outermost turn of the heat-insulating section 103, and the thermosyphon cooling surface of the rotor winding 4 near the end of the slot. 24 also has the effect of improving heat transfer. In other words, the axial ventilation channel 23 can provide an increase in cooling characteristics larger than the cooling area, and the temperature of the adiabatic section of the other turns without the axial ventilation channel 23 also decreases. It can be done. Also, the strength is sensitive to temperature. Since the temperature of the edge block 18 can be reduced, the life of the insulating block 18 can be further extended. As shown in Fig. 5, the cooling fluid 21 flowing through the axial ventilation passage 23 is used to cool the outermost turn of the rotor winding 4 and the inside of the insulation block 18 thereof. Both merge into the radial channel 171, which is near the slot end. FIG. 6 is a perspective view showing a manufacturing process of the rotor winding according to the present invention. The windings 25 other than the outermost turn winding 26 have holes for the radial flow path by punching or the like while continuously shaping the windings using a winding machine. Reference numeral 17 denotes a perforated continuous winding. On the other hand, the winding 26 of the outermost turn is a divided winding obtained by dividing one winding at the winding end. The pair of split winding wires 26 are electrically connected by brazing the connecting portions 27 before being assembled into the rotor. The split winding wire 26 is formed by forming a cooling hole 17 and an axial ventilation channel 23 as a radial ventilation channel of the slot in a linear conductor 28 as shown in FIG. It is shaped into a winding shape by a bending machine. According to this, when the cooling holes 17 and the axial ventilation passages 23 are processed, the conductors 28 are straight, so that processing can be easily performed without using a special machine tool. Since the man-hours required for brazing by combining the split windings 26 are only those for the outermost turns, the effect on the overall manufacturing cost is small.
本実施例では、 分割導体 2 6 を用いるのは最外径ターンのみ であるが、 製造コス トが許せば複数ターンに用いても よい。 な お、 全ターンに分割導体 2 6 を用いる と、 製造コス トおよびェ 数が増える と共に、 各ターン軸方向通風流路 2 3 の通風面積の 合計が、 それらが合流する部分の半径方向流路 1 7 1 の通風面 積に対して大き く な りすぎ、 各々の軸方向冷却流路 2 3 の風量 がかえつて小さ く なるため、 冷却効果が低減する。 軸方向通風 流路 2 3 の通風面積合計と半径方向通風流路 1 7 1 の面積比、 すなわち、 いく つのターンに軸方向通風流路 2 3 を設けるかは、 この部分の温度の低減量が低く なる よ う に設定する必要がある。 第 8 図は本発明の第 2実施例におけるスロ.ッ ト端部回転子卷 線の構造を示す縦断面図である。 第 8 図に示すよ う に、 保持環 5 の取り付け部内側に位置する回転子卷線 4 に半径方向通風流 路 3 0 を追加し、 これを軸方向通風流路 2 3 に連通し、 軸方向 通風流路 2 3 に出口側通風流路の機能を持たせる と、 この部分 の温度を一層低減させる こ とができる。 In this embodiment, the divided conductor 26 is used only for the outermost turn, but may be used for a plurality of turns if manufacturing cost permits. If the divided conductors 26 are used for all turns, the manufacturing cost and the number of steps increase, and the total ventilation area of each of the axial ventilation passages 23 is increased by the radial passage at the portion where they join. The cooling area is too large with respect to the ventilation area of 17 1, and the amount of air in each of the axial cooling passages 23 is rather small, thereby reducing the cooling effect. Axial ventilation The ratio of the area of the ventilation area of the flow path 23 to the area of the radial ventilation flow path 17 1, that is, the number of turns to provide the axial ventilation flow path 23, reduces the amount of temperature reduction in this part. Must be set as follows. FIG. 8 is a longitudinal sectional view showing a structure of a slot end rotor winding in a second embodiment of the present invention. As shown in FIG. 8, a radial ventilation channel 30 is added to the rotor winding 4 located inside the mounting portion of the retaining ring 5, and this is connected to the axial ventilation channel 23, and the shaft is If the direction ventilation passage 23 has the function of the outlet ventilation passage, the temperature of this portion can be further reduced.
第 9 図は本発明の第 3実施例におけるス ロ ッ ト端部の回転子 卷線部の構造を示す縦断面図である。 第 9 図に示すよ う に、 軸 方向通風流路 2 3 を絶縁ブロ ッ ク 1 8 と反対側の内側に設ける こ と によ り、 絶縁プロ ッ ク 1 8が回転子卷線 4 の最外径ターン の外側と全面的に接触するので絶縁プロ ッ ク 1 8 の圧縮面圧を 低減させる こ とができ、 絶縁ブロ ッ ク 1 8 の信頼性をよ り 向上 する こ とができ る。 なお、 最外径ターンのひとつ内径側のター ンの外側に軸方向通風流路 2 3 を設け、 最外径ターンの内側の 軸方向通風路 2 3 と対向させれば、 通風面積を増やすこ とがで きる。 この場合、 分割巻線 2 6 を用いるのは、 最外径ターンと その内側のターンの 2 ターン分になる。  FIG. 9 is a longitudinal sectional view showing a structure of a rotor winding portion at a slot end in a third embodiment of the present invention. As shown in FIG. 9, by providing the axial ventilation passage 23 inside the opposite side of the insulation block 18, the insulation block 18 is arranged at the end of the rotor winding 4. Since the entire surface is in contact with the outside of the outer diameter turn, the compression surface pressure of the insulation block 18 can be reduced, and the reliability of the insulation block 18 can be further improved. If an axial ventilation channel 23 is provided outside the innermost turn of the outermost turn and opposed to the axial ventilation channel 23 inside the outermost turn, the ventilation area can be increased. I can do it. In this case, the split winding 26 is used for two turns, the outermost turn and the inner turn.
なお、 上記で述べた軸方向通風流路を卷線導体側でな く絶縁 ブロ ッ ク側に設けても同様な冷却効果が得られるが、 スロ ッ ト 端部の絶縁プロ ッ ク には十分な通風面積を持たせるだけの寸法 的な余裕がないので、 卷線導体側に設ける こ とが好ま しい。  The same cooling effect can be obtained by providing the above-mentioned axial ventilation channel on the insulation block side instead of on the winding conductor side, but it is sufficient for the insulation block at the end of the slot. Since there is no dimensional allowance for providing a large ventilation area, it is preferable to provide it on the winding conductor side.
第 1 0 図は本発明の第 4実施例における巻線スロ ッ ト部の一 部断面構造を示す斜視図である。 この第 1 0図に示した軸方向 通風流路 2 3 は回転子巻線 4 の導体の両側に沿つて延びる よ う に設けたものである。 このよ う に軸方向通風流路 2 3 を設ける こ と によ り、 その加工をよ り容易にする こ とができる。 特に、 導体の両側コーナ一を斜めにカ ツ ト した形状にすれば、 よ りカロ ェが容易である。 . FIG. 10 is a perspective view showing a partial cross-sectional structure of a winding slot part according to a fourth embodiment of the present invention. The axial ventilation passage 23 shown in FIG. 10 extends along both sides of the conductor of the rotor winding 4. It is provided in. By providing the axial ventilation channel 23 in this way, the processing can be further facilitated. In particular, if the corners on both sides of the conductor are cut obliquely, the calorie is easier. .
以上述べたよ う に本発明においては、 回転子巻線の温度分布 を小さ く できる と同時に平均温度も低減できるため、 絶縁ブ口 ッ ク、 導体間の絶縁物の寿命を延ばし、 信頼性の高い回転子を 得る こ とが可能になる。  As described above, in the present invention, the temperature distribution of the rotor winding can be reduced and the average temperature can be reduced, so that the life of the insulation block and the insulator between the conductors can be extended, and the reliability can be improved. It becomes possible to obtain a rotor.
本発明によれば、 簡単な構成で回転子の発熱による温度上昇 を低減でき、 低コス トで信頼性の高い回転電機が得られる。 なお、 本発明は、 その精神又は主要な特徴から逸脱することなく、 他 のいろいろな形で実施する事ができる。 そのため、 本明細書に記載した 好ましい実施例は例示的なものであり、 限定的なものではない。 本発明 の範囲は、 添付の特許請求の範囲によって示されており、 その特許請求 の範囲の意味の中に入る全ての変形例は本発明の範囲に含まれるもので め 。  ADVANTAGE OF THE INVENTION According to this invention, the temperature rise by the heat generation of a rotor can be reduced with a simple structure, and a low cost and highly reliable rotating electric machine can be obtained. Note that the present invention can be embodied in various other forms without departing from the spirit or main features. As such, the preferred embodiments described herein are illustrative and not limiting. The scope of the invention is indicated by the appended claims, and all modifications that come within the meaning of the claims are intended to be included within the scope of the invention.
本発明においては、 回転子卷線の保持環の内側で卷線スロッ トに位置 する部分に冷却流体が軸方向に流通するように軸方向流通路を設けたの で、 流通装置による冷却流体をこの軸方向流通路中を流通して、 回転子 巻線の保持環の内側で巻線スロッ ト内に位置する部分を冷却流体にて強 制的に冷却することができ、 回転子卷線の温度が高くなり易いこの部分 の温度上昇を有効に抑えることができる。 また、 軸方向流通路の出口側 を半径方向流通路に連通して回転子の外周面外方に流通できるようにし たので、 外周面外方に流通するための独立した流通構造を必要とせず、 簡単な構成とすることができる。 さらには、 軸方向流通路の入口側を回 転子卷線の保持環の内側で卷線スロッ ト外に延在する部分の周囲空間に 連通したので、 この回転子巻線の保持環の内側で卷線スロッ ト外に延在 する部分のサーモサイフォン冷却面の熱伝達を一層向上することができ る。 このように、 簡単な構成で、 回転子巻線の絶縁材料の耐熱温度を低 減することができ、 安価な回転子巻線を用いることができると共に、 保 持環の内側部分の巻線導体の熱膨張を抑えることができ、 熱膨張による 歪みに伴う回転振動を低減することができる。 また、 保持環の内側の回 転子巻線の温度上昇を抑えることができることにより、 回転子卷線全体 の温度上昇を抑えることができることになり、 回転電機全体をコンパク トにして出力の増大を図ることが可能となる。 In the present invention, since the cooling fluid flows in the axial direction in the portion located in the winding slot inside the holding ring of the rotor winding, the cooling fluid is provided by the flow device. By flowing through the axial flow passage, the portion located inside the winding slot inside the retaining ring of the rotor winding can be forcibly cooled with a cooling fluid, and the rotor winding can be cooled. The temperature rise in this part where the temperature tends to be high can be effectively suppressed. In addition, since the outlet side of the axial flow passage is communicated with the radial flow passage so as to be able to flow outside the outer peripheral surface of the rotor, an independent flow structure for flowing outside the outer peripheral surface is not required. A simple configuration can be achieved. Furthermore, since the inlet side of the axial flow passage communicates with the space surrounding the portion extending outside the winding slot inside the holding ring of the rotor winding, the inside of the holding ring of the rotor winding is formed. Extends outside the winding slot The heat transfer of the thermosyphon cooling surface in the portion to be heated can be further improved. Thus, with a simple configuration, the heat-resistant temperature of the insulating material of the rotor winding can be reduced, an inexpensive rotor winding can be used, and the winding conductor on the inner side of the retaining ring can be used. Can suppress thermal expansion, and can reduce rotational vibration caused by distortion due to thermal expansion. In addition, since the temperature rise of the rotor winding inside the retaining ring can be suppressed, the temperature increase of the entire rotor winding can be suppressed, and the output of the entire rotating electric machine can be made compact to increase the output. It becomes possible to plan.
また、 軸方向流通路を回転子巻線の外周部又はその近傍部に位置して 形成しているので、 回転子卷線の特に温度が高くなり易い部分を有効に 冷却することができると共に、 回転子卷線の保持環の内側で卷線ス口ッ ト外に延在する部分のサーモサイフォン冷却面の熱伝達を一層向上する ことができる。  In addition, since the axial flow passage is formed at the outer peripheral portion of the rotor winding or in the vicinity thereof, it is possible to effectively cool the portion of the rotor winding where the temperature tends to be particularly high, and The heat transfer of the thermosiphon cooling surface in the portion extending outside the winding slot inside the holding ring of the rotor winding can be further improved.
さらには、 外周面外側に絶縁プロックを配置してなる回転子巻線の最 外周層の内側面に前記軸方向流通路を形成したので、 絶縁ブロックを回 転子卷線の最外周層の外側面に全面的に接触させることができ、 絶縁ブ ロックの圧縮面圧を低減できると共に、 強度が温度に敏感な絶縁プロッ クを効果的に冷却でき、 これにより絶縁ブロックの信頼性を向上するこ とができる。  Furthermore, since the axial flow passage is formed on the inner surface of the outermost layer of the rotor winding having an insulating block disposed on the outer surface of the outer periphery, the insulating block is formed outside the outermost layer of the rotor winding. Full contact with the side surface reduces the compressive surface pressure of the insulating block and effectively cools the insulating block whose strength is sensitive to temperature, thereby improving the reliability of the insulating block. Can be.
また、 回転子卷線を、 連続して卷回された多数層の内側ターン部と、 この内側ターン部とは別体に形成された外側ターン部とで形成し、 回転 子巻線の外側ターン部の保持環の内側で巻線スロッ ト内に位置する部分 に冷却流体を軸方向に流通する軸方向流通路を設けたので、 内側ターン 部を卷線機を用いて連続して巻線を整形しながらパンチング等の打ち抜 きにより半径方向流路を形成できると共に、 別体の外側ターン部に軸方 向流通路を内側ターン部の形成と独立して所定の形状に容易にけいせい することができ、 、 これにより回転子卷線を能率良く製作できる。 さらには、 外側ターン部を、 一巻の一層で構成し、 巻線スロッ ト外に 延在する部分で二つに分割し、 その分割部分を溶接して接続したので、 また、 回転子卷線の保持環の内側で巻線スロッ ト内に位置する部分に、 冷却流体が半径方向に流通するように補助半径方向流通路を軸方向流通 路に連通して設けたので、 回転子巻線の保持環の内側で卷線スロッ ト内 に位置する部分をより強力に冷却することができる。 In addition, the rotor winding is formed by an inner turn portion of a multi-layer continuously wound and an outer turn portion formed separately from the inner turn portion, and an outer turn portion of the rotor winding is formed. An axial flow passage through which the cooling fluid flows in the axial direction is provided inside the winding ring inside the retaining ring of the section, so that the winding is continuously wound around the inner turn using a winding machine. A radial flow path can be formed by punching or the like while shaping, and an axial flow path can be easily formed into a predetermined shape in a separate outer turn independently of the formation of the inner turn. As a result, the rotor winding can be manufactured efficiently. Furthermore, the outer turn portion is composed of one layer of one turn, and is divided into two portions extending outside the winding slot, and the divided portions are connected by welding. An auxiliary radial flow passage is provided in the portion located inside the winding slot inside the retaining ring of the rotor winding so as to allow the cooling fluid to flow in the radial direction. The part located inside the winding slot inside the retaining ring can be cooled more strongly.
さらには、 軸方向流通路を回転子巻線の導体の両側に沿って延びるよ うに設けたので、 その軸方向流通路の加工が容易になると共に、 回転子 卷線の保持環の内側で卷線スロッ ト外に延在する部分のサーモサイフォ ン冷却面両面の熱伝達をより一層向上することができる。  Furthermore, since the axial flow passage is provided so as to extend along both sides of the conductor of the rotor winding, the processing of the axial flow passage is facilitated, and the winding is performed inside the holding ring of the rotor winding. It is possible to further improve the heat transfer on both sides of the thermosiphon cooling surface of the portion extending outside the line slot.
本発明によれば、 安価で高い信頼性が得られ、 コンパク トで出力増大 が可能な回転電機が得られる。  According to the present invention, a rotating electric machine that is inexpensive, has high reliability, and can increase the output in a compact manner is obtained.

Claims

請求の範囲 The scope of the claims
1 . 固定子と、 磁極部分の両側に円周方向に間隔を置いて軸方向に延び る複数の卷線スロッ トを外周面に有する回転子と, 前記磁極に対して同 心状に前記卷線スロッ ト内及びその卷線ス口ッ ト外に延在するように導 体と絶縁材を交互に積層した複数の回転子卷線と, 前記回転子巻線の前 記卷線スロッ ト内の端部とその巻線スロッ ト外に延在するする部分の外 周を保持する保持環と, 回転電機内部に冷却流体を流通する流通装置を 備え、 前記回転子巻線の前記卷線スロッ ト内中央側に位置する部分に前 記冷却流体が半径方向に流通するように半径方向流通路を複数設けてな る回転電機において, 前記回転子卷線の保持環の内側で卷線スロッ ト内 に位置する部分に前記冷却流体を軸方向に流通する軸方向流通路を設け、 前記軸方向流通路は、 前記回転子卷線の保持環の内側で卷線スロッ ト外 に延在する部分の周囲空間と前記半径方向流通路とを連通するように形 成されたことを特徴とする回転電機。  1. a stator, a rotor having a plurality of winding slots on its outer peripheral surface extending in the axial direction at circumferentially spaced sides on both sides of the magnetic pole portion, and the windings concentric with the magnetic poles. A plurality of rotor windings in which conductors and insulating materials are alternately laminated so as to extend into the wire slot and out of the winding slot; and in the winding slot of the rotor winding. A holding ring for holding the outer periphery of a portion extending outside the winding slot of the rotor winding, and a flow device for flowing a cooling fluid inside the rotating electric machine, wherein the winding slot of the rotor winding is provided. In a rotating electric machine having a plurality of radial flow passages provided so that the cooling fluid flows in a radial direction in a portion located at a center side in the rotor, a winding slot is provided inside a retaining ring of the rotor winding. An axial flow passage for circulating the cooling fluid in an axial direction in a portion located in the axial direction; The rotating electric machine is characterized in that the passage is formed so as to communicate a space around a portion extending outside the winding slot inside the holding ring of the rotor winding and the radial flow passage. .
2 . 前記軸方向流通路は、 回転子卷線の外周部又はその近傍部に位置し て形成されたことを特徴とする請求項 1記載の回転電機。 2. The rotating electric machine according to claim 1, wherein the axial flow passage is formed at an outer peripheral portion of the rotor winding or at a portion near the outer peripheral portion.
3 . 前記回転子卷線の外周面外側に絶縁プロックを配置し、 前記回転子 卷線の最外周層の内側面に前記軸方向流通路を形成したことを特徴とす る請求項 1記載の回転電機。 3. The axial flow passage according to claim 1, wherein an insulating block is arranged outside an outer peripheral surface of the rotor winding, and the axial flow passage is formed on an inner surface of an outermost layer of the rotor winding. Rotating electric machine.
4 . 前記絶プロックをガラス繊維で強化した熱硬化性樹脂系複合材料で 形成したことを特徴とする請求項 3記載の回転電機。 4. The rotating electric machine according to claim 3, wherein the block is formed of a thermosetting resin-based composite material reinforced with glass fibers.
5 . 固定子と、 磁極部分の両側に円周方向に間隔を置いて軸方向に延び る複数の卷線スロッ トを外周面に有し、 その巻線スロッ トの底面に軸方 向に延びるサブスロッ トを有する回転子と, 前記磁極に対して同心状に 前記卷線スロッ ト内及びその巻線スロッ ト外に延在するように導体と絶 縁材を交互に積層した複数の回転子卷線と, 前記回転子卷線の外周面外 側に絶縁プロックを介して配置されたゥェッジと、 前記回転子卷線の前 記卷線ス口ッ ト内の端部及びその外側の絶縁プロックとその巻線ス口ッ ト外に延在するする部分の外周側を保持する保持環と, 回転電機内部に 冷却流体を流通する流通装置を備え、 前記回転子卷線と前記絶縁プロッ クと前記ゥエツジの前記卷線スロッ ト内中央側に位置する部分に前記冷 却流体が前記サブスロッ トから半径方向に流通するように半径方向流通 路を複数設けてなる回転電機において, 前記回転子巻線の保持環の内側 で卷線スロッ ト内に位置する部分に前記冷却流体を軸方向に流通する軸 方向流通路を設け、 前記軸方向流通路は、 前記回転子卷線の保持環の内 側で卷線スロッ ト外に延在する部分の周囲空間と前記半径方向流通路と を連通するように回転子卷線の外周部又はその近傍部に位置して形成さ れたことを特徴とする回転電機。 5. A stator and a plurality of winding slots extending in the axial direction at both sides of the magnetic pole part and extending in the circumferential direction on the outer peripheral surface, and extend in the axial direction on the bottom surface of the winding slot. A rotor having sub-slots, and a plurality of rotor windings in which conductors and insulating materials are alternately stacked so as to extend concentrically with respect to the magnetic poles in the winding slot and outside the winding slot. A wire, a wedge arranged outside an outer peripheral surface of the rotor winding via an insulating block, and a wire in front of the rotor winding. A retaining ring for holding an end in the winding slot and an insulating block outside the winding slot and an outer peripheral side of a portion extending out of the winding slot, and flowing a cooling fluid inside the rotating electric machine. And a radial device such that the cooling fluid flows radially from the sub-slot to a portion of the rotor winding, the insulating block, and the edge located on the center side of the winding slot in the winding slot. A rotating electrical machine provided with a plurality of directional flow paths, wherein an axial flow path through which the cooling fluid flows in the axial direction is provided in a portion located inside the winding slot inside the retaining ring of the rotor winding; The axial flow passage is provided at an outer peripheral portion of the rotor winding so as to communicate a space around a portion extending outside the winding slot inside the holding ring of the rotor winding and the radial flow passage. Or formed in the vicinity of it. Rotating electric machine to.
6 . 固定子と、 磁極部分の両側に円周方向に間隔を置いて軸方向に延び る複数の卷線スロッ トを外周面に有する回転子と, 前記磁極に対して同 心状に前記巻線スロッ ト内及びその卷線スロッ ト外に延在するように導 体と絶縁材を交互に積層した複数の回転子巻線と, 前記回転子卷線の前 記巻線スロッ ト内の端部とその巻線スロッ ト外に延在するする部分の外 周を保持する保持環と, 回転電機内部に冷却流体を流通する流通装置を 備え、 前記回転子巻線の前記卷線スロッ ト内中央側に位置する部分に前 記冷却流体が半径方向に流通するように半径方向流通路を複数設けてな る回転電機において, 前記回転子卷線は、 連続して巻回された多数層の 内側ターン部と、 この内側ターン部とは別体に形成された外側ターン部 とを有し、 前記回転子卷線の外側タ一ン部の保持環の内側で卷線ス口ッ ト内に位置する部分に前記冷却流体を軸方向に流通する軸方向流通路を 設けたことを特徴とする回転電機。  6. A stator, a rotor having a plurality of winding slots on its outer peripheral surface extending in the axial direction at circumferentially spaced sides on both sides of the magnetic pole portion, and the windings concentric with the magnetic poles. A plurality of rotor windings in which conductors and insulating materials are alternately laminated so as to extend into the wire slot and out of the winding slot, and an end of the rotor winding in the winding slot. And a holding ring for holding the outer circumference of a portion extending out of the winding slot, and a flow device for flowing a cooling fluid inside the rotating electric machine, wherein the inside of the winding slot of the rotor winding is provided. In a rotating electric machine in which a plurality of radial flow passages are provided in a portion located on the center side so that the cooling fluid flows in the radial direction, the rotor winding is formed of a multi-layered structure wound continuously. An inner turn portion, and an outer turn portion formed separately from the inner turn portion, An axial flow passage through which the cooling fluid flows in the axial direction is provided in a portion located inside the winding slot inside the holding ring of the outer turn portion of the rotor winding. Rotating electric machine.
7 . 前記外側ターン部は、 一巻の一層で構成され、 卷線スロッ ト外に延 在する部分で二つに分割され、 その分割部分が溶接して接続されたこと を特徴とする請求項 6記載の回転電機。 7. The outer turn portion is constituted by a single layer of one turn, is divided into two portions at a portion extending outside the winding slot, and the divided portions are connected by welding. The rotating electric machine according to 6.
8 . 前記回転子卷線の保持環の内側で卷線スロッ ト内に位置する部分に、 前記冷却流体が半径方向に流通するように補助半径方向流通路を前記軸 方向流通路に連通して設けたことを特徴とする請求項 1、 5、 6の何れ かに記載の回転電機。 . 8. An auxiliary radial flow passage communicating with the axial flow passage so that the cooling fluid flows in a radial direction in a portion located inside the winding slot inside the retaining ring of the rotor winding. 7. The rotating electric machine according to claim 1, wherein the rotating electric machine is provided. .
9 . 前記軸方向流通路を回転子卷線の導体の両側に沿って延びるように 設けたことを特徴とする請求項 1、 5、 6の何れかに記載の回転電機。  9. The rotating electric machine according to claim 1, wherein the axial flow passage is provided so as to extend along both sides of the conductor of the rotor winding.
PCT/JP1999/001315 1999-03-17 1999-03-17 Dynamo-electric machine WO2000055958A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001315 WO2000055958A1 (en) 1999-03-17 1999-03-17 Dynamo-electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001315 WO2000055958A1 (en) 1999-03-17 1999-03-17 Dynamo-electric machine

Publications (1)

Publication Number Publication Date
WO2000055958A1 true WO2000055958A1 (en) 2000-09-21

Family

ID=14235206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001315 WO2000055958A1 (en) 1999-03-17 1999-03-17 Dynamo-electric machine

Country Status (1)

Country Link
WO (1) WO2000055958A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2120314A1 (en) * 2008-05-16 2009-11-18 Siemens Aktiengesellschaft Rotor cooling for dynamoelectric machine
JP2010158121A (en) * 2008-12-27 2010-07-15 Toshiba Corp Rotor of rotating electric machine
EP2978104B1 (en) * 2014-07-23 2020-02-26 Lockheed Martin Corporation Vacuum gap generators and motors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939902U (en) * 1972-07-11 1974-04-08
JPS59149442U (en) * 1983-03-25 1984-10-05 三菱電機株式会社 rotor of rotating electric machine
JPS6181150A (en) * 1984-09-26 1986-04-24 Hitachi Ltd Rotor field winding of electric machine
JPS61149942U (en) * 1985-03-08 1986-09-16
JPH06141501A (en) * 1992-10-26 1994-05-20 Hitachi Ltd Fastening of coil
JPH09285052A (en) * 1996-02-14 1997-10-31 Hitachi Ltd Dynamo-electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939902U (en) * 1972-07-11 1974-04-08
JPS59149442U (en) * 1983-03-25 1984-10-05 三菱電機株式会社 rotor of rotating electric machine
JPS6181150A (en) * 1984-09-26 1986-04-24 Hitachi Ltd Rotor field winding of electric machine
JPS61149942U (en) * 1985-03-08 1986-09-16
JPH06141501A (en) * 1992-10-26 1994-05-20 Hitachi Ltd Fastening of coil
JPH09285052A (en) * 1996-02-14 1997-10-31 Hitachi Ltd Dynamo-electric machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2120314A1 (en) * 2008-05-16 2009-11-18 Siemens Aktiengesellschaft Rotor cooling for dynamoelectric machine
JP2010158121A (en) * 2008-12-27 2010-07-15 Toshiba Corp Rotor of rotating electric machine
EP2978104B1 (en) * 2014-07-23 2020-02-26 Lockheed Martin Corporation Vacuum gap generators and motors

Similar Documents

Publication Publication Date Title
US6774515B2 (en) Rotary electric power generator
JP5038595B2 (en) Method and apparatus for reducing hot spot temperature of laminated field winding
JP5016843B2 (en) Rotating electrical machine rotor
US6346754B1 (en) Electric rotating machine
JPH04229049A (en) Liquid cooling of rotor for electric machine
JPH04251545A (en) Stator cooling device for electric machine
JPH1198788A (en) Ac generator for vehicle
JP3833262B2 (en) Electric rotor winding
EP3136550B1 (en) Rotor assembly having improved cooling path
KR20080063782A (en) Paddled rotor spaceblocks
JPH10285853A (en) Rotor of dynamo-electric machine
JP3564915B2 (en) Rotating electric machine
EP1100177A1 (en) Stator for an electric motor or generator, and electric motor or generator provided with such stator
JPH11252830A (en) Stator of dynamoelectric machine
US6316852B1 (en) Rotating machine
WO2000055958A1 (en) Dynamo-electric machine
US6870299B1 (en) Thermal management of rotor endwinding coils
US20020079753A1 (en) High thermal conductivity spaceblocks for increased electric generator rotor endwinding cooling
US11670987B1 (en) High specific power electrical machine
US11742712B2 (en) Rotary electric machine
JPH08322176A (en) Rotor for electric rotating machine
JPH10150737A (en) Rotor for electric rotating machine
JP2024506616A (en) High density motor cooling channels
JP2001016813A (en) Dynamo-electric machine
JP2001327107A (en) Electric rotating machine and its rotor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 605297

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase