WO2000053302A1 - Continuous mixing plant - Google Patents

Continuous mixing plant Download PDF

Info

Publication number
WO2000053302A1
WO2000053302A1 PCT/JP1999/001114 JP9901114W WO0053302A1 WO 2000053302 A1 WO2000053302 A1 WO 2000053302A1 JP 9901114 W JP9901114 W JP 9901114W WO 0053302 A1 WO0053302 A1 WO 0053302A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous
continuously
aggregate
outlet
inlet
Prior art date
Application number
PCT/JP1999/001114
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuie Yamada
Original Assignee
Japan Institute Of Construction Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP25878897A priority Critical patent/JP3294541B2/en
Priority claimed from JP25878897A external-priority patent/JP3294541B2/en
Application filed by Japan Institute Of Construction Engineering filed Critical Japan Institute Of Construction Engineering
Priority to EP99973769A priority patent/EP1118380B1/en
Priority to PCT/JP1999/001114 priority patent/WO2000053302A1/en
Priority to US09/674,702 priority patent/US6352360B1/en
Priority to CNB998059595A priority patent/CN1153612C/en
Priority to DE69917794T priority patent/DE69917794T2/en
Priority to KR1020007012423A priority patent/KR20010043397A/en
Publication of WO2000053302A1 publication Critical patent/WO2000053302A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7173Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper
    • B01F35/71731Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper using a hopper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • B28C7/0422Weighing predetermined amounts of ingredients, e.g. for consecutive delivery
    • B28C7/0431Weighing predetermined amounts of ingredients, e.g. for consecutive delivery using a weighing belt or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4321Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa the subflows consisting of at least two flat layers which are recombined, e.g. using means having restriction or expansion zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/80Falling particle mixers, e.g. with repeated agitation along a vertical axis
    • B01F25/83Falling particle mixers, e.g. with repeated agitation along a vertical axis with receptacles provided with fixed guiding elements therein, e.g. baffles; Cross-mixers comprising crossing channels for guiding the falling particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/80Falling particle mixers, e.g. with repeated agitation along a vertical axis
    • B01F25/90Falling particle mixers, e.g. with repeated agitation along a vertical axis with moving or vibrating means, e.g. stirrers, for enhancing the mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/26Mixers with an endless belt for transport of the material, e.g. in layers or with mixing means above or at the end of the belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/805Mixing plants; Combinations of mixers for granular material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/834Mixing in several steps, e.g. successive steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2218Weight of at least one component to be mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71705Feed mechanisms characterised by the means for feeding the components to the mixer using belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71775Feed mechanisms characterised by the means for feeding the components to the mixer using helical screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/892Forming a predetermined ratio of the substances to be mixed for solid materials, e.g. using belts, vibrations, hoppers with variable outlets or hoppers with rotating elements, e.g. screws, at their outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/02Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions without using driven mechanical means effecting the mixing
    • B28C5/04Gravitational mixing; Mixing by intermingling streams of ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/80Falling particle mixers, e.g. with repeated agitation along a vertical axis
    • B01F25/84Falling-particle mixers comprising superimposed receptacles, the material flowing from one to the other, e.g. of the sandglass type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers

Definitions

  • the present invention relates to a continuous mixing plant, and more specifically, for example, to continuously and quickly supply concrete while measuring required materials and drop these materials by their own weights.
  • the present invention relates to a continuous mixing brand suitable for the present invention. Back technology
  • the batcher plant which is an apparatus for producing concrete, measures cement, water, sand, gravel, admixture, etc., which are the raw materials of concrete, into a prescribed mixture, kneads them with a mixer, and sets them in a state where they do not solidify.
  • This facility is used to manufacture concrete and is widely used in dam construction, civil engineering construction, ready-mixed concrete factories, and secondary concrete product factories.
  • Fig. 11 The conventional tower-type batch plant 1 shown in Fig. 11 has a receiving room 2, a material storage tank 3 (a cement storage tank 3a, a sand storage tank 3b, a gravel storage tank 3c, and a water storage tank). 3d), measuring section 4 (cement measuring tank 4a, sand measuring tank 4b, gravel measuring tank 4c), concrete mixer 5, concrete hopper 6, etc.
  • a material storage tank 3 a cement storage tank 3a, a sand storage tank 3b, a gravel storage tank 3c, and a water storage tank.
  • measuring section 4 cement measuring tank 4a, sand measuring tank 4b, gravel measuring tank 4c
  • concrete mixer 5 concrete hopper 6, etc.
  • the type in which the operation room 7 protruded from the measuring or mixing room 8 and the type in which the operation room 7 was separated from the plant were common.
  • An object of the present invention is to solve such a conventional problem. For example, a necessary material is continuously supplied while being measured, and the material is continuously and simply dropped by its own weight. It is suitable for producing mixed materials in a short time. When this mixed material is concrete, high-quality concrete is obtained by continuously weighing each material with high accuracy and sending it to the mixer. Is to provide a continuous mixing plant that can continuously produce the same in a short time. Disclosure of the invention
  • the present invention is a continuous mixing plant, and has the following configuration in order to solve the above technical problem. That is, the continuous mixing plant of the present invention comprises a continuous metering / supplying means of a number corresponding to each of the aforementioned materials, which continuously supplies at least two types of materials to be mixed while continuously measuring them.
  • the mixing box device comprises at least one mixing box device for mixing each material continuously supplied from the supply means.
  • the mixing box device has an inlet at one end and an outlet at the other end.
  • a plurality of deformed passages whose cross-sectional shape changes continuously from the inlet to the outlet, and extends in the axial direction; and provided between the inlet and the outlet of each of the deformed passages.
  • Converging / dividing means for merging and dividing the respective materials passing through the respective deformation passages Wherein each material is continuously charged from the inlet portion and mixed by passing the deformed passageway toward the outlet portion by its own weight.
  • the continuous mixing brand of the present invention further includes a measuring means for locally and every predetermined time while the material supplied from each of the continuous measuring and supplying means is continuously conveyed. It is also preferable that the continuous metering means is controlled by feedback in response to the signal from the metering means so as to increase the accuracy of the material supply amount.
  • At least two kinds of the materials to be mixed are an aggregate and a mortar or a cement paste, and can be applied as a plant for continuously producing concrete.
  • the continuous mixing plant of the present invention may further have the following configuration. That is, the continuous mixing plant of the present invention comprises: a main belt conveyor device for transporting aggregate; a continuous aggregate supply means for continuously supplying at least one kind of aggregate to the main belt conveyor device while measuring; It is installed at a downstream position of the conveyor belt to output a signal by continuously measuring the local amount of the aggregate moving on the conveyor belt of the conveyor device at a predetermined position.
  • a first detecting device which is installed downstream of the main belt conveyor device to which the aggregate has been supplied, and which continuously supplies a constant amount of mortar or cement paste to the main belt conveyor device.
  • the continuous quantitative supply device is controlled by feedback to increase the accuracy of the supply amount of mortar or cement paste.
  • the mixing box device has an inlet at one end and an outlet at the other end.
  • a plurality of deformed passages whose cross-sectional shape continuously changes from the inlet to the outlet, and extends in the axial direction, and between the inlet and the outlet of each of the deformed passages
  • Converging / dividing means for merging and dividing the concrete passing through each of the deformed passages, supplying concrete from the inlet, and passing each of the deformed passages toward the outlet by its own weight. Characterized by being mixed by:
  • the continuous mixing plant of the present invention comprises the essential components described above. This is true even if the components are specifically as follows.
  • the specific constituent elements are: a continuous aggregate supply means, a belt conveyor device for supplying the aggregate to the main conveyor device, and a material cutout for continuously supplying the aggregate to the belt conveyor device.
  • the apparatus is installed at a downstream position of the belt conveyor apparatus so as to continuously measure the amount of the aggregate moving on the conveyor belt of the belt conveyor apparatus at a predetermined position and output a signal.
  • a second detection device receiving the signal continuously output by the second detection device, performing feedback control on the material cutting device and controlling the amount of aggregate supplied to the belt conveyor device; It is characterized by increasing accuracy.
  • the material cutting device includes a vibration feeder, and a frequency of the vibration feeder is determined based on a signal continuously output from the second detection device.
  • the amount of the aggregate to be cut out to the belt conveyor device is varied and feedback control is performed.
  • one or both of the first and second detection devices are constituted by a belt scale device for continuously measuring the weight of each conveyor belt at a predetermined position. It is characterized by having.
  • the mixing box device is configured by connecting a plurality of elements substantially vertically, and each of the elements is respectively connected to an inlet end, an outlet end, and the inlet end.
  • each of the element elements is connected in close contact with the outlet end and the inlet end of the adjacent element, and is connected to an inlet of each of the deformation passages at a connection side end of each element.
  • a connection part with an outlet part constitutes the merging division means.
  • rectangular openings are arranged side by side as an arrangement pattern of the inlets of the respective deformed passages, and rectangular openings are arranged as the arrangement pattern of the outlets.
  • the openings are formed vertically and at least two types are provided which differ in the manner of communication between the respective inlets and the respective outlets of the respective deformed passages. It is also preferable that the components are alternately connected in the vertical direction.
  • an openable / closable cutout is provided at the lowermost element outlet of the mixing box device, and the amount of material falling by its own weight is adjusted to adjust mixing. It is also preferable to control the filling rate of the material in the deformed passage in each element of the box device.
  • each material is supplied while being continuously measured from the continuous supply means, and dropped into the mixing box device. That is, when a plurality of deformed passages continuously feed each material into the inner deformed passage from the upper inlet end of the mixing box device, they fall by their own weight and fall in each deformed passage.
  • each of the deformed passages changes continuously in the longitudinal direction, these materials falling in the deformed passages are mixed by being given a compressive deforming action.
  • the materials passing through the deformed passages merge by passing through the dividing flow means, and are again divided (divided) into the respective deformed passages and fall. Is mixed by repeating this process.
  • the element in general, by connecting a plurality of elements in the vertical direction so as to be stacked, the partial flow action can be necessarily obtained.
  • the element includes an inlet U end, an outlet end, and a plurality of deformed passages extending from the inlet end to the outlet end, and an inlet portion of each deformed passage formed at the inlet end. Is different from the arrangement pattern of the outlet portion of each deformed passage formed at the outlet end.
  • the connection between the inlet and the outlet of each deformed passage in each element becomes the junction dividing means.
  • the connection between the inlet and the outlet of each deformed passage in each element becomes the junction dividing means.
  • At least two types of elements with different communication modes between each inlet and each outlet of each deformed passage are manufactured, and these different types of elements are connected alternately in the vertical direction to form a mixing box device. With this configuration, a linear communication section from the upper inlet end to the lower outlet end of the mixing box device is formed. The mixing effect of the material falling from above is improved because it is reduced or eliminated.
  • this continuous mixing blunt can be used as a blunt for producing concrete.
  • a feeder is detected by detecting the supply amount of the aggregate sent out from the material extracting device constituting the continuous aggregate supply means by using the detector.
  • the accuracy of the supplied amount can be improved by controlling, or when at least one or more types of aggregate are sent to the mixing box device by the main conveyor device, the bone continuously sent by the main conveyor device. It is preferable that the amount of the material is sequentially detected by the detection device, and the mortar or cement paste in an amount corresponding to the transport amount is supplied from the continuous quantitative supply device to the main conveyor device.
  • FIG. 1 is a configuration explanatory view schematically showing a continuous concrete manufacturing plant according to an embodiment of the present invention.
  • FIG. 2 is a front view, partially broken away, of a device for quantitatively supplying mortar or cement paste to a second main belt conveyor device in the continuous concrete manufacturing brand shown in FIG.
  • FIG. 3 is a perspective view showing a mixing box device used in the continuous concrete manufacturing brand shown in FIG. 1 in a state where two different types of elements are connected.
  • Fig. 4 shows how the cross section of the material to be mixed changes when two elements are connected as shown in Fig. 3 with respect to the area of the inlet-side end, intermediate part, and outlet-side end of each element. It is a process drawing shown in a model diagram.
  • FIG. 5 is a plan view schematically showing a state where each of the one type of element shown in FIG.
  • FIG. 6 is a plan view schematically showing a state in which each of the other types of the elements shown in FIG. 3 is viewed from the inlet-side end of each internal deformed passage.
  • FIG. 7 shows another possible mix for the continuous concrete production plant according to the invention.
  • FIG. 7 is a perspective view showing an element in the box device, that is, an element having four deformation passages therein.
  • Fig. 8 is a model diagram showing how the cross section of the material to be mixed changes when the two elements shown in Fig. 7 are connected, with respect to the area of the inlet side end, intermediate part, and outlet side end of each element FIG.
  • FIG. 9 is a configuration explanatory view schematically showing another embodiment of the continuous mixing brand of the present invention when viewed from above.
  • FIG. 10 is a configuration explanatory view schematically showing still another embodiment of the continuous mixing plant of the present invention.
  • FIG. 11 is a configuration explanatory view schematically showing a conventional batch processing batcher plant. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an explanatory view schematically showing a configuration of a continuous concrete manufacturing plant according to an embodiment of the present invention
  • FIG. 2 is a part of a continuous quantitative supply device for supplying mortar or cement paste to a main conveyor device.
  • FIG. 3 is a perspective view of the mixing box device used in the continuous concrete manufacturing brand shown in Fig. 1, showing two different types of elements connected, and Fig. 4 connecting two elements.
  • FIG. 7 is a process diagram schematically showing, in a model diagram, how the cross section of the material to be mixed changes in the above case, with respect to the area of the inlet-side end, intermediate part, and outlet-side end of each element.
  • FIG. 5 is a plan view schematically showing one type of element in the mixing box device as viewed from the inlet side end of each deformed passage
  • FIG. 6 is another type of element
  • FIG. 7 is a plan view schematically showing a state in which each deformed passage inside is viewed from the end on the inlet side.
  • FIG. 7 is an element, that is, an inside of another mixing box device usable for the continuous concrete production plant according to the present invention.
  • FIG. 3 is a perspective view showing an element having four deformation passages.
  • FIG. 8 shows a case where two elements shown in FIG. 7 are connected.
  • FIG. 9 is a process diagram showing a model change of the cross section of the composite material for the inlet end, middle, and outlet end regions of each element.
  • FIG. 9 shows another embodiment of the continuous mixing brand of the present invention.
  • FIG. 10 is a schematic configuration view schematically showing the configuration when viewed from above
  • FIG. 10 is a schematic configuration diagram schematically illustrating another embodiment of the continuous mixing plant of the present invention
  • FIG. 11 is a conventional batch processing type.
  • FIG. 2 is a configuration explanatory view schematically showing a batcher plant of FIG.
  • the continuous concrete manufacturing plant 10 includes a first main belt conveyor device 11 installed at an angle and a second main belt conveyor device 1 installed at a horizontal position.
  • the two main belt conveyor devices 11 and 12 are installed so that the material can be continuously transferred and transferred.
  • the first main belt conveyor device 11 includes three continuous aggregate supply devices 13, 1, 4, and 15 that continuously measure and supply three types of aggregates. Are installed sequentially along the conveying direction of the locker device 11. Since each of the continuous aggregate supply devices 13 to 15 is substantially the same, one of them will be described. '
  • the continuous aggregate supply device 13 is provided with a belt conveyor device 13a, and a vibration feeder 13b as a material cutting device is installed at the loading end side of the belt conveyor device 13a. At the top of each feeder 13b, a hopper 13c for supplying aggregate to the feeder 13b is installed. Downstream from the vibratory feeder 13b in the belt conveyor device 13a, a belt scale device 13d is installed to measure the local weight of the transport belt that continuously moves with aggregate. ing.
  • This belt scale device 13d continuously detects the local weight of the conveyor belt moving on which the aggregate is placed by a load cell (not shown), and outputs the electric signal to a control device (not shown). )).
  • the controller continuously calculates the weight value from the signal detected and output by the load cell, and multiplies the weight value by the speed of the conveyor belt to calculate, for example, the amount of aggregate that is being sent out every few minutes. I do.
  • the controller changes the operating frequency of the vibration feeder 13b to change its frequency, thereby cutting out or feeding the aggregate. Feedback control.
  • three From the continuous aggregate supply devices 13 to 15 of the three types three types of aggregates, for example, two types of gravel and sand of different sizes, It is sequentially supplied to one main belt conveyor device 11.
  • the three types of aggregates which are sequentially stacked and transported on the transport belt of the first main belt conveyor device 11, are transferred to the second main conveyor device 12, which is installed horizontally.
  • the mortar or cement paste is moved to the carry-out end, the mortar or cement paste is continuously supplied onto the conveyor belt by the device 16 that continuously and quantitatively supplies the mortar installed on the way.
  • the continuous metering device 16 has a screw shaft 16b rotatably arranged inside a cylindrical casing 16a as shown in detail in FIG.
  • the shaft 16b is rotated by a drive motor 16d installed on a gantry 16c.
  • a hopper 16e is arranged at an upper portion on one end side of the casing 16a, and an outlet at a lower end thereof is connected to an input port formed in the casing 16a.
  • the mortar or cement paste put in the hopper 16 e enters the inside through the inlet of the casing 16 a, is pushed out of the casing 16 a by the rotating screw shaft 16 b, and is pushed out of the other end. From the outlet, it is supplied onto the conveyor belt via supply pipe 16f.
  • a supply pipe 16 is required to continuously supply a more suitable amount of mortar or cement paste in proportion to the total amount of the three types of aggregate sent by the conveyor belt.
  • a belt scale device 17 is installed upstream of the supply port of f.
  • the belt scale device 17 is substantially the same as the belt scale device 13d described above, the description of its configuration is omitted, but its operation is to transport three types of aggregates.
  • the local weight of the conveyor belt in the second main conveyor belt device 12 is continuously detected by a load cell (not shown) of the belt scale device 17 and the control device 18 is connected as an electrical signal. Is output to The controller 18 continuously calculates, for example, the total supply amount of the three types of aggregate per unit time from the signals detected and output by the load cell, and from the calculation result, further corrects the mortar per unit time. Calculate the appropriate supply amount.
  • the controller 18 changes the rotation speed of the drive motor 16 d according to the total amount of aggregate supplied per unit time.
  • the rotation speed of the screw shaft 16b is changed to control the supply of mortar or cement.
  • the mixing box device 20 is basically composed of two types of elements 21A and 21B alternately connected in a vertical direction in total of six.
  • FIG. 3 shows a state in which the two types of elements 21A and 2IB are connected for convenience of explanation.
  • one type of element 21A has square end portions, and these end portions are connected to each other. Flange F for connection is formed.
  • a plurality of bolt holes f1 are formed in the flanges F, F, and adjacent elements are connected to each other by bolting their ends using the bolt holes # 1.
  • the element 21 1 has two deformed passages 22 and 23 arranged side by side in the same direction.
  • a partition wall 24 is provided at the center so as to form a vertically long opening on the left and right.
  • the vertically long left and right openings serve as the entrances 2 2 a and 23 a of the two deformed passages 22 and 23.
  • a partition wall 25 is provided at the center of the other end of the element 21A so as to form a horizontally long opening vertically.
  • the horizontally elongated upper and lower openings serve as the outlets 2 2 b and 2 3 b of the two deformed passages 22 and 23. That is, the partition wall 24 at the entrance end of the element 21A and the partition wall 25 at the exit end are arranged so as to be 90 degrees different from each other.
  • the arrangement pattern of the two inlets 2 2a and 23 a of the deformed passages 2 2 and 23 is such that rectangular openings are formed side by side, and the two outlets 2 2b and 2 3b Arrangement
  • the row pattern is formed by arranging rectangular openings vertically.
  • each of the deformed passages 2 2 and 23 has a cross-sectional shape from the inlet 22 a and 23 a to the outlet 22 b and 23 b. It is changing continuously.
  • the cross-sectional area at any position of each of the deformed passages 22 and 23 is the same from the inlets 22 a and 23 a to the outlets 22 b and 23 b. Only the shape changes continuously.
  • the entrances 2 2a and 2 3a are rectangles that are long in the X direction
  • the cross-sectional shape is square at the middle between the entrances 2 2a and 23 a and the exits 2 2b and 23 b.
  • the outlets 22b and 23b are formed so as to be rectangular in the Y direction perpendicular to the X direction (see FIG. 3).
  • the lengths of the deformed passages 22 and 23 are the same.
  • the material to be mixed passing through each of the deformed passages 22 and 23 has its cross-sectional shape gradually changed from a rectangle long in the X direction to a square, and then gradually changed to a rectangle long in the Y direction. become.
  • the inlet 22a located on the left side in FIG. 3 and the outlet 22b located above communicate with each other through the deformed passage 22 and the inlet 23 located on the right side.
  • a and the outlet 23 b located below communicate with each other through the deformed passage 23.
  • the other type of element 21B is basically the same as the above-described element 21A, but in this element 21B, the entrance located on the left side in FIG. Portion 26a and the lower outlet portion 26b communicate with each other in the deformed passage 26, and the inlet portion 27a located on the right side and the outlet portion 27b located above are deformed passages 27. They communicate with each other. That is, in the element 21B, the communication mode between the element 21A and each inlet and each outlet of each deformed passage is different.
  • FIG. 3 shows a state in which such two types of elements 21 A and 21 B are connected alternately.
  • the two types of elements 21 A and 21 B mentioned above are in close contact with the exit end of one element 21 A on the entrance side of the other element 21 B and the flanges F are adhered to each other. Then, they are connected by a bolt.
  • the outlet 22 b of the deformed passage 22 in one element 21 A is strong, and the other element 21 B Smell Of the deformed passage 26 that communicates with half of the inlet 26a of the other deformed passage 27 and half of the inlet 27a of the other deformed passage 27, and the outlet 2 of the deformed passage 23 at one element 21A.
  • 3b communicates with the other half of the inlet 26a of the deformed passage 26 in the other element 21B and the other half of the inlet 27a of the other deformed passage 27.
  • outlets and the inlets of the deformed passages formed at the outlet end and the inlet end which are the connecting portions of the two elements 21 A and 21 B, join the mixed materials.
  • Aggregate and mortar conveyed by the second belt conveyor device 12 are continuously dropped into the hopper 19 from the discharge end. Aggregate and mortar are mixed rough as they fall from the second belt conveyor device 12 into the hopper 19, where they are mixed in the first element 21A of the mixing box device 20.
  • Each of the deformed passages 22 and 23 enters from 22 a and 23 a and falls under its own weight in the mixing box device 20.
  • This process diagram shows the change of the material to be mixed, that is, the aggregate and the mortar, when two elements 21A and 21B are connected (two stages). Inlet side end. The middle part and the exit side end are shown in a model diagram.
  • the three types of aggregate and mortar charged into the hopper 19 are formed by two deformation passages 2 2, 2 3 at the inlet end of the first stage element 21 A. And the flow is consequently split into two, A and B.
  • the cross section of each fluid body of the divided material to be mixed is a rectangle long in the X direction.
  • both the cross-sectional shapes of the fluids A and B to be mixed are changed to square, and at the outlet end of the first stage, the length of the inlet side is longer. It changes into a rectangle long in the Y direction, which is 90 degrees different from the hand direction X. Therefore, the cross-sectional shape of each of the fluids A and B changes from a rectangle long in the X direction to a square long in the Y direction.
  • the partition wall 28 at the entrance end of the second stage element 21 B intersects at right angles with the partition wall 15 at the exit end of the first stage element.
  • the materials A and B to be mixed coming out of the outlet end of the eye element 21A are divided into AZB and AZB, respectively, as shown in FIG.
  • the mixed material A / B flows in each of the deformed passages 26 and 27. That is, at the inlet end of the second-stage element 21 B, a part of the materials A and B merges in the deformed passages 26 and 27, respectively, and
  • the cross section of the fluid body is a rectangle that is long in the X direction.
  • the cross section of the fluid body of the material to be mixed AZB is changed into a square shape as a whole, and at the outlet end, both are changed into a rectangle long in the Y direction.
  • the mixed material A / B changes from a rectangle long in the X direction to a square—a rectangle long in the Y direction.
  • an imaginary line X1 is added to the final material to be mixed at the second end of the outlet side shown in FIG. 4 at the inlet end of the third stage. It is divided into right and left as shown, and merges like A / B / AZB. Thereafter, mixing is performed in the same manner as in the first and second stages.
  • two different types of elements F21A and 21B are connected alternately. The reason will be described.
  • the area where the inlets 26a, 273 and the outlets 26, 27b overlap with the outlets 26, 27b is shown in Fig. 6 due to the same principle as described for the element 21A. This is the part excluding the shadow line shown. This is different from element 21A, in that the left inlet 26a at the inlet end communicates with the lower outlet 26b at the outlet end and the right inlet 26b at the inlet end. This is evident from the fact that the inlet 27a communicates with the upper outlet 27b at the outlet end.
  • a mixing box device can also be configured by connecting elements 30 including 1, 32, 33, and 34.
  • the concept of this element 30 is the same as that of the above-mentioned elements 21A and 21B.
  • the opening at the end is square as a whole, and a flange F for connection is provided around the element.
  • the exit side end of this element 30 has three partition walls 38, 3 so as to form a long opening in the Y direction, which is 90 degrees different from each entrance of the entrance side end.
  • the inlet 3 1 a of the deformed passage 31 communicates with the second outlet 3 1 b from the top, and the inlet 3 2 a of the deformed passage 32 is the uppermost outlet Part 3 2b, the inlet part 33a of the deformed passage 33 is connected to the lowermost outlet part 33b, and the inlet part 34a of the deformed passage 34 is the third outlet from the top. It communicates with part 3 4b.
  • the change in the cross-sectional shape in the longitudinal direction of each of the deformed passages 31, 32, 33, and 34 is basically the same as the case of the elements 21A and 2IB shown in the previous embodiment. is there. However, the outline of the entire element 30 is different because it has four deformed passages.
  • FIG. 8 shows a process diagram of a mixing method using a mixing box device configured by connecting two of the elements 30 (in this example, connecting elements 30 of the same shape).
  • the material to be mixed that has entered the rectangular inlet portion 31 a to 34 a in the X direction is B when exiting the outlet portion 31 b to 34 b.
  • the rows are divided into A, D, and C, and at the exit side end of the element 30 in the second stage, the rows join together in a state of 16 layers long in the X direction.
  • the imaginary line X 3 indicates the next division line at the third stage.
  • the aggregate and the mortar or cement paste properly weighed in this way are continuously put into the mixing box device 20 and are mixed optimally, so that a very high-quality concrete is continuously obtained. It can be manufactured in a special way.
  • the continuous concrete manufacturing plant 10 of the above-described embodiment is provided with a belt scale device in the continuous aggregate supply device 13 to 15 in order to manufacture a relatively high-quality concrete as described above. lb is installed to continuously monitor the amount of aggregate supplied and to perform feedback control. Similarly, the supply of mortar is also extremely accurate so as to be proportional to the total amount of aggregate being conveyed. Although adjustment was made, such a belt scale device may be appropriately installed according to the required quality of the concrete.
  • an openable / closable cut gate (not shown) is provided at the bottom of the element outlet of the mixing box device 20 to adjust the discharge amount of the material falling by its own weight, so that each of the mixing box devices can be controlled. It is also preferable to control the filling rate of the material in the deformation passage in the element so that the mixing can be performed more effectively.
  • the supply of the aggregate and the mortar or cement paste there are various known means other than the belt scale device, for example, an aggregate continuously transferred by a conveyor belt.
  • the quantity per unit time (volume) can be sequentially detected by a plurality of phototube devices, or the supply amount of material can be accurately controlled by using a known feed conveyor device. Can be.
  • one or more materials are conveyed while being sequentially stacked on a conveyance belt of the main conveyer device, and further, the total amount of each of these materials is determined, and the final amount is determined.
  • the materials are put on the conveyor belt and are put into the mixing box device, the present invention is not limited to such an embodiment.
  • each continuous aggregate supply device 13, 14, 15, and mortar or cement paste are supplied around a hopper 19 installed above the mixing box device 20.
  • the continuous quantitative supply device 16 may be installed independently, and each material may be continuously charged into the hopper 19 while measuring each material from these devices. If necessary, each continuous aggregate supply device 13, 14, 15, and continuous quantitative supply device ⁇ A scale is installed on the transport path from 6 to the hopper 19, and as described above, each continuous aggregate supply device 1 It is also possible to increase the material supply accuracy by performing feedback control on 3, 14, 15 and the continuous quantitative supply device 16.
  • the present invention is not limited to such a material.
  • the cement paste and the cement paste may be supplied while being continuously measured, and then charged into the mixing box device.
  • the term “aggregate” is used to describe the material to be mixed.
  • the term “aggregate” used here refers to an independent type such as sand or gravel. Not limited. That is, a premix of sand, gravel, or the like, or a premix of sand, gravel, or the like, or a mixture thereof and cement powder in advance is called a premix. It is used in the concept including. Therefore, the premix may be supplied while being continuously measured and charged into the mixing box device.
  • the two mixes are mixed as shown in Fig. 10.
  • the box device 20 can be installed step by step. That is, the first-stage mixing box device is continuously supplied with sand, which is fine aggregate, gravel, which is coarse aggregate, and cement powder, respectively, by using metering devices 113, 114, 115. Mix at 20 to produce a premix.
  • a water supply device 116 water supply device 116 and mixed in a second-stage mixing box 20. Even through such a process, it is possible to continuously produce concrete.
  • a plurality of mixing box devices can be installed stepwise as necessary to mix each material while sequentially supplying the material.
  • each of the embodiments of the present invention described above is a plant for continuously producing concrete, but the present invention weighs and supplies each material to be mixed and continuously mixes them. Needless to say, it can be used in various cases where a product is obtained by stirring. Such uses include, for example, the production of livestock compound feed, or horticultural soil (mixed soil of soil and chicken manure).
  • the production of the mixed material can be performed continuously and at a relatively high speed with a relatively simple apparatus. Significant improvements can be made, thus enabling mass production of this type of mixed material.
  • the continuous mixing plant of the present invention can be used for the continuous production of concrete, in which case the continuous measurement of each material, which has conventionally been difficult in the continuous production of concrete, can be performed continuously.
  • An excellent effect is achieved in that high-quality concrete can be produced continuously and at high speed because it is sent to a mixer with a unique structure with high precision.
  • the present invention is an apparatus for continuously mixing and stirring several kinds of materials, for example, mixing cement and aggregate in a concrete manufacturing brand, mixing livestock compounded feed, or producing horticultural soil. Therefore, it is useful for mixing soil and chicken dung.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)

Abstract

A continuous mixing plant suitable for manufacturing a mixed material continuously and in a short time by only supplying necessary materials continuously while weighing them and allowing the materials to drop under self-weights; comprising a continuous weighing/supplying means for keeping on supplying at least two kinds of materials to be mixed while weighing them individually and a mixing box for mixing materials supplied from the continuous weighing/supplying means; wherein a mixing box device is provided with a plurality of shape-changing passages having their cross-section shapes continuous changed from their inlets toward outlets and with a merge/division means provided between inlets and outlets of respective shape-changing passages and adapted to merge and divide materials passing through respective shape-changing passages, and is characterized in that mixing is effected by continuously charging respective materials and passing them through respective shape-changing passages toward outlets under self-weights.

Description

明 細 書  Specification
連続式混合プラン ト 枝 術 分 野  Continuous mixed plant branch surgery field
本発明は連続式混合プラン卜に関し、 更に詳細には例えば必要な材料を計量し ながら連続的に供給し、 これらの材料を自重で落下させるだけでコンクリートを 連続的に且つ短時間に製造するのに好適な連続式混合ブラン 卜に関する。 背 ¾ 技 術  The present invention relates to a continuous mixing plant, and more specifically, for example, to continuously and quickly supply concrete while measuring required materials and drop these materials by their own weights. The present invention relates to a continuous mixing brand suitable for the present invention. Back technology
従来、 コンクリートを製造する装置であるバッチャ一プラントは、 コンクリ一 卜の原材料であるセメ ント、 水、 砂、 砂利、 混和剤などを所定の配合に計量して ミキザで練り混ぜ、 固まらない状態のコンクリートを製造する設備であって、 ダ ム工事、 土木建築工事、 生コンクリート工場、 コンク リー ト二次製品工場等に広 く使用されている。  Conventionally, the batcher plant, which is an apparatus for producing concrete, measures cement, water, sand, gravel, admixture, etc., which are the raw materials of concrete, into a prescribed mixture, kneads them with a mixer, and sets them in a state where they do not solidify. This facility is used to manufacture concrete and is widely used in dam construction, civil engineering construction, ready-mixed concrete factories, and secondary concrete product factories.
従来のバッチヤープラン卜は、 大きく分けて、 材料貯蔵部、 計量部、 混練部及 び積込部からなり、 これらの配置により各種形式に分かれ、 最も一般的な形式は、 図 1 1に示されるように塔形である。 図 1 1に示される従来の塔形バッチヤープ ラン ト 1は、 上部から受材室 2、 材料貯蔵槽 3 (セメ ント貯蔵槽 3 a、 砂貯蔵槽 3 b、 砂利貯蔵槽 3 c、 水貯蔵槽 3 d ) 、 計量部 4 (セメント計量槽 4 a、 砂計 量槽 4 b、 砂利計量槽 4 c ) 、 コンクリートミキサ 5、 コンクリートホッパー 6 等が順に塔状に重ね合わせた形式のものであり、 操作室 7が計量又はミキサ室 8 から張り出した形式と、 プラントと分離した形式のものが一般的であった。  Conventional batcher plants are roughly divided into a material storage section, a measuring section, a kneading section, and a loading section, and are divided into various types according to their arrangement.The most common type is shown in Fig. 11. It is tower-shaped as shown. The conventional tower-type batch plant 1 shown in Fig. 11 has a receiving room 2, a material storage tank 3 (a cement storage tank 3a, a sand storage tank 3b, a gravel storage tank 3c, and a water storage tank). 3d), measuring section 4 (cement measuring tank 4a, sand measuring tank 4b, gravel measuring tank 4c), concrete mixer 5, concrete hopper 6, etc. In general, the type in which the operation room 7 protruded from the measuring or mixing room 8 and the type in which the operation room 7 was separated from the plant were common.
このように、 従来のバッチヤープラントは、 図 1 1に示される塔形のものも含 めてそのほとんどがバッチ処理式 (各材料を所定の量毎に混合して撹拌し、 これ を何回も繰り返す処理) であった。 そして、 各材料を 1回ごとに計量して混合撹 拌するものをバッチミキサ一と呼ばれている。  As described above, most of the conventional batcher plants, including the tower type shown in Fig. 11, are of a batch processing type (each material is mixed and stirred at a predetermined amount, and this is repeated several times. Also repeated processing). The one in which each material is weighed and mixed and stirred each time is called a batch mixer.
しかしながら、 このようなバッチ処理は、 コンクリー トの製造が間欠的になり- 大量のコンク リ一 トを継続的に製造するにはあまり効率がよくなかった。 そのた め、 図 1 1に示されるような従来の塔形バッチャープラント 1では、 ミキサ室 8 内に 2つのコンクリートミキサ 5を配置して、 これを交互に使用してコンクリ一 ト製造の継続性即ち連続性をできるだけ確保しようと試みられていた。 However, such batch processing resulted in intermittent production of concrete and was not very efficient for continuous production of large quantities of concrete. Therefore, in the conventional tower batcher plant 1 as shown in Fig. 11, the mixer room 8 Attempts have been made to place two concrete mixers 5 inside each other and to use them alternately to ensure the continuity, ie continuity, of the concrete production as much as possible.
バッチ処理でも、 上述のように複数のコンクリート ミキサ 5を設置して、 これ を順次に使用すれば、 ある程度の連続的製造は確保できるが、 ミキサ 5の設置台 数が多くなればそれだけバッチャ一ブラント全体の設備が大きくなるという問題 があった。  Even in batch processing, if a plurality of concrete mixers 5 are installed as described above and they are used sequentially, a certain degree of continuous production can be secured, but as the number of installed mixers 5 increases, the batcher There was a problem that the entire equipment became large.
ところで、 このようなコンクリ一卜の製造を連続的に行うことが望まれてはい るが、 各材料を最適に連続混合することは非常に難しく、 実際に使用可能な有効 な混合装置即ちミキサは未だ実現されていない。 また、 このような連続式のミキ ザが開発されたとしても、 品質の良好なコンク リ一 トを製造する場合にはミキサ に連続的に入れる各材料の計量をどのようにするかという問題があり、 このよう な観点からもコンクリ一卜の有効な連続製造は不可能であると考えられていた。 本発明の目的は、 かかる従来の問題点を解決するためになされたもので、 例え ば必要な材料を計量しながら連続的に供給し、 これらの材料を自重で落下させる だけで連続的に且つ短時間に混合材料を製造するのに好適で、 この混合材料がコ ンク リー 卜の場合には、 特に各材料を連続的に精度よく計量してミキザに送るこ とにより品質の高いコンクリ一トを連続的に且つ短時間に製造することができる 連続式混合プラントを提供することにある。 発 明 の 開 示  By the way, although it is desired to continuously produce such a concrete, it is very difficult to optimally and continuously mix each material. Not yet realized. Also, even if such a continuous mixer is developed, the problem of how to measure each material that is continuously fed into the mixer is required to produce high-quality concrete. From this point of view, it was thought that effective continuous production of concrete was impossible. An object of the present invention is to solve such a conventional problem. For example, a necessary material is continuously supplied while being measured, and the material is continuously and simply dropped by its own weight. It is suitable for producing mixed materials in a short time. When this mixed material is concrete, high-quality concrete is obtained by continuously weighing each material with high accuracy and sending it to the mixer. Is to provide a continuous mixing plant that can continuously produce the same in a short time. Disclosure of the invention
本発明は連続式混合プラントであり、 前述の技術的課題を解決するために以下 のような構成とされている。 すなわち、 本発明の連続式混合プラントは、 混合す る少なく とも 2種類の材料をそれぞれ連続的に計量しながら供給しつづける、 前 記各材料に対応する数の連続計量供給手段と、 この連続計量供給手段からそれぞ れ連続的に供給された各材料を混合する少なく とも 1つの混合ボックス装置とか ら構成され、 前記混合ボックス装置が、 一端に入口部が又他端に出口部が形成さ れ、 前記入口部から前記出口部へ向かって断面形状が連続的に変化し、 且つ軸方 向に伸長する複数の変形通路と、 前記各変形通路の前記入口部と前記出口部との 間に設けられ、 前記各変形通路を通る各材料を合流し且つ分割する合流分割手段 とを備え、 前記入口部から各材料を連続的に投入し、 自重により前記各変形通路 を前記出口部へ向かって通過させることによって混合することを特徴とする。 本発明の連続式混合ブラン卜においては、 前記各連続計量供給手段から供給さ れる材料を連続的に搬送する途中で、 局部的に且つ所定時間毎に搬送量を計量す る計量手段を更に備え、 この計量手段からの信号を受けて前記連続計量供給手段 がフィ一ドバック制御されて材料の供給量の精度を高めるようにすることも好ま しい。 The present invention is a continuous mixing plant, and has the following configuration in order to solve the above technical problem. That is, the continuous mixing plant of the present invention comprises a continuous metering / supplying means of a number corresponding to each of the aforementioned materials, which continuously supplies at least two types of materials to be mixed while continuously measuring them. The mixing box device comprises at least one mixing box device for mixing each material continuously supplied from the supply means. The mixing box device has an inlet at one end and an outlet at the other end. A plurality of deformed passages whose cross-sectional shape changes continuously from the inlet to the outlet, and extends in the axial direction; and provided between the inlet and the outlet of each of the deformed passages. Converging / dividing means for merging and dividing the respective materials passing through the respective deformation passages Wherein each material is continuously charged from the inlet portion and mixed by passing the deformed passageway toward the outlet portion by its own weight. The continuous mixing brand of the present invention further includes a measuring means for locally and every predetermined time while the material supplied from each of the continuous measuring and supplying means is continuously conveyed. It is also preferable that the continuous metering means is controlled by feedback in response to the signal from the metering means so as to increase the accuracy of the material supply amount.
このような連続式混合プラン卜においては、 混合する少なくとも 2種類の前記 材料が骨材とモルタル又はセメントペーストであり、 コンクリー卜を連続的に製 造するプラントとして適用することができる。  In such a continuous mixing plant, at least two kinds of the materials to be mixed are an aggregate and a mortar or a cement paste, and can be applied as a plant for continuously producing concrete.
本発明の連続式混合ブラントは、 更に以下のような構成とすることもできる。 すなわち、 本発明の連続式混合プラントは、 骨材を搬送する主ベルトコンペャ装 置と、 前記主ベルトコンペャ装置に少なくとも 1種類の骨材を計量しながら供給 し続ける連続骨材供給手段と、 前記主ベルトコンべャ装置の搬送ベルトに乗せら れて移動してくる前記骨材の局部的な量を所定位置で連続的に計測して信号を出 力すべく、 前記搬送ベルトの下流側位置に設置された第 1の検出装置と、 前記骨 材が供給された前記主ベルトコンべャ装置の下流側に設置され、 前記主ベルトコ ンべャ装置にモルタル又はセメントペーストを連続的に定量供給し続ける連続定 量供給手段と、 前記主ベルトコンべャ装置の搬出端の直下に配置された少なくと も 1つの混合ボックス装置とから構成され、 この第 1の検出装置から連続的に出 力される前記信号を受けて前記連続定量供給装置がフィ一ドバック制御されてモ ルタル又はセメントペーストの供給量の精度を高め、 更に、 前記混合ボックス装 置が、 一端に入口部が又他端に出口部が形成され、 前記入口部から前記出口部へ 向かって断面形状が連続的に変化し、 且つ軸方向に伸長する複数の変形通路と、 前記各変形通路の前記入口部と前記出口部との間に設けられ、 前記各変形通路を 通るコンクリー卜を合流し且つ分割する合流分割手段とを備え、 前記入口部から コンクリートを投入し、 自重により前記各変形通路を前記出口部へ向かって通過 させることによって混合することを特徴とする。  The continuous mixing plant of the present invention may further have the following configuration. That is, the continuous mixing plant of the present invention comprises: a main belt conveyor device for transporting aggregate; a continuous aggregate supply means for continuously supplying at least one kind of aggregate to the main belt conveyor device while measuring; It is installed at a downstream position of the conveyor belt to output a signal by continuously measuring the local amount of the aggregate moving on the conveyor belt of the conveyor device at a predetermined position. A first detecting device, which is installed downstream of the main belt conveyor device to which the aggregate has been supplied, and which continuously supplies a constant amount of mortar or cement paste to the main belt conveyor device. The main belt conveyor device, and at least one mixing box device disposed immediately below the discharge end of the main belt conveyor device, and continuously output from the first detection device. In response to the above signal, the continuous quantitative supply device is controlled by feedback to increase the accuracy of the supply amount of mortar or cement paste. Further, the mixing box device has an inlet at one end and an outlet at the other end. A plurality of deformed passages whose cross-sectional shape continuously changes from the inlet to the outlet, and extends in the axial direction, and between the inlet and the outlet of each of the deformed passages Converging / dividing means for merging and dividing the concrete passing through each of the deformed passages, supplying concrete from the inlet, and passing each of the deformed passages toward the outlet by its own weight. Characterized by being mixed by:
本発明の連続式混合プラントは、 前述した必須の構成要素からなるが、 その構 成要素が具体的に以下のような場合であっても成立する。 その具体的構成要素 は、 前記連続骨材供給手段が、 骨材を前記主コンペャ装置に供給するベル卜コン べャ装置と、 前記ベルトコンペャ装置へ前記骨材を連続的に供給する材料切り出 し装置と、 前記ベルトコンべャ装置の搬送ベルトに乗せられて移動する前記骨材 の量を所定位置で連続的に計測して信号を出力すべく前記ベルトコンべャ装置の 下流側位置に設置された第 2の検出装置と、 この第 2の検出装置で連続的に出力 される前記信号を受けて前記材料切り出し装置をフィ一ドバック制御して前記べ ルトコンべャ装置へ切り出される骨材供給量の精度を高めることを特徴とする。 また、 本発明の連続式混合プラントでは、 前記材料切り出し装置が振動フィー ダーを含み、 前記第 2の検出装置から連続的に出力される信号に基づいて前記振 動フィ一ダ一の振動数を変化させて前記骨材の前記ベル卜コンべャ装置への切り 出し量をフィ一ドバック制御することを特徴とする。 The continuous mixing plant of the present invention comprises the essential components described above. This is true even if the components are specifically as follows. The specific constituent elements are: a continuous aggregate supply means, a belt conveyor device for supplying the aggregate to the main conveyor device, and a material cutout for continuously supplying the aggregate to the belt conveyor device. The apparatus is installed at a downstream position of the belt conveyor apparatus so as to continuously measure the amount of the aggregate moving on the conveyor belt of the belt conveyor apparatus at a predetermined position and output a signal. A second detection device, receiving the signal continuously output by the second detection device, performing feedback control on the material cutting device and controlling the amount of aggregate supplied to the belt conveyor device; It is characterized by increasing accuracy. Further, in the continuous mixing plant according to the present invention, the material cutting device includes a vibration feeder, and a frequency of the vibration feeder is determined based on a signal continuously output from the second detection device. The amount of the aggregate to be cut out to the belt conveyor device is varied and feedback control is performed.
更に、 本発明の連続式混合プラントでは、 前記第 1及び第 2の検出装置のいず れか一方又は双方が、 所定位置において搬送ベルトごとその重量を連続的に計測 するベルトスケール装置から構成されていることを特徴とする。  Further, in the continuous mixing plant of the present invention, one or both of the first and second detection devices are constituted by a belt scale device for continuously measuring the weight of each conveyor belt at a predetermined position. It is characterized by having.
更にまた、 本発明の連続式混合プラントでは、 前記混合ボックス装置が、 複数 のエレメン卜をほぼ垂直に接続して構成され、 前記各エレメン卜がそれぞれ入口 端と、 出口端と、 前記入口端から前記出口端へ至る複数の前記変形通路とを備え- 前記入口端に形成された前記各変形通路の入口部の配列パターンと前記出口端に 形成された前記各変形通路の出口部の配列パターンとを異にし、 更に、 前記各ェ レメントカ 、 隣接する前記エレメン卜の前記出口端と前記入口端と密着させて接 続され、 前記各エレメン卜の接続側端部における前記各変形通路の入口部と出口 部との接続部が前記合流分割手段を構成して 、ることを特徴とする。  Still further, in the continuous mixing plant of the present invention, the mixing box device is configured by connecting a plurality of elements substantially vertically, and each of the elements is respectively connected to an inlet end, an outlet end, and the inlet end. A plurality of the deformed passages reaching the outlet end; an arrangement pattern of an inlet portion of each of the deformed passages formed at the inlet end; and an arrangement pattern of an outlet portion of each of the deformed passages formed at the outlet end. Further, each of the element elements is connected in close contact with the outlet end and the inlet end of the adjacent element, and is connected to an inlet of each of the deformation passages at a connection side end of each element. A connection part with an outlet part constitutes the merging division means.
なお、 前述した本発明の連続式混合プラントにおいて、 前記エレメントは、 前 記各変形通路の前記入口部の配列パターンとして長方形状の開口が左右に並び、 また前記出口部の配列パターンとして長方形状の開口が上下に並んで形成される と共に前記各変形通路の各入口部と前記各出口部との連通態様を異にする少なく とも 2種類から構成され、 前記混合ボックス装置はこの種類の異なる前記エレメ ントを交互に縦方向に接続して構成することも好ましい。 更に、 本発明の連続式混合ブラントでは、 混合ボックス装置を構成する最下段 のエレメ ント出口に開閉可能なカツ トゲ一トを設け、 自重で落下してくる材料の 排出量を調整することにより混合ボックス装置の各エレメ ン トにおける変形通路 内での材料の充満率のコントロールを行うようにすることも好ましい。 In the above-described continuous mixing plant of the present invention, in the element, rectangular openings are arranged side by side as an arrangement pattern of the inlets of the respective deformed passages, and rectangular openings are arranged as the arrangement pattern of the outlets. The openings are formed vertically and at least two types are provided which differ in the manner of communication between the respective inlets and the respective outlets of the respective deformed passages. It is also preferable that the components are alternately connected in the vertical direction. Further, in the continuous mixing brand of the present invention, an openable / closable cutout is provided at the lowermost element outlet of the mixing box device, and the amount of material falling by its own weight is adjusted to adjust mixing. It is also preferable to control the filling rate of the material in the deformed passage in each element of the box device.
前述したように構成された本発明の連続式混合ブラントによると、 各材料がそ れぞれ連続供給手段から連続的に計量されながら供給され、 混合ボックス装置に 落される。 すなわち、 複数の変形通路が混合ボックス装置における上方の入口端 から内部の変形通路内に各材料を連続的に投入すると、 これらはその自重により 落下して各変形通路内を落下する。  According to the continuous mixing plant of the present invention configured as described above, each material is supplied while being continuously measured from the continuous supply means, and dropped into the mixing box device. That is, when a plurality of deformed passages continuously feed each material into the inner deformed passage from the upper inlet end of the mixing box device, they fall by their own weight and fall in each deformed passage.
各変形通路は、 その長手方向において連続的にその断面形状が変化しているた め、 この変形通路内を落下するこれらの材料は圧縮的な変形作用が与えられて混 合される。 しかも、 これらの材料がこの変形通路を落下中に、 分割合流手段を通 ることにより各変形通路を通過している材料が合流し、 そして再び各変形通路に 分かれ (分割) て落下し、 好ましくはこれを繰り返すことによってよりょく混合 がなされる。  Since the cross-sectional shape of each of the deformed passages changes continuously in the longitudinal direction, these materials falling in the deformed passages are mixed by being given a compressive deforming action. In addition, while these materials fall through the deformed passages, the materials passing through the deformed passages merge by passing through the dividing flow means, and are again divided (divided) into the respective deformed passages and fall. Is mixed by repeating this process.
このような混合ボックス装置において、 一般的には、 複数のエレメ ン トを積み 重ねるように縦方向に接続することで、 この分割合流作用は必然的に得ることが できる。 そのエレメントとは、 前述したようにそれぞれ入 U端と、 出口端と、 こ れら入口端から出口端へ至る複数の変形通路とを備え、 入口端に形成された各変 形通路の入口部の配列パターンと出口端に形成された各変形通路の出口部の配列 パターンとを異にしたものである。  In such a mixing box device, in general, by connecting a plurality of elements in the vertical direction so as to be stacked, the partial flow action can be necessarily obtained. As described above, the element includes an inlet U end, an outlet end, and a plurality of deformed passages extending from the inlet end to the outlet end, and an inlet portion of each deformed passage formed at the inlet end. Is different from the arrangement pattern of the outlet portion of each deformed passage formed at the outlet end.
このようなエレメ ント同士を隣接するエレメ ン卜の出口端と入口端とで密着さ せて接続させれば、 各エレメントにおける各変形通路の入口部と出口部との接続 部が合流分割手段となる。 なお、 各変形通路の入口部の配列パターンとして長方 形状の開口が左右に並び、 また出口部の配列パターンとして長方形状の開口が上 下に並んで形成されたエレメントを使用する場合には、 各変形通路の各入口部と 各出口部との連通態様を異にする少なく とも 2種類のエレメ ントを製作し、 これ ら種類の異なるエレメ ン トを交互に縦方向に接続して混合ボックス装置を構成す れば、 混合ボックス装置の上方入口端から下方出口端までに至る直線的連通部が 少なくなるか、 又はなくなるため上方から落下する材料の混合効果はより向上 f る。 If such elements are brought into close contact with the outlet end and the inlet end of the adjacent element, the connection between the inlet and the outlet of each deformed passage in each element becomes the junction dividing means. Become. In the case where rectangular shaped openings are arranged side by side as an array pattern at the entrance of each deformed passage and rectangular openings are formed at the top and bottom as the array pattern at the outlet, At least two types of elements with different communication modes between each inlet and each outlet of each deformed passage are manufactured, and these different types of elements are connected alternately in the vertical direction to form a mixing box device. With this configuration, a linear communication section from the upper inlet end to the lower outlet end of the mixing box device is formed. The mixing effect of the material falling from above is improved because it is reduced or eliminated.
例えば、 この連続式混合ブラントをコンクリ一 卜製造のためのブラントとして 使用することができる。 その場合であって特に品質の高いコンクリ一トを得る必 要がある時には、 連続骨材供給手段を構成する材料切り出し装置から送り出され る骨材の供給量を検出装置によって検出してフィ一ドバック制御をすることによ り供給量の精度を高めたり、 或いは少なく とも 1種類以上の骨材を主コンペャ装 置によって混合ボックス装置に送る場合には主コンべャ装置で連続的に送られる 骨材の量を逐次に検出装置で検出して、 その搬送量に見合った量のモルタル又は セメ ントペーストを連続定量供給装置から主コンべャ装置に供給するようにする ことが好ましい。 図面の簡単な説明  For example, this continuous mixing blunt can be used as a blunt for producing concrete. In this case, when it is necessary to obtain a high-quality concrete, a feeder is detected by detecting the supply amount of the aggregate sent out from the material extracting device constituting the continuous aggregate supply means by using the detector. The accuracy of the supplied amount can be improved by controlling, or when at least one or more types of aggregate are sent to the mixing box device by the main conveyor device, the bone continuously sent by the main conveyor device It is preferable that the amount of the material is sequentially detected by the detection device, and the mortar or cement paste in an amount corresponding to the transport amount is supplied from the continuous quantitative supply device to the main conveyor device. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態に係る連続式コンク リ一 ト製造ブラントを概略的 に示す構成説明図である。  FIG. 1 is a configuration explanatory view schematically showing a continuous concrete manufacturing plant according to an embodiment of the present invention.
図 2は、 図 1に示される連続式コンクリ一ト製造ブラン卜において第 2の主べ ルトコンべャ装置にモルタル又はセメントペーストを定量供給する装置を部分的 に破断して示す正面図である。  FIG. 2 is a front view, partially broken away, of a device for quantitatively supplying mortar or cement paste to a second main belt conveyor device in the continuous concrete manufacturing brand shown in FIG.
図 3は、 図 1に示される連続式コンクリ一ト製造ブラン卜で使用する混合ボッ クス装置について種類の異なる 2つのエレメ ントを接続した状態で示す斜視図で ある。  FIG. 3 is a perspective view showing a mixing box device used in the continuous concrete manufacturing brand shown in FIG. 1 in a state where two different types of elements are connected.
図 4は、 図 3に示されるように 2つのエレメ ントを接続した場合における被混 合材料の断面の変化態様を、 各エレメ ントの入口側端部、 中間部、 出口側端部の 領域についてモデル図的に示す工程図である。  Fig. 4 shows how the cross section of the material to be mixed changes when two elements are connected as shown in Fig. 3 with respect to the area of the inlet-side end, intermediate part, and outlet-side end of each element. It is a process drawing shown in a model diagram.
図 5は、 図 3に示される 1つの種類のエレメ ン卜を入口側端部から内部の各変 形通路を見た状態を概略的に示す平面図である。  FIG. 5 is a plan view schematically showing a state where each of the one type of element shown in FIG.
図 6は、 図 3に示される他の 1つの種類のエレメ ントを入口側端部から内部の 各変形通路を見た状態を概略的に示す平面図である。  FIG. 6 is a plan view schematically showing a state in which each of the other types of the elements shown in FIG. 3 is viewed from the inlet-side end of each internal deformed passage.
図 7は、 本発明に係る連続式コンク リート製造プラン 卜に使用可能な別な混合 ボックス装置におけるエレメン卜即ち内部に 4つの変形通路を備えるエレメン を示す斜視図である。 FIG. 7 shows another possible mix for the continuous concrete production plant according to the invention. FIG. 7 is a perspective view showing an element in the box device, that is, an element having four deformation passages therein.
図 8は、 図 7に示されるエレメントを 2つ接続した場合における被混合材料の 断面の変化態様を、 各エレメントの入口側端部、 中間部、 出口側端部の領域につ いてモデル図的に示す工程図である。  Fig. 8 is a model diagram showing how the cross section of the material to be mixed changes when the two elements shown in Fig. 7 are connected, with respect to the area of the inlet side end, intermediate part, and outlet side end of each element FIG.
図 9は、 本発明の連続式混合ブラン卜の別な実施形態を上方から見て概略的に 示す構成説明図である。  FIG. 9 is a configuration explanatory view schematically showing another embodiment of the continuous mixing brand of the present invention when viewed from above.
図 1 0は、 本発明の連続式混合プラントの更に別な実施形態を概略的に示す構 成説明図である。  FIG. 10 is a configuration explanatory view schematically showing still another embodiment of the continuous mixing plant of the present invention.
図 1 1は、 従来のバッチ処理式バッチヤープラントを概略的に示す構成説明図 である。 発明を実施するための最良の形態  FIG. 11 is a configuration explanatory view schematically showing a conventional batch processing batcher plant. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の連続式混合ブラン卜を図に示される実施形態に沿って更に詳細に説明 する。 図 1は本発明の一実施形態に係る連続式コンクリ一ト製造ブラントを概略 的に示す構成説明図、 図 2は主コンペャ装置にモルタル又はセメ ン 卜ペース 卜を 供給する連続定量供給装置を部分的に破断して示す正面図である。  The continuous mixing brand of the present invention will be described in more detail with reference to the embodiment shown in the drawings. FIG. 1 is an explanatory view schematically showing a configuration of a continuous concrete manufacturing plant according to an embodiment of the present invention, and FIG. 2 is a part of a continuous quantitative supply device for supplying mortar or cement paste to a main conveyor device. FIG.
また、 図 3は図 1に示される連続式コンクリ一ト製造ブラン卜で使用する混合 ボックス装置について種類の異なる 2つのエレメ ントを接続した状態で示す斜視 図、 図 4は 2つのエレメ ントを接続した場合における被混合材料の断面の変化態 様を、 各エレメントの入口側端部、 中間部、 出口側端部の領域についてモデル図 的に示す工程図である。  Fig. 3 is a perspective view of the mixing box device used in the continuous concrete manufacturing brand shown in Fig. 1, showing two different types of elements connected, and Fig. 4 connecting two elements. FIG. 7 is a process diagram schematically showing, in a model diagram, how the cross section of the material to be mixed changes in the above case, with respect to the area of the inlet-side end, intermediate part, and outlet-side end of each element.
更に、 図 5は混合ボックス装置において 1つの種類のエレメントを入口側端部 から内部の各変形通路を見た状態を概略的に示す平面図、 図 6は他の 1つの種類 のエレメ ン卜を入口側端部から内部の各変形通路を見た状態を概略的に示す平面 図、 図 7は本発明に係る連続式コンクリート製造プラン卜に使用可能な別な混合 ボックス装置におけるエレメ ン ト即ち内部に 4つの変形通路を備えるエレメ ント を示す斜視図である。  Further, FIG. 5 is a plan view schematically showing one type of element in the mixing box device as viewed from the inlet side end of each deformed passage, and FIG. 6 is another type of element. FIG. 7 is a plan view schematically showing a state in which each deformed passage inside is viewed from the end on the inlet side. FIG. 7 is an element, that is, an inside of another mixing box device usable for the continuous concrete production plant according to the present invention. FIG. 3 is a perspective view showing an element having four deformation passages.
更にまた、 図 8は図 7に示されるエレメ ントを 2つ接続した場合における被混 合材料の断面の変化態様を、 各エレメ ントの入口側端部、 中間部、 出口側端部 領域についてモデル図的に示す工程図、 図 9は本発明の連続式混合ブラン卜の別 な実施形態を上方から見て概略的に示す構成説明図、 図 1 0はこの発明の連続式 混合プラントの更に別な実施形態を概略的に示す構成説明図、 図 1 1は従来のバ ツチ処理式のバッチャープラン卜を概略的に示す構成説明図である。 Further, FIG. 8 shows a case where two elements shown in FIG. 7 are connected. FIG. 9 is a process diagram showing a model change of the cross section of the composite material for the inlet end, middle, and outlet end regions of each element. FIG. 9 shows another embodiment of the continuous mixing brand of the present invention. FIG. 10 is a schematic configuration view schematically showing the configuration when viewed from above, FIG. 10 is a schematic configuration diagram schematically illustrating another embodiment of the continuous mixing plant of the present invention, and FIG. 11 is a conventional batch processing type. FIG. 2 is a configuration explanatory view schematically showing a batcher plant of FIG.
この実施形態に係る連続式コンクリ一ト製造ブラント 1 0は、 傾斜して設置さ れた第 1の主ベルトコンべャ装置 1 1と水平に設置された第 2の主ベル卜コンべ ャ装置 1 2とを含み、 これら 2つの主ベルトコンペャ装置 1 1、 1 2は、 材料を 連続して乗り継ぎ搬送し得るように設置されている。  The continuous concrete manufacturing plant 10 according to this embodiment includes a first main belt conveyor device 11 installed at an angle and a second main belt conveyor device 1 installed at a horizontal position. The two main belt conveyor devices 11 and 12 are installed so that the material can be continuously transferred and transferred.
第 1の主ベルトコンペャ装置 1 1には、 3種類の骨材を連続的に計量しながら 供給し続ける 3つの連続骨材供給手段としての装置 1 3、 1 4、 1 5がその主べ ルトコンべャ装置 1 1の搬送方向に沿って順次に設置されている。 各連続骨材供 給装置 1 3〜1 5は、 実質的に同一のものであるので、 その 1つについて説明す る。 '  The first main belt conveyor device 11 includes three continuous aggregate supply devices 13, 1, 4, and 15 that continuously measure and supply three types of aggregates. Are installed sequentially along the conveying direction of the locker device 11. Since each of the continuous aggregate supply devices 13 to 15 is substantially the same, one of them will be described. '
連続骨材供給装置 1 3は、 ベルトコンペャ装置 1 3 aを備え、 このベルトコン べャ装置 1 3 aの搬入端側には材料切り出し装置としての振動フィーダ一 1 3 b が設置され、 更にこの振動フィ一ダ一 1 3 bの上部には当該フィーダ一 1 3 bに 骨材を供給するホッパー 1 3 cが設置されている。 ベルトコンペャ装置 1 3 aに おける振動フィーダ一 1 3 bより下流側には、 骨材を乗せて連続的に移動してく る搬送ベルトの局部的な重量を計測するベルトスケール装置 1 3 dが設置されて いる。  The continuous aggregate supply device 13 is provided with a belt conveyor device 13a, and a vibration feeder 13b as a material cutting device is installed at the loading end side of the belt conveyor device 13a. At the top of each feeder 13b, a hopper 13c for supplying aggregate to the feeder 13b is installed. Downstream from the vibratory feeder 13b in the belt conveyor device 13a, a belt scale device 13d is installed to measure the local weight of the transport belt that continuously moves with aggregate. ing.
このベルトスケール装置 1 3 dは、 骨材を乗せて移動している搬送ベル卜の局 部的な重量をロードセル (図示せず) により継続的に検出すると共に電気的信号 として制御装置 (図示せず) に出力するものである。 制御装置は、 ロードセルに より検出され且つ出力された信号から重量値を継続的に計算し、 これに搬送ベル 卜の速度を乗じて現在送り出されている骨材の例えば数分ごとの量を算出する。 骨材の供給量が予め設定された量以下又は以上である時には、 制御装置が振動 フィーダ一 1 3 bの作動周波数を変えてその振動数を変化させ、 これにより骨材 の切り出し量即ち送り出し量をフィードバック制御する。 このようにして、 3つ の連続骨材供給装置 1 3 〜 1 5からは、 例えば大きさの異なる 2種類の砂利、 及 び砂等の 3種類の骨材が単位時間当たりの所定供給量をコント口一ルされながら 第 1の主ベルトコンペャ装置 1 1に順次に供給される。 This belt scale device 13d continuously detects the local weight of the conveyor belt moving on which the aggregate is placed by a load cell (not shown), and outputs the electric signal to a control device (not shown). )). The controller continuously calculates the weight value from the signal detected and output by the load cell, and multiplies the weight value by the speed of the conveyor belt to calculate, for example, the amount of aggregate that is being sent out every few minutes. I do. When the amount of aggregate supplied is equal to or less than the preset amount, the controller changes the operating frequency of the vibration feeder 13b to change its frequency, thereby cutting out or feeding the aggregate. Feedback control. In this way, three From the continuous aggregate supply devices 13 to 15 of the three types, three types of aggregates, for example, two types of gravel and sand of different sizes, It is sequentially supplied to one main belt conveyor device 11.
第 1の主ベルトコンべャ装置 1 1の搬送ベルト上に順次に積層状態に乗せられ て搬送される 3種類の骨材が、 水平に設置された第 2の主コンペャ装置 1 2に乗 り移ってその搬出端に移動させられる時、 その途中に設置されたモルタルを連続 的に定量供給する装置 1 6によりモルタル又はセメントペーストがその搬送ベル ト上に連続的に供給される。  The three types of aggregates, which are sequentially stacked and transported on the transport belt of the first main belt conveyor device 11, are transferred to the second main conveyor device 12, which is installed horizontally. When the mortar or cement paste is moved to the carry-out end, the mortar or cement paste is continuously supplied onto the conveyor belt by the device 16 that continuously and quantitatively supplies the mortar installed on the way.
この連続定量供給装置 1 6は、 図 2に詳細に示されているように筒状のケ一シ ング 1 6 aの内部に回転可能に配置されたスクリュー軸 1 6 bを備え、 このスク リユー軸 1 6 bは架台 1 6 cに設置された駆動モータ 1 6 dにより回転される。 ケ一シング 1 6 aの一端側における上部にはホッパー 1 6 eが配置され、 その下 端の出口部はケ一シング 1 6 aに形成された投入口に接続されている。  The continuous metering device 16 has a screw shaft 16b rotatably arranged inside a cylindrical casing 16a as shown in detail in FIG. The shaft 16b is rotated by a drive motor 16d installed on a gantry 16c. A hopper 16e is arranged at an upper portion on one end side of the casing 16a, and an outlet at a lower end thereof is connected to an input port formed in the casing 16a.
これにより、 ホッパー 1 6 eに入れられたモルタル又はセメントペーストはケ —シング 1 6 aの投入口から内部に入り、 回転するスクリユー軸 1 6 bによって ケーシング 1 6 a内を押し出され、 他端の出口から供給管 1 6 f を介して搬送べ ルト上に供給される。 このモルタル又はセメ ントペース卜の供給に際して、 搬送 ベル卜で送られてくる 3種類の骨材の総量に比例した更に好適な量のモルタル又 はセメントペーストを連続して供給するため、 供給管 1 6 f の供給口よりも上流 側においてベルトスケール装置 1 7が設置されている。  As a result, the mortar or cement paste put in the hopper 16 e enters the inside through the inlet of the casing 16 a, is pushed out of the casing 16 a by the rotating screw shaft 16 b, and is pushed out of the other end. From the outlet, it is supplied onto the conveyor belt via supply pipe 16f. When supplying this mortar or cement paste, a supply pipe 16 is required to continuously supply a more suitable amount of mortar or cement paste in proportion to the total amount of the three types of aggregate sent by the conveyor belt. A belt scale device 17 is installed upstream of the supply port of f.
このベルトスケール装置 1 7は、 前述のベルトスケール装置 1 3 dと実質的に 同一のものであるので、 その構成の説明は省略するが、 その作用としては 3種類 の骨材を乗せて移送している第 2の主コンべャベルト装置 1 2における搬送ベル 卜の局部的な重量をベルトスケール装置 1 7のロードセル (図示せず) により継 続的に検出すると共に電気的信号として制御装置 1 8に出力するものである。 制御装置 1 8は、 ロードセルにより検出され且つ出力された信号から 3種類の 骨材の例えば単位時間当たりの総供給量を継続的に計算し、 この計算結果からモ ルタルの単位時間当たりの更に適正な供給量を算出する。 そして、 骨材の単位時 間当たりの総供給量に応じて、 制御装置 1 8が駆動モータ 1 6 dの回転数を変え てスクリユー軸 1 6 bの回転速度を変化させ、 これによりモルタル又はセメン F ぺ一ス卜の供給を制御する。 Since the belt scale device 17 is substantially the same as the belt scale device 13d described above, the description of its configuration is omitted, but its operation is to transport three types of aggregates. The local weight of the conveyor belt in the second main conveyor belt device 12 is continuously detected by a load cell (not shown) of the belt scale device 17 and the control device 18 is connected as an electrical signal. Is output to The controller 18 continuously calculates, for example, the total supply amount of the three types of aggregate per unit time from the signals detected and output by the load cell, and from the calculation result, further corrects the mortar per unit time. Calculate the appropriate supply amount. The controller 18 changes the rotation speed of the drive motor 16 d according to the total amount of aggregate supplied per unit time. The rotation speed of the screw shaft 16b is changed to control the supply of mortar or cement.
これにより第 2の主ベルトコンべャ装置 1 2における搬送ベルト上に乗せられ て移送される 3種類の骨材の単位時間当たりの総供給量に変化があつたとしても (即ち搬送ベルト上の骨材が多少多くなつたり或いは少なくなつたりした場合で も) 供給管 1 6 f の出口部下を通過する搬送ベルト上の骨材総供給量に見合った 適正量のモルタル又はセメントペーストを供給することができ、 その結果製造さ れるコンクリ一卜の品質がより向上する。  As a result, even if the total supply per unit time of the three types of aggregate transported on the conveyor belt in the second main belt conveyor device 12 changes (i.e., the bones on the conveyor belt). It is possible to supply the appropriate amount of mortar or cement paste in proportion to the total amount of aggregate on the conveyor belt passing below the outlet of the supply pipe 16 f (even if the amount of wood is slightly increased or decreased). As a result, the quality of the produced concrete is further improved.
第 2の主ベルトコンペャ装置 1 2の搬出端の直下には、 1つの混合ボックス装 置 2 0が設置されている。 この混合ボックス装置 2 0は、 基本的には 2種類のェ レメ ン ト 2 1 A、 2 1 Bを計 6つ交互に縦方向に接続して構成されている。 図 3 は、 説明の便宜上、 この 2種類のエレメ ン ト 2 1 A、 2 I Bを接続した状態で示 されている。  Immediately below the discharge end of the second main belt conveyor device 12, one mixing box device 20 is provided. The mixing box device 20 is basically composed of two types of elements 21A and 21B alternately connected in a vertical direction in total of six. FIG. 3 shows a state in which the two types of elements 21A and 2IB are connected for convenience of explanation.
各エレメント 2 1 A、 2 1 Bの具体的構成について説明すると、 最初に一方の 種類のエレメ ン ト 2 1 Aは、 正方形をした両端部を備え、 これら両端部には当該 エレメン卜を相互に接続するためのフランジ Fが形成されている。  Explaining the specific configuration of each element 21A and 21B, first, one type of element 21A has square end portions, and these end portions are connected to each other. Flange F for connection is formed.
このフランジF、 Fには、 複数のボルト穴 f 1が形成され、 隣接するエレメン ト同士はこのボルト穴 ί 1を利用して端部同士がボルト止めされて接続される。 エレメ ン ト 2 1 Αは、 同じ方向に並んで配置された 2つの変形通路 2 2、 2 3を 備えている。 このエレメ ン ト 2 1 Aの一方の端部には、 縦長の開口を左右に形成 するように中央に仕切り壁 2 4が設けられている。  A plurality of bolt holes f1 are formed in the flanges F, F, and adjacent elements are connected to each other by bolting their ends using the bolt holes # 1. The element 21 1 has two deformed passages 22 and 23 arranged side by side in the same direction. At one end of the element 21A, a partition wall 24 is provided at the center so as to form a vertically long opening on the left and right.
この縦長の左右の開口が 2つの変形通路 2 2、 2 3の各入口部 2 2 a、 2 3 a となる。 エレメント 2 1 Aの他方の端部には、 横長の開口を上下に形成するよう に中央に仕切り壁 2 5が設けられている。 この横長の上下の開口が 2つの変形通 路 2 2、 2 3の各出口部 2 2 b、 2 3 bとなる。 すなわち、 エレメント 2 1 Aの 入口側端部における仕切り壁 2 4と出口側端部における仕切り壁 2 5とは互いに 9 0度方向を異にして配置されている。  The vertically long left and right openings serve as the entrances 2 2 a and 23 a of the two deformed passages 22 and 23. A partition wall 25 is provided at the center of the other end of the element 21A so as to form a horizontally long opening vertically. The horizontally elongated upper and lower openings serve as the outlets 2 2 b and 2 3 b of the two deformed passages 22 and 23. That is, the partition wall 24 at the entrance end of the element 21A and the partition wall 25 at the exit end are arranged so as to be 90 degrees different from each other.
従って、 変形通路 2 2、 2 3の 2つの入口部 2 2 a、 2 3 aの配列パターンは、 長方形状の開口が左右に並んで形成され、 また 2つの出口部 2 2 b、 2 3 bの配 列パターンは、 長方形状の開口が上下に並んで形成されている。 変形通路 2 2 2 3の具体的形状について説明すると、 各変形通路 2 2、 2 3は、 その断面形状 が入口部 2 2 a、 2 3 aから出口部 2 2 b、 2 3 bに向かって連続的に変化して いる。 Therefore, the arrangement pattern of the two inlets 2 2a and 23 a of the deformed passages 2 2 and 23 is such that rectangular openings are formed side by side, and the two outlets 2 2b and 2 3b Arrangement The row pattern is formed by arranging rectangular openings vertically. Explaining the specific shape of the deformed passages 2 2 2 3, each of the deformed passages 2 2 and 23 has a cross-sectional shape from the inlet 22 a and 23 a to the outlet 22 b and 23 b. It is changing continuously.
その変化の態様については、 各変形通路 2 2、 2 3とも、 任意の位置での断面 積は入口部 2 2 a、 2 3 aから出口部 2 2 b、 2 3 bまで同じであり、 断面の形 状のみが連続的に変化している。 つまり、 入口部 2 2 a、 2 3 aは X方向に長い 長方形であり、 入口部 2 2 a、 2 3 aと出口部 2 2 b、 2 3 bの中間部において はその断面形状が正方形となり、 出口部 2 2 b、 2 3 bにおいては X方向に対し て直交する Y方向に長い長方形になるように形成されている (図 3参照) 。 そし て、 変形通路 2 2、 2 3の長さは同じである。  Regarding the aspect of the change, the cross-sectional area at any position of each of the deformed passages 22 and 23 is the same from the inlets 22 a and 23 a to the outlets 22 b and 23 b. Only the shape changes continuously. In other words, the entrances 2 2a and 2 3a are rectangles that are long in the X direction, and the cross-sectional shape is square at the middle between the entrances 2 2a and 23 a and the exits 2 2b and 23 b. The outlets 22b and 23b are formed so as to be rectangular in the Y direction perpendicular to the X direction (see FIG. 3). The lengths of the deformed passages 22 and 23 are the same.
従って、 各変形通路 2 2、 2 3を通る被混合材料は、 その断面形状が X方向に 長い長方形から徐々に正方形に変化させられ、 そこから更に Y方向に長い長方形 に徐々に変化させられることになる。 このエレメント 2 1 Aでは、 図 3で見て左 側に位置する入口部 2 2 aと上方に位置する出口部 2 2 bとが変形通路 2 2で連 通し、 右側に位置する入口部 2 3 aと下方に位置する出口部 2 3 bとが変形通路 2 3で連通している。  Therefore, the material to be mixed passing through each of the deformed passages 22 and 23 has its cross-sectional shape gradually changed from a rectangle long in the X direction to a square, and then gradually changed to a rectangle long in the Y direction. become. In this element 21A, the inlet 22a located on the left side in FIG. 3 and the outlet 22b located above communicate with each other through the deformed passage 22 and the inlet 23 located on the right side. a and the outlet 23 b located below communicate with each other through the deformed passage 23.
次に、 もう 1つの種類のエレメ ント 2 1 Bは、 基本的には前述したエレメ ント 2 1 Aと同じであるが、 このエレメ ント 2 1 Bでは図 3で見て左側に位置する入 口部 2 6 aと下方に位置する出口部 2 6 bとが変形通路 2 6で連通し、 右側に位 置する入口部 2 7 aと上方に位置する出口部 2 7 bとが変形通路 2 7で連通して いる。 すなわち、 このエレメ ン ト 2 1 Bは、 エレメ ン ト 2 1 Aと各変形通路の各 入口部と各出口部との連通態様を異にしている。  Next, the other type of element 21B is basically the same as the above-described element 21A, but in this element 21B, the entrance located on the left side in FIG. Portion 26a and the lower outlet portion 26b communicate with each other in the deformed passage 26, and the inlet portion 27a located on the right side and the outlet portion 27b located above are deformed passages 27. They communicate with each other. That is, in the element 21B, the communication mode between the element 21A and each inlet and each outlet of each deformed passage is different.
このような 2種類のエレメント 2 1 A、 2 1 Bを交互に接続した状態を示す図 が図 3である。 すなわち、 前述した 2種類のエレメ ント 2 1 A、 2 1 Bは、 一方 のエレメ ント 2 1 Aの出口側端部に他方のエレメント 2 1 Bの入口側端部を、 フ ランジ F同士を密着させてボル卜で接続される。  FIG. 3 shows a state in which such two types of elements 21 A and 21 B are connected alternately. In other words, the two types of elements 21 A and 21 B mentioned above are in close contact with the exit end of one element 21 A on the entrance side of the other element 21 B and the flanges F are adhered to each other. Then, they are connected by a bolt.
従って、 2種類のエレメ ン ト 2 1 A、 2 1 Bの接続部では、 一方のエレメ ン ト 2 1 Aにおける変形通路 2 2の出口部 2 2 b力く、 他方のエレメ ン ト 2 1 Bにおけ る変形通路 2 6の入口部 2 6 aの半分と他の変形通路 2 7の入口部 2 7 aの半分 とに連通し、 また一方のエレメ ント 2 1 Aにおける変形通路 2 3の出口部 2 3 b は、 他方のエレメ ント 2 1 Bにおける変形通路 2 6の入口部 2 6 aの残りの半分 と他の変形通路 2 7の入口部 2 7 aの残りの半分とに連通することになる。 Therefore, at the connection between the two types of elements 21 A and 21 B, the outlet 22 b of the deformed passage 22 in one element 21 A is strong, and the other element 21 B Smell Of the deformed passage 26 that communicates with half of the inlet 26a of the other deformed passage 27 and half of the inlet 27a of the other deformed passage 27, and the outlet 2 of the deformed passage 23 at one element 21A. 3b communicates with the other half of the inlet 26a of the deformed passage 26 in the other element 21B and the other half of the inlet 27a of the other deformed passage 27. .
そのため、 一方のエレメ ント 2 1 Aにおける各変形通路 2 2、 2 3を通過した 被混合材料の半分づつが、 他方のエレメント 2 1 Bのそれぞれの変形通路 2 6、 2 7内に入ることにより実質的に合流することになり、 しかし 1つの変形通路を 通った被混合材料についてみると 2つのエレメ ン卜の接続部で半分づつに分割さ れることになる。  Therefore, half of the material to be mixed that has passed through each of the deformed passages 22 and 23 in one element 21A enters the respective deformed passages 26 and 27 of the other element 21B. However, when the material to be mixed passes through one deformed passage, it is divided in half at the connection between the two elements.
従って、 2つのエレメント 2 1 A、 2 1 Bの接続部である出口側端部と入口側 端部とに形成されている各変形通路の各出口部と各入口部とが被混合材料の合流 分割手段を構成することになる。 このようなエレメ ント 2 1 A、 2 I Bを図 1に 示されるように交互に直列に接続すれば、 それぞれの接続部に被混合材料の合流 分割手段が構成されることになる。  Therefore, the outlets and the inlets of the deformed passages formed at the outlet end and the inlet end, which are the connecting portions of the two elements 21 A and 21 B, join the mixed materials. This constitutes a dividing means. If such elements 21 A and 2 IB are alternately connected in series as shown in FIG. 1, a means for converging and dividing the materials to be mixed is formed at each connection.
第 2のベルトコンペャ装置 1 2により搬送されてきた骨材とモルタルは、 その 搬出端からホッパー 1 9内に連続的に落される。 骨材とモルタルは、 第 2のベル 卜コンペャ装置 1 2からホッパー 1 9内に落ちる際にラフ即ち粗に混合され、 そ の状態で混合ボックス装置 2 0の最初のエレメ ント 2 1 Aにおける 2つの入口部 Aggregate and mortar conveyed by the second belt conveyor device 12 are continuously dropped into the hopper 19 from the discharge end. Aggregate and mortar are mixed rough as they fall from the second belt conveyor device 12 into the hopper 19, where they are mixed in the first element 21A of the mixing box device 20. One entrance
2 2 a , 2 3 aから各変形通路 2 2、 2 3に入り、 当該混合ボックス装置 2 0内 を自重で落下する。 Each of the deformed passages 22 and 23 enters from 22 a and 23 a and falls under its own weight in the mixing box device 20.
次に、 この混合ボックス装置 2 0を通過する骨材とモルタルとの混合過程につ いて、 その工程図を示す図 4を参照しながら以下に説明する。 なお、 この工程図 は、 エレメント 2 1 A、 2 1 Bを 2個 ( 2段) 接続した場合における被混合材料 即ち骨材とモルタルとの変化態様を、 各エレメ ント 2 1 A、 2 I Bの入口側端部. 中間部、 出口側端部の領域についてモデル図的に示している。  Next, the mixing process of the mortar and the aggregate passing through the mixing box device 20 will be described below with reference to FIG. This process diagram shows the change of the material to be mixed, that is, the aggregate and the mortar, when two elements 21A and 21B are connected (two stages). Inlet side end. The middle part and the exit side end are shown in a model diagram.
この図 4から理解できるように、 ホッパー 1 9に投入された 3種類の骨材とモ ルタルとは、 1段目のエレメント 2 1 Aにおける入口側端部で 2つの変形通路 2 2、 2 3に入り、 その流れは結果的に A、 Bの二つに分割される。 この分割され た被混合材料の各流状体断面形状は共に X方向に長い長方形である。 次に、 この 1段目の中間部においては、 被混合材料 A、 Bの流状体断面形状ば 共に正方形に変化し、 さらに、 1段目の出口側端部においては、 共に入口側の長 手方向 Xとは 9 0度異にする Y方向に長い長方形に変化する。 従って、 被混合材 料 A、 Bの各流状体断面形状は、 X方向に長い長方形—正方形一 Y方向に長い長 方形、 と変化する。 As can be understood from FIG. 4, the three types of aggregate and mortar charged into the hopper 19 are formed by two deformation passages 2 2, 2 3 at the inlet end of the first stage element 21 A. And the flow is consequently split into two, A and B. The cross section of each fluid body of the divided material to be mixed is a rectangle long in the X direction. Next, in the middle part of the first stage, both the cross-sectional shapes of the fluids A and B to be mixed are changed to square, and at the outlet end of the first stage, the length of the inlet side is longer. It changes into a rectangle long in the Y direction, which is 90 degrees different from the hand direction X. Therefore, the cross-sectional shape of each of the fluids A and B changes from a rectangle long in the X direction to a square long in the Y direction.
この変化する過程において、 各変形通路 2 2、 2 3の内壁面によって連続的な 圧縮作用を受けることになる。 その結果、 被混合材料の流状体自体に、 特に断面 の径方向についての連続的な対流現象が発生し、 これにより第 1次の混合作用が 行われる。  In the course of this change, the inner wall surfaces of the deformed passages 22 and 23 receive a continuous compression action. As a result, a continuous convection phenomenon occurs, particularly in the radial direction of the cross section, in the fluid itself of the material to be mixed, and thereby the first mixing action is performed.
次に、 2段目のエレメント 2 1 Bの入口側端部における仕切り壁 2 8は、 1段 目のエレメン卜の出口側端部の仕切り壁 1 5と直角に交差しているため、 1段目 のエレメ ント 2 1 Aの出口端部から出た被混合材料 A、 Bは、 図 4に示されるよ うにそれぞれ左右に分割されて A Z Bと、 A Z Bとに分けられる。  Next, the partition wall 28 at the entrance end of the second stage element 21 B intersects at right angles with the partition wall 15 at the exit end of the first stage element. As shown in FIG. 4, the materials A and B to be mixed coming out of the outlet end of the eye element 21A are divided into AZB and AZB, respectively, as shown in FIG.
そして、 各変形通路 2 6、 2 7のそれぞれについて、 被混合材料 A / Bが流れ ることになる。 すなわち、 2段目のエレメント 2 1 Bの入口側端部では、 被混合 材料 A、 Bの一部がそれぞれ各変形通路 2 6、 2 7内で合流し、 各通路内の被混 合材料における流状体断面形状は共に X方向に長い長方形となる。  Then, the mixed material A / B flows in each of the deformed passages 26 and 27. That is, at the inlet end of the second-stage element 21 B, a part of the materials A and B merges in the deformed passages 26 and 27, respectively, and The cross section of the fluid body is a rectangle that is long in the X direction.
次に、 2段目の中間部においては、 被混合材料 A Z Bの流状体断面形状が全体 として正方形状に変化させられ、 そして出口側端部においては共に Y方向に長い 長方形に変化させられる。 この 2段目においても、 被混合材料 A / Bは、 X方向 に長い長方形→正方形— Y方向に長い長方形、 と変化する。  Next, in the middle part of the second stage, the cross section of the fluid body of the material to be mixed AZB is changed into a square shape as a whole, and at the outlet end, both are changed into a rectangle long in the Y direction. Also in the second stage, the mixed material A / B changes from a rectangle long in the X direction to a square—a rectangle long in the Y direction.
そして、 その変化過程において、 各変形通路 2 6、 2 7の内壁面によって連続 的な圧縮作用を受けることになる。 その結果、 被混合材料の流状体自体に、 特に 断面の内外方向について連続的な対流現象が発生し、 これにより第 2次の混合作 用が行われる。  Then, in the change process, the inner wall surfaces of the deformed passages 26 and 27 are subjected to a continuous compression action. As a result, a continuous convection phenomenon occurs in the fluid itself of the material to be mixed, particularly in the inward and outward directions of the cross section, thereby performing the second mixing operation.
3段目については、 特に図示していないが、 3段目の入口側端部では、 図 4に 示される 2段目の出口側端部における最終の被混合材料に、 仮想線 X 1を加えて 示すように左右に分割され、 A / B / A Z Bのように合流する。 以降は 1段目、 2段目と同様にして混合される。 ところで、 この実施形態では、 前述したように種類の異なる 2つのエレメン F 2 1 A、 2 1 Bを交互に接続しているが、 その理由について説明する。 図 3に示 されるエレメ ント 2 1 Aをその一方の端部から各変形通路内を視く と、 図 5に示 されるように影線を除いた部分が直通した即ちストレ一 卜な貫通路として見える これは、 前述したように入口側端部における右側の入口部 2 2 aが出口側端部 における上部の出口部 2 2 bに連通し、 入口側端部における左側の入口部 2 3 a が出口側端部における下部の出口部 2 3 bに連通していることから、 それらがそ れぞれ部分的に重なる領域は入口部から出口部が直視できることは当然ではある とすると、 エレメ ン ト 2 1 Aの長手方向から見たときに入口部 2 2 a、 2 3 a と出口部 2 2 b、 2 3 bとがそれぞれ部分的に重なる領域に存在する通路部分に ついては、 被混合材料の流状体に変形をほとんど与えることなく通過させること になる。 そして、 同じ形状のエレメ ン ト 2 1 Aを複数接続しても端部から変形通 路を靦いたときの状態は図 5に示された状態と全く変わらない。 従って、 同じ形 状のエレメ ン 卜 1 4を複数接続しても混合効果はあまりよくない。 Although not particularly shown in the third stage, an imaginary line X1 is added to the final material to be mixed at the second end of the outlet side shown in FIG. 4 at the inlet end of the third stage. It is divided into right and left as shown, and merges like A / B / AZB. Thereafter, mixing is performed in the same manner as in the first and second stages. By the way, in this embodiment, as described above, two different types of elements F21A and 21B are connected alternately. The reason will be described. When the element 21A shown in FIG. 3 is viewed from inside of each deformed passage from one end thereof, as shown in FIG. 5, the portion excluding the shadow line passes directly, that is, a straight penetration. This is because the right entrance 22a at the entrance end communicates with the upper exit 22b at the exit end, and the left entrance 23 at the entrance end as described above. a communicates with the lower outlet section 23 b at the outlet end, and it is natural that the area where they partially overlap can be viewed directly from the inlet section to the outlet section. When viewed from the longitudinal direction of the outlet 21A, the passage portion existing in the area where the inlet portions 22a, 23a and the outlet portions 22b, 23b partially overlap each other is not mixed. It will pass through the stream of material with little deformation. Then, even when a plurality of elements 21 A having the same shape are connected, the state when the deformation path is moved from the end is not different from the state shown in FIG. Therefore, even if a plurality of elements 14 having the same shape are connected, the mixing effect is not so good.
他方、 エレメ ント 2 1 Bについては、 前述のエレメント 2 1 Aの説明と同じ理 屈により入口部 2 6 a、 2 7 3と出ロ部2 6 、 2 7 bとが重なる領域は図 6に 示される影線を除いた部分となる。 これは、 エレメ ント 2 1 Aとは異なって、 入 口側端部における左側の入口部 2 6 aが出口側端部における下部の出口部 2 6 b に連通し、 入口側端部における右側の入口部 2 7 aが出口側端部における上部の 出口部 2 7 bに連通していることから明らかである。  On the other hand, for the element 21B, the area where the inlets 26a, 273 and the outlets 26, 27b overlap with the outlets 26, 27b is shown in Fig. 6 due to the same principle as described for the element 21A. This is the part excluding the shadow line shown. This is different from element 21A, in that the left inlet 26a at the inlet end communicates with the lower outlet 26b at the outlet end and the right inlet 26b at the inlet end. This is evident from the fact that the inlet 27a communicates with the upper outlet 27b at the outlet end.
そこで、 この 2種類のエレメ ン ト 2 1 A、 2 1 Bを図 3に示されるように接続 したとして、 その入口側端部から変形通路を 11く と、 図 5と図 6とを重ねたよう な状態となり、 その結果入口部から出口部を直視することはできなくなる。 とい うことは、 入口部から入った被混合材料が、 所謂ストレートに出口部に流れるこ とはなくなり、 その結果混合効果をより高めることになる。  Therefore, assuming that these two types of elements 21A and 21B were connected as shown in Fig. 3, if there were 11 deformed passages from the inlet end, Fig. 5 and Fig. 6 were superimposed. As a result, it becomes impossible to directly see the exit from the entrance. That is, the material to be mixed that has entered from the inlet does not flow to the outlet in a so-called straight manner, and as a result, the mixing effect is further enhanced.
なお、 前述した実施形態で用いたエレメ ントは、 2つの変形通路 2 2、 2 3又 は 2 6、 2 7を備えたものであつたが、 図 7に示されるように 4つの変形通路 3 1、 3 2、 3 3、 3 4を備えるエレメ ント 3 0を接続して混合ボックス装置を構 成することもできる。 このエレメ ント 3 0も考え方は前述したエレメ ント 2 1 A、 2 1 Bと同じで 端部側の開口が全体として正方形で且つ周囲に接続用のフランジ Fを備え、 更に 入口側端部が X方向に長い 4つの開口を形成するように 3つの仕切り壁 3 5、 3 6、 3 7により仕切られ、 4つの変形通路 3 1〜 3 4の入口部 3 1 a、 3 2 a ,The element used in the above-described embodiment was provided with two deformed passages 22 and 23 or 26 and 27, but as shown in FIG. A mixing box device can also be configured by connecting elements 30 including 1, 32, 33, and 34. The concept of this element 30 is the same as that of the above-mentioned elements 21A and 21B. The opening at the end is square as a whole, and a flange F for connection is provided around the element. Three partitions 3 5, 3 6, 3 7 to form four openings that are long in the direction, and the entrances 3 1 a, 3 2 a, of the four deformed passages 3 1 to 3 4
3 3 a、 3 4 aとされている。 33a and 34a.
他方、 このエレメ ント 3 0の出口側端部は、 入口側端部の各入口部とは 9 0度 方向を異にする Y方向に長い開口を形成するように 3つの仕切り壁 3 8、 3 9、 On the other hand, the exit side end of this element 30 has three partition walls 38, 3 so as to form a long opening in the Y direction, which is 90 degrees different from each entrance of the entrance side end. 9,
4 0により仕切られ、 各変形通路の出口部 3 1 b、 3 2 b、 3 3 b、 3 4 bとさ れている。 40, and are defined as outlets 31b, 32b, 33b, 34b of the respective deformed passages.
そして、 図 7で見て、 変形通路 3 1の入口部 3 1 aは、 上から 2番目の出口部 3 1 bに連通し、 変形通路 3 2の入口部 3 2 aは、 最上部の出口部 3 2 bに連通 し、 変形通路 3 3の入口部 3 3 aは、 最下部の出口部 3 3 bに連通し、 変形通路 3 4の入口部 3 4 aは、 上から 3番目の出口部 3 4 bに連通している。  And as seen in FIG. 7, the inlet 3 1 a of the deformed passage 31 communicates with the second outlet 3 1 b from the top, and the inlet 3 2 a of the deformed passage 32 is the uppermost outlet Part 3 2b, the inlet part 33a of the deformed passage 33 is connected to the lowermost outlet part 33b, and the inlet part 34a of the deformed passage 34 is the third outlet from the top. It communicates with part 3 4b.
各変形通路 3 1、 3 2、 3 3、 3 4のそれぞれの長手方向における断面形状の 変化については、 先の実施例で示したエレメ ント 2 1 A、 2 I Bの場合と基本的 に同じである。 ただ、 エレメン ト 3 0全体の輪郭としては、 4つの変形通路を備 えている関係で相違している。  The change in the cross-sectional shape in the longitudinal direction of each of the deformed passages 31, 32, 33, and 34 is basically the same as the case of the elements 21A and 2IB shown in the previous embodiment. is there. However, the outline of the entire element 30 is different because it has four deformed passages.
図 8は、 このエレメ ント 3 0を 2つ接続 (この例では同一形状のエレメ ント 3 0を接続) して構成された混合ボックス装置を用いた混合方法の工程図を示す。  FIG. 8 shows a process diagram of a mixing method using a mixing box device configured by connecting two of the elements 30 (in this example, connecting elements 30 of the same shape).
1段目のエレメント 3 0の入口側端部における X方向に長い長方形状の入口部 3 1 a〜 3 4 aに入った被混合材料は出口部 3 1 b〜 3 4 bを出る時には B、 A、 D、 C、 に分割され、 2段目のエレメ ント 3 0の出口側端部においては各列が X 方向に長い 1 6層の状態で合流される。 ここで、 仮想線 X 3は次の 3段目の分割 線を示している。  At the inlet end of the first-stage element 30, the material to be mixed that has entered the rectangular inlet portion 31 a to 34 a in the X direction is B when exiting the outlet portion 31 b to 34 b. The rows are divided into A, D, and C, and at the exit side end of the element 30 in the second stage, the rows join together in a state of 16 layers long in the X direction. Here, the imaginary line X 3 indicates the next division line at the third stage.
このようにして適正に計量された骨材とモルタル又はセメ ン卜ペース卜が連続 的に混合ボックス装置 2 0に投入され且つ最適に混合される結果として非常に品 質の高いコンクリ一トを連続的に製造することができる。 前述した実施形態の連 続式コンクリート製造ブラント 1 0は、 上述したように比較的に品質の高いコン クリ一トを製造するために連続骨材供給装置 1 3〜 1 5にベルトスケール装置を lb 設置して骨材の供給量を継続的に監視し且つフィ一ドバック制御するようにし Γ また同様にしてモルタルの供給も搬送されてくる骨材の総量に比例するように極 めて精度よく調整するようにしたが、 このようなベルトスケール装置は要求され るコンク リー 卜の品質に応じて適宜設置すればよい。 The aggregate and the mortar or cement paste properly weighed in this way are continuously put into the mixing box device 20 and are mixed optimally, so that a very high-quality concrete is continuously obtained. It can be manufactured in a special way. The continuous concrete manufacturing plant 10 of the above-described embodiment is provided with a belt scale device in the continuous aggregate supply device 13 to 15 in order to manufacture a relatively high-quality concrete as described above. lb is installed to continuously monitor the amount of aggregate supplied and to perform feedback control. Similarly, the supply of mortar is also extremely accurate so as to be proportional to the total amount of aggregate being conveyed. Although adjustment was made, such a belt scale device may be appropriately installed according to the required quality of the concrete.
なお、 混合ボックス装置 2 0に骨材やモルタル等の材料を通過させる場合、 こ れらの材料が必ずしも各エレメ ン卜の変形通路内に充満しながら通過するとは限 らない。 もし、 被混合材料が各エレメ ン トの変形通路内に充満しながら通過しな い場合、 これら材料の種類の違いによっては混合ボックス装置を通過中に剪断や 圧縮を効率的に受けないことも考えられ、 その結果混練状態に違いが生じる可能 性がある。  When materials such as aggregate and mortar are allowed to pass through the mixing box device 20, the materials do not always pass while filling the deformed passages of each element. If the material to be mixed does not pass through the deformation path of each element while filling it, depending on the type of these materials, it may not be efficiently subjected to shearing or compression during passing through the mixing box device. It is possible, and as a result, there may be a difference in the kneading state.
そのため、 混合ボックス装置 2 0を構成する最下段のエレメント出口に開閉可 能なカツ トゲート (図示せず) を設け、 自重で落下してくる材料の排出量を調整 することにより混合ボックス装置の各エレメントにおける変形通路内での材料の 充満率のコン トロールを行って練り混ぜをより効果的に行わせるようにすること も好ましい。  Therefore, an openable / closable cut gate (not shown) is provided at the bottom of the element outlet of the mixing box device 20 to adjust the discharge amount of the material falling by its own weight, so that each of the mixing box devices can be controlled. It is also preferable to control the filling rate of the material in the deformation passage in the element so that the mixing can be performed more effectively.
また、 骨材及びモルタル又はセメントペース卜の供給を調整するための手段と しては、 ベルトスケール装置以外にも種々の公知の手段、 例えば搬送ベルトによ つて連続的に移送されてく る骨材の単位時間当たりの分量 (体積) を逐次、 複数 の光電管装置によって検出するようにすることもできるし、 或いは公知のフィ一 ドコンべャ装置を使用して材料の供給量を精度よく制御することができる。 更に、 前述した実施形態における連続式混合プラントは、 主コンペャ装置の搬 送ベルトに 1種類又はそれ以上の材料を順次積み重ねるように乗せて搬送し、 更 にこれら各材料の総量を見極めて最後の材料を搬送ベル卜上に乗せ、 これらを混 合ボックス装置に投入するようにしたが、 本発明はこのような実施形態に限定さ れるものではない。  As means for adjusting the supply of the aggregate and the mortar or cement paste, there are various known means other than the belt scale device, for example, an aggregate continuously transferred by a conveyor belt. The quantity per unit time (volume) can be sequentially detected by a plurality of phototube devices, or the supply amount of material can be accurately controlled by using a known feed conveyor device. Can be. Further, in the continuous mixing plant in the above-described embodiment, one or more materials are conveyed while being sequentially stacked on a conveyance belt of the main conveyer device, and further, the total amount of each of these materials is determined, and the final amount is determined. Although the materials are put on the conveyor belt and are put into the mixing box device, the present invention is not limited to such an embodiment.
すなわち、 例えば、 図 9に示されるように混合ボックス装置 2 0の上部に設置 されたホッパー 1 9の周囲に各連続骨材供給装置 1 3、 1 4、 1 5及びモルタル 又はセメ ントペーストを供給する連続定量供給装置 1 6を独立して設置し、 これ らの各装置から各材料を計量しながら連続的にホッパー 1 9に投入してもよい。 そして必要ならば各連続骨材供給装置 1 3、 1 4、 1 5及び連続定量供給装置 Γ 6からホッパー 1 9までの搬送経路にスケールを設置して前述したように各連続 骨材供給装置 1 3、 1 4、 1 5及び連続定量供給装置 1 6をフィードバック制御 してその材料供給精度を高めるようにすることもできる。 That is, for example, as shown in Fig. 9, each continuous aggregate supply device 13, 14, 15, and mortar or cement paste are supplied around a hopper 19 installed above the mixing box device 20. The continuous quantitative supply device 16 may be installed independently, and each material may be continuously charged into the hopper 19 while measuring each material from these devices. If necessary, each continuous aggregate supply device 13, 14, 15, and continuous quantitative supply device 装置 A scale is installed on the transport path from 6 to the hopper 19, and as described above, each continuous aggregate supply device 1 It is also possible to increase the material supply accuracy by performing feedback control on 3, 14, 15 and the continuous quantitative supply device 16.
また、 前述した本発明の実施形態では、 骨材とモルタルを混合してコンクリ一 卜を製造することを例として説明したが、 本発明はこのような材料に限定される ものではなく、 骨材とセメ ントペース卜とをそれぞれ連続的に計量しながら供給 して混合ボックス装置に投入するようにしてもよい。  Further, in the above-described embodiment of the present invention, an example has been described in which an aggregate and mortar are mixed to produce a concrete, but the present invention is not limited to such a material. The cement paste and the cement paste may be supplied while being continuously measured, and then charged into the mixing box device.
また、 前述した実施形態では 「骨材」 という用語を使用して被混合材料を説明 している力^ ここで言う 「骨材」 とは砂とか砂利などのようなそれぞれ独立した 種類のものに限定されない。 すなわち、 砂や砂利などのを予め混合したもの、 或 いは砂や砂利など又はこれらの混合物に更にセメ ント粉を予め混合したものをプ レミ ックスと呼んでいるカ 、 このようなプレミ ックスをも含む概念で使用してい る。 従って、 このようなプレミ ックスを連続的に計量しながら供給して混合ボッ クス装置に投入するようにしてもよい。  In the above-described embodiment, the term “aggregate” is used to describe the material to be mixed. ^ The term “aggregate” used here refers to an independent type such as sand or gravel. Not limited. That is, a premix of sand, gravel, or the like, or a premix of sand, gravel, or the like, or a mixture thereof and cement powder in advance is called a premix. It is used in the concept including. Therefore, the premix may be supplied while being continuously measured and charged into the mixing box device.
特に、 砂や砂利などの混合物に更にセメ ント粉を予め混合したプレミ ックスを 連続的に計量しながら供給して混合ボックス装置に投入する場合には、 図 1 0に 示されるように 2つの混合ボックス装置 2 0を段階的に設置して行うことができ る。 すなわち、 細骨材である砂、 粗骨材である砂利、 及びセメント粉をそれぞれ 計量供給装置 1 1 3、 1 1 4、 1 1 5で連続的に供給して第 1段階の混合ボック ス装置 2 0で混合してプレミ ックスを製造する。  In particular, when a mixture of sand, gravel, etc., and a premix of cement powder, which is premixed, is continuously metered and fed into the mixing box device, the two mixes are mixed as shown in Fig. 10. The box device 20 can be installed step by step. That is, the first-stage mixing box device is continuously supplied with sand, which is fine aggregate, gravel, which is coarse aggregate, and cement powder, respectively, by using metering devices 113, 114, 115. Mix at 20 to produce a premix.
次いで、 このプレミ ッタスに水供給装置 1 1 6により水を連続的に加えて第 2 段階の混合ボックス 2 0で混合する。 このような工程を経るようにしても、 連続 的にコンク リートを製造することができる。 このことからも理解されるように、 本発明では、 必要に応じて複数の混合ボックス装置を段階的に設置して各材料を 順次に材料を供給しながら混合させるようにすることもできる。  Next, water is continuously added to the pre-mitters by a water supply device 116 and mixed in a second-stage mixing box 20. Even through such a process, it is possible to continuously produce concrete. As can be understood from this, in the present invention, a plurality of mixing box devices can be installed stepwise as necessary to mix each material while sequentially supplying the material.
なお、 前述したプレミ ックスに水を加える場合も含めて、 粗骨材や細骨材の表 面水の管理は、 品質の高いコンクリー トを製造する場合に必要であり、 従って前 述した本発明の連続式混合ブラン卜に水供給制御装置や水分検知手段などを必要 に応じて付加することも好ましい。 ― なお、 前述した本発明の各実施形態は、 コンクリートを連続的に製造するため のプラントであつたが、 本発明は混合する各材料を計量しながら供給して、 それ らを連続的に混合撹拌して製品を得るような種々の場合にも使用することができ ることはいうまでもない。 このような用途としては、 例えば、 家畜の配合飼料の 製造、 或いは園芸用土 (土と鶏糞等の混合土) 等を挙げることができる。 The surface water management of coarse and fine aggregates, including the case where water is added to the above-mentioned premix, is necessary for the production of high-quality concrete. Water supply control device and moisture detection means are required for continuous mixing It is also preferable to add them according to. -In addition, each of the embodiments of the present invention described above is a plant for continuously producing concrete, but the present invention weighs and supplies each material to be mixed and continuously mixes them. Needless to say, it can be used in various cases where a product is obtained by stirring. Such uses include, for example, the production of livestock compound feed, or horticultural soil (mixed soil of soil and chicken manure).
以上説明したように、 本発明の連続式混合プラントによれば、 混合材料の製造 を比較的に簡素な装置で連続的に且つ比較的に速い速度で行うことができること から混合材料の製造効率が著しく向上し、 その結果この種の混合材料の大量生産 を可能とすることができる。  As described above, according to the continuous mixing plant of the present invention, the production of the mixed material can be performed continuously and at a relatively high speed with a relatively simple apparatus. Significant improvements can be made, thus enabling mass production of this type of mixed material.
また、 本発明の連続式混合プラントによれば、 これをコンクリートの連続的製 造に用いることができ、 その場合、 コンクリー トの連続的製造では従来困難であ つた各材料の計量を連続的に精度よく行って独特な構成のミキザに送るようにし ているため品質の高いコンクリ一卜を連続的に且つ高速で製造することもできる という優れた効果を奏する。 産業上の利用可能性  Further, according to the continuous mixing plant of the present invention, it can be used for the continuous production of concrete, in which case the continuous measurement of each material, which has conventionally been difficult in the continuous production of concrete, can be performed continuously. An excellent effect is achieved in that high-quality concrete can be produced continuously and at high speed because it is sent to a mixer with a unique structure with high precision. Industrial applicability
本発明は、 数種類の材料を連続的に混合撹拌する装置、 例えばコンクリ一ト製 造ブラン ト等でのセメ ン卜と祖骨材の混合、 家畜の配合飼料の混合、 或いは園芸 用土を製造するために土と鶏糞等を混合するのに有用である。  The present invention is an apparatus for continuously mixing and stirring several kinds of materials, for example, mixing cement and aggregate in a concrete manufacturing brand, mixing livestock compounded feed, or producing horticultural soil. Therefore, it is useful for mixing soil and chicken dung.

Claims

請 求 の 範 囲 ― The scope of the claims -
( 1 ) 混合する少なくとも 2種類の材料をそれぞれ連続的に計量しながら供給 し続ける、 前記各材料に対応する数の連続計量供給手段と、 この連続計量供給手 段からそれぞれ連続的に供給された各材料を混合する少なく とも 1つの混合ボッ クス装置とから構成され、 (1) At least two types of materials to be mixed are continuously supplied while being continuously measured, and the number of continuous measuring and feeding means corresponding to each of the materials is continuously supplied from the continuous measuring and feeding means. Consists of at least one mixing box device for mixing each material,
前記混合ボックス装置が、 一端に入口部が又他端に出口部が形成され、 前記入 口部から前記出口部へ向かって断面形状が連続的に変化し、 且つ軸方向に伸長す る複数の変形通路と、 前記各変形通路の前記入口部と前記出口部との間に設けら れ、 前記各変形通路を通る各材料を合流し且つ分割する合流分割手段とを備え、 前記入口部から各材料を連続的に投入し、 自重により前記各変形通路を前記出口 部へ向かって通過させることによって混合することを特徴とする連続式混合ブラ ン卜。  The mixing box device has a plurality of inlet sections formed at one end and an outlet section at the other end, a cross-sectional shape continuously changing from the inlet section to the outlet section, and extending in the axial direction. A deformation passage, provided between the inlet portion and the outlet portion of each of the deformation passages, and merging division means for merging and dividing each material passing through each of the deformation passages; A continuous mixing plant wherein materials are continuously charged and mixed by passing the deformed passages toward the outlet portion by their own weight.
( 2 ) 前記各連続計量供給手段から供給される材料を連続的に搬送する途中で、 局部的に且つ所定時間毎に搬送量を計量する計量手段を更に備え、 この計量手段 からの信号を受けて前記連続計量供給手段がフィ一ドバック制御されて材料供給 量の精度を高めることを特徴とする請求項 1に記載の連続式混合ブラント。  (2) The apparatus further comprises a weighing means for locally and every predetermined time while the material supplied from each of the continuous weighing and feeding means is being continuously fed, and receiving a signal from the weighing means. 2. The continuous mixing plant according to claim 1, wherein said continuous metering / feeding means is fed back to increase the accuracy of the material feeding rate.
( 3 ) 混合する少なくとも 2種類の前記材料が骨材とモルタル又はセメントぺ —ストであり、 コンクリ一卜を連続的に製造するプラントとして適用することを 特徴とする請求項 2に記載の連続式混合ブラン卜。  (3) The continuous system according to claim 2, wherein the at least two kinds of materials to be mixed are aggregate and mortar or cement paste, and are applied as a plant for continuously producing concrete. Mixed brand.
( 4 ) 骨材を搬送する主ベルトコンペャ装置と、 前記主ベルトコンペャ装置に 少なくとも 1種類の骨材を計量しながら供給し続ける連続骨材供給手段と、 前記 主ベルトコンべャ装置の搬送ベルトに乗せられて移動してくる前記骨材の局部的 な量を所定位置で連続的に計測して信号を出力すべく、 前記搬送ベル卜の下流側 位置に設置された第 1の検出装置と、 前記骨材が供給された前記主ベルトコンべ ャ装置の下流側に設置され、 前記主ベルトコンべャ装置にモルタル又はセメント ペーストを連続的に定量供給し続ける連続定量供給手段と、 前記主ベルトコンべ ャ装置の搬出端の直下に配置された少なく とも 1つの混合ボックス装置とから構 成され、  (4) a main belt conveyor device for transporting the aggregate, continuous aggregate supply means for continuously supplying at least one type of aggregate to the main belt conveyor device while weighing the aggregate, and being mounted on a transport belt of the main belt conveyor device. A first detector installed at a downstream position of the conveyor belt to continuously measure a local amount of the aggregate moving at a predetermined position and output a signal; A continuous quantitative supply means installed downstream of the main belt conveyor device to which the material has been supplied, and continuously supplying a constant amount of mortar or cement paste to the main belt conveyor device; It consists of at least one mixing box device located just below the discharge end,
この第 1の検出装置から連続的に出力される前記信号を受けて前記連続定量供 給装置がフィー ドバック制御されてモルタル又はセメ ン トペース ト供給量の精度 を高め、 Upon receiving the signal continuously output from the first detection device, the continuous quantitative Feeding device is controlled by feedback to improve the accuracy of mortar or cement paste supply,
更に、 前記混合ボックス装置が、 一端に入口部が又他端に出口部が形成され、 前記入口部から前記出口部へ向かって断面形状が連続的に変化し、 且つ軸方向に 伸長する複数の変形通路と、 前記各変形通路の前記入口部と前記出口部との間に 設けられ、 前記各変形通路を通るコンクリートを合流し且つ分割する合流分割手 段とを備え、 前記入口部からコンクリートを投入し、 自重により前記各変形通路 を前記出口部へ向かって通過させることによって混合することを特徴とする連続 式混合ブラント。  Further, in the mixing box device, an inlet portion is formed at one end and an outlet portion is formed at the other end, and a plurality of cross-sectional shapes continuously change from the inlet portion to the outlet portion, and extend in the axial direction. A deforming passage, and a merging and dividing means provided between the inlet and the outlet of each of the deforming passages to merge and split the concrete passing through each of the deforming passages. A continuous mixing blunt, wherein the mixing is performed by charging and passing the deformed passages toward the outlet portion by their own weight.
( 5 ) 前記連続骨材供給手段が、 骨材を前記主コンペャ装置に供給するベル卜 コンべャ装置と、 前記ベルトコンべャ装置へ前記骨材を連続的に供給する材料切 り出し装置と、 前記ベルトコンべャ装置の搬送ベルトに乗せられて移動する前記 骨材の量を所定位置で連続的に計測して信号を出力すベく前記ベルトコンべャ装 置の下流側位置に設置された第 2の検出装置と、 この第 2の検出装置で連続的に 出力される前記信号を受けて前記材料切り出し装置をフィ一ドバック制御して前 記ベルトコンべャ装置へ切り出される骨材供給量の精度を高めることを特徴とす る請求項 4に記載の連続式混合ブラント。  (5) The continuous aggregate supply means includes: a belt conveyor device that supplies the aggregate to the main conveyor device; and a material cutout device that continuously supplies the aggregate to the belt conveyor device. It is installed at a downstream position of the belt conveyor device to output a signal by continuously measuring the amount of the aggregate moving on the transport belt of the belt conveyor device at a predetermined position. A second detection device, receiving the signal continuously output by the second detection device, performing feedback control of the material cutting device and controlling the amount of aggregate supplied to the belt conveyor device; 5. The continuous mixing plant according to claim 4, wherein accuracy is increased.
( 6 ) 前記材料切り出し装置が振動フィーダ一を含み、 前記第 2の検出装置か ら連続的に出力される信号に基づいて前記振動フィーダ一の振動数を変化させて 前記骨材の前記ベルトコンべャ装置への切り出し量をフィ一ドバック制御するこ とを特徴とする請求項 5に記載の連続式混合ブラント。  (6) The material cutting device includes a vibratory feeder, and changes the frequency of the vibratory feeder based on a signal continuously output from the second detection device to change the frequency of the vibratory feeder. 6. The continuous mixing plant according to claim 5, wherein a feed-back control of a cut-out amount to the cooling device is performed.
( 7 ) 前記第 1及び第 2の検出装置のいずれか一方又は双方が、 所定位置にお いて搬送ベル卜ごとその重量を連続的に計測するベルトスケール装置から構成さ れていることを特徴とする請求項 6に記載の連続式混合ブラント。  (7) Either or both of the first and second detection devices are constituted by a belt scale device for continuously measuring the weight of each conveyor belt at a predetermined position. 7. The continuous mixing blunt according to claim 6, wherein:
( 8 ) 前記混合ボックス装置が、 複数のエレメントをほぼ垂直に接続して構成 され、 前記各エレメントがそれぞれ入口端と、 出口端と、 前記入口端から前記出 口端へ至る複数の前記変形通路とを備え、 前記入口端に形成された前記各変形通 路の入口部の配列パターンと前記出口端に形成された前記各変形通路の出口部の 配列パターンとを異にし、 更に、 前記各エレメントカ^ 隣接する前記エレメント の前記出口端と前記入口端と密着させて接続され、 前記各エレメ ン卜の接続側端 部における前記各変形通路の入口部と出口部との接続部が前記合流分割手段を構 成していることを特徴とする請求項 7に記載の連続式混合ブラント。 (8) The mixing box device is configured by connecting a plurality of elements substantially vertically, each of the elements being an inlet end, an outlet end, and a plurality of the deformed passages extending from the inlet end to the outlet end. Wherein the arrangement pattern of the entrances of the respective deformed passages formed at the entrance end is different from the arrangement pattern of the exits of the respective modified passages formed at the exit end. Ka ^ Adjacent element The outlet end and the inlet end of the element are connected in close contact with each other, and a connecting portion between an inlet and an outlet of each of the deformed passages at a connection side end of each of the elements constitutes the merging division means. The continuous mixing plant according to claim 7, wherein
( 9 ) 前記エレメン トは、 前記各変形通路の前記入口部の配列パターンとして 長方形状の開口が左右に並び、 また前記出口部の配列パターンとして長方形状の 開口が上下に並んで形成されると共に前記各変形通路の各入口部と前記各出口部 との連通態様を異にする少なく とも 2種類から構成され、 前記混合ボックス装置 はこの種類の異なる前記エレメントを交互に縦方向に接続して構成された請求項 8に記載の連続式混合ブラント。  (9) In the element, rectangular openings are arranged side by side as an arrangement pattern of the entrances of the respective deformed passages, and rectangular openings are formed up and down as an arrangement pattern of the exits. Each of the deformed passages has at least two types of communication modes different from each other at the inlet and the outlet, and the mixing box device is configured by alternately connecting the different elements of this type in the vertical direction. 9. The continuous mixing plant according to claim 8, wherein
( 1 0 ) 前記混合ボックス装置を構成する最下段の前記エレメ ント出口に開閉 可能なカツ 卜ゲートを設け、 自重で落下してく る材料の排出量を調整することに より前記混合ボックス装置の各エレメ ントにおける変形通路内での材料の充満率 のコントロールを行うことを特徴とする請求項 9に記載の連続式混合ブラント。  (10) An openable and closable cut gate is provided at the lowermost element outlet of the mixing box device, and the discharge amount of the material falling by its own weight is adjusted to make each of the mixing box devices. 10. The continuous mixing plant according to claim 9, wherein the filling rate of the material in the deformation passage in the element is controlled.
PCT/JP1999/001114 1997-09-24 1999-03-08 Continuous mixing plant WO2000053302A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP25878897A JP3294541B2 (en) 1997-09-24 1997-09-24 Continuous mixing plant
EP99973769A EP1118380B1 (en) 1999-03-08 1999-03-08 Continuous mixing plant
PCT/JP1999/001114 WO2000053302A1 (en) 1997-09-24 1999-03-08 Continuous mixing plant
US09/674,702 US6352360B1 (en) 1997-09-24 1999-03-08 Continuous mixing plant
CNB998059595A CN1153612C (en) 1997-09-24 1999-03-08 Continuous mixing plant
DE69917794T DE69917794T2 (en) 1999-03-08 1999-03-08 CONTINUOUS MIXING SYSTEM
KR1020007012423A KR20010043397A (en) 1999-03-08 1999-03-08 Continuous mixing plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25878897A JP3294541B2 (en) 1997-09-24 1997-09-24 Continuous mixing plant
PCT/JP1999/001114 WO2000053302A1 (en) 1997-09-24 1999-03-08 Continuous mixing plant

Publications (1)

Publication Number Publication Date
WO2000053302A1 true WO2000053302A1 (en) 2000-09-14

Family

ID=14235134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001114 WO2000053302A1 (en) 1997-09-24 1999-03-08 Continuous mixing plant

Country Status (4)

Country Link
EP (1) EP1118380B1 (en)
KR (1) KR20010043397A (en)
DE (1) DE69917794T2 (en)
WO (1) WO2000053302A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20130148A1 (en) * 2013-06-20 2014-12-21 Sami Srl STORAGE AND DETERMINATION EQUIPMENT FOR INERT MATERIALS WITH A CONTINUOUS AND EXPENSIVE WEIGHING SYSTEM
CN115672090A (en) * 2022-12-29 2023-02-03 成都大学 Metal powder sintering molding equipment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876904B2 (en) 2002-12-23 2005-04-05 Port-A-Pour, Inc. Portable concrete plant dispensing system
US7488141B2 (en) * 2004-07-14 2009-02-10 Halliburton Energy Services, Inc. Automated control methods for dry bulk material transfer
GB2419099B (en) * 2004-10-15 2010-01-27 Graham Anthony Jones Mobile concrete mixer
KR100944970B1 (en) * 2008-11-14 2010-03-02 호산엔지니어링(주) Cement mixing device and manufacturing remicon device using it
ITFI20110009A1 (en) * 2011-01-18 2012-07-19 Sami Di Martini & Innocenti S N C BETONAGE PLANT WITH CONTINUOUS WEIGHING MACHINES
GR1010334B (en) * 2022-01-12 2022-11-09 Spanos Group Ικε, Energy-saving concrete production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854364U (en) * 1971-10-21 1973-07-13
JPS5124080B1 (en) * 1970-12-28 1976-07-21
JPH0222030Y2 (en) * 1985-08-14 1990-06-13
JPH0638902B2 (en) * 1986-01-16 1994-05-25 有限会社毛利精穀研究所 Grain mixing equipment
JPH10286449A (en) * 1997-04-15 1998-10-27 Maeda Corp Elements for kneading device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110419A (en) * 1959-11-30 1963-11-12 Baker Perkins Inc Continuous weigh feeder
DE1235614B (en) * 1960-04-09 1967-03-02 Arbau Baugeraete G M B H Weighing device for dosing several components of a batch, especially for the preparation of concrete, with a conveyor belt supported on the weighing device, onto which the components are fed one after the other
FR1365738A (en) * 1963-08-06 1964-07-03 Wibau Gmbh Method and device for the continuous withdrawal of bulk materials at a constant rate
DE1934316A1 (en) * 1969-07-07 1971-01-21 Krupp Gmbh Precast concrete plant
US3963221A (en) * 1974-02-28 1976-06-15 Union Carbide Corporation Mixing apparatus
DE2426714C3 (en) * 1974-06-01 1978-12-14 Dynamit Nobel Ag, 5210 Toisdorf Method for feeding the starting materials into a screw press for producing a film web
US3945619A (en) * 1975-03-03 1976-03-23 Taibi Frank P Mobile continuous concrete proportioning plant
JPS63146739A (en) * 1986-07-30 1988-06-18 レオン自動機株式会社 Method and apparatus for producing composite food
JP2729832B2 (en) * 1989-04-28 1998-03-18 曙ブレーキ工業株式会社 Friction material blending equipment
US5775803A (en) * 1989-08-02 1998-07-07 Stewart & Stevenson Services, Inc. Automatic cementing system with improved density control
WO1996023639A1 (en) * 1995-01-30 1996-08-08 Yvon Cloutier Mobile concrete plant
US5873653A (en) * 1996-01-29 1999-02-23 Excel Machinery Company, Inc. Mobile pugmill having a weight metering control system
JPH09253467A (en) * 1996-03-20 1997-09-30 Maeda Corp Kneading and kneading device
JP3171828B2 (en) * 1998-09-02 2001-06-04 前田建設工業株式会社 Kneading device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124080B1 (en) * 1970-12-28 1976-07-21
JPS4854364U (en) * 1971-10-21 1973-07-13
JPH0222030Y2 (en) * 1985-08-14 1990-06-13
JPH0638902B2 (en) * 1986-01-16 1994-05-25 有限会社毛利精穀研究所 Grain mixing equipment
JPH10286449A (en) * 1997-04-15 1998-10-27 Maeda Corp Elements for kneading device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20130148A1 (en) * 2013-06-20 2014-12-21 Sami Srl STORAGE AND DETERMINATION EQUIPMENT FOR INERT MATERIALS WITH A CONTINUOUS AND EXPENSIVE WEIGHING SYSTEM
CN115672090A (en) * 2022-12-29 2023-02-03 成都大学 Metal powder sintering molding equipment
CN115672090B (en) * 2022-12-29 2023-03-21 成都大学 Metal powder sintering molding equipment

Also Published As

Publication number Publication date
EP1118380A1 (en) 2001-07-25
DE69917794T2 (en) 2005-07-14
EP1118380A4 (en) 2002-01-23
EP1118380B1 (en) 2004-06-02
DE69917794D1 (en) 2004-07-08
KR20010043397A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
EP1508417A1 (en) Blending system
JP3294541B2 (en) Continuous mixing plant
US4204773A (en) Mixing means
EP1773551B1 (en) Apparatus for manufacturing concrete
US20150103614A1 (en) Apparatus and method for a concrete plant
CN1053755A (en) The device of continuous mixing and homogenising
KR101580295B1 (en) Apparatus for manufacturing color concrete block
WO2000053302A1 (en) Continuous mixing plant
CN106113278A (en) A kind of stable soil continuous way Vibratory Mixing processing factory's mixing equipment and processing method thereof
CN208037570U (en) A kind of blending transportation feed mechanism of pipeline batch mixer
FI57702B (en) FREQUENCY REQUIREMENTS FOR CONTAINER CONSTRUCTION REQUIREMENTS FOR PULL FORMULATION ELLER STYCKEFORMIGT MATERIAL FRAON EN BEHAOLLARE
US4560285A (en) Material blending system
KR20010099618A (en) Kneader
WO2021255636A1 (en) A plant for conveying material for the production of structural concrete and process
CN106607992A (en) Pulping device, mixing station and pulping method
EP1529617A2 (en) Improved concrete-mixing process and plant with mixing of components
EP4241952A1 (en) Mobile concrete plant for producing concrete
JPH045543Y2 (en)
JPH01291905A (en) Raw material blending system
JP2002370823A (en) Neumatic transportation system and method for powder and grain
JPH01172293A (en) Production of bulk blend fertilizer
WO2022167839A1 (en) Continuous production concrete plant with weigh feeder
JP2000334722A (en) Continuous concrete manufacturing device and method for continuously manufacturing concrete
MXPA06000867A (en) Blending system
CN115716588A (en) Automatic calcined gypsum material chasing system and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99805959.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09674702

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007012423

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999973769

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007012423

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999973769

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999973769

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007012423

Country of ref document: KR