WO2000035553A1 - Method of separating compound of group iii or iv metal - Google Patents

Method of separating compound of group iii or iv metal Download PDF

Info

Publication number
WO2000035553A1
WO2000035553A1 PCT/JP1999/007044 JP9907044W WO0035553A1 WO 2000035553 A1 WO2000035553 A1 WO 2000035553A1 JP 9907044 W JP9907044 W JP 9907044W WO 0035553 A1 WO0035553 A1 WO 0035553A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
acid
group
metal
alkoxide
Prior art date
Application number
PCT/JP1999/007044
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Hashimoto
Tadashi Fukui
Tadashi Hanaoka
Original Assignee
Takeda Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries, Ltd. filed Critical Takeda Chemical Industries, Ltd.
Priority to AU16862/00A priority Critical patent/AU1686200A/en
Publication of WO2000035553A1 publication Critical patent/WO2000035553A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • the present invention relates to a method for separating an organic compound exhibiting lipophilicity at a pH region higher than PH2 and a metal compound belonging to Group III or IV, and is particularly applied to the separation and purification of a target compound in the field of synthesis of organic compounds. Things. Background art
  • Alkoxides of Group II or Group IV metals in the short-periodic periodic table are often used in organic synthesis reactions. However, at the end of the reaction, an operation of decomposing with addition of water is performed in order to invalidate the effect.
  • the metal compound formed by this decomposition is soluble in water under strongly acidic conditions of less than pH 2, but is generally insoluble in both water and organic solvents under conditions of pH 2 or more.
  • some of the target compounds in the chemical reaction show lipophilicity in the pH range higher than any pH of 2 or more, but show hydrophilicity or non-hydrophilicity under strongly acidic conditions below any pH. Some are stable.
  • the solvent is used as an extraction solvent under conditions of pH 2 or more. Addition of an oily organic solvent is performed.
  • the compound of the metal formed by the decomposition of the metal alkoxide cannot be separated by liquid separation because it is present as fine particles in both the aqueous layer and the lipophilic organic solvent layer, and the separation by filtration requires a long time. It was very disadvantageous industrially. Disclosure of the invention
  • the present invention provides an industrially advantageous method for separating a target compound from a Group II, Group IV metal compound under a condition of pH 2 or more.
  • any organic compound having a pH of 2 or more can be obtained by an organic synthesis reaction using an alkoxide of a Group III or Group IV metal in the short periodic table.
  • an organic compound exhibiting lipophilicity in the pH range higher than the above value is synthesized, at the end of the reaction, the pH of the aqueous layer together with the lipophilic organic solvent for extraction and water is adjusted to the pH within the range where the target compound exhibits lipophilicity.
  • a polybasic carboxylic acid a carboxylic acid having a plurality of carboxylic acid groups
  • it is insoluble in both water and lipophilic organic solvents, even when the liquidity is pH 2 or higher. It was found that the target compound was distributed to the organic layer, and the Group III and Group IV metal compounds were distributed to the aqueous layer, thereby completing the present invention.
  • solution II A solution containing an organic compound exhibiting lipophilicity in a pH range higher than pH 2 and an alkoxide of a Group III or Group IV metal in the short-periodic periodic table (hereinafter referred to as “solution II”).
  • lipophilic organic solvent 4 a lipophilic organic solvent (hereinafter referred to as lipophilic organic solvent 4) is further added during mixing.
  • the lipophilic organic solvent 4 is a halogenated hydrocarbon having 1 to 2 carbon atoms, an ether having 2 to 6 carbon atoms, a lower alkyl ester of a lower aliphatic carboxylic acid, or an aromatic carbonization having 6 to 8 carbon atoms. Hydrogens, aliphatic hydrocarbons having 5 to 7 carbon atoms, alicyclic hydrocarbons having 5 to 7 carbon atoms, a mixed solvent of two or more of these, or a mixture of these solvents and other solvents.
  • Polybasic carboxylic acid 3 is oxalic acid, malonic acid, konoic acid, oxalic acid, daltaric acid, adipic acid, maleic acid, fumaric acid, fumaric acid, isophthalic acid, terephthalic acid, citric acid Or the method according to the above (1), which is a mixture of two or more of these,
  • Ar represents a phenyl group optionally substituted with halogen
  • X represents a lower alkylene group
  • (R) represents a steric configuration
  • the alkoxide of a Group II or Group IV metal in the short-periodic table is an alkoxide of titanium
  • the polybasic carboxylic acid 3 is a di- or tricarboxylic acid having 2 to 8 carbon atoms.
  • the lipophilic organic solvent ⁇ is a lower alkyl ester of a lower aliphatic carboxylic acid
  • solution I A solution containing an organic compound exhibiting lipophilicity and an alkoxide of a Group III or Group IV metal in the short-periodic periodic table (hereinafter referred to as solution I) is mixed with water II and polybasic rubonic acid 3.
  • a method for separating the organic compound and the metal compound wherein the method comprises transferring the metal compound to an aqueous layer;
  • a reaction mixture containing the compound represented by the formula, water2, a di- or tricarboxylic acid having 28 carbon atoms and a lipophilic organic solvent4 are mixed, and the titanium compound is transferred to an aqueous layer.
  • a method for producing the compound represented by (I) is described in detail below.
  • titanium alkoxide is titanium (IV) methoxide, titanium (IV) ethoxide, titanium (IV) propoxide, titanium (IV) isopropoxide or titanium (IV) butoxide.
  • the lipophilic organic compound is an organic compound that is more soluble in a lipophilic organic solvent than in water. Whether the organic compound is more soluble in water or the lipophilic organic solvent is determined by adding the organic compound to an equal volume of water and the lipophilic organic solvent, mixing the mixture, and then allowing the mixture to stand. Can be determined by measuring the amount of the organic compound contained in each of the above. In this case, the conditions such as the temperature may be adjusted to the conditions for actually implementing the present invention.
  • the above-mentioned organic compound exhibiting lipophilicity in a pH region higher than pH 2 is a compound which is more soluble in a lipophilic organic solvent than water in a pH region higher than an arbitrary pH value higher than 2 in water.
  • Lipophilic organic solvent in the pH range below any pH value Ricoh refers to an organic compound that is soluble in water in large quantities or decomposed partly or entirely.
  • examples of such a compound include organic compounds having a basic substituent, for example, an amino group which may be substituted (eg, an alkylamino group such as methylamino, ethylamino, propylamino, and butylamino, and an acylamino group such as acetylamino, propioamino, and propylamino).
  • a heterocyclic group having an optionally substituted nitrogen atom eg, optionally substituted pyridyl, pyrimidinyl, triazinyl, pyrrolyl, diazolyl, triazolyl, oxazolyl, oxaziazolyl, imidazolyl, imidazolidinyl, etc.
  • an organic compound having the following group eg, an organic compound having the following group.
  • the compound represented by the formula (I) is also an example.
  • (2R, 3R) -2- (2,4-difluorophenyl) -3- [N- (2-hydroxyethyl) amino]- 1- (1H-1,2,4-triazol-1-yl) -2-butanol is lipophilic above pH 3 and hydrophilic below pH 3.
  • Alkoxides of Group III or Group IV metals in the short-periodic table include, for example, Group III metals such as aluminum, scandium and gallium or Group IV metals such as titanium, germanium, zirconium, tin and namari.
  • Alkoxides of metals for example, alkoxides having 1 to 5 carbon atoms such as methoxide, ethoxide, propoxide, isopropoxide, butoxide, isobutoxide, t-butoxide, sec-butoxide).
  • alkoxides of titanium, zirconium or aluminum are preferred.
  • titanium alkoxides such as, for example, titanium (IV) methoxide, titanium (IV) butoxide, titanium diisopropoxide bis (2,4-pentanedionate), and titanium (IV).
  • titanium (IV) methoxide titanium (IV) butoxide
  • titanium diisopropoxide bis (2,4-pentanedionate) titanium (IV).
  • Ethoxide titanium (IV) 2-ethylhexoxide
  • titanium (IV) isopropoxide titanium (IV) propoxide and the like.
  • the solution 1 may contain other substances in addition to the organic compound and the metal alkoxide.
  • This solution is usually a reaction mixture in organic synthesis, which contains the organic compound and the alkoxide of the metal, as well as unreacted raw materials, catalyst, ⁇ (J products, decomposition products, organic solvents, etc.) .
  • the amount of water used is not particularly limited.
  • the amount is usually 0.1 to 100 L (liter), preferably 0.5 to 50 L (liter), per 1 mol of the alkoxide of the Group IV metal.
  • Polybasic liponic acid 3 refers to liponic acid having a plurality of lipoxyl groups in one molecule. Specific examples thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid. Dicarboxylic acid having 2 to 8 carbon atoms such as maleic acid, fumaric acid, fumaric acid, isofluoric acid, terephthalic acid, and tricarboxylic acid having 6 to 10 carbon atoms such as citric acid. Among them, di- or tricarboxylic acids having 2 to 8 carbon atoms such as oxalic acid and citric acid are preferred. Also, a mixture of two or more of these may be used.
  • the amount of the polybasic carboxylic acid 3 used is usually 0.2 to 20 mol, preferably 0.5 to 0.5 mol, per mol of the alkoxide of the Group III or Group IV metal in the short-periodic periodic table. Is a mole.
  • the lipophilic organic solvent must be contained in the mixture when the metal compound is transferred to the aqueous layer.
  • solution (1) already contains lipophilic organic solvent (2), only water (2) and polybasic carboxylic acid (3) need to be added, but solution (2) contains lipophilic organic solvent (2). If not, you need to add it.
  • the lipophilic organic solvent 4 may be any solvent which can be separated from water, for example, halogenated hydrocarbons having 1 to 2 carbon atoms such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, etc.
  • C2-C6 ethers such as getyl ether, diisopropyl ether, dimethylene glycol dimethyl ether, and diethylene glycol getyl ether; C1-C3 lower aliphatic carboxylic acids such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate C1-C4 lower alkyl esters of acids, C6-C8 aromatic hydrocarbons such as benzene, toluene and xylene; C5-C7 alicyclic hydrocarbons such as cyclohexane, pentane Solvents such as aliphatic hydrocarbons having 5 to 7 carbon atoms, such as hexane, hexane and heptane.
  • Lower alkyl esters of lower aliphatic carboxylic acids are preferred.
  • Preferred specific examples of the lipophilic organic solvent include benzene, chloroform, carbon tetrachloride, dichloroethane, dichloromethane, dimethyl ether, diisopropyl ether, ethyl acetate, hexane, pentane, toluene and xylene.
  • a mixed solvent of two or more of these, or a mixed solvent of these solvents and other solvents may be used.
  • the amount of the lipophilic organic solvent to be used is not particularly limited, but is from 0.01 to: L 0 0 L (liter) per mole of the alkoxide of the Group II or Group IV metal in the short-periodic periodic table. Preferably, it is 0.1 to 50 L (liter).
  • L 0 0 L (liter) per mole of the alkoxide of the Group II or Group IV metal in the short-periodic periodic table Preferably, it is 0.1 to 50 L (liter).
  • an alkoxide of a Group II or Group IV metal in the short-periodic table is decomposed by contact with water. Due to this decomposition, the alkoxide of the Group II or Group IV metal in the Short Periodic Table is probably an oxide of the Group II or Group IV metal in the Short Periodic Table. In the present invention, this refers to a compound of a Group II or Group IV metal in the short-periodic periodic table. In the separation method of the present invention, the order of mixing these may be any order.
  • a lipophilic organic solvent is newly mixed, for example, a solution is mixed with water and water, and then a polybasic carboxylic acid and lipophilic organic solvent are sequentially mixed.
  • a mixture of solution 2, lipoic acid 3 and lipophilic organic solvent 2 with water ⁇ , a mixture of solution 1 and lipophilic organic solvent 2 with water 2 and polybasic A method of mixing a part of the carboxylic acid 3 and then sequentially mixing the water 2 and the rest of the polybasic carboxylic acid 3 can be mentioned.
  • an organic compound which exhibits hydrophilicity at an arbitrary pH lower than an arbitrary pH higher than pH 2 is used, but is intended to separate an unstable organic compound at an arbitrary pH lower than the arbitrary pH.
  • the amount of polybasic ruponic acid 3 is p The range is such that H does not fall below the arbitrary pH.
  • a basic compound may be used together with the polybasic force ruponic acid 3 to maintain the pH of the aqueous layer at a pH at which the target compound shows lipophilicity.
  • an inorganic base such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, or the like, or an organic base such as triethylamine or pyridine may be added.
  • an organic base such as triethylamine or pyridine
  • the pH of the solution containing the target compound was high, and even if the required amount of polybasic liponic acid 3 was added, it was not necessary to add these if the target compound had a lipophilic pH.
  • the pH when the purpose is to separate an organic compound that is stable but hydrophilic under a condition of an arbitrary pH value higher than pH 2 but lower than pH 2, the pH temporarily decreases during mixing. After mixing, the pH may be set to a pH region higher than the arbitrary pH value.
  • the organic compound is stirred for a while in the ⁇ region where the organic compound exhibits lipophilicity in the ⁇ region higher than the ⁇ value of the above, the compound of the metal, which is a decomposition product of the alkoxide of the metal, migrates to the aqueous layer if left standing.
  • a lipophilic organic solvent layer containing an organic compound showing lipophilicity in a pH region higher than any pH value higher than ⁇ 2, and an aqueous layer containing a decomposition product of the above-mentioned metal alkoxide.
  • ⁇ and the amount of the lipophilic organic solvent are small, they may not separate into two layers. In this case, add both water and / or the lipophilic organic solvent, stir and allow to stand. It can be separated into layers. If the alkoxide decomposition product remains as an insoluble material, polybasic carboxylic acid 3 may be added. When fine particles of the metal compound remain in the lipophilic organic solvent layer, the same operation may be repeated by further adding water (2) and polybasic carboxylic acid (3).
  • the target compound containing no or almost no fine particles of the metal compound (the lipophilicity in a pH region higher than ⁇ 2) is obtained.
  • the target compound can be obtained from the lipophilic organic solvent layer containing the target compound by a usual method, for example, separation, concentration, distillation, crystallization, or a combination thereof. Can be.
  • the present invention is generally applied to separation and purification of a target compound at the end of an organic synthesis reaction.
  • a compound represented by the formula (I) as a target compound is prepared from a reaction solution obtained by reacting a compound represented by the formula (II) with a compound represented by the formula (III) in the presence of a titanium alkoxide. It can be used for separation and purification. This reaction is usually performed in a solvent-free or organic solvent.
  • the phenyl group which may be substituted by the octogen represented by Ar may be substituted by, for example, one or two of fluorine, chlorine, bromine, iodine and the like.
  • examples thereof include 2,4-difluorophenyl, 2,4-dichlorophenyl, 4-chlorophenyl, 4-fluorophenyl, 2-chlorophenyl, 2-fluorophenyl, and 2-fluorophenyl.
  • Preferable phenyl, 2-chloro-4-fluorophenyl, 4-bromophenyl and the like are preferable, and among them, 2-fluorophenyl and 2,4-difluorophenyl are particularly preferable.
  • examples of the lower alkylene represented by X include a methylene chain having 1 to 4 carbon atoms such as methylene, ethylene and propylene.
  • organic solvent examples include methanol, ethanol (including various denatured ethanols), 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, Alcohols such as -methyl-2-propanol, ethylene glycol, methylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, halogens such as dichloromethane, chloroform, carbon tetrachloride, dichloroethylene, etc.
  • Hydrocarbons such as tetrahydrofuran, dioxane, geethylether, diisopropyl ether, dimethyleneglycoldimethylether, and dimethyleneglycolether, aromatic hydrocarbons such as benzene, toluene, and xylene Hydrogens, ketones such as acetone and ethyl methyl ketone, nitriles such as acetonitrile and benzonitrile, hydrocarbons such as cyclohexane, hexane, heptane and pentane, dimethylformamide, dimethylsulfoxide, dimethyla Aprotic polar solvents such as cetamide and hexamethylphosphoric triamide; and nitrogen-containing aromatics such as pyridine.
  • a mixed solvent of two or more of these, or a mixture of these solvents and other solvents May be used as a mixed solvent.
  • a solvent-free solution may be used. There is no particular limitation on the amount
  • reaction temperature is suitably about 40 to 200 ° C, preferably about 70 to 180 ° C. Reaction times of about 1 to 80 hours are suitable, and about 5 to 50 hours are preferred.
  • the compound represented by the formula (III) is used in a larger amount than the compound represented by the formula (I) to increase the reaction rate. Therefore, the reaction mixture contains the unreacted compound represented by the formula (III) and is basic, and in this case, it may not be necessary to add a base. To this is added a di- or tricarboxylic acid having 2 to 8 carbon atoms and a lipophilic organic solvent 4.
  • a di- or tricarboxylic acid having 2 to 8 carbon atoms and a lipophilic organic solvent 4.
  • the target compound and the metal compound can be separated only by a simple liquid separation operation, which is advantageous for industrially producing the target compound.
  • the precipitated particulate compound was removed by filtration (using a filter paper on which a filter aid was placed), and washed with 1 Oml of ethyl acetate. The filtrate and the washing were separated. 25 ml of saturated aqueous sodium hydrogen carbonate was added to the organic layer. The precipitated fine particles of the compound were removed by filtration (using a filter paper on which a filter aid was placed), and washed with 10 ml of ethyl acetate. The filtrate and the washing were separated. 25 ml of a 0.001 N aqueous sodium hydroxide solution was added to the organic layer.
  • the precipitated particulate compound was filtered off (using a filter paper on which a filter aid was placed), and washed with ethyl acetate 1 Om1. The filtrate and the washing were separated. 25 ml of a 0.001N aqueous sodium hydroxide solution was added to the organic layer. The precipitated particulate compound was filtered off (using a filter paper on which a filter aid was placed) and washed with 10 ml of ethyl acetate. The filtrate and the washing were separated. 25 ml of a 0.001N aqueous sodium hydroxide solution was added to the organic layer, and the mixture was separated. The organic layer was washed with 25 ml of water.
  • the decomposition of the alkoxide of a Group III or Group IV metal with water in the short-periodic periodic table can be separated from the organic compound by a simple liquid separation operation, which is advantageous for industrially producing the target compound. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method which comprises mixing (1) a solution containing an organic compound which is oleophilic in the range of pH's higher than 2 and an alkoxide of a Group III or IV metal of the short-form Periodic Table with (2) water and (3) a polybasic carboxylic acid to thereby transfer the metal compound to the aqueous layer. Thus, the metal compound can be easily separated from the organic compound. This method is industrially advantageous.

Description

明 細 書 第 I I I族、 第 I V族金属化合物の分離方法 技術分野  Description Method for separation of Group II, Group IV metal compounds
本発明は、 P H 2より高い p H領域で親油性を示す有機化合物と第 I I I族、 第 IV族金属化合物の分離方法に関し、 特に有機化合物の合成の分野で目的化合物の 分離精製に適用されるものである。 背景技術  The present invention relates to a method for separating an organic compound exhibiting lipophilicity at a pH region higher than PH2 and a metal compound belonging to Group III or IV, and is particularly applied to the separation and purification of a target compound in the field of synthesis of organic compounds. Things. Background art
短周期型周期表における第 I I I族または第 IV族金属のアルコキシドは、 有機合 成反応にしばしば利用されるが、 反応終了時にはその効力を失効させるため水を 加えて分解する操作が行われる。 この分解により生成する金属化合物は、 p H 2 未満の強酸性条件下では、 水に溶解するが p H 2以上の条件下では通常水および 有機溶媒の双方に不溶の微粒子となる。 一方化学反応における目的化合物の中に は p H 2以上の任意の p Hより高い p H領域では親油性を示すが、 該任意の p H 未満の強酸性条件下では親水性を示すものや不安定なものがある。 このような化 合物の合成に上記金属のアルコキシドを用いた場合、 反応終了後に目的化合物と 上記金属アルコキシドの分解物とを分離するために、 p H 2以上の条件下に抽出 用溶媒として親油性有機溶媒を加えることが行われる。 しかしながら上記金属ァ ルコキシドの分解によって生成する該金属の化合物は、 微粒子として水層と親油 性有機溶媒層の双方に混在するため分液による分離が不可能であり、 ろ過による 分離も長時間を要し、 工業的には非常に不利であった。 発明の開示  Alkoxides of Group II or Group IV metals in the short-periodic periodic table are often used in organic synthesis reactions. However, at the end of the reaction, an operation of decomposing with addition of water is performed in order to invalidate the effect. The metal compound formed by this decomposition is soluble in water under strongly acidic conditions of less than pH 2, but is generally insoluble in both water and organic solvents under conditions of pH 2 or more. On the other hand, some of the target compounds in the chemical reaction show lipophilicity in the pH range higher than any pH of 2 or more, but show hydrophilicity or non-hydrophilicity under strongly acidic conditions below any pH. Some are stable. When an alkoxide of the above-mentioned metal is used in the synthesis of such a compound, in order to separate the target compound from the decomposition product of the above-mentioned metal alkoxide after completion of the reaction, the solvent is used as an extraction solvent under conditions of pH 2 or more. Addition of an oily organic solvent is performed. However, the compound of the metal formed by the decomposition of the metal alkoxide cannot be separated by liquid separation because it is present as fine particles in both the aqueous layer and the lipophilic organic solvent layer, and the separation by filtration requires a long time. It was very disadvantageous industrially. Disclosure of the invention
本発明は、 p H 2以上の条件下で、 目的化合物と第 I I I族、 第 IV族金属化合物 を分離するための工業的に有利な方法を提供するものである。  The present invention provides an industrially advantageous method for separating a target compound from a Group II, Group IV metal compound under a condition of pH 2 or more.
本発明者らは鋭意検討した結果、 短周期型周期表における第 I I I族または第 IV 族金属のアルコキシドを使用した有機合成反応により p H 2以上の任意の p H 値より高い p H領域で親油性を示す有機化合物を合成した場合、 反応終了時に、 抽出用の親油性有機溶媒、 水とともに水層の p Hが目的化合物が親油性を示す範 囲の pHとなるように多塩基性カルボン酸 (複数個の力ルポキシル基を有する力 ルボン酸) を加えると、 意外にも、 液性が pH 2以上の条件下でも、 水、 親油性 有機溶媒の双方に不溶の微粒子状物質が析出せず、 目的化合物は有機層に、第 III 族、 第 IV族金属化合物は水層に分配されることを見い出し、 本発明を完成するに 至った。 The present inventors have conducted intensive studies and have found that any organic compound having a pH of 2 or more can be obtained by an organic synthesis reaction using an alkoxide of a Group III or Group IV metal in the short periodic table. When an organic compound exhibiting lipophilicity in the pH range higher than the above value is synthesized, at the end of the reaction, the pH of the aqueous layer together with the lipophilic organic solvent for extraction and water is adjusted to the pH within the range where the target compound exhibits lipophilicity. Surprisingly, when a polybasic carboxylic acid (a carboxylic acid having a plurality of carboxylic acid groups) is added, it is insoluble in both water and lipophilic organic solvents, even when the liquidity is pH 2 or higher. It was found that the target compound was distributed to the organic layer, and the Group III and Group IV metal compounds were distributed to the aqueous layer, thereby completing the present invention.
すなわち、 本発明は、  That is, the present invention
(1) 1) pH 2より高い pH領域で親油性を示す有機化合物および短周期型周 期表における第 III族または第 IV族金属のアルコキシドを含む溶液 (以下溶液① (1) 1) A solution containing an organic compound exhibiting lipophilicity in a pH range higher than pH 2 and an alkoxide of a Group III or Group IV metal in the short-periodic periodic table (hereinafter referred to as “solution II”).
' という) と 2) 水 (以下水②という) と 3) 多塩基性カルボン酸 (以下多塩基 性カルボン酸③という) とを混合し、 該金属の化合物を水層に移行させることを 特徴とする該有機化合物と該金属の化合物とを分離する方法、 ') And 2) water (hereinafter referred to as water ②) and 3) polybasic carboxylic acid (hereinafter referred to as polybasic carboxylic acid ③) to transfer the metal compound to the aqueous layer. Separating the organic compound and the metal compound,
(2) 混合に際し、 さらに親油性有機溶媒 (以下親油性有機溶媒④という) を加 える上記 (1) 記載の方法、  (2) The method according to (1) above, wherein a lipophilic organic solvent (hereinafter referred to as lipophilic organic solvent ④) is further added during mixing.
(3) 溶液①' と多塩基性力ルポン酸③の水溶液とを混合する上記 (1) 記載の 方法、  (3) The method according to (1) above, wherein the solution (2) is mixed with an aqueous solution of the polybasic ruponic acid (3),
(4) 親油性有機溶媒④が炭素数 1〜2のハロゲン化炭化水素類、 炭素数 2〜 6 のエーテル類、 低級脂肪族カルボン酸の低級アルキルエステル類、 炭素数 6〜 8 の芳香族炭化水素類、 炭素数 5~ 7の脂肪族炭化水素類、 炭素数 5〜 7の脂環族 炭化水素類、 これらのうちの 2種以上の混合溶媒またはこれらの溶媒とそれ以外 の溶媒との混合溶媒である上記 (2) 記載の方法、  (4) The lipophilic organic solvent ④ is a halogenated hydrocarbon having 1 to 2 carbon atoms, an ether having 2 to 6 carbon atoms, a lower alkyl ester of a lower aliphatic carboxylic acid, or an aromatic carbonization having 6 to 8 carbon atoms. Hydrogens, aliphatic hydrocarbons having 5 to 7 carbon atoms, alicyclic hydrocarbons having 5 to 7 carbon atoms, a mixed solvent of two or more of these, or a mixture of these solvents and other solvents The method according to (2) above, which is a solvent,
(5) 短周期型周期表における第 III族または第 IV族金属のアルコキシドがチ夕 二ゥム、 ジルコニウムまたはアルミニウムのアルコキシドである上記 (1) 記載 の方法、  (5) The method according to the above (1), wherein the alkoxide of a Group III or Group IV metal in the short-periodic table is an alkoxide of titanium, zirconium or aluminum.
(6) 多塩基性カルボン酸③がシユウ酸、 マロン酸、 コノ、ク酸、 ダルタル酸、 ァ ジピン酸、 マレイン酸、 フマル酸、 フ夕ル酸、 イソフ夕ル酸、 テレフタル酸、 く えん酸またはこれらのうちの 2種以上の混合物である上記 (1) 記載の方法、 (6) Polybasic carboxylic acid ③ is oxalic acid, malonic acid, konoic acid, oxalic acid, daltaric acid, adipic acid, maleic acid, fumaric acid, fumaric acid, isophthalic acid, terephthalic acid, citric acid Or the method according to the above (1), which is a mixture of two or more of these,
(7) 多塩基性カルボン酸③の使用量が短周期型周期表における第 III族または 第 IV族金属のアルコキシド 1モルに対し 0. 5〜 10モルである上記 (1) 記載 の方法、 (7) The amount of polybasic carboxylic acid ③ used in Group III or The method according to the above (1), wherein the amount is 0.5 to 10 mol per 1 mol of the alkoxide of the Group IV metal,
(8) 水②の使用量が短周期型周期表における第 III族または第 IV族金属のアル コキシド 1モルに対し 0. 1〜 100リツトルである上記 ( 1 ) 記載の方法、 (8) The method according to the above (1), wherein the amount of water used is 0.1 to 100 liters per 1 mol of an alkoxide of a Group III or Group IV metal in the short-periodic periodic table.
(9) 短周期型周期表における第 ΙΠ族または第 IV族金属のアルコキシドがチ夕 二ゥムのアルコキシドである上記 (1) 記載の方法、 (9) The method according to the above (1), wherein the alkoxide of a Group II or Group IV metal in the short-periodic periodic table is a titanium alkoxide.
(10) 金属の化合物を水層に移行させるに際し、 混合液の pHを、 pH2より 高い p H領域で親油性を示す有機化合物が親油性を示す p H領域に調整する上 記 (1) 記載の方法、  (10) As described in (1) above, when the metal compound is transferred to the aqueous layer, the pH of the mixed solution is adjusted to a pH range in which an organic compound exhibiting lipophilicity in a pH range higher than pH 2 exhibits lipophilicity. the method of,
(1 1) PH2より高い p H領域で親油性を示す有機化合物が式:
Figure imgf000005_0001
(1 1) An organic compound exhibiting lipophilicity in a pH range higher than PH2 is represented by the formula:
Figure imgf000005_0001
[式中、 A rはハロゲンで置換されていてもよいフエニル基を、 Xは低級アルキ レン基を、 (R) は立体配置を示す。 ] で表される化合物であり、 短周期型周期 表における第 ΠΙ族または第 IV族金属のアルコキシドがチタニウムのアルコキシ ドであり、 多塩基性カルボン酸③が炭素数 2〜 8のジまたはトリカルボン酸であ り、 親油性有機溶媒④が低級脂肪族力ルポン酸の低級アルキルエステルである上 記 (1) 記載の方法、  [In the formula, Ar represents a phenyl group optionally substituted with halogen, X represents a lower alkylene group, and (R) represents a steric configuration. Wherein the alkoxide of a Group II or Group IV metal in the short-periodic table is an alkoxide of titanium, and the polybasic carboxylic acid ③ is a di- or tricarboxylic acid having 2 to 8 carbon atoms. Wherein the lipophilic organic solvent で is a lower alkyl ester of a lower aliphatic carboxylic acid,
(12) 親油性を示す有機化合物および短周期型周期表における第 III族または 第 IV族金属のアルコキシドを含む溶液 (以下溶液①という) と水②と多塩基性力 ルボン酸③とを混合し、 該金属の化合物を水層に移行させることを特徴とする該 有機化合物と該金属の化合物とを分離する方法、  (12) A solution containing an organic compound exhibiting lipophilicity and an alkoxide of a Group III or Group IV metal in the short-periodic periodic table (hereinafter referred to as solution I) is mixed with water II and polybasic rubonic acid ③. A method for separating the organic compound and the metal compound, wherein the method comprises transferring the metal compound to an aqueous layer;
(13) 式:
Figure imgf000005_0002
Equation (13):
Figure imgf000005_0002
(式中、 A rはハロゲンで置換されていてもよいフエニル基を、 (R) および ( S) は立体配置を示す。 ) で表される化合物と式: H2N— X— OH (111) (Wherein, Ar represents a phenyl group optionally substituted by halogen, and (R) and (S) represent a steric configuration.) A compound represented by the following formula: H 2 N— X— OH (111)
(式中、 Xは低級アルキレンを示す。 ) で表される化合物とをチタニウムのアル コキシドの存在下に反応させることにより生成する式: (Wherein, X represents a lower alkylene.) A compound represented by the following formula:
Figure imgf000006_0001
Figure imgf000006_0001
[式中、 各記号は前記と同意義を示す。 ] で表される化合物を含む反応混合液と 水②と炭素数 2 8のジまたはトリカルボン酸と親油性有機溶媒④とを混合し、 チタニウムの化合物を水層に移行させることを特徴とする式 (I ) で表される化 合物の製造法、  [Wherein each symbol has the same meaning as described above. ] A reaction mixture containing the compound represented by the formula, water②, a di- or tricarboxylic acid having 28 carbon atoms and a lipophilic organic solvent④ are mixed, and the titanium compound is transferred to an aqueous layer. A method for producing the compound represented by (I),
(14) チタニウムのアルコキシドがチタニウム (I V) メトキシド、 チタニゥ ム ( I V) ェトキシド、 チタニウム ( I V) プロポキシド、 チタニウム ( I V) イソプロボキシドまたはチタニウム (I V) ブトキシドである上記 (1 3) 記載 の製造法、  (14) The method according to (13), wherein the titanium alkoxide is titanium (IV) methoxide, titanium (IV) ethoxide, titanium (IV) propoxide, titanium (IV) isopropoxide or titanium (IV) butoxide.
(15) 親油性有機溶媒④がベンゼン、 クロロフオルム、 四塩化炭素、 ジクロロ ェタン、 ジクロロメタン、 ジェチルェ一テル、 ジイソプロピルエーテル、 酢酸ェ チル、 へキサン、 ペンタン、 トルエンまたはキシレンである上記 (1 3) 記載の 製造法、 および  (15) The lipophilic organic solvent according to the above (13), wherein the lipophilic organic solvent is benzene, chloroform, carbon tetrachloride, dichloroethane, dichloromethane, diethyl ether, diisopropyl ether, ethyl acetate, hexane, pentane, toluene or xylene. Manufacturing method, and
(16) チタニウムの化合物を水層に移行させるに際に、 混合液の pHを、 7. 0-10. 0に調整する上記 (1 3) 記載の製造法、  (16) The method according to (13), wherein the pH of the mixed solution is adjusted to 7.0 to 10.0 when the titanium compound is transferred to the aqueous layer.
に関する。 About.
上記親油性を示す有機化合物は、 水よりも親油性有機溶媒に多量に溶ける有機 化合物をいう。 該有機化合物が水と親油性有機溶媒のどちらに多く溶けるかは水 と親油性有機溶媒の等容量に該有機化合物を加えて混合し、 これを静置して水層 と親油性有機溶媒層のそれぞれに含まれる該有機化合物の量を測定することに よって判別できる。 この場合の温度などの条件は実際に本発明を実施する条件に あわせればよい。 また上記 pH2より高い p H領域で親油性を示す有機化合物は p Hが 2より高い任意の p H値より高い p H領域で水よりも親油性有機溶媒に 多量に溶けるものであって、 該任意の p H値未満の p H領域で親油性有機溶媒よ りも水に多量に溶けるかまたは一部または全部が分解する有機化合物をいう。 こ のような化合物としては塩基性の置換基を有する有機化合物、 例えば置換されて いてもよいアミノ基 (たとえばメチルァミノ、 ェチルァミノ、 プロピルァミノ、 プチルァミノなどのアルキルアミノ基、 ァセチルァミノ、 プロピオアミノ、 プチ ロアミノなどのァシルァミノなど) 、 置換されていてもよい窒素原子を有する複 素環基 (たとえば、 置換されていてもよいピリジル、 ピリミジニル、 トリアジ二 ル、 ピロリル、 ジァゾリル、 トリァゾリル、 ォキサゾリル、 ォキサジァゾリル、 イミダゾリル、 イミダゾリジニルなど) などの基を有する有機化合物が挙げられ る。 式 (I) で表される化合物もその一例であり、 たとえば(2 R, 3 R)-2-(2, 4-ジフルオロフェニル )-3- [N-( 2-ヒドロキシェチル)ァミノ]- 1- (1 H - 1, 2, 4-トリァゾール -1-ィル) -2 -ブ夕ノールは pH 3以上で親油性であり、 p H 3未満で親水性である。 The lipophilic organic compound is an organic compound that is more soluble in a lipophilic organic solvent than in water. Whether the organic compound is more soluble in water or the lipophilic organic solvent is determined by adding the organic compound to an equal volume of water and the lipophilic organic solvent, mixing the mixture, and then allowing the mixture to stand. Can be determined by measuring the amount of the organic compound contained in each of the above. In this case, the conditions such as the temperature may be adjusted to the conditions for actually implementing the present invention. The above-mentioned organic compound exhibiting lipophilicity in a pH region higher than pH 2 is a compound which is more soluble in a lipophilic organic solvent than water in a pH region higher than an arbitrary pH value higher than 2 in water. Lipophilic organic solvent in the pH range below any pH value Ricoh refers to an organic compound that is soluble in water in large quantities or decomposed partly or entirely. Examples of such a compound include organic compounds having a basic substituent, for example, an amino group which may be substituted (eg, an alkylamino group such as methylamino, ethylamino, propylamino, and butylamino, and an acylamino group such as acetylamino, propioamino, and propylamino). ), And a heterocyclic group having an optionally substituted nitrogen atom (eg, optionally substituted pyridyl, pyrimidinyl, triazinyl, pyrrolyl, diazolyl, triazolyl, oxazolyl, oxaziazolyl, imidazolyl, imidazolidinyl, etc.) And an organic compound having the following group. The compound represented by the formula (I) is also an example. For example, (2R, 3R) -2- (2,4-difluorophenyl) -3- [N- (2-hydroxyethyl) amino]- 1- (1H-1,2,4-triazol-1-yl) -2-butanol is lipophilic above pH 3 and hydrophilic below pH 3.
短周期型周期表における第 III族または第 IV族金属のアルコキシドとしては、 たとえば、 アルミニウム、 スカンジウム、 ガリウムなどの第 III族金属またはた とえばチタニウム、 ゲルマニウム、 ジルコニウム、 スズ、 ナマリなどの第 IV族金 属のアルコキシド (たとえばメトキシド、 エトキシド、 プロポキシド、 イソプロ ポキシド、 ブトキシド、 イソブトキシド、 tーブトキシド、 sec—ブトキシドな ど炭素数 1〜5のアルコキシド) が挙げられる。 中でもチタニウム、 ジルコニゥ ムまたはアルミニウムのアルコキシドが好ましい。 特にチタニウムのアルコキシ ドが好ましく、 その例としては、 たとえば、 チタニウム(IV)メトキシド、 チタ二 ゥム (IV) ブトキシド、 チタニウムジイソプロボキシドビス (2, 4-ペン夕ンジ ォネイト) 、 チタニウム (IV) エトキシド、 チタニウム (IV) 2-ェチルへキソ キシド、 チタニウム (IV) イソプロポキシド、 チタニウム (IV) プロボキシドな どが挙げられる。  Alkoxides of Group III or Group IV metals in the short-periodic table include, for example, Group III metals such as aluminum, scandium and gallium or Group IV metals such as titanium, germanium, zirconium, tin and namari. Alkoxides of metals (for example, alkoxides having 1 to 5 carbon atoms such as methoxide, ethoxide, propoxide, isopropoxide, butoxide, isobutoxide, t-butoxide, sec-butoxide). Among them, alkoxides of titanium, zirconium or aluminum are preferred. Particularly preferred are titanium alkoxides, such as, for example, titanium (IV) methoxide, titanium (IV) butoxide, titanium diisopropoxide bis (2,4-pentanedionate), and titanium (IV). ) Ethoxide, titanium (IV) 2-ethylhexoxide, titanium (IV) isopropoxide, titanium (IV) propoxide and the like.
溶液①は該有機化合物および該金属のアルコキシドの他にそれら以外の物質 を含んでいてもよい。 この溶液は通常有機合成における反応混合物であり、 その 中には該有機化合物および該金属のアルコキシドの他通常未反応原料、 触媒、 畐 (J 生成物、 分解物、 有機溶媒などが含まれている。  The solution ① may contain other substances in addition to the organic compound and the metal alkoxide. This solution is usually a reaction mixture in organic synthesis, which contains the organic compound and the alkoxide of the metal, as well as unreacted raw materials, catalyst, 畐 (J products, decomposition products, organic solvents, etc.) .
水②の使用量は特に限定されないが、 短周期型周期表における第 III族または 第 IV族金属のアルコキシド 1モルに対して、 通常 0 . 1〜 1 0 0 L (リットル) 好ましくは 0 . 5〜5 0 L (リットル) である。 The amount of water used is not particularly limited. The amount is usually 0.1 to 100 L (liter), preferably 0.5 to 50 L (liter), per 1 mol of the alkoxide of the Group IV metal.
多塩基性力ルポン酸③は 1分子内に複数個の力ルポキシル基を有する力ルポ ン酸をいい、 その具体例としては、 例えば、 シユウ酸、 マロン酸、 コハク酸、 グ ルタル酸、 アジピン酸、 マレイン酸、 フマル酸、 フ夕ル酸、 イソフ夕ル酸、 テレ フ夕ル酸など炭素数 2〜 8のジカルボン酸、 クェン酸など炭素数 6〜1 0のトリ カルボン酸などが挙げられるが、 なかでもシユウ酸、 クェン酸など炭素数 2〜 8 のジまたはトリカルボン酸が好ましい。 また、 これらのうちの 2種以上の混合物 であってもよい。 多塩基性カルボン酸③の使用量は、 短周期型周期表における第 I I I族または第 IV族金属のアルコキシド 1モルに対して、 通常 0 . 2〜2 0モル 好ましくは 0 . 5〜: L 0モルである。  Polybasic liponic acid ③ refers to liponic acid having a plurality of lipoxyl groups in one molecule. Specific examples thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid. Dicarboxylic acid having 2 to 8 carbon atoms such as maleic acid, fumaric acid, fumaric acid, isofluoric acid, terephthalic acid, and tricarboxylic acid having 6 to 10 carbon atoms such as citric acid. Among them, di- or tricarboxylic acids having 2 to 8 carbon atoms such as oxalic acid and citric acid are preferred. Also, a mixture of two or more of these may be used. The amount of the polybasic carboxylic acid ③ used is usually 0.2 to 20 mol, preferably 0.5 to 0.5 mol, per mol of the alkoxide of the Group III or Group IV metal in the short-periodic periodic table. Is a mole.
本発明の分離法においては、 金属の化合物を水層に移行させるに際し、 混合物 中に親油性有機溶媒④が含まれている必要がある。 混合に際し、 溶液①中に親油 性有機溶媒④が既に含まれている場合には、 これに水②および多塩基性カルボン 酸③のみを加えればよいが、 溶液①が親油性有機溶媒④を含んでいない場合には これを加える必要がある。  In the separation method of the present invention, the lipophilic organic solvent must be contained in the mixture when the metal compound is transferred to the aqueous layer. When mixing, if solution (1) already contains lipophilic organic solvent (2), only water (2) and polybasic carboxylic acid (3) need to be added, but solution (2) contains lipophilic organic solvent (2). If not, you need to add it.
親油性有機溶媒④としては、 水と分離する溶媒であればいずれでもよいが、 例 えば、 ジクロロメタン、 クロ口ホルム、 四塩化炭素、 ジクロロェ夕ンなど炭素数 1〜2のハロゲン化炭化水素類、 ジェチルエーテル、 ジイソプロピルエーテル、 ジメチレングリコールジメチルエーテル、 ジエチレングリコールジェチルエーテ ルなど炭素数 2〜 6のエーテル類、 酢酸メチル、 酢酸ェチル、 酢酸プロピル、 酢 酸ブチルなど炭素数 1〜 3の低級脂肪族カルボン酸の炭素数 1〜4の低級アル キルエステル類、 ベンゼン、 トルエン、 キシレンなど炭素数 6〜 8の芳香族炭化 水素類、 シクロへキサンなど炭素数 5〜 7の脂環族炭化水素類、 ペンタン、 へキ サン、 ヘプ夕ンなど炭素数 5〜 7の脂肪族炭化水素類などの溶媒などが挙げられ るが、 中でも低級脂肪族カルボン酸の低級アルキルエステルが好ましい。 親油性 有機溶媒④の好ましい具体例としてはベンゼン、 クロロフオルム、 四塩化炭素、 ジクロロェタン、 ジクロロメタン、 ジェチルエーテル、 ジイソプロピルエーテル 、 酢酸ェチル、 へキサン、 ペンタン、 トルエンまたはキシレンが挙げられる。 ま た、 これらのうち 2種以上の混合溶媒あるいは、 これらの溶媒とそれ以外の溶媒 の混合溶媒でもよい。 親油性有機溶媒④の使用量は特に限定されないが、 短周期 型周期表における第 Ι Π族または第 IV族金属のアルコキシド 1モルに対して、 0 . 0 1〜: L 0 0 L (リツトル) 好ましくは、 0 . 1〜5 0 L (リツトル) である 。 反応混合物中に既に親油性有機溶媒④が含まれている場合、 添加しないか添加 量を低減することができる。 The lipophilic organic solvent ④ may be any solvent which can be separated from water, for example, halogenated hydrocarbons having 1 to 2 carbon atoms such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, etc. C2-C6 ethers such as getyl ether, diisopropyl ether, dimethylene glycol dimethyl ether, and diethylene glycol getyl ether; C1-C3 lower aliphatic carboxylic acids such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate C1-C4 lower alkyl esters of acids, C6-C8 aromatic hydrocarbons such as benzene, toluene and xylene; C5-C7 alicyclic hydrocarbons such as cyclohexane, pentane Solvents such as aliphatic hydrocarbons having 5 to 7 carbon atoms, such as hexane, hexane and heptane. Lower alkyl esters of lower aliphatic carboxylic acids are preferred. Preferred specific examples of the lipophilic organic solvent include benzene, chloroform, carbon tetrachloride, dichloroethane, dichloromethane, dimethyl ether, diisopropyl ether, ethyl acetate, hexane, pentane, toluene and xylene. Ma Further, a mixed solvent of two or more of these, or a mixed solvent of these solvents and other solvents may be used. The amount of the lipophilic organic solvent to be used is not particularly limited, but is from 0.01 to: L 0 0 L (liter) per mole of the alkoxide of the Group II or Group IV metal in the short-periodic periodic table. Preferably, it is 0.1 to 50 L (liter). When the lipophilic organic solvent 既 に is already contained in the reaction mixture, the lipophilic organic solvent し な い can be omitted or the amount added can be reduced.
本発明において、 短周期型周期表における第 I I I族または第 IV族金属のアルコ キシドは水と接触することにより分解する。 この分解により、 短周期型周期表に おける第 I I I族または第 IV族金属のアルコキシドは恐らくは短周期型周期表にお ける第 I I I族または第 IV族金属の酸化物になっていると思われる。 本発明におい てはこれを短周期型周期表における第 I I I族または第 IV族金属の化合物をいう。 本発明の分離法において、 これらの混合順序は、 いずれであってもよく、 たと えば、 溶液①と水②を混合し、 ついでこれと多塩基性力ルポン酸③を混合する方 法、 溶液①と多塩基性力ルポン酸③を混合し、 ついでこれと水②を混合する方法 、 水②と多塩基性カルボン酸③を混合し、 ついでこれと溶液①を混合する方法、 溶液①と水②ぉよび多塩基性力ルポン酸③の一部を混合しついで水②ぉよび多 塩基性カルボン酸③の残りを混合する方法などが挙げられる。 また親油性有機溶 媒④を新たに混合する場合は、 たとえば溶液①と水②を混合しこれに多塩基性力 ルボン酸③および親油性有機溶媒④を順次混合する方法、 溶液①と水②を混合し これと親油性有機溶媒④を混合しついで多塩基性カルボン酸③を混合する方法、 溶液①と水②を混合し、 ついでこれに多塩基性カルボン酸③および親油性有機溶 媒④の混合物を加える方法、 溶液①、 多塩基性力ルポン酸③および親油性有機溶 媒④の混合物に水②を混合する方法、 溶液①と親油性有機溶媒④の混合物に水② および多塩基性カルボン酸③の一部を混合しついで水②および多塩基性カルボ ン酸③の残りを順次混合する方法などが挙げられる。  In the present invention, an alkoxide of a Group II or Group IV metal in the short-periodic table is decomposed by contact with water. Due to this decomposition, the alkoxide of the Group II or Group IV metal in the Short Periodic Table is probably an oxide of the Group II or Group IV metal in the Short Periodic Table. In the present invention, this refers to a compound of a Group II or Group IV metal in the short-periodic periodic table. In the separation method of the present invention, the order of mixing these may be any order. For example, a method of mixing solution (1) and water (2), and then mixing this with polybasic sulfonic acid (3), solution (2) And polybasic acid ruponic acid ③, then mix it with water 、, mix water ② with polybasic carboxylic acid ③, then mix this with solution 、, solution ① and water ② (4) A method of mixing a part of the polybasic carboxylic acid (3) and then mixing the remainder of the water (3) and the polybasic carboxylic acid (3). In addition, when a lipophilic organic solvent is newly mixed, for example, a solution is mixed with water and water, and then a polybasic carboxylic acid and lipophilic organic solvent are sequentially mixed. A method of mixing this with lipophilic organic solvent ④ and then with polybasic carboxylic acid ③, mixing solution ① and water 、, then adding polybasic carboxylic acid ③ and lipophilic organic solvent ④ A mixture of solution ②, lipoic acid ③ and lipophilic organic solvent ② with water 、, a mixture of solution ① and lipophilic organic solvent ② with water ② and polybasic A method of mixing a part of the carboxylic acid ③ and then sequentially mixing the water ② and the rest of the polybasic carboxylic acid ③ can be mentioned.
本発明においては p H 2より高い任意の p H未満では親水性を示すものゃ不 安定な有機化合物が用いられるが、 該任意の p H未満で不安定な有機化合物の分 離を目的とする場合には、 本発明における混合時に水層の p Hを該任意の p H未 満にならないようにする必要がある。 したがって多塩基性力ルポン酸③の量は p Hが該任意の p H未満にならないような範囲に限定される。 ただし、 多塩基性力 ルポン酸③とともに塩基性の化合物を使用し、 水層の p Hを目的化合物が親油性 を示す p Hに保ってもよい。 p Hの低下を避けるにはたとえば水酸化ナトリウム 、 水酸化カリウム、 炭酸ナトリウム、 炭酸カリウム、 炭酸水素ナトリウム、 炭酸 水素カリウムなどの無機塩基、 トリェチルァミン、 ピリジンなどの有機塩基を添 加すればよい。 もともと目的化合物を含む溶液の p Hが高く多塩基性力ルポン酸 ③の必要量を加えても目的化合物が親油性を示す p Hであればこれらを添加し なくてもよい。 また本発明において p H 2より高い任意の p H値未満の条件下で 安定ではあるが親水性である有機化合物の分離を目的とする場合には、 混合時に 一時的に p Hが低下してもよく、 混合後に該任意の p H値より高い p H領域にす ればよい。 In the present invention, an organic compound which exhibits hydrophilicity at an arbitrary pH lower than an arbitrary pH higher than pH 2 is used, but is intended to separate an unstable organic compound at an arbitrary pH lower than the arbitrary pH. In such a case, it is necessary to prevent the pH of the aqueous layer from being lower than the arbitrary pH during mixing in the present invention. Therefore, the amount of polybasic ruponic acid ③ is p The range is such that H does not fall below the arbitrary pH. However, a basic compound may be used together with the polybasic force ruponic acid ③ to maintain the pH of the aqueous layer at a pH at which the target compound shows lipophilicity. In order to avoid a decrease in pH, for example, an inorganic base such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, or the like, or an organic base such as triethylamine or pyridine may be added. Originally, the pH of the solution containing the target compound was high, and even if the required amount of polybasic liponic acid ③ was added, it was not necessary to add these if the target compound had a lipophilic pH. Further, in the present invention, when the purpose is to separate an organic compound that is stable but hydrophilic under a condition of an arbitrary pH value higher than pH 2 but lower than pH 2, the pH temporarily decreases during mixing. After mixing, the pH may be set to a pH region higher than the arbitrary pH value.
本発明においては、 上記溶液①、 水②および多塩基性カルボン酸③または溶液 ①、 7②、 多塩基性力ルポン酸③および親油性有機溶媒④を混合後液性が、 p H 2より高い任意の ρ Η値より高い ρ Η領域で該有機化合物が親油性を示す ρ Η の状態でしばらく攪拌し、 その後静置すれば上記金属のアルコキシドの分解物で ある該金属の化合物が水層に移行し、 ρ Η 2より高い任意の p H値より高い p H 領域で親油性を示す有機化合物を含む親油性有機溶媒層と上記金属のアルコキ シドの分解物を含む水層の 2層に分離する。 τΚ②ぉよび親油性有機溶媒④の量が 少ないと 2層に分離しないことがあるが、 この場合には水②および親油性有機溶 媒④の双方若しくは一方を加えて攪拌後静置すれば 2層に分離することができ る。 また、 アルコキシド分解物が、 不溶物として残存する場合、 多塩基性カルボ ン酸③を加えればよい。 また親油性有機溶媒層に金属の化合物の微粒子が残存す る場合は、 さらに水②および多塩基性カルボン酸③を加えて同様の操作を繰り返 えせばよい。  In the present invention, any of the above solutions (1), (2) and polybasic carboxylic acids (3) or solutions (1), (7), polybasic sulfonic acid (3) and a lipophilic organic solvent (4) having a liquid property higher than pH 2 When the organic compound is stirred for a while in the ρΗ region where the organic compound exhibits lipophilicity in the ρΗ region higher than the ρΗ value of the above, the compound of the metal, which is a decomposition product of the alkoxide of the metal, migrates to the aqueous layer if left standing. Then, it is separated into two layers: a lipophilic organic solvent layer containing an organic compound showing lipophilicity in a pH region higher than any pH value higher than ρΗ2, and an aqueous layer containing a decomposition product of the above-mentioned metal alkoxide. . If τ and the amount of the lipophilic organic solvent are small, they may not separate into two layers. In this case, add both water and / or the lipophilic organic solvent, stir and allow to stand. It can be separated into layers. If the alkoxide decomposition product remains as an insoluble material, polybasic carboxylic acid ③ may be added. When fine particles of the metal compound remain in the lipophilic organic solvent layer, the same operation may be repeated by further adding water (2) and polybasic carboxylic acid (3).
ついで常法により親油性有機溶媒層を分液することにより、 該金属の化合物の 微粒子が含まれていないか、 または殆ど含まれていない目的化合物 (Ρ Η 2より 高い p H領域で親油性を示す有機化合物) を含む親油性有機溶媒層が得られる。 目的化合物は、 目的化合物を含む親油性有機溶媒層から、 通常の手法、 例えば、 分液、 濃縮、 蒸留、 晶出など、 あるいはそれらの組み合わせによって、 得ること ができる。 Then, by separating the lipophilic organic solvent layer by a conventional method, the target compound containing no or almost no fine particles of the metal compound (the lipophilicity in a pH region higher than ΗΡ2) is obtained. (An organic compound shown). The target compound can be obtained from the lipophilic organic solvent layer containing the target compound by a usual method, for example, separation, concentration, distillation, crystallization, or a combination thereof. Can be.
本発明は通常有機合成反応の終了時に目的化合物の分離精製に適用される。 た とえばチタニウムのアルコキシドの存在下に式 (I I ) で表される化合物と式 ( I I I ) で表される化合物を反応させた反応液から目的化合物である式 (I ) で 表される化合物を分離精製する場合に用いることができる。 この反応は通常無溶 媒または有機溶媒中で行われる。 式 (I ) および (I I ) 中、 A rで示される八 ロゲンで置換されていてもよいフエニル基は、 たとえば、 フッ素、 塩素、 臭素、 ヨウ素等の 1ないし 2個で置換されていてもよく、 その具体例としてはたとえば 2 , 4—ジフルオロフェニル、 2, 4ージクロ口フエニル、 4一クロ口フエニル 、 4—フルオロフェニル、 2—クロ口フエニル、 2—フルオロフェニル、 2—フ ルォロ _ 4一クロ口フエニル、 2—クロロー 4—フルオロフェニル、 4—ブロモ フエニルなどが好ましく、 このうち特に 2 _フルオロフェニル、 2 , 4ージフル オロフェニルが好ましい。 また、 式 (I ) 中、 Xで示される低級アルキレンとし ては、 たとえばメチレン、 エチレン、 プロピレン等炭素数 1ないし 4のメチレン 鎖が挙げられる。 該有機溶媒としては、 例えば、 メタノール、 エタノール (各種 変性エタノールを含む) 、 1 -プロパノ一ル、 2 -プロパノール、 1 -ブタノ一ル 、 2 -ブ夕ノール、 2 -メチル - 1 -プロパノール、 2 -メチル - 2 -プロパノール、 エチレングリコール、 メチレングリコールモノメチルェ一テル、 エチレングリコ ールモノメチルェ一テル、 エチレングリコールモノェチルエーテル、 などのアル コール類、 ジクロロメタン、 クロ口ホルム、 四塩化炭素、 ジクロロエチレンなど のハロゲン化炭化水素類、 テトラヒドロフラン、 ジォキサン、 ジェチルェ一テル 、 ジイソプロピルエーテル、 ジメチレングリコ一ルジメチルェ一テル、 ジェチレ ングリコールジェチルェ一テルなどのエーテル類、 ベンゼン、 トルエン、 キシレ ンなどの芳香族炭化水素類、 アセトン、 ェチルメチルケトンなどのケトン類、 ァ セトニトリル、 ベンゾニトリルなどの二トリル類、 シクロへキサン、 へキサン、 ヘプタン、 ペンタンなどの炭化水素類、 ジメチルホルムアミド、 ジメチルスルホ キシド、 ジメチルァセトアミド、 へキサメチルホスホリックトリアミドなどの非 プロトン性極性溶媒類、 ピリジンなどの含窒素芳香族類、 などが挙げられる。 ま た、 これらのうち 2種以上の混合溶媒あるいは、 これらの溶媒とそれ以外の溶媒 の混合溶媒でもよい。 また、 無溶媒でもよい。 溶媒の使用量に特に限定はないがThe present invention is generally applied to separation and purification of a target compound at the end of an organic synthesis reaction. For example, a compound represented by the formula (I) as a target compound is prepared from a reaction solution obtained by reacting a compound represented by the formula (II) with a compound represented by the formula (III) in the presence of a titanium alkoxide. It can be used for separation and purification. This reaction is usually performed in a solvent-free or organic solvent. In the formulas (I) and (II), the phenyl group which may be substituted by the octogen represented by Ar may be substituted by, for example, one or two of fluorine, chlorine, bromine, iodine and the like. Specific examples thereof include 2,4-difluorophenyl, 2,4-dichlorophenyl, 4-chlorophenyl, 4-fluorophenyl, 2-chlorophenyl, 2-fluorophenyl, and 2-fluorophenyl. Preferable phenyl, 2-chloro-4-fluorophenyl, 4-bromophenyl and the like are preferable, and among them, 2-fluorophenyl and 2,4-difluorophenyl are particularly preferable. In the formula (I), examples of the lower alkylene represented by X include a methylene chain having 1 to 4 carbon atoms such as methylene, ethylene and propylene. Examples of the organic solvent include methanol, ethanol (including various denatured ethanols), 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, Alcohols such as -methyl-2-propanol, ethylene glycol, methylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, halogens such as dichloromethane, chloroform, carbon tetrachloride, dichloroethylene, etc. Hydrocarbons, ethers such as tetrahydrofuran, dioxane, geethylether, diisopropyl ether, dimethyleneglycoldimethylether, and dimethyleneglycolether, aromatic hydrocarbons such as benzene, toluene, and xylene Hydrogens, ketones such as acetone and ethyl methyl ketone, nitriles such as acetonitrile and benzonitrile, hydrocarbons such as cyclohexane, hexane, heptane and pentane, dimethylformamide, dimethylsulfoxide, dimethyla Aprotic polar solvents such as cetamide and hexamethylphosphoric triamide; and nitrogen-containing aromatics such as pyridine. Also, a mixed solvent of two or more of these, or a mixture of these solvents and other solvents May be used as a mixed solvent. Further, a solvent-free solution may be used. There is no particular limitation on the amount of solvent used,
、 短周期型周期表における第 III族または第 IV族金属のアルコキシド 1モルに対 して、 0. 01ないし 100 L用いるのが好ましい。 反応温度は、 約 40〜20 0 °Cが適切であり、 約 70〜 180 °Cが好ましい。 反応時間は約 1〜 80時間が 適切であり、 約 5〜 50時間が好ましい。 It is preferable to use 0.01 to 100 L per 1 mol of the alkoxide of the Group III or Group IV metal in the short period type periodic table. The reaction temperature is suitably about 40 to 200 ° C, preferably about 70 to 180 ° C. Reaction times of about 1 to 80 hours are suitable, and about 5 to 50 hours are preferred.
この反応は通常反応率を上げるため、 式 (I) で表される化合物に対し、 式 ( III) で表される化合物が多量に用いられる。 そのため反応混合物は未反応の式 (III) で表される化合物を含んでおり、 塩基性であるので、 この場合は特に塩 基を加える必要がない場合がある。 これに炭素数 2〜 8のジまたはトリカルボン 酸および親油性有機溶媒④を添加する。 この操作によりチタニウムのアルコキシ ドの分解物であるチタニウムの化合物は水層に移行し、 目的化合物は親油性有機 溶媒層に移行するのでチタニウムの化合物と式 (I) で表される目的化合物とを 分離することができる。  In this reaction, the compound represented by the formula (III) is used in a larger amount than the compound represented by the formula (I) to increase the reaction rate. Therefore, the reaction mixture contains the unreacted compound represented by the formula (III) and is basic, and in this case, it may not be necessary to add a base. To this is added a di- or tricarboxylic acid having 2 to 8 carbon atoms and a lipophilic organic solvent ④. By this operation, the titanium compound, which is a decomposition product of the titanium alkoxide, moves to the aqueous layer, and the target compound moves to the lipophilic organic solvent layer. Therefore, the titanium compound and the target compound represented by the formula (I) are converted. Can be separated.
以上のように、 本発明の分離方法に従えば、 目的化合物と金属化合物を、 簡単 な分液操作のみで分離できるので、 目的化合物を工業的に製造するのに有利であ る。 発明を実施するための最良の形態  As described above, according to the separation method of the present invention, the target compound and the metal compound can be separated only by a simple liquid separation operation, which is advantageous for industrially producing the target compound. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例、 比較例を挙げて、 本発明をより詳細に説明するが、 本発明はこ れらに限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
実施例 1 Example 1
(2 R, 3R)- 2- (2, 4-ジフルオロフェニル)-3- [N- (2-ヒドロキシェチル) ァミノ]- 1-(1 H- 1, 2, 4-トリァゾール- 1-ィル) -2-ブタノールの合成 (2 R, 3R)- 2- (2, 4-ジフルオロフェニル)- 1-(1 H- 1, 2, 4-トリァゾー ル -1-ィル) -2, 3-エポキシブタン 7. 0 k g、 チタニウムテトライソプロキシ ド 12. 3 k g、 エタノールァミン 10. 3 k g、 1-ブタノ一ル 23 Lを混合し 、 還流下、 約 8時間攪拌することにより反応させた。 反応液に酢酸ェチル 35L と 20%クェン酸水溶液 23 Lを加え、 更に水 12 Lを加え、 これに 20%クェ ン酸水溶液を滴下し PH9.0に調整し分液した。 有機層を減圧濃縮した。 オイ ル状の(2R, 3 R)-2-(2, 4-ジフルオロフェニル)- 3-[N-(2-ヒドロキシェ チル)アミノ]- 1- (1H- 1, 2, 4_トリァゾ一ル- 1-ィル) -2-ブ夕ノールを 8. 44kg (収率: 97%) 得た。 (2 R, 3R)-2- (2,4-difluorophenyl) -3- [N- (2-hydroxyethyl) amino]-1- (1 H-1,2,4-triazol-1-y ) Synthesis of 2-butanol (2R, 3R)-2- (2,4-difluorophenyl) -1- (1H-1,2,4-triazol-1-yl) -2,3 -Epoxybutane 7.0 kg, titanium tetraisoproxide 12.3 kg, ethanolamine 10.3 kg, 1-butanol 23 L were mixed and reacted under reflux for about 8 hours with stirring. . To the reaction solution, 35 L of ethyl acetate and 23 L of a 20% aqueous solution of citric acid were added, and further 12 L of water was added. The organic layer was concentrated under reduced pressure. Oy (2R, 3R) -2- (2,4-difluorophenyl) -3- [N- (2-hydroxyethyl) amino] -1- (1H-1,2,4_triazole (1-yl) -2-butanol (8.44 kg, yield: 97%) was obtained.
実施例 2 Example 2
(2 R, 3 R)-2-(2, 4-ジフルオロフェニル)- 3 _[N-( 2 -ヒドロキシェチル) ァミノ]- 1- (1 H-1, 2, 4-トリァゾール- 1-ィル) - 2-ブ夕ノールの合成 (2 R, 3 R)-2-(2, 4-ジフルオロフェニル)- 1-(1H-1, 2, 4-トリァゾー ル- 1-ィル) -2, 3-エポキシブタン 7. 0 kg、 チタニウムテトライソプロキシ ド 12. 3 k g、 エタノールアミン 10. 3 k g、 1-ブタノ一ル 23 Lを混合し 、 還流下、 約 8時間攪拌することにより反応させた。 反応液に酢酸ェチル 35L と 20%クェン酸水溶液 23 Lを加え、 更に水 12 Lを加え、 これに 20%クェ ン酸水溶液を滴下し PH9. 0に調整し分液した。 有機層に水 23Lを加え、 3 0 % Na〇H水で pH 1 1. 0に調整し分液した。 有機層に 1 N- HC 1 23 L を加え、 次いで 6N- HC 1で pH 1. 0に調整し分液した。 有機層に IN- HC 1 23 Lを加え、 抽出、 分液した。 水層を合わせ酢酸ェチル 23 Lを加え、 3 0 % Na〇I^ i?pH9.0に調整し分液した。 水層に酢酸ェチル 23Lを加え 分液した。 有機層を合わせ減圧濃縮した。 オイル状の(2 R, 3R)-2-(2, 4 -ジ フルオロフェニル)- 3- [N-(2-ヒドロキシェチル)ァミノ]- 1-(1 H- 1, 2, 4 -トリァゾール- 1-ィル) -2-ブ夕ノールを 8. 61 k g (収率: 99%) 得た。 比較例 1 (2R, 3R) -2- (2,4-difluorophenyl) -3 -_ [N- (2-hydroxyethyl) amino]-1- (1H-1,2,4-triazole-1- Synthesis of 2-butanol) (2R, 3R) -2- (2,4-difluorophenyl) -1- (1H-1,2,4-triazol-1-yl)- 7.0 kg of 2,3-epoxybutane, 12.3 kg of titanium tetraisoproxide, 10.3 kg of ethanolamine, and 23 L of 1-butanol were mixed and stirred under reflux for about 8 hours to react. I let it. 35 L of ethyl acetate and 23 L of a 20% aqueous solution of citric acid were added to the reaction solution, and 12 L of water was further added. A 20% aqueous solution of citric acid was added dropwise to the mixture, adjusted to pH 9.0, and separated. 23 L of water was added to the organic layer, and the mixture was adjusted to pH 11.0 with 30% Na〇H water and separated. To the organic layer was added 23 L of 1N-HC1, then adjusted to pH 1.0 with 6N-HC1, and separated. 123 L of IN-HC1 was added to the organic layer, and the mixture was extracted and separated. The aqueous layers were combined, 23 L of ethyl acetate was added, the mixture was adjusted to 30% Na〇I ^ i? PH 9.0, and the layers were separated. 23 L of ethyl acetate was added to the aqueous layer to separate the layers. The organic layers were combined and concentrated under reduced pressure. (2R, 3R) -2- (2,4-difluorophenyl) -3- [N- (2-hydroxyethyl) amino] -1- (1H-1,2,4-triazole in oil form 8.61 kg (-1-yl) -2-butanol was obtained (yield: 99%). Comparative Example 1
(2 R, 3 R)-2-(2, 4-ジフルオロフェニル)-3- [N- (2-ヒドロキシェチル) ァミノ]- 1- (1H- 1, 2, 4-トリァゾ一ル- 1-ィル) -2-ブ夕ノールの合成 (2 R, 3 R)-2-(2, 4-ジフルオロフェニル)- 1- (1 H- 1, 2, 4-トリァゾー ル -1-ィル) -2, 3-エポキシブタン 7. 0g、 チタニウムテトライソプロキシド 12. 3g、 エタノールァミン 10. 3g、 2-プロパノール 2 Omlを混合し、 還流 下、 約 20時間攪拌することにより反応させた。 反応液に酢酸ェチル 35m 1と 水 25mlを加えた。 析出した微粒子状の化合物をろ去し (ろ過補助剤を載せた ろ紙を使用) 、 酢酸ェチル 10mlで洗浄した。 ろ液および洗液を分液した。 有 機層に水 25mlを加えた。 析出した微粒子状の化合物をろ去し (ろ過補助剤を 載せたろ紙を使用) 、 酢酸ェチル 10m 1で洗浄した。 ろ液および洗液を分液し た。 有機層に飽和重曹水 25mlを加えた。 析出した微粒子状の化合物をろ去し (ろ過補助剤を載せたろ紙を使用) 、 酢酸ェチル 1 Omlで洗浄した。 ろ液およ び洗液を分液した。 有機層に飽和重曹水 25mlを加えた。 析出した微粒子状の 化合物をろ去し (ろ過補助剤を載せたろ紙を使用) 、 酢酸ェチル 10mlで洗浄 した。 ろ液および洗液を分液した。 有機層に 0. 001N水酸化ナトリウム水溶 液 25m 1を加えた。 析出した微粒子状の化合物をろ去し (ろ過補助剤を載せた ろ紙を使用) 、 酢酸ェチル 1 Om 1で洗浄した。 ろ液および洗液を分液した。 有 機層に 0. 001N水酸化ナトリウム水溶液 25m lを加えた。 析出した微粒子 状の化合物をろ去し (ろ過補助剤を載せたろ紙を使用) 、 酢酸ェチル 10mlで 洗浄した。 ろ液および洗液を分液した。 有機層に 0. 001N水酸化ナトリウム 水溶液 25m lを加え、 分液した。 有機層を水 25m lで洗浄した。 再度、 有機 層を水 25m 1で洗浄した。 有機層を減圧濃縮した。 オイル状の(2R, 3R)- 2 -(2, 4 -ジフルオロフェニル)-3- [N-( 2-ヒドロキシェチル)ァミノ] -1 -(1 H-1, 2, 4-トリァゾ一ル- 1-ィル) - 2-ブ夕ノールを 3, 9g (収率: 45%) 得た。 (2 R, 3 R) -2- (2,4-difluorophenyl) -3- [N- (2-hydroxyethyl) amino]-1- (1H- 1,2,4-triazol-1 Synthesis of (2-yl) -2-butanol (2R, 3R) -2- (2,4-difluorophenyl) -1- (1H-1,2,4-triazole-1-yl ) 7.0 g of -2,3-epoxybutane, 12.3 g of titanium tetraisoproxide, 10.3 g of ethanolamine and 2 Oml of 2-propanol were mixed and reacted under reflux for about 20 hours with stirring. 35 ml of ethyl acetate and 25 ml of water were added to the reaction solution. The precipitated particulate compound was removed by filtration (using a filter paper on which a filter aid was placed), and washed with 10 ml of ethyl acetate. The filtrate and the washing were separated. 25 ml of water was added to the organic layer. The precipitated particulate compound is removed by filtration. The filter paper was used) and washed with 10 ml of ethyl acetate. The filtrate and the washing were separated. 25 ml of saturated aqueous sodium hydrogen carbonate was added to the organic layer. The precipitated particulate compound was removed by filtration (using a filter paper on which a filter aid was placed), and washed with 1 Oml of ethyl acetate. The filtrate and the washing were separated. 25 ml of saturated aqueous sodium hydrogen carbonate was added to the organic layer. The precipitated fine particles of the compound were removed by filtration (using a filter paper on which a filter aid was placed), and washed with 10 ml of ethyl acetate. The filtrate and the washing were separated. 25 ml of a 0.001 N aqueous sodium hydroxide solution was added to the organic layer. The precipitated particulate compound was filtered off (using a filter paper on which a filter aid was placed), and washed with ethyl acetate 1 Om1. The filtrate and the washing were separated. 25 ml of a 0.001N aqueous sodium hydroxide solution was added to the organic layer. The precipitated particulate compound was filtered off (using a filter paper on which a filter aid was placed) and washed with 10 ml of ethyl acetate. The filtrate and the washing were separated. 25 ml of a 0.001N aqueous sodium hydroxide solution was added to the organic layer, and the mixture was separated. The organic layer was washed with 25 ml of water. Again, the organic layer was washed with 25 ml of water. The organic layer was concentrated under reduced pressure. (2R, 3R) -2- (2,4-difluorophenyl) -3- [N- (2-hydroxyethyl) amino] -1-(1H-1,2,4-triazole in oily form -1-yl)-3.9 g (yield: 45%) of 2-butanol were obtained.
参考例 1 Reference example 1
1 - p -ァミノフエニル- 1 H-テトラゾ一ルの合成  Synthesis of 1-p-aminophenyl-1H-tetrazole
窒素気流下、 1- P-ニトロフエニル- 1H-テトラゾール 44kg、 水 88 kg を混合し、 約 75°Cまで加熱し、 34%水硫化ナトリウム 85 k gを 83°C以下 で滴下した。 約 80°Cで攪拌することにより反応させた。 冷却後、 結晶をろ取し 、 水 98 kgで洗浄した。 l_p-ァミノフエ二ル- 1H-テトラゾール湿結晶 41 k gを得た。 産業上の利用可能性 In a nitrogen stream, 44 kg of 1-P-nitrophenyl-1H-tetrazole and 88 kg of water were mixed, heated to about 75 ° C, and 85 kg of 34% sodium hydrosulfide was added dropwise at 83 ° C or less. The reaction was carried out by stirring at about 80 ° C. After cooling, the crystals were collected by filtration and washed with 98 kg of water. 41 kg of l_p-aminophenyl-1H-tetrazole wet crystals were obtained. Industrial applicability
短周期型周期表における第 III族または第 IV族金属のアルコキシドの水による 分解物と有機化合物とを簡単な分液操作のみで分離できるので、 目的化合物をェ 業的に製造するのに有利である。  The decomposition of the alkoxide of a Group III or Group IV metal with water in the short-periodic periodic table can be separated from the organic compound by a simple liquid separation operation, which is advantageous for industrially producing the target compound. is there.

Claims

請 求 の 範 囲 The scope of the claims
(1) 1) PH 2より高い pH領域で親油性を示す有機化合物および短周期型 周期表における第 III族または第 IV族金属のアルコキシドを含む溶液と 2) 水と 3) 多塩基性カルボン酸とを混合し、 該金属の化合物を水層に移行させることを 特徴とする該有機化合物と該金属の化合物とを分離する方法。 (1) 1) Organic compounds exhibiting lipophilicity in the pH range higher than pH 2 and short-periodic type solutions containing alkoxides of Group III or IV metals in the periodic table; 2) Water and 3) Polybasic carboxylic acids And transferring the compound of the metal to an aqueous layer by mixing the organic compound and the compound of the metal.
(2) 混合に際し、 さらに親油性有機溶媒を加える請求項 1記載の方法。 (2) The method according to claim 1, wherein a lipophilic organic solvent is further added during the mixing.
(3) pH2より高い p H領域で親油性を示す有機化合物および短周期型周期 表における第 III族または第 IV族金属のアルコキシドを含む溶液と多塩基性カル ボン酸の水溶液とを混合する請求項 1記載の方法。 (3) A method comprising mixing a solution containing an organic compound exhibiting lipophilicity in the pH region higher than pH 2 and an alkoxide of a Group III or Group IV metal in the short-periodic periodic table with an aqueous solution of polybasic carboxylic acid. The method of paragraph 1.
(4) 親油性有機溶媒が炭素数 1〜2のハロゲン化炭化水素類、 炭素数 2〜6 のエーテル類、 低級脂肪族カルボン酸の低級アルキルエステル類、 炭素数 6〜8 の芳香族炭化水素類、 炭素数 5〜 7の脂肪族炭化水素類、 炭素数 5〜 7の脂環族 炭化水素類、 これらのうちの 2種以上の混合溶媒またはこれらの溶媒とそれ以外 の溶媒との混合溶媒である請求項 2記載の方法。  (4) The lipophilic organic solvent is a halogenated hydrocarbon having 1 to 2 carbon atoms, an ether having 2 to 6 carbon atoms, a lower alkyl ester of a lower aliphatic carboxylic acid, or an aromatic hydrocarbon having 6 to 8 carbon atoms. , Aliphatic hydrocarbons having 5 to 7 carbon atoms, alicyclic hydrocarbons having 5 to 7 carbon atoms, mixed solvents of two or more of these, or mixed solvents of these solvents with other solvents 3. The method of claim 2, wherein
(5) 短周期型周期表における第 III族または第 IV族金属のアルコキシドがチ 夕二ゥム、 ジルコニウムまたはアルミニウムのアルコキシドである請求項 1記載 の方法。  (5) The method according to claim 1, wherein the alkoxide of the Group III or Group IV metal in the short-periodic table is an alkoxide of titanium, zirconium or aluminum.
(6) 多塩基性カルボン酸がシユウ酸、 マロン酸、 コハク酸、 ダルタル酸、 ァ ジピン酸、 マレイン酸、 フマル酸、 フタル酸、 イソフ夕ル酸、 テレフタル酸、 く えん酸またはこれらのうちの 2種以上の混合物である請求項 1記載の方法。  (6) The polybasic carboxylic acid is oxalic acid, malonic acid, succinic acid, daltaric acid, adipic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, citric acid or any of these 2. The method according to claim 1, which is a mixture of two or more.
(7) 多塩基性カルボン酸の使用量が短周期型周期表における第 III族または 第 IV族金属のアルコキシド 1モルに対し 0. 5〜10モルである請求項 1記載の 方法。  (7) The method according to claim 1, wherein the amount of the polybasic carboxylic acid used is 0.5 to 10 mol per 1 mol of the alkoxide of the Group III or Group IV metal in the short period periodic table.
(8) 水の使用量が短周期型周期表における第 III族または第 IV族金属のアル コキシド 1モルに対し 0. 1〜 100リツトルである請求項 1記載の方法。  (8) The method according to claim 1, wherein the amount of water used is 0.1 to 100 liters per mole of the alkoxide of a Group III or Group IV metal in the short-periodic periodic table.
(9) 短周期型周期表における第 III族または第 IV族金属のアルコキシドがチ 夕二ゥムのアルコキシドである請求項 1記載の方法。  (9) The method according to claim 1, wherein the alkoxide of a Group III or Group IV metal in the short period periodic table is a dimethyl alkoxide.
(10) 金属の化合物を水層に移行させるに際し、 混合液の pHを、 pH2より 高い p H領域で親油性を示す有機化合物が親油性を示す p H領域に調整する請 求項 1記載の方法。 (10) When transferring the metal compound to the aqueous layer, adjust the pH of the mixed solution from pH2. 3. The method according to claim 1, wherein the organic compound exhibiting lipophilicity in a high pH region is adjusted to a pH region exhibiting lipophilicity.
(1 1) pH 2より高い pH領域で親油性を示す有機化合物が式:
Figure imgf000016_0001
(1 1) An organic compound having lipophilicity in a pH range higher than pH 2 is represented by the formula:
Figure imgf000016_0001
[式中、 A rはハロゲンで置換されていてもよいフエニル基を、 Xは低級アルキ レン基を、 (R) は立体配置を示す。 ] で表される化合物であり、 短周期型周期 表における第 ΠΙ族または第 IV族金属のアルコキシドがチタニウムのアルコキシ ドであり、 多塩基性カルボン酸が炭素数 2 8のジまたはトリカルボン酸であり 、 親油性有機溶媒が低級脂肪族カルボン酸の低級アルキルエステルである請求項 1記載の方法。  [In the formula, Ar represents a phenyl group optionally substituted with halogen, X represents a lower alkylene group, and (R) represents a steric configuration. Wherein the alkoxide of the Group II or Group IV metal in the short-periodic table is an alkoxide of titanium and the polybasic carboxylic acid is a di- or tricarboxylic acid having 28 carbon atoms. 2. The method according to claim 1, wherein the lipophilic organic solvent is a lower alkyl ester of a lower aliphatic carboxylic acid.
(12) 1) 親油性を示す有機化合物および短周期型周期表における第 III族ま たは第 IV族金属のアルコキシドを含む溶液と 2) 水と 3) 多塩基性カルボン酸と を混合し、 該金属の化合物を水層に移行させることを特徴とする該有機化合物と 該金属の化合物とを分離する方法。  (12) 1) A solution containing an organic compound exhibiting lipophilicity and an alkoxide of a Group III or Group IV metal in the short-periodic periodic table is mixed with 2) water and 3) a polybasic carboxylic acid, A method for separating the organic compound and the metal compound, wherein the metal compound is transferred to an aqueous layer.
(13) 式:
Figure imgf000016_0002
Equation (13):
Figure imgf000016_0002
[式中、 A rはハロゲンで置換されていてもよいフエニル基を、 (R) および ( S) は立体配置を示す。 ] で表される化合物と式:  [In the formula, Ar represents a phenyl group which may be substituted with halogen, and (R) and (S) represent a steric configuration. And a compound represented by the formula:
H2N— X— 0H (Ml) H 2 N— X— 0H (Ml)
(式中、 Xは低級アルキレンを示す。 ) で表される化合物とをチタニウムのアル コキシドの存在下に反応させることにより生成する式:
Figure imgf000016_0003
[式中、 各記号は前記と同意義を示す。 ] で表される化合物を含む反応混合液と 水と炭素数 2〜 8のジまたはトリカルボン酸と親油性有機溶媒とを混合し、 チタ 二ゥムの化合物を水層に移行させることを特徴とする式 (I) で表される化合物 の製造法。
(Wherein, X represents a lower alkylene.) A compound represented by the following formula:
Figure imgf000016_0003
[Wherein each symbol has the same meaning as described above. A mixture of water, a di- or tricarboxylic acid having 2 to 8 carbon atoms and a lipophilic organic solvent, and transferring the titanium compound to an aqueous layer. A method for producing a compound represented by the formula (I):
(14) チタニウムのアルコキシドがチタニウム (I V) メトキシド、 チタニゥ ム (I V) ェトキシド、 チタニウム (I V) プロポキシド、 チタニウム (I V) イソプロボキシドまたはチタニウム (I V) ブトキシドである請求項 13記載の 製造法。  (14) The method according to claim 13, wherein the titanium alkoxide is titanium (IV) methoxide, titanium (IV) ethoxide, titanium (IV) propoxide, titanium (IV) isopropoxide, or titanium (IV) butoxide.
(15) 親油性有機溶媒がベンゼン、 クロロフオルム、 四塩化炭素、 ジクロロェ タン、 ジクロロメタン、 ジェチルエーテル、 ジイソプロピルエーテル、 酢酸ェチ ル、 へキサン、 ペンタン、 トルエンまたはキシレンである請求項 13記載の製造 法。  (15) The process according to claim 13, wherein the lipophilic organic solvent is benzene, chloroform, carbon tetrachloride, dichloroethane, dichloromethane, dimethyl ether, diisopropyl ether, ethyl acetate, hexane, pentane, toluene or xylene. .
(16) チタニウムの化合物を水層に移行させるに際に、 混合液の pHを、 7. 0〜 10. 0に調整する請求項 13記載の製造法。  (16) The method according to claim 13, wherein the pH of the mixture is adjusted to 7.0 to 10.0 when the titanium compound is transferred to the aqueous layer.
PCT/JP1999/007044 1998-12-16 1999-12-15 Method of separating compound of group iii or iv metal WO2000035553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU16862/00A AU1686200A (en) 1998-12-16 1999-12-15 Method of separating compound of group iii or iv metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35811398 1998-12-16
JP10/358113 1998-12-16

Publications (1)

Publication Number Publication Date
WO2000035553A1 true WO2000035553A1 (en) 2000-06-22

Family

ID=18457614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007044 WO2000035553A1 (en) 1998-12-16 1999-12-15 Method of separating compound of group iii or iv metal

Country Status (2)

Country Link
AU (1) AU1686200A (en)
WO (1) WO2000035553A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006159A1 (en) * 2000-07-17 2002-01-24 Industrial Research Limited Titanium-containing materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558997A (en) * 1991-09-04 1993-03-09 Mitsubishi Kasei Corp Thiocarbamoylacetonitrile derivative
JPH09201501A (en) * 1995-11-01 1997-08-05 Union Carbide Chem & Plast Technol Corp Method for removing heavy metal alkoxide from liquid hydrocarbon
JPH1036357A (en) * 1996-07-25 1998-02-10 Mitsubishi Kagaku Kk Triazole derivative and agricultural and horticultural germicide comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558997A (en) * 1991-09-04 1993-03-09 Mitsubishi Kasei Corp Thiocarbamoylacetonitrile derivative
JPH09201501A (en) * 1995-11-01 1997-08-05 Union Carbide Chem & Plast Technol Corp Method for removing heavy metal alkoxide from liquid hydrocarbon
JPH1036357A (en) * 1996-07-25 1998-02-10 Mitsubishi Kagaku Kk Triazole derivative and agricultural and horticultural germicide comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006159A1 (en) * 2000-07-17 2002-01-24 Industrial Research Limited Titanium-containing materials

Also Published As

Publication number Publication date
AU1686200A (en) 2000-07-03

Similar Documents

Publication Publication Date Title
US7759497B2 (en) Synthesis of diaryl pyrazoles
US20130345435A1 (en) Preparation method of carfentrazone-ethyl
JP5507257B2 (en) (1H-1,2,4-triazol-1-yl) aryl compound and method for producing the same
WO2000035553A1 (en) Method of separating compound of group iii or iv metal
JPH07503253A (en) Triazolinone ring formation in tertiary butanol
EP1979333A1 (en) Process for preparing iodinated azoles
EP1308432B1 (en) Process for the preparation of 5- (4-chlorophenyl)-methyl|-2,2-dimethylcyclopentanone
JP2000233103A (en) Process for separation of group iii/group iv metal compound
CN114478411A (en) Method for synthesizing prothioconazole
US6768022B2 (en) Method for producing thiosalicylic acid
JP2002519409A (en) Method for producing 2-nitro-5- (phenylthio) -aniline
US6774239B2 (en) Process for the preparation of N,N′-carbonyldiazoles and azolide salts
EP0370357B1 (en) Process for producing 3-iminonitriles
JP2001510467A (en) Method for producing benzoisothiazolin-3-ones
EP1833813A1 (en) Method for the production of substituted thiophenesulfonyl isocyanates
US5616723A (en) Process for the preparation of 3-amino-5-methylpyrazole
JP3717277B2 (en) High purity 1,3-dialkyl-2-imidazolidinone and process for producing the same
JPH05221963A (en) Urea fusion process for synthesis of 3-phenoxy- 1-azetidinecarboxyamide
RU2256655C1 (en) Method for preparing 1-(4-chlorophenyl)-3-(1,2,4-triazol-1-yl-methyl)-4,4-dimethylpentane-3- ol
EP0060222B1 (en) Halogen-methyl triazoles
JP2002179655A (en) Method for producing aryltriazolinone
JP3475259B2 (en) Method for producing 5-alkoxyhydantoins
JP3152306B2 (en) Method for producing N-alkylpyrazoles
JP2857037B2 (en) Method for crystallizing N-alkoxycarbonyl amino acid ester
JPH10168058A (en) Production of optically active 1-benzyl-3-hydroxypyrrolidine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 16862

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AU AZ BA BB BG BR BY CA CN CR CU CZ DM EE GD GE HR HU ID IL IN IS JP KG KR KZ LC LK LR LT LV MA MD MG MK MN MX NO NZ PL RO RU SG SI SK SL TJ TM TR TT TZ UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000587865

Format of ref document f/p: F