WO2000032537A2 - Reaction-bonded silicon nitride-based materials and method for producing the same - Google Patents

Reaction-bonded silicon nitride-based materials and method for producing the same Download PDF

Info

Publication number
WO2000032537A2
WO2000032537A2 PCT/EP1999/009341 EP9909341W WO0032537A2 WO 2000032537 A2 WO2000032537 A2 WO 2000032537A2 EP 9909341 W EP9909341 W EP 9909341W WO 0032537 A2 WO0032537 A2 WO 0032537A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
oxidation
materials
silicon nitride
compounds
Prior art date
Application number
PCT/EP1999/009341
Other languages
German (de)
French (fr)
Other versions
WO2000032537A3 (en
Inventor
Lothar SCHÖNFELDER
Gerhard WÖTTING
Original Assignee
Cfi Ceramics For Industry Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cfi Ceramics For Industry Gmbh & Co. Kg filed Critical Cfi Ceramics For Industry Gmbh & Co. Kg
Priority to AU31486/00A priority Critical patent/AU3148600A/en
Priority to EP99969908A priority patent/EP1144337A2/en
Publication of WO2000032537A2 publication Critical patent/WO2000032537A2/en
Publication of WO2000032537A3 publication Critical patent/WO2000032537A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering

Definitions

  • the invention relates to reaction-bound silicon-containing materials and a method for their production.
  • reaction-bonded silicon nitride In the group of silicon-containing materials, reaction-bonded silicon nitride (RBSN) is of technical importance. RBSN is made from silicon powder in the reaction bond process by reaction with nitrogen-containing reaction gases. This reaction produces a porous silicon nitride (Si 3 N 4 ) material which, depending on the shaping process used for the silicon powder, still has a porosity of 15 to 30%. Because of this relatively high porosity, the use of this material in the area of high temperatures and especially under simultaneous oxidizing conditions is severely restricted. The oxidation of the reaction-bound silicon nitride leads to severe losses in the mechanical properties of the material. The reaction-bound silicon nitride material is, however, of importance for that due to the inexpensive silicon raw materials that can be used and easy processing, which can advantageously be carried out in the so-called green state or after pre-nitriding
  • the object of the present invention is therefore to develop materials based on silicon nitride with improved properties.
  • the focus is on the mechanical properties, the density or porosity and the behavior under oxidizing conditions at high temperatures. This is intended to significantly improve the application behavior and the area of application for corresponding materials.
  • Microstructure composed of ⁇ -SiC and ⁇ - and ⁇ -Si 3 N 4 in addition to an open porosity of> 7.9%.
  • This structure is described as an interwoven texture with no chemical bond or solid solution with micro vacancies between SiC and Si 3 N 4 , which differs fundamentally from conventional SiC-Si 3 N 4 composite materials.
  • a disadvantage of the composite system described is that only very special organic silicone polymers can be used for its production. The use of simple polysilanes or polysiloxanes is not possible.
  • the object of the present invention is achieved by reaction-bound materials which contain silicon nitride (Si 3 N 4 ), silicon carbide (SiC) and silicon oxynitride (Si 2 N 2 O) as well as any remaining unreacted silicon as the X-ray-detectable crystalline phases, and which contain a unreacted silicon can be produced in which mixtures of silicon, organic silicon compounds and silicon nitride or moldings from these mixtures are thermally treated in a nitrogen-containing gas atmosphere.
  • the organosilicon compounds are pyrolyzed in the presence of silicon and silicon nitride and nitrided in the subsequent step.
  • the starting substances are preferably in powder form. Powder qualities with average grain sizes ⁇ 10 ⁇ m are advantageously used as silicon powder. Powder qualities with average grain sizes ⁇ 3 ⁇ m are advantageously suitable as silicon nitride powder.
  • Polysilanes or polycarbosilanes or copolymers of these compounds are used.
  • these compounds can include carbon, nitrogen, hydrogen and / or oxygen and other heteroatoms such as Contain boron, titanium, zirconium, phosphorus or aluminum.
  • the organic silicon compounds used have the function of a binder.
  • molded articles can be produced from the raw material mixture using the known methods, for example cold pressing, hot pressing, isostatic pressing, injection molding or extrusion.
  • they are broken down into ceramic phases and reactants by pyrolysis in an inert atmosphere and are thus included in the structure of the material.
  • the organic silicon compounds are pyrolyzed, and in the subsequent nitridation step a complex course of the reaction results, on the one hand the nitridation of the silicon powder and on the other hand the reaction of the pyrolysis products of the organosilicon
  • Compounds comprises a multi-phase material, which contains silicon nitride (Si 3 N 4 ), silicon carbide (SiC) and silicon oxynitride (Si 2 N 2 O), as well as any remaining unreacted Si as the crystalline phases which can be detected by X-ray.
  • the material according to the invention thus clearly differs from the material disclosed in DE 30 45 010 C2 with regard to the phase inventory which can be detected by X-ray analysis.
  • the process according to the invention is advantageously carried out in such a way that the free silicon is converted almost completely, i.e. practically no free silicon can be detected in the material according to the invention by X-ray diffraction, which is the case at contents of ⁇ 1% by weight.
  • silicon nitride powder is added to the starting mixture of silicon powder and organosilicon compounds. This addition above all improves the oxidation resistance of the material at high temperatures. As shown in the examples below goes, these materials have significantly improved mechanical properties after an oxidation treatment compared to those which are made from silicon nitride-free mixtures.
  • Oxidation treatment means this temperature change places a greater strain on the material.
  • These cyclical loads also simulate real operating conditions, such as B. when using ceramic components for combustion chamber linings and crucibles.
  • the nitridation products according to the invention Compared to the pure RBSN material, produced by nitridation of silicon powder, the nitridation products according to the invention, starting from mixtures of silicon powder, silicon nitride powder and organosilicon compounds, have significantly improved properties under oxidizing conditions. This is especially true for the room temperature flexural strength after an oxidizing treatment. In addition, these materials have significantly improved mechanical properties at high temperatures both before and after an oxidation treatment. Corresponding measurements are listed in Table 2.
  • Table 2 shows that the reaction-bound material based on Si 3 N 4 according to the invention after an oxidation treatment in air at 1400 ° C., 100 h, statically or cyclically at intervals of 10 h, for example a flexural strength at room temperature of more than 40% of the flexural strength before oxidation. It preferably even has> 80% of the bending strength before the oxidation.
  • the open porosity of the material is of crucial importance for the oxidation of the RBSN.
  • the open porosity is associated with a high inner surface, the reaction of which with oxygen leads to damage to the material structure as a result of SiO 2 formation.
  • a key figure for the degree of oxidation is the weight increase normalized to the sample surface, given in mg / cm 2 .
  • RBSN has a relatively high oxidation-related weight gain and is associated with a strong oxidation-related decrease in strength.
  • the materials according to the invention are characterized by significantly lower open porosities, which are typically below 13% by volume. Compared to the prior art for reaction-bonded silicon-containing materials, the change in weight due to oxidation for the materials according to the invention is significantly reduced and thus the drop in strength is also significantly less. Because of these outstanding properties, the materials according to the invention are suitable for high-temperature applications, in particular under oxidizing conditions such as in turbines and combustion chambers.
  • the materials according to the invention are produced from mixtures of silicon, silicon nitride and an organic silicon compound, the proportion of individual mixture components can vary within a comparatively wide range.
  • the starting mixture can contain 15-90% by weight of silicon, 5 to 60% by weight of silicon nitride and 5 to 60% by weight of the organic silicon compound, preferably polysiloxane and / or polycarbosilane and / or copolymers of these compounds , contain.
  • Si contents below 15% by weight and Si 3 N 4 contents above 60% by weight lead to the fact that the porosity reduction resulting from the nitriding of Si to Si 3 N 4 is no longer sufficient to produce a material with an open To obtain porosity ⁇ 13 vol%.
  • Si contents> 90% by weight allow only low concentrations of Si 3 N 4 powder and the organic silicon compound, which means that the desired phase inventory, which is responsible for the positive properties of the material, no longer occurs. This also justifies the specified lower limits of> 5% by weight for the Si 3 N 4 powder and the organic silicon compound.
  • the upper limit for the organic silicon compound is set at 60% by weight. Even higher levels would lead to high shrinkage values and an undesirably high open porosity during pyrolysis.
  • the organic silicon compounds used can additionally contain heteroatoms, such as B, Ti, P, Zr and / or Al, which after pyrolysis of the organic silicon compound react with matrix constituents or the gas atmosphere to give the corresponding oxides, carbides, nitrides and / or carbonitrides.
  • heteroatoms such as B, Ti, P, Zr and / or Al
  • the increases in volume usually associated with these reactions promote the achievement of the low open porosity of the material according to the invention of ⁇ 13% by volume.
  • these new formations enable the setting of very specific properties, e.g. regarding the electrical and / or tribological
  • metals or metallic compounds with a catalytic effect on the nitridation reaction can advantageously be added to the raw material mixtures.
  • metals or metallic compounds with a catalytic effect on the nitridation reaction can advantageously be added to the raw material mixtures.
  • Molybdenum, manganese or iron in powder form and concentrations ⁇ 5% by weight have proven to be favorable for the catalysis of the nitridation reaction.
  • Components which bring about a reinforcement of the materials in the form of fibers, as short or long fibers, whiskers, platelets or particles can furthermore advantageously be introduced into the raw material mixtures according to the invention.
  • post-infiltrations with the organic silicon compound and additional ones can be carried out
  • Examples 1b, 1c and 3 show a typical process for producing the materials according to the invention.
  • the material is advantageously produced by intensively mixing Si powder with an average particle size ⁇ 10 ⁇ m and Si 3 N 4 powder with an average particle size ⁇ 3 ⁇ m, the organic silicon compound and optionally other of the additives described by wet and / or dry grinding become.
  • Si powder with average particle sizes> 10 ⁇ m lead to long nitriding times and the risk that unreacted silicon remains in the material in a concentration greater than 1% by weight.
  • Si 3 N 4 powders with average particle sizes> 3 ⁇ m can already lead to material inhomogeneities and reduce the mechanical properties and oxidation resistance.
  • the shaping is carried out by the customary methods or also by hot pressing, the thermal crosslinking of the polymer, the pyrolysis of the organic silicon compound under inert gas and the nitriding.
  • This takes place for the raw material mixtures according to the invention or shaped bodies produced therefrom in a nitrogen-containing gas atmosphere.
  • the reaction gas can additionally contain hydrogen and / or ammonia gas.
  • the nitridation reaction can take place either under normal pressure or under elevated gas pressure, preferably from 1 to 100 bar.
  • the maximum temperatures for this nitridation reaction are advantageously from 1300 to 1600 ° C.
  • the temperature-time curve for the nitriding reaction has to be adapted to the respective specific conditions, such as furnace size and component volume.
  • the basic composition is preferably already prepared in an organic medium in which the organic
  • Silicon compound is soluble.
  • isopropanol, butanol, ethoxylethanol or xylene can be suitable as solvents.
  • the ratio of the solids to the organic medium is to be adjusted so that a viscosity suitable for the further processing of the suspension is present.
  • Further processing can be carried out according to the known fiber coating and winding process, polygons for flat laminate panels, pipes or more complex parts being wound according to the winding cores used. Laminates are then stacked and meshed, and finished parts are meshed directly with regard to the target geometry.
  • the crosslinking follows, possibly after an intermediate processing, the pyrolysis and nitridation, as already described.
  • the materials and components according to the invention are suitable for corresponding operating conditions, such as turbines and combustion chambers, and for processing metallic melts.
  • operating conditions such as turbines and combustion chambers
  • metallic melts such as metallic melts.
  • the polymer was crosslinked at 250 ° C., the pyrolysis at 900 ° C. in an inert gas atmosphere.
  • the molded articles are nitrided in a nitrogen atmosphere.
  • the samples were heated up to 1450 ° C, with a total process time of 74 hours.
  • Silicon powder (900 g), methylpolysiloxane (500 g), qualities as in Example la, and 600 g of silicon nitride powder with an average grain size of 0.5 ⁇ m, BET specific surface area 13.8 m 2 / g were as in Example la mixed and processed.
  • Example 1b The mixture was prepared as in Example 1b, the nitriding of the test specimens was carried out in a nitrogen atmosphere up to 1450 ° C., with an entire sample duration of 130 hours.
  • material samples according to Example 1c were further investigated with regard to their cyclic and isothermal oxidation behavior between 1400 ° C. and 1500 ° C. up to 1000 hours of aging.
  • the properties of the nitrided or oxidized samples determined in this way are summarized in Table 2.
  • the materials according to Examples 1b and 1c have Si 3 N 4 , SiC and Si 2 N 2 O as crystalline phases.
  • the Si content is below the detection limit of ⁇ 1%, the shrinkage during production is well below 5% and the open porosity ⁇ 13% by volume.
  • silicon powder was used without further additives and, as in Example 1a, nitrided to form reaction-linked silicon nitride (RBS R).
  • RBS R reaction-linked silicon nitride
  • a cyclical temperature-time profile also exposed the materials to a change in temperature.
  • the holding time at 1400 ° C was 10 hours per cycle, a total of 10 cycles were run through.
  • An oxidation cycle was carried out with the following temperature-time control:
  • Double ring bending strength sample dimensions: diameter approx. 50 mm, height approx. 4 mm, load ring radius 8 mm, support ring radius 16 mm
  • 4-point bending strength sample dimensions: 3 x 4 x 45 mm, supports 40/20 mm
  • cyclic oxidation 1400 ° C 100 hd) mercury buoyancy method
  • mercury pressure porosimetry f) based on room temperature bending strength before the oxidation treatment
  • test specimen dimensions 3 x 4 x 45 mm supports: 40/20 mm
  • Double ring bending strength sample dimensions: diameter 50 mm, height 4 mm, load ring radius 8 mm, support ring radius 16 mm b) mercury pressure porosimetry c) mercury buoyancy method
  • the materials resulting from the variation of the starting compositions all have an open porosity ⁇ 13% by volume.
  • Si 3 N 4 , SiC and Si 2 N 2 O phases were determined by X-ray diffraction in different ratios, the residual silicon content is below the detection limit of ⁇ 1%, the shrinkage occurring during production is clearly below 5% .

Abstract

The invention relates to reaction-bonded silicon nitride-based materials which contain silicon nitride (Si3N4), silicon carbide (SiC) and silicon oxynitride (Si2N2O) as crystalline phases, which have a phase consistency of silicon of ≤ 1 % and very good mechanical properties and are very stable in oxidizing conditions at high temperatures. The invention also relates to a method for producing these materials from a mixture of silicon, silicon nitride and organic silicon compounds (preferably polysiloxanes and/or polycarbosilanes) by thermally treating said mixture in a nitrogen-containing atmosphere, so that the organic silicon compounds are pyrolized and nitrided in the presence of silicon. The invention also relates to the use of the materials for producing ceramic components.

Description

Reaktionsgebundene Werkstoffe auf Basis von Siliciumnitrid und Verfahren zu deren Herstellung Reaction-bound materials based on silicon nitride and process for their production
Die Erfindung betrifft reaktionsgebundene siliciumhaltige Werkstoffe und ein Verfahren zu deren Herstellung.The invention relates to reaction-bound silicon-containing materials and a method for their production.
In der Gruppe der siliciumhaltigen Werkstoffe besitzt das reaktionsgebundene Siliciumnitrid (RBSN) technische Bedeutung. RBSN wird aus Siliciumpulver im Verfah- ren der Reaktionsbindung durch Umsetzung mit stickstoffhaltigen Reaktionsgasen hergestellt. Bei dieser Reaktion entsteht ein poröser Siliciumnitrid (Si3N4)-Werkstoff, der in Abhängigkeit vom eingesetzten Formgebungsverfahren für das Siliciumpulver noch eine Porosität von 15 bis 30 % aufweist. Aufgrund dieser relativ hohen Porosität ist die Verwendung dieses Werkstoffes im Bereich hoher Temperaturen und vor allem bei gleichzeitigen oxidierenden Bedingungen stark eingeschränkt. Die Oxida- tion des reaktionsgebundenen Siliciumnitrids führt dabei zu starken Einbußen in den mechanischen Eigenschaften des Werkstoffes. Der reaktionsgebundene Siliciumnitrid- Werkstoff ist jedoch aufgrund der verwendbaren kostengünstigen Silicium-Roh- stoffe und einer leichten Bearbeitung, die vorteilhaft im sogenannten Grünzustand oder nach einer Vornitridierung durchgeführt werden kann, von Bedeutung für dieIn the group of silicon-containing materials, reaction-bonded silicon nitride (RBSN) is of technical importance. RBSN is made from silicon powder in the reaction bond process by reaction with nitrogen-containing reaction gases. This reaction produces a porous silicon nitride (Si 3 N 4 ) material which, depending on the shaping process used for the silicon powder, still has a porosity of 15 to 30%. Because of this relatively high porosity, the use of this material in the area of high temperatures and especially under simultaneous oxidizing conditions is severely restricted. The oxidation of the reaction-bound silicon nitride leads to severe losses in the mechanical properties of the material. The reaction-bound silicon nitride material is, however, of importance for that due to the inexpensive silicon raw materials that can be used and easy processing, which can advantageously be carried out in the so-called green state or after pre-nitriding
Herstellung industrieller keramischer Produkte.Manufacture of industrial ceramic products.
Unter dem Gesichtspunkt der Verbesserung der mechanischen Eigenschaften und der Reduktion der Defekte von keramischen oder metallischen Werkstoffen und damit der Verbesserung ihrer Zuverlässigkeit wird in der DE 43 18 974 AI die Verwendung von siliciumorganischen Verbindungen als Bindemittel in der Kombination mit Weichmachern vorgeschlagen. Im Vergleich zu den üblicherweise eingesetzten temporären Bindemitteln sind siliciumorganische Verbindungen jedoch auch Vorstufen für keramische Werkstoffe. Diese Verwendung siliciumorganischer Verbindungen zur Herstellung keramischer Pulver, Fasern oder keramischer Werkstoffe durch Pyrolyseprozesse ist beschrieben worden (DE 28 03 658 AI, J. Amer. Ceram. Soc. 78 (4) 835-848 (1995)).From the point of view of improving the mechanical properties and reducing the defects in ceramic or metallic materials and thus improving their reliability, DE 43 18 974 A1 proposes the use of organosilicon compounds as binders in combination with plasticizers. Compared to the commonly used temporary binders, however, organosilicon compounds are also precursors for ceramic materials. This use of organosilicon compounds for the production of ceramic powders, fibers or ceramic materials Pyrolysis processes have been described (DE 28 03 658 AI, J. Amer. Ceram. Soc. 78 (4) 835-848 (1995)).
DE 26 50 083 AI offenbart den Einsatz von Siliconharz zur Verfestigung von Sili- cium-Pulverformkörpern durch Aushärten, was ein Fügen von Einzelformkörpern und eine spanabhebende Bearbeitung ermöglicht. Eine Lehre zur Verbesserung der Oxidationsbeständigkeit von RBSN ist daraus nicht abzuleiten.DE 26 50 083 AI discloses the use of silicone resin for solidifying silicon powder moldings by curing, which enables the joining of individual moldings and machining. A lesson on improving the oxidation resistance of RBSN cannot be derived from this.
Die beschriebenen Verfahren geben keine Hinweise, wie die Oxidationsstabilität reaktionsgebundener Werkstoffe auf Siliciumnitridbasis verbessert werden und damit die Reduktion der mechanischen Eigenschaften dieser Werkstoffe durch die Oxida- tionsschädigung vermindert werden kann.The processes described do not provide any information as to how the oxidation stability of reaction-based materials based on silicon nitride can be improved and thus the reduction in the mechanical properties of these materials due to oxidation damage.
Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, Werkstoffe auf Basis von Siliciumnitrid mit verbesserten Eigenschaften zu entwickeln. Im Vordergrund stehen dabei die mechanischen Eigenschaften, die Dichte bzw. Porosität und das Verhalten unter oxidierenden Bedingungen bei hohen Temperaturen. Damit soll das Einsatzverhalten und der Anwendungsbereich für entsprechende Werkstoffe deutlich verbessert werden.The object of the present invention is therefore to develop materials based on silicon nitride with improved properties. The focus is on the mechanical properties, the density or porosity and the behavior under oxidizing conditions at high temperatures. This is intended to significantly improve the application behavior and the area of application for corresponding materials.
In DE 30 45 010 C2 wird ein SiC-Si3N4-Verbundsystem beschrieben, das sich durch hohe mechanische Festigkeit und hohe Widerstandsfestigkeit gegen thermischen Schock auszeichnet. Zu deren Herstellung werden spezielle organische Silikonpolymere mit Siliciumpulver einer Korngröße <44 μm nass vermählen, geformt und einer thermischen Behandlung zwischen 1200°C und 1800°C ausgesetzt, wodurch sich einDE 30 45 010 C2 describes a SiC-Si 3 N 4 composite system which is characterized by high mechanical strength and high resistance to thermal shock. To produce them, special organic silicone polymers with silicon powder with a grain size <44 μm are wet milled, shaped and subjected to a thermal treatment between 1200 ° C and 1800 ° C, which results in a
Gefuge aus ß-SiC und α- sowie ß-Si3N4 neben einer offenen Porosität von >7,9 % ausbildet. Dieses Gefüge wird beschrieben als miteinander verwobene Textur ohne chemische Bindung oder feste Lösung mit Mikroleerstellen zwischen SiC und Si3N4, was sich grundlegend von herkömmlichen SiC-Si3N4-Verbundmaterialien unter- scheidet. Ein Nachteil des beschriebenen Verbundsystems besteht darin, dass zu dessen Herstellung nur ganz spezielle organische Silikonpolymere in Frage kommen. Der Einsatz einfacher Polysilane oder Polysiloxane ist nicht möglich.Microstructure composed of β-SiC and α- and β-Si 3 N 4 in addition to an open porosity of> 7.9%. This structure is described as an interwoven texture with no chemical bond or solid solution with micro vacancies between SiC and Si 3 N 4 , which differs fundamentally from conventional SiC-Si 3 N 4 composite materials. A disadvantage of the composite system described is that only very special organic silicone polymers can be used for its production. The use of simple polysilanes or polysiloxanes is not possible.
Die Aufgabe der vorliegenden Erfindung wird durch reaktionsgebundene Werkstoffe gelöst, die als röntgenographisch nachweisbare kristalline Phasen Siliciumnitrid (Si3N4), Siliciumcarbid (SiC) und Siliciumoxinitrid (Si2N2O), sowie gegebenenfalls restliches unreagiertes Silicium enthalten und welche durch ein Verfahren herstellbar sind, bei dem Mischungen aus Silicium, organischen Siliciumverbindungen und Sili- ciumnitrid bzw. Formkörper aus diesen Mischungen in stickstoffhaltiger Gasatmosphäre thermisch behandelt werden. Im erfindungsgemäßen Verfahren werden die siliciumorganischen Verbindungen in Gegenwart des Siliciums und Siliciumnitrids pyrolisiert und im nachfolgenden Schritt nitridiert.The object of the present invention is achieved by reaction-bound materials which contain silicon nitride (Si 3 N 4 ), silicon carbide (SiC) and silicon oxynitride (Si 2 N 2 O) as well as any remaining unreacted silicon as the X-ray-detectable crystalline phases, and which contain a unreacted silicon can be produced in which mixtures of silicon, organic silicon compounds and silicon nitride or moldings from these mixtures are thermally treated in a nitrogen-containing gas atmosphere. In the process according to the invention, the organosilicon compounds are pyrolyzed in the presence of silicon and silicon nitride and nitrided in the subsequent step.
Vorzugsweise liegen die Ausgangssubstanzen in Pulverform vor. Als Silicium-Pul- ver werden dabei vorteilhaft Pulverqualitäten mit mittleren Korngrößen <10 μm eingesetzt. Als Siliciumnitrid-Pulver sind vorteilhaft Pulverqualitäten mit mittleren Korngrößen <3 μm geeignet.The starting substances are preferably in powder form. Powder qualities with average grain sizes <10 μm are advantageously used as silicon powder. Powder qualities with average grain sizes <3 μm are advantageously suitable as silicon nitride powder.
Als organische Siliciumverbindungen können vorteilhaft Polysiloxane, Polysilazane,Polysiloxanes, polysilazanes,
Polysilane oder Polycarbosilane oder Copolymere dieser Verbindungen zum Einsatz gelangen. Neben Silicium können diese Verbindungen Kohlenstoff, Stickstoff, Wasserstoff und/oder Sauerstoff sowie weitere Heteroatome wie z.B. Bor, Titan, Zirkonium, Phosphor oder Aluminium enthalten.Polysilanes or polycarbosilanes or copolymers of these compounds are used. In addition to silicon, these compounds can include carbon, nitrogen, hydrogen and / or oxygen and other heteroatoms such as Contain boron, titanium, zirconium, phosphorus or aluminum.
Die verwendeten organischen Siliciumverbindungen besitzen zum einen die Funktion eines Bindemittels. Dadurch können aus der Rohstoffmischung Formkörper über die bekannten Verfahren z.B. des Kaltpressens, Warmpressens, isostatischen Pressens, Spritzgießens oder Extrudierens hergestellt werden. Andererseits werden sie durch Pyrolyse in inerter Atmosphäre zu keramischen Phasen und Reaktanten abgebaut und dadurch in die Gefügeausbildung des Werkstoffes einbezogen. Somit werden beim erfindungsgemäßen Verfahren die organischen Siliciumverbindungen pyrolisiert, und im nachfolgenden Schritt der Nitridierung entsteht durch einen komplexen Reaktionsverlauf, der zum einen die Nitridierung des Silicium-Pul- vers und zum anderen die Reaktion der Pyrolyseprodukte der siliciumorganischenOn the one hand, the organic silicon compounds used have the function of a binder. As a result, molded articles can be produced from the raw material mixture using the known methods, for example cold pressing, hot pressing, isostatic pressing, injection molding or extrusion. On the other hand, they are broken down into ceramic phases and reactants by pyrolysis in an inert atmosphere and are thus included in the structure of the material. Thus, in the process according to the invention, the organic silicon compounds are pyrolyzed, and in the subsequent nitridation step a complex course of the reaction results, on the one hand the nitridation of the silicon powder and on the other hand the reaction of the pyrolysis products of the organosilicon
Verbindungen umfasst, ein mehrphasiger Werkstoff, der als röntgenographisch nachweisbare kristalline Phasen Siliciumnitrid (Si3N4), Siliciumcarbid (SiC) und Siliciumoxinitrid (Si2N2O), sowie gegebenenfalls restliches unreagiertes Si enthält.Compounds comprises a multi-phase material, which contains silicon nitride (Si 3 N 4 ), silicon carbide (SiC) and silicon oxynitride (Si 2 N 2 O), as well as any remaining unreacted Si as the crystalline phases which can be detected by X-ray.
Der erfindungsgemäße Werkstoff unterscheidet sich damit bezüglich des röntgenographisch nachweisbaren Phasenbestands eindeutig von dem in DE 30 45 010 C2 offenbarten Werkstoff.The material according to the invention thus clearly differs from the material disclosed in DE 30 45 010 C2 with regard to the phase inventory which can be detected by X-ray analysis.
Als äußerst vorteilhaft bei der Herstellung des erfindungsgemäßen Werkstoffes bzw. von daraus gefertigten Bauteilen erweist sich, dass bei der Pyrolyse und Nitridierung in der Regel nur eine geringe lineare Schwindung von <5 % auftritt und gleichzeitig die offene Porosität <13 Vol.-% beträgt. Die geringe Schwindung vermindert die Gefahr des Verzuges oder sonstiger Schädigungen komplex geformter Teile während der thermischen Behandlung. Die deutlich reduzierte offene Porosität des erfin- dungsgemäßen Werkstoffes gegenüber konventionellem RBSN führt zu einer markant verbesserten Oxidationsbeständigkeit.It has proven to be extremely advantageous in the production of the material according to the invention or of components made therefrom that pyrolysis and nitridation generally only result in a small linear shrinkage of <5% and at the same time the open porosity is <13% by volume. The low shrinkage reduces the risk of warping or other damage to complex-shaped parts during the thermal treatment. The significantly reduced open porosity of the material according to the invention compared to conventional RBSN leads to a markedly improved oxidation resistance.
Vorteilhafterweise wird das erfindungsgemäße Verfahren so durchgeführt, dass es zur nahezu vollständigen Umsetzung des freien Siliciums kommt, d.h. es ist im erfindungsgemäßen Werkstoff durch Röntgenbeugung praktisch kein freies Silicium detektierbar, was bei Gehalten von <1 Gew.-% der Fall ist.The process according to the invention is advantageously carried out in such a way that the free silicon is converted almost completely, i.e. practically no free silicon can be detected in the material according to the invention by X-ray diffraction, which is the case at contents of <1% by weight.
Nach dem erfϊndungsgemäßen Verfahren wird Siliciumnitrid-Pulver zu der Ausgangsmischung aus Silicium-Pulver und siliciumorganischen Verbindungen zuge- setzt. Dieser Zusatz verbessert vor allem die Oxidationsbeständigkeit des Werkstoffes bei hohen Temperaturen. Wie aus den unten aufgeführten Beispielen hervor- geht, weisen diese Werkstoffe gegenüber solchen, die aus Siliciumnitrid-freien Mischungen hergestellt werden, deutlich verbesserte mechanische Eigenschaften nach einer Oxidationsbehandlung auf.According to the process according to the invention, silicon nitride powder is added to the starting mixture of silicon powder and organosilicon compounds. This addition above all improves the oxidation resistance of the material at high temperatures. As shown in the examples below goes, these materials have significantly improved mechanical properties after an oxidation treatment compared to those which are made from silicon nitride-free mixtures.
Zur Prüfung des Verhaltens der Werkstoffe unter oxidierenden Bedingungen bei hohen Temperaturen wurden entsprechende Tests bei 1400°C bis 1500°C an Luft durchgeführt und die mechanischen Eigenschaften sowie die Gewichtsänderung in Folge der Oxidation gemessen. Als besonders belastende Einsatzbedingungen wurden dazu zyklische Oxidationen durchgeführt, d.h. Werkstoffproben wurden wieder- holt zwischen 1400°C und ca. 100°C abgekühlt. Im Vergleich zu einer isothermenTo test the behavior of the materials under oxidizing conditions at high temperatures, appropriate tests were carried out at 1400 ° C to 1500 ° C in air and the mechanical properties and the change in weight as a result of the oxidation were measured. Cyclic oxidations were carried out as particularly stressful operating conditions, i.e. Material samples were repeatedly cooled between 1400 ° C and approx. 100 ° C. Compared to an isothermal
Oxidationsbehandlung bedeutet dieser Temperaturwechsel eine stärkere Belastung für den Werkstoff. Diese zyklischen Belastungen simulieren auch reale Einsatzbedingungen, wie z. B. bei Verwendung keramischer Komponenten für Brennraumauskleidungen und Schmelztiegel.Oxidation treatment means this temperature change places a greater strain on the material. These cyclical loads also simulate real operating conditions, such as B. when using ceramic components for combustion chamber linings and crucibles.
Im Vergleich zum reinen RBSN- Werkstoff, hergestellt durch Nitridierung von Sili- cium-Pulver, weisen die erfindungsgemäßen Nitridierungsprodukte ausgehend von Mischungen aus Silicium-Pulver, Siliciumnitrid-Pulver und siliciumorganischen Verbindungen deutlich verbesserte Eigenschaften unter oxidierenden Bedingungen auf. Dies gilt vor allem für die Raumtemperatur- Biegefestigkeiten nach einer oxidierenden Behandlung. Außerdem besitzen diese Werkstoffe deutlich verbesserte mechanische Eigenschaften bei hohen Temperaturen sowohl vor als auch nach einer Oxidationsbehandlung. Entsprechende Messungen sind in der Tabelle 2 aufgeführt. Tabelle 2 ist zu entnehmen, dass der erfindungsgemäße reaktionsgebundene Werk- stoff auf Basis Si3N4 nach einer Oxidationsbehandlung an Luft bei 1400°C, 100h, statisch oder zyklisch in Intervallen von 10h, beispielsweise eine Biegefestigkeit bei Raumtemperatur von über 40% der Biegefestigkeit vor der Oxidation aufweist. Bevorzugt weist er sogar >80 % der Biegefestigkeit vor der Oxidation auf.Compared to the pure RBSN material, produced by nitridation of silicon powder, the nitridation products according to the invention, starting from mixtures of silicon powder, silicon nitride powder and organosilicon compounds, have significantly improved properties under oxidizing conditions. This is especially true for the room temperature flexural strength after an oxidizing treatment. In addition, these materials have significantly improved mechanical properties at high temperatures both before and after an oxidation treatment. Corresponding measurements are listed in Table 2. Table 2 shows that the reaction-bound material based on Si 3 N 4 according to the invention after an oxidation treatment in air at 1400 ° C., 100 h, statically or cyclically at intervals of 10 h, for example a flexural strength at room temperature of more than 40% of the flexural strength before oxidation. It preferably even has> 80% of the bending strength before the oxidation.
Werkstoffe mit sehr guten Hochtemperatur-Beständigkeiten waren vorher bereits ausMaterials with very good high temperature resistance were previously out
DE 30 45 010 C2 bekannt. Diese Werkstoffe werden jedoch sehr aufwendig als pha- senreine SiC-Si3N4-Composite hergestellt. Deshalb ist es umso überraschender, dass Werkstoffe, die als kristalline Phasen neben SiC und Si3N4 auch Si2N2O enthalten und mittels kostengünstigerer Ausgangsrohstoffe und einfacher Prozesstechnik herstellbar sind, ein derart hohes Maß an Hochtemperatur-Beständigkeit erzielen.DE 30 45 010 C2 known. However, these materials are very complex as pha- pure SiC-Si 3 N 4 composite. It is therefore all the more surprising that materials that contain SiC and Si 3 N 4 as well as Si 2 N 2 O as crystalline phases and that can be produced using cheaper raw materials and simple process technology achieve such a high level of high-temperature resistance.
Für die Oxidation des RBSN ist die offene Porosität des Werkstoffes von entscheidender Bedeutung. Die offene Porosität ist mit einer hohen inneren Oberfläche verbunden, deren Reaktion mit Sauerstoff zu einer Schädigung des Werkstoffgefuges in Folge von SiO2-Bildung führt. Eine Kennzahl für das Maß der Oxidation ist die auf die Probenoberfläche normierte Gewichtszunahme, angegeben in mg/cm2. RBSN weist eine relativ hohe oxidationsbedingte Gewichtszunahme auf und verbunden damit einen starken oxidationsbedingten Festigkeitsabfall.The open porosity of the material is of crucial importance for the oxidation of the RBSN. The open porosity is associated with a high inner surface, the reaction of which with oxygen leads to damage to the material structure as a result of SiO 2 formation. A key figure for the degree of oxidation is the weight increase normalized to the sample surface, given in mg / cm 2 . RBSN has a relatively high oxidation-related weight gain and is associated with a strong oxidation-related decrease in strength.
Die erfindungsgemäßen Werkstoffe dagegen sind durch deutlich niedrigere offene Porositäten gekennzeichnet, die typischerweise unterhalb 13 Vol.-% liegen. Gegenüber dem Stand der Technik für reaktionsgebundene siliciumhaltige Werkstoffe ist die Gewichtsänderung durch Oxidation für die erfindungsgemäßen Werkstoffe deutlich erniedrigt und somit auch der Festigkeitsabfall signifikant geringer. Aufgrund dieser hervorragenden Eigenschaften sind die erfindungsgemäßen Werkstoffe für Anwendungen im Hochtemperatureinsatz, insbesondere unter oxidierenden Bedingungen wie z.B. in Turbinen und Brennkammern, geeignet.In contrast, the materials according to the invention are characterized by significantly lower open porosities, which are typically below 13% by volume. Compared to the prior art for reaction-bonded silicon-containing materials, the change in weight due to oxidation for the materials according to the invention is significantly reduced and thus the drop in strength is also significantly less. Because of these outstanding properties, the materials according to the invention are suitable for high-temperature applications, in particular under oxidizing conditions such as in turbines and combustion chambers.
Diese erhöhte Oxidationsstabilität zeigt sich in den bestimmten niedrigeren Gewichtszunahmen nach der Oxidationsbehandlung und vor allem in den gemesse- nen Biegefestigkeiten nach der Oxidation (Beispiele lb, lc im Vergleich zum Beispiel la). Die erfindungsgemäßen Werkstoffe, ausgehend von siliciumnitridhaltigen Rohstoffmischungen, weisen einen nur noch sehr geringen bzw. keinen Festigkeitsabfall in Folge der Oxidation auf.This increased oxidation stability can be seen in the certain lower weight increases after the oxidation treatment and above all in the measured flexural strengths after the oxidation (Examples 1b, 1c in comparison to, for example, la). The materials according to the invention, starting from raw material mixtures containing silicon nitride, have only a very slight or no drop in strength as a result of the oxidation.
Die erfindungsgemäßen Werkstoffe werden aus Mischungen von Silicium, Siliciumnitrid und einer organischen Siliciumverbindung hergestellt, wobei der Anteil der einzelnen Mischungskomponenten in einem vergleichsweise weiten Rahmen variieren kann. So kann die Ausgangsmischung 15 - 90 Gew.-% Silicium, 5 bis 60 Gew.-% Siliciumnitrid und 5 bis 60 Gew.-% der organischen Silicium Verbindung, vorzugsweise Polysiloxan und/oder Polycarbosilan und/oder Co-Polymere dieser Verbin- düngen, enthalten. Si-Gehalte unter 15 Gew.-% und Si3N4-Gehalte über 60 Gew.-% führen dazu, dass die Porositätsverminderung, resultierend aus der Nitridierung des Si zu Si3N4 nicht mehr ausreicht, um einen Werkstoff mit einer offenen Porosität <13 Vol.-% zu erhalten. Dies wirkt sich negativ auf die mechanischen Eigenschaften und die Oxidationsbeständigkeit des Werkstoffs aus. Si-Gehalte >90 Gew.-% ermög- liehen nur noch geringe Konzentrationen an Si3N4-Pulver und der organischen Sili- ciumverbindung, wodurch sich der angestrebte Phasenbestand, der für die positiven Eigenschaften des Werkstoffes verantwortlich ist, nicht mehr einstellt. Dies begründet auch die spezifizierten Untergrenzen von >5 Gew.-% für das Si3N4-Pulver und die organische Siliciumverbindung. Die Obergrenze für die organische Siliciumverbin- düng ist mit 60 Gew.-% festgelegt. Noch höhere Gehalte würden bei der Pyrolyse zu hohen Schwindungswerten und zu einer unerwünscht hohen offenen Porosität führen.The materials according to the invention are produced from mixtures of silicon, silicon nitride and an organic silicon compound, the proportion of individual mixture components can vary within a comparatively wide range. Thus the starting mixture can contain 15-90% by weight of silicon, 5 to 60% by weight of silicon nitride and 5 to 60% by weight of the organic silicon compound, preferably polysiloxane and / or polycarbosilane and / or copolymers of these compounds , contain. Si contents below 15% by weight and Si 3 N 4 contents above 60% by weight lead to the fact that the porosity reduction resulting from the nitriding of Si to Si 3 N 4 is no longer sufficient to produce a material with an open To obtain porosity <13 vol%. This has a negative impact on the mechanical properties and the oxidation resistance of the material. Si contents> 90% by weight allow only low concentrations of Si 3 N 4 powder and the organic silicon compound, which means that the desired phase inventory, which is responsible for the positive properties of the material, no longer occurs. This also justifies the specified lower limits of> 5% by weight for the Si 3 N 4 powder and the organic silicon compound. The upper limit for the organic silicon compound is set at 60% by weight. Even higher levels would lead to high shrinkage values and an undesirably high open porosity during pyrolysis.
Die eingesetzten organischen Siliciumverbindungen können zusätzlich Heteroatome, wie beispielsweise B, Ti, P, Zr und/oder AI enthalten, die nach der Pyrolyse der organischen Siliciumverbindung mit Matrixbestandteilen oder der Gasatmosphäre zu den entsprechenden Oxiden, Carbiden, Nitriden und/oder Carbonitriden reagieren. Die mit diesen Reaktionen meist verbundenen Volumenzunahmen fördern das Erzielen der erfindungsgemäßen geringen offenen Porosität des Werkstoffes von <13 Vol.-%. Andererseits ermöglichen diese Neubildungen die Einstellung ganz spezifischer Eigenschaften z.B. bezüglich der elektrischen und/oder tribologischenThe organic silicon compounds used can additionally contain heteroatoms, such as B, Ti, P, Zr and / or Al, which after pyrolysis of the organic silicon compound react with matrix constituents or the gas atmosphere to give the corresponding oxides, carbides, nitrides and / or carbonitrides. The increases in volume usually associated with these reactions promote the achievement of the low open porosity of the material according to the invention of <13% by volume. On the other hand, these new formations enable the setting of very specific properties, e.g. regarding the electrical and / or tribological
Eigenschaften und/oder des Benetzungsverhaltens gegenüber Flüssigkeiten, wie z.B. Schmierstoffen oder (metallischen) Schmelzen.Properties and / or wetting behavior towards liquids, e.g. Lubricants or (metallic) melts.
Zur Einstellung spezifischer Eigenschaften ist es auch möglich, entsprechende Inertstoffe, wie z.B. BN, TiN, TiB2 oder MoSi2, bereits der Ausgangsmischung zuzusetzen. Hierfür sind eine Vielzahl von Stoffen vorstellbar, sofern sie unter den Reak- - ö -To set specific properties, it is also possible to add appropriate inert substances, such as BN, TiN, TiB 2 or MoSi 2 , to the starting mixture. A large number of substances are conceivable for this, provided that they are - ö -
tionsbedingungen in Gegenwart der Basisstoffe thermodynamisch stabil sind und weder das Erzielen des angestrebten Phasenbestandes beeinträchtigen noch durch Reaktion ihre spezifischen Eigenschaften verlieren.tion conditions in the presence of the base materials are thermodynamically stable and neither impair the achievement of the desired phase inventory nor lose their specific properties through reaction.
Weiterhin können vorteilhaft den Rohstoffmischungen Metalle oder metallische Verbindungen mit katalytischer Wirkung auf die Nitridierungsreaktion zugesetzt werden. Insbesondere hat sich z.B. Molybdän, Mangan oder Eisen in Pulverform und Konzentrationen <5 Gew.-% für die Katalyse der Nitridierungsreaktion als günstig erwiesen.Furthermore, metals or metallic compounds with a catalytic effect on the nitridation reaction can advantageously be added to the raw material mixtures. In particular, e.g. Molybdenum, manganese or iron in powder form and concentrations <5% by weight have proven to be favorable for the catalysis of the nitridation reaction.
In die erfindungsgemäßen Rohstoffmischungen können weiterhin vorteilhaft Komponenten eingebracht werden, die in Form von Fasern, als Kurz- oder Langfaser, Whisker, Platelets oder Partikel eine Verstärkung der Werkstoffe bewirken. Um die erfindungsgemäß vorteilhafte offene Porosität von <13 Vol.-% zu erreichen, können hierbei Nachinfiltrationen mit der organischen Siliciumverbindung und zusätzlicheComponents which bring about a reinforcement of the materials in the form of fibers, as short or long fibers, whiskers, platelets or particles can furthermore advantageously be introduced into the raw material mixtures according to the invention. In order to achieve the advantageous open porosity of <13% by volume according to the invention, post-infiltrations with the organic silicon compound and additional ones can be carried out
Pyrolyseschritte notwendig werden.Pyrolysis steps become necessary.
Die Beispiele lb, lc und 3 geben ein typisches Verfahren zur Herstellung der erfindungsgemäßen Werkstoffe wieder. Vorteilhafterweise wird der Werkstoff hergestellt, indem Si-Pulver mit einer mittleren Teilchengröße <10 μm und Si3N4-Pulver mit einer mittleren Teilchengröße <3 μm, die organische Siliciumverbindung und gegebenenfalls weitere der beschriebenen Zusätze durch Nass- und/oder Trockenmahlung intensiv gemischt werden. Si-Pulver mit mittleren Teilchengrößen >10 μm führen zu langen Nitridierzeiten und der Gefahr, dass unreagiertes Silicium in einer Konzentra- tion größer 1 Gew.-% im Werkstoff verbleibt. Si3N4-Pulver mit mittleren Teilchengrößen >3 μm können bereits zu Werkstoff-Inhomogenitäten führen und Verminderungen der mechanischen Eigenschaften und der Oxidationsbeständigkeit bewirken. Für beide Bestandteile sind Reinheiten von >98 % vorteilhaft, um die Ausbildung von Fremdeinschlüssen kritischer Größe im Werkstoff zu vermeiden. Nach der Mischmahlung erfolgt die Formgebung nach den üblichen Verfahren oder auch durch Warmpressen, die thermische Vernetzung des Polymers, die Pyrolyse der organischen Siliciumverbindung unter Inertgas und die Nitridierung. Diese erfolgt für die erfindungsgemäßen Rohstoffmischungen bzw. daraus hergestellte Formkörper in stickstoffhaltiger Gasatmosphäre. Neben Stickstoff kann das Reaktionsgas zusätzlich Wasserstoff- und/oder Ammoniakgas enthalten. Die Nitridierungsreaktion kann sowohl unter Normaldruck als auch unter erhöhtem Gasdruck, vorzugsweise von 1 bis 100 bar, erfolgen. Die Maximaltemperaturen für diese Nitridierungsreaktion liegen vorteilhaft bei 1300 bis 1600°C. Der Temperatur-Zeitverlauf für die Nitri- dierungsreaktion ist an die jeweiligen spezifischen Bedingungen, wie z.B. Ofengröße und Bauteilvolumen, anzupassen.Examples 1b, 1c and 3 show a typical process for producing the materials according to the invention. The material is advantageously produced by intensively mixing Si powder with an average particle size <10 μm and Si 3 N 4 powder with an average particle size <3 μm, the organic silicon compound and optionally other of the additives described by wet and / or dry grinding become. Si powder with average particle sizes> 10 μm lead to long nitriding times and the risk that unreacted silicon remains in the material in a concentration greater than 1% by weight. Si 3 N 4 powders with average particle sizes> 3 μm can already lead to material inhomogeneities and reduce the mechanical properties and oxidation resistance. For both components, purities of> 98% are advantageous in order to avoid the formation of foreign inclusions of critical size in the material. After the mixed grinding, the shaping is carried out by the customary methods or also by hot pressing, the thermal crosslinking of the polymer, the pyrolysis of the organic silicon compound under inert gas and the nitriding. This takes place for the raw material mixtures according to the invention or shaped bodies produced therefrom in a nitrogen-containing gas atmosphere. In addition to nitrogen, the reaction gas can additionally contain hydrogen and / or ammonia gas. The nitridation reaction can take place either under normal pressure or under elevated gas pressure, preferably from 1 to 100 bar. The maximum temperatures for this nitridation reaction are advantageously from 1300 to 1600 ° C. The temperature-time curve for the nitriding reaction has to be adapted to the respective specific conditions, such as furnace size and component volume.
Soll der erfindungsgemäße Werkstoff als Matrixmaterial von Langfaser-verstärkten keramischen Compositen Verwendung finden, so wird die Basiszusammensetzung bereits bevorzugt in einem organischen Medium aufbereitet, in dem die organischeIf the material according to the invention is to be used as the matrix material of long fiber-reinforced ceramic composites, the basic composition is preferably already prepared in an organic medium in which the organic
Siliciumverbindung löslich ist. Beispielsweise können Isopropanol, Butanol, Eth- oxylethanol oder Xylol als Lösungsmittel geeignet sein. Das Verhältnis der Feststoffe zum organischen Medium ist so einzustellen, dass eine für die weitere Verarbeitung der Suspension geeignete Viskosität vorliegt. Die Weiterverarbeitung kann nach dem bekannten Faserbeschichtungs- und Wickelverfahren erfolgen, wobei entsprechend der eingesetzten Wickelkerne Polygone für ebene Laminatplatten, Rohre oder komplexere Teile gewickelt werden. Laminate werden anschließend gestapelt und vernetzt, bezüglich der Ziel-Geometrie fertige Teile werden direkt vernetzt. Der Vernetzung schließt sich, evtl. nach einer zwischengeschalteten Bearbeitung, die Pyrolyse und Nitridierung, wie bereits beschrieben, an.Silicon compound is soluble. For example, isopropanol, butanol, ethoxylethanol or xylene can be suitable as solvents. The ratio of the solids to the organic medium is to be adjusted so that a viscosity suitable for the further processing of the suspension is present. Further processing can be carried out according to the known fiber coating and winding process, polygons for flat laminate panels, pipes or more complex parts being wound according to the winding cores used. Laminates are then stacked and meshed, and finished parts are meshed directly with regard to the target geometry. The crosslinking follows, possibly after an intermediate processing, the pyrolysis and nitridation, as already described.
Die erfindungsgemäßen Werkstoffe und Bauteile sind infolge ihrer guten mechanischen Eigenschaften und insbesondere ihrer Beständigkeit bei hohen Temperaturen gegen Oxidationsdegradation geeignet für entsprechende Einsatzbedingungen, wie z.B. Turbinen und Brennkammern, sowie für die Verarbeitung metallischer Schmelzen. Im folgenden wird die Erfindung anhand von Beispielen beschrieben, ohne dass hier¬ aus eine Einschränkung der erfindungsgemäßen Wekstoffe und Verfahren zu deren Herstellung abzuleiten ist. Due to their good mechanical properties and in particular their resistance to oxidation degradation at high temperatures, the materials and components according to the invention are suitable for corresponding operating conditions, such as turbines and combustion chambers, and for processing metallic melts. In the following the invention will be described with reference to examples, without that here ¬ derived from a restriction of Wekstoffe and methods of the invention for the preparation thereof.
BeispieleExamples
Beispiel la (Vergleichsbeispiel)Example la (comparative example)
1500 g Silicium-Pulver (mittlere Korngröße 3,0 μm, spezifische Oberfläche nach1500 g silicon powder (average grain size 3.0 μm, specific surface after
BET = 3,9 m2/g) und 500 g eines Methylpolysiloxans wurden in Isopropanol gemischt und anschließend das Lösungsmittel abdestilliert. Nach Trocknung der Mischung im Wärmeschrank wurde sie mit Stahlkugeln in Stahlbehältern auf einer Rollenbank pulverisiert und über ein 100 μm-Sieb gesiebt. Das Pulver wurde in einer Achsialpresse zu Scheiben verpresst und isostatisch mit 1600 bar nachverdichtet. DieBET = 3.9 m 2 / g) and 500 g of a methylpolysiloxane were mixed in isopropanol and then the solvent was distilled off. After the mixture had dried in a heating cabinet, it was pulverized with steel balls in steel containers on a roller bench and sieved through a 100 μm sieve. The powder was pressed into disks in an axial press and isostatically compressed again at 1600 bar. The
Vernetzung des Polymers erfolgte bei 250°C, die Pyrolyse bei 900°C jeweils in Inertgas-Atmosphäre. Die Nitridierung der Formkörper erfolgt in Stickstoffatmosphäre. Dabei wurden die Proben bis auf 1450°C aufgeheizt, bei einer gesamten Prozessdauer von 74 Stunden.The polymer was crosslinked at 250 ° C., the pyrolysis at 900 ° C. in an inert gas atmosphere. The molded articles are nitrided in a nitrogen atmosphere. The samples were heated up to 1450 ° C, with a total process time of 74 hours.
Die Eigenschaften der nitridierten Proben vor und nach einer Oxidationsbehandlung sind in Tabelle 1 aufgeführt.The properties of the nitrided samples before and after an oxidation treatment are listed in Table 1.
Beispiel lbExample lb
Silicium-Pulver (900 g), Methylpolysiloxan (500 g), Qualitäten wie in Beispiel la, und 600 g Siliciumnitrid-Pulver mittlerer Korngröße 0,5 μm, spezifische Oberfläche nach BET = 13,8 m2/g wurden wie in Beispiel la gemischt und weiterbehandelt.Silicon powder (900 g), methylpolysiloxane (500 g), qualities as in Example la, and 600 g of silicon nitride powder with an average grain size of 0.5 μm, BET specific surface area = 13.8 m 2 / g were as in Example la mixed and processed.
Die Eigenschaften der nitridierten bzw. oxidierten Proben sind in Tabelle 1 aufgeführt.The properties of the nitrided and oxidized samples are listed in Table 1.
Beispiel lcExample lc
Die Mischungsherstellung erfolgte wie in Beispiel lb, die Nitridierung der Probekörper wurde in Stickstoffatmosphäre bis 1450°C durchgeführt, bei einer gesamten Pro- zessdauer von 130 Stunden. Werkstoffproben gemäß Beispiel lc wurden zusätzlich zu den in Tabelle 1 aufgeführten Eigenschaften der Basischarakterisierung weitergehend bezüglich ihres zyklischen und isothermen Oxidationsverhaltens zwischen 1400°C und 1500°C bis zu 1000h Auslagerungsdauer untersucht.The mixture was prepared as in Example 1b, the nitriding of the test specimens was carried out in a nitrogen atmosphere up to 1450 ° C., with an entire sample duration of 130 hours. In addition to the basic characterization properties listed in Table 1, material samples according to Example 1c were further investigated with regard to their cyclic and isothermal oxidation behavior between 1400 ° C. and 1500 ° C. up to 1000 hours of aging.
Die hierbei ermittelten Eigenschaften der nitridierten bzw. oxidierten Proben sind in Tabelle 2 zusammengestellt Die Werkstoffe gemäß Beispiel lb und lc weisen entsprechend der röntgenographischen Phasenanalyse Si3N4, SiC und Si2N2O als kristalline Phasen auf. Der Si-Gehalt liegt unter der Nachweisgrenze von <1%, die Schwin- düng bei der Herstellung deutlich unter 5% und die offene Porosität <13 Vol.-%.The properties of the nitrided or oxidized samples determined in this way are summarized in Table 2. According to the X-ray phase analysis, the materials according to Examples 1b and 1c have Si 3 N 4 , SiC and Si 2 N 2 O as crystalline phases. The Si content is below the detection limit of <1%, the shrinkage during production is well below 5% and the open porosity <13% by volume.
Beispiel 2 (Nergleichsbeispiel)Example 2 (comparative example)
Im Vergleich mit den erfindungsgemäßen Werkstoffen nach Beispiel lb und lc wurde Silicium-Pulver ohne weitere Zusätze verwendet und wie in Beispiel la zu reaktionsgebundenem Siliciumnitrid (RBSΝ) nitridiert. Die Ergebnisse sind in Tabelle 1 aufgeführt, der Werkstoff weist entsprechend der röntgenographischen Phasenanalyse nur - und ß-Si3Ν4 als kristalline Phasen auf.In comparison with the materials according to the invention according to Examples 1b and 1c, silicon powder was used without further additives and, as in Example 1a, nitrided to form reaction-linked silicon nitride (RBS R). The results are shown in Table 1; according to the X-ray phase analysis, the material shows only - and ß-Si 3 Ν 4 as crystalline phases.
Zur Prüfung auf die Oxidationsbeständigkeit wurden die Proben, hergestellt nach denIn order to test the oxidation resistance, the samples were produced according to the
Beispielen la-c und 2 bei 1400°C an Umgebungsluft geglüht. Durch einen zyklischen Temperatur-Zeitverlauf wurden die Werkstoffe dabei außerdem einem Temperaturwechsel ausgesetzt. Die Haltezeit bei 1400°C betrug je Zyklus 10 Stunden, insgesamt wurden 10 Zyklen durchfahren. Ein Oxidationszyklus verlief mit folgender Temperatur-Zeit-Regelung:Examples la-c and 2 annealed at 1400 ° C in ambient air. A cyclical temperature-time profile also exposed the materials to a change in temperature. The holding time at 1400 ° C was 10 hours per cycle, a total of 10 cycles were run through. An oxidation cycle was carried out with the following temperature-time control:
Raumtemperatur bis 1400°C mit 3K/min / 1400°C, 10 Stunden Haltezeit / 1400°C bis ca. 100°C in 10 Stunden.Room temperature up to 1400 ° C with 3K / min / 1400 ° C, 10 hours holding time / 1400 ° C to approx. 100 ° C in 10 hours.
Zur Beurteilung der Beständigkeit der Werkstoffe gegenüber Oxidation wurde dieTo assess the resistance of the materials to oxidation, the
Gewichtszunahme auf die Probenoberfläche A normiert und in mg/cm2 in den Tabellen 1 bzw. 2 aufgeführt. Wie diese Ergebnisse zeigen, tritt bei den erfindungsgemäßen Werkstoffen im Vergleich zum reinen RBSN (Vergleichsbeispiel 2) eine deutlich geringere Gewichtszunahme in Folge Oxidation ein.Weight increase normalized to the sample surface A and in mg / cm 2 in the Tables 1 and 2 listed. As these results show, compared to pure RBSN (comparative example 2), the materials according to the invention show a significantly smaller weight gain as a result of oxidation.
Entsprechend sind auch die Restfestigkeiten nach der Oxidation signifikant höher bzw. es tritt in Folge der Oxidation kein Festigkeitsabfall auf (Tabelle 1, Beispiel lc).Accordingly, the residual strengths after the oxidation are significantly higher or there is no decrease in strength as a result of the oxidation (Table 1, Example 1c).
Der vorteilhafte Effekt des Zusatzes von Siliciumnitrid-Pulver zum Siliciumrohstoff wird durch die erfindungsgemäßen Beispiele lb, lc verdeutlicht (Tab. 1 und 2). Die entsprechenden Werkstoffe weisen keinen oder nur einen sehr geringen Festigkeitsabfall infolge der Oxidation auf, im Vergleich zu der Siliciumnitrid-freien Mischung (Vergleichsbeispiel la).The advantageous effect of the addition of silicon nitride powder to the silicon raw material is illustrated by the examples 1b, 1c according to the invention (Tables 1 and 2). The corresponding materials show no or only a very slight drop in strength as a result of the oxidation, in comparison to the silicon nitride-free mixture (comparative example la).
Tabelle 1Table 1
Figure imgf000015_0001
a) Doppelringbiegefestigkeit, Probenabmessungen: Durchmesser ca. 50 mm, Höhe ca. 4 mm, Lastringradius 8 mm, Stützringradius 16 mm b) 4-Punktbiegefestigkeit, Probenabmessungen: 3 x 4 x 45 mm, Auflagen 40/20 mm c) zyklische Oxidation 1400°C, 100 h d) Quecksilber-Auftriebsmethode e) Quecksilberdruckporosimetrie f) bezogen auf Raumtemperatur-Biegefestigkeit vor der Oxidationsbehandlung
Figure imgf000015_0001
a) Double ring bending strength, sample dimensions: diameter approx. 50 mm, height approx. 4 mm, load ring radius 8 mm, support ring radius 16 mm b) 4-point bending strength, sample dimensions: 3 x 4 x 45 mm, supports 40/20 mm c) cyclic oxidation 1400 ° C, 100 hd) mercury buoyancy method e) mercury pressure porosimetry f) based on room temperature bending strength before the oxidation treatment
Tabelle 2Table 2
Oxidationsuntersuchungen für Werkstoffproben nach Beispiel lcOxidation tests for material samples according to example lc
Mechanische EigenschaftenMechanical properties
4-Punkt-Biegefestigkeit, Prüfkörperabmessungen: 3 x 4 x 45 mm Auflager: 40/20 mm4-point bending strength, test specimen dimensions: 3 x 4 x 45 mm supports: 40/20 mm
Raumtemperatur - Biegefestigkeit vor Oxidation 255 MPaRoom temperature - flexural strength before oxidation 255 MPa
Biegefestigkeit 1400°C 380 MPaFlexural strength 1400 ° C 380 MPa
Biegefestigkeit 1400°C, nach 100 h zyklischer Oxidation 1400°C 350 MPaFlexural strength 1400 ° C, after 100 h cyclic oxidation 1400 ° C 350 MPa
Raumtemperatur-Biegefestigkeit nach zyklischer Oxidation, 1400°C, 100 h 260 MPa nach isothermer Oxidation, 1450°C, 100 h 280 MPa nach isothermer Oxidation, 1500°C, 100 h 230 MPa nach isothermer Oxidation, 1500°C, 1000 h 259 MPaRoom temperature bending strength after cyclic oxidation, 1400 ° C, 100 h 260 MPa after isothermal oxidation, 1450 ° C, 100 h 280 MPa after isothermal oxidation, 1500 ° C, 100 h 230 MPa after isothermal oxidation, 1500 ° C, 1000 h 259 MPa
Spezifische Gewichtsänderungen nach OxidationSpecific weight changes after oxidation
Gewichtsänderung Δm/A [mg/cm2] zyklische Oxidation, 1400°C, 100 h 0,55 isotherme Oxidation, 1450°C, 100 h 0,32 isotherme Oxidation, 1500°C, 100 h 0,26 isotherme Oxidation, 1500°C, 1000 h 0,80 Beispiel 3Weight change Δm / A [mg / cm 2 ] cyclic oxidation, 1400 ° C, 100 h 0.55 isothermal oxidation, 1450 ° C, 100 h 0.32 isothermal oxidation, 1500 ° C, 100 h 0.26 isothermal oxidation, 1500 ° C, 1000 h 0.80 Example 3
Nach Beispiel lb wurden Mischungen aus Silicium, Siliciumnitrid und Methylpoly- siloxan unter Variation der einzelnen Masseanteile hergestellt und die nitridierten Proben charakterisiert (Tabelle 3).Mixtures of silicon, silicon nitride and methylpolysiloxane were produced according to Example 1b with variation of the individual mass fractions and the nitrided samples were characterized (Table 3).
Tabelle 3Table 3
Figure imgf000017_0001
Figure imgf000017_0001
a) Doppelringbiegefestigkeit, Probenabmessungen: Durchmesser 50 mm, Höhe 4 mm, Lastringradius 8 mm, Stützringradius 16 mm b) Quecksilberdruckporosimetrie c) Quecksilber-Auftriebsmethodea) Double ring bending strength, sample dimensions: diameter 50 mm, height 4 mm, load ring radius 8 mm, support ring radius 16 mm b) mercury pressure porosimetry c) mercury buoyancy method
Die aus der Variation der Ausgangszusammensetzungen resultierenden Werkstoffe weisen alle eine offene Porosität <13 Vol.-% auf. Röntgenographisch wurden Si3N4-, SiC- und Si2N2O-Phasen in unterschiedlichen Verhältnissen ermittelt, der Rest-Sili- cium-Gehalt liegt unter der Nachweisgrenze von <1%, die bei der Herstellung auftretende Schwindung deutlich unter 5%. The materials resulting from the variation of the starting compositions all have an open porosity <13% by volume. Si 3 N 4 , SiC and Si 2 N 2 O phases were determined by X-ray diffraction in different ratios, the residual silicon content is below the detection limit of <1%, the shrinkage occurring during production is clearly below 5% .

Claims

Patentansprüche claims
1. Reaktionsgebundene Werkstoffe auf Basis von Siliciumnitrid, dadurch gekennzeichnet, dass sie als kristalline Phasen Siliciumnitrid (Si3N4), Sili- ciumcarbid (SiC) und Siliciumoxynitrid (Si2N2O) enthalten und der Phasenbestand an Silicium < 1% beträgt.1. Reaction-bonded materials based on silicon nitride, characterized in that they contain silicon nitride (Si 3 N 4 ), silicon carbide (SiC) and silicon oxynitride (Si 2 N 2 O) as crystalline phases and the phase inventory of silicon is <1% .
2. Werkstoffe gemäß Anspruch 1, dadurch gekennzeichnet, dass die offene Porosität < 13Vol.-% und die lineare Schwindung bei der Pyrolyse und Nitridierung < 5% beträgt.2. Materials according to claim 1, characterized in that the open porosity is <13 vol .-% and the linear shrinkage during pyrolysis and nitridation is <5%.
3. Werkstoffe gemäß mindestens eines der Ansprüche 1 und 2, dadurch gekennzeichnet, dass sie nach einer Oxidationsbehandlung an Luft bei 1400°C, eine Raumtemperatur-Biegefestigkeit von über 40% der Biege- festigkeit vor der Oxidation aufweist.3. Materials according to at least one of claims 1 and 2, characterized in that after an oxidation treatment in air at 1400 ° C, it has a room temperature bending strength of over 40% of the bending strength before the oxidation.
4. Werkstoffe gemäß Anspruch 3, dadurch gekennzeichnet, dass die Oxidationsbehandlung an Luft zyklisch zwischen 100°C und 1400°C erfolgt, dass 5 Zyklen durchgeführt werden und dass die Haltezeit bei 1400°C jeweils 10 Stunden beträgt.4. Materials according to claim 3, characterized in that the oxidation treatment in air is carried out cyclically between 100 ° C and 1400 ° C, that 5 cycles are carried out and that the holding time at 1400 ° C is 10 hours each.
5. Werkstoffe gemäß mindestens eines der Ansprüche 3 und 4, dadurch gekennzeichnet, dass sie eine Raumtemperatur-Biegefestigkeit nach der Oxidation von über 80% der Biegefestigkeit vor der Oxidation aufweist.5. Materials according to at least one of claims 3 and 4, characterized in that it has a room temperature bending strength after the oxidation of more than 80% of the bending strength before the oxidation.
Werkstoffe nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie Molybdän, Mangan, Eisen und/oder Verbindungen dieser Elemente in einer Konzentration unter 5 Gew.-% enthalten. Materials according to at least one of claims 1 to 5, characterized in that they contain molybdenum, manganese, iron and / or compounds of these elements in a concentration below 5 wt .-%.
7. Werkstoffe nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie anorganische Kurz- oder Langfasern, Whisker, Platelets und/oder Partikel von Inertstoffen enthalten.7. Materials according to at least one of claims 1 to 6, characterized in that they contain inorganic short or long fibers, whiskers, platelets and / or particles of inert substances.
8. Werkstoffe gemäß Anspruch 7, dadurch gekennzeichnet, dass sie anorganische Langfasern enthalten.8. Materials according to claim 7, characterized in that they contain inorganic long fibers.
9. Verfahren zur Herstellung eines Werkstoffes gemäß der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass 15 - 90 Gew.-% Silicium mit einer mittleren Teilchengröße < 10 μm, 5 - 60 Gew.-% Siliciumnitrid mit einer mittleren9. A method for producing a material according to claims 1 to 8, characterized in that 15 - 90 wt .-% silicon with an average particle size <10 microns, 5 - 60 wt .-% silicon nitride with an average
Teilchengröße < 3 μm und 5 - 60 Gew.-% einer organischen Siliciumverbindung durch Nass- und/oder Trockenmahlung intensiv gemischt, geformt, unter Inertgas vernetzt und pyrolysiert und anschließend bei T < 1600°C in N2 oder N2-enthaltender Inertgasatmosphäre bei Gasdrucken von < 100 bar nitridiert werden.Particle size <3 microns and 5 - 60 wt .-% of an organic silicon compound intensively mixed by wet and / or dry grinding, shaped, crosslinked and pyrolysed under inert gas and then at T <1600 ° C in N 2 or N 2 -inert gas atmosphere Gas pressures of <100 bar can be nitrided.
10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass der Mischung aus Silicium, Siliciumnitrid und einer organischen Siliciumverbindung zusätzlich Molybdän, Mangan, Eisen und/oder Verbindungen dieser Ele- mente in einer Konzentration unter 5 Gew.-% und/oder anorganische Kurzoder Langfasern, Whisker, Platelets und/oder Partikel von Inertstoffen zugesetzt werden.10. The method according to claim 9, characterized in that the mixture of silicon, silicon nitride and an organic silicon compound additionally molybdenum, manganese, iron and / or compounds of these elements in a concentration below 5 wt .-% and / or inorganic short or long fibers , Whiskers, platelets and / or particles of inert substances are added.
11. Verfahren nach mindestens einem der Ansprüche 9 bis 10, dadurch gekenn- zeichnet, dass als organische Siliciumverbindungen Polysiloxane, Polysila- zane, Polysilane und/oder Polycarbosilane und/oder Copolymere dieser Verbindungen eingesetzt werden.11. The method according to at least one of claims 9 to 10, characterized in that polysiloxanes, polysilazanes, polysilanes and / or polycarbosilanes and / or copolymers of these compounds are used as organic silicon compounds.
12. Verfahren nach mindestens einem der Ansprüche 9 bis 11, dadurch gekenn- zeichnet, dass die organischen Siliciumverbindungen Heteroatome wie z.B.12. The method according to at least one of claims 9 to 11, characterized in that the organic silicon compounds heteroatoms such as.
Bor, Titan, Phosphor, Zirkonium und/oder Aluminium enthalten. Contain boron, titanium, phosphorus, zirconium and / or aluminum.
13. Verfahren gemäß mindestens eines der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass nach bekannten Faserbeschichtungs- und Wickelverfahren aus einer bevorzugt organischen Suspension der Ausgangskompo- nenten Laminate erzeugt werden, diese nach der Vernetzung zu größeren13. The method according to at least one of claims 9 to 12, characterized in that according to known fiber coating and winding processes laminates are produced from a preferably organic suspension of the starting components, these after crosslinking to larger
Einheiten gestapelt und laminiert werden und sich Pyrolyse und Nitridierung anschließen.Units are stacked and laminated, followed by pyrolysis and nitridation.
14. Verwendung der Werkstoffe gemäß mindestens eines der Ansprüche 1 bis 8 als keramisches Bauteil, insbesondere bei hohen Temperaturen unter oxydierenden Einsatzbedingungen, wie z.B. in Turbinen und Brennkammern, sowie der Verarbeitung von Metallschmelzen. 14. Use of the materials according to at least one of claims 1 to 8 as a ceramic component, in particular at high temperatures under oxidizing conditions, such as in turbines and combustion chambers, as well as processing metal melts.
PCT/EP1999/009341 1998-12-03 1999-12-01 Reaction-bonded silicon nitride-based materials and method for producing the same WO2000032537A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU31486/00A AU3148600A (en) 1998-12-03 1999-12-01 Reaction-bonded silicon nitride-based materials and method for producing the same
EP99969908A EP1144337A2 (en) 1998-12-03 1999-12-01 Reaction-bonded silicon nitride-based materials and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998155811 DE19855811A1 (en) 1998-12-03 1998-12-03 Reaction-bound materials based on silicon nitride and process for their preparation
DE19855811.2 1998-12-03

Publications (2)

Publication Number Publication Date
WO2000032537A2 true WO2000032537A2 (en) 2000-06-08
WO2000032537A3 WO2000032537A3 (en) 2000-10-05

Family

ID=7889863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/009341 WO2000032537A2 (en) 1998-12-03 1999-12-01 Reaction-bonded silicon nitride-based materials and method for producing the same

Country Status (4)

Country Link
EP (1) EP1144337A2 (en)
AU (1) AU3148600A (en)
DE (1) DE19855811A1 (en)
WO (1) WO2000032537A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916560B2 (en) 2000-12-04 2005-07-12 H. C. Starck Ceramics Gmbh & Co. Kg Silicon nitride based substrate for semi-conductor components
US7163650B2 (en) 2002-01-25 2007-01-16 Ab Skf Process for producing ceramic bearing components
CN100453508C (en) * 2006-06-14 2009-01-21 中国科学院理化技术研究所 Chemically excited combustion process for synthesizing Si3N4/SiC composite powder
US8003557B2 (en) 2008-06-13 2011-08-23 Saint-Gobain Ceramics & Plastics, Inc. Volume-change resistant silicon oxy-nitride or silicon oxy-nitride and silicon nitride bonded silicon carbide refractory

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2651861C1 (en) * 2016-11-03 2018-04-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Method of obtaining products based on silicon nitride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2650083A1 (en) * 1976-10-30 1978-05-03 Daimler Benz Ag non-porous silicon nitride mouldings prodn. - by moulding silicon powder and silicone resin binder, opt. hardening and nitriding
GB2066800A (en) * 1979-11-30 1981-07-15 Kurosaki Refractories Co Sic-si3n4 composite system
US5190709A (en) * 1989-06-29 1993-03-02 Hercules Incorporated Reaction injection molding of ceramics using a ceramic precursor as a binder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2803658A1 (en) * 1977-01-27 1978-08-10 Kyoto Ceramic PROCESS FOR MANUFACTURING DENSE, Sintered SILICON CARBIDE BODIES FROM POLYCARBOSILANE
DE4318974C2 (en) * 1993-06-08 1995-04-27 Fraunhofer Ges Forschung Process for the production of molded articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2650083A1 (en) * 1976-10-30 1978-05-03 Daimler Benz Ag non-porous silicon nitride mouldings prodn. - by moulding silicon powder and silicone resin binder, opt. hardening and nitriding
GB2066800A (en) * 1979-11-30 1981-07-15 Kurosaki Refractories Co Sic-si3n4 composite system
US5190709A (en) * 1989-06-29 1993-03-02 Hercules Incorporated Reaction injection molding of ceramics using a ceramic precursor as a binder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916560B2 (en) 2000-12-04 2005-07-12 H. C. Starck Ceramics Gmbh & Co. Kg Silicon nitride based substrate for semi-conductor components
EP2272810A2 (en) 2000-12-04 2011-01-12 H.C. Starck Ceramics GmbH & Co. KG Silicon nitride based substrate for semi-conductor components
EP2272810A3 (en) * 2000-12-04 2011-05-18 H.C. Starck Ceramics GmbH & Co. KG Silicon nitride based substrate for semi-conductor components
US7163650B2 (en) 2002-01-25 2007-01-16 Ab Skf Process for producing ceramic bearing components
CN100453508C (en) * 2006-06-14 2009-01-21 中国科学院理化技术研究所 Chemically excited combustion process for synthesizing Si3N4/SiC composite powder
US8003557B2 (en) 2008-06-13 2011-08-23 Saint-Gobain Ceramics & Plastics, Inc. Volume-change resistant silicon oxy-nitride or silicon oxy-nitride and silicon nitride bonded silicon carbide refractory
EP2634160A1 (en) * 2008-06-13 2013-09-04 Saint-Gobain Ceramics & Plastics Inc. Volume-change resistant silicon oxy-nitride or silicon oxy-nitride and silicon nitride bonded silicon carbide refractory

Also Published As

Publication number Publication date
DE19855811A1 (en) 2000-06-08
EP1144337A2 (en) 2001-10-17
AU3148600A (en) 2000-06-19
WO2000032537A3 (en) 2000-10-05

Similar Documents

Publication Publication Date Title
DE2736073C2 (en) Method for producing a dense silicon carbide body
DE2463206C2 (en)
EP0531378B1 (en) Reaction-bonded mullite-containing ceramic, its formation and use
DE3812266C1 (en)
EP1070686A1 (en) Liquid phase sintered silicon carbide shaped bodies having improved fracture toughness as well as high electrical resistance and method of making them
DE3127649A1 (en) SEALED SILICON CARBIDE CERAMIC BODY
EP0021239B1 (en) Process for the production of dense polycrystalline alpha-silicon carbide shaped articles by hot pressing and so obtained shaped articles
DE2627856A1 (en) SINTERED SILICON CARBIDE BODY AND METHOD FOR MANUFACTURING IT
DE2940629A1 (en) METHOD FOR PRODUCING OXIDATION-RESISTANT SILICON NITRIDE SINTER BODIES WITH IMPROVED MECHANICAL STRENGTH
DE2803658A1 (en) PROCESS FOR MANUFACTURING DENSE, Sintered SILICON CARBIDE BODIES FROM POLYCARBOSILANE
EP0071241B1 (en) Substantially pore-free polycrystalline silicon carbide articles produced by hot isostatic pressing
DE4127354A1 (en) GRANULES BASED ON SILICON CARBIDE POWDER AND SILICON CARBIDE CERAMICS
DE4105325C2 (en) A process for producing a machinable green boron carbide body, a process for producing a sintered boron carbide body and a uniform mixture comprising boron carbide powder and a preceramic organosilicon polymer
EP0022522B1 (en) Dense polycristalline beta-silicon carbide articles and process for their production by hot pressing
EP1331211B1 (en) A process for production of ceramic bearing components
DE19519864B4 (en) Silicon nitride intermediate and process for its preparation
DE10030011A1 (en) Molded part made of ceramic derived from polymers
WO2000032537A2 (en) Reaction-bonded silicon nitride-based materials and method for producing the same
EP0110053B1 (en) Method of manufacturing a dense polycrystalline silicon carbide article
US6069102A (en) Creep-resistant, high-strength silicon carbide fibers
EP1367034B1 (en) Precise method for the production of ceramic composites
EP0721925B1 (en) Dense silicon nitride composite material and method of making it
DE19502385C2 (en) Process for reinforcing ceramic shaped bodies and reinforced ceramic shaped bodies
WO2005026075A2 (en) Liquid phase-compressed silicon carbide ceramics having high oxidation resistance in a humid atmosphere
DE19806203C2 (en) Composite material and method for its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1999969908

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999969908

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1999969908

Country of ref document: EP