WO2000055539A1 - Conduites de distribution - Google Patents

Conduites de distribution Download PDF

Info

Publication number
WO2000055539A1
WO2000055539A1 PCT/GB2000/000990 GB0000990W WO0055539A1 WO 2000055539 A1 WO2000055539 A1 WO 2000055539A1 GB 0000990 W GB0000990 W GB 0000990W WO 0055539 A1 WO0055539 A1 WO 0055539A1
Authority
WO
WIPO (PCT)
Prior art keywords
liner
main
branch pipe
ferrule
orifice
Prior art date
Application number
PCT/GB2000/000990
Other languages
English (en)
Inventor
Trevor George Sanders
Original Assignee
Thames Water Utilities Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thames Water Utilities Limited filed Critical Thames Water Utilities Limited
Priority to AU33054/00A priority Critical patent/AU3305400A/en
Publication of WO2000055539A1 publication Critical patent/WO2000055539A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/179Devices for covering leaks in pipes or hoses, e.g. hose-menders specially adapted for bends, branch units, branching pipes or the like

Definitions

  • the invention relates to mains, particularly to a main such as a water main which has installed in it a liner.
  • mains often have branch pipes or ferrules feeding a water supply to say a dwelling.
  • Lining the pipe with a liner which is essentially a tube of material deployed in the main, necessarily cuts off flow connection between the main and the branch pipe. If a flow connection is established, the water can and does hitherto seep "behind" the liner, that is between it and the main, leading again to leakage, and to loss of flow to the dwelling.
  • a system for securing a liner in a main for flowable material adjacent a branch pipe of the main whilst providing flow connection between the main and the branch pipe comprising means to locate the position of the branch pipe when the liner is installed, means to form an orifice through the liner to provide said flow connection, and a device for sealing the boundary of the through orifice against leakage of flowable material between the liner and the main.
  • the locating means may comprise an electronic means. This is a relatively simple yet effective means, particularly when the electronic means may comprise a transponder located in the branch pipe.
  • the transponder may be inserted in the branch pipe from interiorly of the main. This can provide an efficient system.
  • the locating means may comprise an emitter of ultrasound and a detector of ultrasound. This is an effective alternative system.
  • the detector may comprise a mobile robot device adapted for travelling along the main.
  • the locating means may comprise means to apply an electromagnetic signal to the branch pipe, and a mobile robot device adapted for travelling along the main and to detect the signal.
  • the system may include a robot device for forming the through orifice in the liner at a branch pipe.
  • the electronic means may comprise a flexible device which flexes on insertion in the branch pipe for retention therein, the amount of flexure providing details of parameters of the branch pipe.
  • a device for securing an edge of an orifice through the material of a liner of a main at a branch pipe comprising a body which is adapted for sealing the edge against leakage between the liner and main, and for securing the device in the main.
  • the body may comprise an annular part incorporating seal means for sealing the edge. This is a relatively simple construction.
  • the sealing means may also be adapted for securing the device in position.
  • the sealing means may comprise an annular layer of butyl adhesive, or an adhesive tape.
  • the accommodating means may comprise bellows means, for example comprising a resilient body or a cellular structure.
  • a main with a branch pipe whenever lined using a system as hereinbefore defined or incorporating a device as hereinbefore defined.
  • FIG. 1 is a schematic side elevational view of a main with a branch pipe or ferrule
  • Fig. 2 is a schematic side elevational view of a liner with a through orifice therethrough adjacent an entry to the ferrule;
  • Figs. 3 and 4 show steps in insertion of a device according to the invention through an orifice in the liner
  • FIGs. 5 to 8 show views of a second embodiment of device embodying the invention, Fig. 6 being a plan view in the direction of arrow "X" of the device shown in Fig. 5;
  • Fig. 9 is a modification of the embodiment of Figs. 5 to 8.
  • Figs. 10 to 37C show schematically various other embodiments of securing a liner in a host pipe.
  • a system 1 for securing a liner 2 in a main 3 or host pipe for conveying flowable material adjacent a branch pipe or ferrule 4 of the main 3 whilst providing flow connection between the main 3 and the branch pipe 4, comprising means 5 to locate the position of the branch pipe 4 when the liner 2 is installed, means 6 to form an orifice 7 through the liner 2 to provide said flow connection, and a device 8, 9, 10 for sealing the boundary of the through orifice 7 against leakage of flowable material between the liner 2 and the main 3.
  • the device 1 is an electronic device such as a "smart" card which is an electronic means which can be inserted in the bore 1 1 of the ferrule by a robot device (not shown) which can travel along the main 3.
  • the device 5 is inserted in the ferrule 4 before the liner 2 is inserted.
  • the robot via a detection means can locate the ferrule via the device, which acts as a "homing” device, and can then cut the orifice 7 through the liner 2 by a suitable cutting tool comprising the means to form the orifice 6.
  • the device 5 not only allows detection of where each ferrule in a main 3 is, but can provide ferrule parameters, such as ferrule bore size for example, the signal given by the device being proportional to the flexure thereof.
  • the cutting tool in one embodiment is heated by the robot to about 200 ° C.
  • the cutter displaces liner material and passes smoothly through the thickness of the liner 2, which is made of polyethylene, with a constant speed and with constant force.
  • the liner 2 is not charred, and there is no smoking during cutting.
  • the cut edge of the hole re-hardens when the (heated) cutting tool 6 is withdrawn, to provide access to the bore of the ferrule 4.
  • a device 8 like that of Figs. 3 and 4 may be used.
  • the device 8 has a body with an annular part 1 2 which is dished and which includes an annular ring 1 3 of sealant or adhesive such as butyl or a tape (for example a PTFE tape) and a hollow cylindrical part 1 4 which is inserted in the bore 1 1 of the ferrule 4 (Fig. 4).
  • the sealant 13 as shown seals the edge of the material of the liner 2 which defines a boundary of the hole 7, and seals to the main, when the device is forced into position by the robot.
  • the device 9 is a gasket-like device having a dished body 1 5 with an annular ring of sealant or adhesive 1 6 and a bellows type component which is resilient metal or plastic, or could be a closed foam cellular annular construction with an annular ring 1 8 of adhesive for sealing to the main adjacent the ferrule, which has been located as before.
  • the body part 1 5 and bellows 17 are bonded together at 'b' to provide a composite unit.
  • the bellows 17 in use allows the liner 2 to expand towards the wall of the main 3, under pressure of water in the main.
  • Fig. 9 shows a modification of Figs. 5 to 8 in which there is additional mounting means of the device 10 in the form of spring fingers 1 9 which can be serrated at 20 for insertion in the bore of the ferrule; the serrations 20 if present allow for a firm grip and hence mounting in the ferrule 4, and thus this positive engagement assists in maintaining the sealant 16, 1 8 bonded to the bore of the mains and to the edge of the orifice 7 in the liner.
  • FIG. 10 to 13 there are shown further embodiments of device for sealing the boundary of the through orifice.
  • Fig. 10 shows a device 21 in the form of a bellows like device made of resilient material and having a channel 22 having lips or limbs 23 which are sprung into place over the cut edge defining the hole 7 through the liner 2.
  • a relatively rigid locking ring 24 of say metal and of wedge-configuration in cross-section is then forced into an annular seating 25 for it.
  • the device 21 is then locked into the liner 2 by the lateral force provided by the wedge action of the locking ring 24.
  • the device 21 has an adhesive sealant 26 such as a butyl adhesive layer which is held in place by the device at the ferrule to obviate leakage into the thread of the ferrule, and behind the liner 2.
  • the device 27 has a bellows membrane 28 with a relatively rigid ring 29 for strength, and an upper (as viewed) adhesive layer 30 such as butyl adhesive on an upper (as viewed) part of the bellows and on the lower part a connector 31 for engaging the liner 2 adjacent its cut edge by a barb 32 or barbs which is/are heated on installation.
  • an additional seal 33 formed by spaced rings of annular cutters which receive between them a conventional 'O' ring seal or sealant 34.
  • a resilient member 35 spans between the upper part of the device and the connector 31 to assist in preventing butyl sealant detaching from the host pipe under vacuum conditions.
  • the connector 31 has a resilient member 37 to provide a continuous pressure on the sealant 34.
  • Figs. 13 to 1 5 show further embodiments in the form of respective variations on a post-liner gasket, which has a peripheral flange 38 which could be, like the gasketperse, of polyethylene, which is held in place on the liner adjacent the cut through hole 7 by a heatable, suitably metal, insert which is annular so that in use it surrounds the hole 7.
  • the insert 39 is heated and forced through the gasket 38 into the liner 2 which action causes fusion welding of the liner and gasket to take place, thus providing a leak-tight joint.
  • the insert 39 has serrations 1 10 and an annular ring seal 41 comprising a channel containing adhesive such as butyl or a conventional elastomeric seal.
  • adhesive such as butyl or a conventional elastomeric seal.
  • Figs. 16A to 16C show a further embodiment, and Fig. 17 an enlarged view of a development thereof.
  • a heatable expansion collet is positioned interiorly of the liner 2, Fig. 16A.
  • the collet is heated, and expanded under pressure, Fig. 16B, the polyethylene liner is softened and pushed out to the wall of the host pipe 3, thus sandwiching the adhesive between the liner and the host pipe, resulting in a permanently tight fit in the pipe 3 once the liner cools (Fig. 16C).
  • a pressure assisted membrane 43 is applied after the liner 2 is position as in Fig. 16C.
  • the membrane 43 can be applied by a robot from within the pipe 3 and liner 2 combination. This maintains cleanliness of the system.
  • FIGs. 1 8 and 1 9 A similar result is shown in Figs. 1 8 and 1 9 where an annular support ring 44 is supported mechanically by a support 44' which is resilient or sprung and is used to assist in maintaining the ring 44 and membrane 43 in place adjacent the bore of the ferrule.
  • Figs. 20 to 22 show an embodiment where a tension bush is used to assist in maintaining the membrane in place.
  • the tension bush 45 is a metal band with stepped ends so as to mate to form a circle, there being ratchet teeth 48 on the outer surface of the bush 45, there being a thin metal strip 46 the same width as the bush secured at one end as by welding to the bush 45 and having a finger or bent end 47 at the opposite end to engage the ratchet teeth.
  • the bush 49 has ratchet teeth 50 at each end, the metal strip 51 in the form of a wide circlip having a tooth 52 at each end for engaging a respective ratchet 50.
  • the bush 49 and gasket 43 are positioned in the liner adjacent the hole 7 therethrough under the ferrule by a robot and the metal strip is then positioned and opened out by the robot, the fingers 52 engaging in a respective ratchet to hold the assembly in position and effect a tight seal, as before.
  • Figs. 23 and 24 show an embodiment on which a support ring 53 for the membrane 43 is held in place by a pivotable circlip 54. Free ends or bent fingers 55 of the circlip are received in respective seats 56 of the support ring 55.
  • the circlip being sprung is forced when in position, by a robot to be substantially perpendicular to the longitudinal axis of the liner 2, as shown schematically in Fig. 24.
  • the pivoting action forces the support ring 53 more firmly against the membrane 43 to ensure a tight seal.
  • the outer surface of the circlip 54 could be serrated to prevent movement after installation.
  • Figs. 25 and 26 show embodiments where a resilient material 57 is interposed between the support ring 58 and membrane 43. This ensures that continuous pressure is maintained, so enhancing adhesion and thus leak-tightness.
  • the resilient material has an enlarged section 59 which bears against the membrane. This also helps prevent the membrane seal 43 from detaching from the host pipe 3 during surge and/or vacuum conditions.
  • Figs. 27 to 29A show an embodiment where a disc 60 of adhesive such as butyl adhesive is applied over the inner surface of the ferrule 4 by a robot, either before or after the liner 2 is installed.
  • the disc 60 comprises a plastic packing film 61 , a layer of adhesive 62 and one or more thick rings 63 of adhesive.
  • This disc 60 is essentially flat, as shown in Fig. 27 before application by the robot.
  • the disc 60 is deformed when it is forced into place by the robot, as shown in Fig. 28.
  • Figs. 29 and 29A show a disc 60 which is reinforced by a reinforcement 64 in the form of an annular ring of filament which provides a relatively high shear strength and allows for the deformed thickness of the disc and hence of the adhesive to be relatively large, which is good for smoothing out surface irregularities or filling in deformities such as pitting in cast iron host pipes.
  • the disc includes an O-ring 65 which has a mechanical support 66.
  • Figs. 31 and 31 A and 32 and 32A show respectively a disc 67, 68 including a bellows 69 and a resilient bush 70.
  • Figs. 31 A and 32A showing this configuration after the disc is deformed and installed by the robot.
  • Both the bellows 69 and the resilient bush 70 increase the pressure on the adhesive, which in all embodiments herein is a viscous sealant.
  • the pressure of water in the host pipe flattens item 69', which can be strong sprung stainless steel, its large surface area greatly increasing the pressure on the viscous sealant.
  • the viscous adhesive disc is ruptured from within the liner by the pressure of water, simultaneously opening up the bore of the ferrule to flow and "wrapping" the viscous adhesive round the ferrule threads and sealing them and the free edge of the liner while also being adhered firmly to the wall of the host pipe, ferrule and liner, so obviating leakage.
  • the means 5 for detecting the ferrule when a liner is in place can be an eddy current system.
  • Figs. 33A and 33B show a display on a screen of results obtained using a transducer to detect eddy currents from tests on a 4" used pipe.
  • Fig 33B clearly shows the location of the ferrule, which is of brass. Variations in the diameter of the liner did not effect the detection of the ferrule owing to separate directions of variation in the impedance plane.
  • the transducer is operated at an optimum frequency in this case of 70kHz.
  • Figs. 34 and 34A show further embodiments of sealing at the ferrule 4. These utilise a piston 70 and cylinder 71 arrangement as an alternative to for example the bellows-like devices of previous embodiments.
  • the piston and cylinder 70, 71 each have lip seals 72 to facilitate relative movement between them.
  • Either the piston 70 or the cylinder 71 can move to provide pressure on the membrane 43, and there may be a mechanical support for the piston/cylinder assembly, which with the alternative of Fig. 34A enable the two halves of the piston sealing assembly 73 to be fitted independently.
  • Figs. 35 and 35A show embodiments where a liner 2 is cut adjacent the ferrule 4 by a pre-installed "blunt" cutter 74 which is heated by induction and cuts out the hole in the liner as before.
  • a lip seal 75 assists in enhancing leak-tightness, while in Fig. 35A a resilient ring 76 assists adhesion during vacuum conditions.
  • the cutter can have barbs for assisting retention.
  • Fig. 36 shows an embodiment where a plug or bung 77 can be applied by a robot in the unlikely event of the membrane being found to have sprung a leak.
  • the bung 77 is supported on the end in this case of the bellow 78, and there is a sealing ring 79 too.
  • a plurality of (say three) displacement transducers are attached to a device which incorporates a force ring. This is applied to the ferrule by a robot and a predetermined force is applied. If the average recorded transducer reading is less than a predetermined
  • the ferrule can be considered to be secure at its threaded joint in the host pipe.
  • Figs. 37A, B and C show steps in use of a modified gasket or disc 80, which includes a disc 81 of viscous sealant or adhesive such as butyl, a thin plastic film 82 thereover, an annular pad 83 suitably of resilient material and a plastic cover 84.
  • the gasket 80 is applied over the ferrule 4 by the robot, the pad assisting in causing the viscous adhesive or sealant to follow the contour of the bore of the host pipe 3.
  • the liner is then installed (Fig. 37B).
  • a coupon 85 of the lining is then cut and removed by the robot, attached to a coupon 84a of the plastic cover 84.
  • butyl adhesive or viscous sealant referred to could be replaced by any suitable substitutes, particularly silicone and polyurethane based polymers. Hydrophillic seals, particularly polyurethane based could also be used, as could an epoxy putty.
  • Some lining systems make use of a sacrificial sleeve, which protects the liner's outer surface during installation; and remains in place with the liner.
  • the "post-liner” gasket described herein, ensures that no leak-path exists between the outer surface of the liner and inner surface of the sacrificial sleeve. Potentially, even restraining bands, used to keep some systems in a "C" configuration, can cause a leak-path if the "pre-liner" gasket were used.
  • post-liner gasket has potential for a wide range of liner wall thickness, whereas the "pre-liners” are less suitable for very thick/tough liner materials, i.e. more difficult for a gasket's razor edge to penetrate the material.
  • Ultrasound has been used for several applications, detecting cracks and determining the wall thickness of pipes.
  • An alternative to using ultrasound inside the lined pipe would be to transmit a signal onto a stopcock or other installation which can be fitted outboard of the ferrule.
  • the signal would be picked up by the robot inside the pipe. This had the advantage of component size, i.e. a much larger, more powerful, transmitter can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gasket Seals (AREA)

Abstract

L'invention concerne un système (1) pour solidariser une gaine (2) dans une conduite de distribution (3) ou un tuyau hôte pour transporter une matière coulante vers un tuyau de branchement ou une ferrure (4) de la conduite de distribution (3) et pour créer en même temps un raccordement entre la conduite de distribution (3) et le tuyau de branchement (4), y compris un système (5) servant à situer la position du tuyau de branchement (4) après l'installation de la gaine (2), un dispositif (6) pour pratiquer un orifice (7) à travers la gaine (2) afin de créer le raccordement susmentionné, et un dispositif (8) pour étanchéifier la jonction de l'orifice traversant (7) contre toute fuite de matière coulante entre la gaine (2) et la conduite de distribution (3). Le système de localisation est un dispositif électronique qui peut être inséré dans le trou traversant de la ferrure par un dispositif robotisé capable de se déplacer le long de la conduite de distribution (3). Le dispositif est inséré dans la ferrure (4) avant l'insertion de la gaine (2). Après insertion, le robot localise au moyen d'un système de détection la ferrure grâce au dispositif et peut faire un orifice à travers la couche (2) au moyen d'un outil de coupe approprié qui comprend le système pour former l'orifice. Le dispositif (5) permet non seulement de détecter la position de chaque ferrure dans la conduite de distribution (3) mais aussi de fournir des paramètres de la ferrure tels que la taille de son trou, le signal émis par le dispositif étant proportionnel à sa courbure. L'invention présente différents modes de réalisation d'un dispositif d'étanchéification.
PCT/GB2000/000990 1999-03-18 2000-03-17 Conduites de distribution WO2000055539A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU33054/00A AU3305400A (en) 1999-03-18 2000-03-17 Mains

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9906308.3A GB9906308D0 (en) 1999-03-18 1999-03-18 Mains
GB9906308.3 1999-03-18

Publications (1)

Publication Number Publication Date
WO2000055539A1 true WO2000055539A1 (fr) 2000-09-21

Family

ID=10849925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2000/000990 WO2000055539A1 (fr) 1999-03-18 2000-03-17 Conduites de distribution

Country Status (3)

Country Link
AU (1) AU3305400A (fr)
GB (1) GB9906308D0 (fr)
WO (1) WO2000055539A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372547A (en) * 2001-01-12 2002-08-28 Lattice Intellectual Property Lining a main pipe, and one or more service pipes extending therefrom
WO2003078886A1 (fr) * 2002-03-13 2003-09-25 Enterprise Managed Services Limited Procedes de fermeture
EP1785659A1 (fr) * 2005-11-11 2007-05-16 Brandenburger Patentverwertung GdbR. Procédé de rénovation de lignes de branchement de canalisations
DE102005016030B4 (de) * 2005-04-07 2008-04-17 E. Missel Gmbh & Co. Kg Dämmmaterial
US7710281B2 (en) 2003-10-07 2010-05-04 Underground Solutions Technologies Group, Inc. Remote tapping method and system for internally tapping a conduit
WO2010115290A1 (fr) * 2009-04-09 2010-10-14 Aqua Rehab Inc. Dispositif et procédé d'étanchement d'une jonction entre un tuyau principal et un tuyau latéral branché sur celui-ci
GB2508215A (en) * 2012-11-26 2014-05-28 Balfour Beatty Plc Lining of pipework with ferrules
WO2014088579A1 (fr) * 2012-12-06 2014-06-12 Halliburton Energy Services Inc. Ensemble disque de rupture et joint d'étanchéité secondaire et procédés associés
WO2020092556A1 (fr) * 2018-10-30 2020-05-07 Ina Acquisition Corp. Raccord pour le raccordement d'un chemisage de tuyau principal à un conduit de dérivation
US11079055B2 (en) 2018-10-30 2021-08-03 Ina Acquisition Corp. Fitting for connecting a main pipe liner to a branch conduit
US11391407B2 (en) 2018-11-30 2022-07-19 Ina Acquisition Corp. Methods, systems, and apparatus for use in main pipes connected to branch conduit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2041147A (en) * 1979-01-22 1980-09-03 Fusion Equipment Ltd Renovating sewers
WO1991007619A1 (fr) * 1989-11-21 1991-05-30 Wavin B.V. Patte thermoplastique de fixation en deux parties permettant de reparer ou de renover des canalisations avec des conduites derivees et canalisations ainsi reparees ou renovees
DE4024926A1 (de) * 1990-08-06 1992-02-13 Otto Schlemmer Gmbh Verfahren und vorrichtung zum sanieren von rohren
EP0506181A1 (fr) * 1991-03-26 1992-09-30 Wavin B.V. Méthode pour le revêtement intérieur d'une liaison entre une tuyau principal et une conduite secondaire en utilisant un manchon extensible en un matériau durcissable et manchon adapté à cet usage
EP0550860A1 (fr) * 1992-01-08 1993-07-14 Phoenix Aktiengesellschaft Assemblage de garniture
DE19627312C1 (de) * 1996-06-25 1997-11-13 Reinhold Wiechern Mestechnik U Kanal-Fräsroboter
EP0891857A2 (fr) * 1997-07-18 1999-01-20 Shonan Gosei - Jushi Seisakusho K.K. Dispositif pour repérer la position de l'entrée d'une conduite de dérivation et méthode de revêtement de conduites utilisant ce dispositif
EP0931639A2 (fr) * 1998-01-27 1999-07-28 Shonan Gosei - Jushi Seisakusho K.K. Procédé de revêtement de tuyaux
US6006787A (en) * 1998-02-12 1999-12-28 Shonan Gosei-Jushi Seisakusho K.K. Branch pipe liner bag and branch pipe lining method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2041147A (en) * 1979-01-22 1980-09-03 Fusion Equipment Ltd Renovating sewers
WO1991007619A1 (fr) * 1989-11-21 1991-05-30 Wavin B.V. Patte thermoplastique de fixation en deux parties permettant de reparer ou de renover des canalisations avec des conduites derivees et canalisations ainsi reparees ou renovees
DE4024926A1 (de) * 1990-08-06 1992-02-13 Otto Schlemmer Gmbh Verfahren und vorrichtung zum sanieren von rohren
EP0506181A1 (fr) * 1991-03-26 1992-09-30 Wavin B.V. Méthode pour le revêtement intérieur d'une liaison entre une tuyau principal et une conduite secondaire en utilisant un manchon extensible en un matériau durcissable et manchon adapté à cet usage
EP0550860A1 (fr) * 1992-01-08 1993-07-14 Phoenix Aktiengesellschaft Assemblage de garniture
DE19627312C1 (de) * 1996-06-25 1997-11-13 Reinhold Wiechern Mestechnik U Kanal-Fräsroboter
EP0891857A2 (fr) * 1997-07-18 1999-01-20 Shonan Gosei - Jushi Seisakusho K.K. Dispositif pour repérer la position de l'entrée d'une conduite de dérivation et méthode de revêtement de conduites utilisant ce dispositif
EP0931639A2 (fr) * 1998-01-27 1999-07-28 Shonan Gosei - Jushi Seisakusho K.K. Procédé de revêtement de tuyaux
US6006787A (en) * 1998-02-12 1999-12-28 Shonan Gosei-Jushi Seisakusho K.K. Branch pipe liner bag and branch pipe lining method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372547A (en) * 2001-01-12 2002-08-28 Lattice Intellectual Property Lining a main pipe, and one or more service pipes extending therefrom
GB2372547B (en) * 2001-01-12 2004-09-15 Lattice Intellectual Property Lining of pipes
WO2003078886A1 (fr) * 2002-03-13 2003-09-25 Enterprise Managed Services Limited Procedes de fermeture
US7710281B2 (en) 2003-10-07 2010-05-04 Underground Solutions Technologies Group, Inc. Remote tapping method and system for internally tapping a conduit
US8049634B2 (en) 2003-10-07 2011-11-01 Underground Solutions Technologies Group, Inc. Remote tapping method and system for internally tapping a conduit
DE102005016030B4 (de) * 2005-04-07 2008-04-17 E. Missel Gmbh & Co. Kg Dämmmaterial
EP1785659A1 (fr) * 2005-11-11 2007-05-16 Brandenburger Patentverwertung GdbR. Procédé de rénovation de lignes de branchement de canalisations
WO2010115290A1 (fr) * 2009-04-09 2010-10-14 Aqua Rehab Inc. Dispositif et procédé d'étanchement d'une jonction entre un tuyau principal et un tuyau latéral branché sur celui-ci
GB2508215A (en) * 2012-11-26 2014-05-28 Balfour Beatty Plc Lining of pipework with ferrules
WO2014088579A1 (fr) * 2012-12-06 2014-06-12 Halliburton Energy Services Inc. Ensemble disque de rupture et joint d'étanchéité secondaire et procédés associés
US9896904B2 (en) 2012-12-06 2018-02-20 Halliburton Energy Services, Inc. Rupture disc secondary seal assembly and related methods
WO2020092556A1 (fr) * 2018-10-30 2020-05-07 Ina Acquisition Corp. Raccord pour le raccordement d'un chemisage de tuyau principal à un conduit de dérivation
US11079055B2 (en) 2018-10-30 2021-08-03 Ina Acquisition Corp. Fitting for connecting a main pipe liner to a branch conduit
US11774025B2 (en) 2018-10-30 2023-10-03 Ina Acquisition Corp. Fitting for connecting a main pipe liner to a branch conduit
US11391407B2 (en) 2018-11-30 2022-07-19 Ina Acquisition Corp. Methods, systems, and apparatus for use in main pipes connected to branch conduit
US11828400B2 (en) 2018-11-30 2023-11-28 Ina Acquisition Corp. Methods, systems, and apparatus for use in main pipes connected to branch conduit

Also Published As

Publication number Publication date
GB9906308D0 (en) 1999-05-12
AU3305400A (en) 2000-10-04

Similar Documents

Publication Publication Date Title
US4664428A (en) Sealing assembly for pipe joint
US5129684A (en) Sealed bulkhead fitting
WO2000055539A1 (fr) Conduites de distribution
CA2074703C (fr) Systeme de detection de fuite a double paroi pour tuyaux
CA2010202C (fr) Dispositif d'accouplement par expansion interne
US5082297A (en) Gasket and gasketed joint
US4693483A (en) Composite gasket and fitting including same
US6082741A (en) Resilient pipe gasket
CA2870692C (fr) Ensemble raccord pour tuyaux en polymere
EP0754900A1 (fr) Raccord de prise
US3142499A (en) Anchor and fluid seal for conduit liner
EP1064143B1 (fr) Garniture interieure et procede permettant de deposer un revetement interieur dans un pipeline
CA1185286A (fr) Joint a compression pour tuyaux
US5286064A (en) Sealing plate for a pipe coupling
US5282654A (en) Pipe coupling sleeve
US5333919A (en) Gasket for a pipe joint
US3439945A (en) Pipe joint seal and method
US20150204475A1 (en) Bare Sleeve Pipe Repair Method And Apparatus
US5301983A (en) Pipe component seal assembly
US6161880A (en) End fitting seal for flexible pipe
US3743329A (en) Pipe coupling
JPH10122373A (ja) ガス管継手用複合ガスケット
JPH09144969A (ja) 管接続用差し込み継手
GB2223550A (en) Pipe tapping
AU659851B2 (en) Universal saddle tee for pipes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase