WO2000031580A1 - Production method for liquid crystal display device, liquid crystal display device substrate and liquid crystal display device - Google Patents

Production method for liquid crystal display device, liquid crystal display device substrate and liquid crystal display device Download PDF

Info

Publication number
WO2000031580A1
WO2000031580A1 PCT/JP1999/006545 JP9906545W WO0031580A1 WO 2000031580 A1 WO2000031580 A1 WO 2000031580A1 JP 9906545 W JP9906545 W JP 9906545W WO 0031580 A1 WO0031580 A1 WO 0031580A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
liquid crystal
display device
crystal display
Prior art date
Application number
PCT/JP1999/006545
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Yoshimura
Makoto Nakahara
Takatoshi Kira
Daisuke Ikesugi
Akihiko Tateno
Masaki Ban
Hiroshi Murata
Masaaki Kubo
Original Assignee
Sharp Kabushiki Kaisha
Sekisui Chemical Co., Ltd.
Nisshin Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha, Sekisui Chemical Co., Ltd., Nisshin Engineering Co., Ltd. filed Critical Sharp Kabushiki Kaisha
Priority to JP2000584339A priority Critical patent/JP3494993B2/en
Priority to KR1020017006443A priority patent/KR20010090850A/en
Publication of WO2000031580A1 publication Critical patent/WO2000031580A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a method for manufacturing a liquid crystal display device in which a spacer is selectively arranged by applying a voltage to an electrode, a substrate for a liquid crystal display device, and a liquid crystal display device.
  • a liquid crystal display device in which a spacer is arranged between a pair of insulating substrates on which electrodes are formed in order to maintain a constant distance between the pair of insulating substrates is known. Since the distance between this pair of green substrates, that is, the thickness of the liquid crystal layer, affects the light transmittance, good display must be performed unless it is kept constant over the entire display area of the liquid crystal display device. Can not. For this reason, conventionally, a spacer such as glass fiber or a spherical plastic bead is disposed between a pair of insulating substrates so that the thickness of the liquid crystal layer is kept constant over the entire display area. .
  • spacers are sprayed out of the nozzle together with a compressed gas after forming an alignment film and sprayed (dry spraying), or mixed with a volatile liquid to spray the liquid. And sprayed (wet spray) to be evenly distributed on the alignment film.
  • a pair of insulating substrates is attached to each other, and a liquid crystal such as a nematic liquid crystal is filled between the pair of substrates in a state where the spacer is held between the pair of insulating substrates.
  • a spacer is arranged on the pixel electrode in the display area, light leaks from the spacer, which substantially reduces the aperture ratio, causing a problem such as uneven display or reduced contrast. Had occurred.
  • spacer spraying technology for controlling the cell thickness in order to improve the display quality of liquid crystal display devices.
  • JP-A-3-293333 and JP-A-4-204417 disclose that an electrode on one of the insulating substrates is charged, By spraying a charged spacer on an insulating substrate, A method of selectively arranging spacers in an area has been proposed. When a spacer is sprayed on a substrate for a liquid crystal display device using these methods, an appropriate repulsive force acts on the spacer in the display electrode region, and a gap where no electrode exists, that is, the spacer is formed between the electrodes. They are arranged evenly.
  • a transparent electrode pattern for display is formed on a substrate for liquid crystal display device that is arranged to face, and the transparent material for display is formed around the same pattern as the transparent electrode for display.
  • Alignment mark for connecting electrode to TCP, alignment mark for alignment film and seal printing, alignment mark for bonding a pair of substrates for liquid crystal display, and presence / absence of transparent electrode for display A dummy electrode or the like was formed to prevent a difference in cell thickness due to this.
  • the electrode pattern formed on such an insulating substrate for a liquid crystal display device has a stripe shape in which an antistatic electrode 28 is connected to the insulating substrate 1.
  • the display electrode 3, the dummy electrode 21 for adjusting the cell thickness, the functional electrode 27a, the functional electrode 27b, and the functional electrode 27c were formed.
  • the dummy electrode 21, the functional electrode 27 a, the functional electrode 27 b, and the functional electrode 27 c are electrically floating (open circuit), respectively. No one was formed except for the necessary parts.
  • An object of the present invention is to provide a method of manufacturing a liquid crystal display device having high display uniformity, a substrate for a liquid crystal display device, and a liquid crystal display device using the same.
  • a voltage having the same polarity as the charging polarity of the spacer is applied to a plurality of electrodes formed on a substrate, and the repulsive force acting on the spacer is used to spray the spacer.
  • This is a method for manufacturing a liquid crystal display device, which is made substantially uniform with the electric field of a part.
  • the present invention is also a substrate for a liquid crystal display device used in the method for manufacturing a liquid crystal display device.
  • the present invention is also a liquid crystal display device manufactured by the above-described method for manufacturing a liquid crystal display device.
  • FIG. 1 is a cross-sectional view of a spreader spraying apparatus used in an embodiment of the present invention.
  • FIG. 2 is a plan view showing the insulating substrate according to the embodiment of the present invention.
  • FIG. 3 is an enlarged plan view showing a lower left electrode on the insulating substrate in FIG. 2 according to the embodiment of the present invention.
  • FIG. 4 is an enlarged plan view showing the functional electrode 27a on the insulating substrate according to the embodiment of the present invention in FIG.
  • FIG. 5 is an enlarged plan view showing the functional electrode 27c on the insulating substrate according to the embodiment of the present invention in FIG.
  • FIG. 6 is a conceptual diagram for explaining a method of arranging a spacer by an electric field according to the embodiment of the present invention.
  • FIG. 7 is a sectional view showing the liquid crystal display device according to the embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram of the liquid crystal display device according to the embodiment of the present invention.
  • FIG. 9 is a plan view showing a conventional insulating substrate.
  • FIG. 10 is an enlarged plan view showing the lower left electrode on the conventional insulating substrate in FIG.
  • FIG. 11 is a plan view showing the functional electrode 27 a on the conventional insulating substrate in FIG. It is an enlarged view.
  • FIG. 12 is an enlarged plan view showing the functional electrode 27a on the conventional insulating substrate in FIG. Explanation of reference numerals
  • the present invention comprises applying a voltage having the same polarity as the charged polarity of a spacer to a plurality of electrodes formed on a substrate, and spraying the spacer by using a repulsive force acting on the spacer.
  • a method for manufacturing a liquid crystal display device wherein the spraying of the stirrer makes the electric field near an electrode region formed of at least a plurality of electrodes on the substrate substantially uniform with the electric field at the center of the electrode region formed of the plurality of electrodes.
  • the vicinity of the electrode region composed of a plurality of electrodes on the substrate is not particularly limited.
  • it refers to the inside of the region including the dividing line to be the liquid crystal display device.
  • the range may be determined in a timely manner so that it can be maintained.
  • the range of the uniformity of the electric field may be appropriately determined in accordance with the specifications so that the uniformity of the cell thickness can be maintained. Note that the present invention can be applied whether the electric field is an attractive field or a combined field of repulsive force and attractive force.
  • the substrate examples include a glass substrate, a resin substrate, and a metal substrate having a plurality of electrodes on the surface thereof.
  • a metal substrate it is necessary to provide an insulating layer on the metal substrate so that the electrodes formed on the surface are not short-circuited.
  • the above-mentioned electrode is not particularly limited, and examples thereof include a transparent electrode and the like, and a transparent electrode having a linear shape can be used.
  • a striped electrode formed by arranging linear transparent electrodes in parallel can be formed on a substrate.
  • Striped electrodes are used as so-called display electrodes in liquid crystal display devices.
  • the electrode region including the plurality of electrodes is a region forming an electrode group including a plurality of electrodes. When the plurality of electrodes are used as display electrodes, the electrode region is a display electrode region.
  • the spacer is not particularly limited.
  • the sprayer may be sprayed by either a dry method or a wet method. In the above wet spraying, the spacer is dispersed and dispersed in a mixed solvent such as water and alcohol, but even in this case, the spacer is charged, so that the effect of the present invention is not impaired.
  • dry spraying is preferred because the larger the charge amount of the spacer, the better the placement accuracy.
  • a dummy electrode is provided without a gap in the vicinity of an electrode region including at least a plurality of electrodes on a substrate, and a voltage having the same polarity as the electrode including the plurality of electrodes is applied to the dummy electrode.
  • the above-mentioned dummy electrode includes a conductive electrode arranged and formed outside an electrode region (electrode group) including a plurality of electrodes. At this time, the dummy electrode is preferably formed in a strip shape or a block shape. In the case where a dummy electrode having a cylindrical shape is provided, a spacer is not disposed at that portion due to repulsion, and it becomes difficult to control the cell thickness in the vicinity of an electrode region including a plurality of electrodes.
  • the dummy electrode is provided at right angles to the plurality of electrodes, and at Z or parallel to the plurality of electrodes.
  • the linear arrangement (effective display area) and the bent part (leading part) of the electrodes reduce the arrangement amount of the spacer. Variations can be avoided, and the number of spacers scattered in the effective display area can be made equal to the number of spacers scattered in the dummy electrode area. It is possible to arrange the spacer uniformly with the region.
  • the lead portion of the electrode is also linear. However, at present, it is indispensable to provide a bent part in the electrode for TCP connection.
  • a functional electrode is provided near an electrode region including at least a plurality of electrodes on a substrate, and a voltage having the same polarity as the plurality of electrodes is applied to the functional electrode.
  • the functional electrode is not particularly limited, and examples thereof include an alignment mark for TCP connection, an alignment mark for division, an identification mark, an alignment mark for exposure, and an alignment mark for bonding. At this time, if the inside of the alignment mark is hollow, it is preferable to form a dummy electrode in that part as well.
  • At least one dummy electrode is provided in parallel with the plurality of electrodes outside an electrode region including a plurality of electrodes on a substrate, and a voltage having the same polarity as the plurality of electrodes is applied to the dummy electrode. Is preferred.
  • the number of dummy electrodes provided in parallel is preferably as large as possible, but may be determined appropriately according to design rules.
  • an electrode region including at least a plurality of electrodes on the substrate and an electrode in the vicinity of the electrode region including the plurality of electrodes have substantially the same electrode width.
  • the voltages applied to the electrodes and the plurality of electrodes in the vicinity of the electrode region including at least the plurality of electrodes on the substrate are the same.
  • a common conduction is provided to an outer peripheral portion near an electrode region including a plurality of electrodes.
  • the wires are formed of the same material as the plurality of electrodes, and a voltage is applied to each of the electrodes.
  • a liquid crystal display device can be manufactured with good cost performance and workability.
  • the connection between the common conductive line and the plurality of electrodes is on the connection side of the plurality of electrodes with the external circuit, and that the other is connected to the inside of the sealing resin.
  • connection with the external circuit is protected from electrolytic corrosion, and the other is not extended outside the seal resin. Does not occur.
  • the other part of the connection to the external circuit is connected to the common conductive line, it is necessary to protect the part from electrolytic corrosion after the substrate is cut.
  • the present invention is also a substrate for a liquid crystal display device used in the method for manufacturing a liquid crystal display device.
  • the present invention is also a liquid crystal display device manufactured by the above-described method for manufacturing a liquid crystal display device.
  • FIG. 1 is a schematic diagram showing a spacer spraying apparatus used in an embodiment of the present invention.
  • a nozzle 11a for spraying and spraying the charged spacer 8 is provided at the upper end of a clean container 10 that is closed or close to it.
  • a supply device (not shown) for supplying a spacer 8 and nitrogen gas is connected to the nozzle 11 a via a pipe 17.
  • An insulating substrate 1 made of glass or the like on which the display electrode 3 is formed is disposed below the container 10, and a conducting wire 18 for applying a voltage to the display electrode 3 to form an electric field is provided. ing. Instead of applying a voltage to the display electrode 3 to form an electric field, the electric field may be formed by the electrode 15 provided in the spacer spraying device.
  • a method of applying a voltage to the spacer 8 by applying a voltage to a charger (not shown) provided in the spraying device, or a method of charging the spacer with stainless steel And the like, and a method of charging by friction through a metal tube or a resin tube is known, and any of these methods may be used.
  • FIGS. 2 to 5 are schematic diagrams showing an electrode pattern according to the present invention.
  • a striped display electrode 3 and a dummy electrode 2 are connected on the insulating substrate 1 so that a voltage is applied from a common conducting line 26 formed so as to surround the insulating substrate 1.
  • a common conductive line is provided as a means for applying a voltage to each electrode.
  • a voltage may be directly applied to each electrode using a probe pin or the like, A charging method may be used.
  • the dummy electrodes 21a and 21b are electrodes provided without a gap to form an electric field in a region other than the display electrode, and in particular, the dummy electrode 2 lb is a continuous electrode in the display electrode region. In order to form the display electrodes, they are provided in parallel with the display electrodes in the same pattern as the display electrodes.
  • the functional electrode 27a is an alignment mark for TCP connection
  • the functional electrode 27b is an alignment mark for exposure and bonding
  • the functional electrode 27c is an alignment mark for cutting.
  • the dummy electrode and the functional electrode are simultaneously produced during the display electrode exposure and etching step.
  • the vicinity of the display electrode region on the insulating substrate is designed so as to have a range sufficiently including the functional electrode 27c, and is defined as a region surrounded by the common conductive line. I have.
  • a dummy electrode 21 a to which a voltage of the same polarity as that of the display electrode 3 is applied is provided without a gap so that the electric field is the same as that in the center of the display electrode area.
  • the dummy electrode 21a is formed so as to be orthogonal to the display electrode 3. 3
  • a voltage having the same polarity as that of the display electrode 3 is also applied to the functional electrodes 27a, 27b, and 27c.
  • a dummy electrode 21b is provided outside the display electrode 3 in parallel with the display electrode 3 so that a voltage of the same polarity as the display electrode 3 is applied to the dummy electrode 21b.
  • The width between the electrodes of the display area and the electrodes in the vicinity of the display electrode area are made substantially the same, and 6The voltage applied to the display electrode 3 and various other 7The common conductive line 26 is formed of the same material as the display electrode 3, Connection between the through conducting line 2 6 and the display electrodes 3, a connecting portion side of an external circuit of the display electrode 3, and the other that has a limit of the sealing resin inside.
  • the charged spacer is moved and arranged in the valley of the repulsive force.
  • the present invention as described above, at least in the region including the vicinity of the display electrode region on the insulating substrate, Since a similar electric field is formed, It becomes possible to arrange a sensor.
  • the solid line in FIG. 6 schematically shows the magnitude of the repulsive force applied to the spacer, and the magnitude of the repulsive force acting on the spacer is indicated by a semicircular “convex upward”. .
  • a simple matrix type liquid crystal display device is used.
  • the present invention is not limited to a simple matrix type liquid crystal display device, such as a ferroelectric liquid crystal display device or a TFT type liquid crystal display device. Naturally, it can also be used in liquid crystal display devices.
  • Example 1
  • one of the green substrates 1 has a black matrix 5 which is a light shielding film.
  • a color filter 4 made of RGB and formed, and an overcoat 6 for protecting the color filter 4 were formed.
  • an electrode pattern made of ITO having a thickness of 300 nm was formed, and an insulating film 23 was formed. In some cases, the insulating film 23 need not be formed. Further, an alignment film 9 made of a polyimide resin was formed and subjected to an alignment treatment.
  • the electrode pattern as shown in FIGS. 3 to 5, stripe-shaped display electrodes 3 are formed in the effective display area with a width of 270 / Xm and an interval of 30 / m. 1 a is formed with a line width of 35 m and a line interval of 35 / m without gaps, and a dummy electrode 2 1 b is displayed. Dummy electrodes 21a were arranged as much as possible around 7a, 27b and 27c. Further, an annular dummy electrode 21a was also arranged around the functional electrode 27b.
  • the spacers are not aggregated and arranged, and the display electrode portion, the dummy electrode portion, They were evenly arranged on the functional electrode part.
  • a sealing material 24 was applied to the insulating substrate 1 on which the color filter 4 was formed by a screen printing method. Glass beads serving as spacers 25 in the seal were mixed into the seal material 24.
  • the pair of insulating substrates 1 are bonded together, heated and pressurized at 180 ° (: 0.8 kg / cm 2) , and after-baked at 150 ° C.
  • the liquid crystal was cut along the cutting line to separate the parts, and then liquid crystal 7 was injected to produce a liquid crystal display device (shown in FIGS. 7 and 8) in which a pair of insulating substrates were bonded.
  • the spacers are uniformly distributed on the surface of the liquid crystal display device, have a uniform cell thickness, and no spacer is disposed on the display electrode.
  • Comparative example 1 had high contrast and high quality display characteristics.
  • a liquid crystal display device was manufactured in the same manner as in the example except that the conventional liquid crystal display device substrate shown in FIGS. 9 to 12 was used. As a result, the spacer is concentrated on the dummy electrode part, the functional electrode part, and the area where the electrode is not formed in the open circuit where the electric field is weak, or the spacer is completely disturbed due to the imbalance of the electric field. There was an area that was not created.
  • the manufactured liquid crystal display had poor cell thickness uniformity. Industrial applicability
  • a spacer can be arrange
  • the same spacer arrangement as that of the display electrode region can be provided also in the region of, and it is possible to provide a liquid crystal display device having a uniform cell thickness in the plane of the liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)

Abstract

A production method for a liquid crystal display device high in contrast and display uniformity, capable of disposing spacers uniformly on a substrate and uniforming a cell thickness over the entire substrate; a liquid crystal display device substrate; and a liquid crystal display device using it. A production method for a liquid crystal display device comprising the steps of applying a voltage with the same polarity as the charge polarity of spacers to a plurality of electrodes formed on a substrate and spreading the spacers by using a repulsive force acting on the spacers, the spacer being spread so that an electric field in the vicinity of an electrode area consisting of at least the electrodes on the substrate is almost equal to that in the center of the electrode area consisting of the electrodes.

Description

明細書  Specification
液晶表示装置の製造方法、 液晶表示装置用基板及び液晶表示装置 技術分野  Method of manufacturing liquid crystal display device, substrate for liquid crystal display device, and liquid crystal display device
本発明は、 電極に電圧を印加することによりスぺ一サを選択的に配置する液 晶表示装置の製造方法、 液晶表示装置用基板及び液晶表示装置に関するものであ る。 背景技術  The present invention relates to a method for manufacturing a liquid crystal display device in which a spacer is selectively arranged by applying a voltage to an electrode, a substrate for a liquid crystal display device, and a liquid crystal display device. Background art
従来から液晶表示装置においては、 電極の形成された一対の絶縁性基板の間隔 を一定に保持するため、 これらの一対の絶縁性基板間にスぺ一サを配置したもの が知られている。 この一対の絶緑性基板の間隔、 すなわち液晶層の層厚は、 光透 過率に影響を及ぼすために、 液晶表示装置の表示領域の全域にわたって一定に保 たれなければ良好な表示を行うことができない。 このため、 従来から一対の絶縁 性基板間に、 グラスファイバ又は真球状のプラスチックビーズ等のスぺーサを配 置して、 液晶層の層厚を表示領域の全域にわたって一定に保つようにしている。 これらのスぺーサは、 例えば配向膜を形成した後に圧縮された気体とともにノ ズルから吹き出して散布 (乾式散布) されるか、 又は、 揮発性の液体に混合させ てこの液体を噴霧するようにして散布 (湿式散布) されて、 配向膜上に均一に分 散される。 この後、 一対の絶縁性基板を貼合わせ、 一対の絶縁性基板間にスぺ一 ザが狭持された状態で、 ネマチック液晶等の液晶が一対の基板間に充填される。 しかしながら、 表示領域の画素電極上にスぺーサが配置されると、 スぺ一サか ら光漏れが生じるために実質上の開口率を低下させることとなり、 表示むら又は コントラストを低下させるといった問題が発生していた。 これにより、 近年、 液 晶表示装置の表示の高品位化に向けて、 セル厚を制御するスぺーサ散布技術の開 発が盛んである。  2. Description of the Related Art Conventionally, a liquid crystal display device in which a spacer is arranged between a pair of insulating substrates on which electrodes are formed in order to maintain a constant distance between the pair of insulating substrates is known. Since the distance between this pair of green substrates, that is, the thickness of the liquid crystal layer, affects the light transmittance, good display must be performed unless it is kept constant over the entire display area of the liquid crystal display device. Can not. For this reason, conventionally, a spacer such as glass fiber or a spherical plastic bead is disposed between a pair of insulating substrates so that the thickness of the liquid crystal layer is kept constant over the entire display area. . These spacers are sprayed out of the nozzle together with a compressed gas after forming an alignment film and sprayed (dry spraying), or mixed with a volatile liquid to spray the liquid. And sprayed (wet spray) to be evenly distributed on the alignment film. Thereafter, a pair of insulating substrates is attached to each other, and a liquid crystal such as a nematic liquid crystal is filled between the pair of substrates in a state where the spacer is held between the pair of insulating substrates. However, if a spacer is arranged on the pixel electrode in the display area, light leaks from the spacer, which substantially reduces the aperture ratio, causing a problem such as uneven display or reduced contrast. Had occurred. As a result, in recent years, there has been active development of spacer spraying technology for controlling the cell thickness in order to improve the display quality of liquid crystal display devices.
この問題を解決する方法として、 特開平 3— 2 9 3 3 2 8号公報及び特開平 4 一 2 0 4 4 1 7号公報では、 一方の絶縁性基板の電極を帯電させ、 この電極と同 極性に帯電させたスぺーサを絶縁性基板上に散布することにより、 電極のない領 域にスぺーサを選択的に配置する方法が提案されている。 これらの方法を用いて 液晶表示装置用基板にスぺ一サを散布した場合、 表示電極領域では適正な斥力が スぺーサに働き、 電極の無いところ、 即ち、 電極間にスぺ一サが均一に配置され る。 As a method for solving this problem, JP-A-3-293333 and JP-A-4-204417 disclose that an electrode on one of the insulating substrates is charged, By spraying a charged spacer on an insulating substrate, A method of selectively arranging spacers in an area has been proposed. When a spacer is sprayed on a substrate for a liquid crystal display device using these methods, an appropriate repulsive force acts on the spacer in the display electrode region, and a gap where no electrode exists, that is, the spacer is formed between the electrodes. They are arranged evenly.
一方、 液晶表示装置を製造する場合、 対向配置される液晶表示装置用基板上に 表示用透明電極パターンを形成し、 その周囲には、 表示用透明電極と同一材料で 形成される、 表示用透明電極と T C Pとを接続するためのァライメントマーク、 配向膜やシール印刷用のァライメントマーク、 一対の液晶表示装置用基板を貼合 わせるための位置合わせマーク、 及び、 表示用透明電極の有無によるセル厚の違 いを防止するためのダミー電極等が形成されていた。  On the other hand, when manufacturing a liquid crystal display device, a transparent electrode pattern for display is formed on a substrate for liquid crystal display device that is arranged to face, and the transparent material for display is formed around the same pattern as the transparent electrode for display. Alignment mark for connecting electrode to TCP, alignment mark for alignment film and seal printing, alignment mark for bonding a pair of substrates for liquid crystal display, and presence / absence of transparent electrode for display A dummy electrode or the like was formed to prevent a difference in cell thickness due to this.
このような液晶表示装置用絶縁性基板上に形成された電極パターンは、 図 9〜 1 2に示すように、 絶縁性基板 1上に、 静電対策用電極 2 8が接続されたストラ イブ状の表示電極 3、 セル厚調整用のダミー電極 2 1、 機能性電極 2 7 a、 機能 性電極 2 7 b及び機能性電極 2 7 cが形成されていた。 そして、 これらダミー電 極 2 1、 機能性電極 2 7 a、 機能性電極 2 7 b及び機能性電極 2 7 cは、 それぞ れ、 電気的に浮いており (開回路) 、 ダミ一電極 2 1についても必要箇所以外に は形成されていなかった。  As shown in FIGS. 9 to 12, the electrode pattern formed on such an insulating substrate for a liquid crystal display device has a stripe shape in which an antistatic electrode 28 is connected to the insulating substrate 1. The display electrode 3, the dummy electrode 21 for adjusting the cell thickness, the functional electrode 27a, the functional electrode 27b, and the functional electrode 27c were formed. The dummy electrode 21, the functional electrode 27 a, the functional electrode 27 b, and the functional electrode 27 c are electrically floating (open circuit), respectively. No one was formed except for the necessary parts.
従って、 上述した方法では、 表示電極領域の近傍に設けられた電極の存在しな い領域や、 電気的に浮いた状態で存在する電極 (ダミー電極、 機能性電極) 領域 では、 スぺ一ザに対して斥力は働かず、 表示電極領域との斥力のバランスが崩れ、 そこにスぺ一ザが集中的に配置され、 凝集してしまう。 即ち、 斥力の働かないと ころにスぺーサが飛ばされてしまう。  Therefore, according to the above-described method, in a region where there is no electrode provided in the vicinity of the display electrode region, or in an electrode (dummy electrode, functional electrode) region which exists in an electrically floating state, a smoother The repulsive force does not work on the display electrode, and the balance of the repulsive force with the display electrode region is broken, and the spreaders are concentrated and aggregated there. In other words, the spacer will be blown away when the repulsion does not work.
この状態で基板を貼合わせると、 集中的にスぺ一ザが配置され、 凝集した部分 (斥力の働かない部分) のセル厚が大きくなり、 均一なセル厚が得られないとい う問題があった。 発明の要約  When substrates are bonded together in this state, there is a problem that the spacers are arranged intensively, the cell thickness of the agglomerated portion (the portion where no repulsive force acts) becomes large, and a uniform cell thickness cannot be obtained. Was. Summary of the Invention
本発明は、 上記の問題点を解決するもので、 スぺ一サをムラなく基板上に配 置し、 セル厚を基板全体で均一にすることを可能とする、 コントラストが高く表 示均一性の高い液晶表示装置の製造方法、 液晶表示装置用基板及びそれを用いた 液晶表示装置を提供することを目的とする。 The present invention solves the above-mentioned problems and arranges the spacers evenly on the substrate to make the cell thickness uniform over the entire substrate. An object of the present invention is to provide a method of manufacturing a liquid crystal display device having high display uniformity, a substrate for a liquid crystal display device, and a liquid crystal display device using the same.
本発明は、 基板上に形成された複数の電極にスぺーザの帯電極性と同極性の電 圧を印加し、 上記スぺ一ザに働く斥力を利用して上記スぺ一サを散布することよ りなる液晶表示装置の製造方法であって、 上記スぺ一サの散布は、 上記基板上の 少なくとも上記複数の電極からなる電極領域近傍の電場を、 上記複数の電極から なる電極領域中心部の電場と略均一にして行う液晶表示装置の製造方法である。 本発明はまた、 上記液晶表示装置の製造方法に用いられる液晶表示装置用基板 でもある。  According to the present invention, a voltage having the same polarity as the charging polarity of the spacer is applied to a plurality of electrodes formed on a substrate, and the repulsive force acting on the spacer is used to spray the spacer. The method of manufacturing a liquid crystal display device according to claim 1, wherein the spraying of the spacer is performed by changing an electric field near at least an electrode region including the plurality of electrodes on the substrate to a center of the electrode region including the plurality of electrodes. This is a method for manufacturing a liquid crystal display device, which is made substantially uniform with the electric field of a part. The present invention is also a substrate for a liquid crystal display device used in the method for manufacturing a liquid crystal display device.
本発明は更に、 上記液晶表示装置の製造方法によって製造されてなる液晶表示 装置でもある。 図面の簡単な説明  The present invention is also a liquid crystal display device manufactured by the above-described method for manufacturing a liquid crystal display device. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態で用いるスぺ一サ散布装置の断面図である。 図 2は、 本発明の実施の形態に係わる絶縁性基板を示す平面図である。  FIG. 1 is a cross-sectional view of a spreader spraying apparatus used in an embodiment of the present invention. FIG. 2 is a plan view showing the insulating substrate according to the embodiment of the present invention.
図 3は、 図 2における本発明の実施の形態に係わる絶縁性基板上の左下部の電 極を示す平面拡大図である。  FIG. 3 is an enlarged plan view showing a lower left electrode on the insulating substrate in FIG. 2 according to the embodiment of the present invention.
図 4は、 図 3における本発明の実施の形態に係わる絶縁性基板上の機能性電極 2 7 aを示す平面拡大図である。  FIG. 4 is an enlarged plan view showing the functional electrode 27a on the insulating substrate according to the embodiment of the present invention in FIG.
図 5は、 図 3における本発明の実施の形態に係わる絶縁性基板上の機能性電極 2 7 cを示す平面拡大図である。  FIG. 5 is an enlarged plan view showing the functional electrode 27c on the insulating substrate according to the embodiment of the present invention in FIG.
図 6は、 本発明の実施の形態に係わるスぺ一ザの電場による配置方法を説明す る概念図である。  FIG. 6 is a conceptual diagram for explaining a method of arranging a spacer by an electric field according to the embodiment of the present invention.
図 7は、 本発明の実施の形態に係わる液晶表示装置を示す断面図である。 図 8は、 本発明の実施の形態に係わる液晶表示装置の概略構成図である。 図 9は、 従来の絶縁性基板を示す平面図である。  FIG. 7 is a sectional view showing the liquid crystal display device according to the embodiment of the present invention. FIG. 8 is a schematic configuration diagram of the liquid crystal display device according to the embodiment of the present invention. FIG. 9 is a plan view showing a conventional insulating substrate.
図 1 0は、 図 9における従来の絶縁性基板上の左下部の電極を示す平面拡大図 である。  FIG. 10 is an enlarged plan view showing the lower left electrode on the conventional insulating substrate in FIG.
図 1 1は、 図 1 0における従来の絶縁性基板上の機能性電極 2 7 aを示す平面 拡大図である。 FIG. 11 is a plan view showing the functional electrode 27 a on the conventional insulating substrate in FIG. It is an enlarged view.
図 12は、 図 10における従来の絶縁性基板上の機能性電極 27 aを示す平面 拡大図である。 符号の説明  FIG. 12 is an enlarged plan view showing the functional electrode 27a on the conventional insulating substrate in FIG. Explanation of reference numerals
1 絶縁性基板  1 Insulating substrate
3 表示電極  3 Display electrode
4 カラーフイリレタ  4 color filer
5 ブラックマトリックス  5 Black matrix
6 オーバーコート 6 Overcoat
7 液晶  7 LCD
8 スぺーサ  8 Spacer
9 配向膜  9 Alignment film
10 容器  10 containers
1 1 a ノズル  1 1a nozzle
15 電極  15 electrodes
17 配管  17 Piping
18 導線  18 conductor
21、 2 1 a, 21 b ダミ一電極  21, 2 1 a, 21 b Dummy electrode
22 表示電極領域 22 Display electrode area
23 絶縁膜  23 Insulating film
24 シ一ル材  24 Seal material
25 シ一ル内スぺーサ  25 Sealer spacer
26 共通導通線  26 Common conducting wire
27 a, 27 b, 27 c 機能性電極 27 a, 27 b, 27 c Functional electrode
28 静電対策用電極 発明の開示  28 Electrostatic Discharge Electrode Invention Disclosure
以下に本発明を詳述する。 本発明は、 基板上に形成された複数の電極にスぺーザの帯電極性と同極性の電 圧を印加し、 スぺ一ザに働く斥力を利用してスぺーサを散布することよりなる液 晶表示装置の製造方法であって、 スぺ一ザの散布は、 基板上の少なくとも複数の 電極からなる電極領域近傍の電場を、 複数の電極からなる電極領域中心部の電場 と略均一にして行うことを特徴とする液晶表示装置の製造方法である。 Hereinafter, the present invention will be described in detail. The present invention comprises applying a voltage having the same polarity as the charged polarity of a spacer to a plurality of electrodes formed on a substrate, and spraying the spacer by using a repulsive force acting on the spacer. A method for manufacturing a liquid crystal display device, wherein the spraying of the stirrer makes the electric field near an electrode region formed of at least a plurality of electrodes on the substrate substantially uniform with the electric field at the center of the electrode region formed of the plurality of electrodes. A method for manufacturing a liquid crystal display device.
即ち、 少なくとも複数の電極からなる電極領域近傍の電場を、 複数の電極から なる電極領域中心部の電場と略均一にすることにより、 スぺ一サを均一に散布す ることが可能となり、 セル厚の均一性の優れた液晶表示装置を製造することがで さる。  That is, by making the electric field in the vicinity of the electrode region composed of at least a plurality of electrodes substantially uniform with the electric field in the center of the electrode region composed of the plurality of electrodes, it becomes possible to uniformly disperse the spacers. It is possible to manufacture a liquid crystal display device having excellent thickness uniformity.
ここで、 基板上の複数の電極からなる電極領域近傍とは特に限定されず、 例え ば、 液晶表示装置となる分断ラインを含む領域の内側を指すが、 仕様に合わせて セル厚の均一性が保てるように適時その範囲を決定すればよい。 また、 電場の均 一性についても仕様に合わせてセル厚の均一性が保てるように適宜その範囲を決 定すればよい。 尚、 本発明は、 電場が引力場であっても、 斥力と引力との合成場 であっても応用することができる。  Here, the vicinity of the electrode region composed of a plurality of electrodes on the substrate is not particularly limited. For example, it refers to the inside of the region including the dividing line to be the liquid crystal display device. The range may be determined in a timely manner so that it can be maintained. The range of the uniformity of the electric field may be appropriately determined in accordance with the specifications so that the uniformity of the cell thickness can be maintained. Note that the present invention can be applied whether the electric field is an attractive field or a combined field of repulsive force and attractive force.
上記基板としては、 例えば、 その表面に複数の電極を有する、 ガラス製基板、 樹脂製基板、 金属製基板等が挙げられる。 ただし、 金属製基板を用いる場合は、 表面に形成された電極がショートしないように、 金属製基板上に絶縁層を設ける 必要がある。  Examples of the substrate include a glass substrate, a resin substrate, and a metal substrate having a plurality of electrodes on the surface thereof. However, when a metal substrate is used, it is necessary to provide an insulating layer on the metal substrate so that the electrodes formed on the surface are not short-circuited.
上記電極としては特に限定されず、 例えば、 透明電極等が挙げられ、 透明電極 を線状にしたもの等を用いることができる。 また、 線状透明電極が平行に並べら れて構成されたストライプ状電極を基板上に形成させることができる。 ストライ プ状電極は、 液晶表示装置において、 いわゆる表示電極として用いられているも のである。 また、 上記複数の電極からなる電極領域は、 複数の電極からなる電極 群を形成している領域であり、 複数の電極が表示電極として用いられている場合 は、 表示電極領域のことである。  The above-mentioned electrode is not particularly limited, and examples thereof include a transparent electrode and the like, and a transparent electrode having a linear shape can be used. In addition, a striped electrode formed by arranging linear transparent electrodes in parallel can be formed on a substrate. Striped electrodes are used as so-called display electrodes in liquid crystal display devices. The electrode region including the plurality of electrodes is a region forming an electrode group including a plurality of electrodes. When the plurality of electrodes are used as display electrodes, the electrode region is a display electrode region.
上記スぺーサとしては特に限定されず、 例えば、 金属微粒子;合成樹脂微粒子 ;無機微粒子;合成樹脂に顔料が分散された遮光性微粒子;染料により着色され た微粒子;加熱 ·光等により接着性を発揮する微粒子;金属微粒子、 合成樹脂微 粒子、 無機微粒子等の表面を金属によりメツキした微粒子等が挙げられ、 液晶表 示装置において、 セル厚調整をするためのものである。 また、 上記スぺーザの散 布は、 乾式、 湿式のいずれであってもよい。 上記湿式散布では、 水、 アルコール 等の混合溶媒中にスぺーサを分散させて散布するが、 この場合であってもスぺー サは帯電するため、 本発明の効果を損なうことはない。 しかしながら、 スぺ一サ の帯電量は大きい方が配置精度が向上するため、 乾式散布が好ましい。 The spacer is not particularly limited. For example, metal fine particles; synthetic resin fine particles; inorganic fine particles; light-shielding fine particles in which a pigment is dispersed in a synthetic resin; fine particles colored with a dye; Fine particles that can be used; fine metal particles, fine synthetic resin Examples thereof include fine particles and the like whose surfaces are coated with metal, such as particles and inorganic fine particles, and are used for adjusting the cell thickness in a liquid crystal display device. The sprayer may be sprayed by either a dry method or a wet method. In the above wet spraying, the spacer is dispersed and dispersed in a mixed solvent such as water and alcohol, but even in this case, the spacer is charged, so that the effect of the present invention is not impaired. However, dry spraying is preferred because the larger the charge amount of the spacer, the better the placement accuracy.
上記液晶表示装置の製造方法は、 基板上の少なくとも複数の電極からなる電極 領域近傍にダミー電極を隙間なく設け、 ダミー電極に複数の電極からなる電極と 同極性の電圧を印加するのが好ましい。  In the method of manufacturing a liquid crystal display device, it is preferable that a dummy electrode is provided without a gap in the vicinity of an electrode region including at least a plurality of electrodes on a substrate, and a voltage having the same polarity as the electrode including the plurality of electrodes is applied to the dummy electrode.
従って、 基板上の少なくとも複数の電極からなる電極領域近傍の電極の無い領 域にも電場を形成することが可能となり、 均一なスぺ一ザの配置が可能となる。 上記ダミー電極としては、 複数の電極からなる電極領域 (電極群) 外に配置形 成された導電性のものがその範囲に含まれる。 このとき、 ダミー電極はストライ プ状又はブロック状に形成しておくことが好ましい。 ベ夕状のダミー電極を設け た場合、 その部分は斥力によりスぺーザが配置されなくなり、 複数の電極からな る電極領域近傍のセル厚制御が難しくなる。  Therefore, it is possible to form an electric field even in a region where there is no electrode in the vicinity of the electrode region composed of at least a plurality of electrodes on the substrate, and it is possible to arrange a uniform spacer. The above-mentioned dummy electrode includes a conductive electrode arranged and formed outside an electrode region (electrode group) including a plurality of electrodes. At this time, the dummy electrode is preferably formed in a strip shape or a block shape. In the case where a dummy electrode having a cylindrical shape is provided, a spacer is not disposed at that portion due to repulsion, and it becomes difficult to control the cell thickness in the vicinity of an electrode region including a plurality of electrodes.
上記ダミー電極は、 複数の電極に直交に、 及び Z又は、 平行に設けられるのが 好ましい。  It is preferable that the dummy electrode is provided at right angles to the plurality of electrodes, and at Z or parallel to the plurality of electrodes.
即ち、 ダミー電極を有効表示領域の複数の電極に直交に、 及び Z又は、 平行に 設けることで、 電極の直線部 (有効表示領域) と屈曲部 (引き回し部) でスぺー サの配置量にバラツキが生じることを避けることができ、 有効表示領域内のスぺ ーサ散布数とダミー電極部領域のスぺーサ散布数とを等しくすることが可能にな り、 有効表示領域とダミ一電極部領域との均一なスぺーサの配置が可能となる。 ここで、 電極の引き回し部も直線状にすることが好ましい。 ただし、 現状では T C P接続のため、 電極に屈曲部を設けることが不可欠である。  In other words, by providing the dummy electrodes orthogonally and / or in parallel with the plurality of electrodes in the effective display area, the linear arrangement (effective display area) and the bent part (leading part) of the electrodes reduce the arrangement amount of the spacer. Variations can be avoided, and the number of spacers scattered in the effective display area can be made equal to the number of spacers scattered in the dummy electrode area. It is possible to arrange the spacer uniformly with the region. Here, it is preferable that the lead portion of the electrode is also linear. However, at present, it is indispensable to provide a bent part in the electrode for TCP connection.
上記液晶表示装置の製造方法は、 基板上の少なくとも複数の電極からなる電極 領域近傍に機能性電極を設け、 機能性電極に複数の電極と同極性の電圧を印加す るのが好ましい。  In the method of manufacturing a liquid crystal display device, it is preferable that a functional electrode is provided near an electrode region including at least a plurality of electrodes on a substrate, and a voltage having the same polarity as the plurality of electrodes is applied to the functional electrode.
即ち、 機能性電極にも複数の電極と同極性の電圧を印加することにより、 機能 性電極上にも電場を形成することが可能となり、 均一なスぺ一サの配置が可能と なる。 That is, by applying a voltage of the same polarity to the plurality of electrodes to the functional electrodes, An electric field can also be formed on the conductive electrode, and uniform spacer arrangement can be achieved.
上記機能性電極としては特に限定されず、 例えば、 T C P接続用ァライメント マーク、 分断用ァライメントマーク、 識別用マーク、 露光用ァライメントマーク、 貼合わせ用ァライメントマ一ク等を挙げることができる。 このとき、 ァライメン トマ一ク内部が中空であれば、 その部分にもダミ一電極を形成することが好まし レ^  The functional electrode is not particularly limited, and examples thereof include an alignment mark for TCP connection, an alignment mark for division, an identification mark, an alignment mark for exposure, and an alignment mark for bonding. At this time, if the inside of the alignment mark is hollow, it is preferable to form a dummy electrode in that part as well.
上記液晶表示装置の製造方法は、 基板上の複数の電極からなる電極領域の外側 に複数の電極と平行にダミー電極を 1本以上設け、 ダミー電極に複数の電極と同 極性の電圧を印加するのが好ましい。  In the method of manufacturing a liquid crystal display device, at least one dummy electrode is provided in parallel with the plurality of electrodes outside an electrode region including a plurality of electrodes on a substrate, and a voltage having the same polarity as the plurality of electrodes is applied to the dummy electrode. Is preferred.
従って、 複数の電極の最外部の電極間にも複数の電極からなる電極領域中心部 と同等の連続した電場を形成することが可能となり、 複数の電極からなる電極領 域中心部と最外部とでのスぺ一ザの配置を均一にすることが可能となる。 このと き、 平行に設けるダミー電極は、 その本数が多いほど好ましいが、 設計ルールに 従い適宜決定すればよい。  Therefore, it is possible to form a continuous electric field between the outermost electrodes of the plurality of electrodes and the center of the electrode region composed of the plurality of electrodes. It is possible to make the arrangement of the splicers uniform. At this time, the number of dummy electrodes provided in parallel is preferably as large as possible, but may be determined appropriately according to design rules.
上記液晶表示装置の製造方法は、 基板上の少なくとも複数の電極からなる電極 領域及び複数の電極からなる電極領域近傍にある電極の電極間幅を略同一にする のが好ましい。  In the above-described method for manufacturing a liquid crystal display device, it is preferable that an electrode region including at least a plurality of electrodes on the substrate and an electrode in the vicinity of the electrode region including the plurality of electrodes have substantially the same electrode width.
即ち、 電極間幅を有効表示領域内及びその周辺で略同一にすることにより、 均 一な電場を形成することが可能になる。  That is, it is possible to form a uniform electric field by making the width between the electrodes substantially the same in and around the effective display area.
上記液晶表示装置の製造方法は、 基板上の少なくとも複数の電極からなる電極 領域近傍にある電極及び複数の電極に印加する電圧を同一電圧にするのが好まし い。  In the method of manufacturing a liquid crystal display device, it is preferable that the voltages applied to the electrodes and the plurality of electrodes in the vicinity of the electrode region including at least the plurality of electrodes on the substrate are the same.
従って、 均一な電場を形成することが可能になり、 また、 生産性も向上する。 上記液晶表示装置の製造方法は、 基板上の少なくとも複数の電極からなる電極 領域近傍にある電極及び複数の電極に電圧を印加するために、 複数の電極からな る電極領域近傍外周部に共通導通線を複数の電極と同じ材料で形成し、 それぞれ の電極に電圧を印加するのが好ましい。  Therefore, it is possible to form a uniform electric field, and the productivity is improved. In the method of manufacturing a liquid crystal display device described above, in order to apply a voltage to an electrode in the vicinity of an electrode region including at least a plurality of electrodes on a substrate and to apply a voltage to the plurality of electrodes, a common conduction is provided to an outer peripheral portion near an electrode region including a plurality of electrodes. Preferably, the wires are formed of the same material as the plurality of electrodes, and a voltage is applied to each of the electrodes.
従って、 コスト性、 作業性よく液晶表示装置を製造することが可能になる。 上記液晶表示装置の製造方法は、 共通導通線と複数の電極との接続は、 複数の 電極の外部回路との接続部側とし、 他方はシール樹脂内側までとするのが好まし い。 Therefore, a liquid crystal display device can be manufactured with good cost performance and workability. In the above-described method for manufacturing a liquid crystal display device, it is preferable that the connection between the common conductive line and the plurality of electrodes is on the connection side of the plurality of electrodes with the external circuit, and that the other is connected to the inside of the sealing resin.
即ち、 スぺーザが散布された基板を対向する基板と貼合わせ分断した後、 外部 回路との接続部は電食保護され、 他方はシール樹脂外側には延出されないので、 電食という不具合は発生しない。 一方、 外部回路との接続部他方で共通導通線と 接続した場合、 基板分断後、 その部分を電食保護処理する必要がある。  In other words, after laminating the spreader substrate and the opposing substrate, the connection with the external circuit is protected from electrolytic corrosion, and the other is not extended outside the seal resin. Does not occur. On the other hand, if the other part of the connection to the external circuit is connected to the common conductive line, it is necessary to protect the part from electrolytic corrosion after the substrate is cut.
本発明はまた、 上記液晶表示装置の製造方法に用いられる液晶表示装置用基板 でもある。  The present invention is also a substrate for a liquid crystal display device used in the method for manufacturing a liquid crystal display device.
本発明は更に、 上記液晶表示装置の製造方法によって製造されてなる液晶表示 装置でもある。  The present invention is also a liquid crystal display device manufactured by the above-described method for manufacturing a liquid crystal display device.
以下、 本発明の実施の形態を、 図 1〜6を用いて具体的に説明する。  Hereinafter, embodiments of the present invention will be specifically described with reference to FIGS.
図 1は、 本発明の実施の形態で用いるスぺーサ散布装置を示す概略図である。 密閉又はそれに近い状態のクリーンな容器 1 0の上端部に、 帯電させたスぺ一サ 8を吹き付け散布するノズル 1 1 aが設けられている。 ノズル 1 1 aには、 スぺ —サ 8と窒素ガスとを供給する供給器 (図示せず) が配管 1 7を介して接続され ている。 容器 1 0の下方には、 表示電極 3が形成されているガラス等からなる絶 縁性基板 1が配置され、 表示電極 3に電圧を印加して電場を形成するための導線 1 8が設けられている。 尚、 表示電極 3に電圧を印加して電場を形成しなくても、 スぺーサ散布装置内に設けられた電極 1 5によって電場を形成するようにしても よい。  FIG. 1 is a schematic diagram showing a spacer spraying apparatus used in an embodiment of the present invention. A nozzle 11a for spraying and spraying the charged spacer 8 is provided at the upper end of a clean container 10 that is closed or close to it. A supply device (not shown) for supplying a spacer 8 and nitrogen gas is connected to the nozzle 11 a via a pipe 17. An insulating substrate 1 made of glass or the like on which the display electrode 3 is formed is disposed below the container 10, and a conducting wire 18 for applying a voltage to the display electrode 3 to form an electric field is provided. ing. Instead of applying a voltage to the display electrode 3 to form an electric field, the electric field may be formed by the electrode 15 provided in the spacer spraying device.
スぺ一サ 8に帯電させる方法としては、 散布装置内に設けられた帯電器 (図示 せず) によってスぺ一サ 8に電圧を印加して帯電させる方法、 又は、 スぺ一サを ステンレス等の金属管内ないしは樹脂製管内を通過させて摩擦によって帯電させ る方法等が既知であり、 これらいずれの方法を用いてもよい。  As a method of charging the spacer 8, a method of applying a voltage to the spacer 8 by applying a voltage to a charger (not shown) provided in the spraying device, or a method of charging the spacer with stainless steel And the like, and a method of charging by friction through a metal tube or a resin tube is known, and any of these methods may be used.
図 2〜5は、 本発明に係わる電極パターンを示す概略図である。 図 2〜 5に示 すように、 絶縁性基板 1上に、 取り囲むように形成された共通導通線 2 6から電 圧を印加されるように接続されたストライプ状の表示電極 3、 ダミー電極 2 1 a、 ダミー電極 2 1 b、 機能性電極 2 7 a、 機能性電極 2 7 b及び機能性電極 2 7 c が形成されている。 ここでは、 それぞれの電極に電圧を印加する手段として共通 導通線を設けているが、 その他の方法、 例えば、 それぞれの電極にプローブピン 等を用いて直接電圧を印加してもよいし、 静電気をチャージする方法を用いても かまわない。 2 to 5 are schematic diagrams showing an electrode pattern according to the present invention. As shown in FIGS. 2 to 5, a striped display electrode 3 and a dummy electrode 2 are connected on the insulating substrate 1 so that a voltage is applied from a common conducting line 26 formed so as to surround the insulating substrate 1. 1 a, dummy electrode 2 1 b, functional electrode 27 a, functional electrode 27 b and functional electrode 27 c Is formed. Here, a common conductive line is provided as a means for applying a voltage to each electrode. However, other methods, for example, a voltage may be directly applied to each electrode using a probe pin or the like, A charging method may be used.
また、 ダミー電極 2 1 a及び 2 1 bは、 表示電極以外の領域の電場を形成する ために隙間無く設けられた電極であり、 特に、 ダミー電極 2 l bは、 表示電極領 域の電場を連続的に形成するために表示電極と同様なパターンで表示電極と平行 して設けられている。 また、 機能性電極 2 7 aは、 T C P接続用ァライメントマ ーク、 機能性電極 2 7 bは、 露光及び貼合わせ用のァライメントマーク、 機能性 電極 2 7 cは、 分断用ァライメントマークである。 この場合、 これらのダミ一電 極及び機能性電極は、 表示電極の露光エッチング工程の際に同時に作製されてい る。  Further, the dummy electrodes 21a and 21b are electrodes provided without a gap to form an electric field in a region other than the display electrode, and in particular, the dummy electrode 2 lb is a continuous electrode in the display electrode region. In order to form the display electrodes, they are provided in parallel with the display electrodes in the same pattern as the display electrodes. The functional electrode 27a is an alignment mark for TCP connection, the functional electrode 27b is an alignment mark for exposure and bonding, and the functional electrode 27c is an alignment mark for cutting. . In this case, the dummy electrode and the functional electrode are simultaneously produced during the display electrode exposure and etching step.
ここで、 図 2及び 3に示すように、 絶縁性基板上の表示電極領域近傍は、 機能 性電極 2 7 cを充分に含む範囲になるように設計され、 共通導通線が囲む領域と している。 そして、 この表示電極領域近傍内では、 この内部で電場が表示電極領 域中心部と同様になるように、 ①表示電極 3と同極性の電圧を印加したダミー電 極 2 1 aが隙間無く設けられ、 ②ダミ一電極 2 1 aは、 表示電極 3に直交するよ うに形成され、 ③機能性電極 2 7 a、 2 7 b及び 2 7 cにも表示電極 3と同極性 の電圧が印加されるように設計され、 ④表示電極 3の外側には表示電極 3と平行 したダミー電極 2 1 bを設け、 ダミー電極 2 1 bは、 表示用電極 3と同極性の電 圧を印加されるように形成され、 ⑤表示領域及び表示電極領域近傍内の電極の電 極間幅を略同一にし、 ⑥共通導通線 2 6により、 表示電極 3及びそれ以外の種々 の電極に印加する電圧が同一電圧となるように設計され、 ⑦共通導通線 2 6は、 表示電極 3と同じ材料で形成され、 ⑧共通導通線 2 6と表示電極 3との接続は、 表示電極 3の外部回路との接続部側とし、 他方はシール樹脂内側までとなってい る。  Here, as shown in FIGS. 2 and 3, the vicinity of the display electrode region on the insulating substrate is designed so as to have a range sufficiently including the functional electrode 27c, and is defined as a region surrounded by the common conductive line. I have. In the vicinity of the display electrode area, a dummy electrode 21 a to which a voltage of the same polarity as that of the display electrode 3 is applied is provided without a gap so that the electric field is the same as that in the center of the display electrode area. (2) The dummy electrode 21a is formed so as to be orthogonal to the display electrode 3. ③ A voltage having the same polarity as that of the display electrode 3 is also applied to the functional electrodes 27a, 27b, and 27c. A dummy electrode 21b is provided outside the display electrode 3 in parallel with the display electrode 3 so that a voltage of the same polarity as the display electrode 3 is applied to the dummy electrode 21b.に し The width between the electrodes of the display area and the electrodes in the vicinity of the display electrode area are made substantially the same, and ⑥The voltage applied to the display electrode 3 and various other ⑦The common conductive line 26 is formed of the same material as the display electrode 3, Connection between the through conducting line 2 6 and the display electrodes 3, a connecting portion side of an external circuit of the display electrode 3, and the other that has a limit of the sealing resin inside.
そして、 図 6に示すように、 帯電したスぺーザが斥力の谷間に移動して配置さ れ、 更に、 本発明では、 上述のように絶縁基板上の少なくとも表示電極領域近傍 を含む領域内では、 同様な電場が形成されるようになっているので、 均等にスぺ ーサを配置することが可能となる。 尚、 図 6中の実線は、 スぺーサにかかる斥力 の大きさを模式的に示したもので、 スぺーザに働く斥力の大きさを 「上に凸」 の 半円形状で示してある。 Then, as shown in FIG. 6, the charged spacer is moved and arranged in the valley of the repulsive force. Further, in the present invention, as described above, at least in the region including the vicinity of the display electrode region on the insulating substrate, Since a similar electric field is formed, It becomes possible to arrange a sensor. The solid line in FIG. 6 schematically shows the magnitude of the repulsive force applied to the spacer, and the magnitude of the repulsive force acting on the spacer is indicated by a semicircular “convex upward”. .
尚、 上記実施の形態では、 単純マトリクス型液晶表示装置を用いているが、 本 発明は単純マトリクス型液晶表示装置に限定されるものではなく、 強誘電性液晶 表示装置又は T F T型液晶表示装置等の液晶表示装置でも当然利用できるもので ある。 発明を実施するための最良の形態  In the above embodiment, a simple matrix type liquid crystal display device is used. However, the present invention is not limited to a simple matrix type liquid crystal display device, such as a ferroelectric liquid crystal display device or a TFT type liquid crystal display device. Naturally, it can also be used in liquid crystal display devices. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。 実施例 1  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to only these Examples. Example 1
外形寸法が 3 7 0 X 4 8 O mmで厚さが 0 , 7 mmのソーダガラスからなる一 対の絶縁性基板として、 一方の絶緑性基板 1には、 遮光膜であるブラックマトリ ックス 5を形成した R G Bからなるカラーフィルタ 4、 及び、 カラーフィルタ 4 を保護するオーバーコ一ト 6を形成した。 オーバーコート 6上には、 厚さ 3 0 0 n mの I T Oからなるストライプ状の表示電極 3を形成し、 更にポリイミ ド樹脂 からなる配向膜 9を形成し、 配向処理を施した。  As a pair of insulating substrates consisting of soda glass with external dimensions of 370 x 48 mm and a thickness of 0.7 mm, one of the green substrates 1 has a black matrix 5 which is a light shielding film. A color filter 4 made of RGB and formed, and an overcoat 6 for protecting the color filter 4 were formed. On the overcoat 6, a stripe-shaped display electrode 3 made of ITO having a thickness of 300 nm was formed, and an alignment film 9 made of polyimide resin was further formed, followed by an alignment treatment.
他方の絶縁性基板 1には、 厚さ 3 0 0 n mの I T Oからなる電極パターンを形 成し、 絶縁膜 2 3を形成した。 尚、 絶縁膜 2 3は、 形成しなくても差し支えない 場合もある。 更にポリイミ ド樹脂からなる配向膜 9を形成し、 配向処理を施した。 ここで、 電極パターンとしては、 図 3〜5に示すように、 ストライプ状の表示 電極 3を有効表示領域内で幅 2 7 0 /X m、 間隔 3 0 / mで形成し、 ダミ一電極 2 1 aを線幅 3 5 m、 線間 3 5 / mで隙間なく形成し、 ダミ一電極 2 1 bを表示 電極 3に連続して、 同一サイズのものを 6本配置し、 機能性電極 2 7 a、 2 7 b 及び 2 7 cの周囲についても可能な限りダミー電極 2 1 aを配置した。 更に、 機 能性電極 2 7 bの周囲にも環状のダミー電極 2 1 aを配置した。  On the other insulating substrate 1, an electrode pattern made of ITO having a thickness of 300 nm was formed, and an insulating film 23 was formed. In some cases, the insulating film 23 need not be formed. Further, an alignment film 9 made of a polyimide resin was formed and subjected to an alignment treatment. Here, as the electrode pattern, as shown in FIGS. 3 to 5, stripe-shaped display electrodes 3 are formed in the effective display area with a width of 270 / Xm and an interval of 30 / m. 1 a is formed with a line width of 35 m and a line interval of 35 / m without gaps, and a dummy electrode 2 1 b is displayed. Dummy electrodes 21a were arranged as much as possible around 7a, 27b and 27c. Further, an annular dummy electrode 21a was also arranged around the functional electrode 27b.
そして、 この他方の絶縁性基板 1上には、 スぺーサとして、 合成樹脂微粒子で ある B B S— 6 0 5 1 0— P H (積水ファインケミカル社製) を用いて、 負極性 に帯電させて散布を行った。 このとき、 図 2において、 共通導通線 2 6に— 2 k Vを印加した。 Then, on the other insulating substrate 1, as a spacer, synthetic resin fine particles are used. Using a certain BBS—60501—PH (manufactured by Sekisui Fine Chemical Co., Ltd.), the mixture was sprayed while being negatively charged. At this time, −2 kV was applied to the common conducting line 26 in FIG.
その結果、 電場が均一となるように設定した表示電極領域近傍 (ここでは共通 導通線内側) 内において、 スぺ一サは、 凝集して配置されることなく、 表示電極 部、 ダミー電極部、 機能性電極部に均等に配置されていた。  As a result, in the vicinity of the display electrode region (here, inside the common conductive line) set so that the electric field is uniform, the spacers are not aggregated and arranged, and the display electrode portion, the dummy electrode portion, They were evenly arranged on the functional electrode part.
一方、 カラ一フィル夕 4を形成している方の絶縁性基板 1に、 シール材 2 4を スクリーン印刷法によって塗布した。 このシール材 2 4には、 シール内スぺ一サ 2 5となるガラスビーズを混入した。  On the other hand, a sealing material 24 was applied to the insulating substrate 1 on which the color filter 4 was formed by a screen printing method. Glass beads serving as spacers 25 in the seal were mixed into the seal material 24.
次に、 これらの一対の絶縁性基板 1を貼り合わせ、 1 8 0 ° (:、 0 . 8 k g / c m2で加熱加圧し、 1 5 0 °Cでアフターベーク処理を行った後、 不要な部分を切 り離すために分断ラインに沿って分断を行った。 その後、 液晶 7を注入して、 一 対の絶縁性基板が貼り合わされた液晶表示装置 (図 7及び 8に示す) を作製した。 作製した液晶表示装置は、 液晶表示装置面内に均一にスぺーザが散布配置され、 均一なセル厚を有し、 かつ、 表示電極上にはスぺ一サが配置されていないため、 高コントラストで高品位な表示特性を有していた。 比較例 1 Next, the pair of insulating substrates 1 are bonded together, heated and pressurized at 180 ° (: 0.8 kg / cm 2) , and after-baked at 150 ° C. The liquid crystal was cut along the cutting line to separate the parts, and then liquid crystal 7 was injected to produce a liquid crystal display device (shown in FIGS. 7 and 8) in which a pair of insulating substrates were bonded. In the manufactured liquid crystal display device, the spacers are uniformly distributed on the surface of the liquid crystal display device, have a uniform cell thickness, and no spacer is disposed on the display electrode. Comparative example 1 had high contrast and high quality display characteristics.
図 9〜1 2に示す従来の液晶表示装置用基板を用いた以外は実施例と同様にし て、 液晶表示装置を作製した。 その結果、 スぺーザが電場の弱い開回路のダミー 電極部、 機能性電極部、 電極の非形成領域に集中的に配置されるか、 又は、 電場 のバランスが崩れてまったくスぺーザが配置されない領域が存在した。 作製した 液晶表示装置は、 セル厚の均一性が悪いものであった。 産業上の利用可能性  A liquid crystal display device was manufactured in the same manner as in the example except that the conventional liquid crystal display device substrate shown in FIGS. 9 to 12 was used. As a result, the spacer is concentrated on the dummy electrode part, the functional electrode part, and the area where the electrode is not formed in the open circuit where the electric field is weak, or the spacer is completely disturbed due to the imbalance of the electric field. There was an area that was not created. The manufactured liquid crystal display had poor cell thickness uniformity. Industrial applicability
本発明によれば、 電極間にスぺ一サを配置することができ、 開口率を犠牲にす ることなく、 液晶表示装置を製造することが可能となり、 更に、 液晶表示装置の 表示電極外の領域にも表示電極領域と同様なスぺ一サ配置が可能となり、 液晶表 示装置面内で均一なセル厚をもつ液晶表示装置を提供することが可能になる。  ADVANTAGE OF THE INVENTION According to this invention, a spacer can be arrange | positioned between electrodes, and it becomes possible to manufacture a liquid crystal display device, without sacrificing an aperture ratio. The same spacer arrangement as that of the display electrode region can be provided also in the region of, and it is possible to provide a liquid crystal display device having a uniform cell thickness in the plane of the liquid crystal display device.

Claims

請求の範囲 The scope of the claims
1 . 基板上に形成された複数の電極にスぺ一ザの帯電極性と同極性の電圧を印 加し、 前記スぺ一サに働く斥力を利用して前記スぺ一サを散布することよりなる 液晶表示装置の製造方法であって、 前記スぺーザの散布は、 前記基板上の少なく とも前記複数の電極からなる電極領域近傍の電場を、 前記複数の電極からなる電 極領域中心部の電場と略均一にして行うことを特徴とする液晶表示装置の製造方 法。 1. Applying a voltage having the same polarity as the charged polarity of the spacer to a plurality of electrodes formed on the substrate, and dispersing the spacer by using a repulsive force acting on the spacer. The method of manufacturing a liquid crystal display device according to claim 1, wherein the spraying of the spacer comprises: A method of manufacturing a liquid crystal display device, wherein the method is performed under substantially uniform electric field.
2 . 基板上の少なくとも複数の電極からなる電極領域近傍にダミー電極を隙間 なく設け、 前記ダミー電極に前記複数の電極からなる電極と同極性の電圧を印加 することを特徴とする請求項 1記載の液晶表示装置の製造方法。 2. The method according to claim 1, wherein a dummy electrode is provided without any gap in the vicinity of an electrode region including at least a plurality of electrodes on the substrate, and a voltage having the same polarity as the electrode including the plurality of electrodes is applied to the dummy electrode. Of manufacturing a liquid crystal display device.
3 . ダミー電極は、 複数の電極に直交に、 及び/又は、 平行に設けられる ことを特徴とする請求項 2記載の液晶表示装置の製造方法。 3. The method for manufacturing a liquid crystal display device according to claim 2, wherein the dummy electrode is provided to be orthogonal to and / or parallel to the plurality of electrodes.
4 . 基板上の少なくとも複数の電極からなる電極領域近傍に機能性電極を設け、 前記機能性電極に前記複数の電極と同極性の電圧を印加することを特徴とする請 求項 1記載の液晶表示装置の製造方法。 4. The liquid crystal according to claim 1, wherein a functional electrode is provided near at least an electrode region formed of a plurality of electrodes on the substrate, and a voltage having the same polarity as the plurality of electrodes is applied to the functional electrode. A method for manufacturing a display device.
5 . 基板上の複数の電極からなる電極領域の外側に前記複数の電極と平行にダ ミー電極を 1本以上設け、 前記ダミー電極に前記複数の電極と同極性の電圧を印 加することを特徴とする請求項 1記載の液晶表示装置の製造方法。 5. One or more dummy electrodes are provided in parallel with the plurality of electrodes outside an electrode region including a plurality of electrodes on the substrate, and a voltage having the same polarity as the plurality of electrodes is applied to the dummy electrodes. 2. The method for manufacturing a liquid crystal display device according to claim 1, wherein:
6 . 基板上の少なくとも複数の電極からなる電極領域及び前記複数の電極から なる電極領域近傍にある電極の電極間幅を略同一にすることを特徴とする請求項 1、 2、 3、 4又は 5記載の液晶表示装置の製造方法。 6. The electrode region formed of at least a plurality of electrodes on the substrate and the electrode width in the vicinity of the electrode region formed of the plurality of electrodes are made substantially equal in width between the electrodes. 5. The method for manufacturing a liquid crystal display device according to 5.
7 . 基板上の少なくとも複数の電極からなる電極領域近傍にある電極及び前記 複数の電極に印加する電圧を同一電圧にすることを特徴とする請求項 1、 2、 3、 4、 5又は 6記載の液晶表示装置の製造方法。 7. An electrode in the vicinity of an electrode region comprising at least a plurality of electrodes on a substrate and the electrode 7. The method for manufacturing a liquid crystal display device according to claim 1, wherein the voltages applied to the plurality of electrodes are the same.
8 . 基板上の少なくとも複数の電極からなる電極領域近傍にある電極及び前記 複数の電極に電圧を印加するために、 前記複数の電極からなる電極領域近傍外周 部に共通導通線を前記複数の電極と同じ材料で形成し、 それぞれの電極に電圧を 印加することを特徴とする請求項 1、 2、 3、 4、 5、 6又は 7記載の液晶表示 装置の製造方法。 8. In order to apply a voltage to the electrode in the vicinity of the electrode region consisting of at least a plurality of electrodes on the substrate and to apply a voltage to the plurality of electrodes, a common conductive line is formed around the electrode region near the electrode region consisting of the plurality of electrodes. 8. The method for producing a liquid crystal display device according to claim 1, wherein the electrode is formed of the same material as described above, and a voltage is applied to each electrode.
9 . 共通導通線と複数の電極との接続は、 前記複数の電極の外部回路との接続 部側とし、 他方はシール樹脂内側までとすることを特徴とする請求項 8記載の液 晶表示装置の製造方法。 9. The liquid crystal display device according to claim 8, wherein the connection between the common conductive line and the plurality of electrodes is on a connection side of the plurality of electrodes with an external circuit, and the other is up to the inside of the sealing resin. Manufacturing method.
1 0 . 請求項 1、 2、 3、 4、 5、 6、 7、 8又は 9記載の液晶表示装置の製 造方法に用いられることを特徴とする液晶表示装置用基板。 10. A substrate for a liquid crystal display device, which is used in the method for manufacturing a liquid crystal display device according to claim 1, 2, 3, 4, 5, 6, 7, 8, or 9.
1 1 . 請求項 1、 2、 3、 4、 5、 6、 7、 8又は 9記載の液晶表示装置の製 造方法によって製造されてなることを特徴とする液晶表示装置。 11. A liquid crystal display device manufactured by the method for manufacturing a liquid crystal display device according to claim 1, 2, 3, 4, 5, 6, 7, 8, or 9.
PCT/JP1999/006545 1998-11-25 1999-11-25 Production method for liquid crystal display device, liquid crystal display device substrate and liquid crystal display device WO2000031580A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000584339A JP3494993B2 (en) 1998-11-25 1999-11-25 Method for manufacturing liquid crystal display device, substrate for liquid crystal display device, and liquid crystal display device
KR1020017006443A KR20010090850A (en) 1998-11-25 1999-11-25 Production method for liquid crystal display device, liquid crystal display device substrate and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33383398 1998-11-25
JP10/333833 1998-11-25

Publications (1)

Publication Number Publication Date
WO2000031580A1 true WO2000031580A1 (en) 2000-06-02

Family

ID=18270459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006545 WO2000031580A1 (en) 1998-11-25 1999-11-25 Production method for liquid crystal display device, liquid crystal display device substrate and liquid crystal display device

Country Status (4)

Country Link
JP (1) JP3494993B2 (en)
KR (1) KR20010090850A (en)
TW (1) TW531680B (en)
WO (1) WO2000031580A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118428A (en) * 2005-09-15 2011-06-16 Sharp Corp Display panel
US8080940B2 (en) 2007-05-18 2011-12-20 Lg Electronics Inc. Plasma display panel
US8183776B2 (en) 2007-05-18 2012-05-22 Lg Electronics Inc. Plasma display panel having a seal layer that contains beads

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097674A (en) * 2022-07-22 2022-09-23 绵阳惠科光电科技有限公司 Display panel and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204417A (en) * 1990-11-29 1992-07-24 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display panel
JPH05333345A (en) * 1992-05-28 1993-12-17 Fujitsu Ltd Production of liquid crystal display panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204417A (en) * 1990-11-29 1992-07-24 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display panel
JPH05333345A (en) * 1992-05-28 1993-12-17 Fujitsu Ltd Production of liquid crystal display panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118428A (en) * 2005-09-15 2011-06-16 Sharp Corp Display panel
US8080940B2 (en) 2007-05-18 2011-12-20 Lg Electronics Inc. Plasma display panel
US8183776B2 (en) 2007-05-18 2012-05-22 Lg Electronics Inc. Plasma display panel having a seal layer that contains beads

Also Published As

Publication number Publication date
JP3494993B2 (en) 2004-02-09
TW531680B (en) 2003-05-11
KR20010090850A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
US4874461A (en) Method for manufacturing liquid crystal device with spacers formed by photolithography
US5963288A (en) Liquid crystal device having sealant and spacers made from the same material
US7420646B2 (en) Seal pattern for liquid crystal display device
KR20030058723A (en) A method for forming post spacer of lcd device
CN206946152U (en) Display panel and display device
KR100635837B1 (en) Method of scattering fine particles, method of manufacturing liquid crystal display, apparatus for scattering fine particles, and liquid crystal display
WO2000031580A1 (en) Production method for liquid crystal display device, liquid crystal display device substrate and liquid crystal display device
US8274636B2 (en) Method for forming spacers on substrate
US6987553B2 (en) Liquid crystal display device with column spacers
JPH11183917A (en) Liquid crystal display device and its manufacture
WO1998057225A1 (en) Liquid crystal display and method of manufacturing the same
JPH10339878A (en) Manufacturing method for liquid crystal display device
KR100652211B1 (en) Spacer distributing apparatus for fabricating liquid crystal display device
KR100640074B1 (en) Color Filter Substrate For LCD and fabricating method of the same
JP2002258316A (en) Manufacturing method for liquid crystal display device, substrate for liquid crystal display device, and liquid crystal display device
KR100280932B1 (en) LCD and its manufacturing method
JPH09146102A (en) Liquid crystal display device and preparation thereof
KR20030097145A (en) Apparatus and Method of Fabricating Liquid Crystal Display Panel
KR20050064848A (en) Method for dispersing spacer of lcd
KR20050023561A (en) Method and Apparatus Of Fabricating Liquid Crystal Display Panel
JPH10104637A (en) Production of liquid crystal display element
JPH1124084A (en) Liquid crystal display device and its manufacture
JP2006039125A (en) Liquid crystal display, and its manufacturing method and manufacturing equipment
KR101366987B1 (en) Method for manufacturing color filter substrate
KR20030047172A (en) Method of forming spacer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 584339

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017006443

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017006443

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWR Wipo information: refused in national office

Ref document number: 1020017006443

Country of ref document: KR