WO2000033780A1 - Materiaux crepes pour article absorbant - Google Patents

Materiaux crepes pour article absorbant Download PDF

Info

Publication number
WO2000033780A1
WO2000033780A1 PCT/US1999/029132 US9929132W WO0033780A1 WO 2000033780 A1 WO2000033780 A1 WO 2000033780A1 US 9929132 W US9929132 W US 9929132W WO 0033780 A1 WO0033780 A1 WO 0033780A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
diaper
cover
fibers
orientation
Prior art date
Application number
PCT/US1999/029132
Other languages
English (en)
Inventor
Eugenio Go Varona
Monica Lynn Bontrager
Jaime Braverman
Kuo-Shu Edward Chang
Michael Allen Daley
Karen Lynn English
Arthur Edward Garavaglia
Hristo Angelov Hristov
Nancy Donaldson Kollin
Tamara Lee Mace
David Michael Matela
Sharon Rymer
Reginald Smith
Roland Columbus Smith, Jr.
Michael Donald Sperl
Original Assignee
Kimberly-Clark Worldwide, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/209,044 external-priority patent/US6838154B1/en
Application filed by Kimberly-Clark Worldwide, Inc. filed Critical Kimberly-Clark Worldwide, Inc.
Priority to AU19367/00A priority Critical patent/AU1936700A/en
Publication of WO2000033780A1 publication Critical patent/WO2000033780A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/538Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium characterised by specific fibre orientation or weave

Definitions

  • the present invention relates to a material which may be used, for example, as a liner for personal care products like diapers, training pants, swim wear, absorbent underpants, adult incontinence products, bandages and feminine hygiene products.
  • Personal care articles such as infant and feminine care products are typically composed of multiple components including the cover (also known as topsheet or liner), absorbent layer(s) and baffle.
  • the topsheet in conjunction with the absorbent layer(s) must deliver softness and comfort, protection, good absorbency and liquid intake properties, dryness, visual distinctiveness and cleanliness. The extent to which these traits are met is dependent on the interaction of a bodily fluid with the structure and surface chemistry of the cover and absorbent as well as the interface between adjacent or interconnected materials.
  • Nonwoven materials are soft and comfortable but often lack the required functional attributes (clean ,dry, and absorbent) while apertured film covers can deliver the required functionality but are generally hot, plasticky, and uncomfortable.
  • a number of apertured film covers have been described in the patent art. These vary widely in their functional performance.
  • Several main categories of film covers are known based on their structure and the methods of manufacture. For instance, two dimensional film covers (using a slit and stretch aperture method) were developed by Hovis et al. (U.S. Pat. No. 5,262107). Due to their structure, these apertured films have relatively slow intake rates and high rewet and staining compared to other apertured films.
  • Three dimensional apertured film covers were described by Thompson et. al. (U.S. Pat. No. 3,929,135) and others using both vacuum aperturing and pin apertuhng.
  • Nonwovens such as monocomponent spunbond webs often have poor functional performance due to their generally small average pore size, low permeability, and two dimensional nature.
  • Other structures such as crimped conjugate spunbond webs and through air bonded carded webs can be three dimensional but also tend to have low permeability and small average pore size.
  • the permeability and pore size may be increased through, for example, increased fiber denier and decreased basis weight, but at the extreme limits, softness and other aesthetic features can be compromised. Additionally, under these conditions one often sees a tradeoff in properties; for example, such than intake rate increases with increase in permeability, but rewet and staining may also increase.
  • Integrated composite structures are also described in the art and include apertured film/nonwoven laminates and nonwoven/nonwoven laminates. These structures often deliver improvements in functional performance and softness, however, these structures are often more expensive due to their increased complexity and the incorporation of multiple layers of materials.
  • the cover is sometimes referred to as a body side liner or topsheet when referring to diapers, and is usually adjacent a surge material.
  • the liner material is the layer against the wearer's skin and so the first layer in contact with liquid or other exudate from the wearer.
  • the liner further serves to isolate the wearer's skin from the liquids held in an absorbent structure and should be compliant, soft feeling and non-irritating.
  • a properly functioning diaper body side liner should have good intake properties so that the incoming liquid stream is transported through the material completely and hence, minimal pooling and spreading of the liquid at the surface occurs. Pooling and spreading at the surface can contribute to leakage and increase skin hydration or wetness.
  • the body side surface of the liner should have minimal saturation so that skin hydration does not increase. It is desirable that personal care articles be designed so as to minimize skin hydration since its believed to contribute to the occurrence of diaper rash. If the liner has poor liquid intake qualities and remains saturated, or has fluid spreading properties, skin hydration will be increased.
  • the object of the invention is a resilient, three dimensional material having fibrous texture and appearance and capable of fluid handling. It has a top surface and a bottom surface and fiber-like elements can extend from one surface to the other, forming flat to undulating surfaces characterized by a multiplicity of interconnected fluid passageways. Deformed, discontinuous film-like or encapsulated regions connect fiber-like elements and stabilize the material.
  • the material of this invention is unique based on the three principle characteristics which are: 1 ) f f ( ⁇ ) ⁇ 0.87 , 2) SA/W ⁇ 186 cm 2 /cm 3 , and 3) caliper ⁇ 0.150 inches.
  • This material is useful for a number of purposes, such as for use as a liner for personal care products like diapers, absorbent underpants, swim wear, feminine hygiene products, adult incontinence products and the like.
  • the properties of the material may be tailored within the ranges of this invention to deliver optimal material performance for use in specific personal care products.
  • Figure 1 shows a diagram of a process for creping a web.
  • Figure 2 is a graph of pore size distribution of a web.
  • Figure 3 is an Scanning Electron Microscope (SEM) micrograph of a material according to the invention.
  • Figure 4 is an SEM micrograph of a material according to the invention.
  • Figure 5 is a representation of a fabric having X, Y and Z coordinates.
  • Figure 6 is a representation of a web having flat surfaces.
  • Figure 7 is a representation of a web having undulating surfaces.
  • Figure 8 has three views, a, b, and c.
  • Figure 8a represents a fabric having fiber orientation in the Z direction.
  • Figure 8b represents a fabric having fiber orientation in the Y direction.
  • Figure 8c represents a fabric having a random fiber orientation.
  • Figure 9 is a representation of a cylinder having a Z axis along the centerline of its length and angles phi and c relative to the axis.
  • Figure 10 is a graph of ODF- l( ⁇ ) on the y- axis versus azimuthal angle ⁇ on the x- axis.
  • Figure 11 is a diagram of a fiber axis versus three axes, X, Y and Z. Between the fiber and Z is angle ⁇ , between the fiber and Y is the angle ⁇ , and between the fiber an X is the angle K.
  • Figure 12 is the projection of the Euler angles ⁇ , ⁇ and ⁇ on the coordinate planes.
  • Figure 13 is a 2-D X-ray intensity distribution, transmission geometry for specimen:
  • Control fiber axis vertical, X-ray perpendicular to the plane of the paper.
  • Figure 14 is a 2-D X-ray intensity distribution, transmission geometry for specimen: Cover 0, MD vertical, X-ray perpendicular to the plane of the paper.
  • Figure 15 is a 2-D scan of spunbond polypropylene fiber with scattering perpendicular to the fiber axis.
  • the Y axis shows intensity and the X axis represents 2 ⁇ .
  • Figure 16 is an azimuthal X-ray Intensity Distribution for specimen Control, (040) planes, transmission geometry.
  • Figure 17 is an azimuthal X-ray Intensity Distribution for specimen Cover 0, (040) planes, transmission geometry.
  • Figure 18 is a 2-D X-ray intensity distribution, transmission geometry, for specimen: Cover 2, MD vertical, X-ray perpendicular to the plane of paper.
  • Figure 19 is a 2-D X-ray intensity distribution, transmission geometry for specimen:
  • Figure 20 is a 2-D X-ray intensity distribution, transmission geometry for specimen: Cover 7, MD vertical, X-ray perpendicular to the plane of paper.
  • Figure 21 is a 2-D X-ray intensity distribution, reflection geometry for specimen: Cover 0, MD vertical.
  • Figure 22 is a 2-D X-ray intensity distribution, reflection geometry for specimen:
  • Figure 23 is a 2-D X-ray intensity distribution, reflection geometry for specimen: Cover 6, MD vertical.
  • Figure 24 is a 2-D X-ray intensity distribution, reflection geometry for specimen: Cover 7, MD vertical.
  • Figure 25 is a drawing of a rate block used in the rate block intake test.
  • Disposable includes being disposed of after a single use and not intended to be washed and reused.
  • “Front” and “back” are used throughout this description to designate relationships relative to the garment itself, rather than to suggest any position the garment assumes when it is positioned on a wearer.
  • “inward” and “outward” refer to positions relative to the center of an absorbent garment, and particularly transversely and/or longitudinally closer to or away from the longitudinal and transverse center of the absorbent garment.
  • “Liquid” means a substance and/or material that flows and can assume the interior shape of a container into which it is poured or placed. It is meant to include but not be limited to bodily exudates, menstrual discharge, menses, urine, blood, and runny bowel movement.
  • “Liquid communication” means that liquid is able to travel from one layer to another layer, or one location to another within a layer.
  • the longitudinal axis lies in the plane of the article when laid flat and fully extended and is generally parallel to a vertical plane that bisects a standing wearer into left and right body halves when the article is worn.
  • the transverse axis lies in the plane of the article generally perpendicular to the longitudinal axis.
  • the article as illustrated is longer in the longitudinal direction than in the transverse direction.
  • nonwoven fabric or web means a web having a structure of individual fibers or threads which are interlaid, but not in an identifiable manner as in a knitted fabric.
  • Nonwoven fabrics or webs have been formed from many processes such as for example, meltblowing processes, spunbonding processes, and bonded carded web processes.
  • the basis weight of nonwoven fabrics is usually expressed in ounces of material per square yard (osy) or grams per square meter (gsm) and the fiber diameters useful are usually expressed in microns. (Note that to convert from osy to gsm, multiply osy by 33.91).
  • microfibers means small diameter fibers having an average diameter not greater than about 75 microns, for example, having an average diameter of from about 0.5 microns to about 50 microns, or more particularly, microfibers may have an average diameter of from about 2 microns to about 40 microns.
  • denier is defined as grams per 9000 meters of a fiber and may be calculated as fiber diameter in microns squared, multiplied by the fiber's polymer density in grams/cc, multiplied by 0.00707. A lower denier indicates a finer fiber and a higher denier indicates a thicker or heavier fiber.
  • the diameter of a polypropylene fiber given as 15 microns may be converted to denier by squaring, multiplying the result by 0.91 g/cc and multiplying by .00707.
  • spunbonded fibers refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded filaments then being rapidly reduced as by, for example, in US Patent 4,340,563 to
  • Spunbond fibers are generally not tacky when they are deposited onto a collecting surface. Spunbond fibers are generally continuous and have average diameters (from a sample of at least 10) larger than 7 microns, more particularly, between about 10 and 30 microns.
  • the fibers may also have shapes such as those described in US Patents 5,277,976 to Hogle et al., US Patent 5,466,410 to Hills and 5,069,970 and 5,057,368 to Largman et al., which describe fibers with unconventional shapes.
  • the term "meltblown fibers” means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity, usually hot, gas (e.g. air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter.
  • meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers.
  • meltblown fibers are microfibers which may be continuous or discontinuous, are generally smaller than 10 microns in average diameter, and are generally tacky when deposited onto a collecting surface.
  • Conjugate fibers refers to fibers which have been formed from at least two polymers extruded from separate extruders but spun together to form one fiber.
  • Conjugate fibers are also sometimes referred to as multicomponent or bicomponent fibers.
  • the polymers are usually different from each other though conjugate fibers may be monocomponent fibers.
  • the polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the conjugate fibers and extend continuously along the length of the conjugate fibers.
  • the configuration of such a conjugate fiber may be, for example, a sheath/core arrangement wherein one polymer is surrounded by another or may be a side by side arrangement, a pie arrangement or an "islands-in-the-sea" arrangement.
  • Conjugate fibers are taught in US Patent 5,108,820 to Kaneko et al., US Patent 5,336,552 to Strack et al., and US Patent 5,382,400 to Pike et al.
  • the polymers may be present in ratios of 75/25, 50/50, 25/75 or any other desired ratios.
  • the fibers may also have shapes such as those described in US Patents 5,277,976 to Hogle et al., and 5,069,970 and 5,057,368 to Largman et al., hereby incorporated by reference in their entirety, which describe fibers with unconventional shapes.
  • Biconstituent fibers refers to fibers which have been formed from at least two polymers extruded from the same extruder as a blend.
  • blend is defined below. Biconstituent fibers do not have the various polymer components arranged in relatively constantly positioned distinct zones across the cross-sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils or protofib ls which start and end at random.
  • Biconstituent fibers are sometimes also referred to as multiconstituent fibers. Fibers of this general type are discussed in, for example, US Patent 5,108,827 to Gessner. Bicomponent and biconstituent fibers are also discussed in the textbook Polymer Blends and Composites by John A. Manson and Leslie H. Sperling, copyright 1976 by Plenum Press, a division of Plenum Publishing Corporation of New York, IBSN 0- 306-30831-2, at pages 273 through 277.
  • Perfectal care product means diapers, training pants, swim wear, absorbent underpants, adult incontinence products, bandages and feminine hygiene products.
  • “Feminine hygiene products” means sanitary napkins or pads, tampons and panty- liners.
  • Target area refers to the area or position on a personal care product where an insult is normally delivered by a wearer.
  • “Absorbent articles” refers to materials which when used independently or in conjunction with other materials are capable of fluid intake, absorption, or permeation of fluid into void spaces.
  • the density of a material is calculated by dividing the weight per unit area of a sample in grams per square meter (gsm) by the material caliper. A total of five samples would be evaluated and averaged for the density values. Density is usually reported in units of grams/cubic centimeter (g/cc) and symbolized by Greek letter p.
  • a pore radius distribution chart as illustrated in Figure 2 shows pore radius in microns in the x-axis and pore volume (volume absorbed in cc of liquid/gram of dry sample at that pore interval) in the y-axis. This is determined by using an apparatus based on the porous plate method first reported by Burgeni and Kapur in the Textile Research Journal Volume 37, pp 356-366 (1967).
  • the system is a modified version of the porous plate method and consists of a movable Velmex stage interfaced with a programmable stepper motor and an electronic balance controlled by a computer.
  • a control program automatically moves the stage to the desired height, collects data at a specified sampling rate until equilibrium is reached, and then moves to the next calculated height. Controllable parameters of the method include sampling rates, criteria for equilibrium and the number of absorption/desorption cycles.
  • Permeability is obtained from a measurement of the resistance by the material to the flow of liquid. A liquid of known viscosity is forced through the material of a given thickness at a constant flow rate and the resistance to flow, measured as a pressure drop is monitored. Darcy's Law is used to determine permeability as follows:
  • the apparatus consists of an arrangement wherein a piston within a cylinder pushes liquid through the sample to be measured.
  • the sample is clamped between two aluminum cylinders with the cylinders oriented vertically. Both cylinders have an outside diameter of 3.5", an inside diameter of 2.5" and a length of about 6".
  • the 3" diameter web sample is held in place by its outer edges and hence is completely contained within the apparatus.
  • the bottom cylinder has a piston that is capable of moving vertically within the cylinder at a constant velocity and is connected to a pressure transducer that capable of monitoring the pressure of encountered by a column of liquid supported by the piston. The transducer is positioned to travel with the piston such that there is no additional pressure measured until the liquid column contacts the sample and is pushed through it.
  • the additional pressure measured is due to the resistance of the material to liquid flow through it.
  • the piston is moved by a slide assembly that is driven by a stepper motor.
  • the test starts by moving the piston at a constant velocity until the liquid is pushed through the sample.
  • the piston is then halted and the baseline pressure is noted. This corrects for sample buoyancy effects.
  • the movement is then resumed for a time adequate to measure the new pressure.
  • the difference between the two pressures is the pressure due to the resistance of the material to liquid flow and is the pressure drop used in Equation(1 ).
  • the velocity of the piston is the flow rate. Any liquid whose viscosity is known can be used, although a liquid that wets the material is preferred since this ensures that saturated flow is achieved.
  • Conductance This is calculated as permeability per unit thickness and gives a measure of the openness of a particular structure and so an indication of the relative ease at which a material will pass liquid.
  • the units are darcies/mil.
  • the caliper of a material is a measure of thickness and is measured at 0.05 psi with a
  • Starret-type bulk tester in units of millimeters or inches.
  • the foot of the bulk tester used in these studies is a small acrylic cylinder measuring 3" wide by 0.5 inches in thickness. In practice, 10 repetitions of any measurement should be made.
  • This test is used to determine the intake time of a known quantity of fluid into a material and/or material system.
  • the test apparatus consists of a rate block as shown in Figure 25, and a timer or stopwatch.
  • a 4 inch by 4 inch (102 mm by 102 mm) piece of absorbent 14 and cover 13 were die cut.
  • the specific covers to be tested are described in the specific examples.
  • the absorbent used for these studies consisted of a 250 gsm airlaid made of 90% Coosa 0054 pulp and 10% Hoechst-Celanese T-255 conjugate binder fiber and the density for this absorbent was 0.10 g/cc.
  • the sample cover 13 to be tested was placed over the absorbent 14 and the rate block 10 was placed on top of the two materials.
  • This test is used to determine the amount of fluid that will come back to the surface of a cover when a load is applied.
  • the amount of fluid that comes back through the surface is called the rewet value.
  • Lower rewet values are associated with a dryer material and hence a dryer product. In considering rewet, three properties are important:
  • the absorbent is a 250 gsm airlaid material made of 90% Coosa 0054 pulp and 10% HC T-255 binder with a density of 0.10 g/cc.
  • Two ml of artificial menses fluid are insulted into the rate block apparatus and allowed to absorb into a 4" x 4" sample of the cover material which is placed on top of a 4" x 4" absorbent piece.
  • the fluid is allowed to interact with the system for 1 minute as the rate block rests on top of the materials.
  • the material system (cover and absorbent) is placed onto a closed bag, partially filled with saline solution.
  • the fluid bag was positioned on top of a lab jack. Pieces of blotter paper are weighed and placed on top of the material system.
  • the bag with the material system is raised against a fixed acrylic plate using the lab jack until a total of 1 psi is applied.
  • the pressure is held fixed for 3 minutes after which the pressure is removed and the blotter paper is weighed.
  • the blotter paper should retain any fluid that was transferred to it from the cover/absorbent system.
  • the difference in weight between the original blotter and the blotter after the absorption experiment is the rewet value.
  • the pump was programmed to deliver a total volume of 1 ml to the samples where the samples were under pressures of 0 psi, 0.008 psi, and 0.8 psi. These pressures were applied using a weight which was placed on top of the acrylic plates and distributed evenly. The flow rate of the pump was programmed to deliver at rates of 1 ml/sec.
  • the stain size (area) for the cover materials was measured manually and the amount of fluid in each component of the system was measured by weight before and after absorption of the fluid. The stain intensity was evaluated qualitatively by comparison of samples. Staining information could also be recorded using a digital camera and could be further analyzed with standard image analysis. Fluid retention was measured by weighing the cover before and after fluid insult. Average stain size and fluid retention were determined from at least five repetitions at each pressure.
  • the control of the fiber orientation distribution is an important task.
  • a number of physical properties of the final product such as machine- and cross-direction (MD and CD) strength, porosity and loft, depend on the overall fiber orientation.
  • MD and CD machine- and cross-direction
  • the fiber orientation may affect some other attributes of the product such as aesthetics, cloth-like appearance and ultimately customer satisfaction.
  • the fiber orientation in polypropylene (PP) spunbond fabrics can vary considerably. Quantitative analysis of the fiber orientation in fibrous materials is performed with the help of the "fiber orientation distribution function" (f-ODF) (see R. E. Mark, in “Handbook of Physical and Mechanical Testing of Paper and Paperboard", Marcel Dekker Publ., 2, 283 (1984)). In the most general case it is a three- dimensional (3-D) function. To obtain the complete f-ODF a variety of experimental methods have been proposed (see R. E. Mark, in “Handbook of Physical and Mechanical Testing of Paper and Paperboard”. Marcel Dekker Publ., 2, 283 (1984)) and H. Kawai, S.
  • f-ODF fiber orientation distribution function
  • the method herein works well for polypropylene which crystallizes in its stable form ( ⁇ -form crystals, monoclinic) with the c-crystal axis along the fiber axis. After minor modifications, this method can be applied for other PP crystalline forms and other types of semicrystalline polymeric and nonpolymeric fibers. The applicability of the method is demonstrated on a series of creped PP spunbonds.
  • the crystalline orientation with respect to the fiber axis is derived from the crystalline orientation distribution function (c-ODF).
  • c-ODF crystalline orientation distribution function
  • ⁇ or ⁇ c z is the angle between the crystallographic c-axis and the fiber axis.
  • the Herman's orientation factor has a value of 1 for perfectly aligned crystals, 0 for random orientation and -0.5 for crystals oriented perpendicularly to the axis of reference. In practice the crystalline orientation in z-aligned PP fibers is computed:
  • ⁇ cos 2 ⁇ C ⁇ Z > 1 - 1.099 ⁇ cos 2 ⁇ 110 z > - 0.901 ⁇ cos 2 ⁇ 040,z > Equation(6)
  • ⁇ 110 z is the angle between the normal to (110) crystallographic planes and the fiber axis
  • ⁇ o 4 o ,z is the angle between the normal to (040) crystallographic planes and the fiber axis.
  • the coefficients 1.099 and 0.901 reflect the monoclinic symmetry of the crystal.
  • the crystalline orientation needs to be determined from the complete stereographic (i. e. 3-D) analysis.
  • the streographic projections of the c-ODF on specified sample planes are known as "pole figures".
  • pole figures As indicated in the introduction we are interested in the average orientation, rather than the complete ODF. Instead of constructing the pole figures the following approach will be used:
  • the averaged spatial orientation can be computed with the aid of a set of equations similar to equations (4) and (5) and the Euler angles K, ⁇ and ⁇ as shown in Figure 11.
  • Equations (5) and (6) indicate that if one knows two of the orientation factors the third one can be easily computed, thus the crystalline orientation factor with respect to any axis of reference can be determined.
  • the ratio of the two sums, which gives the relative number of chain segments aligned along direction in space (k,l,m) is the fiber orientation distribution function, i. e.:
  • Equation (14) can be interpreted also as the probability of finding a certain portion of chain segments with specific orientation. Since the unit length is much smaller than the overall length of the fibers, the sums in (12) - (14) can be substituted by integrals when necessary. Since each chain segment contains the same number of crystallites, it is apparent that the f-ODF is correlated to the c-ODF.
  • the materials were studied in reflection geometry, with the incident beam perpendicular to the machine direction.
  • the angle between the incident beam and the plane of the sample ( ⁇ 0 ) was chosen at 5°. Keeping in mind that for PP all the crystalline reflections are at 2 ⁇ angles larger than 10°, this choice is adequate.
  • Fiber axis distribution perpendicular to the plane of the fabric (YOZ in Figure 5)
  • the fiber orientation factor for specimen Cover 1 was obtained after correction of the experimental curve for crystal orientation distribution. In view of the low orientation factors (Table B) this correction was not applied for the rest of the specimens.
  • the rapid decrease of the perpendicular f-ODF is a manifestation of the 3-D randomization upon creping.
  • the out-of-plane fibers orientation factor (f f ( ⁇ ) ) of the creped fabrics (Cover 2 - Cover 7) is generally lower than the uncreped fabric (Cover 0). This denotes that creped spunbond has more fiber elements or components of fiber elements that are oriented in the Y-direction compared to spunbond. For the covers studied, creping spunbond causes some fiber elements to be oriented out of the plane of the fabric.
  • SB fabric can be derived from the two dimensional X-ray intensity distribution in at least two mutually perpendicular planes.
  • the method herein is consistent and theoretically sound. It is particularly well suited for X-ray studies utilizing 2-D X-ray detector.
  • Skin hydration values are determined by measuring TransEpidermal Water Loss (TEWL) and can be determined by employing the following test procedure. The test is conducted on adults on the forearm. Any medications should be reviewed to ensure they have no effect on test results and the subject's forearms should be free of any skin conditions such as rashes or abrasions. Subjects should relax in the test environment, which should be at about 72°F (22 °C) with a humidity of about 40 percent, for about 15 minutes prior to testing and movement should be kept to a minimum during testing. Subjects should wear short sleeve shirts, not bathe or shower for about 2 hours before testing, and should not apply any perfumes, lotions, powders, etc, to the forearm.
  • TEWL TransEpidermal Water Loss
  • the measurements are taken with an evaporimeter, such as an Evaporimeter EP1 instrument distributed by Servomed AB, Sweden.
  • a baseline reading should be taken on the subject's forearm and should be less than 10 g/m 2 /hr. Each test measurement is taken over a period of two minutes with TEWL values taken once per second (a total of 120 TEWL values). The digital output from the Evaporimeter EP1 instrument gives the rate of evaporative water loss (TEWL) in g/m 2 /hr.
  • TEWL evaporative water loss
  • the end of a dispensing tube is placed on the mid-forearm.
  • An armband is placed on the subject's forearm directly over the end of the tube. The eye of the tube should be facing the target loading zone.
  • the product was a HUGGIES ULTRATRIM Step 3 diaper having 8.9 gms of superabsorbent placed in a zone about 2.5 inches (63.6 mm) wide and the standard liner was replaced with the web to be tested.
  • TransEpidermal Water Loss values are reported as the difference between the one hour and baseline values in g/m 2 /hr.
  • the artificial menses fluid used in the testing was made from blood and egg white by separating the blood into plasma and red cells and separating the white into thick and thin portions, where "thick” means it has a viscosity after homogenization above about 20 centipoise at 150 sec "1 , combining the thick egg white with the plasma and thoroughly mixing, and finally adding the red cells and again thoroughly mixing.
  • Blood in this example defibrinated swine blood, was separated by centhfugation at 3000 rpm for 30 minutes, though other methods or speeds and times may be used if effective.
  • the plasma was separated and stored separately, the buffy coat removed and discarded and the packed red blood cells stored separately as well.
  • the blood must be treated in some manner so that it may be processed without coagulating.
  • Various methods are known to those skilled in the art, such as defib nating the blood to remove the clotting fibrous materials, the addition or anti-coagulant chemicals and others.
  • the blood must be non-coagulating in order to be useful and any method which accomplishes this without damaging the plasma and red cells is acceptable.
  • Jumbo chicken eggs were separated, the yolk and chalazae discarded and the egg white retained.
  • the egg white was separated into thick and thin portions by straining the white through a 1000 micron nylon mesh for about 3 minutes, and the thinner portion discarded.
  • the thick portion of egg white which was retained on the mesh was collected and drawn into a 60 cc syringe which was then placed on a programmable syringe pump and homogenized by expelling and refilling the contents five times.
  • the amount of homogenization was controlled by the syringe pump rate of about 100 ml/min, and the tubing inside diameter of about 0.12 inches. After homogenizing the thick egg white had a viscosity of about 20 centipoise at 150 sec "1 and was then placed in the centrifuge and spun to remove debris and air bubbles at about 3000 rpm for about 10 minutes
  • the thick, homogenized egg white which contains ovamucin, was added to a 300 cc FENWAL® Transfer pack container using a syringe. Then 60 cc of the swine plasma was added to the FENWAL® Transfer pack container.
  • FENWAL® Transfer pack container was clamped, all air bubbles removed, and placed in a Stomacher lab blender where it was blended at normal (or medium) speed for about 2 minutes.
  • the FENWAL® transfer pack container was then removed from the blender, 60 cc of swine red blood cells were added, and the contents mixed by hand kneading for about 2 minutes or until the contents appeared homogenous.
  • a hematocrit of the final mixture showed a red blood cell content of about 30 weight percent and generally should be at least within a range of 28-32 weight percent for artificial menses made according to this example.
  • the amount of egg white was about 40 weight percent.
  • the ingredients and equipment used in the preparation of artificial menses are readily available. Below is a listing of sources for the items used in the example, though of course other sources may be used providing they are approximately equivalent.
  • CMN-1000-B Small Parts, Inc., PO Box 4650, Miami
  • the object of this invention is a unique material whose structure and surface energy may be tailored for use in absorbent articles. More preferably this invention refers to the selective design of a material for use as a cover or liner for absorbent articles wherein the article delivers improved fluid functionality and the aesthetics and comfort associated with fibrous materials.
  • the object of the invention is provided, as illustrated in Figures 3 and 4, by a material which can be defined by two surfaces, an upper region which is commonly referred to as the top surface (1) and a lower region which is referred to as the lower surface (2) (not visible in Figure 4).
  • Substantially fiber-like elements (3) define each of these surfaces and extend from one surface to the other, presumably intersecting one or both of these planes.
  • Deformed, discontinuous, film-like regions (4) connect individual fibers and act as regions of stability. These are denoted as areas of increased stress concentration when subjected to an applied load. These regions of stability are noted by intersection, continuity, or merging of one or more of the fiber-like elements.
  • regions may be created through one or both of the following typical methods: physical or chemical bonding, which may be produced through traditional means such as thermal bonding or adhesive bonding. Deformation such as described in this invention could be the result of physical or chemical forces. An example of the former could include but is not limited to mechanical stretching or draw.
  • the material of this invention is distinctly unique based on three key characteristics: 1 ) fiber-like element orientation, 2) the relationship of fiber-like elements relative to one another in 3-dimensional space, and 3) the caliper of the material. These elements are most suitably described using the following parameters over the ranges described herein as 1 ) f f ( ⁇ ) ⁇ 0.87 , 2) SA ⁇ V ⁇ 186 cm 2 /cm 3 , and 3) caliper ⁇ 0.150 inches.
  • a representative material defined by this invention is creped spunbond and a detailed explanation of this material is provided in example 1.
  • the dimensionality of a material can be characterized by three coordinate axes X, Y, and Z which are mutually orthogonal and normal with respect to one another.
  • a one dimensional feature may be described as a line, a 2 dimensional feature as a plane, and a three dimensional feature as an object.
  • the materials described herein are 3 dimensional and may be better represented by the illustration in Figure 5.
  • three coordinate axis are discussed X, Y, and Z which are mutually orthogonal and normal with respect to one another.
  • the Z axis is arbitrarily chosen to represent the machine direction of the material whereas the X direction represents the cross-direction of the material.
  • the X and Z coordinate axes therefore, define the plane of the material.
  • the Y coordinate axis defines the bulk or thickness of the material.
  • the X and Y axes and the Z and Y axes define the out of the plane coordinate system.
  • the fiber-like elements are arranged in three dimensional space and define a structure consisting of an upper and lower surface and preferably interconnected pathways therebetween. The configuration of these elements as viewed out of the plane is important for the movement of fluid.
  • the elements may be flat as shown in Figure 6 or undulating as shown in Figure 7. It is believed that the organization of these elements could be optimized for the intended application.
  • materials with undulating surfaces may provide more ideal fluid handling for fluids with viscous or viscoelastic character, fluids at low volumes and insulted such that they have low momentum or with low external pressure applied to the material in an absorbent article.
  • materials with flat surfaces may provide better fluid handling for elastic fluids, fluids at larger volumes and insulted such that they have reasonable momentum or high external pressure applied to the material in an absorbent article.
  • the orientation may be denoted as "f f " with a subscript defining the two axes, e.g. f fev , or as an "f f " with a subscript defining the angle between the two axes, e.g. f f ( ⁇ ), where the angle between the Z and Y axes is the angle ⁇ .
  • SA Surface Area
  • VV/mass (1/ p web ) - (1/ p f ) Equation(22)
  • SA/W 2 / ([ dpf/( ⁇ * 9x10 5 * Pf ) ] 1/2 * [(p f / p web ) - 1]) Equation(23)
  • SA/W is a function of fiber denier, web density and fiber density.
  • the material caliper is also essential to the definition of this material since it defines the distance that is necessary for a fluid to travel before it encounters other components of the absorbent article. For the purpose of this invention, this distance has been to be essentially equivalent to or less than 0.150 inches.
  • the fiberlike elements of this invention may be produced from but are not limited to polymers, polyolefins, plastomers, elastomers, foams, natural fibers, synthetic fibers, or blends/combinations of these components.
  • the elements typically have a denier between 1 to 10 dpf and a basis weight between about 0.1 and 4.0 osy (3.4 and 136 gsm).
  • f f ( ⁇ ), SA/W, and caliper has suitably defined the material of this invention by the distribution, orientation and organization of fiber-like elements in three dimensions. Two extensive properties which are directly related to the intensive properties described above are the permeability and pore size. These parameters further define the material of this invention.
  • the out-of-plane permeability and pore size are defined by the test method described in this application.
  • a preferable material would have an out-of- plane permeability greater than 1000 darcies and more preferably greater than 2000 darcies.
  • a preferable material would have less than 80% pores(based on cc/g) with radius less than 100 microns or more preferably less than 40% pores(based on cc/g) with radius less than 100 microns. In the most preferred case, the preferable material would have less than 20% pores(based on cc/g) with radius ) with radius less than 100 microns.
  • the surface energy is characteristically defined by the contact angle a fluid makes with the surface of the material.
  • a contact angle greater than 90 degrees represents a hydrophobic material whereas one with contact angle less than 90 degrees represents a hydrophilic material.
  • a preferred material should consist of at least some fiber-like elements or regions of fiberlike elements, i.e., having a wettable character or a contact angle less than 90 degrees.
  • the structure can be rendered wettable through conventional means such as the application of a surfactant. Commercial surfactants such as Ahcovel Base N-62 (ICI Surfactants, Wilmington, Delaware), Atmer 8174 (ICI), Masil SF-19 (PPG Industries, Gurnee, Illinois), and Mapeg ML 400 (PPG). have been found to be acceptable. Whichever surfactant is applied, the contact angle of menstrual simulant on the surface should be lower than that of an untreated structure.
  • the surface should preferably have a contact angle measured with menstrual simulant less than 90 degrees.
  • the material can be rendered wettable through application of surfactants either topically or internally, surface modification or treatment, surface chemistry, polymer chemistry, fiber-like-element chemistry, surface grafting, or methods commonly known in the art to change modification of surface chemistry to render a material wettable.
  • materials which are wettable are distinguished from those that are nonwettable in that the contact angle is less than that of an unmodified surface, and that they have a contact angle of less than ninety degrees.
  • the surface characteristics are modified to provide properties beyond that anticipated with traditional treatments which render the structure wettable.
  • One such treatment reduces promotes rapid intake and reduces protein deposition.
  • the surface of such materials may be modified to alter the fluid, thereby altering its properties.
  • One such treatment which has demonstrated these properties is polyolefin oxide. Regions of the surface may be treated with, for example, polyethylene oxide and/or polypropylene oxide or block copolymers of these oxides. Typical commercial chemistries are block copolymers of ethylene oxide and propylene oxide sold under the tradename Pluronics® (BASF, Germany) and SYNPERONIC® (ICI Surfactants, Wilmington, Delaware).
  • the surface is modified with treatments which transfer to the skin and promote wellness.
  • treatments can include substances which may be used in conjunction with surfactants.
  • Such treatments may include those known in the art to promote improvements in skin condition such as aloe, vaseline, dimethicone, vitamin k, etc.
  • the surface energy of the upper material surface is lower than the surface energy of the lower surface creating a surface energy gradient between surfaces.
  • Pore size gradients may also be generated such that the average pore size of a first volume of material incorporating the upper surface is different than the average pore size of a second volume of material incorporating the lower surface wherein the first and second volumes are exclusive of one another.
  • the nature and type of the fluid will dictate whether it is preferential to have the average pore size of the first volume to be larger or smaller than the average pore size of the second volume. For the case of viscoelastic fluids, it may be preferable to have the average pore size of the second volume to be larger than that of the first volume.
  • Materials may also be created with pore size and wettability gradients.
  • the materials mentioned above may be specifically tailored for use in applications for personal use or care.
  • the material may be used as a topsheet in products for infant care, feminine care, adult care, health care. These can include applications for managing newtonian fluids such as urine, viscoelastic fluids such as menstrual fluid and feces (BM), or viscous fluids such as blood.
  • BM menstrual fluid and feces
  • the material of this invention is especially useful for feminine care absorbent articles to manage menstrual fluid or discharge.
  • Typical feminine care products such as pads, pantiliners, and tampons. are made from multiple materials and generally consist of a cover, also known as topsheet or body side liner. Beneath the cover, one or more absorbent layers are usually present for functions such as intake, distribution, retention, or body shaping. Beneath the absorbent is usually a fluid impermeable layer called a baffle, which may be made of film.
  • Proper fluid management for a topsheet in feminine care absorbent articles requires good intake (absorbency), low staining (clean), low rewet (dry) and low fluid retention (dry).
  • the material must also deliver these attributes under a wide range of pressure and flow conditions.
  • a product may, for instance, experience variable flow consisting of both low continuous flow or sudden heavy flow.
  • the product may also experience conditions of no pressure, low or light pressure, or high pressure.
  • the cover must also be capable of managing menstrual discharge which can exhibit a broad range of viscosity and elasticity.
  • the material of this invention is preferred for use as a cover, which, in conjunction with an absorbent core, permits superior management of viscous or viscoelastic fluids such as menstrual discharge for personal care articles, while delivering acceptable aesthetic properties such as softness.
  • the material of this invention is particularly suitable for the fluid management expected of high performance liners or topsheets in feminine care absorbent articles or to replace costly liner/surge materials.
  • the low SA/W, out-of plane fiber orientation, and material caliper in conjunction with appropriate surface wettability help to overcome many of the limitations associated with nonwovens. For instance, out-of-plane fiber orientation can improve wicking to absorbent layers and also may increase permeability providing better intake.
  • Materials with low SA/W are typical of highly permeable structures with large average pore size. Such materials generally promote excellent absorbency, low staining, and low fluid retention. By providing the other material characteristics in conjunction with some critical thickness, rewet may be reduced by proving a barrier to flowback. Additionally, the use of the material of this invention in an absorbent article for feminine care offers the aesthetics and comfort properties which are inherent to nonwovens and thus far unattainable with apertured film covers.
  • the material is used in infant care products as a liner or topsheet for diapers.
  • a typical diaper is made from multiple materials and generally consists of a topsheet or liner next to the wearer.
  • Beneath the cover one or more absorbent layers are usually present for functions such as intake, distribution, retention. Beneath the absorbent is usually a fluid impermeable layer called a baffle or outercover, which may be made of film.
  • High conductance (permeability divided by thickness) is required for complete transmission of liquid through the liner/cover material. It has been found that for typical liquid insult rates of 20 cc/second, a liner conductance of greater than 100 darcies/mil is required for all of the liquid to pass through. This means that for a liner with a thickness of 10 mils, its permeability should be greater than 1000 darcies. It has also been established that lower skin hydration levels as measured by TEWL are achieved with liners that have a conductance greater than 100 darcies/mil.
  • the outercover is sometimes referred to as the backsheet cover and is the farthest layer from the wearer.
  • the outer cover is typically formed of a thin thermoplastic film, such as polyethylene film, which is substantially impermeable to liquid.
  • the outer cover functions to prevent body exudates contained in an absorbent structure from wetting or soiling the wearer's clothing, bedding, or other materials contacting the diaper.
  • the outer cover may be, for example, a polyethylene film having an initial thickness of from about 0.5 mil (0.012 millimeter) to about 5.0 mil (0.12 millimeter).
  • the polymer film outer cover may be embossed and/or matte finished to provide a more aesthetically pleasing appearance.
  • outer cover examples include woven or nonwoven fibrous webs that have been constructed or treated to impart the desired level of liquid impermeability, or laminates formed of a woven or nonwoven fabric and thermoplastic film.
  • the outer cover may optionally be composed of a vapor or gas permeable, microporous "breathable" material, that is permeable to vapors or gas yet substantially impermeable to liquid. Breathability can be imparted in polymer films by, for example, using fillers in the film polymer formulation, extruding the filler/polymer formulation into a film and then stretching the film sufficiently to create voids around the filler particles, thereby making the film breathable.
  • Backings may also serve the function of a mating member for mechanical fasteners, in the case, for example, where a nonwoven fabric is the outer surface.
  • the material of this invention has been found to function well in a dual layered embodiment where the other layer is hydrophobic. Such a dual layer structure may be used as a liner in a diaper with the hydrophobic layer toward or away from the wearer, though the orientation toward the wearer is preferred.
  • the material of this invention may also be utilized in health care products such as surgical drapes and gowns, fenistration materials, and wound care dressings and application.
  • the material of this invention can be used to provide an absorbent but dry top surface which provides comfort and softness. It can also provide an absorbent but dry top surface which reduces sticking to the wound when removed. Careful selection of the composition of fiber-like elements may also help to reduce sticking.
  • Treatment "A” refers to 0 3 weight percent of AHCOVEL ® Base N-62 (ICI Surfactants, Wilmington, Delaware) added to the web
  • Treatment "B” refers to 2 0 weight percent SYNPERONIC ® (ICI Surfactants, Wilmington, Delaware) added to the web
  • NM refers to not measured
  • One representative material of this invention is spunbond fabric which has been creped in a manner similar to that of tissue.
  • this material will be known as creped spunbond.
  • Creped spunbond was prepared using the following process method although alternative methods are conceivable. As shown in Figure 1 , a nonwoven web such as a spunbond web, which may be pretreated with surfactant to render it wettable, is unwound. For the purpose of these examples, webs were untreated prior to creping.
  • An adhesive is applied to the web by printing, spraying, or other application process preferentially depositing on the side which will contact the roll. (2.) In this way, latexes or melt adhesives may be used.
  • Crepe level is defined as the percent difference in the inlet and outlet speed.
  • creped spunbond samples were prepared for the purpose of this example and to demonstrate material characteristics and functional differences between creped spunbonds and spunbonds as well as to illustrate differences within the class of creped spunbond materials. These materials are summarized in Table 1. Note that the creped spunbond materials (covers 2-12) differ in target denier, creped basis weight, and treatment. All creped spunbonds for this example were prepared at a crepe level of 30% although other crepe levels are readily attainable. Additionally all the spunbond fabrics were produced using 92 weight % of E5D47 polypropylene (Union Carbide) and 8 weight % of Ampacet 41438 TiO 2 concentrate. The fiber density for all webs in the Examples was 0.91 g/cc.
  • the creping adhesive was Hycar 26684 latex (B.F. Gooodrich) at a 36% solids emulsion applied at 0.5-1.0% wet add-on by rotogravure printing.
  • Inlet line speed was 300 feet minute on a 40-inch diameter creping roll at 160°F (71° C) with a doctor blade holder angle of 28°.
  • the fabrics were post-treated with surfactant, as specified in the examples, with surfactant by either spray or dip/vacuum extraction methods.
  • cover 2 is a 3.5 dpf, 0.4 osy spunbond web that has been creped to a level of 30% yielding a creped spunbond with actual creped basis weight of 0.64 osy, thickness of 0.026 inches, and density of 0.033 grams/cc.
  • the web was post- treated to yield creped spunbond with 0.3 weight percent Ahcovel® Base N-62 (ICI Surfactants, Wilmington, Delaware).
  • Ahcovel® Base N-62 ICI Surfactants, Wilmington, Delaware.
  • Covers 0 and 1 are spunbond fabrics which are uncreped and were added to this table for reference to demonstrate the effects of creping spunbond on both structural and functional properties.
  • creped spunbond has more fiber elements or components of fiber elements oriented along the X direction compared to spunbond when observing the X-Z plane (in the plane) of the fabric.
  • X-Z plane in the plane
  • Y-Z plane out of the plane
  • creped spunbond has more fiber elements or components of fiber elements oriented along the Y direction compared to spunbond. Therefore fiber-like elements are being oriented out -of-the plane of the fabric when spunbond is creped to produce creped spunbond.
  • the creped spunbonds have much higher caliper than spunbond.
  • cover 0 has a caliper of only 0.006 inches compared to that of 0.026 inches for cover 2.
  • the SA/W is much lower for the creped spunbonds than the spunbonds as illustrated by a value of 185.89 for cover 0 compared to 64.24 for cover 2.
  • FIG. 2 depicts the pore size distribution for covers 1 and 2 using test method B.
  • the graph in Figure 2 depicts the volume of pores (cc/g of material) which have a particular pore radius. As exhibited by the area under the curves, one notes that Cover 2 has a larger void volume than Cover 1. Additionally, Cover 2 has a much larger peak pore size than Cover 1 with few pores less than 100 microns in radius. One also notes that the pore size distribution broadens when spunbond is creped as exhibited by the breadth of the curve.
  • cover 1 has a permeability of only 511 Darcies compared to that of 3953 darcies for cover 2.
  • Cover 2 had a faster intake time, lower rewet, smaller average stain size, and lower average fluid retention than did Cover 1. These considerable improvements were directly related to the material structure, including lower SA/VV, higher out-of-plane fiber orientation and higher caliper compared to spunbond. Creping the spunbond web cover, therefore, improved overall cover performance, moving closer to an ideal cover. Cover 2 also had lower stain intensity than Cover 1 , presumably due to the high permeability which provided rapid intake, large average pore size which yielded low capillarity, and greater material caliper which provided fluid masking.
  • Untreated creped covers were compared to treated creped covers to understand the critical surface wettability required for intake.
  • the surface energetics for these treatments were quantified using Test Method K and the intake properties were quantified using Test Method E.
  • the untreated surface is a polyolefin surface which is known in the art to be relatively hydrophobic.
  • the AHCOVEL® treatment on this surface renders it slightly wettable.
  • the contact angles were measured with menses simulant for 0.5% AHCOVEL® treatment on a model polyethylene surface (XP3134a, Edison Plastics, NewPort News, Virginia) and were compared to an untreated polyethylene surface.
  • the contact angle of the untreated surface was approximately 87 degrees while that of the treated surface was about 75 degrees.
  • Creped covers were produced from a matrix of spunbond webs which varied in basis weight and fiber denier to determine their impact on permeability. The effect of permeability is related to functional performance. Covers with varying fiber deniers and fabric basis weights were tested for permeability according to Test C. As shown in Table 4, the permeability increased with increase in fiber denier and decrease in basis weight.
  • Table 4 Effect of fiber denier and basis weight of spunbond web on creped spunbond permeability and thickness. Impact of structural characteristics on functional properties.
  • the intake time, average rewet, and average fluid retention decrease with increase in permeability or decrease in SA/W for the creped spunbond covers.
  • Cover 2 and Cover 12 were compared according to Tests E and F to demonstrate the impact of treatment chemistry on fluid management properties. As seen in table 5, Cover 12 has much lower intake time than Cover 2 with only modest increases in rewet.
  • Cover 13 was developed to show the impact of both pore size gradients and surface treatment gradients on fluid management properties.
  • Cover 13 was a creped spunbond web with a final basis weight of 0.4 osy. It was made from two layers which formed one material. The top layer was a 3.5 dpf section treated with 0.35 percent by volume and the bottom surface consisted of a 5.0 dpf section treated with 1.0 percent by volume SF-19. The 1.0 percent by volume SF-19 is known to be more wettable than the 0.3 percent by volume based on previous work. Covers 2 and 13 were evaluated using test methods E and F and the results are depicted in Table 6.
  • Example 7 Covers made according to this invention were tested for skin hydration according to the TEWL test as indicated above, specifically for applicability in diapers or where urine is the fluid of concern.
  • Cover 14 was a 0.45 osy (15.26 gsm) two layer spunbond web made from Exxon 3315 polypropylene. The top layer was 0.15 osy (5 gsm), 2.5 denier fibers and the bottom layer was 0.3 osy (10.2 gsm), 4 denier fibers. The bottom layer also had about 1.25 weight percent of PPG's Masil SF-19 surfactant added.
  • Cover 14 was creped to 20% according to the process described above. The creping adhesive was HYCAR 26684 applied at about 0.3 weight percent add-on to the web.
  • Cover 14 had a permeability of 4335 darcies, a caliper of 0.023 inches and a conductance of 188 darcies/mil.
  • Cover 15 was a 0.4 osy (13.6 gsm), 3.2 denier, single layer spunbond made from Union Carbide E5D47 polypropylene that was topically treated with about a 0.3 weight percent of AHCOVEL surfactant and then creped to about 30%. Its permeability, caliper and conductance were 4103 darcies, 0.028 inches and 146 darcies/mil respectively.
  • Cover 16 was a 0.5 osy (17 gsm) polypropylene spunbond web with 2.2 denier fibers having 0.3 weight percent AHCOVEL surfactant. It had a permeability of about 645 darcies, a caliper of 0.009 inches and a conductance of about 70. Cover 16 was not creped and was used as a control for testing Covers 14 and 15. The TEWL test results are given in Table 7 and show positive results versus the uncreped control cover.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nonwoven Fabrics (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

Cette invention concerne un matériau tridimensionnel souple, de texture et d'aspect fibreux, conçu pour absorber des liquides. Ce matériau comporte une surface supérieure et une surface inférieure entre lesquelles sont logés des éléments d'aspect fibreux formant généralement des surfaces planes à ondulées et caractérisés par une multiplicité de conduits pour liquide reliés entre eux. Des zones déformées, formant comme un film discontinu, ou encapsulées, relient les éléments de type fibre et stabilisent le matériau. L'originalité de cette invention réside dans les trois caractéristiques principales suivantes : 1) facteur d'orientation des fibres ff(γ)∫0.87, 2) rapport superficie/volume de vide < 186 cm2/cm3, et 3) calandrage < 0.150 pouce. Ce matériau se prête à diverses utilisations, par exemple dans des articles pour soins personnels tels que couches, caleçons absorbants, costumes de bain, articles d'hygiène féminins, articles d'incontinence pour adultes, etc. Dans le cadre de cette invention, les propriétés du matériau peuvent être adaptées en vue de performances optimales en fonction de la spécificité de l'article d'hygiène considéré.
PCT/US1999/029132 1998-12-09 1999-12-08 Materiaux crepes pour article absorbant WO2000033780A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU19367/00A AU1936700A (en) 1998-12-09 1999-12-08 Creped materials for absorbent article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/209,044 US6838154B1 (en) 1997-10-31 1998-12-09 Creped materials
US09/209,044 1998-12-09

Publications (1)

Publication Number Publication Date
WO2000033780A1 true WO2000033780A1 (fr) 2000-06-15

Family

ID=22777093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/029132 WO2000033780A1 (fr) 1998-12-09 1999-12-08 Materiaux crepes pour article absorbant

Country Status (3)

Country Link
AR (1) AR023921A1 (fr)
AU (1) AU1936700A (fr)
WO (1) WO2000033780A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592697B2 (en) 2000-12-08 2003-07-15 Kimberly-Clark Worldwide, Inc. Method of producing post-crepe stabilized material
US6797360B2 (en) 2001-08-22 2004-09-28 Kimberly-Clark Worldwide, Inc. Nonwoven composite with high pre-and post-wetting permeability
US6835264B2 (en) 2001-12-20 2004-12-28 Kimberly-Clark Worldwide, Inc. Method for producing creped nonwoven webs
US6989125B2 (en) 2002-11-21 2006-01-24 Kimberly-Clark Worldwide, Inc. Process of making a nonwoven web
CN114248463A (zh) * 2020-09-21 2022-03-29 江苏金风科技有限公司 纤维织物及其治具和制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547498A2 (fr) * 1991-12-19 1993-06-23 Kimberly-Clark Corporation Structure absorbante pour couvrir et distribuer un liquide
FR2690697A1 (fr) * 1992-05-01 1993-11-05 Asahi Chemical Ind Tissu composite non tissé.
EP0640708A1 (fr) * 1993-08-30 1995-03-01 McNEIL-PPC, INC. Non-tissé absorbant amélioré
WO1996007384A2 (fr) * 1994-09-09 1996-03-14 Kimberly-Clark Worldwide, Inc. Milieu de transport de liquide dans la direction z
US5591149A (en) * 1992-10-07 1997-01-07 The Procter & Gamble Company Absorbent article having meltblown components
US5658268A (en) * 1995-10-31 1997-08-19 Kimberly-Clark Worldwide, Inc. Enhanced wet signal response in absorbent articles
EP0858790A2 (fr) * 1997-02-14 1998-08-19 Spinnerei C.B. Göldner GmbH &amp; Co.KG Corps absorbant à usage médical
WO1998036721A1 (fr) * 1997-02-21 1998-08-27 Sca Hygiene Products Ab Couche de revetement permeable au liquide destinee a un article absorbant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547498A2 (fr) * 1991-12-19 1993-06-23 Kimberly-Clark Corporation Structure absorbante pour couvrir et distribuer un liquide
FR2690697A1 (fr) * 1992-05-01 1993-11-05 Asahi Chemical Ind Tissu composite non tissé.
US5591149A (en) * 1992-10-07 1997-01-07 The Procter & Gamble Company Absorbent article having meltblown components
EP0640708A1 (fr) * 1993-08-30 1995-03-01 McNEIL-PPC, INC. Non-tissé absorbant amélioré
WO1996007384A2 (fr) * 1994-09-09 1996-03-14 Kimberly-Clark Worldwide, Inc. Milieu de transport de liquide dans la direction z
US5658268A (en) * 1995-10-31 1997-08-19 Kimberly-Clark Worldwide, Inc. Enhanced wet signal response in absorbent articles
EP0858790A2 (fr) * 1997-02-14 1998-08-19 Spinnerei C.B. Göldner GmbH &amp; Co.KG Corps absorbant à usage médical
WO1998036721A1 (fr) * 1997-02-21 1998-08-27 Sca Hygiene Products Ab Couche de revetement permeable au liquide destinee a un article absorbant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592697B2 (en) 2000-12-08 2003-07-15 Kimberly-Clark Worldwide, Inc. Method of producing post-crepe stabilized material
US6797360B2 (en) 2001-08-22 2004-09-28 Kimberly-Clark Worldwide, Inc. Nonwoven composite with high pre-and post-wetting permeability
US6835264B2 (en) 2001-12-20 2004-12-28 Kimberly-Clark Worldwide, Inc. Method for producing creped nonwoven webs
US6989125B2 (en) 2002-11-21 2006-01-24 Kimberly-Clark Worldwide, Inc. Process of making a nonwoven web
CN114248463A (zh) * 2020-09-21 2022-03-29 江苏金风科技有限公司 纤维织物及其治具和制造方法

Also Published As

Publication number Publication date
AR023921A1 (es) 2002-09-04
AU1936700A (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US6838154B1 (en) Creped materials
CN112040920B (zh) 一次性吸收制品
AU761410B2 (en) Absorbent article having a transfer delay layer for improved fluid handling
AU775478B2 (en) Personal care products having reduced leakage
RU2670947C2 (ru) Абсорбирующий компонент для одноразовых абсорбирующих изделий, содержащий интегрированный слой приема
ZA200209184B (en) Topsheet and transfer layer for an absorbent article.
KR20020081486A (ko) 위생 제품용 동시천공 시스템
WO1998022066A1 (fr) Matiere anti-fuite tres efficace pour articles absorbants
KR20010012555A (ko) 점탄성 유체의 배치가 조절되는 개인 위생용품용 안정화된흡수성 재료 및 시스템
AU740607B2 (en) Stabilized absorbent material and systems for personal care products having controlled placement of visco-elastic fluids
EP3793499B1 (fr) Parties centrales absorbantes pour articles absorbants jetables
WO2000033780A1 (fr) Materiaux crepes pour article absorbant
WO2019219760A1 (fr) Système absorbant de liquide comprenant un élément de stockage intermédiaire et final
RU2776902C2 (ru) Впитывающая сердцевина для одноразовых впитывающих изделий
MXPA01005849A (en) Creped materials for absorbent article
AU716607C (en) Highly efficient surge material for absorbent articles
CZ9903970A3 (cs) Stabilizovaný absorpční materiál a systémy pro produkty osobní potřeby s řízeným umístěním viskoelastických tekutin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/005849

Country of ref document: MX

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase