WO2000028652A1 - Ultrasonic motor - Google Patents

Ultrasonic motor Download PDF

Info

Publication number
WO2000028652A1
WO2000028652A1 PCT/JP1999/000820 JP9900820W WO0028652A1 WO 2000028652 A1 WO2000028652 A1 WO 2000028652A1 JP 9900820 W JP9900820 W JP 9900820W WO 0028652 A1 WO0028652 A1 WO 0028652A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
ultrasonic
ultrasonic motor
linear
peripheral surface
Prior art date
Application number
PCT/JP1999/000820
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiro Higuchi
Minoru Kurosawa
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Publication of WO2000028652A1 publication Critical patent/WO2000028652A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/002Driving devices, e.g. vibrators using only longitudinal or radial modes
    • H02N2/0025Driving devices, e.g. vibrators using only longitudinal or radial modes using combined longitudinal modes

Definitions

  • the present invention relates to an ultrasonic motor, and more particularly, to an ultrasonic motor that generates a large torque by using a plurality of drivers combining two ultrasonic transducers.
  • an object of the present invention is to provide an ultrasonic motor that can generate a large torque by arranging a plurality of small ultrasonic transducers that are easy to manufacture.
  • an ultrasonic motor In an ultrasonic motor, a rotor, a plurality of ultrasonic transducers arranged on the inner peripheral surface of the rotor, and two ultrasonic transducers arranged orthogonally; A preload means for pressing against the peripheral surface, and AC power supplies having different phases connected to the two ultrasonic transducers are provided.
  • the rotor and the outer and inner peripheral surfaces of the rotor A driver in which several ultrasonic transducers are arranged at right angles and two ultrasonic transducers are arranged orthogonally; a preload means for pressing the driver against the outer peripheral surface and the inner peripheral surface of the rotor; and a connection to the two ultrasonic transducers. And AC power supplies having different phases.
  • the driver is a pair of ultrasonic vibrators arranged on each of two wing pieces opened at a predetermined angle. It has a drive source, and a portion where the two blade pieces meet is brought into contact with the outer peripheral surface, the inner peripheral surface, or the inner and outer peripheral surfaces of the rotor.
  • the ultrasonic vibrator is a piezoelectric vibrator.
  • the AC signals having different phases are high-frequency AC signals.
  • the port is an annular rotor.
  • the rotor is a cylindrical rotor with a cap.
  • a linear movable element In an ultrasonic motor, a linear movable element, a plurality of linearly arranged movable elements on the outer surface of the linear movable element, and two ultrasonic transducers arranged orthogonally, and the linear movable element And a preload means for pressing against the outer surface of the transducer, and AC power supplies having different phases connected to the two ultrasonic transducers.
  • a linear movable element In the ultrasonic motor, a linear movable element, a plurality of linearly arranged movable elements on the inner surface of the linear movable element, and two ultrasonic transducers arranged orthogonally; And a preload means for pressing against the inner surface of the transducer, and AC power supplies having different phases connected to the two ultrasonic transducers.
  • a linear movable element In the ultrasonic motor, a linear movable element, a plurality of linearly movable elements are arranged on the outer surface and the inner surface of the linear movable element, and two ultrasonic transducers are orthogonally arranged.
  • the driver is provided with an ultrasonic vibrator on each of two wing pieces opened at a predetermined angle.
  • the linear motor has a pair of drive sources, and a portion where the two wing pieces meet is brought into contact with the outer surface, the inner surface, or the inner and outer surfaces of the linear mover.
  • the ultrasonic vibrator is a piezoelectric vibrator.
  • the AC signals having different phases are high-frequency AC signals.
  • the linear movable element is a frame-shaped movable element.
  • the linear movable element is a movable element with a cap.
  • FIG. 1 is a plan view of an ultrasonic motor showing a first embodiment of the present invention.
  • FIG. 2 is a side view of an ultrasonic motor showing a first embodiment of the present invention.
  • FIG. 3 is a partially broken plan view of a driver of the ultrasonic motor according to the first embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing an arrangement state of one driver of the ultrasonic motor according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a shape of an analysis model of a driver of the ultrasonic motor of the present invention.
  • FIG. 6 is a diagram showing an operation of a driver of the ultrasonic motor of the present invention.
  • FIG. 7 is a view showing a modified example of the ultrasonic motor according to the first embodiment of the present invention.
  • FIG. 8 is a plan view of an ultrasonic motor according to a second embodiment of the present invention.
  • FIG. 9 is a plan view of an ultrasonic motor according to a third embodiment of the present invention.
  • FIG. 10 is a side view of an ultrasonic motor according to a fourth embodiment of the present invention.
  • FIG. 11 is a side view of an ultrasonic motor according to a fifth embodiment of the present invention.
  • FIG. 12 is a side view of a sound wave motor according to a sixth embodiment of the present invention.
  • FIG. 13 is a side view of an ultrasonic motor according to a seventh embodiment of the present invention.
  • FIG. 14 is a plan view of a linear ultrasonic motor showing an eighth embodiment of the present invention.
  • FIG. 15 is a side view of a linear ultrasonic motor showing an eighth embodiment of the present invention.
  • FIG. 16 is a plan view of a linear ultrasonic motor showing a ninth embodiment of the present invention.
  • FIG. 17 is a side view of a linear ultrasonic motor showing a ninth embodiment of the present invention.
  • the first 8 figures Ru side view der linear type ultrasonic motor of a first 0 embodiment of the present invention ⁇
  • FIG. 19 is a side view of a linear ultrasonic motor according to a eleventh embodiment of the present invention.
  • FIG. 1 is a plan view of an ultrasonic motor showing a first embodiment of the present invention
  • FIG. 2 is a side view thereof
  • FIG. 3 is a partially cutaway plan view of a driver of the ultrasonic motor
  • FIG. 3 is a configuration diagram showing an arrangement state of one driver.
  • 1 is a rotor (rotating body), 1 mm is a mouthpiece, and 2 is a driver.
  • the driver 2 has two metal blades opened at a predetermined angle (for example, 90 degrees). It has a pair of drive sources, each with a piezoelectric vibrator (ultrasonic vibrator) 4 arranged on each piece, and the tip 8 having a force cut portion 7 where these two metal wings are brought into contact with the rotor 1 As described above, a plurality of these components are arranged around the rotor 1 and each of the pair of drive sources is provided. It is connected to AC power supplies 10 A and 1 OB that provide AC signals with different phases, and generates a rotational force in the rotor 1.
  • a piezoelectric body such as PZT is installed on each of a pair of metal wing pieces opened at 90 degrees, and when an AC signal of 30 kHz with a changed phase is applied to each PZT, it is installed on each wing.
  • the ultrasonic vibration of the PZT propagates through each metal wing, and the ultrasonic vibration is synthesized at the tip 8 where the two metal wings are combined.
  • a preload in the compression direction is applied to the holding portion 9 of the piezoelectric driver 2. That is, as shown in FIG. 3, the two piezoelectric vibrators 4 having the electrodes 5 are clamped by the pressing bolts 6 and the nuts 3 with the holding portion 9 interposed therebetween.
  • FIG. 4 is an arrangement diagram of one driver 2 obtained in this manner.
  • 11 is a connected body fixed to the holding portion 9
  • 12 is a spring
  • 13 is a bushing bolt
  • 14 is a linear slider
  • 15 is a fixed base.
  • the driver 2 is fixed to the linear slider 14 and has one degree of freedom in the axial direction of the rotor 1.
  • the pressing force of the piezoelectric vibrator 4 against the rotor 1 can be adjusted by the spring 12 and the pressing bolt 6 at the rear of the driver 2.
  • FIG. 5 is a view showing the shape of a breaking model of the driver of the ultrasonic motor of the present invention
  • FIG. 6 is a view showing the operation of the driver of the ultrasonic motor.
  • the two vibration modes degenerate.
  • a voltage of o-sin ⁇ t (o is a constant) is applied to one piezoelectric vibrator 4 and a voltage of ⁇ ⁇ c 0 s ⁇ t is applied to the other piezoelectric vibrator 4,
  • the tip 8 moves in an elliptical motion.
  • the rotor 1 receives the thrust in the transverse vibration direction. The direction of the thrust is determined by the direction of the elliptical movement of the tip 8.
  • the direction of the elliptical motion of the tip 8 can be changed by the phase difference of the voltage applied to the driver 2. Therefore, when the tip 8 of the driver 2 is brought into contact with the rotor 1, the motor generates a forward or reverse rotation force according to the voltage phase. If many of these pairs are arranged on the outer peripheral portion of the rotor 1, a large torque can be generated. That is, although it is difficult to produce a large PZT sintered body and generate a large torque, in the present invention, a small PZT sintered body that is easy to manufacture is infinitely easy to generate a large torque. Now you can.
  • a structure that generates a “wedge effect” by providing a tapered surface on the peripheral surface of the rotor and disposing the above-described driver 2 on the tapered surface when the drive source and the rotor are disposed relative to each other It is also possible to adopt a “rotation-free” rotating structure without bearings.
  • the thrust of one of the drivers 2 is 5 ON (50 cmZ seconds). In this case, if three pieces are attached to a rotor with a diameter of 40 cm, the torque becomes 30 Nm.
  • FIG. 8 is a plan view of an ultrasonic motor according to a second embodiment of the present invention.
  • the rotor is an annular rotor 21, and a plurality of (here, three) drivers 2 are arranged to act on the inner peripheral surface of the annular rotor 21.
  • FIG. 9 is a plan view of an ultrasonic motor according to a third embodiment of the present invention.
  • the rotor is an annular rotor 31 and the annular rotor 3 1
  • the plurality of drivers 2 are arranged so as to act on the outer peripheral surface and inner peripheral surface 1.
  • FIG. 10 is a side view of an ultrasonic motor according to a fourth embodiment of the present invention.
  • the rotor is formed as a cylindrical rotor 41 with a cap 41A, and is arranged so that a plurality of drivers 2 act on the outer peripheral surface and the inner peripheral surface thereof.
  • the cap 41A can be used as a table.
  • FIG. 11 is a side view of an ultrasonic motor according to a fifth embodiment of the present invention.
  • a taper surface 51 a is formed on the outer peripheral surface of the rotor 51, By driving the outer surface with the surface 51a with the driver 2, a large preload can be applied only by the weight of the mouth 51 by the wedge effect, and driving without a bearing is possible.
  • FIG. 12 is a side view of an ultrasonic motor according to a sixth embodiment of the present invention.
  • the rotor is formed into an annular port 61, and the annular rotor 6
  • Tapered surfaces 6 1 a and 6 1 b are formed on the outer and inner peripheral surfaces of 1, and the tapered surfaces 6 1 a
  • the driver 2 is arranged.
  • FIG. 13 is a side view of an ultrasonic motor according to a third embodiment of the present invention.
  • the rotor is a cylindrical rotor 71 with a cap 71A, and tapered surfaces 71a, 71b are formed on the outer peripheral surface and the inner peripheral surface thereof.
  • a plurality of drivers 2 are arranged to act on 7 1 b, respectively.
  • the cap 71A can be used as a table.
  • FIG. 14 is a plan view of a linear ultrasonic motor showing an eighth embodiment of the present invention
  • FIG. 15 is a side view of the linear ultrasonic motor.
  • a plurality of oscillators 2 are arranged on the outer surface 81a of the parallel frame-shaped linear armature 81.
  • the linear mover 81 can be moved in the linear direction.
  • FIG. 16 is a plan view of a linear ultrasonic motor according to a ninth embodiment of the present invention
  • FIG. 1 is a side view of the linear ultrasonic motor.
  • a linear mover 91 having a parallel frame-shaped outer surface 91a and an inner surface 91b with a cap 92 is disposed, and on the outer surface 91a and the inner surface 91b.
  • a plurality of drivers 2 are arranged.
  • FIG. 18 is a side view of a linear ultrasonic motor according to a tenth embodiment of the present invention.
  • a plurality of armatures 2 are arranged on the outer surface of a linear mover 101 having a taper surface 101a.
  • the rotor can be held without bearings.
  • FIG. 19 is a side view of a linear ultrasonic motor showing an eleventh embodiment of the present invention.
  • a plurality of drivers 2 are provided on the inner and outer tapered surfaces 1 lib, 1 1 a of the linear mover 1 1 1 having the inner and outer tapered surfaces 1 lib, 1 1 1 a with the cap 1 12. Deploy.
  • a large torque can be obtained by driving from the taper surfaces 1 1 1 1b and 1 1a on the inner and outer sides of the linear mover 1 11 having the taper surface with the cap 1 12 as described above. As well as holding the rotor without bearings.
  • cap 112 can be used as a table.
  • a piezoelectric body is used as the vibrator, but any other ultrasonic vibrator may be used.
  • a large torque can be generated by arranging a plurality of small ultrasonic transducers that are easy to manufacture.
  • the driving section can be made thin, a very thin motor can be obtained.
  • a larger torque can be generated by applying a plurality of ultrasonic motor drivers to the inner and outer surfaces of the rotor or the linear movable element.
  • the ultrasonic motor according to the present invention is suitable for use in micro-controlling and linear driving of a huge structure including a huge crane, a huge antenna, a huge telescope, and the like.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

An ultrasonic motor comprising a rotor (1), a multiplicity of drive pieces (2) disposed on the outer peripheral surface of the rotor (1) and each having two perpendicularly arranged ultrasonic vibrators (4), a pre-loading means for pressing the drive pieces (2) to the outer peripheral surface of the rotor (1) and ac power sources (10A, 10B) connected to respective one of two ultrasonic vibrators (4) and held in different phases.

Description

明 細 書 超音波モータ 技術分野 .  Ultrasonic motor technical field.
本発明は、 超音波モータに係り、 特に 2つの超音波振動子を組み合わせた駆動 子を複数個用いることにより大トルクを発生する超音波モータに関する。 背景技術  The present invention relates to an ultrasonic motor, and more particularly, to an ultrasonic motor that generates a large torque by using a plurality of drivers combining two ultrasonic transducers. Background art
従来、 このような分野の技術としては、 例えば、 従来の超音波振動子 (圧電振 動子) を用いた超音波モータが、 種々提案されている (特開平 5— 2 1 1 7 8 7 号公報、 特開平 6— 1 8 9 5 7 1号公報等参照) 。  Conventionally, as a technology in such a field, for example, various ultrasonic motors using a conventional ultrasonic vibrator (piezoelectric vibrator) have been proposed (Japanese Patent Application Laid-Open No. Hei 5-2-118787). Gazette, JP-A-6-189571, etc.).
しかしながら、 上記した従来の超音波モータでは、 大きな P Z T焼結体を作る のは困難であり、 従って、 大きなトルクを発生させるのは困難であった。  However, with the conventional ultrasonic motor described above, it was difficult to produce a large PZT sintered body, and it was therefore difficult to generate a large torque.
そこで、 本発明では、 製造が容易な小さな超音波振動子を複数個配置して、 大 きなトルクを発生させることができる超音波モータを提供することを目的とする  Accordingly, an object of the present invention is to provide an ultrasonic motor that can generate a large torque by arranging a plurality of small ultrasonic transducers that are easy to manufacture.
発明の開示 Disclosure of the invention
本発明は、 上記目的を達成するために、  The present invention, in order to achieve the above object,
〔 1〕 超音波モータにおいて、 ロータと、 このロータの外周面に多数個配置す るとともに、 2個の超音波振動子を直交配置した駆動子と、 この駆動子を前記口 一夕の外周面に押し付ける予圧手段と、 前記 2個の超音波振動子に接続される位 相の異なる交流電源とを具備するようにしたものである。  [1] In an ultrasonic motor, a rotor, a plurality of rotors arranged on the outer peripheral surface of the rotor, and two ultrasonic transducers arranged orthogonally; And an AC power supply connected to the two ultrasonic transducers and having different phases.
〔 2〕 超音波モータにおいて、 ロータと、 このロータの内周面に多数個配置す るとともに、 2個の超音波振動子を直交配置した駆動子と、 この駆動子を前記口 一タの内周面に押し付ける予圧手段と、 前記 2個の超音波振動子に接続される位 相の異なる交流電源とを具備するようにしたものである。  [2] In an ultrasonic motor, a rotor, a plurality of ultrasonic transducers arranged on the inner peripheral surface of the rotor, and two ultrasonic transducers arranged orthogonally; A preload means for pressing against the peripheral surface, and AC power supplies having different phases connected to the two ultrasonic transducers are provided.
〔 3〕 超音波モータにおいて、 ロータと、 このロータの外周面及び内周面に多 数個配置するとともに、 2個の超音波振動子を直交配置した駆動子と、 この駆動 子を前記ロータの外周面及び内周面に押し付ける予圧手段と、 前記 2個の超音波 振動子に接続される位相の異なる交流電源とを具備するようにしたものである。 [3] In an ultrasonic motor, the rotor and the outer and inner peripheral surfaces of the rotor A driver in which several ultrasonic transducers are arranged at right angles and two ultrasonic transducers are arranged orthogonally; a preload means for pressing the driver against the outer peripheral surface and the inner peripheral surface of the rotor; and a connection to the two ultrasonic transducers. And AC power supplies having different phases.
〔 4〕 上記 〔 1〕、 〔 2〕 又は 〔 3〕 記載の超音波モータにおいて、 前記駆動 子は、 所定角度に開いた 2つの翼片のそれぞれに超音波振動子を配設した 1対の 駆動源を持ち、 この 2つの翼片の合わさる部位を前記ロータの外周面、 内周面又 は内外周面に当接させるようにしたものである。  (4) In the ultrasonic motor according to the above (1), (2) or (3), the driver is a pair of ultrasonic vibrators arranged on each of two wing pieces opened at a predetermined angle. It has a drive source, and a portion where the two blade pieces meet is brought into contact with the outer peripheral surface, the inner peripheral surface, or the inner and outer peripheral surfaces of the rotor.
〔 5〕 上記 〔 1〕 、 〔 2〕 又は 〔 3〕 記載の超音波モータにおいて、 前記超音 波振動子は圧電体振動子である。  [5] In the ultrasonic motor according to the above [1], [2] or [3], the ultrasonic vibrator is a piezoelectric vibrator.
〔 6〕 上記 〔 1〕 、 〔 2〕 又は 〔 3〕 記載の超音波モータにおいて、 前記位相 の異なる交流信号は高周波の交流信号である。  [6] In the ultrasonic motor according to the above [1], [2] or [3], the AC signals having different phases are high-frequency AC signals.
〔 7〕 上記 〔 1〕、 〔 2〕 又は 〔 3〕 記載の超音波モータにおいて、 前記口一 タは円環状ロータである。  [7] In the ultrasonic motor according to the above [1], [2] or [3], the port is an annular rotor.
〔 8〕 上記 〔 1〕、 〔 2〕 又は 〔 3〕 記載の超音波モータにおいて、 前記ロー タはキヤップ付き円筒状ロータである。  [8] In the ultrasonic motor according to the above [1], [2] or [3], the rotor is a cylindrical rotor with a cap.
〔 9〕 上記 〔 1〕 、 〔 2〕 又は 〔 3〕 記載の超音波モータにおいて、 前記ロー タの外周面、 内周面及び内外周面にはテーパ面を有するようにしたものである。  [9] The ultrasonic motor according to the above [1], [2] or [3], wherein the outer peripheral surface, the inner peripheral surface and the inner and outer peripheral surfaces of the rotor have tapered surfaces.
〔 1 0〕 超音波モータにおいて、 リニア可動子と、 このリニア可動子の外側面 に多数個配置するとともに、 2個の超音波振動子を直交配置した駆動子と、 この 駆動子を前記リニァ可動子の外側面に押し付ける予圧手段と、 前記 2個の超音波 振動子に接続される位相の異なる交流電源とを具備するようにしたものである。  [10] In an ultrasonic motor, a linear movable element, a plurality of linearly arranged movable elements on the outer surface of the linear movable element, and two ultrasonic transducers arranged orthogonally, and the linear movable element And a preload means for pressing against the outer surface of the transducer, and AC power supplies having different phases connected to the two ultrasonic transducers.
〔 1 1〕 超音波モータにおいて、 リニア可動子と、 このリニア可動子の内側面 に多数個配置するとともに、 2個の超音波振動子を直交配置した駆動子と、 この 駆動子を前記リニア可動子の内側面に押し付ける予圧手段と、 前記 2個の超音波 振動子に接続される位相の異なる交流電源とを具備するようにしたものである。  [11] In the ultrasonic motor, a linear movable element, a plurality of linearly arranged movable elements on the inner surface of the linear movable element, and two ultrasonic transducers arranged orthogonally; And a preload means for pressing against the inner surface of the transducer, and AC power supplies having different phases connected to the two ultrasonic transducers.
〔 1 2〕 超音波モータにおいて、 リニア可動子と、 このリニア可動子の外側面 及び内側面に多数個配置するとともに、 2個の超音波振動子を直交配置した駆動 子と、 この駆動子を前記リニア可動子の外側面及び内側面に押し付ける予圧手段 と、 前記 2個の超音波振動子に接続される位相の異なる交流電源とを具備するよ うにしたものである。 [12] In the ultrasonic motor, a linear movable element, a plurality of linearly movable elements are arranged on the outer surface and the inner surface of the linear movable element, and two ultrasonic transducers are orthogonally arranged. A preload means for pressing against the outer side surface and the inner side surface of the linear movable element; and an AC power supply having different phases connected to the two ultrasonic transducers. It is something that has been done.
〔 1 3〕 上記 〔 1 0〕、 〔 1 1〕 又は 〔 1 2〕 記載の超音波モータにおいて、 前記駆動子は、 所定角度に開いた 2つの翼片のそれぞれに超音波振動子を配設し た 1対の駆動源を持ち、 この 2つの翼片の合わさる部位を前記リニァ可動子の外 側面、 内側面又は内外側面に当接させるようにしたものである。  [13] In the ultrasonic motor according to the above [10], [11] or [12], the driver is provided with an ultrasonic vibrator on each of two wing pieces opened at a predetermined angle. The linear motor has a pair of drive sources, and a portion where the two wing pieces meet is brought into contact with the outer surface, the inner surface, or the inner and outer surfaces of the linear mover.
〔 1 4〕 上記 〔 1 0〕、 〔 1 1〕 又は 〔 1 2〕 記載の超音波モータにおいて、 前記超音波振動子は圧電体振動子である。  [14] In the ultrasonic motor according to the above [10], [11] or [12], the ultrasonic vibrator is a piezoelectric vibrator.
〔 1 5〕 上記 〔 1 0〕、 〔 1 1〕 又は 〔 1 2〕 記載の超音波モータにおいて、 前記位相の異なる交流信号は高周波の交流信号である。  [15] In the ultrasonic motor according to the above [10], [11] or [12], the AC signals having different phases are high-frequency AC signals.
〔 1 6〕 上記 〔 1 0〕、 〔 1 1〕 又は 〔 1 2〕 記載の超音波モータにおいて、 前記リニァ可動子は枠状の可動子である。  [16] In the ultrasonic motor according to the above [10], [11] or [12], the linear movable element is a frame-shaped movable element.
〔 1 7〕 上記 〔 1 0〕、 〔 1 1〕 又は 〔 1 2〕 記載の超音波モータにおいて、 前記リニア可動子はキャップ付き可動子である。  [17] In the ultrasonic motor according to the above [10], [11] or [12], the linear movable element is a movable element with a cap.
〔 1 8〕 上記 〔 1 0〕、 〔 1 1〕 又は 〔 1 2〕 記載の超音波モータにおいて、 前記リユア可動子の外側面、 内側面又は内外側面にはテーパ面を有するようにし たものである。 図面の簡単な説明  [18] The ultrasonic motor according to [10], [11] or [12], wherein the outer surface, the inner surface, or the inner and outer surfaces of the lower movable element have a tapered surface. is there. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1実施例を示す超音波モ一タの平面図である。  FIG. 1 is a plan view of an ultrasonic motor showing a first embodiment of the present invention.
第 2図は、 本発明の第 1実施例を示す超音波モ一タの側面図である。  FIG. 2 is a side view of an ultrasonic motor showing a first embodiment of the present invention.
第 3図は、 本発明の第 1実施例を示す超音波モータの駆動子の一部破断平面図 である。  FIG. 3 is a partially broken plan view of a driver of the ultrasonic motor according to the first embodiment of the present invention.
第 4図は、 本発明の第 1実施例を示す超音波モータの 1個の駆動子の配置状態 を示す構成図である。  FIG. 4 is a configuration diagram showing an arrangement state of one driver of the ultrasonic motor according to the first embodiment of the present invention.
第 5図は、 本発明の超音波モータの駆動子の解析モデルの形状を示す図である 第 6図は、 本発明の超音波モータの駆動子の動作を示す図である。  FIG. 5 is a diagram showing a shape of an analysis model of a driver of the ultrasonic motor of the present invention. FIG. 6 is a diagram showing an operation of a driver of the ultrasonic motor of the present invention.
第 7図は、 本発明の第 1実施例を示す超音波モータの変形例を示す図である。 第 8図は、 本発明の第 2実施例を示す超音波モ一タの平面図である。 FIG. 7 is a view showing a modified example of the ultrasonic motor according to the first embodiment of the present invention. FIG. 8 is a plan view of an ultrasonic motor according to a second embodiment of the present invention.
第 9図は、 本発明の第 3実施例を示す超音波モータの平面図である。  FIG. 9 is a plan view of an ultrasonic motor according to a third embodiment of the present invention.
第 1 0図は、 本発明の第 4実施例を示す超音波モータの側面図である。  FIG. 10 is a side view of an ultrasonic motor according to a fourth embodiment of the present invention.
第 1 1図は、 本発明の第 5実施例を示す超音波モータの側面図である。  FIG. 11 is a side view of an ultrasonic motor according to a fifth embodiment of the present invention.
第 1 2図は、 本発明の第 6実施例を示す輯音波モータの側面図である。  FIG. 12 is a side view of a sound wave motor according to a sixth embodiment of the present invention.
第 1 3図は、 本発明の第 7実施例を示す超音波モータの側面図である。  FIG. 13 is a side view of an ultrasonic motor according to a seventh embodiment of the present invention.
第 1 4図は、 本発明の第 8実施例を示すリニア型超音波モータの平面図である 第 1 5図は、 本発明の第 8実施例を示すリニア型超音波モータの側面図である 第 1 6図は、 本発明の第 9実施例を示すリニア型超音波モータの平面図である 第 1 7図は、 本発明の第 9実施例を示すリニア型超音波モータの側面図である 第 1 8図は、 本発明の第 1 0実施例を示すリニア型超音波モータの側面図であ る β FIG. 14 is a plan view of a linear ultrasonic motor showing an eighth embodiment of the present invention. FIG. 15 is a side view of a linear ultrasonic motor showing an eighth embodiment of the present invention. FIG. 16 is a plan view of a linear ultrasonic motor showing a ninth embodiment of the present invention. FIG. 17 is a side view of a linear ultrasonic motor showing a ninth embodiment of the present invention. the first 8 figures Ru side view der linear type ultrasonic motor of a first 0 embodiment of the present invention β
第 1 9図は、 本発明の第 1 1実施例を示すリニア型超音波モータの側面図であ る。 発明を実施するための最良の形態  FIG. 19 is a side view of a linear ultrasonic motor according to a eleventh embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について図面を参照しながら詳細に説明する。 第 1図は本発明の第 1実施例を示す超音波モータの平面図、 第 2図はその側面 図、 第 3図はその超音波モータの駆動子の一部破断平面図、 第 4図はその 1個の 駆動子の配置状態を示す構成図である。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view of an ultrasonic motor showing a first embodiment of the present invention, FIG. 2 is a side view thereof, FIG. 3 is a partially cutaway plan view of a driver of the ultrasonic motor, and FIG. FIG. 3 is a configuration diagram showing an arrangement state of one driver.
これらの図において、 1はロータ (回転体) 、 1 Αは口一タ蚰、 2は駆動子で あり、 この駆動子 2は、 所定角度 (例えば、 9 0度) に開いた二つの金属翼片の それぞれに圧電振動子 (超音波振動子) 4を配設した 1対の駆動源を持ち、 この 二つの金属翼片の合わさる力ッ ト部 7を有する先端部 8がロータ 1と接触するよ うにこのロータ 1の周辺部にこれらを複数個配設し、 前記一対の駆動源のそれぞ れには位相の異なる交流信号を与える交流電源 1 0 A, 1 O Bが接続され、 ロー タ 1に回転力を発生させる。 In these figures, 1 is a rotor (rotating body), 1 mm is a mouthpiece, and 2 is a driver. The driver 2 has two metal blades opened at a predetermined angle (for example, 90 degrees). It has a pair of drive sources, each with a piezoelectric vibrator (ultrasonic vibrator) 4 arranged on each piece, and the tip 8 having a force cut portion 7 where these two metal wings are brought into contact with the rotor 1 As described above, a plurality of these components are arranged around the rotor 1 and each of the pair of drive sources is provided. It is connected to AC power supplies 10 A and 1 OB that provide AC signals with different phases, and generates a rotational force in the rotor 1.
即ち、 9 0度に開いた一対の金属翼片のそれぞれに P Z T等の圧電体を設置し 、 それぞれの P Z Tには位相を変えた 3 0 k H zの交流信号を印加すると、 各翼 に設置された P Z Tの超音波振動はそれぞれの金属翼片を伝わり、 二つの金属翼 片が合わさった先端部 8では超音波振動の合成がなされる。 そして、 この圧電駆 動子 2の保持部 9には圧縮方向の予圧をかけるようにしている。 すなわち、 第 3 図に示すように、 電極 5を有する 2枚の圧電振動子 4が押し付けボルト 6とナツ ト 3によって保持部 9を挟んで締め付けられる。  That is, a piezoelectric body such as PZT is installed on each of a pair of metal wing pieces opened at 90 degrees, and when an AC signal of 30 kHz with a changed phase is applied to each PZT, it is installed on each wing. The ultrasonic vibration of the PZT propagates through each metal wing, and the ultrasonic vibration is synthesized at the tip 8 where the two metal wings are combined. Then, a preload in the compression direction is applied to the holding portion 9 of the piezoelectric driver 2. That is, as shown in FIG. 3, the two piezoelectric vibrators 4 having the electrodes 5 are clamped by the pressing bolts 6 and the nuts 3 with the holding portion 9 interposed therebetween.
第 4図はこのようにして得られた 1個の駆動子 2の配置図である。  FIG. 4 is an arrangement diagram of one driver 2 obtained in this manner.
この図において、 1 1は保持部 9に固定される連結体、 1 2はスプリ ング、 1 3はブッシングボルト、 1 4はリニアスライダ一、 1 5は固定台である。  In this figure, 11 is a connected body fixed to the holding portion 9, 12 is a spring, 13 is a bushing bolt, 14 is a linear slider, and 15 is a fixed base.
ここで、 駆動子 2はリニアスライダー 1 4に固定されており、 ロータ 1の軸方 向に 1自由度をもつ。 圧電振動子 4のロータ 1への押し付け力は、 駆動子 2の後 方のスプリング 1 2と押し付けボルト 6によって調整できる。  Here, the driver 2 is fixed to the linear slider 14 and has one degree of freedom in the axial direction of the rotor 1. The pressing force of the piezoelectric vibrator 4 against the rotor 1 can be adjusted by the spring 12 and the pressing bolt 6 at the rear of the driver 2.
次に、 駆動子 2について詳細に説明する。  Next, the driver 2 will be described in detail.
第 5図は本発明の超音波モータの駆動子の解折モデルの形状を示す図、 第 6図 はその超音波モータの駆動子の動作を示す図である。  FIG. 5 is a view showing the shape of a breaking model of the driver of the ultrasonic motor of the present invention, and FIG. 6 is a view showing the operation of the driver of the ultrasonic motor.
また、 圧電振動子 4の持つ固有振動モードの中には、 A , B部分が同相縦振動 して先端部 8が縦振動するモード 〔第 6 ( a ) 図〕 と、 A, B部分が逆相縦振動 して先端部 8が横振動するモード 〔第 6 ( b ) 図〕 とが存在する。  Also, among the natural vibration modes of the piezoelectric vibrator 4, the mode in which the A and B parts vibrate in-phase and the tip 8 vibrates longitudinally (Fig. 6 (a)) There is a mode [Fig. 6 (b)] in which the tip 8 is laterally vibrated by phase longitudinal vibration.
この 2つの振動モード共振周波数を一致させることにより、 二つの振動モード は縮退する。 モードが縮退する共振周波数で、 一方の圧電振動子 4に o - s i n ω t ( oは定数) の電圧を、 もう一方の圧電振動子 4に α · c 0 s ω tの電圧を 加えると、 先端部 8は楕円運動をするようになる。 楕円運動をする駆動子 2の先 端部 8に縦振動の方向と直角にロータ 1を押し付けることで、 ロータ 1は横振動 方向の推力を受けることになる。 推力の方向は先端部 8の楕円運動の方向により 決定される。 先端部 8の楕円運動の方向は、 駆動子 2に加える電圧の位相差によ り変えることができる。 したがって、 駆動子 2の先端部 8をロータ 1に接触させれば、 電圧の位相に応 じ順転、 逆転の回転力を起こすモータとなる。 これらの対をロータ 1の外周部に 多く配設すれば、 大きなトルクを発生させることが可能である。 即ち、 大きな P Z T焼結体を作り大きなトルクを発生させるのは困難であるが、 本発明では、 製 造が容易な小さな P Z T焼結体で、 限りなく.大きなトルクを発生させることが容 易にできるようになった。 By matching the two vibration mode resonance frequencies, the two vibration modes degenerate. At the resonance frequency at which the mode degenerates, when a voltage of o-sin ω t (o is a constant) is applied to one piezoelectric vibrator 4 and a voltage of α · c 0 s ω t is applied to the other piezoelectric vibrator 4, The tip 8 moves in an elliptical motion. By pressing the rotor 1 at a right angle to the direction of the longitudinal vibration on the tip end 8 of the driver 2 performing the elliptical motion, the rotor 1 receives the thrust in the transverse vibration direction. The direction of the thrust is determined by the direction of the elliptical movement of the tip 8. The direction of the elliptical motion of the tip 8 can be changed by the phase difference of the voltage applied to the driver 2. Therefore, when the tip 8 of the driver 2 is brought into contact with the rotor 1, the motor generates a forward or reverse rotation force according to the voltage phase. If many of these pairs are arranged on the outer peripheral portion of the rotor 1, a large torque can be generated. That is, although it is difficult to produce a large PZT sintered body and generate a large torque, in the present invention, a small PZT sintered body that is easy to manufacture is infinitely easy to generate a large torque. Now you can.
また、 その応用として、 駆動源とロータの相対配設に際して、 ロータの周面に テーパ面を設けて、 そのテーバ面に上記した駆動子 2を配置することにより、 「 くさび効果」 を発生させる構造を採用し 「軸受け不要」 の回転構造休とすること もできる。  Also, as an application, a structure that generates a “wedge effect” by providing a tapered surface on the peripheral surface of the rotor and disposing the above-described driver 2 on the tapered surface when the drive source and the rotor are disposed relative to each other. It is also possible to adopt a “rotation-free” rotating structure without bearings.
更に、 ロータ 1の外周に駆動子 2を複数個配置することにより、 トルクの合成 を行い、 高トルク化を図る。 現状では、 駆動子 2の一つの推力は 5 O N ( 5 0 c mZ秒) であり、 ここでは直径 4 0 c mのロータに 3個取り付けると、 3 0 N m のトルクとなる。  Furthermore, by arranging a plurality of drivers 2 on the outer periphery of the rotor 1, torque can be combined to increase the torque. At present, the thrust of one of the drivers 2 is 5 ON (50 cmZ seconds). In this case, if three pieces are attached to a rotor with a diameter of 40 cm, the torque becomes 30 Nm.
この実施例では、 ロータの外周に 3個の駆動子 2を配置する場合について説明 した力、 第 7図に示すように、 多数の駆動子 2を配置するようにしてもよい。 第 8図は本発明の第 2実施例を示す超音波モータの平面図である。  In this embodiment, the force described in the case where three drivers 2 are arranged on the outer periphery of the rotor, and as shown in FIG. 7, a large number of drivers 2 may be arranged. FIG. 8 is a plan view of an ultrasonic motor according to a second embodiment of the present invention.
この実施例では、 ロータを円環状ロータ 2 1となし、 その円環状ロータ 2 1の 内周面に複数 (ここでは、 3個) の駆動子 2を作用させるように配置する。  In this embodiment, the rotor is an annular rotor 21, and a plurality of (here, three) drivers 2 are arranged to act on the inner peripheral surface of the annular rotor 21.
第 9図は本発明の第 3実施例を示す超音波モータの平面図である。  FIG. 9 is a plan view of an ultrasonic motor according to a third embodiment of the present invention.
この実施例によれば、 ロータを円環状ロータ 3 1となし、 その円環状ロータ 3 According to this embodiment, the rotor is an annular rotor 31 and the annular rotor 3 1
1の外周面及び内周面に複数の駆動子 2を作用させるように配置する。 The plurality of drivers 2 are arranged so as to act on the outer peripheral surface and inner peripheral surface 1.
第 1 0図は本発明の第 4実施例を示す超音波モ一タの側面図である。  FIG. 10 is a side view of an ultrasonic motor according to a fourth embodiment of the present invention.
この実施例によれば、 ロータをキャップ 4 1 A付き円筒状ロータ 4 1となし、 その外周面及び内周面に複数の駆動子 2を作用させるように配置する。  According to this embodiment, the rotor is formed as a cylindrical rotor 41 with a cap 41A, and is arranged so that a plurality of drivers 2 act on the outer peripheral surface and the inner peripheral surface thereof.
このように構成することにより、 キャップ 4 1 Aをテーブルとして用いること ができる。  With such a configuration, the cap 41A can be used as a table.
第 1 1図は本発明の第 5実施例を示す超音波モータの側面図である。  FIG. 11 is a side view of an ultrasonic motor according to a fifth embodiment of the present invention.
この実施例では、 ロータ 5 1の外周面にテ一パ面 5 1 aを形成し、 このテーパ 面 5 1 a付き外側面を駆動子 2で駆動することにより、 くさび効果により、 口一 タ 5 1の自重だけでも大きな予圧を作用させることができ、 軸受けなしでの駆動 が可能である。 In this embodiment, a taper surface 51 a is formed on the outer peripheral surface of the rotor 51, By driving the outer surface with the surface 51a with the driver 2, a large preload can be applied only by the weight of the mouth 51 by the wedge effect, and driving without a bearing is possible.
第 1 2図は本発明の第 6実施例を示す超音波モータの側面図である。  FIG. 12 is a side view of an ultrasonic motor according to a sixth embodiment of the present invention.
この実施例によれば、 ロータを円環状口 タ 6 1となし、 その円環状ロータ 6 According to this embodiment, the rotor is formed into an annular port 61, and the annular rotor 6
1の外周面及び内周面にテ一パ面 6 1 a , 6 1 bを形成し、 そのテ一パ面 6 1 aTapered surfaces 6 1 a and 6 1 b are formed on the outer and inner peripheral surfaces of 1, and the tapered surfaces 6 1 a
, 6 1 bにそれぞれ駆動子 2を配置する。 , 6 1b, the driver 2 is arranged.
このように、 テーパ面を有する円環状ロータ 6 1の内外から駆動することによ り、 大きなトルクを得ることができるとともに、 軸受なしでロータを保持するこ とができる。  As described above, by driving from inside and outside of the annular rotor 61 having the tapered surface, a large torque can be obtained, and the rotor can be held without a bearing.
第 1 3図は本発明の第 Ί実施例を示す超音波モ一タの側面図である。  FIG. 13 is a side view of an ultrasonic motor according to a third embodiment of the present invention.
この実施例では、 ロータをキャップ 7 1 A付き円筒状ロータ 7 1とし、 その外 周面及び内周面にテーパ面 7 1 a , 7 1 bを形成し、 そのテ一パ面 7 1 a , 7 1 bにそれぞれ複数の駆動子 2を作用させるように配置する。  In this embodiment, the rotor is a cylindrical rotor 71 with a cap 71A, and tapered surfaces 71a, 71b are formed on the outer peripheral surface and the inner peripheral surface thereof. A plurality of drivers 2 are arranged to act on 7 1 b, respectively.
このように構成することにより、 キャップ 7 1 Aをテ一ブルとして用いること ができる。  With such a configuration, the cap 71A can be used as a table.
第 1 4図は本発明の第 8実施例を示すリニア型超音波モータの平面図、 第 1 5 図はそのリニァ型超音波モータの側面図である。  FIG. 14 is a plan view of a linear ultrasonic motor showing an eighth embodiment of the present invention, and FIG. 15 is a side view of the linear ultrasonic motor.
この実施例では、 平行な枠状のリニア可動子 8 1の外側面 8 1 aに複数の驱動 子 2を配置する。  In this embodiment, a plurality of oscillators 2 are arranged on the outer surface 81a of the parallel frame-shaped linear armature 81.
このように構成することにより、 リニア可動子 8 1の直線方向の驱動を行わせ ることができる。  With this configuration, the linear mover 81 can be moved in the linear direction.
第 1 6図は本発明の第 9実施例を示すリニア型超音波モータの平面図、 第 1 Ί 図はそのリユア型超音波モータの側面図である。  FIG. 16 is a plan view of a linear ultrasonic motor according to a ninth embodiment of the present invention, and FIG. 1 is a side view of the linear ultrasonic motor.
この実施例では、 キャップ 9 2付きの平行な枠状の外側面 9 1 a及び内側面 9 1 bを有するリニア可動子 9 1を配置し、 その外側面 9 1 a及び内側面 9 1 bに 複数の駆動子 2を配置する。  In this embodiment, a linear mover 91 having a parallel frame-shaped outer surface 91a and an inner surface 91b with a cap 92 is disposed, and on the outer surface 91a and the inner surface 91b. A plurality of drivers 2 are arranged.
このように構成することにより、 キャップ 9 2をテ一ブルとして用いることが できる。 第 18図は本発明の第 10実施例を示すリニア型超音波モータの側面図である 。 この実施例では、 テ一パ面 101 aを有するリニア可動子 10 1の外側面に複 数の躯動子 2を配置する。 With this configuration, the cap 92 can be used as a table. FIG. 18 is a side view of a linear ultrasonic motor according to a tenth embodiment of the present invention. In this embodiment, a plurality of armatures 2 are arranged on the outer surface of a linear mover 101 having a taper surface 101a.
このように、 テ一パ面 10 1 aを有するリニア可動子 1 01の外側面から駆動 することにより、 軸受なしでロータを保持することができる。  As described above, by driving from the outer side surface of the linear mover 101 having the taper surface 101a, the rotor can be held without bearings.
第 19図は本発明の第 1 1実施例を示すリニア型超音波モータの側面図である 。 この実施例では、 キャップ 1 12付きの内外側面のテーパ面 1 l i b, 1 1 1 aを有するリニア可動子 1 1 1の内外側面のテーパ面 1 l i b, 1 1 1 aに複数 の駆動子 2を配置する。  FIG. 19 is a side view of a linear ultrasonic motor showing an eleventh embodiment of the present invention. In this embodiment, a plurality of drivers 2 are provided on the inner and outer tapered surfaces 1 lib, 1 1 a of the linear mover 1 1 1 having the inner and outer tapered surfaces 1 lib, 1 1 1 a with the cap 1 12. Deploy.
このように、 キャップ 1 12付きテ一パ面を有するリニア可動子 1 1 1の内外 側面のテ一パ面 1 1 1 b, 1 1 1 aから駆動することにより、 大きなトルクを得 ることができるとともに、 軸受なしでロータを保持することができる。  As described above, a large torque can be obtained by driving from the taper surfaces 1 1 1b and 1 1a on the inner and outer sides of the linear mover 1 11 having the taper surface with the cap 1 12 as described above. As well as holding the rotor without bearings.
また、 キャップ 1 12をテーブルとして用いることができる。  In addition, the cap 112 can be used as a table.
なお、 上記実施例としては、 振動子としては圧電体を用いたが、 これに代わる 超音波振動子であれば、 どのようなものでもよい。  In the above embodiment, a piezoelectric body is used as the vibrator, but any other ultrasonic vibrator may be used.
以上、 詳細に説明したように、 本発明によれば、 以下のような効果を奏するこ とができる。  As described above, according to the present invention, the following effects can be obtained.
(A) 製造が容易な小さな超音波振動子を複数個配置して、 大きなトルクを発 生させることができる。  (A) A large torque can be generated by arranging a plurality of small ultrasonic transducers that are easy to manufacture.
例えば、 巨大クレーン、 巨大アンテナ、 巨大望遠鏡等を舍む巨大構造物の微少 量制御回転や直線駆動を行わせることができる。  For example, it is possible to perform micro-controlled rotation and linear drive of a huge structure including a huge crane, a huge antenna, a huge telescope, and the like.
また、 駆動部が薄型にできる点を利用して、 微小薄型モータを得ることができ る。  Also, by utilizing the fact that the driving section can be made thin, a very thin motor can be obtained.
(B) ロータ又はリニア可動子の内外側面に複数個の超音波モータの駆動子を 作用させることにより、 より大きなトルクを発生させることができる。  (B) A larger torque can be generated by applying a plurality of ultrasonic motor drivers to the inner and outer surfaces of the rotor or the linear movable element.
(C) ロータ又はリニア可動子にテ一パ面を形成し、 そのテ一パ面に複数個の 超音波モータの駆動子を作用させることにより、 大きなトルクを得ることができ るとともに、 軸受なしでロータを保持することができる。  (C) By forming a tapered surface on the rotor or linear mover, and applying a plurality of ultrasonic motor drivers to the tapered surface, a large torque can be obtained and no bearing is used. Can hold the rotor.
(D) キャップ付きのロータ又はリニア可動子とすることにより、 キャップを テーブルとして用いることができる。 (D) By using a rotor or linear mover with a cap, Can be used as a table.
なお、 本発明は上記実施例に限定されるものではなく、 本発明の趣旨に基づい て種々の変形が可能であり、 これらを本発明の範囲から排除するものではない。 産業上の利用可能性 .  It should be noted that the present invention is not limited to the above embodiments, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention. Industrial applicability.
以上のように、 本発明にかかる超音波モータは、 巨大クレーン、 巨大アンテナ 、 巨大望遠鏡等を含む巨大構造物の微少量制御面転や直線駆動に用いるのに適し ている。  As described above, the ultrasonic motor according to the present invention is suitable for use in micro-controlling and linear driving of a huge structure including a huge crane, a huge antenna, a huge telescope, and the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . 1.
( a ) ロータと、  (a) rotor and
( b ) 該ロータの外周面に多数個配置するとともに、 2個の超音波振動子を直交 配置した駆動子と、  (b) a plurality of drivers arranged on the outer peripheral surface of the rotor and having two ultrasonic transducers arranged orthogonally;
( c ) 該駆動子を前記ロータの外周面に押し付ける予圧手段と、  (c) preload means for pressing the driver against the outer peripheral surface of the rotor;
( d ) 前記 2個の超音波振動子に接続される位相の異なる交流電源とを具備する ことを特徴とする超音波モータ。  (d) An ultrasonic motor, comprising: AC power supplies having different phases connected to the two ultrasonic transducers.
2 .  2.
( a ) ロータと、  (a) rotor and
( b ) 該ロータの内周面に多数個配置するとともに、 2個の超音波振動子を直交 配置した駆動子と、  (b) a plurality of drivers arranged on the inner peripheral surface of the rotor and having two ultrasonic transducers arranged orthogonally;
( c ) 該駆動子を前記ロータの内周面に押し付ける予圧手段と、  (c) preload means for pressing the driver against the inner peripheral surface of the rotor;
( d ) 前記 2個の超音波振動子に接続される位相の異なる交流電源とを具備する ことを特徴とする超音波モータ。  (d) An ultrasonic motor, comprising: AC power supplies having different phases connected to the two ultrasonic transducers.
3 . 3.
( a ) ロータと、  (a) rotor and
( b ) 該ロータの外周面及び内周面に多数個配置するとともに、 2個の超音波振 動子を直交配置した駆動子と、  (b) a plurality of drivers arranged on the outer peripheral surface and the inner peripheral surface of the rotor, and two ultrasonic transducers arranged orthogonally;
( c ) 該駆動子を前記ロータの外周面及び内周面に押し付ける予圧手段と、 ( d ) 前記 2個の超音波振動子に接続される位相の異なる交流電源とを具備する ことを特徴とする超音波モータ。  (c) a preload means for pressing the driver against the outer peripheral surface and the inner peripheral surface of the rotor; and (d) an AC power supply connected to the two ultrasonic transducers and having different phases. Ultrasonic motor.
4 . 請求項 1、 2又は 3記載の超音波モータにおいて、 前記駆動子は、 所定角度 に開いた 2つの翼片のそれぞれに超音波振動子を配設した 1対の駆動源を持ち、 該 2つの翼片の合わさる部位を前記ロータの外周面、 内周面又は内外周面に当接 させることを特徴とする超音波モータ。  4. The ultrasonic motor according to claim 1, 2 or 3, wherein the driver has a pair of drive sources each having an ultrasonic vibrator disposed on each of two wing pieces opened at a predetermined angle. An ultrasonic motor, wherein a portion where two blade pieces meet is brought into contact with an outer peripheral surface, an inner peripheral surface, or an inner and outer peripheral surface of the rotor.
5 . 請求項 1、 2又は 3記載の超音波モータにおいて、 前記超音波振動子は圧電 体振動子であることを特徴とする超音波モータ。 5. The ultrasonic motor according to claim 1, 2 or 3, wherein the ultrasonic vibrator is a piezoelectric vibrator.
6. 請求項 1、 2又は 3記載の超音波モータにおいて、 前記位相の異なる交流信 号は高周波の交流信号であることを特徴とする超音波モータ。 6. The ultrasonic motor according to claim 1, 2 or 3, wherein the AC signals having different phases are high-frequency AC signals.
7. 請求項 1、 2又は 3記載の超音波モータにおいて、 前記ロータは円環状ロー タであることを特徴とする超音波モータ。  7. The ultrasonic motor according to claim 1, 2 or 3, wherein the rotor is an annular rotor.
8. 請求項 1、 2又は 3記載の超音波モータ-において、 前記ロータはキャップ付 き円筒状ロータであることを特徴とする超音波モータ。  8. The ultrasonic motor according to claim 1, 2 or 3, wherein the rotor is a cylindrical rotor with a cap.
9. 請求項 1、 2又は 3記載の超音波モータにおいて、 前記ロータの外周面、 内 周面及び内外周面にはテーパ面を有することを特徴とする超音波モータ。  9. The ultrasonic motor according to claim 1, 2, or 3, wherein the outer peripheral surface, the inner peripheral surface, and the inner and outer peripheral surfaces of the rotor have tapered surfaces.
1 0.  Ten.
(a ) リニア可動子と、  (a) a linear armature,
(b) 該リニア可動子の外側面に多数個配置するとともに、 2個の超音波振動子 を直交配置した駆動子と、  (b) a plurality of drivers arranged on the outer surface of the linear movable element and having two ultrasonic transducers arranged orthogonally;
( c ) 該駆動子を前記リニァ可動子の外側面に押し付ける予圧手段と、  (c) preload means for pressing the driver against the outer surface of the linear mover,
( d ) 前記 2個の超音波振動子に接続される位相の異なる交流電源とを具備する ことを特徴とする超音波モータ。  (d) An ultrasonic motor, comprising: AC power supplies having different phases connected to the two ultrasonic transducers.
1 1.  1 1.
(a ) リニア可動子と、  (a) a linear armature,
( b) 該リニア可動子の内側面に多数個配置するとともに、 2個の超音波振動子 を直交配置した駆動子と、  (b) a large number of ultrasonic transducers are arranged on the inner surface of the linear movable element, and two ultrasonic transducers are arranged orthogonally;
( c ) 該駆動子を前記リニァ可動子の内側面に押し付ける予圧手段と、  (c) preload means for pressing the driver against the inner surface of the linear mover,
( d ) 前記 2個の超音波振動子に接続される位相の異なる交流電源とを具備する ことを特徴とする超音波モータ。  (d) An ultrasonic motor, comprising: AC power supplies having different phases connected to the two ultrasonic transducers.
1 2.  1 2.
(a ) リニア可動子と、  (a) a linear armature,
(b) 該リニア可動子の外側面及び内側面に多数個配置するとともに、 2個の超 音波振動子を直交配置した躯動子と、  (b) a plurality of linear oscillators arranged on an outer surface and an inner surface thereof, and two ultrasonic transducers arranged orthogonally;
( c ) 該駆動子を前記リニァ可動子の外側面及び内側面に押し付ける予圧手段と  (c) preload means for pressing the driver against the outer surface and the inner surface of the linear mover;
(d ) 前記 2個の超音波振動子に接続される位相の異なる交流電源とを具備する ことを特徴とする超音波モータ。 (d) an AC power supply having different phases connected to the two ultrasonic vibrators. An ultrasonic motor characterized in that:
1 3 . 請求項 1 0、 1 1又は 1 2記載の超音波モータにおいて、 前記駆動子は、 所定角度に開いた 2つの翼片のそれぞれに超音波振動子を配設した 1対の駆動源 を持ち、 該 2つの翼片の合わさる部位を前記リニア可動子の外側面、 内側面又は 内外側面に当接させることを特徴とする超音-波モータ。  13. The ultrasonic motor according to claim 10, wherein the drive element comprises a pair of drive sources each including an ultrasonic vibrator disposed on each of two wing pieces opened at a predetermined angle. A supersonic-wave motor, characterized in that a portion where the two blade pieces meet is brought into contact with an outer surface, an inner surface or an inner and outer surface of the linear movable element.
1 4 . 請求項 1 0、 1 1又は 1 2記載の超音波モータにおいて、 前記超音波振動 子は圧電体振動子であることを特徴とする超音波モータ。  14. The ultrasonic motor according to claim 10, 11, or 12, wherein the ultrasonic vibrator is a piezoelectric vibrator.
1 5 . 請求項 1 0、 1 1又は 1 2記載の超音波モータにおいて、 前記位相の異な る交流信号は高周波の交流信号であることを特徴とする超音波モータ。  15. The ultrasonic motor according to claim 10, 11, or 12, wherein the AC signals having different phases are high-frequency AC signals.
1 6 . 請求項 1 0、 1 1又は 1 2記載の超音波モータにおいて、 前記リニア可動 子は枠状の可動子であることを特徴とする超音波モータ。  16. The ultrasonic motor according to claim 10, 11 or 12, wherein the linear movable element is a frame-shaped movable element.
1 7 . 請求項 1 0、 1 1又は 1 2記載の超音波モータにおいて、 前記リニア可動 子はキャップ付き可動子であることを特徴とする超音波モータ。  17. The ultrasonic motor according to claim 10, wherein the linear movable element is a movable element with a cap.
1 8 . 請求項 1 0、 1 1又は 1 2記載の超音波モータにおいて、 前記リニア可動 子の外側面、 内側面又は内外側面にはテ一パ面を有することを特徴とする超音波 モータ。  18. The ultrasonic motor according to claim 10, 11 or 12, wherein the linear movable element has a tapered surface on an outer surface, an inner surface, or an inner and outer surface.
PCT/JP1999/000820 1998-11-05 1999-02-24 Ultrasonic motor WO2000028652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10315047A JP2000152671A (en) 1998-11-05 1998-11-05 Ultrasonic motor
JP10/315047 1998-11-05

Publications (1)

Publication Number Publication Date
WO2000028652A1 true WO2000028652A1 (en) 2000-05-18

Family

ID=18060800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000820 WO2000028652A1 (en) 1998-11-05 1999-02-24 Ultrasonic motor

Country Status (2)

Country Link
JP (1) JP2000152671A (en)
WO (1) WO2000028652A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007021338A1 (en) 2007-05-07 2008-11-13 Robert Bosch Gmbh Piezoelectric drive device
DE102007021336A1 (en) 2007-05-07 2008-11-13 Robert Bosch Gmbh Piezoelectric drive device
DE102007021337A1 (en) 2007-05-07 2008-11-13 Robert Bosch Gmbh Piezoelectric drive device
DE102007021339A1 (en) 2007-05-07 2008-11-13 Robert Bosch Gmbh Piezoelectric drive device
DE102008043667A1 (en) 2008-11-12 2010-05-20 Robert Bosch Gmbh Multilayer actuator i.e. piezoelectric motor, for window lifting drive of motor vehicle, has electrode planes comprising two electrode sections controlled independent of each other, where sections are arranged on collecting electrodes

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578799B2 (en) * 2003-01-14 2010-11-10 セイコーインスツル株式会社 Piezoelectric actuator and electronic device using the same
JP2004254381A (en) * 2003-02-18 2004-09-09 Taiheiyo Cement Corp Drive member for ultrasonic motor
JP4522055B2 (en) * 2003-05-22 2010-08-11 太平洋セメント株式会社 Driving method and driving apparatus for ultrasonic motor
JP2006014512A (en) * 2004-06-25 2006-01-12 Olympus Corp Ultrasonic motor
JP4689993B2 (en) * 2004-09-07 2011-06-01 オリンパス株式会社 Vibration wave motor
JP2006254603A (en) * 2005-03-11 2006-09-21 Taiheiyo Cement Corp Guide plate
JP2008086153A (en) * 2006-09-28 2008-04-10 Taiheiyo Cement Corp Ultrasonic motor
US7944129B2 (en) 2007-07-13 2011-05-17 Konica Minolta Opto, Inc. Ultrasonic actuator and magnetic recording apparatus using the same
JP2009044838A (en) 2007-08-08 2009-02-26 Konica Minolta Opto Inc Ultrasonic actuator and method for manufacturing piezoelectric displacement portion
JP5376898B2 (en) * 2008-10-27 2013-12-25 太平洋セメント株式会社 Feeder
JP5485536B2 (en) * 2008-10-30 2014-05-07 太平洋セメント株式会社 Feeder
JP5212397B2 (en) * 2010-02-12 2013-06-19 セイコーエプソン株式会社 Piezoelectric actuator
CN102857138B (en) * 2012-07-30 2015-06-03 南京航空航天大学 Piezoelectric motor
CN102931873B (en) * 2012-11-02 2016-04-06 南京航空航天大学 A kind of small all-in-one parallel rotation ultrasonic motor
CN102931871B (en) * 2012-11-02 2016-05-04 南京航空航天大学 A kind of paraboloid shape linear ultrasonic motor
JP6255811B2 (en) 2013-09-06 2018-01-10 カシオ計算機株式会社 Driving device and watch
CN103904938B (en) * 2014-03-20 2015-05-13 西安交通大学 Actuator and method for achieving torque through piezoelectric-link mechanisms
CN109672361A (en) * 2019-02-14 2019-04-23 南京工程学院 A kind of single-phase rotary ultrasonic wave motor of parallel-connection driving type
CN109698638B (en) * 2019-02-14 2020-10-30 南京工程学院 Parallel driving type single-phase linear ultrasonic motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168025A (en) * 1985-01-21 1986-07-29 Hitachi Ltd Driving device
JPH0184438U (en) * 1987-11-27 1989-06-05
JPH02290170A (en) * 1989-02-28 1990-11-30 Toyo Electric Mfg Co Ltd Ultrasonic motor
JPH0553650A (en) * 1991-08-29 1993-03-05 Hitachi Constr Mach Co Ltd Positioning controller
JPH0880069A (en) * 1994-09-06 1996-03-22 Hitachi Ltd Driver
JPH09258828A (en) * 1996-03-25 1997-10-03 Seiko Seiki Co Ltd Ultra-precise positioning device
JPH10225151A (en) * 1997-02-12 1998-08-21 Sharp Corp Ultrasonic driving motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168025A (en) * 1985-01-21 1986-07-29 Hitachi Ltd Driving device
JPH0184438U (en) * 1987-11-27 1989-06-05
JPH02290170A (en) * 1989-02-28 1990-11-30 Toyo Electric Mfg Co Ltd Ultrasonic motor
JPH0553650A (en) * 1991-08-29 1993-03-05 Hitachi Constr Mach Co Ltd Positioning controller
JPH0880069A (en) * 1994-09-06 1996-03-22 Hitachi Ltd Driver
JPH09258828A (en) * 1996-03-25 1997-10-03 Seiko Seiki Co Ltd Ultra-precise positioning device
JPH10225151A (en) * 1997-02-12 1998-08-21 Sharp Corp Ultrasonic driving motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007021338A1 (en) 2007-05-07 2008-11-13 Robert Bosch Gmbh Piezoelectric drive device
DE102007021336A1 (en) 2007-05-07 2008-11-13 Robert Bosch Gmbh Piezoelectric drive device
DE102007021337A1 (en) 2007-05-07 2008-11-13 Robert Bosch Gmbh Piezoelectric drive device
DE102007021339A1 (en) 2007-05-07 2008-11-13 Robert Bosch Gmbh Piezoelectric drive device
DE102008043667A1 (en) 2008-11-12 2010-05-20 Robert Bosch Gmbh Multilayer actuator i.e. piezoelectric motor, for window lifting drive of motor vehicle, has electrode planes comprising two electrode sections controlled independent of each other, where sections are arranged on collecting electrodes

Also Published As

Publication number Publication date
JP2000152671A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
WO2000028652A1 (en) Ultrasonic motor
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JP3828256B2 (en) Ultrasonic motor and driving method thereof
JPH0217877A (en) Oscillator and ultrasonic motor using this oscillator
Petit et al. A multi-mode piezomotor using a flextensional coupler
JP3297211B2 (en) Ultrasonic motor
JPH0150196B2 (en)
JPH08242593A (en) Vibrating actuator
JP3302156B2 (en) Ultrasonic drive
JP2632158B2 (en) Ultrasonic motor
JPS63224680A (en) Revolution-body interposing ultrasonic motor
JPS60113672A (en) Piezoelectric rotary machine
JPH0255584A (en) Ultrasonic vibrator and ultrasonic motor
JPH06101944B2 (en) Piezoelectric motor
JPH02228275A (en) Ultrasonic motor and method of drive thereof
JPH069389U (en) Vibration motor device
JP2639845B2 (en) Ultrasonic actuator
JP2975065B2 (en) Ultrasonic motor
JPH03118780A (en) Ultrasonic motor
JPS61262091A (en) Vibration wave motor
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor
JPH03150080A (en) Ultrasonic motor
JPH0251379A (en) Ultrasonic motor
JPH01278270A (en) Vibrator and ultrasonic motor using vibrator
JPH0787712B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase