WO2000031656A2 - Systeme, procede et article manufacture permettant d'interagir efficacement avec un usager de reseau - Google Patents
Systeme, procede et article manufacture permettant d'interagir efficacement avec un usager de reseau Download PDFInfo
- Publication number
- WO2000031656A2 WO2000031656A2 PCT/US1999/027222 US9927222W WO0031656A2 WO 2000031656 A2 WO2000031656 A2 WO 2000031656A2 US 9927222 W US9927222 W US 9927222W WO 0031656 A2 WO0031656 A2 WO 0031656A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user
- information
- recited
- profile information
- creating
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/957—Browsing optimisation, e.g. caching or content distillation
Definitions
- the present invention relates to agent based systems and more particularly to an interactive web based agent system which responds to a particular user with information pertinent to the user's requirements
- Agent based technology has become increasingly important for use with applications designed to interact with a user for performing various computer based tasks in foreground and background modes
- Agent software comprises computer programs that are set on behalf of users to perform routine, tedious and time-consuming tasks
- an agent must be personalized to the individual user's goals, habits and preferences
- An agent is a person authorized by another person, typically referred to as a principal, to act on behalf of the principal In this manner the principal empowers the agent to perform any of the tasks that the principal is unwilling or unable to perform
- an insurance agent may handle all of the insurance requirements for a principal, or a talent agent may act on behalf of a performer to arrange concert dates
- an active knowledge management system is utilized to facilitate an intelligent agent coordinator Support for several channels of information delivery, all of which utilize a common back-end is provided For instance, if a user is in front of a Magic Wall, the information will be presented in a multimedia-rich form If the system determines that the user is mobile, the information will be sent to an awareness machine in standard text
- the architecture facilitates delivery of information whenever and wherever a user requires the information in an appropriate format based on characteristics of the user at that instant Personalization of information is also afforded by taking into account the history of user interactions with various applications and current real-time situations including "who is the current user, where the user is currently, and when the user is logged onto the system "
- a fast and scalable information prioritization subsystem is also utilized to incorporate intelligent agents coordinator opinion, user preferences, and history of user interactions This processing removes much of the normal processing from an agent which allows the agents to be much more sophisticated and precise without compromising the system scalability
- speech recognition and speech synthesis in combination with intelligent agent animated representation and tactile input provides for efficient, intuitive, and emotionally rewarding interaction with the system
- FIG. 1 is a block diagram of a representative hardware environment in accordance with a preferred embodiment
- FIG. 2 is a flowchart of the system in accordance with a preferred embodiment
- FIG. 3 is a flowchart of a parsing unit of the system in accordance with a preferred embodiment
- Figure 4 is a flowchart for pattern matching in accordance with a preferred embodiment
- FIG. 5 is a flowchart for a search unit in accordance with a preferred embodiment
- FIG. 6 is a flowchart for overall system processing in accordance with a preferred embodiment
- FIG. 7 is a flowchart of topic processing in accordance with a preferred embodiment
- FIG. 8 is a flowchart of meeting record processing in accordance with a preferred embodiment
- FIG. 9 is a block diagram of process flow of a pocket bargain finder in accordance with a preferred embodiment
- Figure 10A and 10B are a block diagram and flowchart depicting the logic associated with creating a customized content web page in accordance with a preferred embodiment
- Figure 11 is a flowchart depicting the detailed logic associated with retrieving user-centric content in accordance with a preferred embodiment
- Figure 12 is a data model of a user profile in accordance with a preferred embodiment
- Figure 13 is a persona data model in accordance with a preferred embodiment
- Figure 14 is an intention data model in accordance with a preferred embodiment
- Figure 15 is a flowchart of the processing for generating an agent's current statistics in accordance with a preferred embodiment
- Figure 16 is a flowchart of the logic that determines the personalized product rating for a user in accordance with a preferred embodiment
- Figure 17 is a flowchart of the logic for accessing the centrally stored profile in accordance with a preferred embodiment
- Figure 18 is a flowchart of the interaction logic between a user and the integrator for a particular supplier in accordance with a preferred embodiment
- Figure 19 is a flowchart of the agent processing for generating a verbal summary in accordance with a preferred embodiment
- Figure 20 illustrates a display login in accordance with a preferred embodiment
- Figure 21 illustrates a managing daily logistics display in accordance with a preferred embodiment
- Figure 22 illustrates a user main display in accordance with a preferred embodiment
- Figure 23 illustrates an agent interaction display in accordance with a preferred embodiment
- Figure 24 is a block diagram of an active knowledge management system in accordance with a preferred embodiment
- Figure 25 is a block diagram of a back end server in accordance with a preferred embodiment.
- Figure 26 is a block diagram of a magic wall in accordance with a preferred embodiment.
- a preferred embodiment of a system in accordance with the present invention is preferably practiced in the context of a personal computer such as an IBM compatible personal computer, Apple Macintosh computer or UNIX based workstation.
- a representative hardware environment is depicted in Figure 1 , which illustrates a typical hardware configuration of a workstation in accordance with a preferred embodiment having a central processing unit 110, such as a microprocessor, and a number of other units interconnected via a system bus 112.
- the workstation shown in Figure 1 includes a Random Access Memory (RAM)
- ROM Read Only Memory
- I/O adapter 118 for connecting peripheral devices such as disk storage units 120 to the bus 112
- a user interface adapter 122 for connecting a keyboard 124, a mouse 126, a speaker 128, a microphone 132, and/or other user interface devices such as a touch screen (not shown) to the bus 112
- communication adapter 134 for connecting the workstation to a communication network (e g , a data processing network) and a display adapter 136 for connecting the bus 112 to a display device 138
- the workstation typically has resident thereon an operating system such as the Microsoft Windows NT or W ⁇ ndows/95 Operating System (OS), the IBM OS/2 operating system, the MAC OS, or UNIX operating system
- OS Microsoft Windows NT or W ⁇ ndows/95 Operating System
- MAC OS MAC OS
- UNIX operating system Those skilled in the art will appreciate that the present invention may also be implemented on platforms and operating systems other than those mentioned
- OOP Object oriented programming
- OOP is a process of developing computer software using objects, including the steps of analyzing the problem, designing the system, and constructing the program
- An object is a software package that contains both data and a collection of related structures and procedures Since it contains both data and a collection of structures and procedures, it can be visualized as a self-sufficient component that does not require other additional structures, procedures or data to perform its specific task OOP, therefore, views a computer program as a collection of largely autonomous components, called objects, each of which is responsible for a specific task
- This concept of packaging data, structures, and procedures together in one component or module is called encapsulation
- OOP components are reusable software modules which present an interface that conforms to an object model and which are accessed at run-time through a component integration architecture
- a component integration architecture is a set of architecture mechanisms which allow software modules in different process spaces to utilize each others capabilities or functions This is generally done by assuming a common component object model on which to build the architecture
- An object is a single instance of the class of objects, which is often just called a class A class of objects can be viewed as a blueprint, from which many objects can be formed
- OOP allows the programmer to create an object that is a part of another object
- the object representing a piston engine is said to have a composition-relationship with the object representing a piston
- a piston engine comprises a piston, valves and many other components, the fact that a piston is an element of a piston engine can be logically and semantically represented in OOP by two objects
- OOP also allows creation of an object that "depends from" another object If there are two objects, one representing a piston engine and the other representing a piston engine wherein the piston is made of ceramic, then the relationship between the two objects is not that of composition
- a ceramic piston engine does not make up a piston engine Rather it is merely one kind of piston engine that has one more limitation than the piston engine, its piston is made of ceramic
- the object representing the ceramic piston engine is called a derived object, and it inherits all of the aspects of the object representing the piston engine and adds further limitation or detail to it
- the object representing the ceramic piston engine "depends from” the object representing the piston engine
- inheritance inheritance
- the object or class representing the ceramic piston engine inherits all of the aspects of the objects representing the piston engine, it inherits the thermal characteristics of a standard piston defined in the piston engine class
- the ceramic piston engine object overrides these ceramic specific thermal characteristics, which are typically different from those associated with a metal piston It skips over the original and uses new functions related to ceramic pistons
- Different kinds of piston engines have different characteristics, but may have the same underlying functions associated with it (e g , how many pistons in the engine, ignition sequences, lubrication, etc )
- a programmer would call the same functions with the same names, but each type of piston engine may have different/overriding implementations of functions behind the same name This ability to hide different implementations of a function behind the same name is called polymorphism and it greatly simplifies communication among objects
- composition-relationship With the concepts of composition-relationship, encapsulation, inheritance and polymorphism, an object can represent just about anything in the real world In fact, our logical perception of the reality is the only limit on determining the kinds of things that can become objects in object-oriented software Some typical categories are as follows
- Objects can represent physical objects, such as automobiles in a traffic-flow simulation, electrical components in a circuit-design program, countries in an economics model, or aircraft in an air-traffic-control system
- Objects can represent elements of the computer-user environment such as windows, menus or graphics objects •
- An object can represent an inventory, such as a personnel file or a table of the latitudes and longitudes of cities
- An object can represent user-defined data types such as time, angles, and complex numbers, or points on the plane
- OOP allows the software developer to design and implement a computer program that is a model of some aspects of reality, whether that reality is a physical entity, a process, a system, or a composition of matter Since the object can represent anything, the software developer can create an object which can be used as a component in a larger software project in the future
- OOP enables software developers to build objects out of other, previously built, objects
- OOP capabilities are being added to more traditional popular computer programming languages such as Pascal.
- Encapsulation enforces data abstraction through the organization of data into small, independent objects that can communicate with each other. Encapsulation protects the data in an object from accidental damage, but allows other objects to interact with that data by calling the object's member functions and structures.
- class libraries allow programmers to use and reuse many small pieces of code, each programmer puts those pieces together in a different way.
- Two different programmers can use the same set of class libraries to write two programs that do exactly the same thing but whose internal structure (i.e., design) may be quite different, depending on hundreds of small decisions each programmer makes along the way.
- similar pieces of code end up doing similar things in slightly different ways and do not work as well together as they should.
- Class libraries are very flexible. As programs grow more complex, more programmers are forced to adopt basic solutions to basic problems over and over again.
- a relatively new extension of the class library concept is to have a framework of class libraries. This framework is more complex and consists of significant collections of collaborating classes that capture both the small scale patterns and major mechanisms that implement the common requirements and design in a specific application domain. They were first developed to free application programmers from the chores involved in displaying menus, windows, dialog boxes, and other standard user interface elements for personal computers.
- Frameworks also represent a change in the way programmers think about the interaction between the code they write and code written by others
- the programmer called libraries provided by the operating system to perform certain tasks, but basically the program executed down the page from start to finish, and the programmer was solely responsible for the flow of control This was appropriate for printing out paychecks, calculating a mathematical table, or solving other problems with a program that executed in just one way
- event loop programs require programmers to write a lot of code that should not need to be written separately for every application
- the concept of an application framework carries the event loop concept further Instead of dealing with all the nuts and bolts of constructing basic menus, windows, and dialog boxes and then making these things all work together, programmers using application frameworks start with working application code and basic user interface elements in place Subsequently, they build from there by replacing some of the generic capabilities of the framework with the specific capabilities of the intended application
- Application frameworks reduce the total amount of code that a programmer has to write from scratch
- the framework is really a generic application that displays windows, supports copy and paste, and so on, the programmer can also relinquish control to a greater degree than event loop programs permit
- the framework code takes care of almost all event handling and flow of control, and the programmer's code is called only when the framework needs it (e g , to create or manipulate a proprietary data structure)
- a programmer writing a framework program not only relinquishes control to the user (as is also true for event loop programs), but also relinquishes the detailed flow of control within the program to the framework This approach allows the creation of more complex systems that work together in interesting ways, as opposed to isolated programs, having custom code, being created over and over again for similar problems
- a framework basically is a collection of cooperating classes that make up a reusable design solution for a given problem domain It typically includes objects that provide default behavior (e g , for menus and windows), and programmers use it by inheriting some of that default behavior and overriding other behavior so that the framework calls application code at the appropriate times
- default behavior e g , for menus and windows
- programmers use it by inheriting some of that default behavior and overriding other behavior so that the framework calls application code at the appropriate times
- Behavior versus protocol Class libraries are essentially collections of behaviors that you can call when you want those individual behaviors in your program
- a framework provides not only behavior but also the protocol or set of rules that govern the ways in which behaviors can be combined, including rules for what a programmer is supposed to provide versus what the framework provides
- a preferred embodiment of the invention utilizes HyperText Markup Language (HTML) to implement documents on the Internet together with a general-purpose secure communication protocol for a transport medium between the client and the Newco HTTP or other protocols could be readily substituted for HTML without undue expenmentation Information on these products is available in T Berners-Lee, D Connoly, "RFC 1866 Hypertext Markup Language - 20" (Nov 1995), and R Fielding, H, Frystyk, T Berners-Lee, J Gettys and J C Mogul, "Hypertext Transfer Protocol - HTTP/1 1 HTTP Working Group Internet Draft" (May 2, 1996) HTML is a simple data format used to create hypertext documents that are portable from one platform to another HTML documents are SGML documents with generic semantics that are appropriate for representing information from a wide range of domains HTML has been in use by the World- Wide Web global information initiative since 1990 HTML is an application
- HTML has been the dominant technology used in development of Web-based solutions
- HTML has proven to be inadequate in the following areas Poor performance, Restricted user interface capabilities, • Can only produce static Web pages,
- Custom "widgets” e g real-time stock tickers, animated icons, etc
- client-side performance is improved
- Java supports the notion of client- side validation, offloading appropriate processing onto the client for improved performance
- Dynamic, real-time Web pages can be created Using the above-mentioned custom Ul components, dynamic Web pages can also be created
- ActiveX includes tools for developing animation, 3-D virtual reality, video and other multimedia content
- the tools use Internet standards, work on multiple platforms, and are being supported by over 100 companies
- the group's building blocks are called ActiveX Controls, small, fast components that enable developers to embed parts of software in hypertext markup language (HTML) pages
- ActiveX Controls work with a va ⁇ ety of programming languages including Microsoft Visual C++, Borland Delphi, Microsoft Visual Basic programming system and, in the future, Microsoft's development tool for Java, code named "Jakarta " ActiveX Technologies also includes ActiveX Server Framework, allowing developers to create server applications
- ActiveX could be substituted for JAVA without undue experimentation to practice the invention
- BackgroundFinder is implemented as an agent responsible for preparing an individual for an upcoming meeting by helping him/her retrieve relevant information about the meeting from various sources BF receives input text in character form indicative of the target meeting
- the input text is generated in accordance with a preferred embodiment by a calendar program that includes the time of the meeting
- the calendar program is queried to obtain the text of the target event and that information is utilized as input to the agent
- the agent parses the input meeting text to extract its various components such as title, body, participants, location, time etc
- the system also performs pattern matching to identify particular meeting fields in a meeting text
- This information is utilized to query various sources of information on the web and obtain relevant stories about the current meeting to send back to the calendaring system For example, if an individual has a meeting with Netscape and Microsoft to talk about their disputes, and would obtain this initial information from the calendaring system It will then parse out the text to realize that the companies in the meeting are "Netscape” and "Microsoft" and the topic is
- a computer program in accordance with a preferred embodiment is organized in five distinct modules BF Mam, BF Parse, Background Finder Error, BF PatternMatching and BF Search There is also a frmMain which provides a user interface used only for debugging purposes
- the executable programs in accordance with a preferred embodiment never execute with the user interface and should only return to the calendaring system through Microsoft's Winsock control
- a preferred embodiment of the system executes in two different modes which can be specified under the command line sent to it by the calendaring system When the system runs in simple mode, it executes a keyword query to submit to external search engines When executed in complex mode, the system performs pattern matching before it forms a query to be sent to a search engine
- tMeetingRecord The user-defined structure, tMeetingRecord, is used to store all the pertinent information concerning a single meeting
- This info includes userlD, an original description of the meeting, the extracted list of keywords from the title and body of meeting etc it is important to note that only one meeting record is created per instance of the system in accordance with a preferred embodiment This is because each time the system is spawned to service an upcoming meeting, it is assigned a task to retrieve information for only one meeting Therefore, the meeting record created corresponds to the current meeting examined ParseMeetingText populates this meeting record and it is then passed around to provide information about the meeting to other functions
- the record tAPattemRecord is an array containing all the components / elements of a pattern.
- the type tAPattern Element is an array of strings which represent an element in a pattern. Because there may be many "substitutes" for each element, we need an array of strings to keep track of what all the substitutes are.
- the structures of tAPatternElement and tAPattemRecord are presented below in accordance with a preferred embodiment.
- FIG. 2 depicts the overall process flow in accordance with a preferred embodiment Processing commences at the top of the chart at function block 200 which launches when the program starts Once the application is started, the command line is parsed to remove the appropriate meeting text to initiate the target of the background find operation in accordance with a preferred embodiment as shown in function block 210 A global stop list is generated after the target is determined as shown in function block 220 Then, all the patterns that are utilized for matching operations are generated as illustrated in function block 230 Then, by tracing through the chart, function block 200 invokes GoBF 240 which is responsible for logical processing associated with wrapping the correct search query information for the particular target search engine For example, function block 240 flows to function block 250 and it then calls GoPatternMatch as shown in function block 260 To see the process flow of GoPatternMatch, we swap to the diagram titled "Process Flow for BF's Pattern Matching Unit "
- the Alta Vista search engine utilizes the identifies and returns general information about topics related to the current meeting as shown in function block 270 of Figure 2
- the system in accordance with a preferred embodiment takes all the keywords from the title portion of the original meeting text and constructs an advanced query to send to Alta Vista
- the keywords are logically combined together in the query
- the results are also ranked based on the same set of keywords
- the NewsPage search system is responsible for giving us the latest news topics related to a target meeting
- the system takes all of the keywords from the title portion of the original meeting text and constructs a query to send to the NewsPage search engine
- the keywords are logically combined together in the query Only articles published recently are retrieved
- the Newspage search system provides a date restriction criteria that is settable by a user according to the user's preference
- the top ranking stories are returned to the calendaring system
- Figure 3 is a user profile data model in accordance with a preferred embodiment Processing commences at function block 300 which is responsible for invoking the program from the main module Then, at function block 310, a wrapper function is invoked to prepare for the keyword extraction processing in function block 320 After the keywords are extracted, then processing flows to function block 330 to determine if the delimiters are properly positioned Then, at function block 340, the number of words in a particular string is calculated and the delimiters for the particular field are and a particular field from the meeting text is retrieved at function block 350 Then, at function block 380, the delimiters of the string are again checked to assure they are placed appropriately Finally, at function block 360, the extraction of each word from the title and body of the message is performed a word at a time utilizing the logic in function block 362 which finds the next closest word delimiter in the input phrase, function block 364 which strips unnecessary materials from a word and function block 366 which determines if a word is on the stop list and returns an error if the word is
- the limitations associated with a simple searching method include the following 1 Because it relies on a stoplist of unwanted words in order to extract from the meeting text a set of keywords, it is limited by how comprehensive the stoplist is Instead of trying to figure out what parts of the meeting text we should throw away, we should focus on what parts of the meeting text we want
- a simple search method in accordance with a preferred embodiment only uses the keywords from a meeting title to form queries to send to Alta Vista and NewsPage This ignores an alternative source of information for the query, the body of the meeting notice We cannot include the keywords from the meeting body to form our queries because this often results in queries which are too long and so complex that we often obtain no meaningful results
- Pattern matching is based on a set of templates that we specify, allowing us to identify people names, company names etc from a meeting text
- a pattern in the context of a preferred embodiment is a template specifying the structure of a phrase we are looking for in a meeting text
- the patterns supported by a preferred embodiment are selected because they are templates of phrases which have a high probability of appearing in someone's meeting text For example, when entering a meeting in a calendar, many would write something such as "Meet with Bob Dutton from Stanford University next Tuesday " A common pattern would then be something like the word "with” followed by a person's name (in this example it is Bob Dutton) followed by the word "from” and ending with an organization's name (in this case, it is Stanford University)
- Pattern a pattern is a template specifying the structure of a phrase we want to bind the meeting text to It contains sub units
- a pattern can contain many sub-units These subumts are called elements For example, in the pattern "with $PEOPLE$ from $COMPANY$”, “with” “$PEOPLE$” “from” "$COMPANY$” are all elements
- Placeholder a placeholder is a special kind of element in which we want to bind a value to Using the above example, "$PEOPLE$" is a placeholder
- an indicator is another kind of element which we want to find in a meeting text but no value needs to bind to it There may be often more than one indicator we are looking for in a certain pattern That is why an indicator is not an "atomic" type
- Substitute substitutes are a set of indicators which are all synonyms of each other Finding any one of them in the input is good
- FIG. 4 is a detailed flowchart of pattern matching in accordance with a preferred embodiment Processing commences at function block 400 where the mam program invokes the pattern matching application and passes control to function block 410 to commence the pattern match processing Then, at function block 420, the wrapper function loops through to process each pattern which includes determining if a part of the text string can be bound to a pattern as shown in function block 430 Then, at function block 440, various placeholders are bound to values if they exist, and in function block 441 , a list of names separated by punctuation are bound, and at function block 442 a full name is processed by finding two capitalized words as a full name and grabbing the next letter after a space after a word to determine if it is capitalized Then, at function block 443, time is parsed out of the string in an appropriate manner and the next word after a blank space in function block 444 Then, at function block 445, the continuous phrases of capitalized words such as company, topic or location are bound and in function block 446, the
- FIG. 5 is a flowchart of the detailed processing for preparing a query and obtaining information from the internet in accordance with a preferred embodiment
- Processing commences at function block 500 and immediately flows to function block 510 to process the wrapper functionality to prepare for an Internet search utilizing a web search engine If the search is to utilize the Alta Vista search engine, then at function block 530, the system takes information from the meeting record and forms a query in function blocks 540 to 560 for submittal to the search engine If the search is to utilize the NewsPage search engine, then at function block 520, the system takes information from the meeting record and forms a query in function blocks 521 to 528
- Alta Vista search engine provides enhanced flexibility Using its advance query method, one can construct all sorts of Boolean queries and rank the search however you want.
- one of the biggest drawbacks with Alta Vista is that it is not very good at handling a large query and is likely to give back irrelevant results If we can identify the topic and the company within a meeting text, we can form a pretty short but comprehensive query which will hopefully yield better results
- BF Main program first launches It initializes BF with the appropriate parameters(e g Internet time-out, stoplist ) and calls GoBF to launch the main part of the Procedure Name Type Called By Description
- ParseAndCleanP Private ParseMeetingText This function first grabs the word and hrase Function send it to CleanWord in order strip
- SwitchFace (Denise is more normal and calls it GetAWordFromString) if this finds words, then each of these will be sent, in turn, down the chain. If these get through the entire chain without being added or killed then they will be added rather than tossed. Procedure Name Type Called By Description
- Figure 6 is a flowchart of the actual code utilized to prepare and submit searches to the Alta Vista and Newspage search engines in accordance with a preferred embodiment Processing commences at function block 610 where a command line is utilized to update a calendar entry with specific calendar information The message is next posted in accordance with function block 620 and a meeting record is created to store the current meeting information in accordance with function block 630 Then, in function block 640 the query is submitted to the Alta Vista search engine and in function block 650, the query is submitted to the Newspage search engine When a message is returned from the search engine, it is stored in a results data structure as shown in function block 660 and the information is processed and stored in summary form in a file for use in preparation for the meeting as detailed in function block 670
- Figure 7 provides more detail on creating the query in accordance with a preferred embodiment Processing commences at function block 710 where the meeting record is parsed to obtain potential companies, people, topics, location and a time Then, in function block 720, at least one topic is identified and in function block 720, at least one company name is identified and finally in function block 740, a decision is made on what material to transmit to the file for ultimate consumption by the user
- Figure 8 is a variation on the query theme presented in Figure 7
- a meeting record is parsed in function block 800, a company is identified in function block 820, a topic is identified in function block 830 and finally in function block 840 the topic and or the company is utilized in formulating the query
- BindName, BindTime, BindCompanyLocTopic which are responsible for associating a value with a placeholder can be enhanced
- the enhancement is realized by increasing the set of criteria for binding a certain meeting field in order to increase the number of binding values
- BindTime currently accepts and binds all values in the form of ## ## or # ##
- BindTime may want BindTime to also accept the numbers 1 to 12 followed by the more aesthetic time terminology "o'clock " Vocabulary based recognition algorithms and assigning an accuracy rate to each guess BF makes allowing only guesses which meet a certain threshold to be valid Depending on what location the system identifies through pattern matching or alternatively depending on what location the user indicates as the meeting place, a
- FIG. 9 is a flow diagram that depicts the hardware and logical flow of control for a device and a software system designed to allow Web-based comparison shopping in conventional, physical, non-Web retail environments
- a wireless phone or similar hand-held wireless device 920 with Internet Protocol capability is combined with a miniature barcode reader 910 (installed either inside the phone or on a short cable) and used to scan the Universal Product Code (UPC) bar code on a book or other product 900
- the wireless device 920 transmits the bar code via an antennae 930 to the Pocket BargamFinder Service Module (running on a Web server) 940, which converts it to (in the case of books) its International Standard Book Number or (in the case of other products) whatever identifier is appropriate
- the Service Module then contacts the appropriate third-party Web s ⁇ te(s) to find price, shipping and availability information on the product from various Web suppliers 950 This information is formatted and displayed on the hand-held device's screen
- the IP wireless phone or other hand held device 920 utilizes a wireless
- the 8-ounce Ricochet SE Wireless Modem is about as large as a pack of cigarettes and setup is extremely simple, simply attach the modem to the back of your portable's screen with the included piece of Velcro, plug the cable into the serial port, flip up the stubby antenna, and transmit Software setup is equally easy a straightforward installer adds the Ricochet modem drivers and places the connection icon on your desktop
- the functional aspects of the modem are identical to that of a traditional telephone modem
- a user may utilize the web server software 940 to identify the right product 950 and then use an appropriate device's key(s) to select a supplier and place an order in accordance with a preferred embodiment
- BargamFinder Service Module then consummates the order with the appropriate third-party Web supplier 960 mySite! Personal Web Site & Intentions Value Network Prototype
- mySite' is a high-impact, Internet-based application in accordance with a preferred embodiment that is focused on the theme of delivering services and providing a personalized experience for each customer via a personal web site in a buyer-centric world
- mySite' represents a value-added and innovative way to effectively attract, service, and retain customers
- Intention value networks allow a user to enter through a personalized site and, and with the assistance of a learning, intelligent agent, seamlessly interact with network participants
- An intention value network in accordance with a preferred embodiment provides superior value It provides twenty four hour a day, seven days a week access to customized information, advice and products The information is personalized so that each member views content that is highly customized to assure relevance to the required target user
- Egocentric Interface is a user interface crafted to satisfy a particular user's needs, preferences and current context It utilizes the user's personal information that is stored in a central profile database to customize the interface The user can set security permissions on and preferences for interface elements and content
- the content integrated into the Egocentric Interface is customized with related information about the user
- the Egocentric Interface will include the relationship between that content and the user in a way that demonstrates how the content relates to the user For instance, when displaying information about an upcoming ski trip the user has signed up for, the interface will include information about events from the user's personal calendar and contact list, such as other people who will be in the area during the ski trip This serves to put the new piece of information into a context familiar to the individual user
- Figure 10A describes the Intention Value Network Architecture implementation for the World Wide Web For simplification purposes, this diagram ignores the complexity pertaining to security, scalability and privacy The customer can access the
- Intention Value Network with any Internet web browser 1010, such as Netscape Navigator or Microsoft Internet Explorer, running on a personal computer connected to the Internet or a Personal Digital Assistant with wireless capability See Figure 17 for a more detailed description of the multiple methods for accessing an Intention Value Network
- the customer accesses the Intention Value Network through the unique name or IP address associated with the Integrator's Web Server 1020
- the Integrator creates the Intention Value Network using a combination of resources, such as the Intention Database 1030, the Content Database 1040, the Supplier Profile Database 1050, and the Customer Profile Database 1060
- the Intention Database 1030 stores all of the information about the structure of the intention and the types of products and services needed to fulfill the intention Information in this database includes intention steps, areas of interest, layout templates and personalization templates
- the Content Database 1040 stores all of the information related to the intention, such as advice, referral information, personalized content, satisfaction ratings, product ratings and progress reports
- the Supplier Profile Database 1050 contains information about the product and service providers integrated into the intention
- the information contained in this database provides a link between the intention framework and the suppliers It includes product lists, features and descriptions, and addresses of the suppliers' product web sites
- the Customer Profile Database 1060 contains personal information about the customers, such as name, address, social security number and credit card information, personal preferences, behavioral information, history, and web site layout preferences
- the Supplier's Web Server 1070 provides access to all of the supplier's databases necessary to provide information and transactional support to the customer
- the Product Information Database 1080 stores all product-related information, such as features, availability and pricing
- the Product Order Database 1090 stores all customer orders
- the interface to this database may be through an Enterprise Resource Planning application offered by SAP, Baan, Oracle or others, or it may be accessible directly through the Supplier's
- the Customer Information Database 1091 stores all of the customer information that the supplier needs to complete a transaction or maintain customer records
- FIG 10B is a flowchart providing the logic utilized to create a web page within the Egocentric Interface
- the environment assumes a web server and a web browser connected through a TCP/IP network, such as over the public Internet or a private
- Intranet Possible web servers could include Microsoft Internet Information Server, Netscape Enterprise Server or Apache Possible web browsers include Microsoft Internet Explorer or Netscape Navigator
- the client (i e web browser) makes a request 1001 to the server (i e web server) for a particular web page This is usually accomplished by a user clicking on a button or a link within a web page
- the web server gets the layout and content preferences 1002 for that particular user, with the request to the database keyed off of a unique user id stored in the client (i e web browser) and the User profile database
- the web server then retrieves the content 1004 for the page that has been requested from the content database 1005
- the relevant user-centric content such as calendar, email, contact list, and task list items are then retrieved 1006 (See Figure 11 for a more detailed description of this process )
- the query to the database utilizes the user content preferences stored as part of the user profile in the User profile database 1003 to filter the content that is returned
- the content that is returned is then formatted into a web page 1007 according to the layout preferences defined in the user profile
- the web page is then returned to the client and displayed to the user 1008
- Figure 11 describes the process of retrieving user-centric content to add to a web page This process describes 1006 in Figure
- the server parses 1110 the filtered content, looking for instances of events, contact names and email addresses If any of these are found, they are tagged and stored in a temporary holding space Then, the server tries to find any user-centric content 1120 stored in various databases This involves matching the tagged items in the temporary storage space with calendar items 1130 in the Calendar Database 1140, email items 1115 in the Email Database 1114, contact items 1117 in the Contact Database 1168, task list items 1119 in the Task List Database 1118, and news items
- the system allows the user to create a number of different personas that aggregate profile information into sets that are useful in different contexts
- a user may create one persona when making purchases for his home This persona may contain his home address and may indicate that this user is looking to find a good bargain when shopping The same user may create a second persona that can be used when he is in a work context This persona may store the user's work address and may indicate that the user prefers certain vendors or works for a certain company that has a discount program in place When shopping for work-related items, the user may use this persona
- a persona may also contain rules and restrictions For instance, the work persona may restrict the user to making airline reservations with only one travel agent and utilizing booking rules set up by his employer
- Figure 12 describes the relationship between a user, his multiple personas and his multiple profiles At the User Level is the User Profile 1200
- This profile describes the user and his account information
- Attached to each user are multiple Personas 1220, 1230 & 1240
- These Personas are used to group multiple Profiles into useful contexts For instance, consider a user who lives in San Francisco and works in Palo Alto, but has a mountain cabin in Lake Tahoe He has three different contexts in which he might be accessing his site One context is work-related The other two are home-life related, but in different locations
- the user can create a Persona for Work 1220, a Persona for Home 1230, and a Persona for his cabin home 1240
- Each Persona references a different General Profile 1250, 1260 and 1270 which contains the address for that location
- Each Persona also references one of two Travel Profiles
- the user maintains a Work Travel Profile 1280 that contains all of the business rules related to booking tickets and making reservations This
- Figure 13 describes the data model that supports the Persona concept
- the user table 1310 contains a record for each user who has an account in the system This table contains a username and a password 1320 as well as a unique identifier
- Each user can have multiple Personas 1330, which act as containers for more specialized structures called Profiles 1340.
- Profiles contain the detailed personal information in Profile Field 1350 records Attached to each Profile are sets of Profile Restriction
- Satisfying Customer Intentions such as Planning for Retirement or Relocating requires a specialized interface
- Customer Intentions require extensive planning and coordination across many areas, ranging from financial security, housing and transportation to healthcare, personal and professional development, and entertainment, among others
- Satisfying Intentions requires a network of complementary businesses, working across industries, to help meet consumers' needs
- An Intention-Centric Interface is a user interface designed to help the user manage personal Intentions At any given point, the interface content is customized to show only content that relates to that particular Intention
- the Intention-Centric Interface allows the user to manage the process of satisfying that particular Intention This involves a series of discrete steps and a set of content areas the user can access
- the user can also switch the interface to manage a different Intention, and this act will change the content of the interface to include only that content which is relevant to the satisfaction of the newly selected
- FIG 14 provides a detailed description of the data model needed to support an intention-Centric Interface
- Each User Persona 1410 (see Figure 13 for a more detailed description of the Persona data model ) has any number of active User Intentions 1420
- Each active User Intention is given a Nickname 1430, which is the display name the user sees on the screen
- Each User Intention also keeps track of Intention Step 1470 completion status
- the Completion 1480 field indicates whether the user has completed the step Every User Intention is a user-specific version of a Generic Intention 1490, which is the default model for that Intention for all users
- the Generic Intention is customized through Custom Rules 1411 and 1412 that are attached to the sub-steps in the Intention These Custom Rules are patterns describing how the system will customize the Intention for each individual user using the individual user's profile information
- An agent keeps track of key statistics for each user These statistics are used in a manner similar to the Tamagochi virtual reality pet toy to encourage certain behaviors from the user
- the statistics that are recorded are frequency of login, frequency of rating of content such as news articles, and activity of agents, measured by the number of tasks which it performs in a certain period This information is used by the system to emotionally appeal to the user to encourage certain behaviors
- Figure 15 describes the process for generating the page that displays the agent's current statistics
- the server retrieves the users' statistics 1520 from the users' profile database 1530
- the server then performs the mathematical calculations necessary to create a normalized set of statistics 1540
- the server retrieves the formulas 1550 from the content database 1560 that will be used to calculate the user-centric statistics Graphs are then generated 1570 using the generic formulas and that user's statistics These graphs are inserted into a template to create the statistics page 1580 This page is then returned to the user 1590
- the system provide Consumer Report-like service that is customized for each user based on a user profile
- the system records and provides ratings from users about product quality and desirability on a number of dimensions
- the difference between this system and traditional product quality measurement services is that the ratings that come back to the users are personalized This service works by finding the people who have the closest match to the user's profile and have previously rated the product being asked for Using this algorithm will help to ensure that the product reports sent back to the user only contain statistics from people who are similar to that user
- Figure 16 describes the algorithm for determining the personalized product ratings for a user
- the algorithm retrieves the profiles 1620 from the profile database 1630 (which includes product ratings) of those users who have previously rated that product
- the system retrieves the default thresholds 1640 for the profile matching algorithm from the content database 1650 It then maps all of the short list of users along several dimensions specified in the profile matching algorithm 1660
- the top n (specified previously as a threshold variable) nearest neighbors are then determined and a test is performed to decide if they are within distance y (also specified previously as a threshold variable) of the user's profile in the set 1670 using the results from the profile matching algorithm If they are not within the threshold, then the threshold variables are relaxed 1680, and the test is run again This processing is repeated until the test returns true
- the product ratings from the smaller set of n nearest neighbors are then used to determine a number of product statistics 1690 along several dimensions Those statistics are inserted into a product report template 1695 and returned to the user 1697 as a product report
- This system provides one central storage place for a person's profile This storage place is a server available through the public
- PDA Personal Digital Assistant
- FIG. 17 presents the detailed logic associated with the many different methods for accessing this centrally stored profile
- the profile database 1710 is the central storage place for the users' profile information
- the profile gateway server 1720 receives all requests for profile information, whether from the user himself or merchants trying to provide a service to the user
- the profile gateway server is responsible for ensuring that information is only given out when the profile owner specifically grants permission
- Any device that can access the public Internet 1730 over TCP/IP (a standard network communications protocol) is able to request information from the profile database via intelligent HTTP requests
- Consumers will be able to gain access to services from devices such as their televisions 1740, mobile phones, Smart Cards, gas meters, water meters, kitchen appliances, security systems, desktop computers, laptops, pocket organizers, PDAs, and their vehicles, among others
- merchants 1750 will be able to access those profiles (given permission from the consumer who owns each profile), and will be able to offer customized, personalized services to consumers because of this
- One possible use of the ubiquitous profile is for a hotel chain
- a consumer can carry a Smart Card that holds a digital certificate uniquely identifying him
- This Smart Card's digital certificate has been issued by the system and it recorded his profile information into the profile database
- the consumer brings this card into a hotel chain and checks in
- the hotel employee swipes the Smart Card and the consumer enters his Pin number, unlocking the digital certificate
- the certificate is sent to the profile gateway server (using a secure transmission protocol) and is authenticated
- the hotel is then given access to a certain part of the consumer's profile that he has previously specified
- the hotel can then retrieve all of the consumer's billing information as well as preferences for hotel room, etc
- the hotel can also access the consumer's movie and dining preferences and offer customized menus for both of them
- the hotel can offer to send an email to the consumer's spouse letting him/her know the person checked into the hotel and is safe
- All transaction information can be uploaded to the consumer's profile after the hotel checks him in This will allow partners of the hotel to utilize the
- the overall integrator system coordinates the delivery of products and services for a user
- the integrator manages a network of approved suppliers providing products and services, both physical and virtual, to a user based on the user's preferences as reflected in the user's profile
- the integrator manages the relationship between suppliers and consumers and coordinates the suppliers' fulfillment of consumers' intentions It does this by providing the consumer with information about products and suppliers and offering objective advice, among other things
- Figure 18 discloses the detailed interaction between a consumer and the integrator involving one supplier The user accesses a
- Web Browser 1810 requests product and pricing information from the integrator
- the request is sent from the user's browser to the integrator's Web/Application Server 1820
- the user's preferences and personal information is obtained from an integrator's customer profile database 1830 and returned to the Web/Application server
- the requested product information is extracted from the supplier's product database 1840 and customized for the particular customer
- the Web/Application server updates the supplier's customer information database 1850 with the inquiry information about the customer
- the product and pricing information is then formatted into a Web Page 1860 and returned to the customer's Web Browser
- a suite of software agents running on the application and web servers are programmed to take care of repetitive or mundane tasks for the user
- the agents work according to rules set up by the user and are only allowed to perform tasks explicitly defined by the user
- the agents can take care of paying bills for the user, filtering content and emails, and providing a summary view of tasks and agent activity
- the user interface for the agent can be modified to suit the particular user
- Figure 19 discloses the logic in accordance with a preferred embodiment processing by an agent to generate a verbal summary for the user
- the server gets the user's agent preferences 1920, such as agent type, rules and summary level from the user profile database 1930
- the server gets the content 1940, such as emails, to do list items, news, and bills, from the content database 1950
- the agent parses all of this content, using the rules stored in the profile database, and summarizes the content 1960
- the content is formatted into a web page 1970 according to a template
- the text for the agent's speech is generated 1980, using the content from the content database 1990 and speech templates stored in the database This speech text is inserted into the web page 1995 and the page is returned to the user 1997
- FIG. 20 illustrates a display login in accordance with a preferred embodiment The display is implemented as a Microsoft
- Internet Explorer application with an agent 2000 that guides a user through the process of interacting with the system to customize and personalize various system components to gather information and interact with the user's personal requirements
- a user enters a username at 2010 and a password at 2020 and selects a button 2040 to initiate the login procedure
- the system transforms electronic commerce into a personalized, so called "me" commerce
- Figure 21 illustrates a managing daily logistics display in accordance with a preferred embodiment
- a user is greeted by an animated agent 2100 with a personalized message 2190
- the user can select from various activities based on requirements, including travel 2110, household chores 2120, finances 2130 and marketplace activities 2140
- Icons 2142 for routine tasks such as e-mail, calendaring and document preparation are also provided to facilitate rapid navigation from one activity to another
- Direct links 2146 are also provided to allow transfer of news and other items of interest
- Various profiles can be selected based on where the user is located For example, work, home or vacation The profiles can be added 2170 as a user requires a new profile for another location
- Various items 2180 of personal information are collected from the user to support various endeavors
- permissions 2150 are set for items 2180 to assure information is timely and current
- Figure 22 illustrates a user main display in accordance with a preferred embodiment World 2200 and local news 2210 is provided based on a user's preference
- the user has also selected real estate 2230 as an item to provide direct information on the main display
- a different agent 2220 is provided based on the user's preference
- Figure 23 illustrates an agent interaction in accordance with a preferred embodiment
- the agent 2310 is communicating information 2300 to a user indicating that the user's life insurance needs have changed and pointing the user to the chart that best summarizes the information for the user Particular tips 2395 are provided to facilitate more detailed information based on current user statistics
- a chart 2370 of the user's life insurance needs is also highlighted at the center of the display to assist the user in determining appropriate action
- a button 2380 is provided to facilitate changing the policy and a set of buttons 2390 are provided to assist a user in selecting various views of the user's insurance requirements
- An Event Backgrounder is a short description of an upcoming event that is sent to the user just before an event
- the Event Backgrounder is constantly updated with the latest information related to this event Pertinent information such as itinerary and logistics are included, and other useful information, such as people the user knows who might be in the same location, are also included
- the purpose of the Event Backgrounder is to provide the most up-to-date information about an event, drawing from a number of resources, such as public web sites and the user's calendar and contact lists, to allow the user to react optimally in a given situation
- This software looks for opportunities to tell the user when a friend, family member or acquaintance is or is going to be in the same vicinity as the user
- This software scans the user's calendar for upcoming events It then uses a geographic map to compare those calendar events with the calendar events of people who are listed in his contact list It then informs the user of any matches, thus telling the user that someone is scheduled to be near him at a particular time
- a preferred embodiment demonstrates the intelligent information delivery theory described above in an attempt to not only reduce information overload, but to deliver high quality information where and when users' require it
- the system delivers right information to the right person at the right time and the right place Active Knowledge Management System Description
- Figure 24 is a block diagram of an active knowledge management system in accordance with a preferred embodiment
- the system consists of the following parts back-end 2400 connection to one or more servers, personal mobile wireless clients (Awareness Mach ⁇ ne)2430, 2436, public clients (Magic Wall) 2410, 2420, web clients 2446, 2448, e-mail clients 2450, 2460
- FIG 25 is a block diagram of a back end server in accordance with a preferred embodiment
- the back-end (2400 of Figure 24) is a computer system that has the following software active Intelligent Agents Coordinator (Munin) 2580, Information Prioritization Subsystem 2530, a set of continuously and periodically running information gathering and processing Intelligent Agents 2500, 2502 and 2504, User Profiles Database 2542 and supporting software, Information Channels Database 2542 and supporting software, communications software 2550, information transformation software 2560, and auxiliary software
- the Awareness Machine is a combination of hardware device and software application
- the hardware consists of handheld personal computer and wireless communications device
- the Awareness Machine reflects a constantly updated state-of-the- owner's-world by continually receiving a wireless trickle of information
- This information mined and processed by a suite of intelligent agents, consists of mail messages, news that meets each user's preferences, schedule updates, background information on upcoming meetings and events, as well as weather and traffic
- Figure 26 is a block diagram of a magic wall in accordance with a preferred embodiment
- the Magic Wall hardware includes
- Sensor array 2634, 2630 and 2632 detects presence, position, and identity of a person •
- Large touch-sensitive display 2620
- the Magic Wall software supports • Multimedia output compatible with current Web standards
- the Magic Wall operates as follows 1 If a user appears in the vicinity of Magic Wall, the sensor array triggers "user here" event that sends an environmental cue containing the person's id and the location to the Intelligent Agent Coordinator
- the Intelligent Agent Coordinator decides if there is pertinent information that the user would be interested in and Magic Wall location time-sensitive information to show (e g traffic report, meeting reminder) If such information exists, it is prepared for delivery If not, control is transferred to the Information Prioritization Subsystem 6 Information Prioritization Subsystem decides what information is most relevant to the user based on their personal profile, freshness of the information, and the Intelligent Agent Coordinator's prior suggestions
- Magic Wall recognizes the speech fragment and then identifies and shows the requested page
- the Web client is a standard browser navigating to a set of Web pages which allow user to see the same information that is available via the Magic Wall
- the e-mail client is any standard e-mail program
- This piece of code is the coordinating agent (or meta-agent) for the Active Knowledge Management system This means that all communications between the system and each user, as well as communication between the different minion agents are handled (coordinated) by the Intelligent Agent Coordinator Examples of these minion agents are
- Bac groundFmder an agent that parses meeting text determining important keywords and phrases and finds background information on the meeting for each user
- TrafficFinder an agent that finds traffic information for each user based on where they live
- the Intelligent Agent Coordinator 2580 of Figure 25 is also the user's "interface" to the system, in that whenever the user interacts with the system, regardless of the GUI or other end-user interface, they are ultimately dealing with (asking questions of or sending commands to) the Intelligent Agent Coordinator
- the Intelligent Agent Coordinator has four primary responsibilities 1) monitoring user activities, 2) handling information requests, 3) maintaining each user's profile, and 4) routing information to and from users and to and from the other respective agents
- the Intelligent Agent Coordinator receives an "environmental cue " These cues not only enable the Intelligent Agent Coordinator to gam an understanding where users' are for information delivery purposes, but also to learn the standard patterns (arrival time, departure time, etc ) of each persons' life These patterns are constantly being updated and refined in an attempt to increase the system's intelligence when delivering information For instance, today it is not uncommon for a person to have several email accounts (work-based, home-based, mobile-based, etc ) as well as several different computers involved in the retrieval process for all of these accounts Thus, for the Intelligent Agent Coordinator to be successful in delivering information to the correct location it must take into account all of these accounts and the times that the user is likely to be accessing them in order to maximize the probability that the user will see the information This will be discussed further in another section
- the Intelligent Agent Coordinator handles information requests from other agents in order to personalize information intended for each user and to more accurately reflect each user's interests in the information they are given These requests will commonly be related to the user's profile For instance, if an agent was preparing a traffic report for a user it may request the traffic region (search string) of that user from the Intelligent Agent Coordinator All access to the user's profile data is accessed in this method
- User profiles contain extensive information about the users This information is a blend of user-specified data and information that the Intelligent Agent Coordinator has learned and extrapolated from each user's information and activities In order to protect the data contained in the profiles, the Intelligent Agent Coordinator must handle all user information requests
- the Intelligent Agent Coordinator is constantly modifying and updating these profiles by watching the user's activities and attempting to learn the patterns of their lives in order to assist in the more routine, mundane tasks
- the Intelligent Agent Coordinator also employs other agents to glean meaning from each user's daily activities These agents mine this data trying to discover indications of current interests, long-term interests, as well as time delivery preferences for each type of information Another important aspect of the Intelligent Agent Coordinator's observations is that it also tries to determine where each user is physically located throughout the day for routing purposes
- the Intelligent Agent Coordinator tries to be sensitive to this fact by attempting to determine, both by observation (unsupervised learning) and from cues from the environment, where users are or are likely to be located This is certainly important for determining where to send the user's information, but also for determining in which format to send the information For instance, if a user were at her desk and using the web client, the Intelligent Agent Coordinator would be receiving indications of activity from her PC and would know to send any necessary information there In addition, because desktop PCs are generally quite powerful, a full-featured, graphically intense version could be sent However, consider an alternative situation the Intelligent Agent Coordinator has received an indication (via the keycard reader next to the exit) that you have just left the building Minutes later the Intelligent Agent Coordinator also receives notification that you have received an urgent message The Intelligent Agent Coordinator, knowing that you have left the building and having not received any other indications, assumes that you are reachable via your handheld device (for which it also knows the capabilities) and sends the text of the urgent message there, rather than a
- the Active Knowledge Management system represents some of the most advanced thinking in the world of knowledge management and human computer interaction
- Some of the primary innovations include the following • The Intelligent Agent Coordinator as illustrated above
- Speech recognition and speech synthesis in combination with intelligent agent animated representation and tactile input provides for efficient, intuitive, and emotionally rewarding interaction with the system
- ⁇ ⁇ ntent ⁇ on_name_short intent ⁇ onjiame replace(/ /g ⁇ ,”") objConnection Executef'INSERT INTO intentions ( ⁇ ntent ⁇ on_name, ⁇ ntent ⁇ on_desc, ⁇ ntent ⁇ on_ ⁇ con) values('" + ⁇ ntent ⁇ on_name + "','” + ⁇ ntent ⁇ on_desc + "','” + ⁇ ntent ⁇ on_name_short + " gif + '"))
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Stored Programmes (AREA)
- Input From Keyboards Or The Like (AREA)
- Information Transfer Between Computers (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002350314A CA2350314C (fr) | 1998-11-19 | 1999-11-16 | Systeme, procede et article manufacture permettant d'interagir efficacement avec un usager de reseau |
AU17302/00A AU1730200A (en) | 1998-11-19 | 1999-11-16 | A system, method and article of manufacture for effectively interacting with a network user |
EP99960412A EP1138006A2 (fr) | 1998-11-19 | 1999-11-16 | Systeme, procede et article manufacture permettant d'interagir efficacement avec un usager de reseau |
HK02101921.0A HK1040557A1 (zh) | 1998-11-19 | 2002-03-13 | 用於有效地與網絡用戶交互作用的製造系統、方法和產品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/196,482 US6446076B1 (en) | 1998-11-12 | 1998-11-19 | Voice interactive web-based agent system responsive to a user location for prioritizing and formatting information |
US09/196,482 | 1998-11-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2000031656A2 true WO2000031656A2 (fr) | 2000-06-02 |
WO2000031656A3 WO2000031656A3 (fr) | 2000-10-19 |
Family
ID=22725585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/027222 WO2000031656A2 (fr) | 1998-11-19 | 1999-11-16 | Systeme, procede et article manufacture permettant d'interagir efficacement avec un usager de reseau |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1138006A2 (fr) |
AU (1) | AU1730200A (fr) |
CA (1) | CA2350314C (fr) |
HK (1) | HK1040557A1 (fr) |
TW (1) | TW486638B (fr) |
WO (1) | WO2000031656A2 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1246089A2 (fr) * | 2001-03-29 | 2002-10-02 | Fujitsu Limited | Méthodes de gestion, de génération et d'utilisation d'informations de connaissances et appareil pour la gestion d'informations de connaissances |
EP1391817A2 (fr) * | 2002-08-21 | 2004-02-25 | Deutsche Telekom AG | Méthode pour l'accès phonétique à des informations utilisant des relations sémantiques |
EP1697823A2 (fr) * | 2003-12-17 | 2006-09-06 | MOTOROLA INC., A Corporation of the state of Delaware | Icone interactive |
WO2008103546A1 (fr) * | 2007-02-19 | 2008-08-28 | Motorola, Inc. | Procédé et appareil de personnalisation d'applications |
US9396437B2 (en) | 2013-11-11 | 2016-07-19 | Mera Software Services, Inc. | Interface apparatus and method for providing interaction of a user with network entities |
US9814993B2 (en) | 2013-11-11 | 2017-11-14 | Mera Software Services, Inc. | Interactive toy plaything having wireless communication of interaction-related information with remote entities |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101593993B1 (ko) | 2009-08-10 | 2016-02-26 | 삼성전자주식회사 | 웹 애플리케이션 간의 데이터 통신 장치 및 방법 |
US10606345B1 (en) * | 2018-09-25 | 2020-03-31 | XRSpace CO., LTD. | Reality interactive responding system and reality interactive responding method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997041673A2 (fr) * | 1996-04-26 | 1997-11-06 | Freedom Of Information, Inc. | Methode et reseau informatiques permettant de determiner le comportement des utilisateurs |
WO1998003907A2 (fr) * | 1996-07-19 | 1998-01-29 | Microsoft Corporation | Fonction d'assistance intelligente a l'usager |
WO1998021872A1 (fr) * | 1996-11-14 | 1998-05-22 | Vois Corporation | Systeme et procede pour fournir et utiliser des fichiers de donnees vocales et de donnees audio, accessibles de maniere universelle |
WO1998035469A2 (fr) * | 1997-01-23 | 1998-08-13 | The Sabre Group, Inc. | Systeme de regroupement et de synthese d'informations |
WO1998040832A2 (fr) * | 1997-03-14 | 1998-09-17 | Firefly Network, Inc. | Procede et appareil servant a recommander des articles de maniere efficace a l'aide d'un filtrage cooperatif automatise et d'un filtrage cooperatif automatise a fonctions de guidage |
-
1999
- 1999-11-16 EP EP99960412A patent/EP1138006A2/fr not_active Ceased
- 1999-11-16 CA CA002350314A patent/CA2350314C/fr not_active Expired - Lifetime
- 1999-11-16 WO PCT/US1999/027222 patent/WO2000031656A2/fr active Application Filing
- 1999-11-16 AU AU17302/00A patent/AU1730200A/en not_active Abandoned
-
2000
- 2000-02-11 TW TW088120146A patent/TW486638B/zh not_active IP Right Cessation
-
2002
- 2002-03-13 HK HK02101921.0A patent/HK1040557A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997041673A2 (fr) * | 1996-04-26 | 1997-11-06 | Freedom Of Information, Inc. | Methode et reseau informatiques permettant de determiner le comportement des utilisateurs |
WO1998003907A2 (fr) * | 1996-07-19 | 1998-01-29 | Microsoft Corporation | Fonction d'assistance intelligente a l'usager |
WO1998021872A1 (fr) * | 1996-11-14 | 1998-05-22 | Vois Corporation | Systeme et procede pour fournir et utiliser des fichiers de donnees vocales et de donnees audio, accessibles de maniere universelle |
WO1998035469A2 (fr) * | 1997-01-23 | 1998-08-13 | The Sabre Group, Inc. | Systeme de regroupement et de synthese d'informations |
WO1998040832A2 (fr) * | 1997-03-14 | 1998-09-17 | Firefly Network, Inc. | Procede et appareil servant a recommander des articles de maniere efficace a l'aide d'un filtrage cooperatif automatise et d'un filtrage cooperatif automatise a fonctions de guidage |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1783641A2 (fr) * | 2001-03-29 | 2007-05-09 | Fujitsu Limited | Procédé de génération d'informations |
EP1783641A3 (fr) * | 2001-03-29 | 2007-10-10 | Fujitsu Limited | Procédé de génération d'informations |
EP1246089A3 (fr) * | 2001-03-29 | 2006-01-04 | Fujitsu Limited | Méthodes de gestion, de génération et d'utilisation d'informations de connaissances et appareil pour la gestion d'informations de connaissances |
EP1246089A2 (fr) * | 2001-03-29 | 2002-10-02 | Fujitsu Limited | Méthodes de gestion, de génération et d'utilisation d'informations de connaissances et appareil pour la gestion d'informations de connaissances |
EP1783640A3 (fr) * | 2001-03-29 | 2007-10-10 | Fujitsu Limited | Procédé d'utilisation d'informations |
EP1783640A2 (fr) * | 2001-03-29 | 2007-05-09 | Fujitsu Limited | Procédé d'utilisation d'informations |
EP1391817A3 (fr) * | 2002-08-21 | 2006-04-19 | Deutsche Telekom AG | Méthode pour l'accès phonétique à des informations utilisant des relations sémantiques |
EP1391817A2 (fr) * | 2002-08-21 | 2004-02-25 | Deutsche Telekom AG | Méthode pour l'accès phonétique à des informations utilisant des relations sémantiques |
EP1697823A2 (fr) * | 2003-12-17 | 2006-09-06 | MOTOROLA INC., A Corporation of the state of Delaware | Icone interactive |
EP1697823A4 (fr) * | 2003-12-17 | 2007-12-05 | Motorola Inc | Icone interactive |
WO2008103546A1 (fr) * | 2007-02-19 | 2008-08-28 | Motorola, Inc. | Procédé et appareil de personnalisation d'applications |
US9396437B2 (en) | 2013-11-11 | 2016-07-19 | Mera Software Services, Inc. | Interface apparatus and method for providing interaction of a user with network entities |
US9691018B2 (en) | 2013-11-11 | 2017-06-27 | Mera Software Services, Inc. | Interface apparatus and method for providing interaction of a user with network entities |
US9814993B2 (en) | 2013-11-11 | 2017-11-14 | Mera Software Services, Inc. | Interactive toy plaything having wireless communication of interaction-related information with remote entities |
Also Published As
Publication number | Publication date |
---|---|
CA2350314A1 (fr) | 2000-06-02 |
HK1040557A1 (zh) | 2002-06-14 |
TW486638B (en) | 2002-05-11 |
AU1730200A (en) | 2000-06-13 |
EP1138006A2 (fr) | 2001-10-04 |
WO2000031656A3 (fr) | 2000-10-19 |
CA2350314C (fr) | 2010-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6195651B1 (en) | System, method and article of manufacture for a tuned user application experience | |
US9058379B2 (en) | System, method and article of manufacture for advanced information gathering for targeted activities | |
US6446076B1 (en) | Voice interactive web-based agent system responsive to a user location for prioritizing and formatting information | |
US6134548A (en) | System, method and article of manufacture for advanced mobile bargain shopping | |
US7076504B1 (en) | Sharing a centralized profile | |
US8121891B2 (en) | Personalized product report | |
US6892196B1 (en) | System, method and article of manufacture for a user programmable diary interface link | |
CA2361771C (fr) | Systeme, procede et article permettant l'obtention de regroupement d'informations avancees grace a la technologie du web | |
US6317718B1 (en) | System, method and article of manufacture for location-based filtering for shopping agent in the physical world | |
EP1415245B1 (fr) | Procede de generation d'un filtre de recherche d'interface graphique utilisateur | |
WO2000028455A9 (fr) | Systeme, methode et article fabrique pour emplettes promotionnelles par utilisation d'un dispositif mobile de technologie de pointe | |
EP1163620A2 (fr) | Systeme, methode et article fabrique pour configuration dynamique de reseau de communication mobile | |
CA2350314C (fr) | Systeme, procede et article manufacture permettant d'interagir efficacement avec un usager de reseau | |
EP1131760A1 (fr) | Collecte et analyse d'informations de profil d'utilisateur | |
WO2000031664A2 (fr) | Systeme, procede et article manufacture destines a une interface de reseaux de profils groupes | |
WO2000031631A1 (fr) | Systeme, procede et article fabrique convenant a l'experimentation applicative des intentions d'un client | |
WO2000028413A2 (fr) | Systeme, methode et article fabrique aux fins d'une prise de connaissance des intentions d'un client sur reseau |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref country code: AU Ref document number: 2000 17302 Kind code of ref document: A Format of ref document f/p: F |
|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
ENP | Entry into the national phase |
Ref document number: 2350314 Country of ref document: CA Ref country code: CA Ref document number: 2350314 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999960412 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1999960412 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |