WO2000047646A1 - Process for continuously producing polyacetal resin - Google Patents

Process for continuously producing polyacetal resin Download PDF

Info

Publication number
WO2000047646A1
WO2000047646A1 PCT/JP2000/000750 JP0000750W WO0047646A1 WO 2000047646 A1 WO2000047646 A1 WO 2000047646A1 JP 0000750 W JP0000750 W JP 0000750W WO 0047646 A1 WO0047646 A1 WO 0047646A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacetal resin
polymerization
trioxane
silane compound
weight
Prior art date
Application number
PCT/JP2000/000750
Other languages
French (fr)
Japanese (ja)
Inventor
Noriyuki Sugiyama
Original Assignee
Polyplastics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co., Ltd. filed Critical Polyplastics Co., Ltd.
Publication of WO2000047646A1 publication Critical patent/WO2000047646A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/10Polymerisation of cyclic oligomers of formaldehyde

Definitions

  • the present invention relates to a continuous production method of a polyacetal resin by cationic polymerization, and more particularly, to a method for industrially and continuously producing a polyacetal resin of a copolymer having a small number of unstable molecular terminals in a high yield in an industrially stable manner.
  • Polyacetal resin has excellent balance among mechanical properties, chemical resistance, slidability, etc., and is easy to mold, making it a typical engineering plastic material. It is widely used mainly in various other mechanical parts.
  • JP-A-2-6529, JP-A-4-165412, JP-A-4-65413 and JP-B-8-30103 disclose a cyclic ether and a polymerization catalyst in advance when producing a polyacetal resin. And a method of continuously adding the contacted mixture to trioxane.
  • JP-A-59-227916, JP-A-60-1216 and JP-A-53-111087 disclose in order to obtain a high quality polyacetal resin
  • a method has been proposed in which a sterically hindered phenolic antioxidant is added together with the monomer, and a method in which an organic trivalent phosphorus compound is added and mixed in advance to a monomer to be subjected to polymerization.
  • the quality of each method tends to deteriorate under high yielding production conditions, and no method has yet been proposed to satisfy both performances in a balanced manner.
  • Japanese Patent Application Laid-Open No. 641-11117 discloses a technique of introducing a silicone oil having a reactive epoxy group into a polymerization system at the time of producing a polyacetal resin, and synthesizing a copolymer of polyacetal and silicone oil. Proposed. Since the silicone oil used in this proposal has very few functional groups that react with water and formic acid, there is room for improvement in improving the quality of polyacetyl resins. In view of such circumstances, the present invention enables continuous production of a high-quality polyacetal resin, in particular, a copolymer polyether resin, by a cationic polymerization method with high yield and industrially stable for a long period of time. It is intended to provide a method. Disclosure of the invention
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, a method of adding a specific silane compound together with these monomers at the time of copolymerization of a specific main monomer and a comonomer, or a method in which the above monomer to be subjected to polymerization is prepared in advance. If the method of adding and mixing a specific silane compound is used, the specific silane compound can reduce the amount of formic acid and water, which are factors that reduce the catalytic activity at the time of polymerization. A high-concentration catalyst amount enables high-yield polymerization, and the silane compound has reactivity with the hydroxy terminal of a polymer generated by a side reaction of the catalyst, thereby enabling high quality. The inventors have found that the present invention can be solved, and have completed the present invention.
  • the present invention provides a method for continuously producing a copolymer polyacetal resin by adding and supplying a cyclic ether and / or cyclic formal as a comonomer to trioxane as a main monomer and performing cationic polymerization.
  • Polyacetal tree coexisting with at least one selected from the group of silane compounds represented by (IV) To provide a continuous method for producing fats,
  • R 1 , R 5 , R 6 , R 9 , R 10 , R ", R 13 , R 14 , R ' 5 and R 16 are a hydrogen atom and a hydrocarbon residue having 1 to 6 carbon atoms.
  • R 2 , R 3 , R 4 , R 7 , R 8 and R ′ 2 are a hydrogen atom, a hydrocarbon residue having 1 to 22 carbon atoms, An atom independently selected from the group consisting of hydrocarbon residues having a functional group containing one or more atoms each independently selected from the group consisting of fluorine, oxygen, nitrogen, iodide and phosphorus; or Indicates a residue.
  • At least one selected from the group of the silane compounds represented by the above general formulas (I) to (IV) is added and mixed in advance with at least one of trioxane, cyclic ether and / or cyclic formal.
  • An object of the present invention is to provide a method for continuously producing a polyacetyl resin.
  • the polyacetal resin according to the present invention is obtained by adding a cyclic ether and / or cyclic formal as a comonomer to trioxane as a main monomer and cationically copolymerizing the same.
  • a specific silane compound for removing a trace amount of formic acid / water component contained as an impurity in the copolymerization monomer is blended as a scavenger, and Brenstead acid and / or Lewis acid is used as a polymerization catalyst, and cationic polymerization is performed.
  • This is a method for producing a copolymer polyacetal resin.
  • trioxane is used as a main monomer
  • a cyclic ether and / or cyclic formal is used as a comonomer.
  • Examples of the cyclic ether include ethylene oxide and oxetane.
  • Examples of the cyclic formal include glycidyl ether compounds such as 1,4-butanediol diglycidyl ether, butyl glycidyl ether, and octyldaricidyl ether; 1,3-dioxolan; 1,3,5-trioxepane; , 3-Dioxane, 4-Methyl_1,3-Dioxolane, 6-Methyl-1,3,5-Trioxepane, 1,4-Butanediolformal, 4-Ethyl-1,3-Dioxolane, 6-Ethyru-1 , 3,5-trioxepane, 4-methyl-1,3-dioxane, 5-methyl-1,3-dioxane, 1,5-pentenediolformal, 4-propyl_1,3-dioxolan, 6- Propyl
  • the amount of these comonomers to be used is preferably 20% by weight or less, particularly 0.1 to 15 times, based on the trioxane of the main monomer, in consideration of the rigidity and chemical resistance of the molded article. % Is preferred.
  • the specific silane compound used in the production method according to the present invention at least one selected from the group of silane compounds represented by the general formulas (I) to (IV) is used.
  • Examples of the silane compound represented by the general formula (I) include monoalkoxysilanes such as trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, and triethylethoxysilane, and are represented by the general formula (II).
  • Examples of the silane compound include dialkoxysilanes such as dimethyldimethoxysilane, dimethylethoxysilane, dimethyldimethoxysilane, and dimethylethylethoxysilane.
  • Examples of the silane compound represented by the general formula (III) include triethoxysilane, trimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, methyltriphenoxysilane.
  • Saturated alkyltrialkoxysilanes such as sicilan, octyltriethoxysilane, octadecyltriethoxysilane, octadecyltrimethoxysilane, propyltriethoxysilane, hexyltriethoxysilane, pentyltriethoxysilane, etc.
  • silane compound represented by the general formula (IV) tetramethoxysilane, tetraaryloxysilane, tetraethoxysilane, Single tetraalkoxysilanes such as tetrabutoxysilane, tetrakis (2-methoxyethoxy) silane, and tetraphenoxysilane, as well as methoxytriethoxysilane, dimethoxydiethoxysilane, trimethoxyethoxysilane, and hexyloxytrimethoxysilane And the like.
  • silane compounds used in the present invention are not limited to those exemplified above, but among those exemplified above, dimethyldimethoxysilane, dimethylmethylethoxysilane, getyldimethoxysilane, dimethylethylmethoxysilane, Kutadecyltriethoxysilane, octadecyltrimethoxysilane, methacryloxypropyltrimethoxysilane, 3-daricyloxypropyltrimethoxysilane, tris (2-methoxyethoxy) vinylsilane, tetraethoxysilane, tetrapropoxysilane Tetrabutoxysilane and tetrakis (2-methoxyethoxy) silane are particularly preferred.
  • the method of adding the silane compound according to the present invention is not particularly limited, and the silane compound may be supplied to the polymerization machine simultaneously with the main monomer trioxane, the comonomer cyclic ether or cyclic formal, or may be supplied in advance to the main monomer and / or The silane compound may be added to a comonomer and mixed, and then subjected to copolymerization.
  • the addition of the silane compound is preferably performed before the addition of the polymerization catalyst.
  • a method of maintaining the temperature at 0 ° C for 1 second or more is particularly preferable.
  • the amount of the silane compound used in the present invention is preferably from 1 to 500 ppm by weight, more preferably from 10 to 200 ppm by weight, based on trioxane as the main monomer. It is 50 to 1000 weight ppm. If the amount of the silane compound is too small, as in the case where the amount is less than 1 ppm by weight, it may not be possible to capture the formic acid / water, which is an impurity in the monomer, and it is said that a sufficient effect is obtained. can not cut.
  • the silane compound vaporizes and evaporates from the polyacetal resin in a later step in the production of the polyacetal resin, and the silane compound is concentrated following the adhesion to the piping.
  • problems such as contamination of the piping into the product bellet may occur.
  • a general cation-active catalyst is used as a polymerization catalyst used in the present invention.
  • the cation-active catalyst will be described by way of example.
  • Lewis acids in particular, halides such as boron, tin, titanium, phosphorus, arsenic, and antimony are suitable.
  • halides such as boron, tin, titanium, phosphorus, arsenic, and antimony are suitable.
  • Specific examples include boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentachloride, and pentafluoride. Examples thereof include phosphorus, arsenic pentafluoride, and antimony pentafluoride.
  • compounds such as complex compounds thereof for example, coordination compounds with organic compounds such as ether compounds
  • salts thereof can also be used.
  • Protonic acid specific examples include trifluoromethanesulfonic acid, perchloric acid and the like.
  • esters of protonic acid in particular, esters of perchloric acid and lower aliphatic alcohols can be used. Specific examples thereof include tertiary butyl perchlorate.
  • Protic acid anhydrides in particular, mixed anhydrides of perchloric acid and lower aliphatic carboxylic acids can be used, and specific examples thereof include acetyl chloride.
  • isopolyacid for example, phosphomolybdic acid
  • heteropolyacid for example, phosphomolybdic acid
  • triethyloxenoxahexafluorophosphato triphenylmethylhexafluoroarsenate
  • acetylhexafluoroborate acetylhexafluoroborate
  • boron trifluoride or a coordination compound of the boron trifluoride and an organic compound is the most common, and It is.
  • the boron trifluoride may be used by mixing with an inert gas such as nitrogen, and the boron trifluoride coordination compound may be used after being diluted once with an organic solvent or the like.
  • the basic molecular structure of the polyacetal resin obtained by the production method according to the present invention is not particularly limited, and includes those having a branched structure or a crosslinked structure, those having a block component introduced, and the like.
  • the molecular weight or melt viscosity is not limited as long as it can be melt-molded, but the melt index (MI) is 0.:! ⁇ lOO gZl Omin (ASTM D 1238-57T E) Are preferred.
  • MI melt index
  • ASTM D 1238-57T E melt index
  • a chain transfer agent that does not form an unstable molecular terminal portion that is, a compound having an alkoxy group such as methylal, methoxymethylal, dimethoxymethylal, trimethoxymethylal, and oxymethylenedi-n-butyl ether is used. Is exemplified.
  • components used when it is necessary to form a branched or crosslinked structure in the polyacetal resin according to the present invention include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and 1,4-butanediol diglycol. Sidyl ether, hexamethylene glycol diglycidyl ether, resorcinol diglycidyl ether, bisphenol A diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene dalicol diglycidyl ether, polybutylene glycol diglycidyl ether, glycerin and its Inducers, pen-erythritol and its derivatives, and the like.
  • the amount of the component for adjusting the molecular weight is preferably 0.5% by weight or less, particularly preferably 0.4% by weight or less, based on the trioxane.
  • the amount of the component for forming the branched or crosslinked structure is preferably at most 0.3% by weight, particularly preferably at most 0.2% by weight, based on the trioxane.
  • a mixing means such as a screw, a paddle, a disk, a pin, and a blade is directly connected to two rotary drive shafts provided in a barrel.
  • a mixing means such as a screw, a paddle, a disk, a pin, and a blade is directly connected to two rotary drive shafts provided in a barrel.
  • Examples include a kneader and a co-kneader type polymerization machine.
  • the polymerization temperature is preferably in the range of 65 to 135 ° C.
  • the deactivation of the polymerization catalyst remaining in the resin after the polymerization of the polyacetal resin is performed by adding a basic compound or an aqueous solution thereof to the reaction product discharged from the polymerization machine after the polymerization reaction or the reaction product still in the polymerization machine. In addition it can be done. This inactivation is usually due to neutralization.
  • amines such as triethylamine, triptylamine, triethanolamine, and triethanolamine, or hydroxides of alkali metals and alkaline earth metals, Other known catalyst deactivators are used.
  • the polymerization product is further subjected to washing, separation and recovery of unreacted monomers, drying and the like, if necessary, by a conventionally known method. Further, if necessary, a stabilization treatment such as decomposition removal of terminal portions of unstable molecules or sealing is performed by a known method such as blending of various stabilizers.
  • a stabilization treatment such as decomposition removal of terminal portions of unstable molecules or sealing is performed by a known method such as blending of various stabilizers.
  • the stabilizer used herein include one or more of a hindered phenolic compound, a nitrogen-containing compound, an alkali or alkaline earth metal hydroxide, an inorganic acid, and a carboxylate. Those used in combination can be mentioned.
  • the polyacetal resin according to the present invention may contain, if necessary, a general additive to the thermoplastic resin, for example, coloring of a dye, a pigment or the like, as long as the properties of the resin are not impaired.
  • a general additive to the thermoplastic resin for example, coloring of a dye, a pigment or the like, as long as the properties of the resin are not impaired.
  • the present invention will be described specifically, but the present invention is not limited to these examples.
  • the trioxane mixture that is, the specific silane compound shown in Table 1 in advance at the ratio shown in Table 1 (% by weight of trioxane) was supplied from one end of the supply port.
  • the mixture was kept at 80 ° C for 30 minutes, and 4.0 mol 1% (based on trioxane) of a specific cyclic formal shown in Table 1 as a comonomer and 0.08 wt. % (Vs. trioxane) of the trioxane mixture was continuously fed.
  • cationic / bulk polymerization was continuously performed while continuously supplying boron trifluoride (30 weight parts per million (based on trioxane)) to the polymerization machine from the supply port.
  • the catalyst was deactivated for the polyatal resin collected within a certain period of time, the washed sample was dried at 50 ° C for 24 hr, weighed, and the obtained value was taken as the above-mentioned collection time. It was divided by the total weight of the feedstock added to the polymerization machine within the same time and expressed as a percentage.
  • the weight loss value obtained after holding at 200 ° CZ for 1 hour was divided by the weight loss value shown after holding at 450 ° CZ for 30 min to obtain a thermal weight loss rate.
  • a high-quality polyacetal resin having a small number of unstable molecular terminals can be obtained in a high yield and industrially for a long period of time.
  • the polyacetal resin obtained by the present invention is particularly excellent in molding processability, and also excellent in balance of mechanical properties, chemical resistance, slidability, etc. like ordinary polyacetal resin, so that injection molding is performed.
  • it is useful in various fields such as extrusion molded products, professional molded products, and foam molded products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

A process for continuously producing a polyacetal resin which comprises adding a comonomer to trioxane to conduct cationic polymerization in the presence of a specific silane compound. By the process, a high-quality polyacetal resin can be continuously produced industrially and stably for long in high yield.

Description

明 細 書 ポリアセタール樹脂の連続製造方法 技術分野  Description Continuous production method of polyacetal resin
本発明はポリアセタール樹脂のカチオン重合による連続製造方法に関し、 詳し くは不安定分子末端部の少ない共重合体のポリアセタール樹脂を高い収率で工業 的に長期間安定して連続製造する方法に関する。 背景技術  TECHNICAL FIELD The present invention relates to a continuous production method of a polyacetal resin by cationic polymerization, and more particularly, to a method for industrially and continuously producing a polyacetal resin of a copolymer having a small number of unstable molecular terminals in a high yield in an industrially stable manner. Background art
ポリアセタール樹脂は機械的性質、 耐薬品性、 摺動性等の特性間のバランスに 優れ、 且つ、 その成形加工が容易であることにより代表的なエンジニアリングプ ラスチック材料として、 電気 '電子部品、 自動車部品その他の各種機械部品を中 心として広く利用されている。  Polyacetal resin has excellent balance among mechanical properties, chemical resistance, slidability, etc., and is easy to mold, making it a typical engineering plastic material. It is widely used mainly in various other mechanical parts.
近年、 このような利用範囲の拡大に伴い、 ポリアセタール樹脂に対する要求性 能も高度化する一方、 該樹脂の高品質化、 低コスト化の要求も高く、 品質の良い ポリアセタール樹脂を高収率で得る製造方法が求められている。 特に、 高収率を 目的とした製造条件を設定した場合には、 樹脂分子中の不安定分子末端部の比率 が大きくなる傾向が発現しゃすいので、 これら両方の要求をバランスよく満足す るような改善された製造方法が切望されている。  In recent years, along with the expansion of the range of use, the required performance of polyacetal resin has been enhanced, and the demand for high quality and low cost of the resin has been high, and high-quality polyacetal resin has been obtained in high yield. There is a need for a manufacturing method. In particular, when the production conditions are set for high yield, the ratio of the terminal end of the unstable molecule in the resin molecule tends to increase, so that both requirements are satisfied in a well-balanced manner. There is a strong need for an improved manufacturing method.
従来、 ポリアセタール樹脂を高収率で得るために、 触媒種の検討や触媒の添加 方法の改良が行われている。 代表的な例として、 特開平 2— 6529号、 同 4一 65412号、 同 4— 65413号各公報又は特公平 8— 30103号公報には、 ポリアセタール樹脂を製造するに際し、 予め環状エーテルと重合触媒とを混合し、 接触させた混合物を卜リオキサンに連続的に添加する方法が提案されている。 また、 特開昭 59— 227916号、 同 60— 1216号又は同 53— 1 1 1 087号各公報では、 高品質のポリアセタール樹脂を得るために、 重合時にモノ マーと共に立体障害性フエノール系酸化防止剤を添加する方法及び重合に供する モノマーに予め有機三価リン化合物を添加混合しておく方法が提案されている。 しかしながら、 いずれの方法も高収率となる製造条件下では品質面が悪化傾向 を示し、 両性能をバランスよく満足させる方法は未だ提案されていない。 Conventionally, in order to obtain a high yield of polyacetal resin, the type of catalyst has been studied and the method of adding the catalyst has been improved. As typical examples, JP-A-2-6529, JP-A-4-165412, JP-A-4-65413 and JP-B-8-30103 disclose a cyclic ether and a polymerization catalyst in advance when producing a polyacetal resin. And a method of continuously adding the contacted mixture to trioxane. In addition, JP-A-59-227916, JP-A-60-1216 and JP-A-53-111087 disclose in order to obtain a high quality polyacetal resin, A method has been proposed in which a sterically hindered phenolic antioxidant is added together with the monomer, and a method in which an organic trivalent phosphorus compound is added and mixed in advance to a monomer to be subjected to polymerization. However, the quality of each method tends to deteriorate under high yielding production conditions, and no method has yet been proposed to satisfy both performances in a balanced manner.
また、 特開平 6 4— 1 1 1 1 7号公報では、 ポリアセタール樹脂製造時の重合 系内に反応性エポキシ基を有するシリコーンオイルを導入し、 ポリアセタールと シリコーンオイルの共重合体を合成する技術が提案されている。 この提案で使用 されるシリコーンオイルでは水分ゃギ酸と反応する官能基が極めて少ないため、 ポリアセ夕一ル樹脂の高品質化に改善すべき余地が残されている。 本発明はかかる実状に鑑み、 高品質のポリアセタール樹脂、 特に共重合体のポ リアセ夕一ル樹脂を、 しかも高い収率で工業的に長期間安定してカチオン重合法 により連続製造することができる方法を提供することを目的とするものである。 発明の開示  Further, Japanese Patent Application Laid-Open No. 641-11117 discloses a technique of introducing a silicone oil having a reactive epoxy group into a polymerization system at the time of producing a polyacetal resin, and synthesizing a copolymer of polyacetal and silicone oil. Proposed. Since the silicone oil used in this proposal has very few functional groups that react with water and formic acid, there is room for improvement in improving the quality of polyacetyl resins. In view of such circumstances, the present invention enables continuous production of a high-quality polyacetal resin, in particular, a copolymer polyether resin, by a cationic polymerization method with high yield and industrially stable for a long period of time. It is intended to provide a method. Disclosure of the invention
本発明者らは上記課題を達成すべく鋭意研究した結果、 特定の主モノマー及び コモノマーの共重合時に、 これらモノマー類と共に特定のシラン化合物を添加す る方法、 或いは重合に供する上記モノマーに予め該特定のシラン化合物を添加混 合しておく方法をとれば、 該特定のシラン化合物が重合時の触媒活性を低下させ る要因であるギ酸量や水分量を低減することができるために比較的低濃度の触媒 量で高収率の重合を可能にし、 しかも該シラン化合物が触媒の副反応で生じるポ リマーのヒドロキシ末端との反応性を有することにより、 高品質化を可能にし、 上述の課題が解決されることを見出し、 本発明を完成するに至つた。  The present inventors have conducted intensive studies to achieve the above object, and as a result, a method of adding a specific silane compound together with these monomers at the time of copolymerization of a specific main monomer and a comonomer, or a method in which the above monomer to be subjected to polymerization is prepared in advance. If the method of adding and mixing a specific silane compound is used, the specific silane compound can reduce the amount of formic acid and water, which are factors that reduce the catalytic activity at the time of polymerization. A high-concentration catalyst amount enables high-yield polymerization, and the silane compound has reactivity with the hydroxy terminal of a polymer generated by a side reaction of the catalyst, thereby enabling high quality. The inventors have found that the present invention can be solved, and have completed the present invention.
即ち、 本発明は、 主モノマーとしてのトリオキサンにコモノマーとしての環状 エーテル及び又は環状ホルマールを添加供給し、 カチオン重合させて共重合体の ポリァセタール樹脂を連続的に製造するに際し、 下記一般式(I)〜(IV)で表される シラン化合物の群から選ばれる少なくとも 1を共存させて行うポリアセタール樹 脂の連続製造方法を提供するものである, That is, the present invention provides a method for continuously producing a copolymer polyacetal resin by adding and supplying a cyclic ether and / or cyclic formal as a comonomer to trioxane as a main monomer and performing cationic polymerization. Polyacetal tree coexisting with at least one selected from the group of silane compounds represented by (IV) To provide a continuous method for producing fats,
Figure imgf000005_0001
Figure imgf000005_0001
0— R 16  0—R 16
(式中、 R1, R5, R6, R9, R10, R", R13, R14, R'5及び R16は、 水素原子及び炭素数 1〜 6の炭化水素残基からなる群からそれぞれ独立に選ばれた原子又は残基であり、 R2, R3, R4, R7, R8及び R'2は、 水素原子、 炭素数 1~22の炭化水素残基及びフッ 素,酸素,窒素,ィォゥ及びリンの各原子からなる群からそれぞれ独立に選ばれた 1 種以上の原子を含む官能基を有する炭化水素残基からなる群からそれぞれ独立に 選ばれた原子又は残基を示す。 ) (In the formula, R 1 , R 5 , R 6 , R 9 , R 10 , R ", R 13 , R 14 , R ' 5 and R 16 are a hydrogen atom and a hydrocarbon residue having 1 to 6 carbon atoms. R 2 , R 3 , R 4 , R 7 , R 8 and R ′ 2 are a hydrogen atom, a hydrocarbon residue having 1 to 22 carbon atoms, An atom independently selected from the group consisting of hydrocarbon residues having a functional group containing one or more atoms each independently selected from the group consisting of fluorine, oxygen, nitrogen, iodide and phosphorus; or Indicates a residue.)
更に、 本発明においては、 上記一般式(I)〜(IV)で表されるシラン化合物の群か ら選ばれる少なくとも 1を予めトリォキサン、 環状エーテル及び又は環状ホルマ ールの 1種以上に添加混合させておくポリアセ夕一ル樹脂の連続製造方法を提供 するものである。 発明を実施するための最良の形態  Further, in the present invention, at least one selected from the group of the silane compounds represented by the above general formulas (I) to (IV) is added and mixed in advance with at least one of trioxane, cyclic ether and / or cyclic formal. An object of the present invention is to provide a method for continuously producing a polyacetyl resin. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明のポリアセタール樹脂の連続製造方法について、 各種実施の形態 を示しつつ詳細に説明する。 本発明に係るポリァセタール樹脂は、 主モノマーとしてのトリオキサンにコモ ノマーとしての環状エーテル及び又は環状ホルマールを加えてカチオン共重合さ せて得られるものであるが、 本発明に係る製造方法はこの共重合の際、 前記共重 合用モノマー中に不純物として含有される微量のギ酸ゃ水成分の除去用の特定の シラン化合物を捕捉剤として配合し、 ブレンステツド酸及び又はルイス酸を重合 触媒とし、 カチオン重合により共重合体のポリアセタール樹脂を製造する方法で ある。 本発明においては、 主モノマーとしてトリオキサンを使用し、 コモノマーとし て環状エーテル及び又は環状ホルマールが使用される。 Hereinafter, various embodiments of the continuous production method of the polyacetal resin of the present invention will be described. This will be described in detail with reference to FIG. The polyacetal resin according to the present invention is obtained by adding a cyclic ether and / or cyclic formal as a comonomer to trioxane as a main monomer and cationically copolymerizing the same. At this time, a specific silane compound for removing a trace amount of formic acid / water component contained as an impurity in the copolymerization monomer is blended as a scavenger, and Brenstead acid and / or Lewis acid is used as a polymerization catalyst, and cationic polymerization is performed. This is a method for producing a copolymer polyacetal resin. In the present invention, trioxane is used as a main monomer, and a cyclic ether and / or cyclic formal is used as a comonomer.
上記環状エーテルとしては、 エチレンォキシド、 ォキセタン等が例示できる。 又、 上記環状ホルマールとしては、 1, 4一ブタンジオールジグリシジルエーテ ル、 ブチルグリシジルエーテル、 ォクチルダリシジルエーテル等のグリシジルェ —テル化合物、 1 , 3—ジォキソラン、 1 , 3, 5—トリオキセパン、 1 , 3— ジォキサン、 4—メチル _ 1 , 3—ジォキソラン、 6—メチル— 1 , 3, 5—ト リオキセパン、 1, 4一ブタンジオールホルマール、 4ーェチルー 1, 3—ジォ キソラン、 6—ェチルー 1 , 3, 5 _トリオキセパン、 4—メチル一 1 , 3—ジ ォキサン、 5—メチル— 1, 3—ジォキサン、 1, 5—ペンテンジオールホルマ ール、 4—プロピル _ 1, 3—ジォキソラン、 6—プロピル— 1 , 3, 5—トリ ォキセパン、 4一ェチル— 1, 3—ジォキサン、 5—ェチルー 1, 3—ジォキサ ン、 1, 6—へキサンジオールホルマール、 4—ブチルー 1 , 3—ジォキソラン、 6—プチル— 1, 3, 5—トリオキセパン、 4—プロピル一 1, 3—ジォキサン、 5—プロピル一 1 , 3—ジォキサン等が挙げられる。  Examples of the cyclic ether include ethylene oxide and oxetane. Examples of the cyclic formal include glycidyl ether compounds such as 1,4-butanediol diglycidyl ether, butyl glycidyl ether, and octyldaricidyl ether; 1,3-dioxolan; 1,3,5-trioxepane; , 3-Dioxane, 4-Methyl_1,3-Dioxolane, 6-Methyl-1,3,5-Trioxepane, 1,4-Butanediolformal, 4-Ethyl-1,3-Dioxolane, 6-Ethyru-1 , 3,5-trioxepane, 4-methyl-1,3-dioxane, 5-methyl-1,3-dioxane, 1,5-pentenediolformal, 4-propyl_1,3-dioxolan, 6- Propyl-1,3,5-trioxepane, 41-ethyl-1,3-dioxane, 5-ethyl-1,3-dioxane, 1,6-hexanediol formal, 4-butyl 1, 3-Jiokisoran, 6-heptyl - 1, 3, 5-trioxepane, 4-propyl one 1, 3-Jiokisan, 5-propyl one 1, 3-Jiokisan and the like.
これらコモノマーの使用量は、 成形品の剛性、 耐薬品性等を考慮すると、 主モ ノマ一のトリオキサンに対して 2 0重量%以下が好ましく、 特に 0 . 1〜1 5重 量%が好ましい。 本発明に係る製造方法において使用される特定のシラン化合物としては、 前記 一般式(I)〜(I V)で表されるシラン化合物の群から選ばれる少なくとも 1が使用さ れる。 The amount of these comonomers to be used is preferably 20% by weight or less, particularly 0.1 to 15 times, based on the trioxane of the main monomer, in consideration of the rigidity and chemical resistance of the molded article. % Is preferred. As the specific silane compound used in the production method according to the present invention, at least one selected from the group of silane compounds represented by the general formulas (I) to (IV) is used.
一般式(I )で表されるシラン化合物としては、 トリメチルメトキシシラン、 トリ メチルェ卜キシシラン、 卜リエチルメ卜キシシラン、 卜リエチルェ卜キシシラン 等のモノアルコキシシランが例示され、 一般式(I I)で表されるシラン化合物とし ては、 ジメチルジメトキシシラン、 ジメチルジェトキシシラン、 ジェチルジメト キシシラン、 ジェチルジェトキシシラン等のジアルコキシシランが例示できる。 又、 一般式(I I I)で表されるシラン化合物としては、 卜リエトキシシラン、 トリ メトキシシラン、 メチルトリメトキシシラン、 メチルトリエトキシシラン、 メチ ルトリプロボキシシラン、 メチル卜リブトキシシラン、 メチルトリフエノキシシ ラン、 ォクチル卜リエトキシシラン、 ォクタデシルトリエトキシシラン、 ォク夕 デシルトリメトキシシラン、 プロピルトリエトキシシラン、 へキシルトリエトキ シシラン、 ぺンチル卜リエトキシシラン等の飽和アルキル卜リアルコキシシラン とか、 ァリルトリエトキシシラン、 ァ一ァミノプロピルトリエトキシシラン、 ァ 一 (2—アミノエチル) ァミノプロビルトリメトキシシラン、 ァーァ二リノプロ ピルトリメトキシシラン、 ァ一メタクリロキシプロピル卜リメ卜キシシラン、 3 ーグリシジルォキシプロピル卜リメ卜キシシラン、 卜リス (2—メトキシェ卜キ シ) ビニルシラン、 3—トリフルォロアセトキシプロビルトリメトキシシラン、 ビエル卜リメトキシシラン、 ビニルトリエトキシシラン、 ビニルトリブトキシシ ラン、 フエニルトリエトキシシラン、 フエニルトリメトキシシラン、 ベンジルト リエトキシシラン等の不飽和及び置換炭化水素化トリアルコキシシラン等のトリ アルコキシシランが好ましく例示される。  Examples of the silane compound represented by the general formula (I) include monoalkoxysilanes such as trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, and triethylethoxysilane, and are represented by the general formula (II). Examples of the silane compound include dialkoxysilanes such as dimethyldimethoxysilane, dimethylethoxysilane, dimethyldimethoxysilane, and dimethylethylethoxysilane. Examples of the silane compound represented by the general formula (III) include triethoxysilane, trimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, methyltriphenoxysilane. Saturated alkyltrialkoxysilanes such as sicilan, octyltriethoxysilane, octadecyltriethoxysilane, octadecyltrimethoxysilane, propyltriethoxysilane, hexyltriethoxysilane, pentyltriethoxysilane, etc. Ryltriethoxysilane, α-aminopropyltriethoxysilane, α- (2-aminoethyl) aminopropyltrimethoxysilane, anilinopropyltrimethoxysilane, methacryloxypropyltrimethoxysilane, 3 Glycidyloxypropyl trimethoxysilane, tris (2-methoxyethoxy) vinylsilane, 3-trifluoroacetoxypropyltrimethoxysilane, biertrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, Preferred examples include unsaturated and substituted alkoxytrialkoxysilanes such as phenyltriethoxysilane, phenyltrimethoxysilane and benzyltriethoxysilane.
更に、 一般式(IV)で表されるシラン化合物としては、 テトラメトキシシラン、 テトラァリルォキシシラン、 テ卜ラエ卜キシシラン、 テトラブ卜キシシラン、 テトラキス (2—メトキシェトキシ) シラン、 テトラフ エノキシシラン等の単一テトラアルコキシシランの他、 メトキシトリエ卜キシシ ラン、 ジメトキシジエトキシシラン、 卜リメトキシエトキシシラン、 へキシルォ キシ卜リメトキシシラン等の混合テトラアルコキシシランが例示できる。 Further, as the silane compound represented by the general formula (IV), tetramethoxysilane, tetraaryloxysilane, tetraethoxysilane, Single tetraalkoxysilanes such as tetrabutoxysilane, tetrakis (2-methoxyethoxy) silane, and tetraphenoxysilane, as well as methoxytriethoxysilane, dimethoxydiethoxysilane, trimethoxyethoxysilane, and hexyloxytrimethoxysilane And the like.
本発明において使用されるシラン化合物は、 上記例示されたものに限定される ものでないが、 上記例示されたものの中でもジメチルジメトキシシラン、 ジメチ ルジェトキシシラン、 ジェチルジメトキシシラン、 ジェチルジェトキシシラン、 ォクタデシルトリエトキシシラン、 ォクタデシルトリメトキシシラン、 ァーメタ クリロキシプロピルトリメ卜キシシラン、 3—ダリシジルォキシプロピル卜リメ トキシシラン、 トリス (2—メトキシエトキシ) ビニルシラン、 テ卜ラエトキシ シラン、 テトラプロボキシシラン、 テ卜ラブトキシシラン、 テトラキス (2—メ トキシェ卜キシ) シランが特に好適である。  The silane compounds used in the present invention are not limited to those exemplified above, but among those exemplified above, dimethyldimethoxysilane, dimethylmethylethoxysilane, getyldimethoxysilane, dimethylethylmethoxysilane, Kutadecyltriethoxysilane, octadecyltrimethoxysilane, methacryloxypropyltrimethoxysilane, 3-daricyloxypropyltrimethoxysilane, tris (2-methoxyethoxy) vinylsilane, tetraethoxysilane, tetrapropoxysilane Tetrabutoxysilane and tetrakis (2-methoxyethoxy) silane are particularly preferred.
又、 本発明に係るシラン化合物の添加方法は特に限定されるものではなく、 主 モノマーのトリオキサン、 コモノマーの環状エーテル又は環状ホルマールと同時 に重合機に供給されてもよく、 或いは予め主モノマー及び又はコモノマーに該シ ラン化合物を添加混合しておき、 共重合に供してもよい。  The method of adding the silane compound according to the present invention is not particularly limited, and the silane compound may be supplied to the polymerization machine simultaneously with the main monomer trioxane, the comonomer cyclic ether or cyclic formal, or may be supplied in advance to the main monomer and / or The silane compound may be added to a comonomer and mixed, and then subjected to copolymerization.
しかし、 該シラン化合物の添加による本発明の前記効果を、 その重合初期から 発揮し始めさせるためには、 シラン化合物の添加は重合触媒の添加前が好ましく、 しかもその添加混合物を 6 0 - 1 0 0 °Cに 1秒以上保持する方法が特に好ましい。 この理由については明らかでないが、 主モノマー及び又はコモノマ一中のシラ ン化合物の混合状態がより均一になり、 その結果、 内在する不純物や水分との反 応が進み、 触媒の失活化される割合がより減少するためと考えられる。  However, in order to start exerting the effect of the present invention by adding the silane compound from the early stage of the polymerization, the addition of the silane compound is preferably performed before the addition of the polymerization catalyst. A method of maintaining the temperature at 0 ° C for 1 second or more is particularly preferable. Although the reason for this is not clear, the mixing state of the silane compound in the main monomer and / or comonomer becomes more uniform, and as a result, the reaction with the internal impurities and moisture proceeds, and the catalyst is deactivated. It is considered that the ratio is further reduced.
本発明において使用されるシラン化合物の量は、 主モノマーであるトリオキサ ンを基準として、 好ましくは 1〜 5 0 0 0重量 p p m、 より好ましくは 1 0〜2 0 0 0重量 ]11、 特に好ましくは 5 0〜 1 0 0 0重量 p p mである。 シラン化 合物の量が 1重量 p p m未満の場合のごとく過少の場合は、 モノマー中の不純物 であるギ酸ゃ水分を捕捉しきれない場合があり、 充分なる効果を上げるとはいい 切れない。 又、 5 0 0 0重量 p p mを超える場合のごとく過大な場合は、 ポリア セタール樹脂の製造における後工程において、 該シラン化合物がポリアセタール 樹脂から気化、 蒸散し、 配管への付着に続いて濃縮を起こし易く、 その結果、 配 管内の汚れが製品べレットに混入する等の問題を起こすことがある。 次に、 本発明において使用される重合触媒としては、 一般のカチオン活性触媒 が使用され、 以下、 該カチオン活性触媒について例示しつつ説明する。 The amount of the silane compound used in the present invention is preferably from 1 to 500 ppm by weight, more preferably from 10 to 200 ppm by weight, based on trioxane as the main monomer. It is 50 to 1000 weight ppm. If the amount of the silane compound is too small, as in the case where the amount is less than 1 ppm by weight, it may not be possible to capture the formic acid / water, which is an impurity in the monomer, and it is said that a sufficient effect is obtained. can not cut. On the other hand, when the amount is excessive, such as when the content exceeds 500 ppm by weight, the silane compound vaporizes and evaporates from the polyacetal resin in a later step in the production of the polyacetal resin, and the silane compound is concentrated following the adhesion to the piping. As a result, problems such as contamination of the piping into the product bellet may occur. Next, a general cation-active catalyst is used as a polymerization catalyst used in the present invention. Hereinafter, the cation-active catalyst will be described by way of example.
(1)ルイス酸;特にホウ素、 スズ、 チタン、 リン、 ヒ素、 アンチモン等のハロゲン 化物が好適であり、 具体例として三フッ化ホウ素、 四塩化スズ、 四塩化チタン、 五塩化リン、 五フッ化リン、 五フッ化ヒ素、 五フッ化アンチモン等が挙げられる が、 更にその錯体化合物 (例えばエーテル化合物等の有機化合物との配位化合 物) 又は塩の如き化合物も使用できる。  (1) Lewis acids; in particular, halides such as boron, tin, titanium, phosphorus, arsenic, and antimony are suitable. Specific examples include boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentachloride, and pentafluoride. Examples thereof include phosphorus, arsenic pentafluoride, and antimony pentafluoride. Further, compounds such as complex compounds thereof (for example, coordination compounds with organic compounds such as ether compounds) or salts thereof can also be used.
(2)プロトン酸;具体例としてトリフルォロメ夕ンスルホン酸、 パ一クロル酸等を 挙げることができる。  (2) Protonic acid; specific examples include trifluoromethanesulfonic acid, perchloric acid and the like.
(3)プロトン酸のエステル;特にパークロル酸と低級脂肪族アルコールとのエステ ルが使用できるが、 具体例としてパークロル酸 3級ブチルエステルを挙げること ができる。  (3) Esters of protonic acid; in particular, esters of perchloric acid and lower aliphatic alcohols can be used. Specific examples thereof include tertiary butyl perchlorate.
(4)プロトン酸の無水物;特にパークロル酸と低級脂肪族カルボン酸との混合無水 物が使用でき、 その具体例としてァセチルバ一クロラートを挙げることができる。 (4) Protic acid anhydrides; in particular, mixed anhydrides of perchloric acid and lower aliphatic carboxylic acids can be used, and specific examples thereof include acetyl chloride.
(5)その他、 イソポリ酸、 ヘテロポリ酸 (例えばリンモリブデン酸) 、 或いはトリ ェチルォキソニゥムへキサフルォロホスフアート、 卜リフエニルメチルへキサフ ルォロアルゼナ一ト、 ァセチルへキサフルォロボラート等が挙げられる。 (5) In addition, isopolyacid, heteropolyacid (for example, phosphomolybdic acid), or triethyloxenoxahexafluorophosphato, triphenylmethylhexafluoroarsenate, acetylhexafluoroborate And the like.
本発明に使用される触媒としては、 上記例示されたもののうち、 特に三フッ化 ホウ素とか該三フッ化ホウ素と有機化合物 (例えばエーテル類) との配位化合物 は、 最も一般的であり、 好適である。 尚、 上記三フッ化ホウ素は窒素等の不活性 気体と混合して使用してもよく、 又上記三フッ化ホウ素配位化合物は有機溶剤等 で一旦希釈して使用してもよい。 本発明に係る製造方法により得られるポリアセタール樹脂の基本的な分子構造 は特に限定されるものではなく、 分岐構造や架橋構造を有するもの、 ブロック成 分を導入したもの等も包含される。 又、 その分子量或いは溶融粘度は、 溶融成形 可能なものであれば何ら限定されるものではないが、 メルトインデックス (M I ) が 0. :!〜 l O O gZl Om i n (ASTM D 1238— 57T E条件 に準拠) の範囲のものが好ましい。 本発明の製造方法においては、 原則として主モノマー、 コモノマー、 特定のシ ラン化合物及び重合触媒を主原料として使用するが、 その他に分子量の調整用成 分、 分岐又は架橋構造の形成用成分等を併用することも可能である。 Among the catalysts used in the present invention, among those exemplified above, boron trifluoride or a coordination compound of the boron trifluoride and an organic compound (for example, ethers) is the most common, and It is. The boron trifluoride may be used by mixing with an inert gas such as nitrogen, and the boron trifluoride coordination compound may be used after being diluted once with an organic solvent or the like. The basic molecular structure of the polyacetal resin obtained by the production method according to the present invention is not particularly limited, and includes those having a branched structure or a crosslinked structure, those having a block component introduced, and the like. The molecular weight or melt viscosity is not limited as long as it can be melt-molded, but the melt index (MI) is 0.:!~lOO gZl Omin (ASTM D 1238-57T E) Are preferred. In the production method of the present invention, in principle, a main monomer, a comonomer, a specific silane compound, and a polymerization catalyst are used as main raw materials. It is also possible to use them together.
分子量を調整する成分としては、 不安定分子末端部を形成することのない連鎖 移動剤、 即ちメチラール、 メトキシメチラール、 ジメトキシメチラール、 トリメ トキシメチラール、 ォキシメチレンジ— n—ブチルエーテルの如きアルコキシ基 を有する化合物が例示される。  As a component for adjusting the molecular weight, a chain transfer agent that does not form an unstable molecular terminal portion, that is, a compound having an alkoxy group such as methylal, methoxymethylal, dimethoxymethylal, trimethoxymethylal, and oxymethylenedi-n-butyl ether is used. Is exemplified.
上記本発明に係るポリアセタール樹脂に分岐又は架橋構造を形成する必要があ る場合に使用される成分例としては、 エチレングリコールジグリシジルエーテル、 プロピレングリコールジグリシジルェ一テル、 1, 4一ブタンジオールジグリシ ジルエーテル、 へキサメチレングリコールジグリシジルエーテル、 レゾルシノー ルジグリシジルエーテル、 ビスフエノール Aジグリシジルエーテル、 ポリエチレ ングリコールジグリシジルエーテル、 ポリプロピレンダリコールジグリシジルェ 一テル、 ポリブチレングリコールジグリシジルエーテル、 グリセリン及びその誘 導体、 ペン夕エリスリ トール及びその誘導体等が挙げられる。  Examples of components used when it is necessary to form a branched or crosslinked structure in the polyacetal resin according to the present invention include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and 1,4-butanediol diglycol. Sidyl ether, hexamethylene glycol diglycidyl ether, resorcinol diglycidyl ether, bisphenol A diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene dalicol diglycidyl ether, polybutylene glycol diglycidyl ether, glycerin and its Inducers, pen-erythritol and its derivatives, and the like.
又、 上記分子量の調整用成分の使用量は、 トリオキサンに対して好ましくは 0. 5重量%以下、 特に好ましくは 0. 4重量%以下である。 又、 上記分岐又は架橋 構造の形成用成分の使用量は、 トリオキサンに対して好ましくは 0. 3重量%以 下、 特に好ましくは 0. 2重量%以下である。 なお、 これらの分子量の調整用成分、 分岐又は架橋構造の形成用成分等はトリ ォキサン中又はコモノマー中のいずれに添加してもよく、 更に又、 他の有機溶剤 等で一旦希釈して添加してもよい。 本発明に係るポリアセ夕一ル樹脂の連続製造に好適な重合機としては、 バレル 内に設けられた 2本の回転駆動軸にスクリュー、 パドル、 円盤、 ピン、 羽根等の 混合手段が直結されたニーダー、 コニーダー型重合機等が例示される。 The amount of the component for adjusting the molecular weight is preferably 0.5% by weight or less, particularly preferably 0.4% by weight or less, based on the trioxane. The amount of the component for forming the branched or crosslinked structure is preferably at most 0.3% by weight, particularly preferably at most 0.2% by weight, based on the trioxane. These components for adjusting the molecular weight, the components for forming the branched or crosslinked structure, and the like may be added to either the trifluoroxane or the comonomer, and may be added after being diluted once with another organic solvent or the like. You may. As a polymerization machine suitable for continuous production of the polyacetone resin according to the present invention, a mixing means such as a screw, a paddle, a disk, a pin, and a blade is directly connected to two rotary drive shafts provided in a barrel. Examples include a kneader and a co-kneader type polymerization machine.
本発明に係るポリアセタール樹脂をこれら重合機内で製造する場合の重合温度 は 6 5〜 1 3 5 °Cの範囲が好ましい。  When the polyacetal resin according to the present invention is produced in these polymerization machines, the polymerization temperature is preferably in the range of 65 to 135 ° C.
上記ポリアセタール樹脂重合後に樹脂中に残存する重合触媒の失活は、 重合反 応後に重合機より排出される反応生成物又は未だ重合機中にある反応生成物に、 塩基性化合物又はその水溶液等を加えて行うことができる。 この失活は通常は中 和反応によるものである。  The deactivation of the polymerization catalyst remaining in the resin after the polymerization of the polyacetal resin is performed by adding a basic compound or an aqueous solution thereof to the reaction product discharged from the polymerization machine after the polymerization reaction or the reaction product still in the polymerization machine. In addition it can be done. This inactivation is usually due to neutralization.
上記重合触媒を失活するための塩基性化合物としてはアンモニアの他、 トリエ チルァミン、 トリプチルァミン、 トリエタノールァミン、 卜リブ夕ノールァミン 等のアミン類、 又はアルカリ金属、 アルカリ土類金属の水酸化物、 その他公知の 触媒失活剤が用いられる。  As the basic compound for deactivating the polymerization catalyst, in addition to ammonia, amines such as triethylamine, triptylamine, triethanolamine, and triethanolamine, or hydroxides of alkali metals and alkaline earth metals, Other known catalyst deactivators are used.
かかる重合及び失活工程を経た後、 重合生成物は必要に応じて更に、 洗浄、 未 反応モノマーの分離回収、 乾燥等を従来公知の方法にて行う。 更に、 必要に応じ て各種安定剤の配合等、 公知の方法により不安定分子末端部の分解除去又は封止 等の安定化処理を行う。 ここで用いられる安定剤としては、 ヒンダードフエノー ル系化合物、 窒素含有化合物、 アルカリ或いはアルカリ土類金属の水酸化物、 無 機酸塩、 カルボン酸塩等のいずれか 1種または 2種以上の併用されたものを挙げ ることができる。 更に、 本発明に係るポリアセタール樹脂には、 該樹脂の特性を阻害しない限り、 必要に応じて熱可塑性樹脂に対する一般的な添加剤、 例えば染料、 顔料等の着色 剤、 滑剤、 核剤、 離型剤、 帯電防止剤、 界面活性剤等の改質剤、 有機高分子材料、 無機または有機の繊維状、 粉体状、 板状の充填剤等を 1種または 2種以上添加す ることができる。 以下、 本発明を具体的に説明するが、 本発明はこれら実施例に限定されるもの ではない。 After the polymerization and deactivation steps, the polymerization product is further subjected to washing, separation and recovery of unreacted monomers, drying and the like, if necessary, by a conventionally known method. Further, if necessary, a stabilization treatment such as decomposition removal of terminal portions of unstable molecules or sealing is performed by a known method such as blending of various stabilizers. Examples of the stabilizer used herein include one or more of a hindered phenolic compound, a nitrogen-containing compound, an alkali or alkaline earth metal hydroxide, an inorganic acid, and a carboxylate. Those used in combination can be mentioned. In addition, the polyacetal resin according to the present invention may contain, if necessary, a general additive to the thermoplastic resin, for example, coloring of a dye, a pigment or the like, as long as the properties of the resin are not impaired. Agents, lubricants, nucleating agents, release agents, antistatic agents, modifiers such as surfactants, organic polymer materials, inorganic or organic fibrous, powdery, plate-like fillers, etc. Two or more can be added. Hereinafter, the present invention will be described specifically, but the present invention is not limited to these examples.
(実施例 1〜 9 )  (Examples 1 to 9)
外側に熱 (冷) 媒を通すジャケットが付き、 2つの円が一部重なったような断 面形状を有するバレルと、 2本のパドル付き回転軸で構成される連続式混合重合 機を用い、 該 2本の回転軸をそれぞれ 1 5 0 p p mで回転させながらその一端側 供給口からトリオキサン混合物、 即ち予め表 1に示す特定のシラン化合物を同表 に示す割合 (対トリオキサンの重量%) でトリオキサンに添加し、 8 0 °Cに 3 0 分間保持し、 これにコモノマーとして表 1に示す特定の環状ホルマールを 4 . 0 m o 1 % (対トリオキサン) 及び分子量調節剤のメチラールを 0 . 0 8重量% (対トリォキサン) を添加したトリォキサン混合物を連続的に供給した。  Using a continuous mixed polymerization machine that has a jacket with a cross section with two circles partially overlapped with a jacket through which heat (cooling) medium passes, and a rotary shaft with two paddles, While rotating the two rotating shafts at 150 ppm, the trioxane mixture, that is, the specific silane compound shown in Table 1 in advance at the ratio shown in Table 1 (% by weight of trioxane) was supplied from one end of the supply port. The mixture was kept at 80 ° C for 30 minutes, and 4.0 mol 1% (based on trioxane) of a specific cyclic formal shown in Table 1 as a comonomer and 0.08 wt. % (Vs. trioxane) of the trioxane mixture was continuously fed.
続いて、 三フッ化ホウ素 3 0重量 p p m (対トリオキサン) を上記供給口より 重合機に連続的に供給しながら、 カチオン ·塊状重合を連続的に行った。  Subsequently, cationic / bulk polymerization was continuously performed while continuously supplying boron trifluoride (30 weight parts per million (based on trioxane)) to the polymerization machine from the supply port.
なお、 トリオキサン、 コモノマー、 メチラールを重合機に添加した後、 三フッ 化ホウ素と特定のシラン化合物を重合機に同時に、 しかも連続的に供給した場合 についても、 連続的カチオン,塊状重合を行った。  After adding the trioxane, comonomer, and methylal to the polymerization machine, continuous cation and bulk polymerization were also performed when boron trifluoride and the specific silane compound were simultaneously and continuously supplied to the polymerization machine.
重合機排出口から排出された反応生成物は速やかに破砕機に通しながら、 トリ ェチルァミンを 0 . 0 5重量%含有する 6 0 °Cの水溶液に加え、 粒子に粉砕する と同時に触媒を失活し、 続いて分離、 洗浄、 乾燥後、 目的とするポリアセタール 樹脂を得た。 供給原料に対する重合収率、 品質の目安となる M l値及び 2 0 0 °C 以下でホルムアルデヒドに分解可能な部分の全重量に対して占める割合 (熱重量 減少率) を合わせて表 1に示した。 (比較例 1〜 3 ) The reaction product discharged from the outlet of the polymerization machine is immediately passed through a crusher, added to an aqueous solution at 60 ° C containing 0.05% by weight of triethylamine, pulverized into particles, and the catalyst is deactivated at the same time. Then, after separation, washing and drying, the desired polyacetal resin was obtained. Table 1 shows the polymerization yield based on the feedstock, the Ml value that is a measure of quality, and the proportion (thermal weight loss) of the portion decomposable into formaldehyde at 200 ° C or less relative to the total weight. Was. (Comparative Examples 1-3)
実施例において使用の特定のシラン化合物も使用せず、 又、 他のシラン化合物 をも使用しない条件下に、 その他の条件は実施例と同様にして得たポリアセ夕ー ル樹脂の製造及び特性に関する値も表 1に合わせて示した。 尚、 上記ポリアセタール樹脂の重合収率及び樹脂特性 (M I、 熱重量減少率) の評価方法を以下にまとめた。  Under the conditions that no specific silane compound used in the examples was used and no other silane compounds were used, the other conditions relate to the production and properties of the polyacetyl resin obtained in the same manner as in the examples. The values are also shown in Table 1. The methods for evaluating the polymerization yield and the resin properties (MI, thermal weight loss rate) of the polyacetal resin are summarized below.
(1)重合収率 (%) (1) Polymerization yield (%)
連続重合工程が定常状態にあるときに、 一定時間内に採取したポリアタール樹 脂について触媒失活、 洗浄後のサンプルを 50°Cで 24 h r乾燥して秤量し、 られた値を上記採取時間と同一時間内に重合機に添加した供給原料の合計重量で 除し、 百分率で表した。  When the continuous polymerization process was in a steady state, the catalyst was deactivated for the polyatal resin collected within a certain period of time, the washed sample was dried at 50 ° C for 24 hr, weighed, and the obtained value was taken as the above-mentioned collection time. It was divided by the total weight of the feedstock added to the polymerization machine within the same time and expressed as a percentage.
(2) M.I (g/ 1 0m i n)  (2) M.I (g / 1 0m i n)
上記乾燥後のポリアセタール樹脂に、 該ポリアセタール樹脂を基準として酸化 防止剤のトリエチレングリコールビス 〔3— (3— t一ブチル— 5—メチル— 4 ーヒドロキシフエニル) プロピオネート〕 を 0. 5重量%及びメラミン 0. 5重 量%を配合し、 充分混合し、 得られた混合物を 1 90°Cに保持されたメルトイン デクサ一のシリンダー内に 1 5分間滞留させた後、 2, 1 60 gの荷重で 2mm ΦΧ 8mmのキヤビラリ一から押出して得られた樹脂の重量を 1 0分間の押出量 に換算して M l値を得た。  To the dried polyacetal resin was added 0.5% by weight of an antioxidant, triethylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], based on the polyacetal resin. And 0.5% by weight of melamine were blended and thoroughly mixed. The resulting mixture was retained in a cylinder of a melt indexer maintained at 190 ° C for 15 minutes, and then 2,160 g of the mixture was melted. The Ml value was obtained by converting the weight of the resin obtained by extruding from a capillar having a load of 2 mm ΦΧ8 mm into the amount of extrusion for 10 minutes.
(3)熱重量減少率 (%)  (3) Thermal weight loss rate (%)
(1)における乾燥後、 更に微粉砕したポリアセタール樹脂に、 該ポリアセタール 樹脂を基準として 50重量%の、 充分乾燥した粉体の酸化マグネシウムを添加し、 粉体同士を充分混合し、 得られた混合物を窒素雰囲気下に TGA (熱重量分析 法) を用いて、 先ず 50°Cに 30分保持してサンプル重量を測定する。 続いて 1 0 O^Zm i nで 200 まで昇温し、 その温度で 1時間保持し、 サンプルの重 量減少値を測定する。 次に更に 1 00°CZm i nで 450°Cまで昇温し、 その温 度で 30分間保持し、 樹脂部分を完全に分解し、 最初のサンプル重量に対する重 量減少値を測定する。 After the drying in (1), 50% by weight, based on the polyacetal resin, of sufficiently dried powdered magnesium oxide is added to the finely pulverized polyacetal resin, and the powders are sufficiently mixed to obtain a mixture. The sample is first kept at 50 ° C for 30 minutes using TGA (thermogravimetric analysis) under a nitrogen atmosphere, and the sample weight is measured. Subsequently, the temperature is raised to 200 with 10 O ^ Zmin, kept at that temperature for 1 hour, and the weight reduction value of the sample is measured. Next, the temperature was further raised to 450 ° C by 100 ° C At 30 ° C for 30 minutes to completely degrade the resin part and measure the weight loss relative to the initial sample weight.
このようにして得た 200°CZ 1時間保持時の重量減少値を、 450°CZ30 mi n保持後に示した重量減少量値で除し、 熱重量減少率を得た。  The weight loss value obtained after holding at 200 ° CZ for 1 hour was divided by the weight loss value shown after holding at 450 ° CZ for 30 min to obtain a thermal weight loss rate.
Figure imgf000014_0001
Figure imgf000014_0001
* コモノマーの名称 (全て環状ホルマールである)  * Name of comonomer (all are cyclic formal)
a— 丄 ! · · · · !, 3—ジォキゾラン  a— 丄! · · · ·!, 3—Dioxolan
a-2 3—ジォキサン  a-2 3-dioxane
a-3 4一ブタンジオールホルマール  a-3 4-butanediol formal
* 2 シラン化合物の名称  * 2 Name of silane compound
b— 1 · · ♦ 〔式(IV)の 1態様であり、 下記式 (V)で表される。 〕  b— 1 · ♦ [An embodiment of the formula (IV), which is represented by the following formula (V). ]
b-2 メチルトリエトキシシラン 〔式(III)の 1態様であり、 下記式 (VI)で表される。 〕  b-2 Methyltriethoxysilane [One embodiment of the formula (III), which is represented by the following formula (VI). ]
b-3 ジェチルジェトキシシラン 〔式(II)の 1態様であり、  b-3 getyl ethoxysilane [an embodiment of the formula (II),
下記式 (VII)で表される。 〕  It is represented by the following formula (VII). ]
b-4 3—グリシジルォキシプロピルジメチルメトキシシラン 〔式(I)の 1態様であり、 下記式 (VIII)で表される。 〕 b-4 3-glycidyloxypropyldimethylmethoxysilane [an embodiment of the formula (I), which is represented by the following formula (VIII)] ]
* 3 シラン化合物をトリオキサンに予め混合することなく、 触媒添加と同時 に重合系内に添加した場合を示す。
Figure imgf000015_0001
* 3 This shows the case where the silane compound is added to the polymerization system simultaneously with the addition of the catalyst without prior mixing with trioxane.
Figure imgf000015_0001
C H3 C H2-O S i一 O - C H2 C H3 (V)
Figure imgf000015_0002
CH 3 C H2-O S i-O-CH 2 CH 3 (V)
Figure imgf000015_0002
C H3 C H2-0- S i - O - C H2 C HS (VI) CH 3 CH 2 -0- S i-O-C H2 CH S (VI)
C Hs C Hs
Figure imgf000015_0003
Figure imgf000015_0003
C H3 C H2-O S i — C na C Hs (VII)CH 3 C H2-O S i — C na C Hs (VII)
Figure imgf000015_0004
Figure imgf000015_0004
C H3 CH 3
C H3 O - S i一 C H3 0 (VIII) CH 3 O-Si i CH 3 0 (VIII)
0- C H2 C H2 C H2 O C H2 C H- C H2  0- C H2 C H2 C H2 O C H2 C H- C H2
産業上の利用可能性 Industrial applicability
本発明のポリアセタール樹脂の連続製造方法により、 不安定分子末端部の少な い高品質のポリアセタール樹脂を高い収率で、 工業的に長期間安定して得ること ができる。  According to the continuous production method of the polyacetal resin of the present invention, a high-quality polyacetal resin having a small number of unstable molecular terminals can be obtained in a high yield and industrially for a long period of time.
また、 本発明で得られたポリアセタール樹脂は、 特に成形加工性に優れ、 かつ 通常のポリアセタール樹脂と同様に機械的性質、 耐薬品性、 摺動性等のバランス にも優れているので、 射出成形品の他、 押出成形品、 プロ一成形品、 発泡成形品 等の各種分野で有用である。  In addition, the polyacetal resin obtained by the present invention is particularly excellent in molding processability, and also excellent in balance of mechanical properties, chemical resistance, slidability, etc. like ordinary polyacetal resin, so that injection molding is performed. In addition to products, it is useful in various fields such as extrusion molded products, professional molded products, and foam molded products.

Claims

請 求 の 範 囲 The scope of the claims
1. 主モノマーとしてのトリオキサンにコモノマーとしての環状エーテル及び 又は環状ホルマールを添加供給し、 カチオン重合させて共重合体のポリァセ夕一 ル樹脂を連続的に製造するに際し、 下記一般式(I)〜(IV)で表されるシラン化合物 の群から選ばれる少なくとも 1を共存させて行うことを特徴とするポリアセター ル樹脂の連続製造方法。  1. A cyclic ether and / or cyclic formal as a comonomer is added and supplied to trioxane as a main monomer, and is subjected to cation polymerization to continuously produce a copolymer polyester resin. A method for continuously producing a polyacetal resin, wherein the method is carried out in the presence of at least one selected from the group of silane compounds represented by (IV).
R2 R 2
R1- 0 - S i (I) R 1 - 0 - S i ( I)
R4 R 4
O-R1 OR 1
R5— 0— S R7 (II) R 5 — 0— SR 7 (II)
R1 R 1
0 - R10 0-R 10
R9- 0 - S i -O-R 11 R 9 - 0 - S i -OR 11
(III) (III)
12 1 2
O-R14 OR 14
R13— 0— S i -O-R15 (IV) R 13 — 0— S i -OR 15 (IV)
O-R 16  O-R 16
(式中、 R', R5, R6, Rg, R10, R", R13, R", R15及び R16は、 水素原子及び炭素数:!〜 6の炭化水素残基からなる群からそれぞれ独立に選ばれた原子又は残基であり、 R2, R3, R4, R7, R8及び R'2は、 水素原子、 炭素数 1〜 22の炭化水素残基及びフッ 素,酸素,窒素,ィォゥ及びリンの各原子からなる群からそれぞれ独立に選ばれた 1 種以上の原子を含む官能基を有する炭化水素残基からなる群からそれぞれ独立に 選ばれた原子又は残基を示す。 ) (In the formula, R ′, R 5 , R 6 , R g , R 10 , R ", R 13 , R", R 15 and R 16 represent a hydrogen atom and a hydrocarbon residue having carbon number:! To 6 R 2 , R 3 , R 4 , R 7 , R 8 and R ′ 2 are each a hydrogen atom, a hydrocarbon residue having 1 to 22 carbon atoms, An atom independently selected from the group consisting of hydrocarbon residues having a functional group containing one or more atoms each independently selected from the group consisting of fluorine, oxygen, nitrogen, iodide and phosphorus; or Indicates a residue.)
2. シラン化合物を予めトリオキサン、 環状エーテル及び環状ホルマールの 1 種以上に添加混合させておく請求項 1記載のポリアセタール樹脂の連続製造方法。  2. The method for continuous production of a polyacetal resin according to claim 1, wherein the silane compound is previously added to and mixed with at least one of trioxane, cyclic ether and cyclic formal.
PCT/JP2000/000750 1999-02-10 2000-02-10 Process for continuously producing polyacetal resin WO2000047646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/33526 1999-02-10
JP11033526A JP2000230026A (en) 1999-02-10 1999-02-10 Continuous production of polyacetal resin

Publications (1)

Publication Number Publication Date
WO2000047646A1 true WO2000047646A1 (en) 2000-08-17

Family

ID=12389003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000750 WO2000047646A1 (en) 1999-02-10 2000-02-10 Process for continuously producing polyacetal resin

Country Status (2)

Country Link
JP (1) JP2000230026A (en)
WO (1) WO2000047646A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255543A1 (en) * 2019-06-21 2020-12-24 ポリプラスチックス株式会社 Polyacetal copolymer and production method therefor
WO2020261712A1 (en) * 2019-06-27 2020-12-30 ポリプラスチックス株式会社 Polyacetal resin composition and method for producing polyacetal resin composition
CN113906098A (en) * 2019-08-30 2022-01-07 宝理塑料株式会社 Polyacetal resin composition and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8816015B2 (en) 2012-06-05 2014-08-26 Ticona, Llc Low emission polyoxymethylene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145199A (en) * 1974-10-16 1976-04-17 Shinetsu Chemical Co NETSUANTEISEIHORIOKISHIMECHIRENNO SEIZOHOHO
JPS58174412A (en) * 1982-04-08 1983-10-13 Asahi Chem Ind Co Ltd Novel acetal polymer and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145199A (en) * 1974-10-16 1976-04-17 Shinetsu Chemical Co NETSUANTEISEIHORIOKISHIMECHIRENNO SEIZOHOHO
JPS58174412A (en) * 1982-04-08 1983-10-13 Asahi Chem Ind Co Ltd Novel acetal polymer and its preparation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255543A1 (en) * 2019-06-21 2020-12-24 ポリプラスチックス株式会社 Polyacetal copolymer and production method therefor
JP2021001264A (en) * 2019-06-21 2021-01-07 ポリプラスチックス株式会社 Polyacetal copolymer and method for producing the same
CN113677725A (en) * 2019-06-21 2021-11-19 宝理塑料株式会社 Polyacetal copolymer and method for producing same
CN113677725B (en) * 2019-06-21 2023-12-29 宝理塑料株式会社 Polyacetal copolymer and process for producing the same
WO2020261712A1 (en) * 2019-06-27 2020-12-30 ポリプラスチックス株式会社 Polyacetal resin composition and method for producing polyacetal resin composition
JP2021006597A (en) * 2019-06-27 2021-01-21 ポリプラスチックス株式会社 Polyacetal resin composition and manufacturing method of polyacetal resin composition
CN113677726A (en) * 2019-06-27 2021-11-19 宝理塑料株式会社 Polyacetal resin composition and method for producing polyacetal resin composition
JP7356828B2 (en) 2019-06-27 2023-10-05 ポリプラスチックス株式会社 Polyacetal resin composition and method for producing polyacetal resin composition
CN113677726B (en) * 2019-06-27 2023-11-10 宝理塑料株式会社 Polyacetal resin composition and method for producing polyacetal resin composition
CN113906098A (en) * 2019-08-30 2022-01-07 宝理塑料株式会社 Polyacetal resin composition and method for producing same
CN113906098B (en) * 2019-08-30 2023-11-10 宝理塑料株式会社 Polyacetal resin composition and method for producing same

Also Published As

Publication number Publication date
JP2000230026A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
WO1992006126A1 (en) Polyoxymethylene copolymer and production thereof
JP2001011143A (en) Polyoxymethylene copolymer, its production and analysis thereof
EP1630198A1 (en) Polyacetal resin composition
JP4270664B2 (en) Method for producing polyoxymethylene copolymer and polyoxymethylene copolymer composition
CN113166345B (en) Process for producing oxymethylene polymer and oxymethylene polymer resin composition
WO2000047646A1 (en) Process for continuously producing polyacetal resin
JP3850546B2 (en) Continuous production method of polyacetal resin
WO2001042326A1 (en) Polyacetal copolymer
KR100529457B1 (en) Copolyacetal
JP3208351B2 (en) Method for producing polyacetal resin
JP4937436B2 (en) Polyacetal copolymer and process for producing the same
EP1167409B1 (en) Polyacetal copolymer and method for producing the same
JP3998806B2 (en) Method for producing polyacetal resin
JP3208353B2 (en) Method for producing polyacetal resin
JP4169868B2 (en) Polyoxymethylene copolymer and process for producing the same
WO2023276481A1 (en) Polyacetal resin gear and method for improving fatigue resistance of polyacetal resin gear
JP3926512B2 (en) Polyacetal copolymer
WO2022064924A1 (en) Polyacetal copolymer and production method therefor
JP2000169668A (en) Polyacetal resin composition and molded product obtained therefrom
WO2022137859A1 (en) Polyacetal copolymer and method for producing same
JP2001002886A (en) Branched polyacetal resin composition
JP4204876B2 (en) Buckle resin material and molded product thereof
JP2001002887A (en) Branched polyacetal resin composition
JP3883750B2 (en) Polyacetal copolymer
JP3926484B2 (en) Polyacetal copolymer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase