WO2000026061A1 - Signalling assembly - Google Patents
Signalling assembly Download PDFInfo
- Publication number
- WO2000026061A1 WO2000026061A1 PCT/US1999/024536 US9924536W WO0026061A1 WO 2000026061 A1 WO2000026061 A1 WO 2000026061A1 US 9924536 W US9924536 W US 9924536W WO 0026061 A1 WO0026061 A1 WO 0026061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- assembly
- light emitting
- light
- semitransparent
- Prior art date
Links
- 230000011664 signaling Effects 0 abstract claims description title 96
- 239000000758 substrates Substances 0 abstract claims description 183
- 239000011797 cavity materials Substances 0 claims description 9
- 230000036961 partial Effects 0 claims description 8
- 238000009740 moulding (composite fabrication) Methods 0 claims description 3
- 230000000712 assembly Effects 0 description 10
- 230000002093 peripheral Effects 0 description 9
- 230000000007 visual effect Effects 0 description 6
- 239000011248 coating agents Substances 0 description 4
- 238000000576 coating method Methods 0 description 4
- 238000005286 illumination Methods 0 description 4
- 239000000463 materials Substances 0 description 4
- 230000001976 improved Effects 0 description 3
- 239000000203 mixtures Substances 0 description 3
- 238000002310 reflectometry Methods 0 description 3
- 238000002834 transmittance Methods 0 description 3
- 230000000694 effects Effects 0 description 2
- 238000000034 methods Methods 0 description 2
- 238000009825 accumulation Methods 0 description 1
- 239000006227 byproducts Substances 0 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound   [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0 description 1
- 239000011651 chromium Substances 0 description 1
- 238000000151 deposition Methods 0 description 1
- 239000010408 films Substances 0 description 1
- 239000011521 glass Substances 0 description 1
- 239000010410 layers Substances 0 description 1
- 238000004519 manufacturing process Methods 0 description 1
- 238000006011 modification Methods 0 description 1
- 230000004048 modification Effects 0 description 1
- 238000000465 moulding Methods 0 description 1
- 230000001264 neutralization Effects 0 description 1
- 239000004417 polycarbonates Substances 0 description 1
- 229920000515 polycarbonates Polymers 0 description 1
- 230000003405 preventing Effects 0 description 1
- 238000005365 production Methods 0 description 1
- 239000000047 products Substances 0 description 1
- 230000003595 spectral Effects 0 description 1
- 238000001228 spectrum Methods 0 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangements or adaptations of optical signalling or lighting devices
- B60Q1/26—Arrangements or adaptations of optical signalling or lighting devices the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
- B60Q1/2661—Arrangements or adaptations of optical signalling or lighting devices the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic mounted on parts having other functions
- B60Q1/2665—Arrangements or adaptations of optical signalling or lighting devices the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic mounted on parts having other functions on rear-view mirrors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangements or adaptations of optical signalling or lighting devices
- B60Q1/26—Arrangements or adaptations of optical signalling or lighting devices the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
- B60Q1/2696—Mounting of devices using LEDs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R1/00—Optical viewing arrangements
- B60R1/12—Mirror assemblies combined with other articles, e.g. clocks
- B60R1/1207—Mirror assemblies combined with other articles, e.g. clocks with lamps; with turn indicators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S43/00—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
- F21S43/10—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
- F21S43/13—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
- F21S43/14—Light emitting diodes [LED]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S43/00—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
- F21S43/20—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
- F21S43/26—Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R1/00—Optical viewing arrangements
- B60R1/12—Mirror assemblies combined with other articles, e.g. clocks
- B60R2001/1215—Mirror assemblies combined with other articles, e.g. clocks with information displays
Abstract
Description
DESCRIPTION SIGNALLING ASSEMBLY Technical Field
The present invention relates to a signalling assembly, and more specifically, to a signalling assembly which has particular utility when coupled with the controls of an overland vehicle, or the like, and which in one form of the invention operates as a combined directional signalling lamp and rear view mirror assembly. Description of the Prior Art The beneficial effects of employing auxiliary signalling assemblies have been disclosed in various United States patents, including U.S. Patent Nos. 5,014,167; 5,207,492; 5,355,284; 5,361 ,190; 5,481 ,409; 5,528,422, and 5,788,357, all of which are incorporated by reference herein. The mirror assemblies disclosed in the above-captioned patents employ semitransparent mirrors, some of which are dichroic, and which are operable to reflect a broad band of electromagnetic radiation, within the visible light portion of the spectrum, while simultaneously permitting electromagnetic radiation having wavelengths which reside within a predetermined spectral band to pass therethrough. In this fashion, the dichroic mirror remains an excellent visual image reflector, that is, achieving luminous reflectance which is acceptable for automotive and other industrial applications, for example, while simultaneously achieving an average transmittance which is commercially acceptable . Further, when these assemblies use dichroic mirrors, and the predetermined band pass region of the electromagnetic radiation is relatively narrow, that is, such as about 30 nanometers, average in-band transmittance of 80% , or more of the electromagnetic radiation, can be achieved, with peak transmittance in excess of 90% being common.
In U .S. Patent No. 5,788,357, which issued on August 4, 1998, the inventors disclosed a mirror assembly which utilizes a nondichroic semitransparent mirror which passes about 1 % to less than about 8 % of a broad band of visible light and which simultaneously reflects about 35 % to about 58% of a broad band of visible light; and a light assembly positioned adjacent to the semitransparent mirror and which emits visible light which is passed by the semitransparent mirror, the luminous intensity of the mirror assembly being about 2 to about 20 candelas. Further, in U .S. Patent No. 5,528,422, a plurality of mirror coatings were disclosed and which are operable to conceal an underlying sensor or light emitting assembly while simultaneously providing a neutrally chromatic appearance . These same mirror coatings simultaneously absorb wavelengths of electromagnetic radiation which may otherwise be transmitted into the mirror assembly and which would, over time, degrade or otherwise be harmful to the subassemblies which are concealed by the semitransparent mirror. Still further, in U.S. patent application Serial No. 09/123,047 and which was filed on July 27, 1998, the inventors have disclosed a mirror assembly having a semitransparent mirror which passes about 1 % to about 30% of a broad band of visible light, and which reflects less than about 80% of a broad band of visible light; and a light assembly positioned adjacent to the semitransparent mirror and which emits visible light which is passed by the semitransparent mirror, the luminous intensity of the mirror assembly being less than about 120 candelas. The teachings of this application are also incorporated by reference herein.
Yet further in U.S. patent application Serial No. 09/166,561, filed October 5, 1998, the inventor has disclosed a mirror coating which may be useful in similar applications. In this patent application a mirror coating is disclosed as comprising a primary region which reflects visibly discernible electromagnetic radiation, and a secondary region which passes a portion of the visibly discernible electromagnetic radiation while simultaneously reflecting a given percentage of the visibly discernible electromagnetic radiation, and wherein the average reflectance of the mirror coating is greater than about 50% . The teachings of this reference are also incorporated by reference herein.
While the devices disclosed in these patents and applications have realized some degree of commercial success, certain inherent physical characteristics of the earlier disclosed mirror assemblies have impeded manufacturing efforts to cost- effectively mass produce these same assemblies. For example, while the mirror coatings disclosed in U.S. Patent No. 5,528,422 operate as described, the manufacturing difficulties and costs associated with producing these rather complex coatings with commercially available coating fabrication equipment has impeded the introduction of low cost products for the mass market.
Still further, many of the devices disclosed in the earlier patents comprise numerous subassemblies, including light control film, lenses, and other diffractive devices which are utilized to collimate or otherwise bend the light emitted by the underlying light emitting assembly in such a fashion so as to direct the light in a given orientation away from an observer's eyes and into a given field of view outwardly of an overland vehicle. While these devices have operated with success, the space occupied by these subassemblies, and the weight attributed to same, have in some operating environments, and under certain conditions, detracted from their usefulness.
Still other prior art devices have attempted to diverge from the teachings provided in the patents and applications noted above. These devices, however, when built in accordance with their teachings, have been unable to provide the same performance characteristics. An example of such prior art is the patent to Crandall, U.S. Patent No. 5,436,741. Other prior art references describe devices which attempt to provide the same functional benefits as described in the earlier patents. These references describe all manner of mirror housing modifications where, for example, lamps are located in various orientations to project light into predetermined areas, both internally and/or externally of the overland vehicle and to further provide auxiliary signalling capability. Examples of such patents include U.S. Patent Nos. 4,646,210; 4,916,430; 5,059,015; 5,303,130; 5,371,659; 5,402,103; and 5,497,306, to name but a few.
Other prior art references have attempted to provide a combined mirror and signalling assembly. These assemblies have employed a nondichroic, semitransparent mirror with same. Perhaps the most germane patent which discloses this type of assembly is the patent to Maruyama et al., U.S. Patent No. 3,266,016. This reference is, however, devoid of any suggestion of how one could manufacture a device which would have acceptable reflectivity and an acceptable luminous output while avoiding the detriments associated with the build-up or accumulation of heat within the mirror housing; and further address the associated problem of space limitations within the same mirror housing. The heat problem discussed above, of course, is a by-product of the electrical lamps used with same.
In the present invention, the inventors have departed from the teachings of the prior art by providing a signalling assembly which utilizes a semitransparent substrate, and a light assembly which, in combination, produces a signalling assembly which has a luminous intensity which is commercially acceptable, while simultaneously maintaining an acceptable luminous reflectivity, and a substantially neutral chromatic appearance. The present invention further eliminates many of the subassemblies utilized in the previous prior art devices, thereby minimizing its overall thickness, and weight. This is all achieved in a device which can be manufactured in a cost-effective fashion, not possible heretofore, and which further has improved performance characteristics. Objects and Summary of the Invention
Therefore, one aspect of the present invention is to provide an improved signalling assembly.
Another aspect of the present invention is to provide a signalling assembly which may be manufactured and installed as original equipment on an overland vehicle and the like or which may be further manufactured in the manner of a retrofit.
Another aspect of the present invention is to provide a signalling assembly which may be readily installed or integrated with other mirror technologies such as motorized actuators, heater elements, and electrochromic dimming devices, of various designs.
Another aspect of the present invention is to provide a signalling assembly which includes a semitransparent substrate; a light emitting assembly which is disposed in spaced relation relative to the semitransparent substrate and which, when energized, emits electromagnetic radiation; and an opaque light orientation assembly which is positioned adjacent to the semitransparent substrate and which permits electromagnetic radiation to pass through the semitransparent substrate at an oblique orientation.
Another aspect of the present invention is to provide a signalling assembly which includes a light emitting assembly positioned adjacent to a semitransparent mirror and which emits visible light which is passed by the semitransparent mirror, the luminous intensity of the mirror assembly being about 0.5 to about
120 candelas.
Another aspect of the present invention is to provide a semitransparent substrate which is utilized with the signalling assembly of the present invention and which is operable to pass less than about 30% of substantially all visible light and which further reflects less than about 80% of substantially all ambient light.
Another aspect of the present invention relates to a signalling assembly which includes a light emitting assembly; an opaque substrate, a light diverting substrate; and a light emitting assembly which has a weight of less than about 100 grams.
Another aspect of the present invention is to provide a signalling assembly which has a light emitting assembly which has a given surface area, and which is less than about 50% of the total surface area of the semitransparent substrate. Yet another aspect of the present invention is to provide a signalling assembly which is operable to obtain the individual benefits to be derived from related prior art assemblies and devices while avoiding the detriments individually associated therewith. Further aspects and advantages are to provide improved elements and arrangements thereof in a signalling assembly for the purposes described and which is dependable, economical, durable, and fully effective in accomplishing these intended purposes.
These and other aspects and advantages of the present invention are achieved in a signalling assembly as provided for hereinafter, the signalling assembly comprising a semitransparent substrate; a light emitting assembly which is obliquely oriented relative to the semitransparent substrate; and an opaque light orientation assembly positioned adjacent to and in partial covering relation relative to the light emitting assembly, and intermediate the light emitting assembly and the semitransparent substrate. Brief Description of the Drawings
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
Figure 1 is a perspective, environmental view of a mirror assembly of the present invention, shown mounted on an overland vehicle of conventional design, and illustrating the visual display produced by same when energized.
Figure 2 is a top plan view of an overland vehicle of conventional design and which illustrates the approximate projected pattern of light as provided by the signalling assembly of the present invention when installed on an overland vehicle.
Figure 3 is a partial, perspective, exploded view of the signalling assembly of the present invention.
Figure 4 is a partial, plan view of the signalling assembly of the present invention with the semitransparent substrate removed to illustrate the structure thereunder.
Figure 5 is a transverse, vertical, sectional view taken from a position along line 5-5 of Figure 4.
Figure 6 is a plan view of the opaque light orientation assembly utilized with the signalling assembly of the present invention. Figure 7 is an end view of the opaque light orientation assembly utilized with the signalling assembly of the present invention, and which is taken from a position along line 7-7 of Figure 6. Detailed Description of the Preferred Embodiments Referring more particularly to the drawings, the signalling assembly of the present invention is generally indicated by the numeral 10 in Figure 1.
For illustrative convenience the mirror assembly 10 of the present invention, which is shown and described herein, is discussed as it would be configured if it were installed on an overland vehicle 11 of conventional design. As discussed in the earlier patents and applications which are incorporated by reference herein, the signalling assembly 10 of the present invention may be mounted on a vehicle, alternatively in place of the rearview mirror which is located in the passenger compartment, and/or in place of the exterior mounted side view mirrors. The mirror assembly 10 of the subject invention will be discussed in greater detail in the paragraphs which follow.
As noted earlier, the signalling assembly 10 is adapted to operate as a combination rearview mirror and visual signalling device, and wherein the visual signal it provides is capable of being seen, or detected from locations rearwardly of the overland vehicle 11 and which further cannot be readily seen under most circumstances by an operator of the same vehicle when energized, and which remains substantially covertly concealed behind the semitransparent mirror when deenergized, under most ambient lighting conditions.
As illustrated by reference to Figs. 1 and 2 respectively, the signalling assembly 10 of the present invention is mounted on an overland vehicle 11 of conventional design. The overland vehicle has a front or forward portion 12, and a rear portion 13. The overland vehicle 11 further has a passenger compartment 14 which includes a front seat 15 and an operator's position 20. The overland vehicle 11 also includes locations 21 for a pair of exterior mounted rearview mirrors. The overland vehicle 11 also has a hand-operated directional signalling switch, and brake, not shown, and which when utilized provides a visual signal by means of an exterior mounted lamp which may alert drivers to other vehicles in the immediate vicinity that the overland vehicle 11 is about to change directions, turn, change lanes, stop, etc. Other signals may also be provided from other devices such as hazard warning switches and all manner of other signalling devices on the overland vehicle. As best seen in Fig. 2 an operator 30 when positioned in the operator's position 20 has a field of view which extends approximately 180 degrees from the operator's position towards the forward portion 12 of the vehicle. Further and by using a pair of the signalling assemblies 10, which are located at the positions 21 on the exterior portion of the vehicle 11, the operator 30 may, by looking along predetermined lines of sight, view areas beyond his normal field of view, and rearwardly of the operator's position 20. In particular, the operator 30 has a first line of sight 31, which extends from the operator 30 to the signalling assembly 10, which is located on the driver's side of the overland vehicle 11. This allows the operator to view rearwardly of the vehicle on the driver's side thereof. The operator 30 has a second line of sight 32, which extends from the operator 30 to the passenger side of the overland vehicle, and therefore permits the operator to view rearwardly along the passenger side of the vehicle. Furthermore, the operator has a third line of sight (not shown) which extends from the operator's position 20 to the interior rearview mirror. As best depicted in Fig. 2, the signalling assembly 10 of the present invention provides illumination zones 33 which extend rearwardly of the vehicle 11 and are substantially out of the line of sight of the operator 30. The illumination zones 33 have a predetermined beam spread 34 of about 2 meters when measured at a distance of about 8 meters from the mirror assembly 10. When utilized on an overland vehicle as shown in Fig. 2, the deviation angle of the driver's side illumination zone as measured from a line perpendicular to the surface of the mirror assembly is about 30 degrees and the deviation angle for the passenger side illumination zone is about 25 degrees. It should be recognized, however, that various automotive platforms such as light trucks, and sports utility vehicles, may require somewhat different deviation angles because of the geometry of the vehicle involved.
Referring now to Fig. 3, the signalling assembly 10 of the present invention includes a mirror housing 40 which is operable to be mounted at the mirror locations 21 on the exterior portion of the overland vehicle 11. The mirror housing or enclosure 40 has a rearwall 41 and a side wall 42 which extends outwardly therefrom. The sidewall has a peripheral edge 43 which defines an aperture 41 having given dimensions. Further, a smaller aperture 45 is formed in the sidewall 42. The rearwall 41 and the sidewall 42 define a cavity 46 which receives and partially encloses the signalling assembly 10 and other assemblies such as a bezel 47. It should be understood that the bezel provides a means by which the accompanying signalling assembly 10 may be movably supported within the housing and then can be readily adjusted, either manually or remotely as by a motorized actuator to a given angular orientation relative to the first and second lines of sight 31 and 32. This provides the means by which the operator 30 may adjust his given field of view. The bezel 47 defines a cavity 48 of predetermined dimensions.
The signalling assembly 10 of the invention as shown in Fig. 3 includes a semitransparent substantially neutrally chromatic substrate 50. The semitransparent substrate which is formed from conventional techniques passes less than about 30% of substantially all visible light and which further reflects less than about 80% of substantially all ambient light. The semitransparent substrate has a front or exterior facing surface 51 and an opposite rearwardly facing surface 52. Further, the semitransparent substrate further has a peripheral edge 53 which substantially corresponds in shape and size to the aperture 44 and which when assembled substantially occludes the aperture 44. As will be seen in Figure 5, the semitransparent substrate matingly engages or is coupled with the bezel 47. The semitransparent substrate 50 is formed by depositing a layer of highly reflective material on one of the surfaces of a substantially transparent substrate. Such highly reflective materials may include chromium and other similar materials which are provided to a given thickness and which produce the reflectivity and transmissivity characteristics noted above. The resulting semitransparent substrate 50 is fabricated from suitable substantially transparent substrates such as automotive glass, polycarbonate or other similar materials.
Referring now to Figs. 3, 4 and 5, respectively, the signalling assembly 10 of the present invention includes a light emitting assembly which is generally designated by the numeral 60. As seen in Fig. 5, the light emitting assembly 60 comprises a supporting substrate 61 which is located in spaced substantially parallel relation relative to the semitransparent substrate 50 and in the cavity 48 which is defined by the bezel 47. The supporting substrate 61 has a top surface 62, and an opposite bottom surface 63. Further, the supporting substrate is defined by a peripheral edge 64. The supporting substrate can take on any number of different geometric shapes depending upon the cavity which it occupies and the ultimate visible image which is intended to be projected. It should be understood that the supporting substrate mounts and electrically couples a plurality of light emitting diodes (LEDs) 65 with the electrical system of the overland vehicle 11. This is achieved by means of electrical tracings which are formed on the supporting substrate [not shown] and which electrically couple the LEDs with the automotive electrical system. The supporting substrate 61 is electrically coupled with the overland vehicle's electrical system by means of electrical leads [not shown] and which travel through the aperture 45 which is formed in the housing 40. As can be best seen by reference to Fig. 5, the light emitting assembly 60 and more particularly the light emitting diodes 65 thereof are disposed in an oblique orientation relative to the supporting substrate 61, and the overlying semitransparent substrate 50. Still further, the light emitting assembly 60 is operable, when energized, to emit visible electromagnetic radiation having a light output of less than about 1000 candelas. Still further, and when fully assembled and energized, the signalling assembly 10 as shown in the arrangement as seen in Fig. 5, has a light output of about 0.5 to about 120 candelas. It should be understood that the oblique orientation of the light emitting assembly 60, and more specifically the light emitting diodes 65 thereof is less than about 45 degrees relative to the semitransparent substrate 50.
As should be understood, the vehicle electrical system may be configured to energize the respective LED's 65 altogether or selectively to achieve a variety of different visibly discernible outputs. Such visibly discernible outputs may include, but are not limited to readily discernible geometric shapes such as a chevron shaped directional signal, alpha-numeric indicia; a stop signal; or readily reconfigurable messages which may be selected by or inputed by the operator of the overland vehicle 11.
As best seen in Fig. 5, 6, and 7, the signalling assembly 10 has an opaque light orientation assembly which is generally designated by the numeral 70. In this regard, the opaque light orientation assembly 70 includes as a component element thereof a light diverting substrate which is located in spaced substantially parallel relation relative to the semitransparent substrate 50. The light diverting substrate 80 has a first or top surface 81 and a second, bottom, or opposite surface 82. The light diverting substrate further is defined by a first peripheral edge 83 and an opposite, second peripheral edge 84. A plurality of pockets or recesses 85 are formed in the second peripheral edge. Still further, the light diverting substrate 80 has a plurality of legs or support members 86 which depend downwardly from the second or bottom surface 82 and which are operable to matingly engage or otherwise couple with the supporting substrate 61. This relationship is seen most clearly in Fig. 5. The light diverting substrate has a surface texture and color which facilitates the scattering and diversion of light which may impinge against its surface, thereby preventing it from being effectively reflected and subsequently passed by the semitransparent substrate 50. This substantially impedes the visual discernment of this assembly behind the semitransparent substrate when the signalling assembly 10 is in a deenergized state.
The opaque light orientation assembly 70 further includes as a second component, an opaque substrate which is generally indicated by the numeral 90. The opaque substrate has a top surface 91 which is juxtaposed and in substantially parallel relation relative to the opposite, rearwardly facing surface 52 of the semitransparent substrate 50. The opaque substrate also has a bottom surface 92 which is disposed in spaced relationship relative to the light diverting substrate 80 and further is disposed in partially overlapping relation relative thereto. The opaque substrate 90 further has a first peripheral edge 93 and an opposite, second peripheral edge 94. The first peripheral edge may be formed in a number of geometric shapes depending upon the image that will be projected by the underlying light emitting assembly 60. Depending legs 95 are made integral with the bottom surface 92 and are thereafter affixed by conventional means to the top surface 81 of the light diverting substrate 80. This is seen in Fig. 7. It should be understood that the opaque substrate and the light diverting substrate 80 may be formed as an integral component, as by conventional techniques, such as molding and the like. The bottom surface 92 further has a central support member 96 which depends downwardly therefrom and forcibly engages the bezel 47. This structure gives additional strength to the opaque light orientation assembly 70. The opaque substrate 90, and the light diverting substrate 80 define, in combination, an aperture 97 in which the obliquely oriented light emitting diodes are positioned. As seen most clearly by reference to Figs. 4 and 5, the individual light emitting diodes 65 are each positioned or received in the respective recesses 85, which are defined by the light diverting substrate 80. As such, the obliquely oriented electromagnetic radiation generated by the respective light emitting diodes 65 may pass through the aperture 97 in the direction of the semitransparent substrate 50. As should be understood, the overall thickness of the opaque substrate 90, light diverting substrate 80, and light emitting assembly 60 is less than about 25 mm and has a weight of less than about 100 grams. As presently illustrated, the opaque light orientation assembly 70 substantially prevents or impedes the light emitting diodes 65 from being readily visibly discernible through the semitransparent substrate 50 when the light emitting diodes 65 are in a deenergized state. Further and referring again to Fig. 2, when an observer is located in the driver's position 20 and looks along the line of sight 31 in the direction of the signalling assembly 10, the invention is operable, when the light emitting assembly 60 is energized, to emit visible light which is passed by the semitransparent substrate 50 and subsequently acted upon by the opaque light orientation assembly 70 in a fashion whereby the visible electromagnetic radiation is passed by the semitransparent substrate 50 and is predominantly outside the line of sight of the operator. Operation
The operation of the described embodiment of the present invention is believed to be readily apparent and is briefly summarized at this point.
The present invention is best understood by a study of Figs. 3, 4 and 5 respectively. As shown therein, the signalling assembly 10 comprises a semitransparent substrate 50; a light emitting assembly 60 which is disposed in spaced relation relative to the semitransparent substrate 50, and which, when energized, emits electromagnetic radiation; and an opaque light orientation assembly 70 which is positioned adjacent to the semitransparent substrate, and which permits electromagnetic radiation to pass through the semitransparent substrate at an oblique orientation. As noted earlier, when energized, the light emitting assembly 60 emits visible light which is passed by the semitransparent substrate and which, when acted upon by the opaque light orientation assembly 70, is predominantly outside the line of sight of the operator.
More particularly, the signalling assembly 10 for use with an overland vehicle 11 which has an operator's position 20 comprises a housing 40 borne by the overland vehicle 11 and which defines a cavity 46 having an aperture 44. A semitransparent substrate 50 is borne by the housing 40 and substantially occludes the opening 44 thereof. The semitransparent substrate reflects on average less than about 80% of substantially all visible light and passes less than about 30% of a broad band of visible and invisible electromagnetic radiation. The signalling assembly 10 further includes a light emitting assembly 60 which is disposed in an oblique orientation relative to the semitransparent substrate 50. The light emitted by the light emitting assembly is passed by the semitransparent substrate 50. Additionally, the present invention 10 includes an opaque substrate 90 positioned in partial covering relation relative to the light emitting assembly. The opaque substrate 90 is positioned between the light emitting assembly 60 and the semitransparent substrate 50. The opaque substrate defines, in part, an aperture 97 through which the light emitted by the light emitting assembly passes to the semitransparent substrate 50. Still further, the device 10 includes a light diverting substrate 80 which is disposed in spaced relation relative to the opaque substrate 90 and the semitransparent mirror 50. This light diverting substrate 80 further defines in part, the aperture 97 through which the light emitted by the light emitting assembly 60 passes. In operation, the light emitting diodes 65, which are made integral with the light emitting assembly, emit light in a predetermined band of electromagnetic radiation which is passed by the semitransparent substrate 50. Still further, the light emitting diodes 65, in a deenergized state, cannot be readily visually discerned from their position behind the semitransparent substrate under most ambient lighting conditions. As earlier noted, the semitransparent substrate 50 passes less than about 30% of substantially all visible light and further reflects less than about 80% of substantially all ambient light. In operation, the light output of the light emitting assembly 60 is less than about 1000 candelas and the overall light output of the signalling assembly 10, when assembled and rendered operational is about 0.5 to about 120 candelas. In the present device 10, the semitransparent substrate 50 has a given surface area, and a plurality of light emitting diodes 65 forming the light emitting assembly have a surface area which is less than about 50% of the surface area of the semitransparent substrate 50.
Therefore, it will be seen that the signalling assembly 10 of the present invention provides a convenient means by which the shortcomings in the prior art devices and assemblies can be readily rectified and which further provides a signalling assembly which achieves the benefits earlier described in a cost effective and highly reliable fashion.
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect.
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/185,665 | 1998-11-03 | ||
US09/185,665 US6257746B1 (en) | 1998-11-03 | 1998-11-03 | Signalling assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU11264/00A AU1126400A (en) | 1998-11-03 | 1999-10-19 | Signalling assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000026061A1 true WO2000026061A1 (en) | 2000-05-11 |
Family
ID=22681952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/024536 WO2000026061A1 (en) | 1998-11-03 | 1999-10-19 | Signalling assembly |
Country Status (3)
Country | Link |
---|---|
US (1) | US6257746B1 (en) |
AU (1) | AU1126400A (en) |
WO (1) | WO2000026061A1 (en) |
Families Citing this family (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6276821B1 (en) * | 1992-12-16 | 2001-08-21 | Donnelly Corporation | Vehicle exterior mirror system with signal light |
US8066415B2 (en) | 1999-06-17 | 2011-11-29 | Magna Mirrors Of America, Inc. | Exterior mirror vision system for a vehicle |
US6891563B2 (en) | 1996-05-22 | 2005-05-10 | Donnelly Corporation | Vehicular vision system |
US5910854A (en) | 1993-02-26 | 1999-06-08 | Donnelly Corporation | Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices |
US8294975B2 (en) | 1997-08-25 | 2012-10-23 | Donnelly Corporation | Automotive rearview mirror assembly |
US5668663A (en) | 1994-05-05 | 1997-09-16 | Donnelly Corporation | Electrochromic mirrors and devices |
US7427150B2 (en) * | 1999-05-14 | 2008-09-23 | Gentex Corporation | Rearview mirror assembly including a multi-functional light module |
US6124886A (en) | 1997-08-25 | 2000-09-26 | Donnelly Corporation | Modular rearview mirror assembly |
US8288711B2 (en) | 1998-01-07 | 2012-10-16 | Donnelly Corporation | Interior rearview mirror system with forwardly-viewing camera and a control |
US7370983B2 (en) | 2000-03-02 | 2008-05-13 | Donnelly Corporation | Interior mirror assembly with display |
US6326613B1 (en) | 1998-01-07 | 2001-12-04 | Donnelly Corporation | Vehicle interior mirror assembly adapted for containing a rain sensor |
US6172613B1 (en) | 1998-02-18 | 2001-01-09 | Donnelly Corporation | Rearview mirror assembly incorporating vehicle information display |
US6445287B1 (en) | 2000-02-28 | 2002-09-03 | Donnelly Corporation | Tire inflation assistance monitoring system |
US6572250B1 (en) * | 1999-03-15 | 2003-06-03 | Britax Wingard Limited | Exterior mirror having an attachment member including an approach light |
US6553308B1 (en) | 1999-04-29 | 2003-04-22 | Donnelly Corporation | Vehicle-based navigation system with smart map filtering, portable unit home-base registration and multiple navigation system preferential use |
US7167796B2 (en) | 2000-03-09 | 2007-01-23 | Donnelly Corporation | Vehicle navigation system for use with a telematics system |
US6329925B1 (en) | 1999-11-24 | 2001-12-11 | Donnelly Corporation | Rearview mirror assembly with added feature modular display |
US6511192B1 (en) * | 1999-12-17 | 2003-01-28 | Britax Vision Systems (North America) Inc. | Side view mirror with integral lighting |
WO2002062623A2 (en) | 2001-01-23 | 2002-08-15 | Donnelly Corporation | Improved vehicular lighting system for a mirror assembly |
US10144353B2 (en) | 2002-08-21 | 2018-12-04 | Magna Electronics Inc. | Multi-camera vision system for a vehicle |
EP1263626A2 (en) | 2000-03-02 | 2002-12-11 | Donnelly Corporation | Video mirror systems incorporating an accessory module |
US6477464B2 (en) | 2000-03-09 | 2002-11-05 | Donnelly Corporation | Complete mirror-based global-positioning system (GPS) navigation solution |
US6693517B2 (en) | 2000-04-21 | 2004-02-17 | Donnelly Corporation | Vehicle mirror assembly communicating wirelessly with vehicle accessories and occupants |
US6533444B2 (en) * | 2000-05-12 | 2003-03-18 | Wen I Auguste Lee | Lighting directional sign for vehicle signal light |
US6650457B2 (en) * | 2001-05-21 | 2003-11-18 | Gentex Corporation | Rearview mirror constructed for efficient assembly |
US6657767B2 (en) * | 2001-05-21 | 2003-12-02 | Gentex Corporation | Rearview mirror assembly construction |
US7104676B2 (en) * | 2002-04-15 | 2006-09-12 | K.W. Muth Company, Inc. | Signaling assembly |
US6918685B2 (en) | 2002-04-15 | 2005-07-19 | K. W. Muth Company, Inc. | Mirror with integrated signaling assembly |
US6918674B2 (en) | 2002-05-03 | 2005-07-19 | Donnelly Corporation | Vehicle rearview mirror system |
WO2003105099A1 (en) | 2002-06-06 | 2003-12-18 | Donnelly Corporation | Interior rearview mirror system with compass |
US7329013B2 (en) | 2002-06-06 | 2008-02-12 | Donnelly Corporation | Interior rearview mirror system with compass |
AU2003278802A1 (en) * | 2002-09-12 | 2004-04-30 | Gentex Corporation | Rearview mirror assembly including a multi-functional light module |
US7184190B2 (en) | 2002-09-20 | 2007-02-27 | Donnelly Corporation | Electro-optic reflective element assembly |
US7255451B2 (en) * | 2002-09-20 | 2007-08-14 | Donnelly Corporation | Electro-optic mirror cell |
US7274501B2 (en) * | 2002-09-20 | 2007-09-25 | Donnelly Corporation | Mirror reflective element assembly |
US7310177B2 (en) | 2002-09-20 | 2007-12-18 | Donnelly Corporation | Electro-optic reflective element assembly |
CA2444331A1 (en) * | 2002-10-03 | 2004-04-03 | Magna Donnelly Mirrors North America L.L.C. | Vehicle mirror with internal illumination source and transmitting housing |
US6749325B2 (en) * | 2002-10-29 | 2004-06-15 | K.W. Muth Company | Signaling assembly |
US20040145902A1 (en) * | 2003-01-28 | 2004-07-29 | Todd Daniel R. | Heated mirror assembly |
US7221363B2 (en) * | 2003-02-12 | 2007-05-22 | Gentex Corporation | Vehicle information displays |
US7289037B2 (en) | 2003-05-19 | 2007-10-30 | Donnelly Corporation | Mirror assembly for vehicle |
US7420756B2 (en) | 2003-05-20 | 2008-09-02 | Donnelly Corporation | Mirror reflective element |
US7446924B2 (en) | 2003-10-02 | 2008-11-04 | Donnelly Corporation | Mirror reflective element assembly including electronic component |
DE102004048669B4 (en) * | 2003-10-07 | 2007-06-14 | Toyoda Gosei Co., Ltd. | Vehicle side mirror device |
US7308341B2 (en) | 2003-10-14 | 2007-12-11 | Donnelly Corporation | Vehicle communication system |
AT320943T (en) * | 2003-11-11 | 2006-04-15 | Antolin Grupo Ing Sa | Safety bracket for an inner mirror of a vehicle |
US7008091B2 (en) * | 2003-12-18 | 2006-03-07 | K.W. Muth Company, Inc. | Electromagnetic radiation assembly |
US7293901B2 (en) * | 2004-03-09 | 2007-11-13 | Gentex Corporation | Optics for controlling the direction of light rays and assemblies incorporating the optics |
US7452113B2 (en) | 2004-03-09 | 2008-11-18 | Gentex Corporation | Optics for controlling the direction of light rays and assemblies incorporating the optics |
EP1591314A1 (en) * | 2004-04-28 | 2005-11-02 | Jen-Hsi Weng | Pattern-display signal device for vehicle |
US7360932B2 (en) | 2004-06-01 | 2008-04-22 | Donnelly Corporation | Mirror assembly for vehicle |
US7706046B2 (en) * | 2004-06-08 | 2010-04-27 | Gentex Corporation | Rearview mirror element having a circuit mounted to the rear surface of the element |
US7864398B2 (en) | 2004-06-08 | 2011-01-04 | Gentex Corporation | Electro-optical element including metallic films and methods for applying the same |
US7195382B1 (en) | 2004-06-30 | 2007-03-27 | Magna Donnelly Mirrors North America, L.L.C. | Vehicle mirror with secondary lighting lens for ground illuminator |
US20060018047A1 (en) * | 2004-07-26 | 2006-01-26 | Todd Daniel R | Electromagnetic radiation assembly |
US20060061008A1 (en) | 2004-09-14 | 2006-03-23 | Lee Karner | Mounting assembly for vehicle interior mirror |
US7400435B2 (en) * | 2005-01-19 | 2008-07-15 | Donnelly Corporation | Mirror assembly with heater element |
US7241037B2 (en) * | 2005-03-23 | 2007-07-10 | K.W. Muth Company | Signaling assembly |
EP1883855B1 (en) | 2005-05-16 | 2011-07-20 | Donnelly Corporation | Vehicle mirror assembly with indicia at reflective element |
US7327321B2 (en) * | 2005-06-27 | 2008-02-05 | K.W. Muth Company, Inc. | Electromagnetic radiation assembly |
WO2007005942A2 (en) | 2005-07-06 | 2007-01-11 | Donnelly Corporation | Vehicle exterior mirror assembly with blind spot indicator |
US7717596B1 (en) | 2005-07-15 | 2010-05-18 | Alan Bell | Rearview mirror assembly with running lights |
US7581859B2 (en) | 2005-09-14 | 2009-09-01 | Donnelly Corp. | Display device for exterior rearview mirror |
US7855755B2 (en) | 2005-11-01 | 2010-12-21 | Donnelly Corporation | Interior rearview mirror assembly with display |
US8368992B2 (en) * | 2006-03-03 | 2013-02-05 | Gentex Corporation | Electro-optical element including IMI coatings |
US9274394B2 (en) | 2007-03-05 | 2016-03-01 | Gentex Corporation | Multi-zone mirrors |
US7688495B2 (en) * | 2006-03-03 | 2010-03-30 | Gentex Corporation | Thin-film coatings, electro-optic elements and assemblies incorporating these elements |
US8035881B2 (en) * | 2007-03-05 | 2011-10-11 | Gentex Corporation | Multi-zone mirrors |
US8169681B2 (en) * | 2006-03-03 | 2012-05-01 | Gentex Corporation | Thin-film coatings, electro-optic elements and assemblies incorporating these elements |
EP2426552A1 (en) | 2006-03-03 | 2012-03-07 | Gentex Corporation | Electro-optic elements incorporating improved thin-film coatings |
US10017847B2 (en) * | 2007-03-05 | 2018-07-10 | Gentex Corporation | Method and apparatus for ion milling |
US7746534B2 (en) * | 2006-12-07 | 2010-06-29 | Gentex Corporation | Thin-film coatings, electro-optic elements and assemblies incorporating these elements |
US8649083B2 (en) | 2007-03-05 | 2014-02-11 | Gentex Corporation | Multi-zone mirrors |
US8274729B2 (en) * | 2006-03-03 | 2012-09-25 | Gentex Corporation | Thin-film coatings, electro-optic elements and assemblies incorporating these elements |
WO2008051910A2 (en) | 2006-10-24 | 2008-05-02 | Donnelly Corporation | Display device for exterior mirror |
US7777611B2 (en) * | 2006-11-06 | 2010-08-17 | Donnelly Corporation | Display device for exterior rearview mirror |
EP1970736B1 (en) * | 2007-03-14 | 2010-06-02 | SMR PATENTS S.à.r.l. | Outside rear view mirror for vehicles, especially for motor vehicles |
US7748856B2 (en) | 2007-05-23 | 2010-07-06 | Donnelly Corporation | Exterior mirror element with integral wide angle portion |
US7944371B2 (en) | 2007-11-05 | 2011-05-17 | Magna Mirrors Of America, Inc. | Exterior mirror with indicator |
US8154418B2 (en) | 2008-03-31 | 2012-04-10 | Magna Mirrors Of America, Inc. | Interior rearview mirror system |
US7813023B2 (en) * | 2008-06-09 | 2010-10-12 | Magna Mirrors Of America, Inc. | Electro-optic mirror |
KR101509760B1 (en) * | 2008-10-16 | 2015-04-08 | 엘지이노텍 주식회사 | Light emitting diode package and fabrication method thereof, light emitting apparatus having the same |
US9487144B2 (en) | 2008-10-16 | 2016-11-08 | Magna Mirrors Of America, Inc. | Interior mirror assembly with display |
US10261648B2 (en) | 2009-10-07 | 2019-04-16 | Magna Mirrors Of America, Inc. | Exterior rearview mirror assembly |
US9346403B2 (en) | 2009-10-07 | 2016-05-24 | Magna Mirrors Of America, Inc. | Rearview mirror assembly |
US9205780B2 (en) | 2010-02-04 | 2015-12-08 | Magna Mirrors Of America, Inc. | Electro-optic rearview mirror assembly for vehicle |
US9481304B2 (en) | 2010-05-24 | 2016-11-01 | Magna Mirrors Of America, Inc. | Automotive exterior mirror heater control |
US8708536B1 (en) | 2010-08-30 | 2014-04-29 | K.W. Muth Company, Inc. | Optic assembly for mirror |
US8770810B2 (en) | 2010-12-10 | 2014-07-08 | Smr Patents S.A.R.L. | Rear view mirror assembly with optical indicator |
WO2012112536A2 (en) | 2011-02-14 | 2012-08-23 | Gentex Corporation | Low profile optical lighting assembly for use in outside vehicle mirror and method of forming same |
US8988755B2 (en) | 2011-05-13 | 2015-03-24 | Magna Mirrors Of America, Inc. | Mirror reflective element |
US8736940B2 (en) | 2011-09-30 | 2014-05-27 | Magna Mirrors Of America, Inc. | Exterior mirror with integral spotter mirror and method of making same |
US9475431B2 (en) | 2011-10-05 | 2016-10-25 | Magna Mirrors Of America, Inc. | Rearview mirror assembly |
US8801245B2 (en) | 2011-11-14 | 2014-08-12 | Magna Mirrors Of America, Inc. | Illumination module for vehicle |
JP6026554B2 (en) | 2011-11-23 | 2016-11-16 | マス ミラー システムズ エルエルシーMuth Mirror Systems,Llc | Optical assembly having a virtual external common focus, rearview mirror assembly, and method for directing light rays from a plurality of light sources in an optical assembly |
US9216691B2 (en) | 2013-02-25 | 2015-12-22 | Magna Mirrors Of America, Inc. | Exterior mirror with spotter mirror |
US9815409B2 (en) | 2013-05-09 | 2017-11-14 | Magna Mirrors Of America, Inc. | Rearview vision system for vehicle |
US10111581B2 (en) * | 2014-02-27 | 2018-10-30 | Align Technology, Inc. | Thermal defogging system and method |
US9188293B1 (en) | 2014-05-30 | 2015-11-17 | Grote Industries, Llc | Lighting device embedded in vehicle panel and method for making the same |
US9761144B2 (en) | 2014-09-11 | 2017-09-12 | Magna Mirrors Of America, Inc. | Exterior mirror with blind zone indicator |
US9776569B2 (en) | 2015-01-30 | 2017-10-03 | Magna Mirrors Of America, Inc. | Exterior mirror with heater pad |
US9659498B2 (en) | 2015-09-28 | 2017-05-23 | Magna Mirrors Of America, Inc. | Exterior mirror assembly with blind zone indicator |
US10166924B2 (en) | 2016-05-11 | 2019-01-01 | Magna Mirrors Of America, Inc. | Vehicle vision system with display by a mirror |
US10442360B2 (en) | 2017-03-02 | 2019-10-15 | Magna Mirrors Of America, Inc. | Interior rearview mirror assembly with display and tilt mechanism |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5355284A (en) * | 1990-02-20 | 1994-10-11 | K. W. Muth Company, Inc. | Mirror assembly |
US5788357A (en) * | 1996-08-28 | 1998-08-04 | K. W. Muth Company, Inc. | Mirror assembly |
US6005724A (en) * | 1998-10-05 | 1999-12-21 | K. W. Muth Company, Inc. | Mirror coating, mirror utilizing same, and a mirror assembly |
Family Cites Families (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB268359A (en) | 1926-03-24 | 1927-07-28 | Gilbert Avril | Novel or improved combined rear reflecting mirror and signalling apparatus for use more especially on motor vehicles |
US2060401A (en) | 1935-05-25 | 1936-11-10 | Joseph C Smith | Direction signal |
US2180610A (en) | 1937-04-28 | 1939-11-21 | Oliver C Ritz-Woller | Combination truck mirror and clearance lamp device |
US2190123A (en) | 1938-07-02 | 1940-02-13 | Stephen C Pace | Lighting signal |
US2263382A (en) | 1939-06-19 | 1941-11-18 | Gotzinger George | Mirror signal |
US2580014A (en) | 1949-09-13 | 1951-12-25 | Gazda Antoine | Combined rearview mirror and direction indicating device |
US2595331A (en) | 1950-01-30 | 1952-05-06 | Paul F Calihan | Combination vision mirror and signaling device |
US3040207A (en) | 1959-11-06 | 1962-06-19 | Signal Stat Corp | Variable intensity automotive vehicle lighting and signalling system |
US3266016A (en) | 1964-08-06 | 1966-08-09 | Maru Sho | Outside signal for automobiles |
FR1433468A (en) | 1965-02-16 | 1966-04-01 | Renault | A flashing lights control, particularly for motor vehicle direction indicator lamps |
AU415830B2 (en) | 1966-09-21 | 1971-08-02 | ||
GB1172382A (en) | 1966-11-23 | 1969-11-26 | Shigeru Maruyama | A Vehicle Rear-View Mirror Combined with a Flashing Turn Indicator |
US3436758A (en) | 1967-02-23 | 1969-04-01 | Klaus Kluth | Vehicular warning device having spring positioned reflecting member |
US3532871A (en) | 1968-05-20 | 1970-10-06 | Ford Motor Co | Combination running light-reflector |
US3543018A (en) | 1968-08-06 | 1970-11-24 | Gen Motors Corp | Rearview mirror with map light |
US3665392A (en) | 1970-08-24 | 1972-05-23 | John T Annas | Vehicle driver-actuated safety signal light assembly |
US4005928A (en) | 1971-06-01 | 1977-02-01 | Texas Instruments Incorporated | Nematic liquid crystal displays for low voltage direct current operation |
DE2333789A1 (en) | 1972-06-30 | 1974-01-17 | Emihus Microcomponents Ltd | Lighting system for a vehicle |
JPS5184635A (en) | 1975-01-24 | 1976-07-24 | Fuji Photo Film Co Ltd | |
US4158483A (en) | 1975-07-09 | 1979-06-19 | Harman International Industries, Inc. | Remote controlled rearview mirror |
US4023029A (en) | 1975-10-28 | 1977-05-10 | Fischer Kenneth J | Distance indicating mirror device |
US4040726A (en) | 1976-03-12 | 1977-08-09 | Paca Francis B | See-through mirror with spaced reflective strips |
JPS5819942Y2 (en) | 1978-05-22 | 1983-04-25 | ||
DE2934451A1 (en) | 1979-08-25 | 1981-03-12 | Vdo Schindling | Dimming Rearview Mirror, particularly for motor vehicles. |
DE8100244U1 (en) | 1981-01-06 | 1981-07-23 | Securon Mfg. Ltd., Hayes, Middlesex, Gb | "Stop light" |
US4499451A (en) | 1981-04-07 | 1985-02-12 | Nippondenso Co., Ltd. | Mirror |
US4443057A (en) | 1981-06-01 | 1984-04-17 | Gentex Corporation | Automatic rearview mirror for automotive vehicles |
EP0079728B1 (en) | 1981-11-13 | 1986-11-05 | Clearplas Limited | Illuminated mirror assembly |
US4475100A (en) | 1982-02-22 | 1984-10-02 | Duh Ching Jeng | Side mirror with indicator light |
US4491390A (en) | 1982-05-06 | 1985-01-01 | Tong Shen Hsieh | Automatic liquid-crystal light shutter |
US4603946A (en) | 1982-09-29 | 1986-08-05 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Reflection controllable view mirror device for motor vehicle or the like |
US4506315A (en) | 1982-12-08 | 1985-03-19 | Ichikoh Industries, Ltd. | Vehicle headlamp |
US4623222A (en) | 1983-11-14 | 1986-11-18 | Nippondenso Co., Ltd. | Liquid crystal type dazzle-free transmissive-reflective mirror |
JPS60143301A (en) | 1983-12-29 | 1985-07-29 | Nippon Denso Co Ltd | Nonglaring type reflection mirror and its manufacture |
USRE32576E (en) | 1984-01-18 | 1988-01-12 | Combination rear view mirror and digital clock | |
US4588267A (en) | 1984-01-18 | 1986-05-13 | Ronald Pastore | Combination rear view mirror and digital clock |
US4613791A (en) | 1984-02-02 | 1986-09-23 | Honda Motor Co., Ltd. | Automatic light control apparatus for vehicle |
JPH0314660B2 (en) | 1984-03-15 | 1991-02-27 | Nissan Motor | |
JPS60161639U (en) | 1984-04-06 | 1985-10-26 | ||
US4646210A (en) | 1984-06-20 | 1987-02-24 | Donnelly Corporation | Vehicular mirror and light assembly |
US4516197A (en) | 1984-08-09 | 1985-05-07 | Yonkers Edward H | Antiglare panel |
US4583155A (en) | 1984-09-04 | 1986-04-15 | Hart Robert L | Side mounted rear view mirror with brake light |
US4701022A (en) | 1984-11-28 | 1987-10-20 | C-D Marketing, Ltd. | Day/night mirror |
US4733335A (en) | 1984-12-28 | 1988-03-22 | Koito Manufacturing Co., Ltd. | Vehicular lamp |
US4630904A (en) | 1985-01-22 | 1986-12-23 | Ronald Pastore | Combination rear view mirror and digital displays |
US4659967A (en) | 1985-07-29 | 1987-04-21 | Motorola Inc. | Modulation circuit for a light emitting device |
US4665321A (en) | 1985-08-14 | 1987-05-12 | Kwangling Chang | Automatic control system for automobile lights |
US4807096A (en) | 1986-06-26 | 1989-02-21 | Donnelly Corporation | Interior light/carrier module for vehicles |
US4733336A (en) | 1986-06-26 | 1988-03-22 | Donnelly Corporation | Lighted/information case assembly for rearview mirrors |
US4793690A (en) | 1986-07-18 | 1988-12-27 | Donnelly Corporation | Rearview mirror control circuit |
DE3627134A1 (en) | 1986-08-09 | 1988-02-11 | Philips Patentverwaltung | Method and circuit for controlling a brightness and temperaturabhaenigen lamp, in particular for lighting an LCD display |
US4917477A (en) | 1987-04-06 | 1990-04-17 | Gentex Corporation | Automatic rearview mirror system for automotive vehicles |
IE59698B1 (en) | 1987-04-08 | 1994-03-23 | Donnelly Mirrors Ltd | Rearview mirror control circuit |
US4799768A (en) | 1987-04-27 | 1989-01-24 | Donnelly Corporation | Automatic rearview mirror with filtered light sensors |
US4791534A (en) | 1987-08-07 | 1988-12-13 | Lindberg Victor L | Vehicle including substantially transparent high mounted stop light |
US4862330A (en) | 1987-09-21 | 1989-08-29 | Koito Manufacturing Co., Ltd. | Vehicle lamp |
US4893063A (en) | 1987-10-06 | 1990-01-09 | Joseph Pernyeszi | Apparatus for improving the efficiency of a lighting element |
US4841198A (en) | 1987-10-19 | 1989-06-20 | Nartron Corporation | Head lamp control method and apparatus, with PWM output regulation |
US4929866A (en) | 1987-11-17 | 1990-05-29 | Mitsubishi Cable Industries, Ltd. | Light emitting diode lamp |
US4935665A (en) | 1987-12-24 | 1990-06-19 | Mitsubishi Cable Industries Ltd. | Light emitting diode lamp |
JPH01197141A (en) | 1988-02-02 | 1989-08-08 | Stanley Electric Co Ltd | Rear combination lamp for automobile |
US4882565A (en) | 1988-03-02 | 1989-11-21 | Donnelly Corporation | Information display for rearview mirrors |
JPH0446322Y2 (en) | 1988-08-02 | 1992-10-30 | ||
US4916430A (en) | 1988-11-03 | 1990-04-10 | Vu Thuan D | Back up rear view mirror light |
JPH083962B2 (en) | 1989-01-31 | 1996-01-17 | 株式会社小糸製作所 | Automotive signal lamps |
US5097395A (en) | 1989-02-24 | 1992-03-17 | Minnesota Mining And Manufacturing Company | Multiple cavity light fixture |
JPH0741046Y2 (en) | 1989-10-27 | 1995-09-20 | スタンレー電気株式会社 | led signal lights for vehicles |
US5361190A (en) | 1990-02-20 | 1994-11-01 | K. W. Muth Co. Inc. | Mirror assembly |
US5014167A (en) | 1990-02-20 | 1991-05-07 | K. W. Muth Company, Inc. | Visual signaling apparatus |
US5481409A (en) | 1990-02-20 | 1996-01-02 | K. W. Muth Company, Inc. | Mirror assembly |
US5029060A (en) | 1990-07-17 | 1991-07-02 | Minnesota Mining And Manufacturing Company | Uniform intensity profile catadioptric lens |
US5059015A (en) | 1990-07-20 | 1991-10-22 | Tran Donald Q | Vehicular signal mirror apparatus |
US5150966A (en) | 1990-09-19 | 1992-09-29 | Minnesota Mining And Manufacturing Company | Uniform intensity profile catadioptric lens |
US5241457A (en) | 1991-01-18 | 1993-08-31 | Nippon Sheet Glass Co., Ltd. | Rear window stop lamp for motor vehicles |
US5072340A (en) | 1991-03-25 | 1991-12-10 | Isiah Jones | Signal lamps visible to driver |
JPH04328042A (en) | 1991-04-26 | 1992-11-17 | Koito Mfg Co Ltd | Mounting structure for vehicle marker lamp |
JP2570483Y2 (en) | 1991-06-13 | 1998-05-06 | 忠男 田代 | Automotive winker unit |
US5174649B1 (en) | 1991-07-17 | 1998-04-14 | Precision Solar Controls Inc | Led lamp including refractive lens element |
US5165772A (en) | 1992-03-18 | 1992-11-24 | Hughes Aircraft Company | Visual display device |
US5404869A (en) | 1992-04-16 | 1995-04-11 | Tir Technologies, Inc. | Faceted totally internally reflecting lens with individually curved faces on facets |
US5211466A (en) | 1992-06-15 | 1993-05-18 | Ford Motor Company | Vehicle rear signal light assembly of the high mounted type |
FR2697485B1 (en) | 1992-11-02 | 1995-01-20 | Valeo Vision | Signaling light modular luminous elements for automotive vehicles. |
US5285060A (en) | 1992-12-15 | 1994-02-08 | Donnelly Corporation | Display for automatic rearview mirror |
DE4243173A1 (en) | 1992-12-19 | 1994-06-23 | Bosch Gmbh Robert | A light assembly for vehicles |
US5303130A (en) | 1992-12-28 | 1994-04-12 | Wei Yung Feng | Illuminating automobile sideview mirror |
US5371659A (en) | 1993-02-01 | 1994-12-06 | Donnelly Corporation | Remote-actuated exterior vehicle security light |
US5823654A (en) * | 1993-02-01 | 1998-10-20 | Donnelly Corporation | Universal exterior vehicle security light |
US5497306A (en) | 1993-02-01 | 1996-03-05 | Donnelly Corporation | Exterior vehicle security light |
US5388035A (en) | 1993-07-23 | 1995-02-07 | Federal-Mogul Corporation | Automotive marker lamp |
US5528422A (en) | 1993-12-07 | 1996-06-18 | K. W. Muth Company, Inc. | Mirror coating |
US5436741A (en) | 1993-12-28 | 1995-07-25 | Harman Automotive, Inc. | Holographic signaling mirror |
US5587699A (en) | 1994-11-03 | 1996-12-24 | United Technologies Automotive Systems Inc. | Exterior mirror with information display |
US6045243A (en) * | 1996-08-28 | 2000-04-04 | K.W. Muth Company, Inc. | Mirror assembly |
US5938320A (en) * | 1997-03-19 | 1999-08-17 | Harman Automotive, Inc. | Enhanced illuminated polymeric indicator employed in a mirror housing of an automotive vehicle |
US6111683A (en) * | 1997-04-02 | 2000-08-29 | Gentex Corporation | Electrochromic mirrors having a signal light |
-
1998
- 1998-11-03 US US09/185,665 patent/US6257746B1/en not_active Expired - Lifetime
-
1999
- 1999-10-19 WO PCT/US1999/024536 patent/WO2000026061A1/en active Application Filing
- 1999-10-19 AU AU11264/00A patent/AU1126400A/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5355284A (en) * | 1990-02-20 | 1994-10-11 | K. W. Muth Company, Inc. | Mirror assembly |
US5788357A (en) * | 1996-08-28 | 1998-08-04 | K. W. Muth Company, Inc. | Mirror assembly |
US6005724A (en) * | 1998-10-05 | 1999-12-21 | K. W. Muth Company, Inc. | Mirror coating, mirror utilizing same, and a mirror assembly |
Also Published As
Publication number | Publication date |
---|---|
AU1126400A (en) | 2000-05-22 |
US6257746B1 (en) | 2001-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1690738B1 (en) | Rear view side mirror with signals emitter device | |
US5671996A (en) | Vehicle instrumentation/console lighting | |
US7944371B2 (en) | Exterior mirror with indicator | |
US4892369A (en) | Holographic rear window stoplight | |
US7009751B2 (en) | Electrochromic rearview mirror incorporating a third surface partially transmissive reflector | |
US6905235B2 (en) | Exterior rear view mirror integral warning light | |
US8021030B2 (en) | Lighted exterior mirror assembly for vehicle | |
US5371659A (en) | Remote-actuated exterior vehicle security light | |
US5303130A (en) | Illuminating automobile sideview mirror | |
US6286983B1 (en) | Mirror having an illuminated film for signaling and general illumination | |
US6142656A (en) | Multi-functional side rear view mirror for a vehicle | |
EP1902338B1 (en) | Vehicle exterior mirror assembly with blind spot indicator | |
US8743203B2 (en) | Rear vision system for a vehicle | |
US6916100B2 (en) | Vehicle exterior rearview mirror assembly | |
US5575552A (en) | Lighted mirror apparatus | |
US6420800B1 (en) | Rearview mirror with buttons incorporating display | |
JP5156319B2 (en) | Rearview mirror for vehicles | |
US20050190465A1 (en) | Side view mirror with integral lighting | |
US20060087826A1 (en) | Phosphor reactive instrument panel and gauges | |
US20030227546A1 (en) | Viewing arrangement | |
US20120280528A1 (en) | Vehicle accent molding with puddle light | |
US8764256B2 (en) | Vehicle exterior mirror system with light module | |
CA2019780C (en) | Headlamp assembly | |
EP0820901B2 (en) | Universal exterior vehicle security light | |
US20150246640A1 (en) | Vehicle exterior rearview mirror system having an indicator at a back plate of an exterior rearview mirror assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase in: |
Ref country code: AU Ref document number: 2000 11264 Kind code of ref document: A Format of ref document f/p: F |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |