WO2000046459A1 - Weight bearing systems and methods relating to same - Google Patents

Weight bearing systems and methods relating to same Download PDF

Info

Publication number
WO2000046459A1
WO2000046459A1 PCT/US2000/002837 US0002837W WO0046459A1 WO 2000046459 A1 WO2000046459 A1 WO 2000046459A1 US 0002837 W US0002837 W US 0002837W WO 0046459 A1 WO0046459 A1 WO 0046459A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight bearing
sides
mounting surface
rim band
web
Prior art date
Application number
PCT/US2000/002837
Other languages
French (fr)
Inventor
Darrell Meyer
Original Assignee
Darrell Meyer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Darrell Meyer filed Critical Darrell Meyer
Priority to MXPA01007926A priority Critical patent/MXPA01007926A/en
Priority to AU27544/00A priority patent/AU2754400A/en
Priority to CA002361619A priority patent/CA2361619A1/en
Priority to EP00905958A priority patent/EP1157174A4/en
Publication of WO2000046459A1 publication Critical patent/WO2000046459A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/291Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures with apertured web
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/10Load-carrying floor structures formed substantially of prefabricated units with metal beams or girders, e.g. with steel lattice girders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/08Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders
    • E04C3/09Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders at least partly of bent or otherwise deformed strip- or sheet-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2415Brackets, gussets, joining plates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2448Connections between open section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2454Connections between open and closed section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2457Beam to beam connections
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0421Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section comprising one single unitary part
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/0439Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the cross-section comprising open parts and hollow parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0452H- or I-shaped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49623Static structure, e.g., a building component
    • Y10T29/49625Openwork, e.g., a truss, joist, frame, lattice-type or box beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49623Static structure, e.g., a building component
    • Y10T29/49634Beam or girder

Definitions

  • the field of the invention is weight bearing systems such as studs, joists, beams, and related devices and methods.
  • Weight bearing systems comprise primary weight bearing elements such as studs and joists, and secondary weight bearing elements such as rim bands and end caps.
  • Such weight bearing elements are common components in many constructions. For example, floor and ceiling joists function as weight bearing elements and are frequently found in residential and commercial buildings.
  • weight bearing elements are limited in length and weight bearing capacity due to the material(s) from which they are constructed, and are oftentimes difficult to incorporate into constructions because of their structure or cost.
  • Primary weight bearing elements can be grouped in two classes, elements predominantly made from wood, and elements predominantly made from metal. Generally, primary weight bearing elements made from wood are found in older constructions, and were traditionally made from solid saw lumber. However, due in part to a sharp decline in the supply of appropriate solid saw lumber, alternative primary weight bearing members which use less solid saw lumber were developed. Such alternatives generally comprise two chords (a top, compression chord/member and a bottom, tension chord/member extending the length of the primary weight bearing element) coupled together by a web (see U.S. Patent No. 5,664,393 issued on September 9, 1997 to Neilleux et al., U.S. Patent No. 5,560,177 issued on October 1, 1996 to Brightwell, and U.S. Patent No.
  • primary weight bearing elements made from metal are lighter than comparable wooden elements, may span longer distances and are fireproof. Furthermore, such elements are often available in continuous lengths.
  • Primary weight bearing elements made from metal are common in various forms, including light gauge steel C-pro file joists, trichord open web joists and screw fabricated steel truss joists (see U.S. Patent No. 5,687,538 issued on November 18, 1997 to Frobosilo et al., U.S. Patent No. 5,499,480 issued on March 19, 1996 to Bass, U.S. Patent No. 5,457,927 issued on October 17, 1995 to Pellock et al., U.S. Patent No. 5,157,883 issued on October 27, 1992 to Meyer, U.S. Patent No.
  • Light gauge steel C-pro file joists maybe manufactured from roll-formed galvanized steel. However, in order to achieve appropriate rigidity, light gauge steel C-pro file joists are oftentimes made from 16-gauge steel, which tends to be more difficult to drill or perforate.
  • Trichord open web joists are generally more rigid than light gauge steel with C-profile but often have to be custom manufactured to fit span, load, etc.
  • a further common disadvantage of trichord open web joists is that they are difficult to attach or to join with hangers.
  • Screw fabricated steel truss joists often suffer from 4 common drawbacks: They are labor-intensive, expensive in manufacturing, have to be custom made and tend to loosening of screws leading to impaired stability and additional wear. Secondary Weight Bearing Elements
  • Rim bands are used to couple a structural element such as a joist to an adjacent structural elements such as wall studs.
  • a simple rim band might have a "C" shape comprising one vertical segment and two horizontal segments, with the vertical or “back” segment tending to be substantially longer than the "top” and “bottom” horizontal segments or “legs".
  • One drawback of many rim bands is the tendency for the back to buckle. This tendency is generally compensated for by mounting the rim band to the side of one or more structural members such as a beam or studs such that compression forces are born primarily by the supporting structural member(s) rather than the rim band.
  • An example of a rim band which is mounted in such a fashion can be found by referring to U.S. Patent No.
  • the rim band/ledger beam of Liss comprises a standard C shape with shear tabs punched out of and folded away from the back segment of the rim band.
  • the rim band of Liss although suitable in many applications, also suffers from the drawback that the shear tabs comprise a single piece folded out from the center of the back of the rim band.
  • the centered shear tabs do not extend to the portions of the back adjacent to the top and bottom horizontal segments and thus would provide poor, if any, coupling to a joist comprising top and bottom cords as described above. Difficulty in attaching joists is a drawback of many rim bands.
  • the rim band would have a tendency to bend under vertical loads at points where the shear tabs were located as only the horizontal legs of the rim band would be left to provide support at such points. Also, forming the bend causing the shear tabs to be positioned perpendicular to the back of the rim band may require more force than can easily be achieved at a work site. Yet another drawback found in some rim bands is the lack of a common rim band for use in structures having differently spaced joists.
  • the present invention is directed to improved weight bearing elements and methods relating to same.
  • Some such elements are contemplated as having a web, and a chord connected to the web, the chord perimeter having a cross-sectional shape of a closed multi-sided figure having at least 5 sides, at least two of which are substantially parallel to the web.
  • Some members may have chords which have a pentagonal cross sectional shape, and/or may include load transferring members or end-caps.
  • Other elements may comprise a stiffened rim band having pairs of die cut tabs and/or stiffening ribs positioned along the member/rim band. Some such elements comprise pairs of die cut tabs positioned along the length of the member at intervals which are a fraction of the distance used in standard joist spacings. Other elements comprise one or more pairs of die cut tabs positioned directly opposite each other such that one tab is adjacent the top of the rim band while the corresponding tab is adjacent the bottom of the rim band. Still other elements may comprise a diamond shape stiffener extruding from the back of the rim band and possibly formed by punching a slot into the back of the rim band and pushing the ends of the slot out from the back so as to form the diamond shape.
  • the weight bearing elements disclosed herein may be "roll- formed" from a continuous sheet of material such as light gauge galvanized steel. In other embodiments, they may exhibit one or more of the following feature: improved load bearing capacity; lighter weight; reduced material usage; easier to manufacture and/or install; able to be cut to custom lengths.
  • joists are only a subset of the primary weight bearing elements to which the disclosed subject matter applies, the term “joist” will be used frequently hereafter to refer to all primary weight bearing elements in order to make this disclosure easier to read. Similarly, the term “rim bands” will be used frequently hereafter to refer to all secondary wait bearing elements.
  • polygonal as used herein includes figures in which the bounding line segments are joined by curves as well as more traditional “angular” figures.
  • Figure 1 is a perspective view of a joist embodying the invention.
  • Figure 2 is a cross-sectional view of the joist of Figure 1.
  • Figure 3 is a perspective view of a joist and load transfer member combination embodying the invention.
  • Figure 4 is a perspective view of a joist and end cap combination embodying the invention.
  • Figure 5 is a perspective view of a back-mounted end cap.
  • Figure 6 is a perspective view of a joist being connected to a "track" type support via a back mounted end-cap.
  • Figure 7 is a perspective view of a back and bottom mounted endcap.
  • Figure 8 is a perspective view of the endcap of figure 7 being used to connect a joist to a
  • Figure 9 is a perspective view of a rim band embodying the invention.
  • Figure 10 is a plan view of a cut sheet prior to its being folded into the rim band of Figure 9.
  • Figure 11 is a side view of the rim band of figure 9.
  • Figure 12 is a top view of the rim band of figure 9.
  • Figure 13 is a detail view of one of the diecut tabs of the rim band of figure 9.
  • Figure 14 is a front view of one of the stiffeners of the rim band of figure 9.
  • Figure 15 is a side view of one of the stiffeners of the rim band of figure 9.
  • Figure 15 is a perspective view of a rim band and joist according to the claimed invention.
  • Figure 16 is a perspective view of a rim band and joist according to the claimed invention.
  • Figure 17 is a perspective view of a support system according to the claimed invention having showing how joists can be coupled to every other pair of diecut tabs to space the joists 16" intervals.
  • Figure 18 is a perspective view of a support system according to the claimed invention having showing how joists can be coupled to every third pair of diecut tabs to space the joists 24" intervals.
  • Figure 19 is a perspective view of a rim band embedded in a wall and providing support to upper studs.
  • Figure 20 is a perspective view of a rim band embedded in a solid wall.
  • a preferred primary weight bearing element/joist 10 comprises top/tension and bottom/compression chords 100 and web 200.
  • Chords 100 comprise a top supporting side 110, a left supporting side 120A, a right supporting side 120B, and left and right transition sides 130A, and 130B.
  • Web 200 comprises body 210, flanges 220, fasteners 230, and chord lips 240.
  • the perimeters of chords 100 of joist 10 can be seen to have a polygonal cross sectional shape having 5 sides, at least two of which are substantially parallel to the web.
  • supporting side 110 couples the two parallel sides 120A and 120B to each other and provides a load bearing surface.
  • Sides 120 A and 120B are substantially parallel to each other and to the body 210 of web 200.
  • Sides 110, 120A, 120B, 130A and 130B can be seen to be planar and to compose parts, via their exterior surfaces 111, 121 A, 121B, 131 A, and 13 IB, of the perimeter surface of the chord and to define a cavity 300 via their interior surfaces 112, 122A, 122B, 132A, and 132B, which are not part of the perimeter surface of the chord.
  • cavity 300 is adjacent to and partially forms a cavity located within the perimeter surface of the chord.
  • Chords 100 are generally parallel to each other, and the cavities 300 contained within them extends the length of the chords 100.
  • the 5 planar sides 111, 121A, 121B, 131A, and 13 IB can referred in a number of ways. It is contemplated that referring to side 111 as the top mounting surface of chord 10, side 121 A as the left mounting surface of chord 10, side 12 IB as the right mounting surface of chord 10, side 131 A as the left transition surface of chord 10, and side 13 IB as the right transition surface of chord 10 may be beneficial.
  • the left side mounting surface 121 A and the right side mounting surface 121B are each substantially parallel to body 210 of web 200; the top mounting surface 111 is substantially perpendicular to the web body 210; the left side mounting surface 121 A, the right side mounting surface 121B, the left transition surface 131 A, and the right transition surface 13 IB each comprise a top edge and a bottom edge with the top edge of each of the left side mounting surface 121 A and right side mounting surface 12 IB being coupled to the top mounting surface 111, the bottom edge of the left side mounting surface 121 A being coupled to the top edge 111 of the left transition surface 131 A, and the bottom edge of the right side mounting surface 12 IB being coupled to the top edge of the right transition surface 13 IB; the left and right transition surfaces 131 A and 13 IB extend away from all of the top mounting surface 111, the left mounting surface 121 A, and the right mounting surface 12 IB; and the bottom
  • primary weight bearing elements may have A planar sides where A is one of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or A is greater than 15.
  • chords 100 comprise planar, i.e. relatively flat and thin, sides connected together, it is possible to form chords 100 from a sheet of thin material such as galvanized steel by simply bending the material into the pentagon shape of the chords 100. It is contemplated that alternative embodiments may utilize various gauges of steel including, but not necessarily limited to 18 gauge and 20 gauge. It is also contemplated that alternative embodiments of primary weight bearing elements may have sides which are less than N inches thick where N is one of 1, .75, .5, .25, .125, and .l.
  • the cavity 300 within one or more of chords 100 may be filled with a material 300A so as to increase the weight or modify the weight distribution of the joist/primary weight bearing element 10.
  • a material 300A so as to increase the weight or modify the weight distribution of the joist/primary weight bearing element 10.
  • some embodiments may be ballast (from top to bottom) weighted as in a floor joist, or a drag (from bottom to top) weighted as in a ceiling joist.
  • the material or materials used may be uniform throughout the cavity or may comprise separate elements located within the cavity 300. The materials used may also be used to modify other features of the joist other than weight including, but not limited to, buoyancy and rigidity.
  • Web 200 is preferred to be formed from the same sheet of material as chords 100. It is also preferred that web 200 be "open" in the sense that portions of the web body 210 are removed, preferably by punching, to create the pattern shown in Figures 1 and 2, as well as to form flanges 220. Web 200 is also preferred to comprise fasteners 230 for fastening chord lips 240 to body 210.
  • joists 10 may be used in combination with load transferring studs 400 as shown in Figure 3, or couplers 500 as shown in figures 4-8.
  • Load transfer studs may be comprised of flat plates and/or more 3-dimensional shapes such as that shown in load transfer stud 400 of Figure 3.
  • the size and dimensions of various embodiments of transfer studs 400 may vary, as may the method and materials used to form them, so long as they serve to transfer load forces from one chord to another so as to lessen the load on web 200.
  • Couplers 500 can be used to couple joist 10 to a second joist or to some other object. It is contemplated that in some embodiments, a particular device may function as both a load transfer stud 400 and a coupler 500.
  • couplers 500 may vary, as may the method and materials used to form them, so long as they serve to couple a joist 10 to a second joist or another object. Transfer studs 400 and couplers 500 may also vary as to the manner in and/or location at which they are coupled to joist 10.
  • Some embodiments may thus attach at the ends using screws, while others may be coupled to a non-end portion of the joist, may be fastened by welding or some other means, and may be coupled to one or more sides of chords 100 or to a portion of web 200.
  • Various methods of using transfer studs 400 and couplers 500 are pictured in Figures 3-8.
  • chords 100 provide a flat surface to which sides 430 of transfer studs 400 and sides 530 couplers 500 can be attached. It is contemplated that some embodiments will include pre-drilled holes in chords 100 and in the back 410 and sides 430 transfer studs 400, and in the back 510 and sides 530 of couplers 500 to facilitate the fastening of such studs 400 and couplers 500 to joists 10 via chords 100 through the use of screws or other fasteners. Referring to figures 5-8, alternative forms of couplers/end caps 500 are shown.
  • an end cap 500 such as that of figure 5 is particularly suitable for mounting via sides 530 to a joist 10 and via back 510 to another support such as a joist 10 or the track support 610 of figure 6. It is also contemplated that an end cap 500 such as that of figure 6, because it comprises flanges 520, will be particularly suitable for mounting to a rail support 620 of figure 8.
  • a secondary weight bearing element/rim band 800 comprises a C shape comprising back/vertical segment 810, upper leg/horizontal segment 820, and lower leg/horizontal segment 822. Rim band 800 also comprises stiffeners 840, upper die cut shear tabs 831 and lower die cut shear tabs 832.
  • Back 810 may vary in height but is preferred to be approximately 12" high.
  • the width of upper leg 821 and lower leg 822 may vary, but upper leg 821 is preferred to have a width of 2" while lower leg 822 is preferred to have a width of 2".
  • a preferred rim band can be formed by folding a sheet of metal approximately 16" wide into a C shape having sides of 2", 12", and 2". Less preferred embodiments may comprise a single side/back 810 without legs 821 and 822. It is contemplated that alternative embodiments may utilize various gauges of steel including, but not necessarily limited to 18 gauge and 20 gauge. It is contemplated that any length, width, or height may fall within a range of plus or minus 6" or smaller of the specified length, width or height unless such variation is expressly prohibited herein.
  • Die cut shear tabs 831 and 832 comprise pairs of tabs positioned opposite each other long the rim band with each pair of tabs being used to couple a joist to the rim band.
  • a given pair of tabs will comprise one upper tab 831 positioned adjacent the upper leg 821 of rim band 832 so that it can readily be coupled to the upper chord of a support member 10, and a lower tab 832 positioned adjacent the lower leg 822 of rim band 832 so that it can readily be coupled to the lower chord of a support member 10.
  • back 810 is 8.5" high
  • shear tabs 831 and 832 will be separated from each other by a distance of 8.5", and each will be separated from the nearest leg by less than .5" or less than .25".
  • sets of tabs having more than two sets of tabs per set may be utilized. It is contemplated that in such embodiments the tabs would be vertically aligned in a fashion similar to the pairs of tabs of figures 9-20 for use on structural members having sufficient side surface area for coupling to all of, or at least a subset of the tabs. Thus embodiments comprising sets of vertically aligned tabs wherein the sets comprise 3, 4, 5, 6, or more tabs are contemplated wherein all or a subset of tabs may be suitable for use with a given joist type.
  • Die cut shear tabs 831 and 832 are preferred to be uniform in size throughout rim band
  • Die cut shear tabs are preferred, referring to figure 13, to be formed by creating .16" wide, U-shaped cut in back 810 of rim band 800, with the "U” having a base width of 1.2" of one side and a height of 1.9" for the remaining two parallel sides.
  • the size and shape of shear tabs 831 and 832, either individually or in plural may vary in size and/or shape.
  • Each shear tab 831 or 832 is preferred to comprise a plurality of holes positioned long the length of the tab parallel to the sides of rim band 800 such that fasteners such as screws and or nails can pass project through the holes into and in a line parallel to the chords of joist 10.
  • shear tabs 831 and 832 are preferred to be spaced along the length of rim band 800 such that the separation between centers of adjacent shear tabs is such that it is a fraction of at least two standard joist spacings.
  • joists are typically spaced at 16" and 24" intervals.
  • shear tabs 831 and 832 By spacing shear tabs 831 and 832 at 8" intervals, a single rim band can be used regardless of whether 16" or 24" spacing is chosen by placing joists and every other or every third pair of shear tabs. Cutting tabs at 9.6" centers to accommodate placing joists at 19.2" centers is also contemplated.
  • Stiffening members 840 are, referring to figures 14 and 15, preferred to comprise a diamond shape having a cutout center. By punching, cutting, or otherwise creating an elongated aperture 841 in back 810, the sides of the aperture thus formed can be pushed or otherwise forced away from the back 810 of rim band 800 so as to form a diamond shape comprising sides 841a-c, perimeter outer perimeter 843, and inner perimeter 844. Although the actual dimensions of stiffening member 840 may vary, preferred embodiments will have a length between tips of the outer perimeter 843 of 8", and approximately 3" for inner perimeter 844.
  • Stiffening members 840 are also preferred to extrude from back 810 for a height of .4" at their centers, and .15"-.2" near the upper and lower points of perimeters 843 and 844.
  • a preferred diamond shape consists essentially of four sides forming two Vs positioned adjacent to each other but with opposite orientations. Each V has an angle formed by its two sides which is greater than 5 or 10 degrees, but less than or equal to 45 degrees, and the angles between adjacent sides of the Vs where they are coupled together are preferably greater than or equal to 135 degrees but less than 170 or 180 degrees. Less preferred embodiments may have different angular relationships between sides and/or may utilize more or less than four sides.
  • Less preferred embodiments may utilize smaller stiffening members shaped similarly to those described above. Such embodiments may utilize two or more vertically aligned stiffening members rather than a single larger stiffening member, or may utilize smaller stiffening members arranged in some other pattern.
  • weight bearing systems comprising rim band 800 will benefit from reduced shear. It is also contemplated that the tabs 831 and 832 help strengthen rim band 800. It has been observed that a rim band with and effective 8" track/back height is stiffer than one with a 10" track.
  • weight bearing elements in General It is contemplated that weight bearing elements according to the subject matter disclosed herein may vary greatly in size. Thus smaller primary weight bearing elements may be used in, among others, prosthetic devices including but not limited to dental implants covering multiple teeth and long bone replacements, household utensils, cars, small planes, scaffolding, and furniture. Larger elements may be used in, among others, bridges, oil tankers, large planes, and lightweight ladders.
  • weight bearing elements disclosed herein may be formed from one or more materials.
  • materials may include, but are not necessarily limited to: a metal such as stainless steel, aluminum, galvanized steel, and iron; polymers such as PVC, thermoplastic, inflexible polyethylene, and polycarbonate, polypropylene, and polyethylene (such polymers may be provided in granules, in an unpolymerized for, and or in sheets of flexible polymers); fibrous man-made material including, but not limited to, glassJcarbon fibers hardened with resins; and elemental metals including magnesium.
  • weight bearing elements according to the subject matter disclosed herein may be formed in a number of methods involving steps which include, but not limited to: pre-forming such as by rolling from a coil and/or plates of precut lengths; and preprocessing such as by coating, cutting, and/or punching.
  • One method of forming a primary weight bearing element/support member 10 might simply involve roll forming a sheet of metal into the shape shown in Figures 1 and 2 by bending each side of the sheet six times so as to form a pentagonal chord 100 and chord lip 240, and then fastening, possibly through the use of adhesives, screws, welding, or a clench press, chord lip 240 to body 210.
  • Such a method could also include a step of punching out portions of body 210 so as to form a web pattern and flanges 220 as shown in the figures.
  • Another method involves the use of polymers which may be deformed from a sheet into a pentagonal shape and then fixed by heat and/or glue.
  • granules or unpolymerized material may be filled into a mold and symmetrical portions cast with such portion then being fixed together by heat, ultrasound, glue, etceteras
  • a fibrous man-made material is wrapped around templates to create a first, immature form, which will be modified into a second, mature form by applying resin or other polymer to harden the fiber mats.
  • magnesium may be poured into a mold to obtain a first, immature form of the product which will then be fixed by heat to form a second, mature form.
  • One method of forming a secondary weight bearing element/support member 800 might simply involve (1) folding the sides of a sheet of metal to form a standard C shape comprising upper leg/horizontal segment 821, lower leg/horizontal segment 822, and back/vertical segment 810; (2) making the die cuts to form upper shear tabs 831 and lower shear tabs 832; and (3) forming stiffeners 840, possibly by a combined punch and press operation.
  • Shear tabs 831 and 832 can either be folded outward from back 810 during manufacture, or, more preferably, can be folded out as needed during weight bearing system assembly.
  • the actual order of formation of the various components of element 800 may be varied. Although die cutting the tabs is preferred, any method which allows for formation of sets of vertically aligned tabs along the length of the rim band may be utilized. Methods of Use
  • weight bearing systems according to the claimed invention may be used in building a structure by, referring to
  • Figure 19 (1) providing a rim band 800; (2) positioning the rim band on top of one or more lower studs 912; (3) coupling one or more joists 10 to the rim band such that the combination of rim band 800 and lower studs 912 at least partially supports the one or more joists 10; (4) positioning one or more upper studs 911 on top of the rim band 800 such that the combination of rim band 800 and lower studs 912 at least partially supports the upper studs 911.
  • the rim band 800 provided may comprise upper and lower horizontal segments 821 and 822 wherein the lower horizontal segment 822 rests on and is coupled to the lower studs 912 and the upper studs rest on and are coupled to the upper horizontal segment 911.
  • the end of a joist 10 is positioned between the upper and lower segments 821 and 822 of the rim band 800 such that it is directly above a lower stud 912 and directly below an upper stud 911.
  • one side of each of the upper stud 911, the lower stud 912, and the joist 10 have a side positioned in or adjacent to a common vertical reference plane A, or, even more preferably that a second side of each of the upper stud 911, the lower stud 912, and the joist 10 also have a side positioned in or adjacent to a second common vertical reference B plane, the second vertical reference plane being parallel to the first vertical reference plane.
  • the end of joist 10, the back of rim band 800, and a third side of studs 911 and 912 will be positioned in or adjacent to a third vertical reference plane C where C is perpendicular to reference planes A and B.
  • joist 10 vertically aligning a lower stud 912, and upper stud 911, and a joist 10 permits rim band 800 to support upper stud 911.
  • joist 10 obtains support from lower leg 822 and possibly back 810 of rim band 800 while providing sufficient support to upper leg 812 to prevent it from bending or otherwise deforming under the load transferred to it via upper stud 911.
  • alternative embodiments may not match joists 10 to pairs of vertically aligned upper and lower studs 911 and 912 on a one for one basis, it is preferred that embodiments placing upper stud 911 on top of rim band 800 have at least one joist vertically aligned which each pair of vertically aligned studs.
  • Track 913 may also be incorporated into the system so as to provide additional stability to upper and/or lower studs 911 and 912 and to facilitate coupling the studs to the rim band 800 and/or another structural member such as floor 930.
  • another method of use of a rim band as described herein is to at least partially imbed it within a wall (or floor or other structural member), possibly by using as a form member during formation of a concrete wall.
  • the rim band described herein is particularly suitable as the die cut shear tabs can be folded out as necessary after the wall has been formed to provide ready attachment of joists without requiring insertion of fasteners into the wall.
  • stiffeners 840 may function to prevent lateral movement of rim band 800 after the wall is formed, and may prevent buckling of the rim band during wall formation.
  • the rim band and/or joists will comprise one or more of the rim bands or joists as previously described and as claimed herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Floor Finish (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The invention is weight bearing elements and methods relating to same. The elements having a web (200), and a chord (100) connected to the web (200), the chord (100) perimeter having a cross-sectional shape of a closed multi-sided figure having at least 5 sides (110, 120A, 120B, 130A, 130B), at least two of which are substantially parallel to the web (200). The chords may have a pentagonal cross sectional shape, some may have load transferring members (400), end-caps (500), stiffened rim bands (800) having die cut tabs (831, 832) and stiffening ribs (840). Other elements comprise one or more pairs of die cut tabs (831, 832) positioned directly opposite each other such that one tab (831) is adjacent the top of the rim band (800) while the corresponding tab (832) is adjacent the bottom of the rim band (800). Some elements may comprise a diamond shape stiffener (840) extruding from the back of the rim band, formed by punching a slot into the back of the rim band (800). The weight bearing elements may be 'roll-formed' from a continuous sheet of material.

Description

WEIGHT BEARING SYSTEMS AND METHODS RELATING TO SAME
This application claims the benefit of U.S. Application No. 09/282306, filed March 31, 1999, which claims the benefit of U.S. Provisional Application No. 60/118952, filed February 5, 1999, each of which is incorporated herein by reference in its entirety.
Field of The Invention
The field of the invention is weight bearing systems such as studs, joists, beams, and related devices and methods.
Background of The Invention Weight bearing systems comprise primary weight bearing elements such as studs and joists, and secondary weight bearing elements such as rim bands and end caps. Such weight bearing elements are common components in many constructions. For example, floor and ceiling joists function as weight bearing elements and are frequently found in residential and commercial buildings. Although there is a large variety of weight bearing elements, many weight bearing elements are limited in length and weight bearing capacity due to the material(s) from which they are constructed, and are oftentimes difficult to incorporate into constructions because of their structure or cost.
Primary Weight Bearing Elements
Primary weight bearing elements can be grouped in two classes, elements predominantly made from wood, and elements predominantly made from metal. Generally, primary weight bearing elements made from wood are found in older constructions, and were traditionally made from solid saw lumber. However, due in part to a sharp decline in the supply of appropriate solid saw lumber, alternative primary weight bearing members which use less solid saw lumber were developed. Such alternatives generally comprise two chords (a top, compression chord/member and a bottom, tension chord/member extending the length of the primary weight bearing element) coupled together by a web (see U.S. Patent No. 5,664,393 issued on September 9, 1997 to Neilleux et al., U.S. Patent No. 5,560,177 issued on October 1, 1996 to Brightwell, and U.S. Patent No. 4,228,631 issued on October 21, 1980 to Geffe). A commonly found alternative is an I-joist having sawn lumber chords or plywood chords. Such an alternative element advantageously reduces the amount of wood required for construction and thereby reduces the weight of the primary weight bearing element. However, almost all forms of wooden primary weight bearing elements are relatively heavy when compared to equivalent metal structures. Moreover, wooden primary weight bearing elements are oftentimes limited to lengths of about less than 24'.
Generally, primary weight bearing elements made from metal are lighter than comparable wooden elements, may span longer distances and are fireproof. Furthermore, such elements are often available in continuous lengths. Primary weight bearing elements made from metal are common in various forms, including light gauge steel C-pro file joists, trichord open web joists and screw fabricated steel truss joists (see U.S. Patent No. 5,687,538 issued on November 18, 1997 to Frobosilo et al., U.S. Patent No. 5,499,480 issued on March 19, 1996 to Bass, U.S. Patent No. 5,457,927 issued on October 17, 1995 to Pellock et al., U.S. Patent No. 5,157,883 issued on October 27, 1992 to Meyer, U.S. Patent No. 4,793,113 issued on December 27, 1988 to Bodnar, U.S. Patent No. 4,729,201 issued on March 8, 1988 to Lauras et al., U.S. Patent No. 4,159,604 issued on July 3, 1979 to Burrell, U.S. Patent No. 3,686,819 issued on August 29, 1972 to Atkinson, U.S. Patent No. 3,541,749 issued on November 24, 1970 to Troutner, U.S. Patent No.3,221,467 issued on December 7, 1965 to Henkels, U.S. Patent No. 2,578,465 issued on December 11, 1951 to Davis, Jr. et al., U.S. Patent No. 2,387,432 issued on October 23, 1945 to Laney, and U.S. Patent No. 157,994 issued on April 4, 1950 to Palmer).
Light gauge steel C-pro file joists maybe manufactured from roll-formed galvanized steel. However, in order to achieve appropriate rigidity, light gauge steel C-pro file joists are oftentimes made from 16-gauge steel, which tends to be more difficult to drill or perforate.
Furthermore, additional elements are oftentimes difficult to attach to light gauge steel C-profile joists.
Trichord open web joists are generally more rigid than light gauge steel with C-profile but often have to be custom manufactured to fit span, load, etc. A further common disadvantage of trichord open web joists is that they are difficult to attach or to join with hangers.
Screw fabricated steel truss joists often suffer from 4 common drawbacks: They are labor-intensive, expensive in manufacturing, have to be custom made and tend to loosening of screws leading to impaired stability and additional wear. Secondary Weight Bearing Elements
Rim bands are used to couple a structural element such as a joist to an adjacent structural elements such as wall studs. A simple rim band might have a "C" shape comprising one vertical segment and two horizontal segments, with the vertical or "back" segment tending to be substantially longer than the "top" and "bottom" horizontal segments or "legs". One drawback of many rim bands is the tendency for the back to buckle. This tendency is generally compensated for by mounting the rim band to the side of one or more structural members such as a beam or studs such that compression forces are born primarily by the supporting structural member(s) rather than the rim band. An example of a rim band which is mounted in such a fashion can be found by referring to U.S. Patent No. 5,956,916 issued on September 28, 1999 to Liss. The rim band/ledger beam of Liss comprises a standard C shape with shear tabs punched out of and folded away from the back segment of the rim band. The rim band of Liss, although suitable in many applications, also suffers from the drawback that the shear tabs comprise a single piece folded out from the center of the back of the rim band. The centered shear tabs do not extend to the portions of the back adjacent to the top and bottom horizontal segments and thus would provide poor, if any, coupling to a joist comprising top and bottom cords as described above. Difficulty in attaching joists is a drawback of many rim bands. Moreover, if the sheer tabs did extend the entire length of the back, the rim band would have a tendency to bend under vertical loads at points where the shear tabs were located as only the horizontal legs of the rim band would be left to provide support at such points. Also, forming the bend causing the shear tabs to be positioned perpendicular to the back of the rim band may require more force than can easily be achieved at a work site. Yet another drawback found in some rim bands is the lack of a common rim band for use in structures having differently spaced joists.
Thus, there is still a need for improved weight bearing systems and methods to produce improved weight bearing elements.
Summary of the Invention
The present invention is directed to improved weight bearing elements and methods relating to same. Some such elements are contemplated as having a web, and a chord connected to the web, the chord perimeter having a cross-sectional shape of a closed multi-sided figure having at least 5 sides, at least two of which are substantially parallel to the web. Some members may have chords which have a pentagonal cross sectional shape, and/or may include load transferring members or end-caps.
Other elements may comprise a stiffened rim band having pairs of die cut tabs and/or stiffening ribs positioned along the member/rim band. Some such elements comprise pairs of die cut tabs positioned along the length of the member at intervals which are a fraction of the distance used in standard joist spacings. Other elements comprise one or more pairs of die cut tabs positioned directly opposite each other such that one tab is adjacent the top of the rim band while the corresponding tab is adjacent the bottom of the rim band. Still other elements may comprise a diamond shape stiffener extruding from the back of the rim band and possibly formed by punching a slot into the back of the rim band and pushing the ends of the slot out from the back so as to form the diamond shape.
In some embodiments, the weight bearing elements disclosed herein may be "roll- formed" from a continuous sheet of material such as light gauge galvanized steel. In other embodiments, they may exhibit one or more of the following feature: improved load bearing capacity; lighter weight; reduced material usage; easier to manufacture and/or install; able to be cut to custom lengths.
Although joists are only a subset of the primary weight bearing elements to which the disclosed subject matter applies, the term "joist" will be used frequently hereafter to refer to all primary weight bearing elements in order to make this disclosure easier to read. Similarly, the term "rim bands" will be used frequently hereafter to refer to all secondary wait bearing elements. The term polygonal as used herein includes figures in which the bounding line segments are joined by curves as well as more traditional "angular" figures.
Various objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components.
Brief Description of The Drawings
Figure 1 is a perspective view of a joist embodying the invention. Figure 2 is a cross-sectional view of the joist of Figure 1.
Figure 3 is a perspective view of a joist and load transfer member combination embodying the invention.
Figure 4 is a perspective view of a joist and end cap combination embodying the invention.
Figure 5 is a perspective view of a back-mounted end cap.
Figure 6 is a perspective view of a joist being connected to a "track" type support via a back mounted end-cap.
Figure 7 is a perspective view of a back and bottom mounted endcap.
Figure 8 is a perspective view of the endcap of figure 7 being used to connect a joist to a
"rail" type support via a back and bottom mounted endcap.
Figure 9 is a perspective view of a rim band embodying the invention.
Figure 10 is a plan view of a cut sheet prior to its being folded into the rim band of Figure 9.
Figure 11 is a side view of the rim band of figure 9.
Figure 12 is a top view of the rim band of figure 9.
Figure 13 is a detail view of one of the diecut tabs of the rim band of figure 9.
Figure 14 is a front view of one of the stiffeners of the rim band of figure 9.
Figure 15 is a side view of one of the stiffeners of the rim band of figure 9.
Figure 15 is a perspective view of a rim band and joist according to the claimed invention.
Figure 16 is a perspective view of a rim band and joist according to the claimed invention. Figure 17 is a perspective view of a support system according to the claimed invention having showing how joists can be coupled to every other pair of diecut tabs to space the joists 16" intervals.
Figure 18 is a perspective view of a support system according to the claimed invention having showing how joists can be coupled to every third pair of diecut tabs to space the joists 24" intervals.
Figure 19 is a perspective view of a rim band embedded in a wall and providing support to upper studs.
Figure 20 is a perspective view of a rim band embedded in a solid wall.
Detailed Description
Joist
Referring to Figures 1 and 2, a preferred primary weight bearing element/joist 10 comprises top/tension and bottom/compression chords 100 and web 200. Chords 100 comprise a top supporting side 110, a left supporting side 120A, a right supporting side 120B, and left and right transition sides 130A, and 130B. Web 200 comprises body 210, flanges 220, fasteners 230, and chord lips 240. Referring to Figure 2, the perimeters of chords 100 of joist 10 can be seen to have a polygonal cross sectional shape having 5 sides, at least two of which are substantially parallel to the web.
In preferred embodiments, supporting side 110 couples the two parallel sides 120A and 120B to each other and provides a load bearing surface. Sides 120 A and 120B are substantially parallel to each other and to the body 210 of web 200. Sides 110, 120A, 120B, 130A and 130B can be seen to be planar and to compose parts, via their exterior surfaces 111, 121 A, 121B, 131 A, and 13 IB, of the perimeter surface of the chord and to define a cavity 300 via their interior surfaces 112, 122A, 122B, 132A, and 132B, which are not part of the perimeter surface of the chord. Thus, cavity 300 is adjacent to and partially forms a cavity located within the perimeter surface of the chord. Chords 100 are generally parallel to each other, and the cavities 300 contained within them extends the length of the chords 100.
In joist/primary weight bearing element 10, the 5 planar sides 111, 121A, 121B, 131A, and 13 IB can referred in a number of ways. It is contemplated that referring to side 111 as the top mounting surface of chord 10, side 121 A as the left mounting surface of chord 10, side 12 IB as the right mounting surface of chord 10, side 131 A as the left transition surface of chord 10, and side 13 IB as the right transition surface of chord 10 may be beneficial. Using such terms to distinguish between the sides, it can be seen that joist 10 and its sides have the following features: the left side mounting surface 121 A and the right side mounting surface 121B are each substantially parallel to body 210 of web 200; the top mounting surface 111 is substantially perpendicular to the web body 210; the left side mounting surface 121 A, the right side mounting surface 121B, the left transition surface 131 A, and the right transition surface 13 IB each comprise a top edge and a bottom edge with the top edge of each of the left side mounting surface 121 A and right side mounting surface 12 IB being coupled to the top mounting surface 111, the bottom edge of the left side mounting surface 121 A being coupled to the top edge 111 of the left transition surface 131 A, and the bottom edge of the right side mounting surface 12 IB being coupled to the top edge of the right transition surface 13 IB; the left and right transition surfaces 131 A and 13 IB extend away from all of the top mounting surface 111, the left mounting surface 121 A, and the right mounting surface 12 IB; and the bottom edge of each of the left transition surface 131 A and right transition surface 13 IB are coupled to the web 200.
It is contemplated that alternative embodiments of primary weight bearing elements may have A planar sides where A is one of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or A is greater than 15.
Because chords 100 comprise planar, i.e. relatively flat and thin, sides connected together, it is possible to form chords 100 from a sheet of thin material such as galvanized steel by simply bending the material into the pentagon shape of the chords 100. It is contemplated that alternative embodiments may utilize various gauges of steel including, but not necessarily limited to 18 gauge and 20 gauge. It is also contemplated that alternative embodiments of primary weight bearing elements may have sides which are less than N inches thick where N is one of 1, .75, .5, .25, .125, and .l.
The cavity 300 within one or more of chords 100 may be filled with a material 300A so as to increase the weight or modify the weight distribution of the joist/primary weight bearing element 10. Thus, some embodiments may be ballast (from top to bottom) weighted as in a floor joist, or a drag (from bottom to top) weighted as in a ceiling joist. The material or materials used may be uniform throughout the cavity or may comprise separate elements located within the cavity 300. The materials used may also be used to modify other features of the joist other than weight including, but not limited to, buoyancy and rigidity.
Web 200 is preferred to be formed from the same sheet of material as chords 100. It is also preferred that web 200 be "open" in the sense that portions of the web body 210 are removed, preferably by punching, to create the pattern shown in Figures 1 and 2, as well as to form flanges 220. Web 200 is also preferred to comprise fasteners 230 for fastening chord lips 240 to body 210.
End Cap
It is also contemplated that joists 10 may be used in combination with load transferring studs 400 as shown in Figure 3, or couplers 500 as shown in figures 4-8. Load transfer studs may be comprised of flat plates and/or more 3-dimensional shapes such as that shown in load transfer stud 400 of Figure 3. The size and dimensions of various embodiments of transfer studs 400 may vary, as may the method and materials used to form them, so long as they serve to transfer load forces from one chord to another so as to lessen the load on web 200. Couplers 500 can be used to couple joist 10 to a second joist or to some other object. It is contemplated that in some embodiments, a particular device may function as both a load transfer stud 400 and a coupler 500. As with transfer studs 400, the size and dimensions of various embodiments of couplers 500 may vary, as may the method and materials used to form them, so long as they serve to couple a joist 10 to a second joist or another object. Transfer studs 400 and couplers 500 may also vary as to the manner in and/or location at which they are coupled to joist 10.
Some embodiments may thus attach at the ends using screws, while others may be coupled to a non-end portion of the joist, may be fastened by welding or some other means, and may be coupled to one or more sides of chords 100 or to a portion of web 200. Various methods of using transfer studs 400 and couplers 500 are pictured in Figures 3-8.
It should be noted that the use of parallel sides 120A and 120B on chords 100 provide a flat surface to which sides 430 of transfer studs 400 and sides 530 couplers 500 can be attached. It is contemplated that some embodiments will include pre-drilled holes in chords 100 and in the back 410 and sides 430 transfer studs 400, and in the back 510 and sides 530 of couplers 500 to facilitate the fastening of such studs 400 and couplers 500 to joists 10 via chords 100 through the use of screws or other fasteners. Referring to figures 5-8, alternative forms of couplers/end caps 500 are shown. It is contemplated that an end cap 500 such as that of figure 5 is particularly suitable for mounting via sides 530 to a joist 10 and via back 510 to another support such as a joist 10 or the track support 610 of figure 6. It is also contemplated that an end cap 500 such as that of figure 6, because it comprises flanges 520, will be particularly suitable for mounting to a rail support 620 of figure 8.
Rim Bands
Referring to figure 9, a secondary weight bearing element/rim band 800 comprises a C shape comprising back/vertical segment 810, upper leg/horizontal segment 820, and lower leg/horizontal segment 822. Rim band 800 also comprises stiffeners 840, upper die cut shear tabs 831 and lower die cut shear tabs 832.
Back 810 may vary in height but is preferred to be approximately 12" high. Similarly, the width of upper leg 821 and lower leg 822 may vary, but upper leg 821 is preferred to have a width of 2" while lower leg 822 is preferred to have a width of 2". Thus, a preferred rim band can be formed by folding a sheet of metal approximately 16" wide into a C shape having sides of 2", 12", and 2". Less preferred embodiments may comprise a single side/back 810 without legs 821 and 822. It is contemplated that alternative embodiments may utilize various gauges of steel including, but not necessarily limited to 18 gauge and 20 gauge. It is contemplated that any length, width, or height may fall within a range of plus or minus 6" or smaller of the specified length, width or height unless such variation is expressly prohibited herein.
Die cut shear tabs 831 and 832 comprise pairs of tabs positioned opposite each other long the rim band with each pair of tabs being used to couple a joist to the rim band. A given pair of tabs will comprise one upper tab 831 positioned adjacent the upper leg 821 of rim band 832 so that it can readily be coupled to the upper chord of a support member 10, and a lower tab 832 positioned adjacent the lower leg 822 of rim band 832 so that it can readily be coupled to the lower chord of a support member 10. In preferred embodiments where back 810 is 8.5" high, shear tabs 831 and 832 will be separated from each other by a distance of 8.5", and each will be separated from the nearest leg by less than .5" or less than .25".
In alternative embodiments, sets of tabs having more than two sets of tabs per set may be utilized. It is contemplated that in such embodiments the tabs would be vertically aligned in a fashion similar to the pairs of tabs of figures 9-20 for use on structural members having sufficient side surface area for coupling to all of, or at least a subset of the tabs. Thus embodiments comprising sets of vertically aligned tabs wherein the sets comprise 3, 4, 5, 6, or more tabs are contemplated wherein all or a subset of tabs may be suitable for use with a given joist type.
Die cut shear tabs 831 and 832 are preferred to be uniform in size throughout rim band
800 although they may very in size and shape in less preferred embodiments. Die cut shear tabs are preferred, referring to figure 13, to be formed by creating .16" wide, U-shaped cut in back 810 of rim band 800, with the "U" having a base width of 1.2" of one side and a height of 1.9" for the remaining two parallel sides. The size and shape of shear tabs 831 and 832, either individually or in plural may vary in size and/or shape.
Each shear tab 831 or 832 is preferred to comprise a plurality of holes positioned long the length of the tab parallel to the sides of rim band 800 such that fasteners such as screws and or nails can pass project through the holes into and in a line parallel to the chords of joist 10.
Referring to figures 10-13, shear tabs 831 and 832 are preferred to be spaced along the length of rim band 800 such that the separation between centers of adjacent shear tabs is such that it is a fraction of at least two standard joist spacings. As an example, joists are typically spaced at 16" and 24" intervals. By spacing shear tabs 831 and 832 at 8" intervals, a single rim band can be used regardless of whether 16" or 24" spacing is chosen by placing joists and every other or every third pair of shear tabs. Cutting tabs at 9.6" centers to accommodate placing joists at 19.2" centers is also contemplated.
Stiffening members 840 are, referring to figures 14 and 15, preferred to comprise a diamond shape having a cutout center. By punching, cutting, or otherwise creating an elongated aperture 841 in back 810, the sides of the aperture thus formed can be pushed or otherwise forced away from the back 810 of rim band 800 so as to form a diamond shape comprising sides 841a-c, perimeter outer perimeter 843, and inner perimeter 844. Although the actual dimensions of stiffening member 840 may vary, preferred embodiments will have a length between tips of the outer perimeter 843 of 8", and approximately 3" for inner perimeter 844. Stiffening members 840 are also preferred to extrude from back 810 for a height of .4" at their centers, and .15"-.2" near the upper and lower points of perimeters 843 and 844. A preferred diamond shape consists essentially of four sides forming two Vs positioned adjacent to each other but with opposite orientations. Each V has an angle formed by its two sides which is greater than 5 or 10 degrees, but less than or equal to 45 degrees, and the angles between adjacent sides of the Vs where they are coupled together are preferably greater than or equal to 135 degrees but less than 170 or 180 degrees. Less preferred embodiments may have different angular relationships between sides and/or may utilize more or less than four sides.
Less preferred embodiments may utilize smaller stiffening members shaped similarly to those described above. Such embodiments may utilize two or more vertically aligned stiffening members rather than a single larger stiffening member, or may utilize smaller stiffening members arranged in some other pattern.
It is contemplated that weight bearing systems comprising rim band 800 will benefit from reduced shear. It is also contemplated that the tabs 831 and 832 help strengthen rim band 800. It has been observed that a rim band with and effective 8" track/back height is stiffer than one with a 10" track.
Weight Bearing Elements in General It is contemplated that weight bearing elements according to the subject matter disclosed herein may vary greatly in size. Thus smaller primary weight bearing elements may be used in, among others, prosthetic devices including but not limited to dental implants covering multiple teeth and long bone replacements, household utensils, cars, small planes, scaffolding, and furniture. Larger elements may be used in, among others, bridges, oil tankers, large planes, and lightweight ladders.
It is contemplated that various embodiments of the weight bearing elements disclosed herein may be formed from one or more materials. Such materials may include, but are not necessarily limited to: a metal such as stainless steel, aluminum, galvanized steel, and iron; polymers such as PVC, thermoplastic, inflexible polyethylene, and polycarbonate, polypropylene, and polyethylene (such polymers may be provided in granules, in an unpolymerized for, and or in sheets of flexible polymers); fibrous man-made material including, but not limited to, glassJcarbon fibers hardened with resins; and elemental metals including magnesium. Methods of Formation
It is contemplated that weight bearing elements according to the subject matter disclosed herein may be formed in a number of methods involving steps which include, but not limited to: pre-forming such as by rolling from a coil and/or plates of precut lengths; and preprocessing such as by coating, cutting, and/or punching.
One method of forming a primary weight bearing element/support member 10 according to the claimed subject matter might simply involve roll forming a sheet of metal into the shape shown in Figures 1 and 2 by bending each side of the sheet six times so as to form a pentagonal chord 100 and chord lip 240, and then fastening, possibly through the use of adhesives, screws, welding, or a clench press, chord lip 240 to body 210. Such a method could also include a step of punching out portions of body 210 so as to form a web pattern and flanges 220 as shown in the figures.
Another method involves the use of polymers which may be deformed from a sheet into a pentagonal shape and then fixed by heat and/or glue. Similarly, granules or unpolymerized material may be filled into a mold and symmetrical portions cast with such portion then being fixed together by heat, ultrasound, glue, etceteras, yet another example, a fibrous man-made material is wrapped around templates to create a first, immature form, which will be modified into a second, mature form by applying resin or other polymer to harden the fiber mats. In yet one more example magnesium may be poured into a mold to obtain a first, immature form of the product which will then be fixed by heat to form a second, mature form.
One method of forming a secondary weight bearing element/support member 800 according to the claimed subject matter might simply involve (1) folding the sides of a sheet of metal to form a standard C shape comprising upper leg/horizontal segment 821, lower leg/horizontal segment 822, and back/vertical segment 810; (2) making the die cuts to form upper shear tabs 831 and lower shear tabs 832; and (3) forming stiffeners 840, possibly by a combined punch and press operation. Shear tabs 831 and 832 can either be folded outward from back 810 during manufacture, or, more preferably, can be folded out as needed during weight bearing system assembly. The actual order of formation of the various components of element 800 may be varied. Although die cutting the tabs is preferred, any method which allows for formation of sets of vertically aligned tabs along the length of the rim band may be utilized. Methods of Use
In addition to the methods explicitly and inherently disclosed above, weight bearing systems according to the claimed invention may be used in building a structure by, referring to
Figure 19: (1) providing a rim band 800; (2) positioning the rim band on top of one or more lower studs 912; (3) coupling one or more joists 10 to the rim band such that the combination of rim band 800 and lower studs 912 at least partially supports the one or more joists 10; (4) positioning one or more upper studs 911 on top of the rim band 800 such that the combination of rim band 800 and lower studs 912 at least partially supports the upper studs 911. In some methods, the rim band 800 provided may comprise upper and lower horizontal segments 821 and 822 wherein the lower horizontal segment 822 rests on and is coupled to the lower studs 912 and the upper studs rest on and are coupled to the upper horizontal segment 911. In other methods, the end of a joist 10 is positioned between the upper and lower segments 821 and 822 of the rim band 800 such that it is directly above a lower stud 912 and directly below an upper stud 911. In such methods it is preferred that one side of each of the upper stud 911, the lower stud 912, and the joist 10 have a side positioned in or adjacent to a common vertical reference plane A, or, even more preferably that a second side of each of the upper stud 911, the lower stud 912, and the joist 10 also have a side positioned in or adjacent to a second common vertical reference B plane, the second vertical reference plane being parallel to the first vertical reference plane. In many instances, the end of joist 10, the back of rim band 800, and a third side of studs 911 and 912 will be positioned in or adjacent to a third vertical reference plane C where C is perpendicular to reference planes A and B.
It is contemplated that vertically aligning a lower stud 912, and upper stud 911, and a joist 10 permits rim band 800 to support upper stud 911. In such an instance it is contemplated that joist 10 obtains support from lower leg 822 and possibly back 810 of rim band 800 while providing sufficient support to upper leg 812 to prevent it from bending or otherwise deforming under the load transferred to it via upper stud 911. Although alternative embodiments may not match joists 10 to pairs of vertically aligned upper and lower studs 911 and 912 on a one for one basis, it is preferred that embodiments placing upper stud 911 on top of rim band 800 have at least one joist vertically aligned which each pair of vertically aligned studs. Track 913 may also be incorporated into the system so as to provide additional stability to upper and/or lower studs 911 and 912 and to facilitate coupling the studs to the rim band 800 and/or another structural member such as floor 930. Referring to Figure 20, another method of use of a rim band as described herein is to at least partially imbed it within a wall (or floor or other structural member), possibly by using as a form member during formation of a concrete wall. Although many types of rim bands may be suitable for such a use, the rim band described herein is particularly suitable as the die cut shear tabs can be folded out as necessary after the wall has been formed to provide ready attachment of joists without requiring insertion of fasteners into the wall. Although the need for stiffening members 840 is less apparent when back 810 is supported by an adjacent surface, stiffeners 840 may function to prevent lateral movement of rim band 800 after the wall is formed, and may prevent buckling of the rim band during wall formation.
In preferred methods, the rim band and/or joists will comprise one or more of the rim bands or joists as previously described and as claimed herein.
Thus, specific embodiments and applications of primary and secondary weight bearing elements and related methods have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms "comprises" and "comprising" should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced.

Claims

CLAIMSWhat is claimed is:
1. A weight bearing element comprising:
a web; and
at least one chord coupled to the web, the at least one chord having a perimeter, the perimeter having a polygonal cross-sectional shape having at least 5 sides, at least two of which are substantially parallel to the web.
2. The weight bearing element of claim 1 wherein the cross section of the at least one chord, excluding any portion in parallel with and connected to the web, has a shape of a regular or irregular pentagon, the chord being connected to the web at the vertex of one angle of the pentagon.
3. The weight bearing element of claim 1 further comprising a fill material in the cavity of at least one of the at least one chord.
4. The weight bearing element of claim 1 wherein the at least one chord consists of two substantially parallel chords coupled to opposite sides of the web.
5. The weight bearing element of claim 4 wherein the chord further comprises at least 5 planar sides, each side corresponding to one side of the closed multi-sided figure of the cross-sectional shape of the chord.
6. The weight bearing element of claim 5 wherein the number of planar sides is equal to A where A is one of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or A is greater than 15.
7. The weight bearing element of claim 5 wherein each of the at least 5 planar sides is less than N inches thick where N is one of 1, .75, .5, .25, .125, and .1.
8. The weight bearing element of claim 5 wherein each of the at least 5 planar sides comprises X gauge steel where X is one of 20 and 18.
9. The weight bearing element of claim 5 formed by roll forming a single sheet of material into the web and at least one chord.
0. The weight bearing element of claim 5 wherein
the exterior surface of one of the at least 5 planar sides is a top mounting surface;
the exterior surface of one of the at least 5 planar sides is a left side mounting surface;
the exterior surface of one of the at least 5 planar sides is a right side mounting surface;
the exterior surface of one of the at least 5 planar sides is a left transition surface; and
the exterior surface of one of the at least 5 planar sides is a right transition surface;
wherein
the left side mounting surface and the right side mounting surface are each substantially parallel to the web;
the top mounting surface is substantially perpendicular to the web;
the left side mounting surface, the right side mounting surface, the left transition surface, and the right transition surface each comprise a top edge and a bottom edge;
the top edge of each of the left side mounting surface and right side mounting surface are coupled to the top mounting surface;
the bottom edge of the left side mounting surface is coupled to the top edge of the left transition surface, and the bottom edge of the right side mounting surface is coupled to the top edge of the right transition surface;
the left and right transition surfaces extend away from all of the top mounting surface, the left mounting surface, and the right mounting surface; and
the bottom edge of each of the left transition surface and right transition surface is coupled to the web.
11. The weight bearing element of claim 10 comprising at least two chords and at least one load transfer member coupled to and extending between the at least two chords, the load transfer member having a back and two sides, wherein the back is mounted flush to either the left or the right side mounting surfaces of the at least two chords, and the two sides of the load transfer member extend outward from the back and the side mounting surfaces of the chords.
12. The weight bearing element of claim 10 comprising at least two chords and at least one end cap coupled to and extending between the at least two chords, the end cap having a back and two sides, wherein a first side of the two sides of the end cap is mounted flush to the left side mounting surface of the at least two chords, a second side of the two sides of the end cap is mounted flush to the right side mounting surface of the at least two chords, and the back connects and extends between the two sides of the end cap such that the end cap, if the back were mounted to an external support, would transfer a load placed on the weight bearing element to the external support.
13. A weight bearing element comprising a planar segment, the planar segment comprising a stiffening member extruding from the planar segment and comprising at least two sets of sides wherein each set of sides comprises at least two sides forming an angle of less than 45 degrees.
14. The weight bearing element of claim 13 wherein the stiffening member comprises two sets of two sides, the two sets being positioned adjacent each other so as to form a four sided diamond shape.
15. The weight bearing element of claim 14 wherein the diamond shape comprises four angles formed by adjacent sides, the four angles comprising two approximately equal angles less than or equal to 45 degrees positioned opposite each other and two approximately equal angles less greater than or equal to 135 degrees positioned opposite each other.
16. A weight bearing member comprising:
an upper segment, a lower segment, and a back segment formed into an approximate C shape; a plurality of pairs of shear tabs positioned along the length of the back segment, each pair of tabs comprising a top tab adjacent the top segment and a bottom tab adjacent to the bottom segment, the top and bottom tabs in vertical alignment with each other and separated by a distance of at least 4", each tab comprising at least one fastener hole;
a plurality of diamond shaped stiffeners positioned along the length of the back segment.
17. The member of claim 16 wherein a stiffening member is positioned each adjacent pair of shear tabs.
18. A weight bearing member comprising at least two sets of vertically aligned shear tabs, the shear tabs within a set being separated by a distance of at least 4", and the sets of shear tabs being positioned along a length of the member and separated by a distance of between 7 and 10 inches.
19. A method of forming a weight bearing member comprising:
providing a weight bearing member comprising a planar surface;
cutting, punching, or otherwise forming a vertical opening in the planar surface;
forcing the surface suπounding the opening into a diamond shape.
20. A weight bearing system comprising at least one of the weight bearing elements of claims 1-12, and at least one of the weight bearing elements of claims 13-18.
21. A method for building structures comprising:
providing a rim band;
positioning the rim band on top of one or more lower studs;
coupling one or more joists to the rim band such that the combination of rim band and lower studs at least partially supports the one or more joists;
positioning one or more upper studs on top of the rim band such that the combination of rim band and lower studs at least partially supports the upper studs.
22. The method of claim 20 wherein the rim band comprises upper and lower horizontal segments wherein the lower horizontal at least partially supported by and coupled to the lower studs and the upper studs are at least partially supported by and coupled to the upper horizontal segment.
23. The method of claim 21 wherein the end of a joist is positioned between the upper and lower segments of the rim band such that it is directly above a lower stud and directly below an upper stud.
24. The method of claim 22 wherein one side of each of the upper stud, the lower stud, and the joist have a side positioned in or adjacent to a common vertical reference plane.
25. The method of claim 23 wherein a second side of each of the upper stud, the lower stud, and the joist have a side positioned in or adjacent to a second common vertical reference plane, the second vertical reference plane being parallel to the first vertical reference plane.
26. The method of claim 20 wherein the rim band comprises at least one of the weight bearing elements of claims 13-18.
27. The method of claim 20 wherein the joist comprises at least one of the weight bearing elements of claims 1-12.
28. The method of claim 20 wherein the rim band comprises at least one of the weight bearing elements of claims 13-18, and the joist comprises at least one of the weight bearing elements of claims 1-12.
PCT/US2000/002837 1999-02-05 2000-02-03 Weight bearing systems and methods relating to same WO2000046459A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MXPA01007926A MXPA01007926A (en) 1999-02-05 2000-02-03 Weight bearing systems and methods relating to same.
AU27544/00A AU2754400A (en) 1999-02-05 2000-02-03 Weight bearing systems and methods relating to same
CA002361619A CA2361619A1 (en) 1999-02-05 2000-02-03 Weight bearing systems and methods relating to same
EP00905958A EP1157174A4 (en) 1999-02-05 2000-02-03 Weight bearing systems and methods relating to same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11895299P 1999-02-05 1999-02-05
US60/118,952 1999-02-05
US09/282,306 1999-03-31
US09/282,306 US6170217B1 (en) 1999-02-05 1999-03-31 Bearing elements and methods relating to same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09890514 A-371-Of-International 2001-10-12
US09/981,507 Division US20020078645A1 (en) 1999-02-05 2001-10-16 Weight bearing systems and methods relating to same

Publications (1)

Publication Number Publication Date
WO2000046459A1 true WO2000046459A1 (en) 2000-08-10

Family

ID=26816907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/002837 WO2000046459A1 (en) 1999-02-05 2000-02-03 Weight bearing systems and methods relating to same

Country Status (6)

Country Link
US (1) US6170217B1 (en)
EP (1) EP1157174A4 (en)
AU (1) AU2754400A (en)
CA (1) CA2361619A1 (en)
MX (1) MXPA01007926A (en)
WO (1) WO2000046459A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7587877B2 (en) 2003-10-28 2009-09-15 Best Joist Inc Cold-formed steel joists
GB2492176A (en) * 2011-06-24 2012-12-26 Univ City Beam with web having apertures with straight and curved edges
GB2500030A (en) * 2012-03-07 2013-09-11 Illinois Tool Works Bracing element for a joist or truss
US8943776B2 (en) 2012-09-28 2015-02-03 Ispan Systems Lp Composite steel joist
EP2521826A4 (en) * 2009-11-09 2015-07-22 Ispan Systems Lp Unitary steel joist
RU2633851C1 (en) * 2016-05-04 2017-10-18 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ Construction element for manufacturing lattice structures
RU2656896C1 (en) * 2017-10-02 2018-06-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный архитектурно-строительный университет" КГАСУ Method of manufacturing a lattice structure
NL2019456B1 (en) * 2017-08-28 2019-03-11 Infra B V Assembly of a carrier and a filling element, such a filling element, and a method for the application thereof
GB2511155B (en) * 2013-02-25 2020-08-05 Illinois Tool Works Joist end cap
US11459755B2 (en) 2019-07-16 2022-10-04 Invent To Build Inc. Concrete fillable steel joist

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301854B1 (en) * 1998-11-25 2001-10-16 Dietrich Industries, Inc. Floor joist and support system therefor
US6397550B1 (en) * 1999-11-12 2002-06-04 Steven H. Walker Metal structural member
US6611977B1 (en) * 2000-01-31 2003-09-02 Ethan Joel Schuman Frame apparatus
US6436552B1 (en) * 2000-10-16 2002-08-20 Steven H. Walker Structural metal framing member
US6802170B2 (en) 2002-01-07 2004-10-12 Kurt K. Davis Box beam and method for fabricating same
AU2003206400A1 (en) * 2002-01-07 2003-07-24 Maury Golovin Cold-formed steel joists
CA2404320C (en) * 2002-09-30 2005-02-08 Ernest R. Bodnar Steel stud with openings and edge formations and method
US6941596B2 (en) * 2003-03-21 2005-09-13 Ethan Joel Schuman Bed frame
US20040255535A1 (en) * 2003-06-19 2004-12-23 Herren Thomas R. Multi-purpose construction assembly and method
PL1510643T3 (en) * 2003-09-01 2018-06-29 Forster Profilsysteme Ag Profile and method of its manufacture
US8407966B2 (en) 2003-10-28 2013-04-02 Ispan Systems Lp Cold-formed steel joist
CN1316128C (en) * 2004-06-17 2007-05-16 杜军桦 Glass supporting method and structure of glass curtain wall
US8266856B2 (en) 2004-08-02 2012-09-18 Tac Technologies, Llc Reinforced structural member and frame structures
US7930866B2 (en) * 2004-08-02 2011-04-26 Tac Technologies, Llc Engineered structural members and methods for constructing same
US8065848B2 (en) 2007-09-18 2011-11-29 Tac Technologies, Llc Structural member
CN101031696B (en) * 2004-08-02 2010-05-05 Tac科技有限责任公司 Engineered structural members and methods for constructing same
US7721496B2 (en) * 2004-08-02 2010-05-25 Tac Technologies, Llc Composite decking material and methods associated with the same
US20060032183A1 (en) * 2004-08-16 2006-02-16 Peterson Neal L Construction member
US7765771B2 (en) * 2004-10-08 2010-08-03 Ware Industries, Inc. Structural framing system and components thereof
US20060150548A1 (en) * 2004-12-27 2006-07-13 Gcg Holdings Ltd Floor system with stell joists having openings with edge reinforcements and method
US7434366B2 (en) * 2005-01-11 2008-10-14 A. Zahner Company I-beam with curved flanges
US7818945B2 (en) * 2005-03-31 2010-10-26 The Boeing Company Composite structural member having an undulating web and method for forming same
US9340977B2 (en) * 2005-04-27 2016-05-17 Lakdas Nanayakkara Multi-element constructional assembly for joist girders
US20120036813A9 (en) * 2005-04-27 2012-02-16 Lakdas Nanayakkara Multi-element constructional assembly
US8146321B2 (en) * 2005-09-02 2012-04-03 Tecton Products, Llc Structural wall building product
US20070056240A1 (en) * 2005-09-15 2007-03-15 Lakdas Nanayakkara Press-formable light-gauge truss framing element
CA2652587C (en) * 2006-05-18 2014-12-02 Paradigm Focus Product Development Inc. Light steel trusses and truss systems
US20080022624A1 (en) * 2006-07-25 2008-01-31 Hanson Courtney J Joist support
US20080110121A1 (en) * 2006-11-13 2008-05-15 Phil Edmends Joist end cap
US7669379B2 (en) * 2006-12-15 2010-03-02 Gerald Bruce Schierding Metal truss system
US20080245025A1 (en) * 2007-04-03 2008-10-09 Valorem Building Systems, Inc. Building system
US20090113827A1 (en) * 2007-11-07 2009-05-07 Scafco Corporation Metal construction member
US7877937B2 (en) * 2008-09-02 2011-02-01 Amonix, Inc. High-stiffness, lightweight beam structure
CA2742742C (en) * 2008-09-08 2015-11-17 Ispan Systems Lp Adjustable floor to wall connectors for use with bottom chord and web bearing joists
US8038186B2 (en) * 2008-12-02 2011-10-18 Roth Russell W Carrier support for attaching to a motor vehicle
CA2778223C (en) 2009-07-22 2017-08-15 Ispan Systems Lp Roll formed steel beam
US8397462B2 (en) 2011-06-03 2013-03-19 Usg Interiors, Llc Open web grid runner
US8881475B2 (en) 2012-01-30 2014-11-11 Raymond J. Lewis Floor joist strengthening and utility conduit organizing system
US9021759B2 (en) * 2012-06-13 2015-05-05 Usg Interiors, Llc Serpentine insert for open web grid
NZ703349A (en) * 2012-06-26 2017-03-31 The Trustee For House Of Parts Trust Trading As House Of Parts Pty Ltd Building system
US20140311829A1 (en) * 2013-04-23 2014-10-23 DDI, Inc. Tree stand
RU2584337C1 (en) * 2015-02-18 2016-05-20 Общество С Ограниченной Ответственностью "Научно-Производственное Объединение "Инновационные Технологии - Киси" Triangular grid support
RU2641354C1 (en) * 2016-11-22 2018-01-17 Линар Салихзанович Сабитов Trihedral lattice support
US20190343109A1 (en) * 2017-04-17 2019-11-14 Doran Ray Bittner Tree stand
WO2018222392A1 (en) * 2017-06-02 2018-12-06 Austin Building And Design Inc. Girders, joists and roof system
US10570618B2 (en) * 2018-03-06 2020-02-25 Timothy Michael LIESCHEIDT Building chord and building truss
US20220048324A1 (en) * 2018-12-28 2022-02-17 Bridgestone Americas Tire Operations, Llc Metal web for a non-pneumatic tire and method of making same
US20210316343A1 (en) * 2020-04-09 2021-10-14 Imperial Systems, Inc. Fume Hood Having Structurally Integrated Components
US11933046B1 (en) * 2022-07-14 2024-03-19 Anthony Attalla Stiff wall panel assembly for a building structure and associated method(s)

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US157994A (en) 1874-12-22 Improvement in apparatus for forming molten lead into bars
US1924881A (en) * 1930-02-13 1933-08-29 Budd Edward G Mfg Co Open truss girder
US1924880A (en) * 1930-02-07 1933-08-29 Budd Edward G Mfg Co Open truss girder
US2007898A (en) * 1931-09-30 1935-07-09 Budd Edward G Mfg Co Sheet metal structure
US2029645A (en) * 1933-12-18 1936-02-04 Stran Steel Corp Structural element
US2092472A (en) * 1936-12-04 1937-09-07 Rafter Machine Company Stud and rafter
US2167835A (en) * 1937-12-29 1939-08-01 Gerald G Greulich Structural joist or nailer stud
US2387432A (en) 1943-12-28 1945-10-23 Laney George W Du Structural wall section
US2578465A (en) 1946-10-07 1951-12-11 Davisbilt Steel Joist Inc Metal joist
US3050831A (en) * 1959-05-29 1962-08-28 Diamond Harry Methods of making structural beams
US3221467A (en) 1963-02-01 1965-12-07 American Metalcore Systems Inc Structural member
US3241285A (en) * 1964-05-27 1966-03-22 Int Nickel Co Structural member for supporting loads
US3541749A (en) 1968-09-20 1970-11-24 Arthur L Troutner Metal truss
US3686819A (en) 1970-01-14 1972-08-29 Archibald H Atkinson Structural chord members for joist construction
US4159604A (en) 1978-01-05 1979-07-03 Anthes Equipment Limited Joist
US4228631A (en) 1978-09-12 1980-10-21 Geffe Bruce T Hollow rectangular joist
US4660799A (en) * 1986-01-29 1987-04-28 Butland Edward H Load support structure
US4729201A (en) 1982-08-13 1988-03-08 Hambro Structural Systems Ltd. Double top chord
US4793113A (en) 1986-09-18 1988-12-27 Bodnar Ernest R Wall system and metal stud therefor
US5157883A (en) 1989-05-08 1992-10-27 Allan Meyer Metal frames
US5457927A (en) 1993-07-15 1995-10-17 Mitek Holdings, Inc. Truss
US5499480A (en) 1993-03-31 1996-03-19 Bass; Kenneth R. Lightweight metal truss and frame system
US5560177A (en) 1996-03-04 1996-10-01 Brightwell; Lionel L. Trimmable open web joist
US5664393A (en) 1996-08-01 1997-09-09 Veilleux; Robert Structural wooden joist
US5687538A (en) 1995-02-14 1997-11-18 Super Stud Building Products, Inc. Floor joist with built-in truss-like stiffner
US5761873A (en) * 1991-04-05 1998-06-09 Slater; Jack Web, beam and frame system for a building structure
US5956916A (en) 1997-10-30 1999-09-28 Steel Floors, Llc Shear tab method and apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US693560A (en) * 1900-08-01 1902-02-18 Edmond Molloy Sheet-metal i-beam.
DE1132701B (en) * 1957-07-22 1962-07-05 E H Kurt Kloeppel Dr Ing Dr In Welded steel girder of? -Shaped cross-section with hollow flanges
US3129493A (en) * 1961-06-20 1964-04-21 Charles Davis Ltd Methods for the manufacture of lightweight structural members
DE2736926A1 (en) * 1976-08-18 1978-02-23 Beachley Machinery FORMWORK BEAM
FR2606123B1 (en) * 1986-10-29 1988-12-09 Feralco Sa PROFILED SMOOTH FOR SUPPORTING LOADS, ESPECIALLY FOR STORAGE LOCKERS
CN1035077C (en) * 1988-07-25 1997-06-04 管科技有限公司 Structural member with welded hollow end sections and process for forming same
US5553437A (en) * 1990-05-03 1996-09-10 Navon; Ram Structural beam
GB2278621B (en) * 1992-03-06 1995-08-16 Bhp Steel Sheet metal structural member and frames incorporating same
CA2077429C (en) * 1992-09-02 1999-03-30 Ernest R. Bodnar Roll formed metal member
US5771653A (en) * 1995-10-12 1998-06-30 Unimast Incorporated Chord for use as the upper and lower chords of a roof truss

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US157994A (en) 1874-12-22 Improvement in apparatus for forming molten lead into bars
US1924880A (en) * 1930-02-07 1933-08-29 Budd Edward G Mfg Co Open truss girder
US1924881A (en) * 1930-02-13 1933-08-29 Budd Edward G Mfg Co Open truss girder
US2007898A (en) * 1931-09-30 1935-07-09 Budd Edward G Mfg Co Sheet metal structure
US2029645A (en) * 1933-12-18 1936-02-04 Stran Steel Corp Structural element
US2092472A (en) * 1936-12-04 1937-09-07 Rafter Machine Company Stud and rafter
US2167835A (en) * 1937-12-29 1939-08-01 Gerald G Greulich Structural joist or nailer stud
US2387432A (en) 1943-12-28 1945-10-23 Laney George W Du Structural wall section
US2578465A (en) 1946-10-07 1951-12-11 Davisbilt Steel Joist Inc Metal joist
US3050831A (en) * 1959-05-29 1962-08-28 Diamond Harry Methods of making structural beams
US3221467A (en) 1963-02-01 1965-12-07 American Metalcore Systems Inc Structural member
US3241285A (en) * 1964-05-27 1966-03-22 Int Nickel Co Structural member for supporting loads
US3541749A (en) 1968-09-20 1970-11-24 Arthur L Troutner Metal truss
US3686819A (en) 1970-01-14 1972-08-29 Archibald H Atkinson Structural chord members for joist construction
US4159604A (en) 1978-01-05 1979-07-03 Anthes Equipment Limited Joist
US4228631A (en) 1978-09-12 1980-10-21 Geffe Bruce T Hollow rectangular joist
US4729201A (en) 1982-08-13 1988-03-08 Hambro Structural Systems Ltd. Double top chord
US4660799A (en) * 1986-01-29 1987-04-28 Butland Edward H Load support structure
US4793113A (en) 1986-09-18 1988-12-27 Bodnar Ernest R Wall system and metal stud therefor
US5157883A (en) 1989-05-08 1992-10-27 Allan Meyer Metal frames
US5761873A (en) * 1991-04-05 1998-06-09 Slater; Jack Web, beam and frame system for a building structure
US5499480A (en) 1993-03-31 1996-03-19 Bass; Kenneth R. Lightweight metal truss and frame system
US5457927A (en) 1993-07-15 1995-10-17 Mitek Holdings, Inc. Truss
US5687538A (en) 1995-02-14 1997-11-18 Super Stud Building Products, Inc. Floor joist with built-in truss-like stiffner
US5560177A (en) 1996-03-04 1996-10-01 Brightwell; Lionel L. Trimmable open web joist
US5664393A (en) 1996-08-01 1997-09-09 Veilleux; Robert Structural wooden joist
US5956916A (en) 1997-10-30 1999-09-28 Steel Floors, Llc Shear tab method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1157174A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7587877B2 (en) 2003-10-28 2009-09-15 Best Joist Inc Cold-formed steel joists
EP2521826A4 (en) * 2009-11-09 2015-07-22 Ispan Systems Lp Unitary steel joist
GB2492176A (en) * 2011-06-24 2012-12-26 Univ City Beam with web having apertures with straight and curved edges
GB2500030A (en) * 2012-03-07 2013-09-11 Illinois Tool Works Bracing element for a joist or truss
GB2500030B (en) * 2012-03-07 2018-11-28 Illinois Tool Works Bracing element having an aperture and flange
US8943776B2 (en) 2012-09-28 2015-02-03 Ispan Systems Lp Composite steel joist
GB2511155B (en) * 2013-02-25 2020-08-05 Illinois Tool Works Joist end cap
RU2633851C1 (en) * 2016-05-04 2017-10-18 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ Construction element for manufacturing lattice structures
NL2019456B1 (en) * 2017-08-28 2019-03-11 Infra B V Assembly of a carrier and a filling element, such a filling element, and a method for the application thereof
RU2656896C1 (en) * 2017-10-02 2018-06-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный архитектурно-строительный университет" КГАСУ Method of manufacturing a lattice structure
US11459755B2 (en) 2019-07-16 2022-10-04 Invent To Build Inc. Concrete fillable steel joist

Also Published As

Publication number Publication date
US6170217B1 (en) 2001-01-09
EP1157174A4 (en) 2004-06-16
CA2361619A1 (en) 2000-08-10
MXPA01007926A (en) 2003-06-04
EP1157174A1 (en) 2001-11-28
AU2754400A (en) 2000-08-25

Similar Documents

Publication Publication Date Title
EP1157174A1 (en) Weight bearing systems and methods relating to same
EP0637656B1 (en) Truss
US4078352A (en) Truss-web connector
US7877961B2 (en) Lower chord bearing cold-formed steel joists
US8281551B2 (en) Corrugated shearwall
US4435940A (en) Metal building truss
CA2491194C (en) Floor system with steel joists having openings with edge reinforcements and method
AU2008201097A1 (en) Beam for a drywall ceiling soffit
WO2002001016A1 (en) Structural member for use in the construction of buildings
US20020078645A1 (en) Weight bearing systems and methods relating to same
EP1548209B1 (en) Corrugated shearwall
WO2005042869A1 (en) Cold-formed steel joists
US4679370A (en) Surface-forming panel
US6098360A (en) Offset web composite beam
CA1201568A (en) Truss assembly and attachment member for use with trusses
AU2004200395B2 (en) Building Frame Member
USRE31807E (en) Truss-web connector
GB1573113A (en) Timber trusses
KR200398356Y1 (en) Steel joist using formed thin plate
CN218406463U (en) Fixing structure for steel bar truss floor support plate and wood formwork
KR100533805B1 (en) Steel joist using formed thin plate
AU778138B2 (en) A fixing member
CA2542848C (en) Upper chord bearing cold-formed steel joists
JP2004316114A (en) Composite beam member
JP2000300084A (en) Plastic structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ CZ DE DE DK DK DM EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2361619

Country of ref document: CA

Ref country code: CA

Ref document number: 2361619

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/007926

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2000905958

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09890514

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000905958

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000905958

Country of ref document: EP