WO2000043489A1 - Method and additive for reducing solid distillation residue - Google Patents

Method and additive for reducing solid distillation residue Download PDF

Info

Publication number
WO2000043489A1
WO2000043489A1 PCT/JP2000/000187 JP0000187W WO0043489A1 WO 2000043489 A1 WO2000043489 A1 WO 2000043489A1 JP 0000187 W JP0000187 W JP 0000187W WO 0043489 A1 WO0043489 A1 WO 0043489A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation
fermentation
protease
residue
enzyme
Prior art date
Application number
PCT/JP2000/000187
Other languages
French (fr)
Japanese (ja)
Inventor
Hikaru Takakura
Ryo Hirano
Nobuto Koyama
Kiyozo Asada
Ikunoshin Kato
Original Assignee
Takara Shuzo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co., Ltd. filed Critical Takara Shuzo Co., Ltd.
Priority to AU20055/00A priority Critical patent/AU2005500A/en
Publication of WO2000043489A1 publication Critical patent/WO2000043489A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12HPASTEURISATION, STERILISATION, PRESERVATION, PURIFICATION, CLARIFICATION OR AGEING OF ALCOHOLIC BEVERAGES; METHODS FOR ALTERING THE ALCOHOL CONTENT OF FERMENTED SOLUTIONS OR ALCOHOLIC BEVERAGES
    • C12H6/00Methods for increasing the alcohol content of fermented solutions or alcoholic beverages
    • C12H6/02Methods for increasing the alcohol content of fermented solutions or alcoholic beverages by distillation

Definitions

  • the present invention relates to a method for reducing the solid content of a distillation residue, which is useful for improving the efficiency of a distillation step of a fermentation product, and an additive for reducing the solid content for use in the method.
  • Distillation is used to recover volatile fermentation products, and many distillation residues are formed after distillation.
  • Shochu for example, is a distilled liquor produced by performing alcohol fermentation using rice, buckwheat, wheat, brown sugar, etc. as raw materials, and distilling the obtained moromi.
  • a large amount of distillation residue is produced even during the industrial production of shochu.
  • Most of this distillation residue is disposed of by ocean dumping, but the disposal of the distillation residue by ocean is being abolished by the London Convention on the Parties of the Treaty of 1993.
  • the methane fermentation method (1) is a method for treating solid organic matter. Performance is low and the processing equipment must be large. In the method (2), solid-liquid separation is difficult, or a large amount of solid components are contained. There is a problem that the active ingredient is incinerated without being used.
  • Japanese Patent No. 2,916,666 discloses a technique for reducing the solid content in the residue after distillation by allowing an enzyme to act on mash during fermentation.
  • changes in components in the mash may affect the growth and fermentation ability of microorganisms contributing to fermentation, so fermentation conditions are adjusted according to the type and amount of enzyme to be added. There is a need. Purpose of the invention
  • an object of the present invention is to provide a means for previously reducing the amount of solid components in a distillation residue generated in a distillation process of a fermentation product by allowing a polymer degrading enzyme to act during distillation.
  • a polymer degrading enzyme to act during distillation.
  • the first invention of the present invention comprises a step of performing distillation in the presence of a polymerase having activity under distillation conditions, wherein the distillation residue is reduced in solid content.
  • the present invention relates to a method, wherein the second invention comprises a polymerase that is active under distillation conditions and a microorganism that produces Z or a polymerase that is active under distillation conditions, and is added to the fermentation mash before the start of distillation.
  • the present invention relates to an additive for reducing the amount of solids in a distillation residue, which is characterized in that:
  • the solid content in the distillation residue is solubilized, and the weight of the solid content can be reduced.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems of the prior art.As a result, in the distillation step, a polymer degrading enzyme having an activity under distillation conditions in fermentation mash, for example, a heat-resistant protease was used. It was found that the solidification in the distillation residue was solubilized by the action, and the weight of the solids was reduced.
  • the above-mentioned polymer degrading enzyme A microorganism that produces the desired fermentation product is co-cultured during fermentation, and a microorganism that produces the desired fermentation product is given the ability to express the above-mentioned high-molecular-weight degrading enzyme and used for fermentation.
  • the fermentation mash obtained by such a method as above is used for fermentation using the recombinant organism into which the polymer degrading enzyme gene has been introduced, and the solid content is efficiently solubilized in the distillation process. However, it was found that the weight of the solid content in the residue was reduced.
  • Fig. 1 A diagram showing the decrease in the amount of solids in shochu distillation residue by protease treatment.
  • the horizontal axis is the enzyme used and the processing temperature (° C), and the vertical axis is the decrease rate of the solid content.
  • FIG. 2 is a graph showing the decrease in the amount of solids in the residue when protease is acted on at various temperatures.
  • the horizontal axis shows the incubation temperature (° C), and the vertical axis shows the solid content reduction rate (%).
  • Figure 3 A graph showing the decrease in the solid content in the residue when cellulase and protease were allowed to act.
  • the horizontal axis indicates the added enzyme, and the vertical axis indicates the rate of decrease (%) in the solid content.
  • Figure 4 A graph showing the amount of ⁇ -polyglutamic acid obtained by culturing Bacillus nut using the distillation residue as a medium. The horizontal axis indicates the used residue, and the vertical axis indicates the ⁇ -polyglutamic acid concentration (mg Zm 1) in the culture supernatant.
  • FIG. 5 is a view showing a decrease in the amount of solid content in the residue when a microorganism into which a protease gene is introduced is added and the microorganism is allowed to act.
  • the horizontal axis indicates the amount of microbial suspension added ( ⁇ 1), and the vertical axis indicates the rate of decrease in solid content (%).
  • FIG. 6 is a diagram showing the efficiency of filtration of the residue from the combustion distillation by protease treatment.
  • the horizontal axis shows the time (minutes) of centrifugation, and the vertical axis shows the filtration rate (%).
  • open squares ( ⁇ ) represent the control
  • closed triangles ( ⁇ ), open circles ( ⁇ ), and closed circles ( ⁇ ) represent the results obtained using the 2 U, 4 U, and 8 U proteases, respectively.
  • Fermentation is not particularly limited, and examples thereof include alcohol (ethanol) fermentation, acetone butanol fermentation, lactic acid fermentation, propionic acid fermentation, and glycerin fermentation. Fermentation is a phenomenon in which various microorganisms such as acetic acid bacteria and lactic acid bacteria, such as yeasts and koji molds, are used to decompose sugar and starch to produce alcohol and other organic acids and carbon dioxide.
  • fermentation product refers to a metabolite produced by fermentation.
  • INDUSTRIAL APPLICATION This invention can be utilized for manufacture of the fermentation product which can be collect
  • volatile fermentation products such as ethanol, acetone, and butanol.
  • the following are produced using alcohol fermentation and distillation.
  • shochu, awamori, and fruits obtained by distilling a fermented liquid (fermented moromi) prepared from rice, wheat, sweet potato, potato, buckwheat, and the like as raw materials, and starch in the raw materials through sugar cane dipping are used as raw materials.
  • These include brandy obtained by distilling the obtained fruit wine, whiskey obtained by distilling the malt fermented liquid, molasses obtained from sugarcane and sugar beet, and alcohol for fuel using corn and the like as raw materials.
  • distillation conditions refers to the distillation conditions used to obtain the desired fermentation product. Distillation conditions vary depending on the desired fermentation product. For example, distillation of shochu is generally carried out at 94 to 100 ° C for about 8 hours in normal pressure distillation and about 5 hours at 48 ° C in vacuum distillation.
  • microorganism that produces a target fermentation product refers to a microorganism used for fermentation to produce a target product.
  • Microorganisms used for alcohol fermentation include yeast of the genus Saccharomyces, yeast of the genus Zygosaccharomyces, and Clostridium.
  • distillation residue means a mixture obtained by fermenting a raw material in a fermentation step, and also means the contents of a distillation apparatus during distillation.
  • the mixture of solids and liquid remaining inside the distillation apparatus after the fermentation mash has been distilled is called “distillation residue”. Accordingly, the term “distillation residue solids” as used herein refers to solids in the distillation residue.
  • the present invention is characterized in that a polymer degrading enzyme having activity under distillation conditions is allowed to act on fermentation mash during distillation to reduce the amount of solids in the distillation residue. It should be noted that the scope of the present invention is not limited by whether or not the polymer degrading enzyme acts on the distillation residue after the distillation step. In general, the distillation residue maintains the same temperature and pH conditions for a considerable time after the distillation as during the distillation, and in practicing the present invention, the polymer degrading enzyme may act on the distillation residue after the distillation is completed. .
  • the type of the polymer degrading enzyme that can be used in the present invention is not particularly limited as long as it is substantially active under distillation conditions and can reduce the solid content of the distillation residue. Absent.
  • a heat-resistant polymer-degrading enzyme having activity under the temperature conditions at which distillation is performed can be suitably used in the present invention.
  • the enzyme used in the present invention has resistance to the target fermentation product.
  • an enzyme that does not easily deactivate at a high temperature of 50 ° C. or higher and coexistence of ethanol and can exhibit enzymatic activity can be suitably used.
  • polymer refers to components contained in fermentation raw materials and microorganisms used for fermentation, for example, proteins, cellulose, hemicellulose, pectin, cell wall components (mucopeptide, chitin,
  • the polymer degrading enzyme used in the present invention can be selected according to the components contained in the fermentation raw material and the microorganism used in the fermentation, for example, protease, cellulase, hemicellulase, pectinase, cell wall degrading enzyme, Examples include nucleases. These enzymes may be used alone or in combination of a plurality of enzymes.
  • Protease is a general term for enzymes that cleave peptide bonds such as proteins and polypeptides.
  • the enzyme is used for solubilizing protein components derived from fermentation raw materials, for example, rice, wheat, sweet potato, potato, soba, and the like, and microorganisms used for fermentation, for example, yeast and Escherichia coli. However, it can act on fermented moromi.
  • the protease that can be used in the present invention is not particularly limited, but from the viewpoint of the temperature during and after distillation, a protease that is active at a high temperature (for example, 55 ° C. or higher) and has heat resistance is preferable.
  • Enzymes derived from microorganisms can be used.
  • proteases derived from microorganisms for example, subtilisin and thermolysin derived from Bacillus genus bacteria can be used. It can be suitably used for the invention.
  • the protease PFUS International Publication No. WO97 / 21823 used in the following examples is an enzyme having extremely high heat resistance and can be used particularly preferably in the present invention.
  • Cellulase is a general term for enzymes that degrade cellulose, that is, a polymer of dulcose consisting of j3-1,4-darcoside bonds, and can be broadly classified into end-type and exo-type.
  • Endo-type cellulases such as carboxymethyl cellulase (CMCase), mainly hydrolyze j3-1,4-darcoside bonds in amorphous cellulose randomly to produce reducing sugars.
  • Exo-type cellulases such as Avicelase, have a high activity of degrading crystalline cellulose, and cleave cellulose from the non-reducing end to produce mainly cellobiose.
  • cellulase-producing microorganisms include filamentous fungi belonging to the genus Trichoderma (Aspergillus), such as the genus Clostridium, the anaerobic bacteria belonging to the genus Ruminococcus, and the genus Bacteroides. Can be mentioned. Cellulases are known to degrade crystalline cellulose through the synergistic action of several different cellulase properties.
  • Hemicellulase is a general term for hemicellulose, an enzyme that degrades insoluble polysaccharides other than cellulose and pectin, which are components of the cell wall of land plants.
  • xylan, mannan, araban, xyloglucan contained in cell walls of many dicotyledonous plants, and arapinoglucuronoxylan contained in cell walls of monocotyledonous plants, mainly grasses are hemicellulose.
  • Enzymes that hydrolyze these include, for example, xylanase, mannase, and arabinase.
  • Microorganisms that produce hemicellulase include, for example, Aspergillus niger, which produces cell-mouth synths.
  • Pectinase is a generic name for enzymes that degrade pectin in cell walls of higher plants.
  • Pectin is a mixture of protopectin, pectinic acid, pectinic acid, etc., but the main component is an acidic polysaccharide consisting of ⁇ -1,4-linked D-galataturonic acid.
  • Pectinase is known to hydrolyze the ⁇ -1,4 bond of pectin.
  • microorganisms that produce actinase include Aspergillus niger, Cibuithyrium diplodiella, Fusarium monilifu and Fusarium moniliforme.
  • Aspergillus niger Cibuithyrium diplodiella
  • Fusarium monilifu Fusarium moniliforme
  • cellulosic biomass such as rice straw, straw, bagasse, etc.
  • polysaccharides such as hemicellulose and pectin. Therefore, by allowing cellulase, hemicellulase, and actinase to act on the fermentation mash, these polysaccharides can be decomposed and the solid content in the distillation residue can be reduced.
  • lignin-degrading enzymes can act to decompose lignin contained in fermentation mash and distillation residues.
  • the enzyme is a general term for lignin, an enzyme that reduces the molecular weight of a hydroxyphenylpropane compound, and is known to exhibit activities such as laccase, peroxidase, and oxygenase.
  • Microorganisms that produce lignin-degrading enzymes include basidiomycetes, such as Coriolus versicolor, Kinia mushrooms (Poria subacida), and filamentous fungi belonging to ascomycetes, such as Fusarium * solani (Fusarium solani). be able to.
  • Cell wall degrading enzymes are used to degrade the cell walls of microorganisms used in fermentation, such as yeast and E. coli.
  • lysozyme, chitinase,] 3-dalcanase and the like are used as cell wall degrading enzymes.
  • Lysozyme is widely distributed in the animal and plant kingdoms such as chicken egg whites, human tears and saliva, and papaya, and ⁇ -1,1, which exists between mucopeptides such as mucopeptides in bacterial cell walls, between N-acetylmuramic acid and N-acetyldarcosamine. 4 It is an enzyme that hydrolyzes one bond.
  • Microorganisms that produce lysozyme include Streptomyces erythraeus, which belongs to the genus Streptomyces.
  • Chitinase hydrolyzes the i3-1,4-single bond of chitin, the main polysaccharide that constitutes arthropods, molluscs, exo-animals, fungal cell walls, etc., to produce N-acetyldarcosamine and its oligosaccharides.
  • ⁇ -glucanase is a major component of the yeast cell wall. 1,3—The enzyme that breaks bonds. Microorganisms that produce j3-glucanase include, for example, Bacillus circulans.
  • Nuclease is a general term for enzymes that degrade nucleic acids, that is, polynucleotides.It refers to ribonucleases that specifically degrade RNA, deoxyribonucleases that specifically degrade DNA, and specific base sequences of DNA. Recognition restriction enzymes, enzymes that act on both DNA and RNA, such as Micrococcus endonuclease, are included. Nucleases can be broadly classified into endo- and exo-types. End-type nucleases, for example, DNase I derived from the skeletal knee, restriction enzymes, etc., bind to the 3'5, monophosphodiester bond inside the polynucleotide chain. To yield fragmented polynucleotide-oligonucleotides.
  • An exo-type nuclease is one that degrades a polynucleotide chain sequentially from one end to produce a mononucleotide, and includes, for example, the 3 ′ ⁇ 5 ′ exonuclease activity of eukaryotic DNA polymerase ⁇ .
  • Examples of the nuclease-producing microorganism include Escherichia coli, bacteria belonging to the genus Bacillus and Streptomyces, and filamentous fungi such as Aspergillus oryzae.
  • the above-mentioned high-molecular-weight degrading enzyme may be one obtained by purifying from its original source or one produced by genetic engineering using a gene encoding the enzyme.
  • the enzyme is an enzyme derived from a thermophilic bacterium
  • the gene encoding the enzyme is introduced into a host microorganism that grows at room temperature, such as Escherichia coli or Bacillus bacterium, to express the enzyme. Purification becomes easy.
  • the protease PFUS can be secreted and expressed outside the host at 37 ° C. by using a bacterium belonging to the genus Bacillus (International Publication WO97 / 21823).
  • these high-molecular-weight degrading enzymes need not necessarily be purified. Further, the enzyme may be modified by a known method. Examples of such enzymes include those in which the original amino acid sequence has been modified by substitution, deletion, insertion, addition, or the like by genetic engineering techniques, or in which the amino acid residue has been chemically modified. One.
  • the treatment may be carried out under conditions where the polymer degrading enzyme exhibits activity. If the pH of the fermentation mash after fermentation is significantly different from the optimal pH of the polymer-degrading enzyme, the pH needs to be adjusted so that the enzyme acts.
  • thermostable high molecular weight degrading enzyme suitable for the present invention can be screened and used from microorganisms, preferably thermophilic microorganisms.
  • the novel polymer-degrading enzyme can be obtained, for example, by using a gene encoding a known high-molecular-weight enzyme.
  • a DNA fragment consisting of a nucleotide sequence encoding an amino acid sequence of a region showing high homology to an amino acid sequence such as subtilisin in an acid sequence encoding a protease PFUL described in WO 95/34645, or
  • an oligonucleotide designed based on the base sequence as a probe or a primer another Pyrococcus furiosus-derived protease gene different from protease PFUL, that is, a protease PFUS gene, can be obtained. It has been isolated and its amino acid sequence has been elucidated (WO 97Z21 823).
  • a heat-resistant enzyme can be produced from a known enzyme using evolutionary molecular engineering.
  • the kanamycin resistant enzyme of Escherichia coli is unstable at 60 ° C or higher, but can be grown at 71 ° C in the presence of kanamycin by incorporating the gene of the enzyme into moderate thermophiles.
  • the method of adding these high-molecular-weight degrading enzymes is not particularly limited. For example, they are used by adding to fermentation mash before distillation or during distillation.
  • a microorganism producing the polymer degrading enzyme to the fermentation raw material at the start of fermentation and during Z or the fermentation process, The enzyme can be produced in the fermentation mash during the fermentation process.
  • the expressed polymer-degrading enzyme solubilizes solid components during distillation.
  • microorganism that produces the polymer-degrading enzyme a microorganism that naturally has the ability to produce the polymer-degrading enzyme may be used, or a suitable gene into which a foreign gene encoding the enzyme is introduced may be used. Microorganisms can also be used. Furthermore, by introducing a gene encoding the enzyme into a microorganism that produces the fermentation product of interest, for example, in alcohol fermentation, a single microorganism can perform fermentation and produce a polymer-degrading enzyme. .
  • the operation is not particularly limited, and may be performed according to a known distillation method.
  • the target fermentation product can be distilled at a temperature lower than its boiling point. If the target fermentation product has a high boiling point and the polymer-degrading enzyme to be used may not work sufficiently, take the above measures to make it suitable for the enzyme that uses the distillation temperature. Can reduce the amount of solids.
  • the term “weight loss” refers to a reduction in the weight of the distillation residue solids as compared to the case where a high-molecular-weight enzyme is not used. Whether or not the above-mentioned polymer-degrading enzyme can reduce the amount of solids in the distillation residue can be confirmed, for example, by the following method. That is, the enzyme to be used is added to the fermentation mash and distilled, and the solid content in the resulting distillation residue is collected by filtration, centrifugation, etc., and the dry weight is measured. It can be checked by comparing with those without enzyme addition.
  • the effects of the polymer-degrading enzyme are as follows: 1) the presence of a component that is solubilized by the enzyme in the distillation residue; and 2) the enzyme can use the component of 1) under the conditions where distillation is performed. It can be known by examining that it can be solubilized. Therefore, in the above method, if the fermentation mash is incubated at the same temperature as the distillation time using a device capable of distilling out the desired fermentation product, the fermentation product does not always need to be recovered. More conveniently, for example, by normal distillation W
  • the solid content of the distillation residue is preferably reduced by 10% or more, more preferably 20% or more, and most preferably 30% or more.
  • thermostable protease that is stable at 55 ° C or higher, for example, a protease produced by a Bacillus bacterium W ai 21a strain having a half-life of 4.5 to 9.5 hours at 60 ° C and pH 3.0.
  • hyperthermostable proteases that exhibit activity even at 80 ° C. or higher, for example, Pyrococcus belonging to the genus Pyrococcus Pyrocoscus (Fyrococcus furiosus) ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Thermococcus belonging to the genus Thermococcus' Protease produced by the cello (Thermococcus celer), etc. [Applied and Environmental Microbiology, No. 60 Vol., Pp. 4559-4566 (1994), International Publication WO 97/21823].
  • proteases produced by Pyrococcus furiosus include protease PFUL and protease PFUS derived from Pyrococcus furiosus D SM3638.
  • Protease PFUL has the activity of decomposing proteins such as casein and gelatin at 95 ° C, and its optimum pH is around pH 9.0 to 10.0.
  • the protease has high thermostability and retains almost 100% activity after heat treatment at 95 ° C for 4 hours. This thermal stability is similar even in the presence of 0.1% SDS.
  • the optimal temperature of protease PFUS is 80-95 ° C, and the optimal pH is around pH 6-8.
  • the enzyme also has high thermostability, and retains about 80% of the activity after heat treatment at 95 ° C for 3 hours when treated in a buffer solution at pH 7.5. . Furthermore, the enzyme is stable in the presence of organic solvents, for example at 95 ° C in the presence of 50% (V / V) acetonitrile. Even after 1 hour of treatment, it has an activity of 80% or more before the treatment.
  • the method of using the protease is not particularly limited. For example, by directly adding protease to fermentation mash and performing distillation, the amount of solids in the distillation residue remaining after distillation can be reduced.
  • a protease-producing microorganism such as Bacillus thermoproteolyticus, which is a thermolysin-producing bacterium, or a foreign protease gene, such as a protease PFUL gene derived from Pyrococcus furiosus, or a protease PFUS gene.
  • the protease may be produced during fermentation by co-culturing the incorporated recombinant with a microorganism producing the desired fermentation product, so that the protease may be allowed to act during the distillation.
  • an exogenous protease gene may be introduced into a microorganism that produces the desired fermentation product, the protease may be expressed during fermentation and after or after fermentation, and the resulting fermented mash may be subjected to distillation.
  • a protease gene such as a protease PFUL gene or a protease PFUS gene, is introduced into an organism (eg, a plant) from which the fermentation raw material is derived, and is expressed at an appropriate time.
  • pH at which the protease is allowed to act on the starting material is within the range of pH at which the enzyme exhibits activity. If the pH of the fermentation mash after fermentation is significantly different from the optimal pH of the protease, it is necessary to adjust the pH so that the protease acts efficiently. For example, when a protease PFUS is allowed to act, ⁇ should be adjusted to around 6 to 8. There is no particular limitation on the action temperature and time in the enzymatic reaction, but it can be set at 5 to 120 ° C. within a range of several minutes to several days.
  • the protease is preferably allowed to act during and after distillation at a high temperature, so that the working temperature is 50 ° C or higher, preferably 6 ° C or higher.
  • the temperature is preferably at least 0 ° C, more preferably at least 80 ° C.
  • the action time of the enzyme may be any time required to reach the target reduction in solids content, but from the viewpoint of efficient distillation, a shorter time, for example, 1 to 48 hours Is preferred.
  • the gene for the protease is introduced into another host different from the original strain producing the enzyme. It is also possible to produce enzymes by using For example, plasmid pSNP1 into which the gene for protease PFUS has been integrated or DN encoding the promoter signal peptide derived from the subtilisin gene upstream of protease PFUS
  • the protease PFUS can be purified from a culture of Bacillus subtilis DB104 transformed with the plasmid p NAPS 1 into which the A fragment has been introduced (International Publication WO 97/2 1 8 2 3).
  • the host into which the thermostable enzyme gene is introduced may be a microorganism that is not directly involved in fermentation or biomass production as described above, or may be a microorganism that produces the desired fermentation product. It may be a producing organism.
  • By performing alcohol fermentation and distillation using this recombinant it is possible to reduce the solid content of the distillation residue as compared with, for example, a recombinant obtained without transforming with plasmid pSNP1. it can.
  • the distillation residue is lower than when fermentation is performed using yeast not having the gene. Solid content can be reduced.
  • the additive for reducing the solid content in the distillation residue of the present invention may contain a polymer-degrading enzyme and Z or a microorganism that produces a polymer-degrading enzyme. It can be prepared and prepared by a known method similar to the enzyme preparation. By adding the additive to the fermentation mash, the amount of solids in the distillation residue can be reduced.
  • the polymer-degrading enzyme contained in the additive of the present invention may be a purified polymer-degrading enzyme or an unpurified enzyme as long as it has an action of reducing the solid content in the distillation residue.
  • the unpurified enzyme include a culture supernatant of an enzyme-producing microorganism in the case of an extracellular enzyme, a crude cell extract in the case of an intracellular enzyme, and a concentrated or dried product thereof.
  • the additive of the present invention containing a microorganism that produces a polymer degrading enzyme include a liquid culture, a solid culture, and a dry culture of the microorganism. Those containing dried cells and the like can be mentioned.
  • the additive of the present invention may contain a mixture of two or more substances selected from the above enzymes and microorganisms.
  • the timing of addition of the additive of the present invention is not particular limitation on the timing of addition of the additive of the present invention as long as it is added to the fermentation mash during the distillation, before the fermentation, during the fermentation, after the fermentation (before the distillation), and after the distillation is started. You. Preferably, it is added to the fermentation mash before the start of distillation, from the viewpoint of making the above-mentioned polymer-degrading enzyme act efficiently.
  • the additive of the present invention may contain various components other than the enzyme as long as the activity of the polymer degrading enzyme is not impaired and the collection of fermentation products by distillation is not hindered.
  • Such components include, for example, components for stabilizing enzymes (glycerol, polyethylene glycol, saccharides, etc.), components for adjusting pH, and additives for facilitating removal of the additives. Excipients and the like.
  • the weight of the solid content of the distillation residue was reduced by the addition of the protease.
  • protease PFUS protease PFUS
  • the decrease rate increases with increasing temperature
  • the solid content in the distillation residue was reduced even in the presence of ethanol.
  • esperase esperase was added, the decrease rate decreased with increasing temperature, and the decrease in solid content was significantly suppressed in the presence of ethanol.
  • shochu distillation residue contains components solubilized by protease.
  • protease PFUS in particular, reduces the weight of solids in the residue under high temperature conditions in the presence of ethanol, suggesting that the enzyme can be used in the distillation step.
  • the weight of the solid content in the residue was reduced by about 20% or more by adding the protease PFUS. This indicates that, when the protease was added to the fermentation mash during distillation and distillation was performed, the weight of solids in the residue after distillation was reduced.
  • the solid content in the residue could be reduced by about 30% when only cellulase was added, and about 20% when only protease was added. Furthermore, when both enzymes were added stepwise, the solid content could be reduced by 50% or more. This suggests that not only protease but also high molecular weight degrading enzyme such as cellulase has an effect on reducing the solid content of distillation residue, and more effective solidification can be achieved by using multiple polymer degrading enzymes in combination. It was shown that the amount could be reduced.
  • Example 2 (2) In the same operation as in Example 2 (1), the fermentation mash of the second class rice shochu to which protease and cellulase were added was incubated, and then the supernatant was recovered from the reaction solution.
  • the amount of reducing sugars contained in this supernatant was measured by the Park and Johnson method. That is, 10 ⁇ l of the reaction solution supernatant was added to 90 ⁇ l of distilled water, and a cyanide carbonate solution (5.3 g of sodium carbonate and 0.65 g of potassium cyanide dissolved in 1 liter of water) 1 The mixture was mixed with 100 ⁇ l and a 0.05% aqueous solution of potassium ferricified solution (100 ⁇ l) and incubated in a boiling water bath for 15 minutes. After completion of the incubation, add 500 ⁇ l of iron alum to the reaction mixture (1.5 g of iron alum and 1 g of alum).
  • Sodium laurino sulfate (SDS) dissolved in 1 liter of 0.15 N sulfuric acid) was mixed, left at room temperature for 15 minutes, and the absorbance at 690 nm was measured.
  • the amount of reduced terminal was determined as a glucose conversion amount based on a calibration curve prepared using glucose of known concentration.
  • the amount of glucose contained in the supernatant of the above reaction solution was measured using Glucose CII Test Co. (Wako Pure Chemical Industries, Ltd.).
  • Table 1 shows the above measurement results.
  • the values in Table 1 are the values obtained by subtracting the values measured with fermentation mash that was incubated without adding the enzyme and those measured with only the enzyme from the above measurement values. , Reducing sugars and darcos as increase (mg). table 1
  • Bacillus natto IFO 3335 (purchased from the Fermentation Research Institute), a polyglutamic acid-producing Bacillus subtilis, was treated with 5 ml of LB medium (1% tryptone, 0.5% yeast extract, 0.5% Incubation was carried out at 37 ° C for 18 hours in a sodium chloride solution (pH 7.2). 50 ⁇ l of the obtained preculture was inoculated into 5 ml of the above-mentioned residue, and was incubated at 37 ° C for 48 hours. To the culture supernatant collected by centrifugation, 1/10 volume of a saturated sodium chloride solution and 2.2 volumes of 90% ethanol were added and stirred.
  • the resulting aggregates of ⁇ -polyglutamic acid were collected with a pipet and further washed three times with ethanol. After the obtained ⁇ -polyglutamic acid was air-dried, the dry weight was measured to determine the amount of ⁇ -polyglutamic acid produced.
  • Figure 4 shows the production of ⁇ -polyglutamic acid.
  • Bacillus nut was cultured using the residue obtained by adding protease and cellulase as a medium, the production of ⁇ -polyglutamic acid was significantly increased as compared with the control.
  • Example 4
  • the present invention provides a method for reducing the solid content in a distillation residue.
  • the load in the distillation waste liquid treatment step is reduced, for example, the solid-liquid separation step is facilitated, and the energy efficiency throughout the entire process from fermentation to distillation and distillation waste liquid treatment can be improved.
  • the fermentation step can be carried out in the same manner as in the prior art, since there is no change in the mash component during the fermentation step because the enzyme acts after the fermentation.
  • the enzyme acts at high temperature, the solid content in the residue is reduced extremely efficiently by the denaturation of the polymer to be degraded by heating, solubilization, and the synergistic action of the degradation and the degradation by the enzyme. be able to.
  • the present invention also provides an additive for reducing the amount of solids in a distillation residue, and the additive can be suitably used in the above method.
  • amino acids, oligopeptides, carbohydrates, and the like can be more efficiently solubilized than the solid content of the distillation residue conventionally treated as waste.
  • Distillation residues can be used as feed, fertilizer, and microbial media, but their amino acids, oligopeptides, carbohydrates, etc. are soluble and their nutritional value is improved.
  • biological treatment such as methane fermentation can be performed efficiently, and the utilization efficiency as biomass can be improved. Is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A method for reducing a solid distillation residue characterized by involving the step of effecting distillation in the presence of a polymerase which exerts its activity under the distillation conditions.

Description

明 細 書 蒸留残渣固形分の減量方法及び添加剤 技術分野  Description Method for reducing solid content of distillation residue and additives Technical field
本発明は、 発酵産物の蒸留処理工程の効率化に有用な蒸留残渣固形分の減量方 法、 ならびに該方法に使用するための固形分量低減用添加剤に関する。 背景技術  The present invention relates to a method for reducing the solid content of a distillation residue, which is useful for improving the efficiency of a distillation step of a fermentation product, and an additive for reducing the solid content for use in the method. Background art
炭水化物が微生物によって無酸素的に分解される現象は発酵と呼ばれている この際に分解代謝物として有用な物質 (発酵産物) が生産されることから、 発酵 はアルコール (エタノール) をはじめとする種々の有用物質の生産手段として利 用されてきた。  The phenomenon in which carbohydrates are anoxically decomposed by microorganisms is called fermentation. In this process, useful substances (fermentation products) are produced as metabolites, and fermentation involves alcohol (ethanol). It has been used as a means of producing various useful substances.
揮発性の発酵産物の回収には蒸留法が用いられ、 蒸留後には多くの蒸留残渣が 生じる。 アルコール発酵も同様である。 例えば焼酎は、 いも、 米、 そば、 麦、 黒 糖などを原料としてアルコール発酵を行い、 得られたもろみを蒸留して製造され る蒸留酒である。 焼酎の工業製造過程においても多量に蒸留残渣が生じる。 この 蒸留残渣はその大半が海洋投棄によって処理されているが、 1 9 9 3年に開催さ れたロンドン条約締約国協議議会により蒸留残渣の海洋投棄は廃止される方向に ある。  Distillation is used to recover volatile fermentation products, and many distillation residues are formed after distillation. The same applies to alcohol fermentation. Shochu, for example, is a distilled liquor produced by performing alcohol fermentation using rice, buckwheat, wheat, brown sugar, etc. as raw materials, and distilling the obtained moromi. A large amount of distillation residue is produced even during the industrial production of shochu. Most of this distillation residue is disposed of by ocean dumping, but the disposal of the distillation residue by ocean is being abolished by the London Convention on the Parties of the Treaty of 1993.
これらの問題を解決する代表的な処理手段として、 (1 ) 蒸留残渣をメタン発 酵処理に供して有機物濃度を低減させた後、 活性汚泥処理を行う方法、 (2 ) 当 該廃液の固液分離を行い、 固形成分については焼却処分し、 液体成分については 濃縮後、 食品素材や飼料、 肥料として利用する、 もしくは活性汚泥処理を行う方 法等が用いられている。  As typical treatment means for solving these problems, (1) a method in which a distillation residue is subjected to a methane fermentation treatment to reduce the concentration of organic substances, followed by an activated sludge treatment, (2) a solid-liquid treatment of the waste liquid Separation is performed, solid components are incinerated, and liquid components are concentrated and then used as food materials, feed, fertilizer, or activated sludge treatment.
し力 しながら、 上記のどちらの方法を用いるとしても、 蒸留後、 蒸留残渣の処 理工程にさらに長い時間を要することになり、 特に、 (1 ) のメタン発酵処理法 は固形の有機物に対する処理能が低く、 処理装置を大規模にする必要がある。 ま た (2 ) の方法では、 固液分離が困難であったり、 固形成分中に含まれる多量の 有効成分が未利用のまま焼却される等の問題点が存在する。 However, even if either of the above methods is used, it takes a longer time to process the distillation residue after distillation. In particular, the methane fermentation method (1) is a method for treating solid organic matter. Performance is low and the processing equipment must be large. In the method (2), solid-liquid separation is difficult, or a large amount of solid components are contained. There is a problem that the active ingredient is incinerated without being used.
日本特許第 2 9 1 6 6 6 6号には、 発酵中のもろみに酵素を作用させて蒸留後 の残渣中の固形分を減少させる技術が開示されている。 しかしながら、 この方法 ではもろみ中の成分の変化が発酵に寄与する微生物の生育、 発酵能力に影響を与 える可能性があるため、 添加する酵素の種類、 量などに応じて発酵の条件を調整 する必要がある。 発明の目的  Japanese Patent No. 2,916,666 discloses a technique for reducing the solid content in the residue after distillation by allowing an enzyme to act on mash during fermentation. However, in this method, changes in components in the mash may affect the growth and fermentation ability of microorganisms contributing to fermentation, so fermentation conditions are adjusted according to the type and amount of enzyme to be added. There is a need. Purpose of the invention
そこで本発明は、 発酵産物の蒸留過程において生じる蒸留残渣中の固形成分の 量を、 蒸留中に高分子分解酵素を作用させることによって、 予め低減させる手段 を提供することを目的としている。 上記のように、 蒸留残渣中の固形分の量を予 め減少させておくことによって、 蒸留残渣をより短い時間で、 より効率よく処理 することが可能となり、 さらに、 有効成分含量の増加した液体成分の飼料や培地 としての有効利用を図ることができる。 発明の要旨  Accordingly, an object of the present invention is to provide a means for previously reducing the amount of solid components in a distillation residue generated in a distillation process of a fermentation product by allowing a polymer degrading enzyme to act during distillation. As described above, by reducing the amount of solids in the distillation residue in advance, it is possible to process the distillation residue in a shorter time and more efficiently, and further, to increase the liquid content of the active ingredient. The components can be effectively used as feed and medium. Summary of the Invention
本発明を概説すれば、 本発明の第 1の発明は蒸留条件下で活性を有する高分子 分解酵素の存在下に蒸留を実施する工程を包含することを特徵とする蒸留残渣固 形分の減量方法に関し、 第 2の発明は蒸留条件下で活性を有する高分子分解酵素 及び Z又は蒸留条件下で活性を有する高分子分解酵素を生産する微生物を含有し、 蒸留開始前の発酵もろみに添加されることを特徴とする蒸留残渣中の固形分量低 減用添加剤に関する。  According to an outline of the present invention, the first invention of the present invention comprises a step of performing distillation in the presence of a polymerase having activity under distillation conditions, wherein the distillation residue is reduced in solid content. The present invention relates to a method, wherein the second invention comprises a polymerase that is active under distillation conditions and a microorganism that produces Z or a polymerase that is active under distillation conditions, and is added to the fermentation mash before the start of distillation. The present invention relates to an additive for reducing the amount of solids in a distillation residue, which is characterized in that:
蒸留中の発酵もろみに、 蒸留条件下で活性を有する高分子分解酵素を作用させ ることによって、 蒸留残查中の固形分が可溶化され、 固形分の重量を減少させる ことができる。  By causing a polymer degrading enzyme having an activity under distillation conditions to act on the fermentation mash during distillation, the solid content in the distillation residue is solubilized, and the weight of the solid content can be reduced.
本発明者等は、 前記の従来技術の課題を解決するため鋭意検討を重ねた結果、 蒸留工程において、 発酵もろみに蒸留条件下で活性を有する高分子分解酵素、 例 えば耐熱性プ口テアーゼを作用させることによって、 蒸留残査中の固形分が可溶 化され、 固形分の重量が減少することを見出した。 また、 上記の高分子分解酵素 を生産する微生物と目的の発酵産物を生産する微生物とを発酵時に共培養する、 目的の発酵産物を生産する微生物に上記の高分子分解酵素の発現能を付与して発 酵に用いる、 あるレ、は上記の高分子分解酵素遺伝子を導入された組換え体生物を 原料として発酵を行う、 などの方法により得られた発酵もろみを蒸留に供すると、 蒸留過程において効率よく固形分が可溶化され、 残查中の固形分重量が減少する ことを見出した。 図面の簡単な説明 The present inventors have conducted intensive studies to solve the above-mentioned problems of the prior art.As a result, in the distillation step, a polymer degrading enzyme having an activity under distillation conditions in fermentation mash, for example, a heat-resistant protease was used. It was found that the solidification in the distillation residue was solubilized by the action, and the weight of the solids was reduced. In addition, the above-mentioned polymer degrading enzyme A microorganism that produces the desired fermentation product is co-cultured during fermentation, and a microorganism that produces the desired fermentation product is given the ability to express the above-mentioned high-molecular-weight degrading enzyme and used for fermentation. The fermentation mash obtained by such a method as above is used for fermentation using the recombinant organism into which the polymer degrading enzyme gene has been introduced, and the solid content is efficiently solubilized in the distillation process. However, it was found that the weight of the solid content in the residue was reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1 :プロテアーゼ処理による焼酎蒸留残渣中の固形分量の減少を示す図であ る。 横軸は使用した酵素ならびに処理温度 (°C) 、 縦軸は固形分量の減少率 Fig. 1: A diagram showing the decrease in the amount of solids in shochu distillation residue by protease treatment. The horizontal axis is the enzyme used and the processing temperature (° C), and the vertical axis is the decrease rate of the solid content.
(%) を示す。 また、 棒グラフにおいて黒 (固) はエタノールを加えた反応時、 白 (口) はエタノールを加えていない反応時の結果を示す。 (%). In the bar graph, black (solid) shows the results of the reaction with ethanol added, and white (mouth) shows the results of the reaction without ethanol added.
図 2 :プロテアーゼを種々の温度で作用させた場合の残渣中の固形分量の減少 を示す図である。 横軸はインキュベーション温度 (°C) 、 縦軸は固形分量の減少 率 (%) を示す。  FIG. 2 is a graph showing the decrease in the amount of solids in the residue when protease is acted on at various temperatures. The horizontal axis shows the incubation temperature (° C), and the vertical axis shows the solid content reduction rate (%).
図 3 :セルラーゼとプロテアーゼを作用させた場合の残渣中の固形分量の減少 を示す図である。 横軸は添加した酵素、 縦軸は固形分量の減少率 (%) を示す。 図 4 :蒸留残渣を培地としてバチルス ·ナツトを培養して得られる γ—ポリグ ルタミン酸量を示す図である。 横軸は使用した残渣、 縦軸は培養液上清中の γ— ポリグルタミン酸濃度 (m g Zm 1 ) を示す。  Figure 3: A graph showing the decrease in the solid content in the residue when cellulase and protease were allowed to act. The horizontal axis indicates the added enzyme, and the vertical axis indicates the rate of decrease (%) in the solid content. Figure 4: A graph showing the amount of γ-polyglutamic acid obtained by culturing Bacillus nut using the distillation residue as a medium. The horizontal axis indicates the used residue, and the vertical axis indicates the γ-polyglutamic acid concentration (mg Zm 1) in the culture supernatant.
図 5 :プロテアーゼ遺伝子を導入された微生物を添加した場合の作用させた場 合の残渣中の固形分量の減少を示す図である。 横軸は微生物懸濁液の添加量 (μ 1 ) 、 縦軸は固形分量の減少率 (%) を示す。  FIG. 5 is a view showing a decrease in the amount of solid content in the residue when a microorganism into which a protease gene is introduced is added and the microorganism is allowed to act. The horizontal axis indicates the amount of microbial suspension added (μ 1), and the vertical axis indicates the rate of decrease in solid content (%).
図 6 :プロテアーゼ処理による焼射蒸留残渣の濾過の効率を示す図である。 横 軸は遠心分離の時間 (分) 、 縦軸は濾過率 (%) を示す。 図中、 白四角 (◊) は 対照、 また、 黒三角 (▲) 、 白丸 (〇) 、 黒丸 (拿) はそれぞれ 2 U、 4 U、 8 Uのプロテアーゼを用いて得られた結果を示す。 発明の詳細な説明 以下、 本発明を具体的に説明する。 FIG. 6 is a diagram showing the efficiency of filtration of the residue from the combustion distillation by protease treatment. The horizontal axis shows the time (minutes) of centrifugation, and the vertical axis shows the filtration rate (%). In the figure, open squares (◊) represent the control, and closed triangles (▲), open circles (〇), and closed circles (黒) represent the results obtained using the 2 U, 4 U, and 8 U proteases, respectively. Detailed description of the invention Hereinafter, the present invention will be described specifically.
本明細書でいう 「発酵」 に特に限定はないが、 アルコール (エタノール) 発酵、 ァセトンブタノール発酵、 乳酸発酵、 プロピオン酸発酵、 グリセリン発酵が例示 される。 発酵は、 一般には酵母や麹菌をはじめ、 酢酸菌ゃ乳酸菌など種々の微生 物を用いて糖分やでんぷんなどを分解して、 アルコールやその他、 有機酸や炭酸 ガスなどを生じさせる現象である。  The “fermentation” referred to in the present specification is not particularly limited, and examples thereof include alcohol (ethanol) fermentation, acetone butanol fermentation, lactic acid fermentation, propionic acid fermentation, and glycerin fermentation. Fermentation is a phenomenon in which various microorganisms such as acetic acid bacteria and lactic acid bacteria, such as yeasts and koji molds, are used to decompose sugar and starch to produce alcohol and other organic acids and carbon dioxide.
本明細書における 「発酵産物」 なる用語は、 発酵によって生産される代謝物を いう。 本発明は、 蒸留によって回収することが可能な発酵産物の製造に利用する ことができ、 特にエタノール、 アセトン、 ブタノールといった揮発性の発酵産物 の製造に好適に利用することができる。 例えば、 以下のようなものがアルコール 発酵と蒸留とを利用して製造される。 即ち、 米、 麦、 さつまいも、 じやがいも、 そばなどを原料とし、 該原料中のデンプンの糖ィ匕を経て調製された発酵液 (発酵 もろみ) を蒸留した焼酎や泡盛、 果実を原料に得られる果実酒を蒸留したブラン デー、 麦芽発酵液を蒸留したウィスキー、 またサトウキビや砂糖大根から得られ た糖蜜、 トウモロコシ等を原料とする燃料用アルコールなどである。  The term “fermentation product” as used herein refers to a metabolite produced by fermentation. INDUSTRIAL APPLICATION This invention can be utilized for manufacture of the fermentation product which can be collect | recovered by distillation, and can be suitably used especially for manufacture of volatile fermentation products, such as ethanol, acetone, and butanol. For example, the following are produced using alcohol fermentation and distillation. In other words, shochu, awamori, and fruits obtained by distilling a fermented liquid (fermented moromi) prepared from rice, wheat, sweet potato, potato potato, buckwheat, and the like as raw materials, and starch in the raw materials through sugar cane dipping are used as raw materials. These include brandy obtained by distilling the obtained fruit wine, whiskey obtained by distilling the malt fermented liquid, molasses obtained from sugarcane and sugar beet, and alcohol for fuel using corn and the like as raw materials.
本明細書における 「蒸留条件」 なる用語は、 目的の発酵産物を得るために使用 される蒸留の条件をいう。 蒸留条件は、 目的の発酵産物によって異なる。 例えば 焼酎の蒸留を行う場合、 常圧蒸留では 9 4〜 1 0 0 °Cで約 8時間、 減圧蒸留では 4 8 °Cで約 5時間行うのが一般的である。  As used herein, the term "distillation conditions" refers to the distillation conditions used to obtain the desired fermentation product. Distillation conditions vary depending on the desired fermentation product. For example, distillation of shochu is generally carried out at 94 to 100 ° C for about 8 hours in normal pressure distillation and about 5 hours at 48 ° C in vacuum distillation.
本明細書における 「目的の発酵産物を生産する微生物」 なる用語は、 目的の産 物を生産するための発酵に使用される微生物をいう。 アルコール発酵に用いられ る微生物としては、 サッカロマイセス (Saccharomyces) 属酵母の他、 ザィゴサ ッカロマイセス (Zygosaccharomyces) 属酵母、 クロストリジゥム  As used herein, the term "microorganism that produces a target fermentation product" refers to a microorganism used for fermentation to produce a target product. Microorganisms used for alcohol fermentation include yeast of the genus Saccharomyces, yeast of the genus Zygosaccharomyces, and Clostridium.
(Clostridium) 属 〔アプライド .バイオケミストリ一 'アンド .バイオテクノ ロシー (Appl ied Biochemistry and Biotechnology) 、 5 7卷、 5 9 9〜6 0 Applied Biochemistry and Biotechnology, Vol. 57, 599-9-60 (Applied Biochemistry and Biotechnology)
4頁 (1 9 9 6 ) 、 ジャーナル'ォブ 'バタテリォロジ一 (Journal of P. 4 (1 9 9 6), Journal of Ob 'Batatellology 1 (Journal of
Bacteriology) 、 第 1 7 0卷、 2 8 0 9〜 2 8 1 5頁 (1 9 8 8 ) 〕 、 ザィモモ ナス (Zymomonas) 属 〔クリティカノレ ' レビューズ'イン 'バイオテクノロジー (Critical Reviews in Biotechnology) 、 第 1 3卷、 5 7〜 9 8頁 (1 9 9 3) 、 バイオケミカル ' ソサイエティ一' シンポジァ (Biochemical Society Symposia) 、 第 48巻、 53〜 86頁 (1983) 〕 、 サーモアネロパクター (Thermoanaerobacter) 属 〔ァーカイブス ·ォブ ·マイクロノくィォロジー (Archives of Microbiology) 、 第 168卷、 1 14〜: 1 19頁 (1 997) 〕 等の細菌、 ムコール (Mucor) 属、 フサリウム (Fusarium) 属、 リゾプス Bacteriology), Volume 170, 280-9-28 15 (1988)], genus Zymomonas (Critical Review in Biotechnology) , Vol. 13, Vol. 57-98 (1 9 9 3), Biochemical Society Symposia, 48, 53-86 (1983)], genus Thermoanaerobacter [Archives of Microbiology] Microbiology), Vol. 168, pp. 114-119 (1997)], bacteria of the genus Mucor, genus Fusarium, Rhizopus
(Rhizopus) 属等の糸状菌等があげられる。 また、 アルコール発酵能を付与され た組み換え微生物 〔アプライ ド ·アンド ·エンバイ口ンメンタル ·マイク口バイ ォロシ一 (Applied and Environmental Microbiology) 、 第 57卷、 893〜 9 00頁 (1 991) 、 カレント 'マイクロバイオロジー (Current  (Rhizopus) genus and the like. In addition, recombinant microorganisms having alcohol fermentation ability (Applied and Environmental Microbiology, Vol. 57, pp. 893-900 (1991), current Microbiology (Current
Microbiology) 、 第 33卷、 256〜 260頁 (1 996) 、 アプライ ド 'アン ド .エンバイロンメンタル 'マイクロバイオロジー、 第 57卷、 28 10〜 28 1 5頁 (1 991) 、 米国特許公報第 5482846号、 アプライド 'アンド ' エンバイロンメンタル 'マイクロバイオロジー、 第 62卷、 4648〜4651 頁 (1 996) 、 アプライ ド 'アンド 'エンバイロンメンタル ·マイクロバイオ ロジ一、 第 64巻、 1 852〜 1859頁 (1 998) 〕 を使用した発酵にも本 発明は適用できる。 Microbiology), Volume 33, pages 256-260 (1996), Applied 'And. Environmental' Microbiology, Volume 57, 2810-2815 (1991), U.S. Pat. No. 5482846, Applied 'and' Environmental 'Microbiology, Vol. 62, 4648-4651 (1996), Applied' and 'Environmental Microbiology, Vol. 64, 1852-1859 The present invention can also be applied to fermentation using page (1998)].
本明細書で 「発酵もろみ」 とは発酵工程によって原料を発酵させて得られる混 合物を意味し、 また蒸留途中の蒸留装置の内容物をも意味する。 発酵もろみを蒸 留し終えた後に蒸留装置内部に残留する固体と液体との混合物を 「蒸留残渣」 と いう。 従って、 本明細書における 「蒸留残渣固形分」 なる用語は、 蒸留残渣中の 固体をいう。  In the present specification, “fermentation moromi” means a mixture obtained by fermenting a raw material in a fermentation step, and also means the contents of a distillation apparatus during distillation. The mixture of solids and liquid remaining inside the distillation apparatus after the fermentation mash has been distilled is called "distillation residue". Accordingly, the term "distillation residue solids" as used herein refers to solids in the distillation residue.
本発明は、 蒸留中の発酵もろみに蒸留条件下で活性を有する高分子分解酵素を 作用させて蒸留残渣中の固形分量を低減させることを特徴とする。 なお、 蒸留ェ 程終了後の蒸留残渣に高分子分解酵素が作用するかどうかによつて本発明の範囲 が限定されるものではない。 通常、 蒸留残渣は蒸留後も蒸留中と類似の温度、 p H条件を相当時間保持しており、 本発明を実施するにあたっては蒸留終了後の蒸 留残渣にも高分子分解酵素が作用し得る。  The present invention is characterized in that a polymer degrading enzyme having activity under distillation conditions is allowed to act on fermentation mash during distillation to reduce the amount of solids in the distillation residue. It should be noted that the scope of the present invention is not limited by whether or not the polymer degrading enzyme acts on the distillation residue after the distillation step. In general, the distillation residue maintains the same temperature and pH conditions for a considerable time after the distillation as during the distillation, and in practicing the present invention, the polymer degrading enzyme may act on the distillation residue after the distillation is completed. .
本発明に使用できる高分子分解酵素の種類は、 蒸留条件下において実質的に活 性を有し、 蒸留残渣の固形分を低減させることが可能な酵素であれば特に制限は ない。 たとえば、 蒸留中ならびに蒸留後の温度の面から、 蒸留の実施される温度 条件下で活性を有する耐熱性の高分子分解酵素が本発明に好適に使用できる。 ま た、 本発明に使用される酵素は目的の発酵産物に対して耐性を有することが望ま しい。 例えば、 アルコール発酵の場合には、 5 0 °C以上の高温、 ならびにェタノ ールの共存下において容易に失活せず、 かつ酵素活性を示すことができる酵素が 好適に使用できる。 The type of the polymer degrading enzyme that can be used in the present invention is not particularly limited as long as it is substantially active under distillation conditions and can reduce the solid content of the distillation residue. Absent. For example, in view of the temperature during and after distillation, a heat-resistant polymer-degrading enzyme having activity under the temperature conditions at which distillation is performed can be suitably used in the present invention. In addition, it is desirable that the enzyme used in the present invention has resistance to the target fermentation product. For example, in the case of alcohol fermentation, an enzyme that does not easily deactivate at a high temperature of 50 ° C. or higher and coexistence of ethanol and can exhibit enzymatic activity can be suitably used.
本明細書における 「高分子」 は、 発酵原料及び発酵に用いる微生物などに含ま れる成分をレ、い、 例えば、 タンパク質、 セルロース、 へミセルロース、 ぺクチン 質、 細胞壁成分 (ムコペプチド、 キチン、 |3—グルカンなど) 、 核酸などを包含 する。  As used herein, the term “polymer” refers to components contained in fermentation raw materials and microorganisms used for fermentation, for example, proteins, cellulose, hemicellulose, pectin, cell wall components (mucopeptide, chitin, | 3-glucan), nucleic acids and the like.
本発明に使用される高分子分解酵素は、 発酵原料及び発酵に用いる微生物など に含まれる成分に応じて選択することができ、 例えばプロテアーゼ、 セルラーゼ、 へミセルラ一ゼ、 ぺクチナーゼ、 細胞壁分解酵素、 ヌクレアーゼなどを挙げるこ とができる。 これらの酵素は、 単独で使用してもよいし、 複数種の酵素を組み合 わせて使用してもよい。  The polymer degrading enzyme used in the present invention can be selected according to the components contained in the fermentation raw material and the microorganism used in the fermentation, for example, protease, cellulase, hemicellulase, pectinase, cell wall degrading enzyme, Examples include nucleases. These enzymes may be used alone or in combination of a plurality of enzymes.
プロテアーゼは、 タンパク質、 ポリペプチド等のペプチド結合を切断する酵素 の総称である。 該酵素は発酵原料、 例えば米、 麦、 さつまいも、 じやがいも、 そ ばなど、 また、 発酵に用いた微生物、 例えば酵母、 大腸菌 (Escherichia coli) 等に由来するタンパク質成分を可溶化させるために、 発酵もろみに対して作用さ せることができる。  Protease is a general term for enzymes that cleave peptide bonds such as proteins and polypeptides. The enzyme is used for solubilizing protein components derived from fermentation raw materials, for example, rice, wheat, sweet potato, potato, soba, and the like, and microorganisms used for fermentation, for example, yeast and Escherichia coli. However, it can act on fermented moromi.
本発明に使用できるプロテア一ゼには特に制限はないが、 蒸留中ならびに蒸留 後の温度の面から、 高温 (たとえば 5 5 °C以上) で活性を示すとともに耐熱性を 有するプロテアーゼが好ましく、 例えば微生物由来の酵素を使用することができ る。 微生物由来のプロテアーゼとしては、 例えばバチルス (Bacillus) 属細菌由 来のサブチリシン、 サーモライシン等が使用できるが、 更に高い熱安定性を有す る好熱菌ゃ超好熱菌由来のプロテア一ゼは本発明に好適に使用することができる。 下記実施例において使用されたプロテアーゼ P F U S (国際公開公報 WO 9 7 / 2 1 8 2 3号) は極めて高い耐熱性を有する酵素であり、 本発明に特に好適に使 用することができる。 セルラーゼはセルロース、 つまり j3— 1, 4—ダルコシド結合よりなるダルコ ースのポリマーを分解する酵素の総称であり、 ェンド型とェキソ型に大別するこ とができる。 エンド型セルラーゼ、 例えばカルボキシルメチルセルラーゼ (C M C a s e ) は、 主として非晶性セルロース中の j3— 1, 4—ダルコシド結合をラ ンダムに加水分解し、 還元糖を生ずる。 ェキソ型セルラーゼ、 例えばアビセラ一 ゼは、 結晶性セルロースに対する分解活性が高く、 セルロースを非還元末端から 切断し、 主としてセロビオースを生ずる。 セルラーゼを生産する微生物としては、 例えば、 トリコデルマ (Trichoderma) 属ゃァスペルギノレス (Aspergi llus) 属な どに属する糸状菌ゃクロストリジゥム属、 ルミノコッカス (Ruminococcus) 属、 バタテロイデス (Bacteroides) 属に属する嫌気性細菌などを挙げることができ る。 セルラーゼは、 幾種かの性質の異なるセルラーゼの相乗作用によって結晶性 セルロースを分解することが知られている。 The protease that can be used in the present invention is not particularly limited, but from the viewpoint of the temperature during and after distillation, a protease that is active at a high temperature (for example, 55 ° C. or higher) and has heat resistance is preferable. Enzymes derived from microorganisms can be used. As proteases derived from microorganisms, for example, subtilisin and thermolysin derived from Bacillus genus bacteria can be used. It can be suitably used for the invention. The protease PFUS (International Publication No. WO97 / 21823) used in the following examples is an enzyme having extremely high heat resistance and can be used particularly preferably in the present invention. Cellulase is a general term for enzymes that degrade cellulose, that is, a polymer of dulcose consisting of j3-1,4-darcoside bonds, and can be broadly classified into end-type and exo-type. Endo-type cellulases, such as carboxymethyl cellulase (CMCase), mainly hydrolyze j3-1,4-darcoside bonds in amorphous cellulose randomly to produce reducing sugars. Exo-type cellulases, such as Avicelase, have a high activity of degrading crystalline cellulose, and cleave cellulose from the non-reducing end to produce mainly cellobiose. Examples of cellulase-producing microorganisms include filamentous fungi belonging to the genus Trichoderma (Aspergillus), such as the genus Clostridium, the anaerobic bacteria belonging to the genus Ruminococcus, and the genus Bacteroides. Can be mentioned. Cellulases are known to degrade crystalline cellulose through the synergistic action of several different cellulase properties.
へミセルラーゼとはへミセルロース、 すなわち、 陸上植物の細胞壁の構成成分 のうちの、 セルロースとぺクチン以外の不溶性の多糖類を分解する酵素の総称で ある。 例えば、 キシラン、 マンナン、 ァラバン、 多くの双子葉植物の細胞壁に含 まれるキシログルカン、 ィネ科植物を主とする単子葉植物の細胞壁に含まれるァ ラピノグルクロノキシランなどがへミセルロースとして知られている。 これらを 加水分解する酵素としては、 例えば、 キシラナーゼ、 マンナーゼ、 ァラビナーゼ などを挙げることができる。 へミセルラ一ゼを生産する微生物としては、 例えば、 セル口シンを生産するァスペルギルス '二ガー (Aspergillus niger) などを挙 げることができる。  Hemicellulase is a general term for hemicellulose, an enzyme that degrades insoluble polysaccharides other than cellulose and pectin, which are components of the cell wall of land plants. For example, xylan, mannan, araban, xyloglucan contained in cell walls of many dicotyledonous plants, and arapinoglucuronoxylan contained in cell walls of monocotyledonous plants, mainly grasses, are hemicellulose. Are known. Enzymes that hydrolyze these include, for example, xylanase, mannase, and arabinase. Microorganisms that produce hemicellulase include, for example, Aspergillus niger, which produces cell-mouth synths.
ぺクチナーゼは高等植物などの細胞壁中のぺクチン質を分解する酵素の総称で ある。 ぺクチン質は、 プロトぺクチン、 ぺクチニン酸、 ぺクチン酸などの混合物 であるが、 主体となっているものは α— 1, 4一結合した D—ガラタツロン酸か らなる酸性多糖であり、 ぺクチナ一ゼはぺクチン質の α— 1, 4—結合を加水分 解することが知られている。  Pectinase is a generic name for enzymes that degrade pectin in cell walls of higher plants. Pectin is a mixture of protopectin, pectinic acid, pectinic acid, etc., but the main component is an acidic polysaccharide consisting of α-1,4-linked D-galataturonic acid. Pectinase is known to hydrolyze the α-1,4 bond of pectin.
ぺクチナーゼを生産する微生物としては、 ァスペルギルス ·二ガー、 シブイチ リウム ·ディプロディエラ (Cibuithyrium diplodiella) 、 フサリゥム .モニリ フ才ノレム (Fusarium moniliforme) などを挙けることカできる。 例えば、 米、 麦、 さつまいも、 じやがいも、 そば等、 また、 セルロース系バイ ォマス、 例えば、 稲わら、 麦わら、 バガス等を原料として発酵を行った場合、 発 酵もろみ及び蒸留残渣にはセルロース、 へミセルロース、 ぺクチン等の多糖が含 まれている。 したがって、 発酵もろみにセルラーゼ、 へミセルラーゼ、 ぺクチナ ーゼを作用させることにより、 これらの多糖を分解し、 蒸留残渣中の固形分量を 低減させることができる。 Examples of microorganisms that produce actinase include Aspergillus niger, Cibuithyrium diplodiella, Fusarium monilifu and Fusarium moniliforme. For example, when fermentation is performed using rice, wheat, sweet potatoes, potatoes, buckwheat, etc., or cellulosic biomass such as rice straw, straw, bagasse, etc. And polysaccharides such as hemicellulose and pectin. Therefore, by allowing cellulase, hemicellulase, and actinase to act on the fermentation mash, these polysaccharides can be decomposed and the solid content in the distillation residue can be reduced.
リグニン分解酵素は、 例えば木材など、 木質系バイオマスを原料として発酵を 行った場合、 発酵もろみ及び蒸留残渣に含まれるリグニンを分解するために作用 させることができる。 該酵素は、 リグニン、 つまりヒ ドロキシフエニルプロパン 化合物を低分子化する酵素の総称であり、 ラッカ一ゼ、 ペルォキシダーゼ、 ォキ シゲナーゼなどの活性を示すことが知られている。 リグニン分解酵素を生産する 微生物としては、 担子菌、 例えば力ワラタケ (Cori lous versicolor) 、 キンィ 口アナタケ (Poria subacida) 、 子のう菌に属する糸状菌、 例えばフサリウム * ソラニ (Fusarium solani) などを挙げることができる。  When fermentation is performed using woody biomass such as wood as a raw material, lignin-degrading enzymes can act to decompose lignin contained in fermentation mash and distillation residues. The enzyme is a general term for lignin, an enzyme that reduces the molecular weight of a hydroxyphenylpropane compound, and is known to exhibit activities such as laccase, peroxidase, and oxygenase. Microorganisms that produce lignin-degrading enzymes include basidiomycetes, such as Coriolus versicolor, Kinia mushrooms (Poria subacida), and filamentous fungi belonging to ascomycetes, such as Fusarium * solani (Fusarium solani). be able to.
細胞壁分解酵素は、 発酵に用いた微生物、 例えば酵母や大腸菌の細胞壁を分解 するために使用される。 例えばリゾチーム、 キチナーゼ、 ]3—ダルカナーゼ等が 細胞壁分解酵素として使用される。 '  Cell wall degrading enzymes are used to degrade the cell walls of microorganisms used in fermentation, such as yeast and E. coli. For example, lysozyme, chitinase,] 3-dalcanase and the like are used as cell wall degrading enzymes. '
リゾチームはニヮトリ卵白、 ヒ トの涙や唾液、 パパイヤなど動植物界に広く分 布し、 細菌細胞壁のムコぺプチドなどに存在する N—ァセチルムラミン酸と N— ァセチルダルコサミンの間の β— 1, 4一結合を加水分解する酵素である。 リゾ チームを生産する微生物としてはストレプトマイセス (Str印 tomyces) 属に属す るス トレプトマイセス 'エリスレアス (Streptomyces erythraeus) などが挙げ られる。  Lysozyme is widely distributed in the animal and plant kingdoms such as chicken egg whites, human tears and saliva, and papaya, and β-1,1, which exists between mucopeptides such as mucopeptides in bacterial cell walls, between N-acetylmuramic acid and N-acetyldarcosamine. 4 It is an enzyme that hydrolyzes one bond. Microorganisms that produce lysozyme include Streptomyces erythraeus, which belongs to the genus Streptomyces.
キチナーゼは節足動物、 軟体動物、 外肛動物、 菌類細胞壁等を構成する主要な 多糖であるキチンの i3— 1 , 4一結合を加水分解し、 N—ァセチルダルコサミン 及びそのオリゴ糖を生ずる酵素の総称である。 キチナーゼを生産する微生物とし てはス トレプトマイセス属に属するス トレプトマイセス ·アンティビォテイクス (btreptomyces antibiotics) など )、挙げられる。  Chitinase hydrolyzes the i3-1,4-single bond of chitin, the main polysaccharide that constitutes arthropods, molluscs, exo-animals, fungal cell walls, etc., to produce N-acetyldarcosamine and its oligosaccharides. A generic term for enzymes. Examples of microorganisms that produce chitinase include Streptomyces antibiotics (btreptomyces antibiotics) belonging to the genus Streptomyces.
β一グルカナーゼは酵母の細胞壁の主要な構成成分である β一グルカンの β— 1 , 3—結合を切断する酵素である。 j3—グルカナーゼを生産する微生物として は、 例えばバチルス 'サ一キュランス (Bacillus circulans) などを挙げること ができる。 β-glucanase is a major component of the yeast cell wall. 1,3—The enzyme that breaks bonds. Microorganisms that produce j3-glucanase include, for example, Bacillus circulans.
ヌクレアーゼとは核酸、 すなわちポリヌクレオチドを分解する酵素の総称であ り、 R N Aを特異的に分解するリボヌクレアーゼ、 D N Aを特異的に分解するデ ォキシリボヌクレア一ゼ、 D N Aの特異的な塩基配列を認識する制限酵素、 D N A、 R N Aの両方に作用する酵素、 例えばミクロコッカスエンドヌクレアーゼな どが含まれる。 ヌクレアーゼはエンド型とェキソ型に大別することができ、 ェン ド型ヌクレアーゼ、 例えばゥシ膝臓由来 D N a s e I、 制限酵素などは、 ポリヌ クレオチド鎖の内部の 3 ' 5, 一ホスホジエステル結合を切断し、 断片化したポ リヌクレオチドゃオリゴヌクレオチドを生ずる。  Nuclease is a general term for enzymes that degrade nucleic acids, that is, polynucleotides.It refers to ribonucleases that specifically degrade RNA, deoxyribonucleases that specifically degrade DNA, and specific base sequences of DNA. Recognition restriction enzymes, enzymes that act on both DNA and RNA, such as Micrococcus endonuclease, are included. Nucleases can be broadly classified into endo- and exo-types. End-type nucleases, for example, DNase I derived from the skeletal knee, restriction enzymes, etc., bind to the 3'5, monophosphodiester bond inside the polynucleotide chain. To yield fragmented polynucleotide-oligonucleotides.
ェキソ型ヌクレアーゼはポリヌクレオチド鎖をその一端から順次分解してモノ ヌクレオチドを生ずるものであり、 例えば真核細胞の D N Aポリメラーゼ δの 3 ' →5 ' ェキソヌクレアーゼ活性などを挙げることができる。 ヌクレアーゼを 生産する微生物としては、 例えば、 大腸菌、 および、 バチルス属、 ストレプトマ イセス属などに属する細菌、 ァスペルギルス .ォリゼ (Aspergillus oryzae) な どの糸状菌等が挙げられる。  An exo-type nuclease is one that degrades a polynucleotide chain sequentially from one end to produce a mononucleotide, and includes, for example, the 3 ′ → 5 ′ exonuclease activity of eukaryotic DNA polymerase δ. Examples of the nuclease-producing microorganism include Escherichia coli, bacteria belonging to the genus Bacillus and Streptomyces, and filamentous fungi such as Aspergillus oryzae.
上記の高分子分解酵素は、 その本来の起源より精製して取得されたもの、 ある いは該酵素をコードする遺伝子を使用して遺伝子工学的に生産されたもののどち らであってもよい。 該酵素が好熱性細菌由来の酵素である場合には、 該酵素をコ 一ドする遺伝子を常温で生育する宿主微生物、 たとえば大腸菌やバチルス属細菌 に導入して酵素を発現させることにより、 酵素の精製が容易となる。 たとえば、 上記のプロテアーゼ P F U Sは、 バチルス属細菌を宿主に用いることにより、 3 7 °Cにおいて宿主菌体外に分泌発現させることができる (国際公開公報 WO 9 7 / 2 1 8 2 3号) 。 なお、 蒸留残渣中の固形分の量を低減することが可能であれ ば、 これらの高分子分解酵素は必ずしも精製されている必要はなレ、。 また、 該酵 素は公知の方法によって修飾されたものであってもよい。 このような酵素として は、 例えば、 遺伝子工学的手法によってその本来のアミノ酸配列に置換、 欠失、 挿入、 付加等の改変が加えられたものや、 アミノ酸残基の化学的な修飾が施され たものが挙げられる。 The above-mentioned high-molecular-weight degrading enzyme may be one obtained by purifying from its original source or one produced by genetic engineering using a gene encoding the enzyme. . When the enzyme is an enzyme derived from a thermophilic bacterium, the gene encoding the enzyme is introduced into a host microorganism that grows at room temperature, such as Escherichia coli or Bacillus bacterium, to express the enzyme. Purification becomes easy. For example, the protease PFUS can be secreted and expressed outside the host at 37 ° C. by using a bacterium belonging to the genus Bacillus (International Publication WO97 / 21823). If the amount of solids in the distillation residue can be reduced, these high-molecular-weight degrading enzymes need not necessarily be purified. Further, the enzyme may be modified by a known method. Examples of such enzymes include those in which the original amino acid sequence has been modified by substitution, deletion, insertion, addition, or the like by genetic engineering techniques, or in which the amino acid residue has been chemically modified. One.
上記のような高分子分解酵素による処理の方法に制限はなく、 当該高分子分解 酵素が活性を示す条件で作用させればよい。 発酵後の発酵もろみの p Hが高分子 分解酵素の至適 p Hと著しく異なっている場合には、 該酵素が作用するように p Hの調整を要する。  There is no limitation on the method of treatment with the above-mentioned polymer degrading enzyme, and the treatment may be carried out under conditions where the polymer degrading enzyme exhibits activity. If the pH of the fermentation mash after fermentation is significantly different from the optimal pH of the polymer-degrading enzyme, the pH needs to be adjusted so that the enzyme acts.
上記の高分子分解酵素は既知のものを使用することができるだけではなく、 よ り本発明の目的の達成に適したものをスクリーニングして使用することができる。 例えば、 微生物、 好ましくは好熱性の微生物の中から、 本発明に適した耐熱性高 分子分解酵素をスクリーニングして用いることができる。  Not only known high-molecular-weight degrading enzymes can be used, but also those more suitable for achieving the object of the present invention can be screened and used. For example, a thermostable high molecular weight degrading enzyme suitable for the present invention can be screened and used from microorganisms, preferably thermophilic microorganisms.
新規な高分子分解酵素は、 例えば、 既知の高分子分角军酵素をコードする遺伝子 を利用して取得することが出来る。 例えば、 国際公開公報 WO 95/34645 号に記載のプロテアーゼ PFULをコードする酸配列のうち、 サブチリシン等の ァミノ酸配列と高い相同性を示す領域のアミノ酸配列をコードする塩基配列から なる DNA断片、 あるいは該塩基配列を基に設計したオリゴヌクレオチドをプロ ーブあるいはプライマーとして使用することにより、 プロテアーゼ PFULとは 異なるもう一つのピロコッカス 'フリオサス (Pyrococcus furiosus) 由来プロ テアーゼの遺伝子、 すなわちプロテアーゼ P FUSの遺伝子が単離され、 そのァ ミノ酸配列が解明されている (国際公開公報 WO 97Z21 823号) 。  The novel polymer-degrading enzyme can be obtained, for example, by using a gene encoding a known high-molecular-weight enzyme. For example, a DNA fragment consisting of a nucleotide sequence encoding an amino acid sequence of a region showing high homology to an amino acid sequence such as subtilisin in an acid sequence encoding a protease PFUL described in WO 95/34645, or By using an oligonucleotide designed based on the base sequence as a probe or a primer, another Pyrococcus furiosus-derived protease gene different from protease PFUL, that is, a protease PFUS gene, can be obtained. It has been isolated and its amino acid sequence has been elucidated (WO 97Z21 823).
また、 蒸留中の発酵もろみに対してさらに効率よく作用できる高分子分解酵素 を得るために、 既知の酵素から進化分子工学を用いて耐熱性の酵素を作出するこ ともできる。 例えば、 大腸菌のカナマイシン耐个生酵素は 60°C以上では不安定で あるが、 該酵素の遺伝子を中等度好熱菌に組み込むことにより、 71°Cでもカナ マイシン存在下で生育することが可能な変異体が得られている 〔プロシーディン グス ·ォブ ·ナショナル 'アカデミー 'ォブ ·サイェンシ一ズ · U S A  In addition, in order to obtain a macromolecule-degrading enzyme that can act more efficiently on fermentation mash during distillation, a heat-resistant enzyme can be produced from a known enzyme using evolutionary molecular engineering. For example, the kanamycin resistant enzyme of Escherichia coli is unstable at 60 ° C or higher, but can be grown at 71 ° C in the presence of kanamycin by incorporating the gene of the enzyme into moderate thermophiles. Procedurals of the National 'Academy' of the University of the United States
(Proceedings of National Academy of Sciences USA) 第 83卷、 第 576〜 (Proceedings of National Academy of Sciences USA) Vol. 83, Vol. 576-
580頁 (1986) 〕 。 580 (1986)].
これらの高分子分解酵素の添加方法には特に限定はなく、 たとえば蒸留前、 蒸 留中の発酵もろみに添加して使用される。 一方、 当該高分子分解酵素を生産する 微生物を発酵開始時および Zまたは発酵工程中に発酵原料に添加することにより、 発酵工程中に当該酵素を発酵もろみ中に生産させることができる。 この発酵もろ みを蒸留に供すれば、 発現された高分子分解酵素が蒸留中に固形成分を可溶化す る。 この場合、 高分子分解酵素を生産する微生物としては、 高分子分解酵素を生 産する能力を天然に有する微生物を使用してもよく、 または当該酵素をコードす る外来遺伝子が導入された適当な微生物を使用することもできる。 さらに、 目的 の発酵産物を生産する微生物、 たとえばアルコール発酵においては酵母に当該酵 素をコードする遺伝子を導入することにより、 1種の微生物で発酵、 高分子分解 酵素の生産を実施することができる。 また、 発酵原料となる、 あるいはこれを生 産する生物に上記の高分子分解酵素遺伝子を導入することにより、 高分子分解酵 素を含有する発酵原料を調製してこれを発酵、 蒸留に使用し、 本発明を実施する ことも可能である。 The method of adding these high-molecular-weight degrading enzymes is not particularly limited. For example, they are used by adding to fermentation mash before distillation or during distillation. On the other hand, by adding a microorganism producing the polymer degrading enzyme to the fermentation raw material at the start of fermentation and during Z or the fermentation process, The enzyme can be produced in the fermentation mash during the fermentation process. When this fermented mash is subjected to distillation, the expressed polymer-degrading enzyme solubilizes solid components during distillation. In this case, as the microorganism that produces the polymer-degrading enzyme, a microorganism that naturally has the ability to produce the polymer-degrading enzyme may be used, or a suitable gene into which a foreign gene encoding the enzyme is introduced may be used. Microorganisms can also be used. Furthermore, by introducing a gene encoding the enzyme into a microorganism that produces the fermentation product of interest, for example, in alcohol fermentation, a single microorganism can perform fermentation and produce a polymer-degrading enzyme. . In addition, by introducing the above-mentioned polymer-degrading enzyme gene into an organism that becomes a fermentation raw material or that produces the same, a fermentation material containing the polymer-degrading enzyme is prepared and used for fermentation and distillation. It is also possible to carry out the present invention.
本発明の方法を利用して蒸留を行う場合、 その操作には特に限定はなく、 公知 の蒸留方法に従って行えばよい。 また、 蒸留に際して、 蒸留容器内を減圧状態と することにより、 目的の発酵産物をその沸点よりも低い温度で蒸留することがで きる。 目的の発酵産物の沸点が高く、 使用する高分子分解酵素が十分に作用しな いおそれがある場合には、 上記手段を講じることにより蒸留温度を使用する酵素 に適したものとし、 蒸留残渣中の固形分の量を低減させることができる。  When performing distillation using the method of the present invention, the operation is not particularly limited, and may be performed according to a known distillation method. In addition, at the time of distillation, by setting the inside of the distillation vessel under reduced pressure, the target fermentation product can be distilled at a temperature lower than its boiling point. If the target fermentation product has a high boiling point and the polymer-degrading enzyme to be used may not work sufficiently, take the above measures to make it suitable for the enzyme that uses the distillation temperature. Can reduce the amount of solids.
本明細書における 「減量」 なる用語は、 高分子分解酵素を使用しない場合に比 較しての、 蒸留残渣固形分の重量の低減をいう。 上記の高分子分解酵素が蒸留残 渣中の固形分の量を低減できるかどうかは、 たとえば下記に示す方法により確認 することができる。 すなわち、 使用しょうとする酵素を発酵もろみに添カ卩して蒸 留を実施し、 生じた蒸留残渣中の固形分を濾過、 遠心分離等の方法で回収した後、 その乾燥重量を測定し、 酵素を添加しなかったものと比較することによって調べ ることができる。 なお、 高分子分解酵素の示す効果は、 1 ) 蒸留残渣中に当該酵 素によって可溶化される成分が存在すること、 2 ) 蒸留が実施される条件におい て当該酵素が 1 ) の成分を可溶化できること、 を調べることにより知ることがで きる。 したがって、 上記方法において、 目的の発酵産物が留去されるような装置 を使用し、 蒸留時と同じ温度で発酵もろみをインキュベートすれば、 必ずしも発 酵産物を回収する必要はない。 より簡便には、 たとえば通常の蒸留によって生じ W As used herein, the term “weight loss” refers to a reduction in the weight of the distillation residue solids as compared to the case where a high-molecular-weight enzyme is not used. Whether or not the above-mentioned polymer-degrading enzyme can reduce the amount of solids in the distillation residue can be confirmed, for example, by the following method. That is, the enzyme to be used is added to the fermentation mash and distilled, and the solid content in the resulting distillation residue is collected by filtration, centrifugation, etc., and the dry weight is measured. It can be checked by comparing with those without enzyme addition. The effects of the polymer-degrading enzyme are as follows: 1) the presence of a component that is solubilized by the enzyme in the distillation residue; and 2) the enzyme can use the component of 1) under the conditions where distillation is performed. It can be known by examining that it can be solubilized. Therefore, in the above method, if the fermentation mash is incubated at the same temperature as the distillation time using a device capable of distilling out the desired fermentation product, the fermentation product does not always need to be recovered. More conveniently, for example, by normal distillation W
12 た蒸留残渣に発酵もろみと同等の発酵産物を添加したうえ、 上記のようにィンキ ュベーシヨンを行つて残渣中の固形分の減少を調べることによつても高分子分解 酵素の添加効果を確認することができる。 本発明の方法によって蒸留残渣固形分 は好ましくは 1 0 %以上、 より好ましくは 20 %以上、 最も好ましくは 30 %以 上減量される。  12 Add the fermentation product equivalent to fermentation moromi to the distillation residue obtained, and conduct the incubation as described above to check the decrease in solid content in the residue to confirm the effect of adding the polymer-degrading enzyme. be able to. According to the method of the present invention, the solid content of the distillation residue is preferably reduced by 10% or more, more preferably 20% or more, and most preferably 30% or more.
プロテアーゼを例として、 以下に本発明を具体的に説明する。  The present invention will be specifically described below by taking protease as an example.
耐熱性プロテアーゼとしては 55 °C以上で安定であるもの、 例えば、 60°C、 pH3. 0において半減期が 4. 5〜9. 5時間であるバチルス属細菌 W a i 21 a株が生産するプロテアーゼなどが知られている 〔インターナショナル.ジ ヤーナル ·ォブ ·バイオケミストリー 'アンド 'セル ·バイォロジー  A thermostable protease that is stable at 55 ° C or higher, for example, a protease produced by a Bacillus bacterium W ai 21a strain having a half-life of 4.5 to 9.5 hours at 60 ° C and pH 3.0. [International Journal of Biochemistry 'and' Cell Biology
(International Journal of Biochemistry and Cell Biologyリ 、 第 27卷、 第 729〜 739頁 (1 995) 〕 。 さらに、 超耐熱性プロテアーゼとしては 8 0°C以上でも活性を示すもの、 例えばピロコッカス属に属するピロコッカス .フ リオサス (Pyrococcus furiosus) ゃサーモコッカス (Thermococcus) 属に属す るサーモコッカス 'セラー (Thermococcus celer)の生産するプロテアーゼなど を挙げることができる 〔アプライド ·アンド ·エンバイロンメンタル ·マイクロ バイオロジー、 第 60卷、 第 4559〜4566頁 (1 994) 、 国際公開公報 WO 97/21823号〕 。  (International Journal of Biochemistry and Cell Biology, Vol. 27, pp. 729-739 (1955)] Furthermore, hyperthermostable proteases that exhibit activity even at 80 ° C. or higher, for example, Pyrococcus belonging to the genus Pyrococcus Pyrocoscus (Fyrococcus furiosus) プ ロ テ ア ー ゼ Thermococcus belonging to the genus Thermococcus' Protease produced by the cello (Thermococcus celer), etc. [Applied and Environmental Microbiology, No. 60 Vol., Pp. 4559-4566 (1994), International Publication WO 97/21823].
ピロコッカス ·フリオサスの生産するプロテアーゼとしてはピロコッカス .フ リォサス D SM3638由来のプロテアーゼ P F U L及びプロテアーゼ P F U S を挙げることができる。 プロテアーゼ PFULは 95°Cにおいてカゼイン、 ゼラ チン等の蛋白質を分解する活性を有しており、 その至適 pHは pH9. 0〜10. 0付近である。 該プロテアーゼは高い熱安定性を有しており、 95°C、 4時間の 熱処理の後もほぼ 100 %の活性を保持している。 この熱安定性は、 0. 1 %の SDSの存在下においても同様である。 また、 プロテアーゼ P FUSの至適温度 は 80〜95°Cであり、 至適 pHは pH6〜8付近である。 該酵素も高い熱安定 性を有しており、 p H 7. 5の緩衝液中で処理した場合、 95 °C、 3時間の熱処 理の後も 80%程度の活性を保持している。 更に、 有機溶剤の存在下においても 該酵素は安定であり、 例えば 50% (V/V) ァセトニトリルの存在下で 95°C、 1時間の処理を行った場合でも処理前の 8 0 %以上の活性を有している。 Examples of proteases produced by Pyrococcus furiosus include protease PFUL and protease PFUS derived from Pyrococcus furiosus D SM3638. Protease PFUL has the activity of decomposing proteins such as casein and gelatin at 95 ° C, and its optimum pH is around pH 9.0 to 10.0. The protease has high thermostability and retains almost 100% activity after heat treatment at 95 ° C for 4 hours. This thermal stability is similar even in the presence of 0.1% SDS. The optimal temperature of protease PFUS is 80-95 ° C, and the optimal pH is around pH 6-8. The enzyme also has high thermostability, and retains about 80% of the activity after heat treatment at 95 ° C for 3 hours when treated in a buffer solution at pH 7.5. . Furthermore, the enzyme is stable in the presence of organic solvents, for example at 95 ° C in the presence of 50% (V / V) acetonitrile. Even after 1 hour of treatment, it has an activity of 80% or more before the treatment.
プロテアーゼの使用方法には特に限定はない。 たとえば、 発酵もろみにプロテ ァーゼを直接添加して蒸留を行うことにより、 蒸留後に残る蒸留残渣中の固形分 の量を減少させることができる。 発酵時にプロテアーゼ生産微生物、 例えばサー モライシンの生産菌であるバチルス ·サーモプロテオリテイクス (Bacillus thermoproteolyticus) 等、 あるいは外来のプロテアーゼ遺伝子、 例えばピロコ ッカス ·フリオサス由来のプロテアーゼ P F U L遺伝子、 またはプロテア一ゼ P F U S遺伝子を組み込んだ組換え体などを目的の発酵産物を生産する微生物と共 培養して発酵もろみ中にプロテアーゼを生産させておくことにより、 蒸留中にプ 口テアーゼを作用させてもよい。 また、 目的の発酵産物を生産する微生物に外来 のプロテァーゼ遺伝子を導入し、 発酵中および Zまたは発酵後にプロテアーゼを 発現させ、 得られた発酵もろみを蒸留に供してもよい。 さらに、 発酵原料が由来 する生物 (例えば、 植物) にプロテアーゼ遺伝子、 例えばプロテアーゼ P F U L 遺伝子またはプロテアーゼ P F U S遺伝子を導入して適切な時期に発現させ、 発 現したプロテアーゼを含む生物 (例えば、 トランスジエニック植物) を原料に発 プロテアーゼを作用させる p Hは、 当該酵素が活性を示す p Hの範囲内にある 限り特に限定はない。 発酵後の発酵もろみの p Hがプロテア一ゼの至適 p Hと著 しく異なっている場合にはプロテアーゼが効率良く作用するように p Hの調整を 要する。 例えばプロテア一ゼ P F U Sを作用させる場合、 ^^は6〜8付近に調 整するのがよい。 酵素反応における作用温度及び時間に特に限定はないが、 5〜 1 2 0 °C、 数分〜数日の範囲で設定可能である。 ただし、 バイオマス利用におけ るエネルギー効率を向上させるという本特許の目的からすると、 プロテアーゼは 蒸留中及びその後の高温状態において作用させることが好ましく、 したがって作 用温度は 5 0 °C以上、 好ましくは 6 0 °C以上、 さらにより好ましくは 8 0 °C以上 がよい。 同様に、 酵素の作用時間は固形分の目的とする低減量に達するのに要す る時間であればよいが、 効率よく蒸留を行うという観点からはより短い時間、 例 えば 1〜4 8時間が好ましい。  The method of using the protease is not particularly limited. For example, by directly adding protease to fermentation mash and performing distillation, the amount of solids in the distillation residue remaining after distillation can be reduced. During fermentation, a protease-producing microorganism, such as Bacillus thermoproteolyticus, which is a thermolysin-producing bacterium, or a foreign protease gene, such as a protease PFUL gene derived from Pyrococcus furiosus, or a protease PFUS gene. The protease may be produced during fermentation by co-culturing the incorporated recombinant with a microorganism producing the desired fermentation product, so that the protease may be allowed to act during the distillation. Alternatively, an exogenous protease gene may be introduced into a microorganism that produces the desired fermentation product, the protease may be expressed during fermentation and after or after fermentation, and the resulting fermented mash may be subjected to distillation. Furthermore, a protease gene, such as a protease PFUL gene or a protease PFUS gene, is introduced into an organism (eg, a plant) from which the fermentation raw material is derived, and is expressed at an appropriate time. ) Is not particularly limited as far as the pH at which the protease is allowed to act on the starting material is within the range of pH at which the enzyme exhibits activity. If the pH of the fermentation mash after fermentation is significantly different from the optimal pH of the protease, it is necessary to adjust the pH so that the protease acts efficiently. For example, when a protease PFUS is allowed to act, ^^ should be adjusted to around 6 to 8. There is no particular limitation on the action temperature and time in the enzymatic reaction, but it can be set at 5 to 120 ° C. within a range of several minutes to several days. However, for the purpose of this patent to improve the energy efficiency in biomass utilization, the protease is preferably allowed to act during and after distillation at a high temperature, so that the working temperature is 50 ° C or higher, preferably 6 ° C or higher. The temperature is preferably at least 0 ° C, more preferably at least 80 ° C. Similarly, the action time of the enzyme may be any time required to reach the target reduction in solids content, but from the viewpoint of efficient distillation, a shorter time, for example, 1 to 48 hours Is preferred.
プロテアーゼの遺伝子を該酵素の本来の生産菌とは異なった別の宿主に導入し て酵素を生産させることも可能である。 例えば、 プロテアーゼ P F U Sの遺伝子 が組み込まれたプラスミ ド p S N P 1あるいはプロテアーゼ P F U Sの上流にサ ブチリシン遺伝子由来のプロモータ シグナルぺプチド部分をコードする D NThe gene for the protease is introduced into another host different from the original strain producing the enzyme. It is also possible to produce enzymes by using For example, plasmid pSNP1 into which the gene for protease PFUS has been integrated or DN encoding the promoter signal peptide derived from the subtilisin gene upstream of protease PFUS
A断片を導入したプラスミ ド p N A P S 1で形質転換された枯草菌バチルス ·サ ブチリス (Bacillus subtilis) D B 1 0 4の培養物からプロテアーゼ P F U S を精製することが出来る (国際公開公報 WO 9 7 / 2 1 8 2 3号) 。 耐熱十生酵素 の遺伝子を導入する宿主は上記のような発酵やバイオマス生産に直接関与しない 微生物であってもよいし、 目的の発酵産物を生産する微生物であってもよいし、 また、 バイオマスを生産する生物であってもよい。 The protease PFUS can be purified from a culture of Bacillus subtilis DB104 transformed with the plasmid p NAPS 1 into which the A fragment has been introduced (International Publication WO 97/2 1 8 2 3). The host into which the thermostable enzyme gene is introduced may be a microorganism that is not directly involved in fermentation or biomass production as described above, or may be a microorganism that produces the desired fermentation product. It may be a producing organism.
米国特許公報第 5 4 8 2 8 4 6号で開示されたアルコール生産性組換え体バチ ルス属細菌を、 例えば上記のプラスミ ド p S N P 1で形質転換してプロテアーゼ P F U Sの生産能を付与することができる。 この組換え体を用いてアルコール発 酵と蒸留を行うことにより、 例えばプラスミ ド p S N P 1で形質転換していなレヽ 組換え体を用いた場合に比べて蒸留残渣の固形分を減少させることができる。 ま た、 同様にプロテアーゼ P F U S遺伝子を導入された酵母サッカロマイセス .セ レビシェを用いてアルコール発酵を行った後に蒸留を行うと、 当該遺伝子を導入 していない酵母で発酵を行った場合に比べて蒸留残渣の固形分を減少させること ができる。  Transformation of the alcohol-producing recombinant Bacillus bacterium disclosed in U.S. Pat.No. 5,482,846 with, for example, the above-described plasmid pSNP1 to confer protease PFUS-producing ability. Can be. By performing alcohol fermentation and distillation using this recombinant, it is possible to reduce the solid content of the distillation residue as compared with, for example, a recombinant obtained without transforming with plasmid pSNP1. it can. Similarly, when alcohol fermentation is performed using yeast Saccharomyces cerevisiae into which the protease PFUS gene has been introduced and then distillation is performed, the distillation residue is lower than when fermentation is performed using yeast not having the gene. Solid content can be reduced.
本発明の蒸留残渣中の固形分量低減用添加剤 (以下、 本発明の添加剤と称す る) は、 高分子分解酵素及び Z又は高分子分解酵素を生産する微生物を含有すれ ばよく、 通常の酵素製剤と同様の公知の方法により、 製斉 i 匕し、 調製することが できる。 該添加剤を発酵もろみに添加することにより、 蒸留残渣中の固形分量を 低減することができる。  The additive for reducing the solid content in the distillation residue of the present invention (hereinafter, referred to as the additive of the present invention) may contain a polymer-degrading enzyme and Z or a microorganism that produces a polymer-degrading enzyme. It can be prepared and prepared by a known method similar to the enzyme preparation. By adding the additive to the fermentation mash, the amount of solids in the distillation residue can be reduced.
本発明の添加剤に含有される高分子分解酵素は、 蒸留残渣中の固形分量を低減 させる作用を有していれば、 精製した高分子分解酵素であってもよいし、 未精製 の酵素であってもよい。 未精製酵素としては、 たとえば、 菌体外酵素の場合は酵 素生産微生物の培養上清、 菌体内酵素の場合は細胞粗抽出物、 またはこれらの濃 縮物または乾燥物等が挙げられる。 高分子分解酵素を生産する微生物を含有する 本発明の添加剤としては、 たとえば、 当該微生物の液体培養物、 固体培養物、 乾 燥菌体等を含有するものが挙げられる。 さらに、 本発明の添加剤は、 上記の酵素 及び微生物から選択される 2以上の物の混合物を含有してもよい。 The polymer-degrading enzyme contained in the additive of the present invention may be a purified polymer-degrading enzyme or an unpurified enzyme as long as it has an action of reducing the solid content in the distillation residue. There may be. Examples of the unpurified enzyme include a culture supernatant of an enzyme-producing microorganism in the case of an extracellular enzyme, a crude cell extract in the case of an intracellular enzyme, and a concentrated or dried product thereof. Examples of the additive of the present invention containing a microorganism that produces a polymer degrading enzyme include a liquid culture, a solid culture, and a dry culture of the microorganism. Those containing dried cells and the like can be mentioned. Further, the additive of the present invention may contain a mixture of two or more substances selected from the above enzymes and microorganisms.
本発明の添加剤は、 蒸留中に発酵もろみ中に添加されていればその添加時期に は特に限定はなく、 発酵開始前、 発酵中、 発酵終了後 (蒸留開始前) 、 蒸留開始 後に添加される。 好ましくは、 上記の高分子分解酵素を効率よく作用させる観点 から、 蒸留開始前の発酵もろみに添加される。  There is no particular limitation on the timing of addition of the additive of the present invention as long as it is added to the fermentation mash during the distillation, before the fermentation, during the fermentation, after the fermentation (before the distillation), and after the distillation is started. You. Preferably, it is added to the fermentation mash before the start of distillation, from the viewpoint of making the above-mentioned polymer-degrading enzyme act efficiently.
本発明の添加剤は、 上記の高分子分解酵素の活性を損なわず、 蒸留による発酵 産物の回収の支障とならなレ、範囲で、 当該酵素以外の種々の成分を含んでレ、ても よい。 このような成分としては、 たとえば酵素を安定化するための成分 (グリセ ロール、 ポリエチレングリコール、 糖類等) 、 p Hを調整するための成分や当該 添加剤の取り极ぃを容易にするための賦形剤等があげられる。 実施例  The additive of the present invention may contain various components other than the enzyme as long as the activity of the polymer degrading enzyme is not impaired and the collection of fermentation products by distillation is not hindered. . Such components include, for example, components for stabilizing enzymes (glycerol, polyethylene glycol, saccharides, etc.), components for adjusting pH, and additives for facilitating removal of the additives. Excipients and the like. Example
以下に実施例をあげて本発明をさらに詳しく説明するが、 本発明はこれらの実 施例の範囲に限定されるものではない。 実施例 1  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the scope of these Examples. Example 1
( 1 ) 乙類米焼酎の蒸留残渣 7 0 0 μ 1に、 1 Μの炭酸ナトリゥム緩衝液 ( ρ Η 9 . 0 ) 1 0 0 μ I、 それぞれ 8 Uのエスペラーゼ (バチルス · リケニホルミ ス (Bacillus licheniformis) 由来のプロテアーゼ; ノボ ノノレディスク イン ダストリ一社製) またはプロテア一ゼ P F U S (宝酒造社製の P f uプロテア一 ゼ ) を含む酵素液 1 0 0 μ 1及びエタノール 1 0 0 μ 1を加え、 7 0、 8 0又 は 9 5 °Cで 1 5時間インキュベートした。 対照としてプロテア一ゼを加えない反 応、 エタノールを加えない反応も同時に行った。 反応終了後、 反応液を遠心分離 して上清を除き、 沈澱物を 9 5 °Cで 1 8時間保温して乾燥させた後にその重量を 測定し、 得られた値を固形分の重量とした。 その測定値から各プロテア一ゼの添 加による固形分の減少を比較し、 その結果を図 1に示した。  (1) Distilled residue of B2 rice shochu was added to 700 μl, 1 μm sodium carbonate buffer (ρΗ9.0) 100 μl, and 8 U each of Esperase (Bacillus licheniformis). ) -Derived protease; 100 μl of an enzyme solution containing 100 μl of an enzyme solution containing Novo Noredisk Industries, Inc.) or PFUS (Pfu protease, a product of Takara Shuzo), and 100 μl of ethanol. Incubated at 70, 80 or 95 ° C for 15 hours. As a control, a reaction in which no protease was added and a reaction in which ethanol was not added were simultaneously performed. After completion of the reaction, the reaction solution was centrifuged to remove the supernatant, the precipitate was kept at 95 ° C for 18 hours, dried, weighed, and the obtained value was taken as the weight of the solid content. did. From the measured values, the decrease in solid content due to the addition of each protease was compared, and the results are shown in FIG.
図 1に示されるようにプロテアーゼ添加によって蒸留残渣の固形分重量が減少 した。 プロテアーゼ P F U Sを加えた場合には温度の上昇とともに減少率が増大 し、 エタノール存在下でも蒸留残渣中の固形分が減少した。 エスペラーゼを加え た場合には温度の上昇にしたがって減少率が低下し、 ェタノール存在下では固形 分の減少が著しく抑制された。 As shown in FIG. 1, the weight of the solid content of the distillation residue was reduced by the addition of the protease. When protease PFUS is added, the decrease rate increases with increasing temperature However, the solid content in the distillation residue was reduced even in the presence of ethanol. When esperase was added, the decrease rate decreased with increasing temperature, and the decrease in solid content was significantly suppressed in the presence of ethanol.
以上の結果より、 焼酎蒸留残渣中にはプロテアーゼによって可溶化される成分 が含まれていることが示された。 また、 特にプロテアーゼ P FUSはエタノール の存在下、 高温条件において残渣中の固形分重量を低減することから、 該酵素を 蒸留工程において使用することが可能であることが示唆された。  From the above results, it was shown that shochu distillation residue contains components solubilized by protease. In addition, protease PFUS, in particular, reduces the weight of solids in the residue under high temperature conditions in the presence of ethanol, suggesting that the enzyme can be used in the distillation step.
(2) 乙類米焼酎の発酵もろみ 80 Ομ 1に 1M炭酸ナトリウム緩衝液 (ρΗ 9. 0) 100μ 1、 91. 5πιυ/μ 1のプロテアーゼ P FUS溶液 87. 4 μ 1を加え、 70°Cで 4時間、 80°Cで 2時間または 95°Cで 2時間、 開放系で インキュベートした。 対照としてプロテアーゼを加えないものを用意し、 同時に ィンキュベートした。 反応終了後、 反応液を遠心分離を行って上清と沈殿物とを それぞれ採取し、 F—キット エタノール (ロシュ 'ダイァグノティックス社 製) を用いて上清のエタノール濃度を測定した。 また、 沈澱物は 95°Cで 1 8時 間乾燥させた後にその重量を測定し、 得られた結果から残渣中の固形分の減少率 を算出し、 図 2に示した。  (2) 1M sodium carbonate buffer (ρΗ9.0) 100μ1, 91.5πιυ / μ1 protease PFUS solution 87.4μ1 is added to fermentation moromi of rice shochu (80μμ1), 70 ° C For 4 hours, 80 ° C for 2 hours or 95 ° C for 2 hours in an open system. As a control, a sample to which no protease was added was prepared and incubated at the same time. After completion of the reaction, the reaction solution was centrifuged to collect the supernatant and the precipitate, respectively, and the ethanol concentration of the supernatant was measured using F-kit ethanol (manufactured by Roche Diagnostics). The precipitate was dried at 95 ° C. for 18 hours, weighed, and the reduction rate of the solid content in the residue was calculated from the obtained results. The results are shown in FIG.
反応液の上清中にはエタノールが検出されなかったことから、 今回の実験条件 で実際の蒸留に近い条件で加熱が行われている事が確認できた。 また、 図 2に示 されるように、 プロテアーゼ PFUSを添加することによって、 残渣中の固形分 の重量が約 20%以上減少した。 このことは、 蒸留中の発酵もろみにプロテア一 ゼを添加して蒸留を行った場合には、 蒸留終了後の残渣中の固形分の重量が減少 することを示している。  Since ethanol was not detected in the supernatant of the reaction solution, it was confirmed that heating was performed under conditions similar to actual distillation under the experimental conditions in this experiment. Further, as shown in FIG. 2, the weight of the solid content in the residue was reduced by about 20% or more by adding the protease PFUS. This indicates that, when the protease was added to the fermentation mash during distillation and distillation was performed, the weight of solids in the residue after distillation was reduced.
(3) 上記 (2) の操作をスケールアップし、 蒸留装置を用いて行った。 すなわち、 乙類米焼酎の発酵もろみ 4 Om lに 1M炭酸ナトリウム緩衝液 (p H 9. 0) 5m l、 91. 5 mU/μ 1のプロテアーゼ P FU S溶液 4 · 37m (3) The operation in (2) was scaled up and performed using a distillation apparatus. That is, 4 Oml of fermented moromi of the second kind of rice shochu was added to 5 ml of 1 M sodium carbonate buffer (pH 9.0), 91.5 mU / μ1 protease PFUS solution 4 · 37 m
1を加え、 80°Cで 2時間または 95°Cで 6時間の蒸留を実施した。 対照として プロテアーゼを加えないもろみの蒸留も行った。 蒸留終了後、 装置に残った残渣 を遠心分離して上清と沈殿物とをそれぞれ採取し、 上清中にエタノールが残存し ないことを上記同様の方法によって確認するとともに、 沈澱物を 95°Cで 1 8時 間乾燥させた後にその重量を測定した。 この場合にも、 プロテアーゼ P FUSを 添加したもろみからの蒸留残渣では、 その固形分量が対照に比較して約 2 0%低 減することが確かめられた。 実施例 2 1 was added and distillation was performed at 80 ° C for 2 hours or at 95 ° C for 6 hours. As a control, distillation of mash without added protease was also performed. After distillation, the residue remaining in the device was centrifuged to collect the supernatant and the precipitate, respectively.The absence of ethanol in the supernatant was confirmed by the same method as above, and the precipitate was collected at 95 ° C. 18:00 at C After drying, the weight was measured. Also in this case, it was confirmed that the solid content of the distillation residue from the mash to which the protease PFUS was added was reduced by about 20% as compared with the control. Example 2
( 1 ) 0. 1 N水酸化ナトリゥム溶液で p H 7に調整した乙類米焼酎の発酵も ろみ 8 00 μ 1に、 9 1. 5π υ/μ 1のプロテアーゼ P FUS溶液 8 7. 4 μ 1を加え、 9 5°Cで 2時間、 開放系でインキュベートした後、 1 00mg/m l のセルラーゼ "On o z u k a R— 1 0" (ヤクルト社製) 溶液 1 0 0 μ 1を力 [1 え、 さらに 5 0°Cで 4時間インキュベートした。 対照としてセルラーゼを加えな いもの、 プロテアーゼを加えないもの、 及び両酵素を加えないものも同条件でィ ンキュペートした。 反応終了後に遠心分離を行い、 回収した沈澱物を 9 5 °Cで 1 8時間乾燥し、 その重量を測定した。 得られた測定値より、 上記の両酵素とも添 加しなかった対照に対する重量の減少率を求め、 図 3に示した。  (1) Fermentation mash of B-type rice shochu adjusted to pH 7 with 0.1 N sodium hydroxide solution 800 μl, 91.5πυ / μ1 protease PFUS solution 8 7.4 Add 1 μl, incubate in an open system at 95 ° C for 2 hours, and apply 100 μl of 100 mg / ml cellulase “On ozuka R—10” (Yakult) solution [1]. The cells were further incubated at 50 ° C for 4 hours. As controls, those without cellulase, those without protease, and those without both enzymes were also incubated under the same conditions. After completion of the reaction, centrifugation was performed, and the collected precipitate was dried at 95 ° C. for 18 hours, and its weight was measured. From the obtained measured values, the rate of weight reduction relative to a control in which neither of the above enzymes was added was determined and is shown in FIG.
セルラーゼをのみを添加した場合には約 3 0%、 プロテアーゼのみを添加した 場合には約 2 0%、 それぞれ残渣中の固形分を減少させることができた。 さらに、 段階的に両酵素を添加した場合には、 固形分を 5 0 %以上減少させることができ た。 このことから、 プロテア一ゼのみならず、 セルラーゼのような高分子分角军酵 素が蒸留残渣の固形分量減少に効果があること、 ならびに複数の高分子分解酵素 の併用によってより効果的に固形分量を低減できることが示された。  The solid content in the residue could be reduced by about 30% when only cellulase was added, and about 20% when only protease was added. Furthermore, when both enzymes were added stepwise, the solid content could be reduced by 50% or more. This suggests that not only protease but also high molecular weight degrading enzyme such as cellulase has an effect on reducing the solid content of distillation residue, and more effective solidification can be achieved by using multiple polymer degrading enzymes in combination. It was shown that the amount could be reduced.
(2) 実施例 2— (1) と同様の操作により、 プロテアーゼ、 セルラーゼを添 加した乙類米焼酎の発酵もろみをィンキュベートした後、 反応液より上清を回収 した。  (2) In the same operation as in Example 2 (1), the fermentation mash of the second class rice shochu to which protease and cellulase were added was incubated, and then the supernatant was recovered from the reaction solution.
この上清中に含まれている還元糖量をパーク アンド ジョンソン法により測 定した。 すなわち、 反応液上清 1 0 μ し 蒸留水 9 0 μ 1、 炭酸シアン化物溶液 (5. 3 gの炭酸ナトリウムと 0. 6 5 gのシアン化カリウムを 1 リ ッ トルの水 に溶解したもの) 1 00 μ し 及び 0. 0 5 %フェリシァン化カリゥム水溶液 1 0 0 μ 1を混合し、 沸騰湯浴中 1 5分間ィンキュベートした。 ィンキュベート終 了後、 反応液に 5 00 μ 1の鉄ミヨゥバン液 (1. 5 gの鉄ミヨゥバンと 1 gの ラウリノレ硫酸ナトリウム (S D S) を 1リットルの 0. 1 5 N硫酸に溶解したも の) を混合して 1 5分間室温で放置後、 6 9 0 nmの吸光度を測定した。 還元末 端量は、 濃度既知のグルコースを用いて作成した検量線に基づき、 グルコース換 算量として求めた。 The amount of reducing sugars contained in this supernatant was measured by the Park and Johnson method. That is, 10 μl of the reaction solution supernatant was added to 90 μl of distilled water, and a cyanide carbonate solution (5.3 g of sodium carbonate and 0.65 g of potassium cyanide dissolved in 1 liter of water) 1 The mixture was mixed with 100 μl and a 0.05% aqueous solution of potassium ferricified solution (100 μl) and incubated in a boiling water bath for 15 minutes. After completion of the incubation, add 500 μl of iron alum to the reaction mixture (1.5 g of iron alum and 1 g of alum). Sodium laurino sulfate (SDS) dissolved in 1 liter of 0.15 N sulfuric acid) was mixed, left at room temperature for 15 minutes, and the absorbance at 690 nm was measured. The amount of reduced terminal was determined as a glucose conversion amount based on a calibration curve prepared using glucose of known concentration.
また、 上記の反応液上清中に含まれるグルコース量を、 グルコース C I Iテス ト ヮコー (和光純薬社製) を用いて測定した。  Further, the amount of glucose contained in the supernatant of the above reaction solution was measured using Glucose CII Test Co. (Wako Pure Chemical Industries, Ltd.).
さらに、 上記の反応液上清 2 μ 1を濃縮乾固後、 共沸塩酸を加え 1 3 5°Cで 3 時間加熱することにより、 上清中に含まれるぺプチドをァミノ酸に加水分解した。 乾固した加水分解物を蒸留水に溶解、 希釈した後、 希釈液 2 0 β 1に 2 0 0 μ 1 の 0. 2 Μほう酸/水酸ィ匕ナトリウム緩衝液 (ρ Η 9. 0) 及び 5 0 μ 1の 0. 3mg/m l フルラム (Fluram) ァセトニトリル溶液 〔フル力 (Fluka) 社製〕 を加え、 蛍光強度の増加からアミノ基を定量した。 得られたアミノ基量がすべて アミノ酸に由来するものとみなし、 アミノ酸の平均分子量は 1 1 0としてアミノ 酸量を算出した。  Furthermore, 2 μl of the above reaction solution supernatant was concentrated to dryness, azeotropic hydrochloric acid was added, and the mixture was heated at 135 ° C for 3 hours to hydrolyze peptides contained in the supernatant to amino acid. . After dissolving and diluting the dried hydrolyzate in distilled water, add 200 μl of 0.2 diboric acid / hydroxy sodium hydroxide buffer (ρ Η 9.0) to diluent 20 β1 and 50 μl of 0.3 mg / ml Fluram (acetonitrile) solution (manufactured by Fluka) was added, and amino groups were quantified from the increase in fluorescence intensity. It was considered that all the obtained amino groups were derived from amino acids, and the average molecular weight of amino acids was 110, and the amount of amino acids was calculated.
以上の測定結果を表 1に示した。 表 1の値は、 上記の測定値より、 酵素を添加 せずにィンキュベ一トした発酵もろみでの測定値および酵素のみでの測定値を差 し引いたものであり、 発酵もろみ l m lあたりのアミノ酸、 還元糖及びダルコ一 スの増加量 (mg) として表した。 表 1  Table 1 shows the above measurement results. The values in Table 1 are the values obtained by subtracting the values measured with fermentation mash that was incubated without adding the enzyme and those measured with only the enzyme from the above measurement values. , Reducing sugars and darcos as increase (mg). table 1
Figure imgf000020_0001
Figure imgf000020_0001
このように、 発酵もろみをプロテアーゼ、 セルラーゼなどの加水分解酵素存在 下で蒸留することにより、 蒸留後の残渣中の可溶性画分に含まれるグルコース量、 還元糖量、 ァミノ酸 Zぺプチド量が有意に増加した。 実施例 3 Thus, by distilling the fermented mash in the presence of hydrolases such as protease and cellulase, the amount of glucose, reducing sugar, and amino acid Z-peptide contained in the soluble fraction in the residue after distillation is significantly increased. Increased. Example 3
0. 1 N水酸化ナトリゥム溶液で pH 7に調整した乙類米焼酎の発酵もろみ 4 0m lに、 91. 5πιυ/μ 1のプロテアーゼ P FUS溶液 3. 87m lを加え、 95。C、 6時間の蒸留を実施した。 蒸留終了後、 10 OmgZm 1のセルラーゼ "On o z u k a R— 10" 溶液 5 m 1を加え、 さらに 50 °Cで 4時間ィンキュ ベートした。 対照として両酵素を加えずに同条件で蒸留、 ィンキュベートする操 作を行った。  To 40 ml of the fermentation mash of the varieties of rice shochu adjusted to pH 7 with 0.1 N sodium hydroxide solution, 3.87 ml of a 91.5πιυ / μ1 protease PFUS solution was added, and 95. C, distillation for 6 hours was performed. After completion of the distillation, 5 ml of a 10 OmgZm 1 cellulase “Onozuka R-10” solution was added, and the mixture was further incubated at 50 ° C for 4 hours. As a control, an operation of distilling and incubating under the same conditions without adding both enzymes was performed.
得られた残渣ょりその一部をとり、 遠心分離によって沈澱物をそれぞれ回収し、 95°Cで 1 8時間乾燥した後にその重量を測定した。 その結果、 酵素を添加して 蒸留、 インキュベートを実施したものでは、 対照に比べて残渣中の固形分量が約 30%減少していた。  A portion of the obtained residue was taken, and the precipitate was collected by centrifugation, dried at 95 ° C for 18 hours, and weighed. As a result, when the enzyme was added and distillation and incubation were performed, the solid content in the residue was reduced by about 30% compared to the control.
ポリグルタミン酸生成能を有する枯草菌、 バチルス ·ナット (Bacillus natto) I FO 3335 (財団法人発酵研究所より購入) を 5 m 1の L B培地 (1%トリプトン、 0. 5%酵母エキス、 0. 5%塩化ナトリウム、 pH7. 2) 中で 37°C、 18時間前培養した。 得られた前培養液 50μ 1を、 上記の残 渣 5 m 1に接種し、 37 °C、 48時間静置培養した。 遠心分離により回収した培 養上清に 1 / 10容量の飽和塩化ナトリゥム溶液、 2. 2倍容量の 90 %エタノ ールを加え攪拌した。 生じた γ—ポリグルタミン酸の凝集物をピぺットで回収し、 さらにエタノールで 3回洗浄した。 得られた γ—ポリグルタミン酸を風乾させた 後、 乾燥重量を測定し、 γ—ポリグルタミン酸の生産量とした。  Bacillus natto IFO 3335 (purchased from the Fermentation Research Institute), a polyglutamic acid-producing Bacillus subtilis, was treated with 5 ml of LB medium (1% tryptone, 0.5% yeast extract, 0.5% Incubation was carried out at 37 ° C for 18 hours in a sodium chloride solution (pH 7.2). 50 μl of the obtained preculture was inoculated into 5 ml of the above-mentioned residue, and was incubated at 37 ° C for 48 hours. To the culture supernatant collected by centrifugation, 1/10 volume of a saturated sodium chloride solution and 2.2 volumes of 90% ethanol were added and stirred. The resulting aggregates of γ-polyglutamic acid were collected with a pipet and further washed three times with ethanol. After the obtained γ-polyglutamic acid was air-dried, the dry weight was measured to determine the amount of γ-polyglutamic acid produced.
図 4に γ—ポリグルタミン酸の生産量を示した。 プロテアーゼ、 セルラーゼを 添加して得られた残渣を培地としてバチルス ·ナツトを培養すると、 対照と比較 して γ—ポリグルタミン酸の生産量が有意に増加した。 実施例 4  Figure 4 shows the production of γ-polyglutamic acid. When Bacillus nut was cultured using the residue obtained by adding protease and cellulase as a medium, the production of γ-polyglutamic acid was significantly increased as compared with the control. Example 4
(1) 国際公開公報 WO 95ノ 34645号に記載の、 プロテア一ゼ PFUL 遺伝子を導入された大腸菌 (Escherichia coli) JM109/pTPR 1 2 (当 該菌株は通産省工業技術院生命工学工業技術研究所に FERM BP— 5 1 03 W (1) Escherichia coli JM109 / pTPR12 into which the protease PFUL gene has been introduced as described in WO 95/34645 (this strain was FERM BP— 5 1 03 W
20 として寄託されている) を LB培地中、 37 °Cで 24時間培養した後、 遠心分離 により菌体を回収した。 この菌体 3 gを 0. 1Mりん酸カリウム緩衝液 (pH7. 0 ) に懸濁して全量を 2. 6m l とし、 その 25、 50、 1 00、 200μ 1を 乙類米焼酎の蒸留残渣 250 μ 1に加え、 さらに 1 Μ炭酸ナトリゥム緩衝液 ( ρ Η 9) 50 μ 1を加えた後に蒸留水を加えて全量を 500 1 とした。 これらの 反応液を 95°Cで 15時間ィンキュベートした後、 遠心分離を行って得た沈澱物 を 95 °Cで 18時間乾燥し、 その重量を測定した。 その結果を図 5に示した。 超耐熱性プロテアーゼを発現する遺伝子組換え微生物を焼酎蒸留残渣に加える ことにより固形分が減少した。 よって高分子分解酵素を生産する微生物を蒸留残 査の固形分量低減用添加剤として使用できることが示された。  Was deposited in LB medium at 37 ° C for 24 hours, and the cells were recovered by centrifugation. 3 g of the cells are suspended in 0.1 M potassium phosphate buffer (pH 7.0) to make a total volume of 2.6 ml. In addition to μ1, 50 μl of 1% sodium carbonate buffer (ρΗ9) was added, and then distilled water was added to adjust the total amount to 500 1. After incubating these reaction solutions at 95 ° C for 15 hours, the precipitate obtained by centrifugation was dried at 95 ° C for 18 hours, and the weight was measured. The results are shown in FIG. The solid content was reduced by adding genetically modified microorganisms that express hyperthermostable proteases to the shochu distillation residue. Therefore, it was shown that microorganisms that produce high-molecular-weight degrading enzymes can be used as additives for reducing the solid content in distillation residues.
(2) 上記同様の微生物懸濁液を調製し、 その 4m 1を乙類米焼酎の発酵もろ み 5m lに加え、 さらに 1M炭酸ナトリウム緩衝液 (pH 9) 1 m 1を加えて全 量 1 Om lの試料を調製した。 試料を蒸留装置に入れ、 95°C、 6時間の蒸留を 行い、 蒸留後の残渣から遠心分離によって沈殿物を回収した。 得られた沈澱物を 95°Cで 1 8時間乾燥させた後にその重量を測定し、 プラスミ ドを保持していな い大腸菌 (Escherichia coli) J M 109の懸濁液を加えて蒸留を実施した対照 での沈澱物乾燥重量と比較した。 この結果、 プロテアーゼ P FULを生産する微 生物の懸濁液を添加して蒸留を行うことにより、 蒸留残渣中の固形分量が約 1 0 %低減されることが示された。 実施例 5  (2) Prepare a microbial suspension similar to the above, add 4 ml of the suspension to 5 ml of fermentation mash of B-type rice shochu, and add 1 ml of 1 M sodium carbonate buffer (pH 9) to a total volume of 1 ml. A sample of Oml was prepared. The sample was placed in a distillation apparatus, distilled at 95 ° C for 6 hours, and the precipitate was collected from the residue after distillation by centrifugation. The obtained precipitate was dried at 95 ° C for 18 hours, weighed, and added with a suspension of Escherichia coli JM109 that did not retain plasmid to perform distillation. And the dry weight of the precipitate. As a result, it was shown that the amount of solids in the distillation residue was reduced by about 10% by adding a suspension of microorganisms producing protease P FUL and performing distillation. Example 5
実施例 1一 (2) に記載の、 プロテアーゼ PFUSの存在下に実施された蒸留 により得られた残渣にっき、 その濾過性を調べた。 対照としてはプロテアーゼを 加えずに蒸留して得られた残渣を用いた。  The residue obtained by distillation performed in the presence of the protease PFUS described in Example 11 (2) was examined for its filterability. As a control, a residue obtained by distillation without adding protease was used.
孔径 5 μπιのスピンカラム (ウルトラフリ一 MC、 ミリポア社製) に上記の反 応液 400 μ 1をとり、 3000 X gで 2分、 4分、 8分又は 16分間遠心し た後にフィルターを通過した液体の重量を測定し、 反応液全体に対する濾液の割 合を算出して濾過率とした。 その結果を図 5に示した。  Take 400 μl of the above reaction solution on a spin column (Ultra Free MC, manufactured by Millipore) with a pore size of 5 μπι, centrifuge at 3000 X g for 2, 4, 8, or 16 minutes and pass through the filter. The weight of the liquid thus obtained was measured, and the ratio of the filtrate to the whole reaction solution was calculated to obtain the filtration rate. The results are shown in FIG.
ブロテアーゼとともにインキュベートして得られた残渣は、 プロテア一ゼを添 W The residue obtained by incubation with the protease is added to the protease. W
21 加しなかったものに比べて濾過の効率が上昇しており、 最大で対照に比較して約 5 0 %増しの濾過率となった。 すなわち、 蒸留時にプロテアーゼのような高分子 分解酵素を添加しておくことにより、 残渣を処理する際の固液分離が容易になる ことが明らかとなった。 産業上の利用の可能性  21 The efficiency of filtration was higher than that in which no filtration was performed, and the maximum filtration rate was about 50% higher than that of the control. In other words, it has been clarified that solid-liquid separation during the treatment of the residue is facilitated by adding a polymer-degrading enzyme such as a protease during distillation. Industrial applicability
以上述べてきたように、 本発明によって蒸留残渣中の固形分量の減量方法が提 供される。 本発明の方法を実施することにより、 固液分離工程が容易になるなど 蒸留廃液処理工程における負荷が低減され、 発酵から蒸留、 蒸留廃液処理の全ェ 程を通してのエネルギー効率を向上させることができる。  As described above, the present invention provides a method for reducing the solid content in a distillation residue. By implementing the method of the present invention, the load in the distillation waste liquid treatment step is reduced, for example, the solid-liquid separation step is facilitated, and the energy efficiency throughout the entire process from fermentation to distillation and distillation waste liquid treatment can be improved. .
本発明の方法においては、 発酵終了後に酵素が作用するために発酵工程中のも ろみ成分の変化がなく、 従来同様の方法で発酵工程を実施することができる。 さ らに、 高温状態で酵素が作用するため、 分解される高分子の加熱による変性、 可 溶化、 分解と酵素による分解作用との相乗作用により、 極めて効率的に残渣中の 固形分を減少させることができる。  In the method of the present invention, the fermentation step can be carried out in the same manner as in the prior art, since there is no change in the mash component during the fermentation step because the enzyme acts after the fermentation. In addition, since the enzyme acts at high temperature, the solid content in the residue is reduced extremely efficiently by the denaturation of the polymer to be degraded by heating, solubilization, and the synergistic action of the degradation and the degradation by the enzyme. be able to.
また本発明によって蒸留残渣中の固形分量低減用添加剤が提供され、 該添加剤 は上記の方法に好適に使用できる。  The present invention also provides an additive for reducing the amount of solids in a distillation residue, and the additive can be suitably used in the above method.
さらに、 発酵もろみを本発明の方法で処理することにより、 従来は廃棄物とし て処理されていた蒸留残渣固形分より効率よくアミノ酸、 オリゴペプチド、 糖質 等が可溶化される。 蒸留残渣は飼料、 肥料、 微生物の培地として利用できるが、 アミノ酸、 オリゴペプチド、 糖質等が可溶ィヒされることにより栄養価が向上する。 また、 可溶化されたアミノ酸、 オリゴペプチド、 糖質をより多く含む蒸留残渣上 清を用いることにより、 メタン発酵等の生物学的な処理を効率よく行うことが可 能で、 バイオマスとしての利用効率が向上する。  Further, by treating the fermentation mash by the method of the present invention, amino acids, oligopeptides, carbohydrates, and the like can be more efficiently solubilized than the solid content of the distillation residue conventionally treated as waste. Distillation residues can be used as feed, fertilizer, and microbial media, but their amino acids, oligopeptides, carbohydrates, etc. are soluble and their nutritional value is improved. In addition, by using a distillation residue supernatant containing more solubilized amino acids, oligopeptides and carbohydrates, biological treatment such as methane fermentation can be performed efficiently, and the utilization efficiency as biomass can be improved. Is improved.

Claims

請 求 の 範 囲  The scope of the claims
I . 蒸留条件下で活性を有する高分子分解酵素の存在下に蒸留を実施する工程 を包含することを特徴とする蒸留残渣固形分の減量方法。 I. A method for reducing the solid content of a distillation residue, comprising a step of performing distillation in the presence of a polymer degrading enzyme having activity under distillation conditions.
2 . 蒸留が 5 0 DC以上で実施されることを特徴とする請求項 1記載の蒸留残渣 固形分の減量方法。 2. Distillation 5 0 D distillation residue solids method of weight loss according to claim 1, characterized in that it is implemented in C or more.
3 . 高分子分解酵素を生産する微生物と目的の発酵産物を生産する微生物とを 共培養して得られた発酵もろみを蒸留に用いる、 請求項 1または 2記載の蒸留残 渣固形分の減量方法。  3. The method for reducing solids content of a distillation residue according to claim 1 or 2, wherein fermentation mash obtained by co-culturing a microorganism that produces a polymer degrading enzyme and a microorganism that produces a target fermentation product is used for distillation. .
4 . 目的の発酵産物を生産する微生物に外来の高分子分解酵素遺伝子を組み込 み、 当該微生物を使用して得られた発酵もろみを蒸留に用いる、 請求項 1記載の 蒸留残渣固形分の減量方法。  4. The reduction of distillation residue solid content according to claim 1, wherein an exogenous polymer degrading enzyme gene is incorporated into a microorganism that produces the target fermentation product, and fermentation mash obtained using the microorganism is used for distillation. Method.
5 . 外来の高分子分解酵素遺伝子を導入した生物由来の材料を発酵原料として 得られた発酵もろみを蒸留に用いる、 請求項 1記載の蒸留残渣固形分の減量方法。  5. The method for reducing the solid content of distillation residue according to claim 1, wherein a fermentation mash obtained by using an organism-derived material into which an exogenous polymer-degrading enzyme gene has been introduced as a fermentation raw material is used for distillation.
6 . 発酵がアルコール発酵である、 請求項 1〜5のいずれか 1項記載の蒸留残 渣固形分の減量方法。  6. The method for reducing the solid content of a distillation residue according to any one of claims 1 to 5, wherein the fermentation is alcoholic fermentation.
7 . プロテアーゼ、 セルラーゼ、 へミセルラーゼ、 ぺクチナーゼ、 細胞壁分解 酵素、 ヌクレア一ゼより選択される 1種以上の高分子分解酵素を使用することを 特徴とする請求項 1〜 6のいずれか 1項記載の蒸留残渣固形分の減量方法。  7. The method according to any one of claims 1 to 6, wherein at least one kind of high-molecular-weight degrading enzyme selected from protease, cellulase, hemicellulase, actinase, cell wall degrading enzyme, and nuclease is used. Method for reducing solid content of distillation residue.
8 . プロテアーゼが耐熱性プロテアーゼである、 請求項 7記載の蒸留残渣固形 分の減量方法。  8. The method according to claim 7, wherein the protease is a thermostable protease.
9 . 耐熱性プロテア一ゼが超耐熱性プロテアーゼである、 請求項 8記載の蒸留 残渣固形分の減量方法。  9. The method according to claim 8, wherein the heat-resistant protease is a hyperthermostable protease.
1 0 . 蒸留条件下で活性を有する高分子分解酵素及び/又は蒸留条件下で活性 を有する高分子分解酵素を生産する微生物を含有し、 蒸留開始前の発酵もろみに 添加されることを特徴とする蒸留残渣中の固形分量低減用添加剤。  10. It contains a polymerase that is active under distillation conditions and / or a microorganism that produces a polymerase that is active under distillation conditions, and is added to the fermentation mash before the start of distillation. For reducing the amount of solids in the distillation residue.
I I . 高分子分解酵素がプロテア一ゼ、 セルラーゼ、 へミセルラーゼ、 ぺクチ ナーゼ、 細胞壁分解酵素、 ヌクレアーゼょり選択される 1種以上の高分子分解酵 素である、 請求項 1 0記載の添加剤。 II. The additive according to claim 10, wherein the high-molecular-weight degrading enzyme is one or more types of high-molecular-weight degrading enzymes selected from proteases, cellulases, hemicellulases, actinases, cell wall degrading enzymes, and nucleases. .
12. プロテアーゼが耐熱性プロテアーゼである、 請求項 i 1記載の添加剤。 12. The additive according to claim 1, wherein the protease is a thermostable protease.
1 3. 耐熱性プロテア一ゼが超耐熱性プロテアーゼである、 請求項 1 2記載の 添加剤。  13. The additive according to claim 12, wherein the thermostable protease is a hyperthermostable protease.
PCT/JP2000/000187 1999-01-20 2000-01-18 Method and additive for reducing solid distillation residue WO2000043489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU20055/00A AU2005500A (en) 1999-01-20 2000-01-18 Method and additive for reducing solid distillation residue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/11782 1999-01-20
JP1178299 1999-01-20

Publications (1)

Publication Number Publication Date
WO2000043489A1 true WO2000043489A1 (en) 2000-07-27

Family

ID=11787529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000187 WO2000043489A1 (en) 1999-01-20 2000-01-18 Method and additive for reducing solid distillation residue

Country Status (2)

Country Link
AU (1) AU2005500A (en)
WO (1) WO2000043489A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143542A (en) * 2005-11-25 2007-06-14 Council Scient Ind Res New microbial consortium and use thereof for liquefaction of solid organic matter
WO2009028481A1 (en) * 2007-08-28 2009-03-05 Diamond Engineering Co., Ltd. Activated sludge material, reduction method of excess sludge amount in bioreactor, and maintenance method of bioreactor
JP2009072763A (en) * 2007-08-28 2009-04-09 Diamond Engineering Kk Maintenance method of bioreactor
JP2009072762A (en) * 2007-08-28 2009-04-09 Diamond Engineering Kk Activated sludge material, and reduction method of excess sludge amount in bioreactor
WO2022172968A1 (en) * 2021-02-10 2022-08-18 学校法人幾徳学園 Method for producing terephthalic acid from biomass resource, and method for producing polyester from biomass resource

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200A (en) * 1989-05-29 1991-01-07 Jozo Shigen Kenkyusho:Kk Treatment of waste liquid after production of shochu by distillation
JPH06106186A (en) * 1992-09-30 1994-04-19 Fuji Kasui Kogyo Kk Treatment of waste liquid produced by shochu distilling
JPH06315369A (en) * 1993-03-29 1994-11-15 Kumamoto Pref Gov Treatment of distillation waste liquor of 'shochu'
JPH0866175A (en) * 1994-08-31 1996-03-12 Hankyu Kyoei Bussan Inc Method for treating distillation residue of japanese distilled spirits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200A (en) * 1989-05-29 1991-01-07 Jozo Shigen Kenkyusho:Kk Treatment of waste liquid after production of shochu by distillation
JPH06106186A (en) * 1992-09-30 1994-04-19 Fuji Kasui Kogyo Kk Treatment of waste liquid produced by shochu distilling
JPH06315369A (en) * 1993-03-29 1994-11-15 Kumamoto Pref Gov Treatment of distillation waste liquor of 'shochu'
JPH0866175A (en) * 1994-08-31 1996-03-12 Hankyu Kyoei Bussan Inc Method for treating distillation residue of japanese distilled spirits

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143542A (en) * 2005-11-25 2007-06-14 Council Scient Ind Res New microbial consortium and use thereof for liquefaction of solid organic matter
WO2009028481A1 (en) * 2007-08-28 2009-03-05 Diamond Engineering Co., Ltd. Activated sludge material, reduction method of excess sludge amount in bioreactor, and maintenance method of bioreactor
JP2009072763A (en) * 2007-08-28 2009-04-09 Diamond Engineering Kk Maintenance method of bioreactor
JP2009072762A (en) * 2007-08-28 2009-04-09 Diamond Engineering Kk Activated sludge material, and reduction method of excess sludge amount in bioreactor
US8603339B2 (en) 2007-08-28 2013-12-10 Diamond Engineering Co., Ltd. Activated sludge material, method for reducing excess sludge production in bioreactor, and method of controlling bioreactor
WO2022172968A1 (en) * 2021-02-10 2022-08-18 学校法人幾徳学園 Method for producing terephthalic acid from biomass resource, and method for producing polyester from biomass resource

Also Published As

Publication number Publication date
AU2005500A (en) 2000-08-07

Similar Documents

Publication Publication Date Title
EP2398889B1 (en) Fermentation broth formulations
JP6173346B2 (en) Biomass material processing
EP2563924B1 (en) Process for liquid/solid separation of lignocellulosic biomass hydrolysate fermentation broth
JP2006217916A (en) Method for producing cellulose-decomposing and hemicellulose-decomposing enzyme by using distillation residue from ethanol fermentation of hydrolysate of (ligno)cellulosic material by enzyme
US11286472B2 (en) Variants of exoglucanases having improved activity and uses thereof
US20210079431A1 (en) Methods & systems for propagating microorganisms on stillage compositions
JP6890134B2 (en) A method for producing cellulase from pretreated lignocellulosic juice residue
US10738291B2 (en) Variants of exoglucanases having improved activity and uses thereof
WO2000043489A1 (en) Method and additive for reducing solid distillation residue
US8518679B2 (en) Complementation of the Trichoderma reesei secretome limiting microbiological contaminations within the context of industrial processes
WO2021195541A1 (en) Corn sweet steeping
CN102869780A (en) Method for producing fermentation products from lignocellulose-containing material
JP2018509919A (en) Compositions for enhanced enzyme production
CN104583385A (en) Fungal cells that produce decreased amounts of peptaibols
EP3071692B1 (en) Endoglucanase variants having improved activity, and uses of same
WO2024137704A2 (en) Processes for producing fermentation products using fiber-degrading enzymes with engineered yeast

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 594898

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase