WO2000052305A1 - Variable stroke motor and valve - Google Patents
Variable stroke motor and valve Download PDFInfo
- Publication number
- WO2000052305A1 WO2000052305A1 PCT/US1999/004495 US9904495W WO0052305A1 WO 2000052305 A1 WO2000052305 A1 WO 2000052305A1 US 9904495 W US9904495 W US 9904495W WO 0052305 A1 WO0052305 A1 WO 0052305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- supplemental
- piston
- shaft
- drive
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B9/00—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
- F01B9/04—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
- F01B9/08—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft with ratchet and pawl
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B9/00—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
- F01B9/04—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
Definitions
- the invention relates in general to a valve and associated piston actuated motor, and, more particularly, to a variable stroke motor and valve rotated at a constant speed.
- the present invention is designed to provide a variable stroke motor with a constant speed rotating valve to increase efficiency and decrease the drawbacks associated with prior art internal combustion engines.
- a fluid valve system comprising a valve housing forming a hollow cylinder; a first fluid input in fluid communication with said hollow cylinder; a first fluid output in fluid communication with said hollow cylinder; a second fluid input in fluid communication with said hollow cylinder; a second fluid output in fluid communication with said hollow cylinder; a shaft positioned within said hollow cylinder, said shaft being rotatable between a first position substantially sealing off fluid communication between said first fluid input and said first fluid output, and a second position substantially sealing off fluid communication between said second fluid input and said second fluid output; wherein said shaft is provided with a first slot and a second slot; wherein said first slot is oriented on said shaft in a manner which opens fluid communication between said first fluid input and said second fluid output when said shaft is in said second position; wherein said second slot is oriented on said shaft in a manner which opens fluid communication between said first fluid input and said first fluid output when said shaft is in said second position; and means coupled to said shaft for rotating said shaft between said first position and said second position.
- Fig. 1 is a side elevation in cross-section showing the valve assembly and piston assembly of the present invention
- Fig. 2 is a perspective view of the valve assembly and piston assembly of
- Fig. 3 is an exploded view of the valve assembly and piston assembly of Fig. 2.
- Fig. 4 is a top view in cross-section showing the valve and piston assembly of Fig. 1.
- the valve shaft (16) is provided with a first slot (26) and a second slot (28).
- the valve shaft (16) is also provided with a first ring seat (30), a second ring seat (32), and a third ring seat (34).
- a first ring seat (30), a second ring seat (32), and a third ring seat (34) are provided on the first ring seat (30), second ring seat (32), and third ring seat (34) which prevent the escape of fluid between the valve shaft (16) and hollow cylinder (14).
- a shaft rotator (42) which is operably secured to the key (44) extending from the valve shaft (16) shown in Fig. 3.
- the shaft rotator (42) may be a small electric motor or any similar rotation device known in the art.
- the first slot (26) and second slot (28) of the valve shaft (16) are disposed on opposite sides of the valve shaft (16). Accordingly, when the valve shaft (16) is positioned within the hollow cylinder (14) of the valve housing (12), as shown in Fig. 1, the second slot (28) opens fluid communication between the second fluid input (22) and the second fluid output (24). When the second slot (28) opens fluid communication between the second fluid input (22) and second fluid output (24), as shown in Fig. 1, the first slot (26) is completely covered by the valve housing (12) (Figs. 1 and 3). The portion of the valve shaft (16) on the opposite side of the first slot (26), therefore, seals off fluid communication between the first fluid input (18) and first fluid output (20).
- the first slot (26) opens fluid communication between the first fluid input (18) and first fluid output (20), while the portion of the valve shaft (16) opposite the second slot (28) seals off fluid communication between the second fluid input (22) and second fluid output (28).
- the slots (26) and (28) and the inputs (18) and (22) and the outputs (20) and (24) are sized so that when the fluid communication between the first fluid input (18) and first fluid output (20) is open, fluid communication between the second fluid input (22) and second fluid output (24) is closed.
- the second fluid input when fluid communication between the second fluid input
- a drive housing (46) Secured to the valve housing (12) is a drive housing (46) which forms a drive cylinder (48) as shown in Fig. 1.
- the drive housing (46) is constructed of stainless steel seamless tubing.
- the drive housing (46) is secured to a drive box (50) which, is preferably constructed of aluminum.
- a piston (52) is preferably constructed with an aluminum cap (54) and an aluminum base (56).
- the piston (52) is of a wobble-type
- the piston (52) is provided with a plastic sealing ring (58) which allows the piston (52) to pivot two degrees from a position normal to the center axis of the drive cylinder (48), while maintaining a seal between the sealing ring (58) and the drive housing (46).
- a piston rod (60) preferably constructed of hardened steel is secured to the piston (52) with a securement screw (62) (Fig. 1).
- the piston rod (60) is provided with an eyelet (62) which fits within a yoke (64) of a swing arm (66).
- a needle roller bearing (68) or similar bearing known in the art to reduce friction.
- the needle roller bearing (68) is positioned within the eyelet (62), the eyelet (62) positioned within the yoke (64) and a dowel pin (70) constructed of heat treated steel is positioned through a first eyelet (72) of the yoke (64), the needle roller bearing (68), and a second eyelet (74) of the yoke (64).
- the dowel pin is preferably constructed of heat treated steel to withstand the large pressures associated with actuation of the piston rod (60).
- the swing arm (66) is preferably constructed of hardened steel and is provided with a large hole (76) to accommodate a pair of drive sprags (78).
- the drive sprags (78) are coupled to a drive shaft (80) in a manner which transfers rotational energy from the swing arm (66) to the drive shaft (80) on the drive stroke and which allows the drive shaft (80) to "freewheel” relative to the swing arm (66) on the recovery stroke so that the drive shaft (80) is not rotated in the opposite direction.
- the drive shaft (80) extends through the drive box (50) to power a vehicle or any other drivable device.
- a fluid pressure generator (82) Operably coupled in fluid communication with the first fluid input (18), is a fluid pressure generator (82) (Fig. 2).
- the pressure generator (82) is a steam generator, but the pressure generator (82) may, of course, be any similar device.
- the fluid pressure generator (82) is coupled to the first fluid input (18) via a transfer hose (84) (Figs. 2 and 3).
- the second fluid output (24) is also coupled to the fluid pressure generator (82) by a supplemental transfer hose (86).
- variable stroke motor (10) is also provided with a supplemental valve and piston assembly (88).
- the supplemental valve and piston assembly (88) is substantially similar in design to the assembly described above.
- the valve shaft (16) is provided with a third slot (90) and a fourth slot (92) positioned on the valve shaft (16) in reverse of the positions of the first slot (26) and second slot (28).
- This positioning of the slots (26), (28), (90) and (92) causes the piston (52), described above, to drive when the piston (94) of the supplemental valve and piston assembly (88) is recovering, and to recover when the piston (94) of the supplemental valve and piston assembly (88) is driving.
- This complimentary actuation of the pistons (52) and (94) causes the drive shaft (80) to be substantially continuously driven by one of the two pistons (52) and (94).
- two recovery springs (96) and (98) are provided to return the swing arm (66), described above, and the swing arm (100) of the supplemental valve and piston assembly (88) to a starting position. As each swing arm (66) and (100) alternately moves to a starting position, the swing arms (66) and (100) move their respective pistons (52) and (94) to a starting position as well.
- the recovery springs (96) and (98) are secured to the drive box (50) around the drive shaft (80).
- Each recovery spring (96) and (98) is provided with a recovery arm (102) and (104) and a securement finger (106) and (108).
- the fingers (106) and (108) are positioned within holes (110) and (112) provided in the swing arms (66) and (100).
- the drive shaft (80) is coupled to the interior perimeters of a pair of drive sprags (114) which, in turn, are coupled on their exterior perimeters to the swing arm (100).
- the drive sprags (114) are oriented so that as the swing arm (100) is driven by the piston (94), the drive sprags (114) transfer the rotational motion of the swing arm (100) to the drive shaft (80).
- the drive sprags (114) "freewheel” to allow the recovery spring (96) to return the swing arm (100) to its starting position without transferring a large amount of rotational energy to the drive shaft (80).
- An anti-backlash sprag (116) is secured to the drive shaft (80) between the swing arms (66) and (100) to further reduce the transfer of rotational energy between the swing arms (66) and (100) and the drive shaft (80).
- the anti-backlash sprag (116) is secured to the drive box (50) within a drive shaft opening (118) provided in the drive box (50) between the swing arms (66) and (100).
- the anti-backlash sprag (116) is secured to the drive box (50) by weldments or other similar securement means.
- the anti-backlash sprag (116) is similar in construction to the drive sprags (114), but is coupled to the drive shaft (80) in an opposite operational orientation relative to the drive sprags (114). Accordingly, when the swing arm (100) is in its drive stroke, the drive sprags (114) transfer rotational energy of the swing arm (100) to the drive shaft (80). During this drive stroke, the anti-backlash sprag (116) is in its "freewheel” orientation, allowing the drive shaft (80) to rotate freely.
- the recovery spring (96) returns the swing arm (100) to its starting position.
- the drive sprags (114) are in their "freewheel” orientation which limits rotational energy transfer from the swing arm (100) to the drive shaft (80) and reduces the drag on the recovery spring (96).
- the anti-backlash sprag (116) is provided to prevent any further rotation of the drive shaft (80) in the direction of the swing arm (100) recovery. If the friction between the drive sprags (114) and drive shaft (80) is great enough to transfer some amount of rotational energy from the drive sprags (114) to the drive shaft (80) during the recovery stroke of the swing arm (100), the anti- backlash sprag (116) prevents rotation of the drive shaft (80).
- the anti-backlash sprag (116) Since the anti- backlash sprag (116) is welded to the drive box (50), the anti-backlash sprag (116) transfers any "backward" rotational energy of the drive shaft (80) to the drive box (50) to prevent rotation of the drive shaft (80) in the direction of the swing arm (100) recovery.
- the anti-backlash sprag (116) continues to prevent backward rotation of the drive shaft (80) until one of the swing arms (66) or (100) begins rotating the drive shaft (80) on the drive stroke. In this way, the anti-backlash sprag (116), assures that the drive shaft (80) is rotated in only a single direction.
- the shaft rotator (42) is actuated to rotate the valve shaft (16) within the hollow cylinder (14).
- the fluid pressure generator (82) is then actuated to supply a pressurized fluid, such as steam, to the first fluid input (18) and to the supplemental valve and piston assembly (88).
- the valve shaft (16) is thereby being rotated at a constant speed.
- the eyelet (62) of the piston rod (60) pivots slightly as the swing arm (66) reciprocates. This pivoting of the piston rod (60) causes the entire piston (52) to tilt slightly relative to the drive cylinder (48).
- the piston (52) is arranged so that in both its starting position and its ending position the piston (52) is slightly tilted. This reduces the degree of tilt of the piston (52) when the piston is at the center of a full stroke.
- the swing arm (66) and piston rod (60) are preferably designed with lengths sufficient to place the piston (52) in a starting position wherein the piston (52) is tilted two degrees from normal, relative to the center axis of the drive cylinder (48).
- the piston (52) continues to pivot away from the drive shaft (80) until the piston (52) is halfway through its full stroke as shown in Fig. 1. At this point, the piston (52) is two degrees from normal relative to the axis of the drive cylinder (48), but in a direction opposite the two degree orientation of the starting point. As the drive cylinder (48) continues to fill with fluid, the swing arm (66) rotates further, until the piston (52) is three-quarters of the way through its full stroke. At this point the swing arm (66) has rotated sufficiently so that the piston (52) is again normal to the center axis of the drive cylinder (48).
- the piston (52) is oriented two degrees from normal to start. In this way the piston (52) starts at a position two degrees from normal, cycles through a normal position, a position two degrees from normal in the opposite direction, another normal position, and finally a position two degrees from normal in the same direction as the starting position. The total amount of deviation from the normal position is thereby kept to a minimum throughout the full stroke.
- variable stroke motor (10) is fully capable of cycling through the full stroke noted above, this full stroke is only realized under full fluid pressure.
- the piston (52) moves through a much shorter stroke cycle.
- the pressure of the fluid supplied by the fluid pressure generator (82) increases, a larger amount of fluid passes from the first fluid input (18), through the first fluid output (20) and into the drive cylinder (48) with each rotation of the valve shaft (16).
- This larger amount of fluid entering the drive cylinder (48) moves the piston (52) more quickly, thereby generating a longer and longer stroke.
- the swing arm (66) translates this longer stroke into a greater rotation of the drive shaft (80).
- each cycle takes the same amount of time, regardless of the pressure of the fluid being applied. Accordingly, a greater rotation of the drive shaft (80) in the same amount of time translates into a greater speed of the drive shaft (80).
- the second slot (28) provided on the valve shaft (16) opens fluid communication between the second fluid input (22) and second fluid output (24) one time (Fig. 1).
- the force of the recovery spring (96) causes the swing arm (66) to push the piston rod (60) into the piston (52), thereby pushing fluid out of the drive cylinder (48) through the second fluid input (22) and second fluid out (24).
- the fluid is thereafter returned to the fluid pressure generator (82) through the supplemental transfer hose (86), so that the fluid can again be pressurized and recirculated through the motor (10) (Fig. 2).
- the supplemental valve and piston assembly (88) is working in a reciprocating manner, to drive the drive shaft (80) when the piston (52) is in its recovery stroke.
- the anti-backlash sprag (116) prevents the swing arms (66) and (98) from transferring rotational energy to the drive shaft (80) during their recovery stroke.
- the fluid pressure generator (82) may be provided with a heating adjustment control (120), such as a propane valve, to vary the amount of heat delivered to the fluid pressure generator (82) and, thereby, the pressure of the fluid. Accordingly, the variable stroke motor (10) can directly convert a larger amount of heat energy into a faster rotation of the drive shaft (80).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Actuator (AREA)
- Fluid-Driven Valves (AREA)
- Hydraulic Motors (AREA)
- Mechanically-Actuated Valves (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU28866/99A AU2886699A (en) | 1999-03-01 | 1999-03-01 | Variable stroke motor and valve |
EP99909724A EP1157191A1 (en) | 1999-03-01 | 1999-03-01 | Variable stroke motor and valve |
BR9917187-2A BR9917187A (en) | 1999-03-01 | 1999-03-01 | Variable stroke motor and valve |
PL99352580A PL352580A1 (en) | 1999-03-01 | 1999-03-01 | Variable-stroke engine and valve |
CA002365827A CA2365827A1 (en) | 1999-03-01 | 1999-03-01 | Variable stroke motor and valve |
MXPA01008832A MXPA01008832A (en) | 1999-03-01 | 1999-03-01 | Variable stroke motor and valve. |
RU2001126397/06A RU2217595C2 (en) | 1999-03-01 | 1999-03-01 | Variable-stroke engine and valve |
PCT/US1999/004495 WO2000052305A1 (en) | 1999-03-01 | 1999-03-01 | Variable stroke motor and valve |
KR1020017011157A KR20020005609A (en) | 1999-03-01 | 1999-03-01 | Variable stroke motor and valve |
JP2000602500A JP2002538362A (en) | 1999-03-01 | 1999-03-01 | Variable stroke motor and valve |
CNB998164178A CN1135293C (en) | 1999-03-01 | 1999-03-01 | Variable stroke motor and valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1999/004495 WO2000052305A1 (en) | 1999-03-01 | 1999-03-01 | Variable stroke motor and valve |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2000052305A1 true WO2000052305A1 (en) | 2000-09-08 |
WO2000052305A8 WO2000052305A8 (en) | 2001-02-22 |
Family
ID=22272278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/004495 WO2000052305A1 (en) | 1999-03-01 | 1999-03-01 | Variable stroke motor and valve |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP1157191A1 (en) |
JP (1) | JP2002538362A (en) |
KR (1) | KR20020005609A (en) |
CN (1) | CN1135293C (en) |
AU (1) | AU2886699A (en) |
BR (1) | BR9917187A (en) |
CA (1) | CA2365827A1 (en) |
MX (1) | MXPA01008832A (en) |
RU (1) | RU2217595C2 (en) |
WO (1) | WO2000052305A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2369181A1 (en) | 2010-03-10 | 2011-09-28 | Giovanni Morselli | Machine for changing the pressure of air or gaseous substances |
WO2016123464A1 (en) * | 2015-01-29 | 2016-08-04 | Vaztec, Llc | Seal apparatus, modular rotary valve apparatus, and engine |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8528511B2 (en) | 2005-09-23 | 2013-09-10 | Jp Scope, Inc. | Variable travel valve apparatus for an internal combustion engine |
US9079162B2 (en) | 2008-04-28 | 2015-07-14 | BASF SE Ludwigshafen | Fe-BEA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOX in gas streams |
GB2467947B (en) | 2009-02-20 | 2013-10-09 | Rcv Engines Ltd | An internal combustion engine |
CA3036283A1 (en) | 2016-09-09 | 2018-03-15 | Charles Price | Variable travel valve apparatus for an internal combustion engine |
CN108915863A (en) * | 2018-06-21 | 2018-11-30 | 江苏大学 | Four stroke integral type free-piston engines of one kind and working method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR496251A (en) * | 1917-01-19 | 1919-10-31 | William R Elwell | Transmission mechanism for internal combustion engines |
WO1980002309A1 (en) * | 1979-04-20 | 1980-10-30 | H Wendt | Combustion engine using several kinds of fuels and having electronically adjustable intake and exhaust valves and injection device |
WO1987000574A1 (en) * | 1985-07-17 | 1987-01-29 | Luis Maria Antonello | Rotating valve device for internal combustion engines |
DE4301860A1 (en) * | 1993-01-25 | 1994-09-22 | Stefan Dipl Phys Stock | Special piston for piston engines |
US5461863A (en) * | 1994-10-13 | 1995-10-31 | Thermal Dynamics, Inc. | Transducer for converting linear energy to rotational energy |
US5562075A (en) * | 1995-05-08 | 1996-10-08 | Walsh; Noel J. | Oscillating drive shaft and related components configuration for reciprocating piston engines |
-
1999
- 1999-03-01 RU RU2001126397/06A patent/RU2217595C2/en not_active IP Right Cessation
- 1999-03-01 CN CNB998164178A patent/CN1135293C/en not_active Expired - Fee Related
- 1999-03-01 KR KR1020017011157A patent/KR20020005609A/en not_active Application Discontinuation
- 1999-03-01 MX MXPA01008832A patent/MXPA01008832A/en unknown
- 1999-03-01 BR BR9917187-2A patent/BR9917187A/en not_active Application Discontinuation
- 1999-03-01 WO PCT/US1999/004495 patent/WO2000052305A1/en not_active Application Discontinuation
- 1999-03-01 AU AU28866/99A patent/AU2886699A/en not_active Abandoned
- 1999-03-01 EP EP99909724A patent/EP1157191A1/en not_active Withdrawn
- 1999-03-01 CA CA002365827A patent/CA2365827A1/en not_active Abandoned
- 1999-03-01 JP JP2000602500A patent/JP2002538362A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR496251A (en) * | 1917-01-19 | 1919-10-31 | William R Elwell | Transmission mechanism for internal combustion engines |
WO1980002309A1 (en) * | 1979-04-20 | 1980-10-30 | H Wendt | Combustion engine using several kinds of fuels and having electronically adjustable intake and exhaust valves and injection device |
WO1987000574A1 (en) * | 1985-07-17 | 1987-01-29 | Luis Maria Antonello | Rotating valve device for internal combustion engines |
DE4301860A1 (en) * | 1993-01-25 | 1994-09-22 | Stefan Dipl Phys Stock | Special piston for piston engines |
US5461863A (en) * | 1994-10-13 | 1995-10-31 | Thermal Dynamics, Inc. | Transducer for converting linear energy to rotational energy |
US5562075A (en) * | 1995-05-08 | 1996-10-08 | Walsh; Noel J. | Oscillating drive shaft and related components configuration for reciprocating piston engines |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2369181A1 (en) | 2010-03-10 | 2011-09-28 | Giovanni Morselli | Machine for changing the pressure of air or gaseous substances |
WO2016123464A1 (en) * | 2015-01-29 | 2016-08-04 | Vaztec, Llc | Seal apparatus, modular rotary valve apparatus, and engine |
Also Published As
Publication number | Publication date |
---|---|
CA2365827A1 (en) | 2000-09-08 |
BR9917187A (en) | 2002-02-26 |
JP2002538362A (en) | 2002-11-12 |
WO2000052305A8 (en) | 2001-02-22 |
AU2886699A (en) | 2000-09-21 |
MXPA01008832A (en) | 2002-08-12 |
RU2217595C2 (en) | 2003-11-27 |
KR20020005609A (en) | 2002-01-17 |
EP1157191A1 (en) | 2001-11-28 |
CN1344348A (en) | 2002-04-10 |
CN1135293C (en) | 2004-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6270322B1 (en) | Internal combustion engine driven hydraulic pump | |
US5193502A (en) | Self-starting multifuel rotary piston engine | |
US7472676B2 (en) | Differential with guided feedback control for rotary opposed-piston engine | |
US10830047B2 (en) | Rotary energy converter with retractable barrier | |
US5974943A (en) | Variable stroke motor and valve | |
US5527165A (en) | Pressurized vapor driven rotary engine | |
US8161924B1 (en) | Orbital, non-reciprocating, internal combustion engine | |
WO2000052305A1 (en) | Variable stroke motor and valve | |
US5967016A (en) | Anti-backlash sprag | |
WO2006102696A1 (en) | Rotary piston machine | |
MX2012003964A (en) | System for constructing rotary compressors and motors with dynamically variable volumetric displacement and compression rate. | |
US6308611B1 (en) | Variable stroke motor and valve | |
JP2000054801A (en) | Cylinder having circularly moving (rotating) piston | |
EP1147292B1 (en) | Lever-mechanism motor or pump | |
CA2388368A1 (en) | Anti-backlash sprag | |
CN1280647A (en) | Pendulum piston motor | |
EP1399646A1 (en) | Combustion engine | |
KR20040074573A (en) | Rotary engine | |
KR100521193B1 (en) | A variable valve lift device of engine | |
US7128042B2 (en) | Interchangeable 2-stroke or 4-stroke high torque power engine | |
WO2000045049A1 (en) | Double acting pendulum piston engine | |
AU2005201741A1 (en) | An Improved Rotary Piston Engine Suitable for a Wide Range of Environmentally Friendly Fuels | |
WO2000014407A1 (en) | Reciprotating combustion engine | |
SK14399A3 (en) | Internal combustion engine with rotating combustion chamber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 99816417.8 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: C1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: C1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
CFP | Corrected version of a pamphlet front page | ||
CR1 | Correction of entry in section i |
Free format text: PAT. BUL. 36/2000 UNDER (81) ADD "IN"; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE |
|
ENP | Entry into the national phase |
Ref document number: 2365827 Country of ref document: CA Ref document number: 2365827 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2001/008832 Country of ref document: MX Ref document number: IN/PCT/2001/00777/DE Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017011157 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2000 602500 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999909724 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1999909724 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1020017011157 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1999909724 Country of ref document: EP |
|
WWR | Wipo information: refused in national office |
Ref document number: 1020017011157 Country of ref document: KR |